"Mode of Acquisition" of Word Meanings: The Viability of a Theoretical Construct.
ERIC Educational Resources Information Center
Wauters, Loes N.; Tellings, Agnes E. J. M.; Van Bon, Wim H. J.; Van Haaften, A. Wouter
2003-01-01
Examines the reliability and validity of the construct, "mode of acquisition" (MOA). The MOA of a word denotes the way in which the word's meaning is learned. Subjects in one study were volunteers from third year special education courses and in a second study, educational professionals. (Author/VWL)
NASA Astrophysics Data System (ADS)
De Lorenzo, Danilo; De Momi, Elena; Beretta, Elisa; Cerveri, Pietro; Perona, Franco; Ferrigno, Giancarlo
2009-02-01
Computer Assisted Orthopaedic Surgery (CAOS) systems improve the results and the standardization of surgical interventions. Anatomical landmarks and bone surface detection is straightforward to either register the surgical space with the pre-operative imaging space and to compute biomechanical parameters for prosthesis alignment. Surface points acquisition increases the intervention invasiveness and can be influenced by the soft tissue layer interposition (7-15mm localization errors). This study is aimed at evaluating the accuracy of a custom-made A-mode ultrasound (US) system for non invasive detection of anatomical landmarks and surfaces. A-mode solutions eliminate the necessity of US images segmentation, offers real-time signal processing and requires less invasive equipment. The system consists in a single transducer US probe optically tracked, a pulser/receiver and an FPGA-based board, which is responsible for logic control command generation and for real-time signal processing and three custom-made board (signal acquisition, blanking and synchronization). We propose a new calibration method of the US system. The experimental validation was then performed measuring the length of known-shape polymethylmethacrylate boxes filled with pure water and acquiring bone surface points on a bovine bone phantom covered with soft-tissue mimicking materials. Measurement errors were computed through MR and CT images acquisitions of the phantom. Points acquisition on bone surface with the US system demonstrated lower errors (1.2mm) than standard pointer acquisition (4.2mm).
Yeo, Inhwan Jason; Jung, Jae Won; Yi, Byong Yong; Kim, Jong Oh
2013-01-01
Purpose: When an intensity-modulated radiation beam is delivered to a moving target, the interplay effect between dynamic beam delivery and the target motion due to miss-synchronization can cause unpredictable dose delivery. The portal dose image in electronic portal imaging device (EPID) represents radiation attenuated and scattered through target media. Thus, it may possess information about delivered radiation to the target. Using a continuous scan (cine) mode of EPID, which provides temporal dose images related to target and beam movements, the authors’ goal is to perform four-dimensional (4D) dose reconstruction. Methods: To evaluate this hypothesis, first, the authors have derived and subsequently validated a fast method of dose reconstruction based on virtual beamlet calculations of dose responses using a test intensity-modulated beam. This method was necessary for processing a large number of EPID images pertinent for four-dimensional reconstruction. Second, cine mode acquisition after summation over all images was validated through comparison with integration mode acquisition on EPID (IAS3 and aS1000) for the test beam. This was to confirm the agreement of the cine mode with the integrated mode, specifically for the test beam, which is an accepted mode of image acquisition for dosimetry with EPID. Third, in-phantom film and exit EPID dosimetry was performed on a moving platform using the same beam. Heterogeneous as well as homogeneous phantoms were used. The cine images were temporally sorted at 10% interval. The authors have performed dose reconstruction to the in-phantom plane from the sorted cine images using the above validated method of dose reconstruction. The reconstructed dose from each cine image was summed to compose a total reconstructed dose from the test beam delivery, and was compared with film measurements. Results: The new method of dose reconstruction was validated showing greater than 95.3% pass rates of the gamma test with the criteria of dose difference of 3% and distance to agreement of 3 mm. The dose comparison of the reconstructed dose with the measured dose for the two phantoms showed pass rates higher than 96.4% given the same criteria. Conclusions: Feasibility of 4D dose reconstruction was successfully demonstrated in this study. The 4D dose reconstruction demonstrated in this study can be a promising dose validation method for radiation delivery on moving organs. PMID:23635250
Sentinel-1 Precise Orbit Calibration and Validation
NASA Astrophysics Data System (ADS)
Monti Guarnieri, Andrea; Mancon, Simone; Tebaldini, Stefano
2015-05-01
In this paper, we propose a model-based procedure to calibrate and validate Sentinel-1 orbit products by the Multi-Squint (MS) phase. The technique allows to calibrate an interferometric pair geometry by refining the slave orbit with reference to the orbit of a master image. Accordingly, we state the geometric model of the InSAR phase as function of positioning errors of targets and slave track; and the MS phase model as derivative of the InSAR phase geometric model with respect to the squint angle. In this paper we focus on the TOPSAR acquisition modes of Sentinel-1 (IW and EW) assuming at the most a linear error in the known slave trajectory. In particular, we describe a dedicated methodology to prevent InSAR phase artifacts on data acquired by the TOPSAR acquisition mode. Experimental results obtained by interferometric pairs acquired by Sentinel-1 sensor will be displayed.
Samanipour, Saer; Reid, Malcolm J; Bæk, Kine; Thomas, Kevin V
2018-04-17
Nontarget analysis is considered one of the most comprehensive tools for the identification of unknown compounds in a complex sample analyzed via liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). Due to the complexity of the data generated via LC-HRMS, the data-dependent acquisition mode, which produces the MS 2 spectra of a limited number of the precursor ions, has been one of the most common approaches used during nontarget screening. However, data-independent acquisition mode produces highly complex spectra that require proper deconvolution and library search algorithms. We have developed a deconvolution algorithm and a universal library search algorithm (ULSA) for the analysis of complex spectra generated via data-independent acquisition. These algorithms were validated and tested using both semisynthetic and real environmental data. A total of 6000 randomly selected spectra from MassBank were introduced across the total ion chromatograms of 15 sludge extracts at three levels of background complexity for the validation of the algorithms via semisynthetic data. The deconvolution algorithm successfully extracted more than 60% of the added ions in the analytical signal for 95% of processed spectra (i.e., 3 complexity levels multiplied by 6000 spectra). The ULSA ranked the correct spectra among the top three for more than 95% of cases. We further tested the algorithms with 5 wastewater effluent extracts for 59 artificial unknown analytes (i.e., their presence or absence was confirmed via target analysis). These algorithms did not produce any cases of false identifications while correctly identifying ∼70% of the total inquiries. The implications, capabilities, and the limitations of both algorithms are further discussed.
Ichikawa, Katsuhiro; Hara, Takanori; Urikura, Atsushi; Takata, Tadanori; Ohashi, Kazuya
2015-06-01
The purpose of this study was to propose a method for assessing the temporal resolution (TR) of multi-detector row computed tomography (CT) (MDCT) in the helical acquisition mode using temporal impulse signals generated by a metal ball passing through the acquisition plane. An 11-mm diameter metal ball was shot along the central axis at approximately 5 m/s during a helical acquisition, and the temporal sensitivity profile (TSP) was measured from the streak image intensities in the reconstructed helical CT images. To assess the validity, we compared the measured and theoretical TSPs for the 4-channel modes of two MDCT systems. A 64-channel MDCT system was used to compare TSPs and image quality of a motion phantom for the pitch factors P of 0.6, 0.8, 1.0 and 1.2 with a rotation time R of 0.5 s, and for two R/P combinations of 0.5/1.2 and 0.33/0.8. Moreover, the temporal transfer functions (TFs) were calculated from the obtained TSPs. The measured and theoretical TSPs showed perfect agreement. The TSP narrowed with an increase in the pitch factor. The image sharpness of the 0.33/0.8 combination was inferior to that of the 0.5/1.2 combination, despite their almost identical full width at tenth maximum values. The temporal TFs quantitatively confirmed these differences. The TSP results demonstrated that the TR in the helical acquisition mode significantly depended on the pitch factor as well as the rotation time, and the pitch factor and reconstruction algorithm affected the TSP shape. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Five-dimensional ultrasound system for soft tissue visualization.
Deshmukh, Nishikant P; Caban, Jesus J; Taylor, Russell H; Hager, Gregory D; Boctor, Emad M
2015-12-01
A five-dimensional ultrasound (US) system is proposed as a real-time pipeline involving fusion of 3D B-mode data with the 3D ultrasound elastography (USE) data as well as visualization of these fused data and a real-time update capability over time for each consecutive scan. 3D B-mode data assist in visualizing the anatomy of the target organ, and 3D elastography data adds strain information. We investigate the feasibility of such a system and show that an end-to-end real-time system, from acquisition to visualization, can be developed. We present a system that consists of (a) a real-time 3D elastography algorithm based on a normalized cross-correlation (NCC) computation on a GPU; (b) real-time 3D B-mode acquisition and network transfer; (c) scan conversion of 3D elastography and B-mode volumes (if acquired by 4D wobbler probe); and (d) visualization software that fuses, visualizes, and updates 3D B-mode and 3D elastography data in real time. We achieved a speed improvement of 4.45-fold for the threaded version of the NCC-based 3D USE versus the non-threaded version. The maximum speed was 79 volumes/s for 3D scan conversion. In a phantom, we validated the dimensions of a 2.2-cm-diameter sphere scan-converted to B-mode volume. Also, we validated the 5D US system visualization transfer function and detected 1- and 2-cm spherical objects (phantom lesion). Finally, we applied the system to a phantom consisting of three lesions to delineate the lesions from the surrounding background regions of the phantom. A 5D US system is achievable with real-time performance. We can distinguish between hard and soft areas in a phantom using the transfer functions.
NASA Astrophysics Data System (ADS)
Osterman, G. B.; Fisher, B.; Wunch, D.; Eldering, A.; Wennberg, P. O.; Roehl, C. M.; Naylor, B. J.; Lee, R.; Pollock, R.; Gunson, M. R.
2015-12-01
The OCO-2 instrument was successfully launched on July 2, 2014 from Vandenberg Air Force Base in California. The instrument reached its observational orbit about three weeks later. The spacecraft is at the head of the A-train satellites and began collecting operational data on Sept 5, 2014. OCO-2 makes measurements in three modes: nadir, glint and target. Target observations are designed to provide large amounts of data in a small area near a ground validation site. The instruments of the Total Carbon Column Observing Network (TCCON) provide the ground validation data for the OCO-2 XCO2 observations and comparisons to TCCON form the basis of the OCO-2 validation plan. There are now 27 locations at which OCO-2 can perform target observations and CCON sites make up 23 of those possible target locations. For its first year in orbit, OCO-2 operated in nadir mode for 16 days and then in glint mode for 16 days. Each 16-day cycle spans 233 orbits. On July 1, 2015, OCO-2 changed to an observational mode of alternating nadir and glint measurements on an orbit-by-orbit basis. By December 2015, this operational mode may be modified such that orbits that measure only over ocean will always observed in glint mode. In this presentation we will provide information on the observations made by OCO-2 during its first 15 month in operations. We will show maps of the OCO-2 ground tracks and XCO2 data, calendars illustrating the observational schedule and statistics on the target observations taken. We will provide more information on what is involved in making target observations and how it affects the standard operational data acquisition patterns. Changes to the standard observational patterns of OCO-2 and to the list of locations for target observations will be discussed as well. We will provide an overview of some of the validation related analysis being done using nadir and glint mode OCO-2 data in addition to an overview on validation analyses that do not directly utilize TCCON data.
Validation of Spaceborne Radar Surface Water Mapping with Optical sUAS Images
NASA Astrophysics Data System (ADS)
Li-Chee-Ming, J.; Murnaghan, K.; Sherman, D.; Poncos, V.; Brisco, B.; Armenakis, C.
2015-08-01
The Canada Centre for Remote Sensing (CCRS) has over 40 years of experience with airborne and spaceborne sensors and is now starting to use small Unmanned Aerial Systems (sUAS) to validate products from large coverage area sensors and create new methodologies for very high resolution products. Wetlands have several functions including water storage and retention which can reduce flooding and provide continuous flow for hydroelectric generation and irrigation for agriculture. Synthetic Aperture Radar is well suited as a tool for monitoring surface water by supplying acquisitions irrespective of cloud cover or time of day. Wetlands can be subdivided into three classes: open water, flooded vegetation and upland which can vary seasonally with time and water level changes. RADARSAT-2 data from the Wide-Ultra Fine, Spotlight and Fine Quad-Pol modes has been used to map the open water in the Peace-Athabasca Delta, Alberta using intensity thresholding. We also use spotlight modes for higher resolution and the fully polarimetric mode (FQ) for polarimetric decomposition. Validation of these products will be done using a low altitude flying sUAS to generate optical georeferenced images. This project provides methodologies which could be used for flood mapping as well as ecological monitoring.
Graph-based real-time fault diagnostics
NASA Technical Reports Server (NTRS)
Padalkar, S.; Karsai, G.; Sztipanovits, J.
1988-01-01
A real-time fault detection and diagnosis capability is absolutely crucial in the design of large-scale space systems. Some of the existing AI-based fault diagnostic techniques like expert systems and qualitative modelling are frequently ill-suited for this purpose. Expert systems are often inadequately structured, difficult to validate and suffer from knowledge acquisition bottlenecks. Qualitative modelling techniques sometimes generate a large number of failure source alternatives, thus hampering speedy diagnosis. In this paper we present a graph-based technique which is well suited for real-time fault diagnosis, structured knowledge representation and acquisition and testing and validation. A Hierarchical Fault Model of the system to be diagnosed is developed. At each level of hierarchy, there exist fault propagation digraphs denoting causal relations between failure modes of subsystems. The edges of such a digraph are weighted with fault propagation time intervals. Efficient and restartable graph algorithms are used for on-line speedy identification of failure source components.
Noncontact phase-sensitive dynamic optical coherence elastography at megahertz rate
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Kistenev, Yury V.; Larin, Kirill V.
2016-03-01
Dynamic optical coherence elastography (OCE) techniques have shown great promise at quantitatively obtaining the biomechanical properties of tissue. However, the majority of these techniques have required multiple temporal OCT acquisitions (M-B mode) and corresponding excitations, which lead to clinically unfeasible acquisition times and potential tissue damage. Furthermore, the large data sets and extended laser exposures hinder their translation to the clinic, where patient discomfort and safety are critical criteria. In this work we demonstrate noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz. The elastic wave was imaged at a frame rate of ~7.3 kHz using only a single excitation. In contrast to previous techniques, successive B-scans were acquired over the measurement region (B-M mode) in this work. The feasibility of this method was validated by quantifying the elasticity of tissue-mimicking agar phantoms as well as porcine corneas ex vivo at different intraocular pressures. The results demonstrate that this method can acquire a depth-resolved elastogram in milliseconds. The reduced data set enabled a rapid elasticity assessment, and the ultra-fast acquisition speed allowed for a clinically safe laser exposure to the cornea.
Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.
Kaufmann, Anton
2018-04-30
Quadrupole Orbitrap instruments (Q Orbitrap) permit high-resolution mass spectrometry (HRMS)-based full scan acquisitions and have a number of acquisition modes where the quadrupole isolates a particular mass range prior to a possible fragmentation and HRMS-based acquisition. Selecting the proper acquisition mode(s) is essential if trace analytes are to be quantified in complex matrix extracts. Depending on the particular requirements, such as sensitivity, selectivity of detection, linear dynamic range, and speed of analysis, different acquisition modes may have to be chosen. This is particularly important in the field of multi-residue analysis (e.g., pesticides or veterinary drugs in food samples) where a large number of analytes within a complex matrix have to be detected and reliably quantified. Meeting the specific detection and quantification performance criteria for every targeted compound may be challenging. It is the aim of this paper to describe the strengths and the limitations of the currently available Q Orbitrap acquisition modes. In addition, the incorporation of targeted acquisitions between full scan experiments is discussed. This approach is intended to integrate compounds that require an additional degree of sensitivity or selectivity into multi-residue methods. This article is protected by copyright. All rights reserved.
2016-03-14
DoD Department of Defense EMI electromagnetic induction ESTCP Environmental Security Technology Certification Program ft. foot GPS global...three primary objectives: Test and validate detection and discrimination capabilities of a currently available advanced electromagnetic induction ... induction (EMI) sensors in dynamic and static data acquisition modes and associated analysis software. To achieve these objectives, a controlled test was
A review of how to conduct a surgical survey using a questionnaire.
Hing, C B; Smith, T O; Hooper, L; Song, F; Donell, S T
2011-08-01
Health surveys using questionnaires facilitate the acquisition of information on the knowledge, behaviour, attitudes, perceptions and clinical history of a selected population. Their internal and external validities are threatened by poor design and low response rates. Numerous studies have investigated survey design and administration but care should be taken when generalising findings in different clinical and cultural settings. The current evidence-base suggests that no single mode of survey administration, such as postal, electronic or telephone, is superior to another. Whilst there is no evidence of an ideal response rate relationship to survey validity, response rates can be enhanced by including monetary incentives, providing a time cue, and repeat contact with non-responders. Unlike other modes of experimental data collection, few guidelines currently exist for survey and questionnaire design and response rate should not be considered a direct measure of a survey's quality. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Merčep, Elena; Burton, Neal C.; Deán-Ben, Xosé Luís.; Razansky, Daniel
2017-02-01
The complementary contrast of the optoacoustic (OA) and pulse-echo ultrasound (US) modalities makes the combined usage of these imaging technologies highly advantageous. Due to the different physical contrast mechanisms development of a detector array optimally suited for both modalities is one of the challenges to efficient implementation of a single OA-US imaging device. We demonstrate imaging performance of the first hybrid detector array whose novel design, incorporating array segments of linear and concave geometry, optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic tomography modes. Hybrid detector array has a total number of 256 elements and three segments of different geometry and variable pitch size: a central 128-element linear segment with pitch of 0.25mm, ideally suited for pulse-echo US imaging, and two external 64-elements segments with concave geometry and 0.6mm pitch optimized for OA image acquisition. Interleaved OA and US image acquisition with up to 25 fps is facilitated through a custom-made multiplexer unit. Spatial resolution of the transducer was characterized in numerical simulations and validated in phantom experiments and comprises 230 and 300 μm in the respective OA and US imaging modes. Imaging performance of the multi-segment detector array was experimentally shown in a series of imaging sessions with healthy volunteers. Employing mixed array geometries allows at the same time achieving excellent OA contrast with a large field of view, and US contrast for complementary structural features with reduced side-lobes and improved resolution. The newly designed hybrid detector array that comprises segments of linear and concave geometries optimally fulfills requirements for efficient US and OA imaging and may expand the applicability of the developed hybrid OPUS imaging technology and accelerate its clinical translation.
Incidental Learning of Melodic Structure of North Indian Music.
Rohrmeier, Martin; Widdess, Richard
2017-07-01
Musical knowledge is largely implicit. It is acquired without awareness of its complex rules, through interaction with a large number of samples during musical enculturation. Whereas several studies explored implicit learning of mostly abstract and less ecologically valid features of Western music, very little work has been done with respect to ecologically valid stimuli as well as non-Western music. The present study investigated implicit learning of modal melodic features in North Indian classical music in a realistic and ecologically valid way. It employed a cross-grammar design, using melodic materials from two modes (rāgas) that use the same scale. Findings indicated that Western participants unfamiliar with Indian music incidentally learned to identify distinctive features of each mode. Confidence ratings suggest that participants' performance was consistently correlated with confidence, indicating that they became aware of whether they were right in their responses; that is, they possessed explicit judgment knowledge. Altogether our findings show incidental learning in a realistic ecologically valid context during only a very short exposure, they provide evidence that incidental learning constitutes a powerful mechanism that plays a fundamental role in musical acquisition. Copyright © 2016 Cognitive Science Society, Inc.
Abushareeda, Wadha; Vonaparti, Ariadni; Saad, Khadija Al; Almansoori, Moneera; Meloug, Mbarka; Saleh, Amal; Aguilera, Rodrigo; Angelis, Yiannis; Horvatovich, Peter L; Lommen, Arjen; Alsayrafi, Mohammed; Georgakopoulos, Costas
2018-03-20
The aim of this paper is to present the development and validation of a high-resolution full scan (HR-FS) electrospray ionization (ESI) liquid chromatography coupled to quadrupole Orbitrap mass spectrometer (LC/Q/Orbitrap MS) platform for the screening of prohibited substances in human urine according to World Antidoping Agency (WADA) requirements. The method was also validated for quantitative analysis of six endogenous steroids (epitestosterone, testosterone, 5α-dihydrotestosterone, dehydroepiandrosterone, androsterone and etiocholanolone) in their intact sulfates form. The sample preparation comprised a combination of a hydrolyzed urine liquid-liquid extraction and the dilute & shoot addition of original urine in the extracted aliquot. The HR-FS MS acquisition mode with Polarity Switching was applied in combination of the Quadrupole-Orbitrap mass filter. The HR-FS acquisition of analytical signal, for known and unknown small molecules, allows the inclusion of all analytes detectable with LC-MS for antidoping investigations to identify the use of known or novel prohibited substances and metabolites after electronic data files' reprocessing. The method has been validated to be fit-for-purpose for the antidoping analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of detectability in step-and-shoot mode and continuous mode digital tomosynthesis systems
NASA Astrophysics Data System (ADS)
Lee, Changwoo; Han, Minah; Baek, Jongduk
2017-03-01
Digital tomosynthesis system has been widely used in chest, dental, and breast imaging. Since the digital tomosynthesis system provides volumetric images from multiple projection data, structural noise inherent in X-ray radiograph can be reduced, and thus signal detection performance is improved. Currently, tomosynthesis system uses two data acquisition modes: step-and-shoot mode and continuous mode. Several studies have been conducted to compare the system performance of two acquisition modes with respect to spatial resolution and contrast. In this work, we focus on signal detectability in step-and-shoot mode and continuous mode. For evaluation, uniform background is considered, and eight spherical objects with diameters of 0.5, 0.8, 1, 2, 3, 5, 8, 10 mm are used as signals. Projection data with and without spherical objects are acquired in step-and-shoot mode and continuous mode, respectively, and quantum noise are added. Then, noisy projection data are reconstructed by FDK algorithm. To compare the detection performance of two acquisition modes, we calculate task signal-to-noise ratio (SNR) of channelized Hotelling observer with Laguerre-Gauss channels for each spherical object. While the task-SNR values of two acquisition modes are similar for spherical objects larger than 1 mm diameter, step-and-shoot mode yields higher detectability for small signal sizes. The main reason of this behavior is that small signal is more affected by X-ray tube motion blur than large signal. Our results indicate that it is beneficial to use step-and-shoot data acquisition mode to improve the detectability of small signals (i.e., less than 1 mm diameter) in digital tomosynthesis systems.
Validation of Cryosat-2 SAR Wind and Wave Products
NASA Astrophysics Data System (ADS)
Abdalla, Saleh; Dinardo, Salvatore; Benveniste, Jerome; Janssen, Peter
2016-08-01
Significant wave height (SWH) and surface wind speed (WS) products from the CryoSat-2 Synthetic Aperture Radar (SAR) Mode are validated against operational ECMWF atmospheric and wave model results in addition to available observations from buoys, platforms and other altimeters. The SAMOSA ocean model SAR data processed in the ESRIN G-POD service using SAR Versatile Altimetric Toolkit for Ocean Research & Exploitation (SARvatore). The data cover two geographic boxes: one in the northeast Atlantic Ocean extending from 32°N to 70°N and from 20°W to the prime meridian (NE Atlantic Box) for the period from 6 September 2010 to 30 June 2014 and the other is in eastern Pacific extending from 2.5°S to 25.5°S and from 160°W to 85°W (Pacific Box) for the period from 7 May 2012 to 30 June 2014. The amount of data is limited by the CryoSat SAR mode acquisition capability over ocean but high enough to ensure robustness and significance of the results (Sentinel-3 will operate in SAR mode over the whole ocean). The results show that the quality of both SWH and WS products is very high.
NASA Astrophysics Data System (ADS)
Londt, John H.; Shreter, Uri; Vass, Melissa; Hsieh, Jiang; Ge, Zhanyu; Adda, Olivier; Dowe, David A.; Sabllayrolles, Jean-Louis
2007-03-01
We present the results of dose and image quality performance evaluation of a novel, prospective ECG-gated Coronary CT Angiography acquisition mode (SnapShot Pulse, LightSpeed VCT-XT scanner, GE Healthcare, Waukesha, WI), and compare it to conventional retrospective ECG gated helical acquisition in clinical and phantom studies. Image quality phantoms were used to measure noise, slice sensitivity profile, in-plane resolution, low contrast detectability and dose, using the two acquisition modes. Clinical image quality and diagnostic confidence were evaluated in a study of 31 patients scanned with the two acquisition modes. Radiation dose reduction in clinical practice was evaluated by tracking 120 consecutive patients scanned with the prospectively gated scan mode. In the phantom measurements, the prospectively gated mode resulted in equivalent or better image quality measures at dose reductions of up to 89% compared to non-ECG modulated conventional helical scans. In the clinical study, image quality was rated excellent by expert radiologist reviewing the cases, with pathology being identical using the two acquisition modes. The average dose to patients in the clinical practice study was 5.6 mSv, representing 50% reduction compared to a similar patient population scanned with the conventional helical mode.
NASA Astrophysics Data System (ADS)
Yague-Martinez, N.; Fielding, E. J.; Haghshenas-Haghighi, M.; Cong, X.; Motagh, M.
2014-12-01
This presentation will address the 24 September 2013 Mw 7.7 Balochistan Earthquake in western Pakistan from the point of view of interferometric processing algorithms of wide-swath TerraSAR-X ScanSAR images. The algorithms are also valid for TOPS acquisition mode, the operational mode of the Sentinel-1A ESA satellite that was successfully launched in April 2014. Spectral properties of burst-mode data and an overview of the interferometric processing steps of burst-mode acquisitions, emphasizing the importance of the co-registration stage, will be provided. A co-registration approach based on incoherent cross-correlation will be presented and applied to seismic scenarios. Moreover geodynamic corrections due to differential atmospheric path delay and differential solid Earth tides are considered to achieve accuracy in the order of several centimeters. We previously derived a 3D displacement map using cross-correlation techniques applied to optical images from Landsat-8 satellite and TerraSAR-X ScanSAR amplitude images. The Landsat-8 cross-correlation measurements cover two horizontal directions, and the TerraSAR-X displacements include both horizontal along-track and slant-range (radar line-of-sight) measurements that are sensitive to vertical and horizontal deformation. It will be justified that the co-seismic displacement map from TerraSAR-X ScanSAR data may be contaminated by postseismic deformation due to the fact that the post-seismic acquisition took place one month after the main shock, confirmed in part by a TerraSAR-X stripmap interferogram (processed with conventional InSAR) covering part of the area starting on 27 September 2013. We have arranged the acquisition of a burst-synchronized stack of TerraSAR-X ScanSAR images over the affected area after the earthquake. It will be possible to apply interferometry to these data to measure the lower magnitude of the expected postseismic displacements. The processing of single interferograms will be discussed. A quicklook of the wrapped differential TerraSAR-X ScanSAR co-seismic interferogram is provided in the attachment (range coverage is 100 km by using 4 subswaths).
Double-differential recording and AGC using microcontrolled variable gain ASIC.
Rieger, Robert; Deng, Shin-Liang
2013-01-01
Low-power wearable recording of biopotentials requires acquisition front-ends with high common-mode rejection for interference suppression and adjustable gain to provide an optimum signal range to a cascading analogue-to-digital stage. A microcontroller operated double-differential (DD) recording setup and automatic gain control circuit (AGC) are discussed which reject common-mode interference and provide tunable gain, thus compensating for imbalance and variation in electrode interface impedance. Custom-designed variable gain amplifiers (ASIC) are used as part of the recording setup. The circuit gain and balance is set by the timing of microcontroller generated clock signals. Measured results are presented which confirm that improved common-mode rejection is achieved compared to a single differential amplifier in the presence of input network imbalance. Practical measured examples further validate gain control suitable for biopotential recording and power-line rejection for wearable ECG and EMG recording. The prototype front-end consumes 318 μW including amplifiers and microcontroller.
Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji
2016-04-01
To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Korporaal, Johannes G; Benz, Matthias R; Schindera, Sebastian T; Flohr, Thomas G; Schmidt, Bernhard
2016-01-01
The aim of this study was to introduce a new theoretical framework describing the relationship between the blood velocity, computed tomography (CT) acquisition velocity, and iodine contrast enhancement in CT images, and give a proof of principle of contrast gradient-based blood velocimetry with CT. The time-averaged blood velocity (v(blood)) inside an artery along the axis of rotation (z axis) is described as the mathematical division of a temporal (Hounsfield unit/second) and spatial (Hounsfield unit/centimeter) iodine contrast gradient. From this new theoretical framework, multiple strategies for calculating the time-averaged blood velocity from existing clinical CT scan protocols are derived, and contrast gradient-based blood velocimetry was introduced as a new method that can calculate v(blood) directly from contrast agent gradients and the changes therein. Exemplarily, the behavior of this new method was simulated for image acquisition with an adaptive 4-dimensional spiral mode consisting of repeated spiral acquisitions with alternating scan direction. In a dynamic flow phantom with flow velocities between 5.1 and 21.2 cm/s, the same acquisition mode was used to validate the simulations and give a proof of principle of contrast gradient-based blood velocimetry in a straight cylinder of 2.5 cm diameter, representing the aorta. In general, scanning with the direction of blood flow results in decreased and scanning against the flow in increased temporal contrast agent gradients. Velocity quantification becomes better for low blood and high acquisition speeds because the deviation of the measured contrast agent gradient from the temporal gradient will increase. In the dynamic flow phantom, a modulation of the enhancement curve, and thus alternation of the contrast agent gradients, can be observed for the adaptive 4-dimensional spiral mode and is in agreement with the simulations. The measured flow velocities in the downslopes of the enhancement curves were in good agreement with the expected values, although the accuracy and precision worsened with increasing flow velocities. The new theoretical framework increases the understanding of the relationship between the blood velocity, CT acquisition velocity, and iodine contrast enhancement in CT images, and it interconnects existing blood velocimetry methods with research on transluminary attenuation gradients. With these new insights, novel strategies for CT blood velocimetry, such as the contrast gradient-based method presented in this article, may be developed.
Acquisition performance of LAPAN-A3/IPB multispectral imager in real-time mode of operation
NASA Astrophysics Data System (ADS)
Hakim, P. R.; Permala, R.; Jayani, A. P. S.
2018-05-01
LAPAN-A3/IPB satellite was launched in June 2016 and its multispectral imager has been producing Indonesian coverage images. In order to improve its support for remote sensing application, the imager should produce images with high quality and quantity. To improve the quantity of LAPAN-A3/IPB multispectral image captured, image acquisition could be executed in real-time mode from LAPAN ground station in Bogor when the satellite passes west Indonesia region. This research analyses the performance of LAPAN-A3/IPB multispectral imager acquisition in real-time mode, in terms of image quality and quantity, under assumption of several on-board and ground segment limitations. Results show that with real-time operation mode, LAPAN-A3/IPB multispectral imager could produce twice as much as image coverage compare to recorded mode. However, the images produced in real-time mode will have slightly degraded quality due to image compression process involved. Based on several analyses that have been done in this research, it is recommended to use real-time acquisition mode whenever it possible, unless for some circumstances that strictly not allow any quality degradation of the images produced.
de Souza, John Kennedy Schettino; Pinto, Marcos Antonio da Silva; Vieira, Pedro Gabrielle; Baron, Jerome; Tierra-Criollo, Carlos Julio
2013-12-01
The dynamic, accurate measurement of pupil size is extremely valuable for studying a large number of neuronal functions and dysfunctions. Despite tremendous and well-documented progress in image processing techniques for estimating pupil parameters, comparatively little work has been reported on practical hardware issues involved in designing image acquisition systems for pupil analysis. Here, we describe and validate the basic features of such a system which is based on a relatively compact, off-the-shelf, low-cost FireWire digital camera. We successfully implemented two configurable modes of video record: a continuous mode and an event-triggered mode. The interoperability of the whole system is guaranteed by a set of modular software components hosted on a personal computer and written in Labview. An offline analysis suite of image processing algorithms for automatically estimating pupillary and eyelid parameters were assessed using data obtained in human subjects. Our benchmark results show that such measurements can be done in a temporally precise way at a sampling frequency of up to 120 Hz and with an estimated maximum spatial resolution of 0.03 mm. Our software is made available free of charge to the scientific community, allowing end users to either use the software as is or modify it to suit their own needs. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poswal, A. K., E-mail: poswalashwini@gmail.com; Agrawal, Ankur; Bhattachryya, D.
2015-06-24
In this paper implementation of Quick-EXAFS data acquisition facility at the Energy Scanning EXAFS beamline(BL-09) at INDUS-2 synchrotron source, Indore is presented. By adopting a continuous-scan mode in the Double Crystal monochromator (DCM), a high signal-to-noise ratio is maintained and the acquisition time is reduced to few seconds. The quality of spectra and repeatability is checked by measuring standards. The present mode of data acquisition would enable EXAFS measurement for in-situ studies even in fluorescence mode.
Slant-hole collimator, dual mode sterotactic localization method
Weisenberger, Andrew G.
2002-01-01
The use of a slant-hole collimator in the gamma camera of dual mode stereotactic localization apparatus allows the acquisition of a stereo pair of scintimammographic images without repositioning of the gamma camera between image acquisitions.
ERIC Educational Resources Information Center
Bar-Kochva, Irit
2013-01-01
Research on reading acquisition and on the processes underlying it usually examined reading orally, while silent reading, which is the more common mode of reading, has been rather neglected. As accumulated data suggests that these two modes of reading only partially overlap, our understanding of the natural mode of reading may still be limited.…
Testing of visual field with virtual reality goggles in manual and visual grasp modes.
Wroblewski, Dariusz; Francis, Brian A; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4-6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode.
NASA Astrophysics Data System (ADS)
Reilhac, Anthonin; Boisson, Frédéric; Wimberley, Catriona; Parmar, Arvind; Zahra, David; Hamze, Hasar; Davis, Emma; Arthur, Andrew; Bouillot, Caroline; Charil, Arnaud; Grégoire, Marie-Claude
2016-02-01
In PET imaging, research groups have recently proposed different experimental set ups allowing multiple animals to be simultaneously imaged in a scanner in order to reduce the costs and increase the throughput. In those studies, the technical feasibility was demonstrated and the signal degradation caused by additional mice in the FOV characterized, however, the impact of the signal degradation on the outcome of a PET study has not yet been studied. Here we thoroughly investigated, using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies, different experimental designs for whole-body and brain acquisitions of two mice and assessed the actual impact on the detection of biological variations as compared to a single-mouse setting. First, we extended the validation of the PET-SORTEO Monte Carlo simulation platform for the simultaneous simulation of two animals. Then, we designed [18F]FDG and [11C]Raclopride input mouse models for the simulation of realistic whole-body and brain PET studies. Simulated studies allowed us to accurately estimate the differences in detection between single- and dual-mode acquisition settings that are purely the result of having two animals in the FOV. Validation results showed that PET-SORTEO accurately reproduced the spatial resolution and noise degradations that were observed with actual dual phantom experiments. The simulated [18F]FDG whole-body study showed that the resolution loss due to the off-center positioning of the mice was the biggest contributing factor in signal degradation at the pixel level and a minimal inter-animal distance as well as the use of reconstruction methods with resolution modeling should be preferred. Dual mode acquisition did not have a major impact on ROI-based analysis except in situations where uptake values in organs from the same subject were compared. The simulated [11C]Raclopride study however showed that dual-mice imaging strongly reduced the sensitivity to variations when mice were positioned side-by-side while no sensitivity reduction was observed when they were facing each other. This is the first study showing the impact of different experimental designs for whole-body and brain acquisitions of two mice on the quality of the results using Monte Carlo simulated [18F]FDG and [11C]Raclopride PET studies.
Control Method for Video Guidance Sensor System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)
2005-01-01
A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are commands is permitted only when the system is in the carried out. Further, acceptance of reset and diagnostic standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.
Control method for video guidance sensor system
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor); Book, Michael L. (Inventor); Bryan, Thomas C. (Inventor)
2005-01-01
A method is provided for controlling operations in a video guidance sensor system wherein images of laser output signals transmitted by the system and returned from a target are captured and processed by the system to produce data used in tracking of the target. Six modes of operation are provided as follows: (i) a reset mode; (ii) a diagnostic mode; (iii) a standby mode; (iv) an acquisition mode; (v) a tracking mode; and (vi) a spot mode wherein captured images of returned laser signals are processed to produce data for all spots found in the image. The method provides for automatic transition to the standby mode from the reset mode after integrity checks are performed and from the diagnostic mode to the reset mode after diagnostic operations are carried out. Further, acceptance of reset and diagnostic commands is permitted only when the system is in the standby mode. The method also provides for automatic transition from the acquisition mode to the tracking mode when an acceptable target is found.
A mid-infrared laser absorption sensor for carbon monoxide and temperature measurements
NASA Astrophysics Data System (ADS)
Vanderover, Jeremy
A mid-infrared (mid-IR) absorption sensor based on quantum cascade laser (QCL) technology has been developed and demonstrated for high-temperature thermometry and carbon monoxide (CO) measurements in combustion environments. The sensor probes the high-intensity fundamental CO ro-vibrational band at 4.6 mum enabling sensitive measurement of CO and temperature at kHz acquisition rates. Because the sensor operates in the mid-IR CO fundamental band it is several orders of magnitude more sensitive than most of the previously developed CO combustion sensors which utilized absorption in the near-IR overtone bands and mature traditional telecommunications-based diode lasers. The sensor has been demonstrated and validated under operation in both scanned-wavelength absorption and wavelength-modulation spectroscopy (WMS) modes in room-temperature gas cell and high-temperature shock tube experiments with known and specified gas conditions. The sensor has also been demonstrated for CO and temperature measurements in an atmospheric premixed ethylene/air McKenna burner flat flame for a range of equivalence ratios (phi = 0.7-1.4). Demonstration of the sensor under scanned-wavelength direct absorption operation was performed in a room-temperature gas cell (297 K and 0.001-1 atm) allowing validation of the line strengths and line shapes predicted by the HITRAN 2004 spectroscopic database. Application of the sensor in scanned-wavelength mode, at 1-2 kHz acquisition bandwidths, to specified high-temperature shock-heated gases (950-3400 K, 1 atm) provided validation of the sensor for measurements under the high-temperature conditions found in combustion devices. The scanned-wavelength shock tube measurements yielded temperature determinations that deviated by only +/-1.2% (1-sigma deviation) with the reflected shock temperatures and CO mole fraction determinations that deviated by that specified CO mole fraction by only +/-1.5% (1-sigma deviation). These deviations are in fact smaller than the estimated uncertainties of 2.5-3% in both sensor determined temperature and CO. Enhancement of the sensor sensitivity can be achieved through use wavelength-modulation spectroscopy (WMS). Similarly, under WMS operation the sensor was applied to room-temperature gas cell (297 K, 0.001-1 atm) measurements, which indicate that the sensor sensitivity in WMS operation is approximately an order-of-magnitude greater than that achieved in scanned-wavelength mode, and high-temperature shock-heated gases (850-3400 K, 1 atm), which validate the sensor for sensitive thermometry at combustion temperatures. In WMS mode the temperature measurements show 1-sigma deviation of +/-1.9% with the reflected shock conditions. High-temperature CO concentration measurements require calibration to scale the measured WMS-2f peak height with a simulated WMS-2 f line shape. However, using single point calibration for each CO containing mixture studied resulted in fairly good agreement (1-sigma deviation of +/-4.2%) between measured and simulated WMS-2f peak height. In other words, CO mole fraction determinations (proportional to peak height) were achieved with deviation of +/-4.2% with specified CO mole fraction. Sensor measurements made at a 1 kHz acquisition bandwidth in an atmospheric pressure ethylene/air flat-flame produced by a McKenna burner for equivalence ratios from 0.7 to 1.4 were in excellent accord with thermocouple measurements and chemical equilibrium predictions for CO based on the thermocouple temperatures for rich conditions. At lean conditions sensor temperature determinations are lower than thermocouple determinations by around 150 K due to the cool flame edge and sensor CO measurements are greater than those predicted by chemical equilibrium due to super-equilibrium CO in the cool flame edge. The CO sensor developed and described herein and validated in room-temperature cell, high-temperature shock tube, and flat-flame burner measurements has potential for a vast array of measurements in combustion, energy, and industrial gas sensing applications. It has unsurpassed sensitivity due to the use of the fundamental CO band at 4.6 mum and provides kHz acquisition bandwidths necessary for high-speed measurements in these systems. This research was directed by Professor Matt Oehlschlaeger and supported by the Office of Naval Research (ONR).
Continued Data Acquisition Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwellenbach, David
This task focused on improving techniques for integrating data acquisition of secondary particles correlated in time with detected cosmic-ray muons. Scintillation detectors with Pulse Shape Discrimination (PSD) capability show the most promise as a detector technology based on work in FY13. Typically PSD parameters are determined prior to an experiment and the results are based on these parameters. By saving data in list mode, including the fully digitized waveform, any experiment can effectively be replayed to adjust PSD and other parameters for the best data capture. List mode requires time synchronization of two independent data acquisitions (DAQ) systems: the muonmore » tracker and the particle detector system. Techniques to synchronize these systems were studied. Two basic techniques were identified: real time mode and sequential mode. Real time mode is the preferred system but has proven to be a significant challenge since two FPGA systems with different clocking parameters must be synchronized. Sequential processing is expected to work with virtually any DAQ but requires more post processing to extract the data.« less
Mariner Mars 1971 attitude control subsystem
NASA Technical Reports Server (NTRS)
Edmunds, R. S.
1974-01-01
The Mariner Mars 1971 attitude control subsystem (ACS) is discussed. It is comprised of a sun sensor set, a Canopus tracker, an inertial reference unit, two cold gas reaction control assemblies, two rocket engine gimbal actuators, and an attitude control electronics unit. The subsystem has the following eight operating modes: (1) launch, (2) sun acquisition, (3) roll search, (4) celestial cruise, (5) all-axes inertial, (6) roll inertial, (7) commanded turn, and (8) thrust vector control. In the celestial cruise mode, the position control is held to plus or minus 0.25 deg. Commanded turn rates are plus or minus 0.18 deg/s. The attitude control logic in conjunction with command inputs from other spacecraft subsystems establishes the ACS operating mode. The logic utilizes Sun and Canopus acquisition signals generated within the ACS to perform automatic mode switching so that dependence of ground control is minimized when operating in the sun acquisition, roll search, and celestial cruise modes. The total ACS weight is 65.7 lb, and includes 5.4 lb of nitrogen gas. Total power requirements vary from 9 W for the celestial cruise mode to 54 W for the commanded turn mode.
Role of "the frame cycle time" in portal dose imaging using an aS500-II EPID.
Al Kattar Elbalaa, Zeina; Foulquier, Jean Noel; Orthuon, Alexandre; Elbalaa, Hanna; Touboul, Emmanuel
2009-09-01
This paper evaluates the role of an acquisition parameter, the frame cycle time "FCT", in the performance of an aS500-II EPID. The work presented rests on the study of the Varian EPID aS500-II and the image acquisition system 3 (IAS3). We are interested in integrated acquisition using asynchronous mode. For better understanding the image acquisition operation, we investigated the influence of the "frame cycle time" on the speed of acquisition, the pixel value of the averaged gray-scale frame and the noise, using 6 and 15MV X-ray beams and dose rates of 1-6Gy/min on 2100 C/D Linacs. In the integrated mode not synchronized to beam pulses, only one parameter the frame cycle time "FCT" influences the pixel value. The pixel value of the averaged gray-scale frame is proportional to this parameter. When the FCT <55ms (speed of acquisition V(f/s)>18 frames/s), the speed of acquisition becomes unstable and leads to a fluctuation of the portal dose response. A timing instability and saturation are detected when the dose per frame exceeds 1.53MU/frame. Rules were deduced to avoid saturation and to optimize this dosimetric mode. The choice of the acquisition parameter is essential for the accurate portal dose imaging.
An atomic model of brome mosaic virus using direct electron detection and real-space optimization.
Wang, Zhao; Hryc, Corey F; Bammes, Benjamin; Afonine, Pavel V; Jakana, Joanita; Chen, Dong-Hua; Liu, Xiangan; Baker, Matthew L; Kao, Cheng; Ludtke, Steven J; Schmid, Michael F; Adams, Paul D; Chiu, Wah
2014-09-04
Advances in electron cryo-microscopy have enabled structure determination of macromolecules at near-atomic resolution. However, structure determination, even using de novo methods, remains susceptible to model bias and overfitting. Here we describe a complete workflow for data acquisition, image processing, all-atom modelling and validation of brome mosaic virus, an RNA virus. Data were collected with a direct electron detector in integrating mode and an exposure beyond the traditional radiation damage limit. The final density map has a resolution of 3.8 Å as assessed by two independent data sets and maps. We used the map to derive an all-atom model with a newly implemented real-space optimization protocol. The validity of the model was verified by its match with the density map and a previous model from X-ray crystallography, as well as the internal consistency of models from independent maps. This study demonstrates a practical approach to obtain a rigorously validated atomic resolution electron cryo-microscopy structure.
Testing of Visual Field with Virtual Reality Goggles in Manual and Visual Grasp Modes
Wroblewski, Dariusz; Francis, Brian A.; Sadun, Alfredo; Vakili, Ghazal; Chopra, Vikas
2014-01-01
Automated perimetry is used for the assessment of visual function in a variety of ophthalmic and neurologic diseases. We report development and clinical testing of a compact, head-mounted, and eye-tracking perimeter (VirtualEye) that provides a more comfortable test environment than the standard instrumentation. VirtualEye performs the equivalent of a full threshold 24-2 visual field in two modes: (1) manual, with patient response registered with a mouse click, and (2) visual grasp, where the eye tracker senses change in gaze direction as evidence of target acquisition. 59 patients successfully completed the test in manual mode and 40 in visual grasp mode, with 59 undergoing the standard Humphrey field analyzer (HFA) testing. Large visual field defects were reliably detected by VirtualEye. Point-by-point comparison between the results obtained with the different modalities indicates: (1) minimal systematic differences between measurements taken in visual grasp and manual modes, (2) the average standard deviation of the difference distributions of about 5 dB, and (3) a systematic shift (of 4–6 dB) to lower sensitivities for VirtualEye device, observed mostly in high dB range. The usability survey suggested patients' acceptance of the head-mounted device. The study appears to validate the concepts of a head-mounted perimeter and the visual grasp mode. PMID:25050326
A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems
NASA Technical Reports Server (NTRS)
Balaban, Edward; Saxena, Abhinav; Bansal, Prasun; Goebel, Kai Frank; Stoelting, Paul; Curran, Simon
2009-01-01
Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft designs. However, electro-mechanical actuators still lack the knowledge base accumulated for other fielded actuator types, particularly with regard to fault detection and characterization. This paper presents a thorough analysis of some of the critical failure modes documented for EMAs and describes experiments conducted on detecting and isolating a subset of them. The list of failures has been prepared through an extensive Failure Modes and Criticality Analysis (FMECA) reference, literature review, and accessible industry experience. Methods for data acquisition and validation of algorithms on EMA test stands are described. A variety of condition indicators were developed that enabled detection, identification, and isolation among the various fault modes. A diagnostic algorithm based on an artificial neural network is shown to operate successfully using these condition indicators and furthermore, robustness of these diagnostic routines to sensor faults is demonstrated by showing their ability to distinguish between them and component failures. The paper concludes with a roadmap leading from this effort towards developing successful prognostic algorithms for electromechanical actuators.
Active 3D camera design for target capture on Mars orbit
NASA Astrophysics Data System (ADS)
Cottin, Pierre; Babin, François; Cantin, Daniel; Deslauriers, Adam; Sylvestre, Bruno
2010-04-01
During the ESA Mars Sample Return (MSR) mission, a sample canister launched from Mars will be autonomously captured by an orbiting satellite. We present the concept and the design of an active 3D camera supporting the orbiter navigation system during the rendezvous and capture phase. This camera aims at providing the range and bearing of a 20 cm diameter canister from 2 m to 5 km within a 20° field-of-view without moving parts (scannerless). The concept exploits the sensitivity and the gating capability of a gated intensified camera. It is supported by a pulsed source based on an array of laser diodes with adjustable amplitude and pulse duration (from nanoseconds to microseconds). The ranging capability is obtained by adequately controlling the timing between the acquisition of 2D images and the emission of the light pulses. Three modes of acquisition are identified to accommodate the different levels of ranging and bearing accuracy and the 3D data refresh rate. To come up with a single 3D image, each mode requires a different number of images to be processed. These modes can be applied to the different approach phases. The entire concept of operation of this camera is detailed with an emphasis on the extreme lighting conditions. Its uses for other space missions and terrestrial applications are also highlighted. This design is implemented in a prototype with shorter ranging capabilities for concept validation. Preliminary results obtained with this prototype are also presented. This work is financed by the Canadian Space Agency.
ERIC Educational Resources Information Center
van der Meer, Larah; Sutherland, Dean; O'Reilly, Mark F.; Lancioni, Giulio E.; Sigafoos, Jeff
2012-01-01
We compared acquisition of, and preference for, manual signing (MS), picture exchange (PE), and speech-generating devices (SGDs) in four children with autism spectrum disorders (ASD). Intervention was introduced across participants in a non-concurrent multiple-baseline design and acquisition of the three communication modes was compared in an…
A software platform for phase contrast x-ray breast imaging research.
Bliznakova, K; Russo, P; Mettivier, G; Requardt, H; Popov, P; Bravin, A; Buliev, I
2015-06-01
To present and validate a computer-based simulation platform dedicated for phase contrast x-ray breast imaging research. The software platform, developed at the Technical University of Varna on the basis of a previously validated x-ray imaging software simulator, comprises modules for object creation and for x-ray image formation. These modules were updated to take into account the refractive index for phase contrast imaging as well as implementation of the Fresnel-Kirchhoff diffraction theory of the propagating x-ray waves. Projection images are generated in an in-line acquisition geometry. To test and validate the platform, several phantoms differing in their complexity were constructed and imaged at 25 keV and 60 keV at the beamline ID17 of the European Synchrotron Radiation Facility. The software platform was used to design computational phantoms that mimic those used in the experimental study and to generate x-ray images in absorption and phase contrast modes. The visual and quantitative results of the validation process showed an overall good correlation between simulated and experimental images and show the potential of this platform for research in phase contrast x-ray imaging of the breast. The application of the platform is demonstrated in a feasibility study for phase contrast images of complex inhomogeneous and anthropomorphic breast phantoms, compared to x-ray images generated in absorption mode. The improved visibility of mammographic structures suggests further investigation and optimisation of phase contrast x-ray breast imaging, especially when abnormalities are present. The software platform can be exploited also for educational purposes. Copyright © 2015 Elsevier Ltd. All rights reserved.
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD).
Bermúdez Ordoñez, Juan Carlos; Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando
2018-05-16
A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ 1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain.
Energy Efficient GNSS Signal Acquisition Using Singular Value Decomposition (SVD)
Arnaldo Valdés, Rosa María; Gómez Comendador, Fernando
2018-01-01
A significant challenge in global navigation satellite system (GNSS) signal processing is a requirement for a very high sampling rate. The recently-emerging compressed sensing (CS) theory makes processing GNSS signals at a low sampling rate possible if the signal has a sparse representation in a certain space. Based on CS and SVD theories, an algorithm for sampling GNSS signals at a rate much lower than the Nyquist rate and reconstructing the compressed signal is proposed in this research, which is validated after the output from that process still performs signal detection using the standard fast Fourier transform (FFT) parallel frequency space search acquisition. The sparse representation of the GNSS signal is the most important precondition for CS, by constructing a rectangular Toeplitz matrix (TZ) of the transmitted signal, calculating the left singular vectors using SVD from the TZ, to achieve sparse signal representation. Next, obtaining the M-dimensional observation vectors based on the left singular vectors of the SVD, which are equivalent to the sampler operator in standard compressive sensing theory, the signal can be sampled below the Nyquist rate, and can still be reconstructed via ℓ1 minimization with accuracy using convex optimization. As an added value, there is a GNSS signal acquisition enhancement effect by retaining the useful signal and filtering out noise by projecting the signal into the most significant proper orthogonal modes (PODs) which are the optimal distributions of signal power. The algorithm is validated with real recorded signals, and the results show that the proposed method is effective for sampling, reconstructing intermediate frequency (IF) GNSS signals in the time discrete domain. PMID:29772731
Dictionary-learning-based reconstruction method for electron tomography.
Liu, Baodong; Yu, Hengyong; Verbridge, Scott S; Sun, Lizhi; Wang, Ge
2014-01-01
Electron tomography usually suffers from so-called “missing wedge” artifacts caused by limited tilt angle range. An equally sloped tomography (EST) acquisition scheme (which should be called the linogram sampling scheme) was recently applied to achieve 2.4-angstrom resolution. On the other hand, a compressive sensing inspired reconstruction algorithm, known as adaptive dictionary based statistical iterative reconstruction (ADSIR), has been reported for X-ray computed tomography. In this paper, we evaluate the EST, ADSIR, and an ordered-subset simultaneous algebraic reconstruction technique (OS-SART), and compare the ES and equally angled (EA) data acquisition modes. Our results show that OS-SART is comparable to EST, and the ADSIR outperforms EST and OS-SART. Furthermore, the equally sloped projection data acquisition mode has no advantage over the conventional equally angled mode in this context.
ERIC Educational Resources Information Center
Hsu, Chung-Yuan; Tsai, Chin-Chung; Wang, Hung-Yuan
2016-01-01
The purpose of this study was to examine the impacts of embedding collaboration into a game with a self-explanation design for supporting the acquisition of light and shadow concepts. The participants were 184 fourth graders who were randomly assigned to three conditions: a solitary mode of the game with self-explanation, a collaborative mode with…
Full-field speckle interferometry for non-contact photoacoustic tomography.
Horstmann, Jens; Spahr, Hendrik; Buj, Christian; Münter, Michael; Brinkmann, Ralf
2015-05-21
A full-field speckle interferometry method for non-contact and prospectively high speed Photoacoustic Tomography is introduced and evaluated as proof of concept. Thermoelastic pressure induced changes of the objects topography are acquired in a repetitive mode without any physical contact to the object. In order to obtain high acquisition speed, the object surface is illuminated by laser pulses and imaged onto a high speed camera chip. In a repetitive triple pulse mode, surface displacements can be acquired with nanometre sensitivity and an adjustable sampling rate of e.g. 20 MHz with a total acquisition time far below one second using kHz repetition rate lasers. Due to recurring interferometric referencing, the method is insensitive to thermal drift of the object due to previous pulses or other motion. The size of the investigated area and the spatial and temporal resolution of the detection are scalable. In this study, the approach is validated by measuring a silicone phantom and a porcine skin phantom with embedded silicone absorbers. The reconstruction of the absorbers is presented in 2D and 3D. The sensitivity of the measurement with respect to the photoacoustic detection is discussed. Potentially, Photoacoustic Imaging can be brought a step closer towards non-anaesthetized in vivo imaging and new medical applications not allowing acoustic contact, such as neurosurgical monitoring or burnt skin investigation.
48 CFR 47.305-14 - Mode of transportation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...
48 CFR 47.305-14 - Mode of transportation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...
48 CFR 47.305-14 - Mode of transportation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...
48 CFR 47.305-14 - Mode of transportation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...
48 CFR 47.305-14 - Mode of transportation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 1 2014-10-01 2014-10-01 false Mode of transportation. 47... CONTRACT MANAGEMENT TRANSPORTATION Transportation in Supply Contracts 47.305-14 Mode of transportation. Generally, solicitations shall not specify a particular mode of transportation or a particular carrier. If...
Bidny, Sergei; Gago, Kim; Chung, Phuong; Albertyn, Desdemona; Pasin, Daniel
2017-04-01
An analytical method using ultra performance liquid chromatography (UPLC) quadrupole time-of-flight mass spectrometry (QTOF-MS) was developed and validated for the targeted toxicological screening and quantification of commonly used pharmaceuticals and drugs of abuse in postmortem blood using 100 µL sample. It screens for more than 185 drugs and metabolites and quantifies more than 90 drugs. The selected compounds include classes of pharmaceuticals and drugs of abuse such as: antidepressants, antipsychotics, analgesics (including narcotic analgesics), anti-inflammatory drugs, benzodiazepines, beta-blockers, amphetamines, new psychoactive substances (NPS), cocaine and metabolites. Compounds were extracted into acetonitrile using a salting-out assisted liquid-liquid extraction (SALLE) procedure. The extracts were analyzed using a Waters ACQUITY UPLC coupled with a XEVO QTOF mass spectrometer. Separation of the analytes was achieved by gradient elution using Waters ACQUITY HSS C18 column (2.1 mm x 150 mm, 1.8 μm). The mass spectrometer was operated in both positive and negative electrospray ionization modes. The high-resolution mass spectrometry (HRMS) data was acquired using a patented Waters MSE acquisition mode which collected low and high energy spectra alternatively during the same acquisition. Positive identification of target analytes was based on accurate mass measurements of the molecular ion, product ion, peak area ratio and retention times. Calibration curves were linear over the concentration range 0.05-2 mg/L for basic and neutral analytes and 0.1-6 mg/L for acidic analytes with the correlation coefficients (r2) > 0.96 for most analytes. The limits of detection (LOD) were between 0.001-0.05 mg/L for all analytes. Good recoveries were achieved ranging from 80% to 100% for most analytes using the SALLE method. The method was validated for sensitivity, selectivity, accuracy, precision, stability, carryover and matrix effects. The developed method was tested on a number of authentic forensic samples producing consistent results that correlated with results obtained from other validated methods. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
High-Accuracy Tidal Flat Digital Elevation Model Construction Using TanDEM-X Science Phase Data
NASA Technical Reports Server (NTRS)
Lee, Seung-Kuk; Ryu, Joo-Hyung
2017-01-01
This study explored the feasibility of using TanDEM-X (TDX) interferometric observations of tidal flats for digital elevation model (DEM) construction. Our goal was to generate high-precision DEMs in tidal flat areas, because accurate intertidal zone data are essential for monitoring coastal environment sand erosion processes. To monitor dynamic coastal changes caused by waves, currents, and tides, very accurate DEMs with high spatial resolution are required. The bi- and monostatic modes of the TDX interferometer employed during the TDX science phase provided a great opportunity for highly accurate intertidal DEM construction using radar interferometry with no time lag (bistatic mode) or an approximately 10-s temporal baseline (monostatic mode) between the master and slave synthetic aperture radar image acquisitions. In this study, DEM construction in tidal flat areas was first optimized based on the TDX system parameters used in various TDX modes. We successfully generated intertidal zone DEMs with 57-m spatial resolutions and interferometric height accuracies better than 0.15 m for three representative tidal flats on the west coast of the Korean Peninsula. Finally, we validated these TDX DEMs against real-time kinematic-GPS measurements acquired in two tidal flat areas; the correlation coefficient was 0.97 with a root mean square error of 0.20 m.
Reflector automatic acquisition and pointing based on auto-collimation theodolite.
Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu
2018-01-01
An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.
Reflector automatic acquisition and pointing based on auto-collimation theodolite
NASA Astrophysics Data System (ADS)
Luo, Jun; Wang, Zhiqian; Wen, Zhuoman; Li, Mingzhu; Liu, Shaojin; Shen, Chengwu
2018-01-01
An auto-collimation theodolite (ACT) for reflector automatic acquisition and pointing is designed based on the principle of autocollimators and theodolites. First, the principle of auto-collimation and theodolites is reviewed, and then the coaxial ACT structure is developed. Subsequently, the acquisition and pointing strategies for reflector measurements are presented, which first quickly acquires the target over a wide range and then points the laser spot to the charge coupled device zero position. Finally, experiments are conducted to verify the acquisition and pointing performance, including the calibration of the ACT, the comparison of the acquisition mode and pointing mode, and the accuracy measurement in horizontal and vertical directions. In both directions, a measurement accuracy of ±3″ is achieved. The presented ACT is suitable for automatic pointing and monitoring the reflector over a small scanning area and can be used in a wide range of applications such as bridge structure monitoring and cooperative target aiming.
A graphics subsystem retrofit design for the bladed-disk data acquisition system. M.S. Thesis
NASA Technical Reports Server (NTRS)
Carney, R. R.
1983-01-01
A graphics subsystem retrofit design for the turbojet blade vibration data acquisition system is presented. The graphics subsystem will operate in two modes permitting the system operator to view blade vibrations on an oscilloscope type of display. The first mode is a real-time mode that displays only gross blade characteristics, such as maximum deflections and standing waves. This mode is used to aid the operator in determining when to collect detailed blade vibration data. The second mode of operation is a post-processing mode that will animate the actual blade vibrations using the detailed data collected on an earlier data collection run. The operator can vary the rate of payback to view differring characteristics of blade vibrations. The heart of the graphics subsystem is a modified version of AMD's ""super sixteen'' computer, called the graphics preprocessor computer (GPC). This computer is based on AMD's 2900 series of bit-slice components.
APNEA list mode data acquisition and real-time event processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogle, R.A.; Miller, P.; Bramblett, R.L.
1997-11-01
The LMSC Active Passive Neutron Examinations and Assay (APNEA) Data Logger is a VME-based data acquisition system using commercial-off-the-shelf hardware with the application-specific software. It receives TTL inputs from eighty-eight {sup 3}He detector tubes and eight timing signals. Two data sets are generated concurrently for each acquisition session: (1) List Mode recording of all detector and timing signals, timestamped to 3 microsecond resolution; (2) Event Accumulations generated in real-time by counting events into short (tens of microseconds) and long (seconds) time bins following repetitive triggers. List Mode data sets can be post-processed to: (1) determine the optimum time bins formore » TRU assay of waste drums, (2) analyze a given data set in several ways to match different assay requirements and conditions and (3) confirm assay results by examining details of the raw data. Data Logger events are processed and timestamped by an array of 15 TMS320C40 DSPs and delivered to an embedded controller (PowerPC604) for interim disk storage. Three acquisition modes, corresponding to different trigger sources are provided. A standard network interface to a remote host system (Windows NT or SunOS) provides for system control, status, and transfer of previously acquired data. 6 figs.« less
64 slice MDCT generally underestimates coronary calcium scores as compared to EBT: A phantom study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greuter, M. J. W.; Dijkstra, H.; Groen, J. M.
The objective of our study was the determination of the influence of the sequential and spiral acquisition modes on the concordance and deviation of the calcium score on 64-slice multi-detector computed tomography (MDCT) scanners in comparison to electron beam tomography (EBT) as the gold standard. Our methods and materials were an anthropomorphic cardio CT phantom with different calcium inserts scanned in sequential and spiral acquisition modes on three identical 64-slice MDCT scanners of manufacturer A and on three identical 64-slice MDCT scanners of manufacturer B and on an EBT system. Every scan was repeated 30 times with and 15 timesmore » without a small random variation in the phantom position for both sequential and spiral modes. Significant differences were observed between EBT and 64-slice MDCT data for all inserts, both acquisition modes, and both manufacturers of MDCT systems. High regression coefficients (0.90-0.98) were found between the EBT and 64-slice MDCT data for both scoring methods and both systems with high correlation coefficients (R{sup 2}>0.94). System A showed more significant differences between spiral and sequential mode than system B. Almost no differences were observed in scanners of the same manufacturer for the Agatston score and no differences for the Volume score. The deviations of the Agatston and Volume scores showed regression dependencies approximately equal to the square root of the absolute score. The Agatston and Volume scores obtained with 64-slice MDCT imaging are highly correlated with EBT-obtained scores but are significantly underestimated (-10% to -2%) for both sequential and spiral acquisition modes. System B is more independent of acquisition mode to calcium score than system A. The Volume score shows no intramanufacturer dependency and its use is advocated versus the Agatston score. Using the same cut points for MDCT-based calcium scores as for EBT-based calcium scores can result in classifying individuals into a too low risk category. System information and scanprotocol is therefore needed for every calcium score procedure to ensure a correct clinical interpretation of the obtained calcium score results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen
Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less
Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen; ...
2016-08-12
Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less
Geometric Calibration and Validation of Kompsat-3A AEISS-A Camera
Seo, Doocheon; Oh, Jaehong; Lee, Changno; Lee, Donghan; Choi, Haejin
2016-01-01
Kompsat-3A, which was launched on 25 March 2015, is a sister spacecraft of the Kompsat-3 developed by the Korea Aerospace Research Institute (KARI). Kompsat-3A’s AEISS-A (Advanced Electronic Image Scanning System-A) camera is similar to Kompsat-3’s AEISS but it was designed to provide PAN (Panchromatic) resolution of 0.55 m, MS (multispectral) resolution of 2.20 m, and TIR (thermal infrared) at 5.5 m resolution. In this paper we present the geometric calibration and validation work of Kompsat-3A that was completed last year. A set of images over the test sites was taken for two months and was utilized for the work. The workflow includes the boresight calibration, CCDs (charge-coupled devices) alignment and focal length determination, the merge of two CCD lines, and the band-to-band registration. Then, the positional accuracies without any GCPs (ground control points) were validated for hundreds of test sites across the world using various image acquisition modes. In addition, we checked the planimetric accuracy by bundle adjustments with GCPs. PMID:27783054
Earth Observing System (EOS) Aqua Launch and Early Mission Attitude Support Experiences
NASA Technical Reports Server (NTRS)
Tracewell, D.; Glickman, J.; Hashmall, J.; Natanson, G.; Sedlak, J.
2003-01-01
The Earth Observing System (EOS) Aqua satellite was successfully launched on May 4,2002. Aqua is the second in the series of EOS satellites. EOS is part of NASA s Earth Science Enterprise Program, whose goals are to advance the scientific understanding of the Earth system. Aqua is a three-axis stabilized, Earth-pointing spacecraft in a nearly circular, sun-synchronous orbit at an altitude of 705 km. The Goddard Space Flight Center (GSFC) Flight Dynamics attitude team supported all phases of the launch and early mission. This paper presents the main results and lessons learned during this period, including: real-time attitude mode transition support, sensor calibration, onboard computer attitude validation, response to spacecraft emergencies, postlaunch attitude analyses, and anomaly resolution. In particular, Flight Dynamics support proved to be invaluable for successful Earth acquisition, fine-point mode transition, and recognition and correction of several anomalies, including support for the resolution of problems observed with the MODIS instrument.
Near-Space TOPSAR Large-Scene Full-Aperture Imaging Scheme Based on Two-Step Processing
Zhang, Qianghui; Wu, Junjie; Li, Wenchao; Huang, Yulin; Yang, Jianyu; Yang, Haiguang
2016-01-01
Free of the constraints of orbit mechanisms, weather conditions and minimum antenna area, synthetic aperture radar (SAR) equipped on near-space platform is more suitable for sustained large-scene imaging compared with the spaceborne and airborne counterparts. Terrain observation by progressive scans (TOPS), which is a novel wide-swath imaging mode and allows the beam of SAR to scan along the azimuth, can reduce the time of echo acquisition for large scene. Thus, near-space TOPS-mode SAR (NS-TOPSAR) provides a new opportunity for sustained large-scene imaging. An efficient full-aperture imaging scheme for NS-TOPSAR is proposed in this paper. In this scheme, firstly, two-step processing (TSP) is adopted to eliminate the Doppler aliasing of the echo. Then, the data is focused in two-dimensional frequency domain (FD) based on Stolt interpolation. Finally, a modified TSP (MTSP) is performed to remove the azimuth aliasing. Simulations are presented to demonstrate the validity of the proposed imaging scheme for near-space large-scene imaging application. PMID:27472341
Web-based data acquisition and management system for GOSAT validation Lidar data analysis
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra N.; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei
2012-11-01
An web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data analysis is developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS ground-level meteorological data, Rawinsonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data.
Can Production Precede Comprehension in L2 Acquisition?
ERIC Educational Resources Information Center
Tasseva-Kurktchieva, Mila
2015-01-01
So far, the comprehension and production language modes have typically been studied separately in generative second language acquisition research, with the focus shifting from one to the other. This article revisits the asymmetric relationship between comprehension and production by examining the second language (L2) acquisition of the noun phrase…
Mechanical Component Diagnostic System
1991-01-01
Control and Display Unit ( CADU ) executes the system software and controls data acquisition that is carried out by 6 the Data Acquisition Unit (DAU... CADU screen. Displays intended for the CD are also echoed on the CADU in the FDR backup mode. If initialization is successful, clocks are synchronized...and normal MCDS monitoring mode is entered. If there is no display on the CD, the user may manually switch to the backup CD display on the CADU . Hence
Coarse Resolution SAR Imagery to Support Flood Inundation Models in Near Real Time
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Schumann, Guy; Brandimarte, Luigia; Bates, Paul
2009-11-01
In recent years, the availability of new emerging data (e.g. remote sensing, intelligent wireless sensors, etc) has led to a sudden shift from a data-sparse to a data-rich environment for hydrological and hydraulic modelling. Furthermore, the increased socioeconomic relevance of river flood studies has motivated the development of complex methodologies for the simulation of the hydraulic behaviour of river systems. In this context, this study aims at assessing the capability of coarse resolution SAR (Synthetic Aperture Radar) imagery to support and quickly validate flood inundation models in near real time. A hydraulic model of a 98km reach of the River Po (Italy), previously calibrated on a high-magnitude flood event with extensive and high quality field data, is tested using a SAR flood image, acquired and processed in near real time, during the June 2008 low-magnitude event. Specifically, the image is an acquisition by the ENVISAT-ASAR sensor in wide swath mode and has been provided through ESA (European Space Agency) Fast Registration system at no cost 24 hours after the acquisition. The study shows that the SAR image enables validation and improvement of the model in a time shorter than the flood travel time. This increases the reliability of model predictions (e.g. water elevation and inundation width along the river reach) and, consequently, assists flood management authorities in undertaking the necessary prevention activities.
Dual energy CT kidney stone differentiation in photon counting computed tomography
NASA Astrophysics Data System (ADS)
Gutjahr, R.; Polster, C.; Henning, A.; Kappler, S.; Leng, S.; McCollough, C. H.; Sedlmair, M. U.; Schmidt, B.; Krauss, B.; Flohr, T. G.
2017-03-01
This study evaluates the capabilities of a whole-body photon counting CT system to differentiate between four common kidney stone materials, namely uric acid (UA), calcium oxalate monohydrate (COM), cystine (CYS), and apatite (APA) ex vivo. Two different x-ray spectra (120 kV and 140 kV) were applied and two acquisition modes were investigated. The macro-mode generates two energy threshold based image-volumes and two energy bin based image-volumes. In the chesspattern-mode four energy thresholds are applied. A virtual low energy image, as well as a virtual high energy image are derived from initial threshold-based images, while considering their statistically correlated nature. The energy bin based images of the macro-mode, as well as the virtual low and high energy image of the chesspattern-mode serve as input for our dual energy evaluation. The dual energy ratio of the individually segmented kidney stones were utilized to quantify the discriminability of the different materials. The dual energy ratios of the two acquisition modes showed high correlation for both applied spectra. Wilcoxon-rank sum tests and the evaluation of the area under the receiver operating characteristics curves suggest that the UA kidney stones are best differentiable from all other materials (AUC = 1.0), followed by CYS (AUC ≍ 0.9 compared against COM and APA). COM and APA, however, are hardly distinguishable (AUC between 0.63 and 0.76). The results hold true for the measurements of both spectra and both acquisition modes.
Some Aspects of Developing Background Knowledge in Second Language Acquisition Revisited
ERIC Educational Resources Information Center
Zashchitina, Galina; Moysyak, Natalia
2017-01-01
The article focuses on defining how background knowledge impacts on second-language acquisition by giving a brief overview of schema theory, the interaction of the basic modes of information processing. A challenge of dealing with culturally specific texts in second language acquisition is also touched upon. Different research-supported views on…
Williams, Brad J; Ciavarini, Steve J; Devlin, Curt; Cohn, Steven M; Xie, Rong; Vissers, Johannes P C; Martin, LeRoy B; Caswell, Allen; Langridge, James I; Geromanos, Scott J
2016-08-01
In proteomics studies, it is generally accepted that depth of coverage and dynamic range is limited in data-directed acquisitions. The serial nature of the method limits both sensitivity and the number of precursor ions that can be sampled. To that end, a number of data-independent acquisition (DIA) strategies have been introduced with these methods, for the most part, immune to the sampling issue; nevertheless, some do have other limitations with respect to sensitivity. The major limitation with DIA approaches is interference, i.e., MS/MS spectra are highly chimeric and often incapable of being identified using conventional database search engines. Utilizing each available dimension of separation prior to ion detection, we present a new multi-mode acquisition (MMA) strategy multiplexing both narrowband and wideband DIA acquisitions in a single analytical workflow. The iterative nature of the MMA workflow limits the adverse effects of interference with minimal loss in sensitivity. Qualitative identification can be performed by selected ion chromatograms or conventional database search strategies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A PC-based single-ADC multi-parameter data acquisition system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodring, M.; Kegel, G.H.R.; Egan, J.J.
1995-10-01
A personal computer (PC) based mult parameter data acquisition system using the Microsoft Window operating environment has been designed and constructed. An IBI AT compatible personal computer with an Intel 486DX5 microprocessor was combined with a National Instruments ATIDIO 32 digital I/O card, a single Canberra 8713 ADC with 13-bit resolution and a modified Canberra 8223 8-input analog multiplexer to acquil data from experiments carried out at the UML Van de Graa accelerator. The accelerator data acquisition (ADAC) computer environment was programmed in Microsoft Visual BASIC for use i Windows. ADAC allows event-mode data acquisition with up to eight parametersmore » (modifiable to 64) and the simultaneous display parameters during acquisition. Additional features of ADAC include replay of event-mode data and graphical analysis/display of data. TV ADAC environment is easy to upgrade or expand, inexpensive 1 implement, and is specifically designed to meet the needs of nuclei spectroscopy.« less
EIGER detector: application in macromolecular crystallography.
Casanas, Arnau; Warshamanage, Rangana; Finke, Aaron D; Panepucci, Ezequiel; Olieric, Vincent; Nöll, Anne; Tampé, Robert; Brandstetter, Stefan; Förster, Andreas; Mueller, Marcus; Schulze-Briese, Clemens; Bunk, Oliver; Wang, Meitian
2016-09-01
The development of single-photon-counting detectors, such as the PILATUS, has been a major recent breakthrough in macromolecular crystallography, enabling noise-free detection and novel data-acquisition modes. The new EIGER detector features a pixel size of 75 × 75 µm, frame rates of up to 3000 Hz and a dead time as low as 3.8 µs. An EIGER 1M and EIGER 16M were tested on Swiss Light Source beamlines X10SA and X06SA for their application in macromolecular crystallography. The combination of fast frame rates and a very short dead time allows high-quality data acquisition in a shorter time. The ultrafine ϕ-slicing data-collection method is introduced and validated and its application in finding the optimal rotation angle, a suitable rotation speed and a sufficient X-ray dose are presented. An improvement of the data quality up to slicing at one tenth of the mosaicity has been observed, which is much finer than expected based on previous findings. The influence of key data-collection parameters on data quality is discussed.
NASA Astrophysics Data System (ADS)
Lazecky, Milan; Rapant, Petr; Blaha, Pavel; Perissin, Daniele
2016-08-01
For the work, we have achieved 20 Radarsat-2 acquisitions in fine beam mode within ESA project C1P.21629 - Evaluation of Potential Threats to Stability of Linear Structures using InSAR Technology. These acquisitions show deformations in Brno city between August 2014 and October 2015 with a regular step of 24 days temporal difference. Also, we have additionally achieved a series of 75 Cosmo SkyMed images with temporal step every 16 days in average, for dates between June 2011 and July 2014. The Cosmo SkyMed dataset partially overlaps with the reference measurements of tilt and height changes. After the end of the intensive measurements, the PS InSAR time series can deliver knowledge about continuation of movement and depict the date of final stabilization of the area. The accuracy can be validated using the limited number of the continuing warranty levelling mission. We have realized that the available dataset can be used also for monitoring of other events. We provide an example of potential detection of a cavity under a house in Brno-Bystrc.
NASA Astrophysics Data System (ADS)
Petronevich, V. V.
2016-10-01
The paper observes the issues related to the increase of efficiency and information content of experimental research in transonic wind tunnels (WT). In particular, questions of optimizing the WT Data Acquisition and Control Systems (DACS) to provide the continuous mode test method are discussed. The problem of Mach number (M number) stabilization in the test section of the large transonic compressor-type wind tunnels at subsonic flow conditions with continuous change of the aircraft model angle of attack is observed on the example of T-128 wind tunnel. To minimize the signals distortion in T-128 DACS measurement channels the optimal MGCplus filter settings of the data acquisition system used in T-128 wind tunnel to measure loads were experimentally determined. As a result of the tests performed a good agreement of the results of balance measurements for pitch/pause and continuous test modes was obtained. Carrying out balance tests for pitch/pause and continuous test methods was provided by the regular data acquisition and control system of T-128 wind tunnel with unified software package POTOK. The architecture and functional abilities of POTOK software package are observed.
ERIC Educational Resources Information Center
Chen, I-Jung
2016-01-01
This study compared how three different gloss modes affected college students' L2 reading comprehension and vocabulary acquisition. The study also compared how results on comprehension and vocabulary acquisition may differ depending on the four assessment methods used. A between-subjects design was employed with three groups of Mandarin-speaking…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossano, G.S.
1989-02-01
A microcomputer based data acquisition system has been developed for astronomical observing with two-dimensional infrared detector arrays operating at high pixel rates. The system is based on a 16-bit 8086/8087 microcomputer operating at 10 MHz. Data rates of up to 560,000 pixels/sec from arrays of up to 4096 elements are supported using the microcomputer system alone. A hardware co-adder the authors are developing permits data accumulation at rates of up to 1.67 million pixels/sec in both staring and chopped data acquisition modes. The system has been used for direct imaging and for data acquisition in a Fabry-Perot Spectrometer developed bymore » NRL. The hardware is operated using interactive software which supports the several available modes of data acquisition, and permits data display and reduction during observing sessions.« less
Clemen, Christof B; Benderoth, Günther E K; Schmidt, Andreas; Hübner, Frank; Vogl, Thomas J; Silber, Gerhard
2017-01-01
In this study, useful methods for active human skeletal muscle material parameter determination are provided. First, a straightforward approach to the implementation of a transversely isotropic hyperelastic continuum mechanical material model in an invariant formulation is presented. This procedure is found to be feasible even if the strain energy is formulated in terms of invariants other than those predetermined by the software's requirements. Next, an appropriate experimental setup for the observation of activation-dependent material behavior, corresponding data acquisition, and evaluation is given. Geometry reconstruction based on magnetic resonance imaging of different deformation states is used to generate realistic, subject-specific finite element models of the upper arm. Using the deterministic SIMPLEX optimization strategy, a convenient quasi-static passive-elastic material characterization is pursued; the results of this approach used to characterize the behavior of human biceps in vivo indicate the feasibility of the illustrated methods to identify active material parameters comprising multiple loading modes. A comparison of a contact simulation incorporating the optimized parameters to a reconstructed deformed geometry of an indented upper arm shows the validity of the obtained results regarding deformation scenarios perpendicular to the effective direction of the nonactivated biceps. However, for a valid, activatable, general-purpose material characterization, the material model needs some modifications as well as a multicriteria optimization of the force-displacement data for different loading modes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Helfer, Andreas G; Michely, Julian A; Weber, Armin A; Meyer, Markus R; Maurer, Hans H
2017-02-01
Comprehensive urine screening for drugs and metabolites by LC-HR-MS/MS using Orbitrap technology has been described with precipitation as simple workup. In order to fasten, automate, and/or simplify the workup, on-line extraction by turbulent flow chromatography and a dilute-and-shoot approach were developed and compared. After chromatographic separation within 10min, the Q-Exactive mass spectrometer was run in full scan mode with positive/negative switching and subsequent data dependent acquisition mode. The workup approaches were validated concerning selectivity, recovery, matrix effects, process efficiency, and limits of identification and detection for typical drug representatives and metabolites. The total workup time for on-line extraction was 6min, for the dilution approach 3min. For comparison, the established urine precipitation and evaporation lasted 10min. The validation results were acceptable. The limits for on-line extraction were comparable with those described for precipitation, but lower than for dilution. Thanks to the high sensitivity of the LC-HR-MS/MS system, all three workup approaches were sufficient for comprehensive urine screening and allowed fast, reliable, and reproducible detection of cardiovascular drugs, drugs of abuse, and other CNS acting drugs after common doses. Copyright © 2016 Elsevier B.V. All rights reserved.
PeneloPET, a Monte Carlo PET simulation tool based on PENELOPE: features and validation
NASA Astrophysics Data System (ADS)
España, S; Herraiz, J L; Vicente, E; Vaquero, J J; Desco, M; Udias, J M
2009-03-01
Monte Carlo simulations play an important role in positron emission tomography (PET) imaging, as an essential tool for the research and development of new scanners and for advanced image reconstruction. PeneloPET, a PET-dedicated Monte Carlo tool, is presented and validated in this work. PeneloPET is based on PENELOPE, a Monte Carlo code for the simulation of the transport in matter of electrons, positrons and photons, with energies from a few hundred eV to 1 GeV. PENELOPE is robust, fast and very accurate, but it may be unfriendly to people not acquainted with the FORTRAN programming language. PeneloPET is an easy-to-use application which allows comprehensive simulations of PET systems within PENELOPE. Complex and realistic simulations can be set by modifying a few simple input text files. Different levels of output data are available for analysis, from sinogram and lines-of-response (LORs) histogramming to fully detailed list mode. These data can be further exploited with the preferred programming language, including ROOT. PeneloPET simulates PET systems based on crystal array blocks coupled to photodetectors and allows the user to define radioactive sources, detectors, shielding and other parts of the scanner. The acquisition chain is simulated in high level detail; for instance, the electronic processing can include pile-up rejection mechanisms and time stamping of events, if desired. This paper describes PeneloPET and shows the results of extensive validations and comparisons of simulations against real measurements from commercial acquisition systems. PeneloPET is being extensively employed to improve the image quality of commercial PET systems and for the development of new ones.
NASA Technical Reports Server (NTRS)
Dempsey, Paula J.
2014-01-01
This report documents the results of spiral bevel gear rig tests performed under a NASA Space Act Agreement with the Federal Aviation Administration (FAA) to support validation and demonstration of rotorcraft Health and Usage Monitoring Systems (HUMS) for maintenance credits via FAA Advisory Circular (AC) 29-2C, Section MG-15, Airworthiness Approval of Rotorcraft (HUMS) (Ref. 1). The overarching goal of this work was to determine a method to validate condition indicators in the lab that better represent their response to faults in the field. Using existing in-service helicopter HUMS flight data from faulted spiral bevel gears as a "Case Study," to better understand the differences between both systems, and the availability of the NASA Glenn Spiral Bevel Gear Fatigue Rig, a plan was put in place to design, fabricate and test comparable gear sets with comparable failure modes within the constraints of the test rig. The research objectives of the rig tests were to evaluate the capability of detecting gear surface pitting fatigue and other generated failure modes on spiral bevel gear teeth using gear condition indicators currently used in fielded HUMS. Nineteen final design gear sets were tested. Tables were generated for each test, summarizing the failure modes observed on the gear teeth for each test during each inspection interval and color coded based on damage mode per inspection photos. Gear condition indicators (CI) Figure of Merit 4 (FM4), Root Mean Square (RMS), +/- 1 Sideband Index (SI1) and +/- 3 Sideband Index (SI3) were plotted along with rig operational parameters. Statistical tables of the means and standard deviations were calculated within inspection intervals for each CI. As testing progressed, it became clear that certain condition indicators were more sensitive to a specific component and failure mode. These tests were clustered together for further analysis. Maintenance actions during testing were also documented. Correlation coefficients were calculated between each CI, component, damage state and torque. Results found test rig and gear design, type of fault and data acquisition can affect CI performance. Results found FM4, SI1 and SI3 can be used to detect macro pitting on two more gear or pinion teeth as long as it is detected prior to progressing to other components or transitioning to another failure mode. The sensitivity of RMS to system and operational conditions limit its reliability for systems that are not maintained at steady state. Failure modes that occurred due to scuffing or fretting were challenging to detect with current gear diagnostic tools, since the damage is distributed across all the gear and pinion teeth, smearing the impacting signatures typically used to differentiate between a healthy and damaged tooth contact. This is one of three final reports published on the results of this project. In the second report, damage modes experienced in the field will be mapped to the failure modes created in the test rig. The helicopter CI data will then be re-processed with the same analysis techniques applied to spiral bevel rig test data. In the third report, results from the rig and helicopter data analysis will be correlated. Observations, findings and lessons learned using sub-scale rig failure progression tests to validate helicopter gear condition indicators will be presented.
NASA Astrophysics Data System (ADS)
Warren, Christopher; Niezrecki, Christopher; Avitabile, Peter; Pingle, Pawan
2011-08-01
Today, accelerometers and laser Doppler vibrometers are widely accepted as valid measurement tools for structural dynamic measurements. However, limitations of these transducers prevent the accurate measurement of some phenomena. For example, accelerometers typically measure motion at a limited number of discrete points and can mass load a structure. Scanning laser vibrometers have a very wide frequency range and can measure many points without mass-loading, but are sensitive to large displacements and can have lengthy acquisition times due to sequential measurements. Image-based stereo-photogrammetry techniques provide additional measurement capabilities that compliment the current array of measurement systems by providing an alternative that favors high-displacement and low-frequency vibrations typically difficult to measure with accelerometers and laser vibrometers. Within this paper, digital image correlation, three-dimensional (3D) point-tracking, 3D laser vibrometry, and accelerometer measurements are all used to measure the dynamics of a structure to compare each of the techniques. Each approach has its benefits and drawbacks, so comparative measurements are made using these approaches to show some of the strengths and weaknesses of each technique. Additionally, the displacements determined using 3D point-tracking are used to calculate frequency response functions, from which mode shapes are extracted. The image-based frequency response functions (FRFs) are compared to those obtained by collocated accelerometers. Extracted mode shapes are then compared to those of a previously validated finite element model (FEM) of the test structure and are shown to have excellent agreement between the FEM and the conventional measurement approaches when compared using the Modal Assurance Criterion (MAC) and Pseudo-Orthogonality Check (POC).
Impedance Eduction in Large Ducts Containing Higher-Order Modes and Grazing Flow
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Jones, Michael G.
2017-01-01
Impedance eduction test data are acquired in ducts with small and large cross-sectional areas at the NASA Langley Research Center. An improved data acquisition system in the large duct has resulted in increased control of the acoustic energy in source modes and more accurate resolution of higher-order duct modes compared to previous tests. Two impedance eduction methods that take advantage of the improved data acquisition to educe the liner impedance in grazing flow are presented. One method measures the axial propagation constant of a dominant mode in the liner test section (by implementing the Kumarsean and Tufts algorithm) and educes the impedance from an exact analytical expression. The second method solves numerically the convected Helmholtz equation and minimizes an objective function to obtain the liner impedance. The two methods are tested first on data synthesized from an exact mode solution and then on measured data. Results show that when the methods are applied to data acquired in the larger duct with a dominant higher-order mode, the same impedance spectra are educed as that obtained in the small duct where only the plane wave mode propagates. This result holds for each higher-order mode in the large duct provided that the higher-order mode is sufficiently attenuated by the liner.
Bandwidth management for mobile mode of mobile monitoring system for Indonesian Volcano
NASA Astrophysics Data System (ADS)
Evita, Maria; Djamal, Mitra; Zimanowski, Bernd; Schilling, Klaus
2017-01-01
Volcano monitoring requires the system which has high-fidelity operation and real-time acquisition. MONICA (Mobile Monitoring System for Indonesian Volcano), a system based on Wireless Sensor Network, mobile robot and satellite technology has been proposed to fulfill this requirement for volcano monitoring system in Indonesia. This system consists of fixed-mode for normal condition and mobile mode for emergency situation. The first and second modes have been simulated in slow motion earthquake cases of Merapi Volcano, Indonesia. In this research, we have investigated the application of our bandwidth management for high-fidelity operation and real time acquisition in mobile mode of a strong motion earthquake from this volcano. The simulation result showed that our system still could manage the bandwidth even when there were 2 died fixed node after had stroked by the lightning. This result (64% to 83% throughput in average) was still better than the bandwidth utilized by the existing equipment (0% throughput because of the broken seismometer).
Laboratory results of the AOF system testing
NASA Astrophysics Data System (ADS)
Kolb, Johann; Madec, Pierre-Yves; Arsenault, Robin; Oberti, Sylvain; Paufique, Jérôme; La Penna, Paolo; Ströbele, Stefan; Donaldson, Robert; Soenke, Christian; Suárez Valles, Marcos; Kiekebusch, Mario; Argomedo, Javier; Le Louarn, Miska; Vernet, Elise; Haguenauer, Pierre; Duhoux, Philippe; Aller-Carpentier, Emmanuel; Valenzuela, Jose Javier; Guerra, Juan Carlos
2016-07-01
For two years starting in February 2014, the AO modules GRAAL for HAWK-I and GALACSI for MUSE of the Adaptive Optics Facility project have undergone System Testing at ESO's Headquarters. They offer four different modes: NGS SCAO, LGS GLAO in the IR, LGS GLAO and LTAO in the visible. A detailed characterization of those modes was made possible by the existence of ASSIST, a test bench emulating an adaptive VLT including the Deformable Secondary Mirror, a star simulator and turbulence generator and a VLT focal plane re-imager. This phase aimed at validating all the possible components and loops of the AO modules before installation at the actual VLT that comprises the added complexity of real LGSs, a harsher non-reproducible environment and the adaptive telescope control. In this paper we present some of the major results obtained and challenges encountered during the phase of System Tests, like the preparation of the Acquisition sequence, the testing of the Jitter loop, the performance optimization in GLAO and the offload of low-order modes from the DSM to the telescope (restricted to the M2 hexapod). The System Tests concluded with the successful acceptance, shipping, installation and first commissioning of GRAAL in 2015 as well as the acceptance and shipping of GALACSI, ready for installation and commissioning early 2017.
Fang, Jing; Wu, Qian; Zhao, Yun; Zhao, Hongzhi; Xu, Shunqing; Cai, Zongwei
2017-01-01
Gas chromatography-triple quadrupole mass spectrometry (GC-QqQMS) was applied for the determination of eight organochlorine pesticides (OCPs) in human serum. OCPs were extracted from the serum sample by solid phase extraction (SPE) and analyzed by gas chromatography mass spectrometry (GC-MS) or gas chromatography tandem mass spectrometry (GC-MS/MS). Electron ionization (EI) and negative chemical ionization (NCI) under two data acquisition modes, namely selected ion monitoring (SIM) and multiple reaction monitoring (MRM), were compared. The use of MRM generally provided higher selectivity and sensitivity because less interference from the sample matrix existed. The EI mode is more suitable for less electronegative compounds such as dichlorodiphenyldichloroethanes (DDDs) with detection limits ranging from 0.0060 to 0.060ng/mL. In the NCI mode, MRM analysis provided good and lower detection limits (0.0011-0.0030ng/mL) for pesticides containing more chlorines. The methods were validated by analyzing the pesticides in spiked serum at different levels with recoveries ranged from 83% to 116% and relative standard deviations of less than 10%. The developed method was applied for the determination of the OCPs in real human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Daffara, C.; Parisotto, S.; Mariotti, P. I.
2015-06-01
Cultural Heritage is discovering how precious is thermal analysis as a tool to improve the restoration, thanks to its ability to inspect hidden details. In this work a novel dual mode imaging approach, based on the integration of thermography and thermal quasi-reflectography (TQR) in the mid-IR is demonstrated for an effective mapping of surface materials and of sub-surface detachments in mural painting. The tool was validated through a unique application: the "Monocromo" by Leonardo da Vinci in Italy. The dual mode acquisition provided two spatially aligned dataset: the TQR image and the thermal sequence. Main steps of the workflow included: 1) TQR analysis to map surface features and 2) to estimate the emissivity; 3) projection of the TQR frame on reference orthophoto and TQR mosaicking; 4) thermography analysis to map detachments; 5) use TQR to solve spatial referencing and mosaicking for the thermal-processed frames. Referencing of thermal images in the visible is a difficult aspect of the thermography technique that the dual mode approach allows to solve in effective way. We finally obtained the TQR and the thermal maps spatially referenced to the mural painting, thus providing the restorer a valuable tool for the restoration of the detachments.
NASA Astrophysics Data System (ADS)
Wei, LIU; Chundong, HU; Sheng, LIU; Shihua, SONG; Jinxin, WANG; Yan, WANG; Yuanzhe, ZHAO; Lizhen, LIANG
2017-12-01
Neutral beam injection is one of the effective auxiliary heating methods in magnetic-confinement-fusion experiments. In order to acquire the suppressor-grid current signal and avoid the grid being damaged by overheating, a data acquisition and over-current protection system based on the PXI (PCI eXtensions for Instrumentation) platform has been developed. The system consists of a current sensor, data acquisition module and over-current protection module. In the data acquisition module, the acquired data of one shot will be transferred in isolation and saved in a data-storage server in a txt file. It can also be recalled using NBWave for future analysis. The over-current protection module contains two modes: remote and local. This gives it the function of setting a threshold voltage remotely and locally, and the forbidden time of over-current protection also can be set by a host PC in remote mode. Experimental results demonstrate that the data acquisition and over-current protection system has the advantages of setting forbidden time and isolation transmission.
Skin-electrode impedance measurement during ECG acquisition: method’s validation
NASA Astrophysics Data System (ADS)
Casal, Leonardo; La Mura, Guillermo
2016-04-01
Skm-electrode impedance measurement can provide valuable information prior. dunng and post electrocardiographic (ECG) or electroencephalographs (EEG) acquisitions. In this work we validate a method for skm-electrode impedance measurement using test circuits with known resistance and capacitor values, at different frequencies for injected excitation current. Finally the method is successfully used for impedance measurement during ECG acquisition on a subject usmg 125 Hz and 6 nA square wave excitation signal at instrumentation amplifier mput. The method can be used for many electrodes configuration.
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.
2008-01-01
The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.
A parameter estimation algorithm for spatial sine testing - Theory and evaluation
NASA Technical Reports Server (NTRS)
Rost, R. W.; Deblauwe, F.
1992-01-01
This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.
SU-F-T-476: Performance of the AS1200 EPID for Periodic Photon Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMarco, J; Fraass, B; Yang, W
2016-06-15
Purpose: To assess the dosimetric performance of a new amorphous silicon flat-panel electronic portal imaging device (EPID) suitable for high-intensity, flattening-filter-free delivery mode. Methods: An EPID-based QA suite was created with automation to periodically monitor photon central-axis output and two-dimensional beam profile constancy as a function of gantry angle and dose-rate. A Varian TrueBeamTM linear accelerator installed with Developer Mode was used to customize and deliver XML script routines for the QA suite using the dosimetry mode image acquisition for an aS1200 EPID. Automatic post-processing software was developed to analyze the resulting DICOM images. Results: The EPID was used tomore » monitor photon beam output constancy (central-axis), flatness, and symmetry over a period of 10 months for four photon beam energies (6x, 15x, 6xFFF, and 10xFFF). EPID results were consistent to those measured with a standard daily QA check device. At the four cardinal gantry angles, the standard deviation of the EPID central-axis output was <0.5%. Likewise, EPID measurements were independent for the wide range of dose rates (including up to 2400 mu/min for 10xFFF) studied with a standard deviation of <0.8% relative to the nominal dose rate for each energy. Also, profile constancy and field size measurements showed good agreement with the reference acquisition of 0° gantry angle and nominal dose rate. XML script files were also tested for MU linearity and picket-fence delivery. Using Developer Mode, the test suite was delivered in <60 minutes for all 4 photon energies with 4 dose rates per energy and 5 picket-fence acquisitions. Conclusion: Dosimetry image acquisition using a new EPID was found to be accurate for standard and high-intensity photon beams over a broad range of dose rates over 10 months. Developer Mode provided an efficient platform to customize the EPID acquisitions by using custom script files which significantly reduced the time. This work was funded in part by Varian Medical Systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, J. Michael; Pretorius, P. Hendrik; Johnson, Karen
2013-12-15
Purpose: This technical note documents a method that the authors developed for combining a signal to synchronize a patient-monitoring device with a second physiological signal for inclusion into list-mode acquisition. Our specific application requires synchronizing an external patient motion-tracking system with a medical imaging system by multiplexing the tracking input with the ECG input. The authors believe that their methodology can be adapted for use in a variety of medical imaging modalities including single photon emission computed tomography (SPECT) and positron emission tomography (PET). Methods: The authors insert a unique pulse sequence into a single physiological input channel. This sequencemore » is then recorded in the list-mode acquisition along with the R-wave pulse used for ECG gating. The specific form of our pulse sequence allows for recognition of the time point being synchronized even when portions of the pulse sequence are lost due to collisions with R-wave pulses. This was achieved by altering our software used in binning the list-mode data to recognize even a portion of our pulse sequence. Limitations on heart rates at which our pulse sequence could be reliably detected were investigated by simulating the mixing of the two signals as a function of heart rate and time point during the cardiac cycle at which our pulse sequence is mixed with the cardiac signal. Results: The authors have successfully achieved accurate temporal synchronization of our motion-tracking system with acquisition of SPECT projections used in 17 recent clinical research cases. In our simulation analysis the authors determined that synchronization to enable compensation for body and respiratory motion could be achieved for heart rates up to 125 beats-per-minute (bpm). Conclusions: Synchronization of list-mode acquisition with external patient monitoring devices such as those employed in motion-tracking can reliably be achieved using a simple method that can be implemented using minimal external hardware and software modification through a single input channel, while still recording cardiac gating signals.« less
CALIPSO Instrument Operational
Atmospheric Science Data Center
2014-03-05
... being briefly in data acquisition mode, the CALIPSO payload computer (PLC) was commanded OFF due to another solar event earlier this ... remain above the 10MeV threshold for laser operations. Science data is not acquired while the payload is in SAFE mode. ...
NASA Astrophysics Data System (ADS)
Nazihah Mat Daud, Anis; Jaafar, Rosly; Kadri Ayop, Shahrul; Supar Rohani, Md
2018-04-01
This paper discusses the development of a computerized acoustic characterization system of non-porous solid tissue mimicking materials. This system employs an alternative pulse echo immersion technique and consists of a pulser/receiver generator, a transducer used as both a transmitter and a receiver, a digital oscilloscope, and a personal computer with a custom-developed program installed. The program was developed on the LabVIEW 2012 platform and comprises two main components, a user interface and a block diagram. The user interface consists of three panels: a signal acquisition and selection panel, a display panel, and a calculation panel. The block diagram comprises four blocks: a signal acquisition block, a peak signal analysis block, an acoustic properties calculation and display block, and an additional block. Interestingly, the system can be operated in both online and offline modes. For the online mode, the measurements are performed by connecting the system with a Rigol DS2000 Series digital oscilloscope. In contrast, the measurements are carried out by processing the saved data on the computer for the offline mode. The accuracy and consistency of the developed system was validated by a KB-Aerotech Alpha Series transducer with 5 MHz center frequency and a Rigol DS2202 two-channel 200 MHz 2 GSa s-1 digital oscilloscope, based on the measurement of the acoustic properties of three poly(methyl methacrylate) samples immersed in a medium at a temperature of (24.0 ± 0.1) °C. The findings indicated that the accuracy and consistency of the developed system was exceptionally high, within a 1.04% margin of error compared to the reference values. As such, this computerized system can be efficiently used for the acoustic characterization of non-porous solid tissues, given its spontaneous display of results, user-friendly interface, and convenient hardware connection.
Quantitative Doppler Analysis Using Conventional Color Flow Imaging Acquisitions.
Karabiyik, Yucel; Ekroll, Ingvild Kinn; Eik-Nes, Sturla H; Lovstakken, Lasse
2018-05-01
Interleaved acquisitions used in conventional triplex mode result in a tradeoff between the frame rate and the quality of velocity estimates. On the other hand, workflow becomes inefficient when the user has to switch between different modes, and measurement variability is increased. This paper investigates the use of power spectral Capon estimator in quantitative Doppler analysis using data acquired with conventional color flow imaging (CFI) schemes. To preserve the number of samples used for velocity estimation, only spatial averaging was utilized, and clutter rejection was performed after spectral estimation. The resulting velocity spectra were evaluated in terms of spectral width using a recently proposed spectral envelope estimator. The spectral envelopes were also used for Doppler index calculations using in vivo and string phantom acquisitions. In vivo results demonstrated that the Capon estimator can provide spectral estimates with sufficient quality for quantitative analysis using packet-based CFI acquisitions. The calculated Doppler indices were similar to the values calculated using spectrograms estimated on a commercial ultrasound scanner.
[Computed tomography of the lungs. A step into the fourth dimension].
Dinkel, J; Hintze, C; Rochet, N; Thieke, C; Biederer, J
2009-08-01
To discuss the techniques for four dimensional computed tomography of the lungs in tumour patients. The image acquisition in CT can be done using respiratory gating in two different ways: the helical or cine mode. In the helical mode, the couch moves continuously during image and respiratory signal acquisition. In the cine mode, the couch remains in the same position during at least one complete respiratory cycle and then moves to next position. The 4D images are either acquired prospectively or reconstructed retrospectively with dedicated algorithms in a freely selectable respiratory phase. The time information required for motion depiction in 4D imaging can be obtained with tolerable motion artefacts. Partial projection and stepladder-artifacts are occurring predominantly close to the diaphragm, where the displacement is most prominent. Due to the long exposure times, radiation exposure is significantly higher compared to a simple breathhold helical acquisition. Therefore, the use of 4D-CT is restricted to only specific indications (i.e. radiotherapy planning). 4D-CT of the lung allows evaluating the respiration-correlated displacement of lungs and tumours in space for radiotherapy planning.
ERIC Educational Resources Information Center
Al-Dajeh, Hesham I.
2012-01-01
The main purpose of this study was to estimate the level of acquisition of the Jordanian national professional standards by vocational, secondary education teachers. Two hundred teachers participated in the study. The data were collected by questionnaire and analyzed using SPSS version 15.0. Questionnaire validity was assessed by content validity,…
Epid cine acquisition mode for in vivo dosimetry in dynamic arc radiation therapy
NASA Astrophysics Data System (ADS)
Fidanzio, Andrea; Mameli, Alessandra; Placidi, Elisa; Greco, Francesca; Stimato, Gerardina; Gaudino, Diego; Ramella, Sara; D'Angelillo, Rolando; Cellini, Francesco; Trodella, Lucio; Cilla, Savino; Grimaldi, Luca; D'Onofrio, Guido; Azario, Luigi; Piermattei, Angelo
2008-02-01
In this paper the cine acquisition mode of an electronic portal imaging device (EPID) has been calibrated and tested to determine the in vivo dose for dynamic conformal arc radiation therapy (DCAT). The EPID cine acquisition mode, that allows a frame acquisition rate of one image every 1.66 s, was studied with a monitor unit rate equal to 100 UM/min. In these conditions good signal stability, ±1% (2SD) evaluated during three months, signal reproducibility within ±0.8% (2SD) and linearity with dose and dose rate within ±1% (2SD) were obtained. The transit signal, St, (due to the transmitted beam below the phantom) measured by the EPID cine acquisition mode was used to determine, (i) a set of correlation functions, F(w,L), defined as the ratio between St and the dose at half thickness, Dm, measured in solid water phantoms of different thicknesses, w and with square fields of side L, (ii) a set of factors, f(d,L), that take into account the different X-ray scatter contribution from the phantom to the St signal as a function of the variation, d, of the air gap between the phantom and the EPID. The reconstruction of the isocenter dose, Diso, for DCAT was obtained convolving the transit signal values, obtained at different gantry angles, with the respective reconstruction factors determined by a house-made software. The method was tested with cylindrical and anthropomorphic phantoms and the results show that the reconstructed Diso values can be obtained with an accuracy within ±2.5% in cylindrical phantom and within ±3.4% for anthropomorphic phantom. In conclusion, the transit dosimetry by EPID was assessed to be adequate to perform DCAT in vivo dosimetry, that is not realizable with the other traditional techniques. Moreover, the method proposed here could be implemented to supply in vivo dose values in real time.
Cycle 24 HST+COS Target Acquisition Monitor Summary
NASA Astrophysics Data System (ADS)
Penton, Steven V.; White, James
2018-06-01
HST/COS calibration program 14847 (P14857) was designed to verify that all three COS Target Acquisition (TA) modes were performing nominally during Cycle 24. The program was designed not only to determine if any of the COS TA flight software (FSW) patchable constants need updating but also to determine the values of any required parameter updates. All TA modes were determined to be performing nominally during the Cycle 24 calendar period of October 1, 2016 - October 1, 2017. No COS SIAF, TA subarray, or FSW parameter updates were required as a result of this program.
Architecture of a mixed-mode electrophysiological signal acquisition interface.
Shen, Ding-Lan; Chen, Jyun-Min
2012-01-01
This paper proposes mixed-mode architecture for the acquisition interface of electrophysiological signals. The architecture advances the analog-to-digital converter (ADC) from the second chopper signal in the conventional approach and performs the second chopper operation in the digital domain. The demanded low-pass filter (LPF) is realized with a digital type. The analog LPF in feedback path is substituted with a digital one accompanying with a digital-to-analog converter (DAC). The analog variation is decreased due to the digitization of these operations. The entire architecture is simulated with the ECG input in a behavior model of Simulink.
Performance, operational limits, of an Electronic Switching Spherical Array (ESSA) antenna
NASA Technical Reports Server (NTRS)
Stockton, R.
1979-01-01
The development of a microprocessor controller which provides multimode operational capability for the Electronic Switching Spherical Array (ESSA) Antenna is described. The best set of operating conditions were determined and the performance of an ESSA antenna was demonstrated in the following modes: (1) omni; (2) acquisition/track; (3) directive; and (4) multibeam. The control algorithms, software flow diagrams, and electronic circuitry were developed. The microprocessor and control electronics were built and interfaced with the antenna to carry out performance testing. The acquisition/track mode for users in the Tracking and Data Relay Satellite System is emphasized.
Wang, Yang; Feng, Ruibing; He, Chengwei; Su, Huanxing; Ma, Huan; Wan, Jian-Bo
2018-08-05
The narrow linear range and the limited scan time of the given ion make the quantification of the features challenging in liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics with the full-scan mode. And metabolite identification is another bottleneck of untargeted analysis owing to the difficulty of acquiring MS/MS information of most metabolites detected. In this study, an integrated workflow was proposed using the newly established multiple ion monitoring mode with time-staggered ion lists (tsMIM) and target-directed data-dependent acquisition with time-staggered ion lists (tsDDA) to improve data acquisition and metabolite identification in UHPLC/Q-TOF MS-based untargeted metabolomics. Compared to the conventional untargeted metabolomics, the proprosed workflow exhibited the better repeatability before and after data normalization. After selecting features with the significant change by statistical analysis, MS/MS information of all these features can be obtained by tsDDA analysis to facilitate metabolite identification. Using time-staggered ion lists, the workflow is more sensitive in data acquisition, especially for the low-abundant features. Moreover, the metabolites with low abundance tend to be wrongly integrated and triggered by full scan-based untargeted analysis with MS E acquisition mode, which can be greatly improved by the proposed workflow. The integrated workflow was also successfully applied to discover serum biosignatures for the genetic modification of fat-1 in mice, which indicated its practicability and great potential in future metabolomics studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Role of learning potential in cognitive remediation: Construct and predictive validity.
Davidson, Charlie A; Johannesen, Jason K; Fiszdon, Joanna M
2016-03-01
The construct, convergent, discriminant, and predictive validity of Learning Potential (LP) was evaluated in a trial of cognitive remediation for adults with schizophrenia-spectrum disorders. LP utilizes a dynamic assessment approach to prospectively estimate an individual's learning capacity if provided the opportunity for specific related learning. LP was assessed in 75 participants at study entry, of whom 41 completed an eight-week cognitive remediation (CR) intervention, and 22 received treatment-as-usual (TAU). LP was assessed in a "test-train-test" verbal learning paradigm. Incremental predictive validity was assessed as the degree to which LP predicted memory skill acquisition above and beyond prediction by static verbal learning ability. Examination of construct validity confirmed that LP scores reflected use of trained semantic clustering strategy. LP scores correlated with executive functioning and education history, but not other demographics or symptom severity. Following the eight-week active phase, TAU evidenced little substantial change in skill acquisition outcomes, which related to static baseline verbal learning ability but not LP. For the CR group, LP significantly predicted skill acquisition in domains of verbal and visuospatial memory, but not auditory working memory. Furthermore, LP predicted skill acquisition incrementally beyond relevant background characteristics, symptoms, and neurocognitive abilities. Results suggest that LP assessment can significantly improve prediction of specific skill acquisition with cognitive training, particularly for the domain assessed, and thereby may prove useful in individualization of treatment. Published by Elsevier B.V.
Wang, Zhibin; Cao, Yanzhong; Ge, Na; Liu, Xiaomao; Chang, Qiaoying; Fan, Chunlin; Pang, Guo-Fang
2016-11-01
This paper presents an application of ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for simultaneous screening and identification of 427 pesticides in fresh fruit and vegetable samples. Both full MS scan mode for quantification, and an artificial-intelligence-based product ion scan mode information-dependent acquisition (IDA) providing automatic MS to MS/MS switching of product ion spectra for identification, were conducted by one injection. A home-in collision-induced-dissociation all product ions accurate mass spectra library containing more than 1700 spectra was developed prior to actual application. Both qualitative and quantitative validations of the method were carried out. The result showed that 97.4 % of the pesticides had the screening detection limit (SDL) less than 50 μg kg -1 and more than 86.7 % could be confirmed by accurate MS/MS spectra embodied in the home-made library. Meanwhile, calibration curves covering two orders of magnitude were performed, and they were linear over the concentration range studied for the selected matrices (from 5 to 500 μg kg -1 for most of the pesticides). Recoveries between 80 and 110 % in four matrices (apple, orange, tomato, and spinach) at two spiked levels, 10 and 100 μg kg -1 , was 88.7 or 86.8 %. Furthermore, the overall relative standard deviation (RSD, n = 12) for 94.3 % of the pesticides in 10 μg kg -1 and 98.1 % of the pesticides in 100 μg kg -1 spiked levels was less than 20 %. In order to validate the suitability for routine analysis, the method was applied to 448 fruit and vegetable samples purchased in different local markets. The results show 83.3 % of the analyzed samples have positive findings (higher than the limits of identification and quantification), and 412 commodity-pesticide combinations are identified in our scope. The approach proved to be a cost-effective, time-saving and powerful strategy for routine large-scope screening of pesticides.
Hardware test program for evaluation of baseline range-range rate sensor concept
NASA Technical Reports Server (NTRS)
1985-01-01
The baseline range/range rate sensor concept was evaluated. The Interrupted CW (ICW) mode of operation continued with emphasis on establishing the sensitivity of the video portion of the receiver was 7 dB less than the theoretical value. This departs from test results of previous implementations in which achieved sensitivity was within 1.5 to 2 dB of the theoretical value. Several potential causes of this discrepancy in performance were identified and are scheduled for further investigation. Results indicate that a cost savings in both per unit and program costs are realizable by eliminating one of the modes of operation. An acquisition (total program) cost savings of approximately 10% is projected by eliminating the CW mode of operation. The modified R/R sensor would operate in the ICW mode only and would provide coverage from initial acquisition at 12 nmi to within a few hundred feet of the OMV. If the ICW mode only were selected, then an accompanying sensor would be required to provide coverage from a few hundred feet to docking.
Ship Speed Retrieval From Single Channel TerraSAR-X Data
NASA Astrophysics Data System (ADS)
Soccorsi, Matteo; Lehner, Susanne
2010-04-01
A method to estimate the speed of a moving ship is presented. The technique, introduced in Kirscht (1998), is extended to marine application and validated on TerraSAR-X High-Resolution (HR) data. The generation of a sequence of single-look SAR images from a single- channel image corresponds to an image time series with reduced resolution. This allows applying change detection techniques on the time series to evaluate the velocity components in range and azimuth of the ship. The evaluation of the displacement vector of a moving target in consecutive images of the sequence allows the estimation of the azimuth velocity component. The range velocity component is estimated by evaluating the variation of the signal amplitude during the sequence. In order to apply the technique on TerraSAR-X Spot Light (SL) data a further processing step is needed. The phase has to be corrected as presented in Eineder et al. (2009) due to the SL acquisition mode; otherwise the image sequence cannot be generated. The analysis, when possible validated by the Automatic Identification System (AIS), was performed in the framework of the ESA project MARISS.
NASA Astrophysics Data System (ADS)
Pollock, Sean; Kipritidis, John; Lee, Danny; Bernatowicz, Kinga; Keall, Paul
2016-09-01
Two interventions to overcome the deleterious impact irregular breathing has on thoracic-abdominal 4D computed tomography (4DCT) are (1) facilitating regular breathing using audiovisual biofeedback (AVB), and (2) prospective respiratory gating of the 4DCT scan based on the real-time respiratory motion. The purpose of this study was to compare the impact of AVB and gating on 4DCT imaging using the 4D eXtended cardiac torso (XCAT) phantom driven by patient breathing patterns. We obtained simultaneous measurements of chest and abdominal walls, thoracic diaphragm, and tumor motion from 6 lung cancer patients under two breathing conditions: (1) AVB, and (2) free breathing. The XCAT phantom was used to simulate 4DCT acquisitions in cine and respiratory gated modes. 4DCT image quality was quantified by artefact detection (NCCdiff), mean square error (MSE), and Dice similarity coefficient of lung and tumor volumes (DSClung, DSCtumor). 4DCT acquisition times and imaging dose were recorded. In cine mode, AVB improved NCCdiff, MSE, DSClung, and DSCtumor by 20% (p = 0.008), 23% (p < 0.001), 0.5% (p < 0.001), and 4.0% (p < 0.003), respectively. In respiratory gated mode, AVB improved NCCdiff, MSE, and DSClung by 29% (p < 0.001), 34% (p < 0.001), 0.4% (p < 0.001), respectively. AVB increased the cine acquisitions by 15 s and reduced respiratory gated acquisitions by 31 s. AVB increased imaging dose in cine mode by 10%. This was the first study to quantify the impact of breathing guidance and respiratory gating on 4DCT imaging. With the exception of DSCtumor in respiratory gated mode, AVB significantly improved 4DCT image analysis metrics in both cine and respiratory gated modes over free breathing. The results demonstrate that AVB and respiratory-gating can be beneficial interventions to improve 4DCT for cancer radiation therapy, with the biggest gains achieved when these interventions are used simultaneously.
NASA Astrophysics Data System (ADS)
Okumura, Hiroshi; Takubo, Shoichiro; Kawasaki, Takeru; Abdullah, Indra Nugraha; Uchino, Osamu; Morino, Isamu; Yokota, Tatsuya; Nagai, Tomohiro; Sakai, Tetsu; Maki, Takashi; Arai, Kohei
2013-01-01
A web-base data acquisition and management system for GOSAT (Greenhouse gases Observation SATellite) validation lidar data-analysis has been developed. The system consists of data acquisition sub-system (DAS) and data management sub-system (DMS). DAS written in Perl language acquires AMeDAS (Automated Meteorological Data Acquisition System) ground-level local meteorological data, GPS Radiosonde upper-air meteorological data, ground-level oxidant data, skyradiometer data, skyview camera images, meteorological satellite IR image data and GOSAT validation lidar data. DMS written in PHP language demonstrates satellite-pass date and all acquired data. In this article, we briefly describe some improvement for higher performance and higher data usability. GPS Radiosonde upper-air meteorological data and U.S. standard atmospheric model in DAS automatically calculate molecule number density profiles. Predicted ozone density prole images above Saga city are also calculated by using Meteorological Research Institute (MRI) chemistry-climate model version 2 for comparison to actual ozone DIAL data.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2014-01-01
The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (i) mode blockage, (ii) liner insertion loss, (iii) short ducts, and (iv) mode reflection.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.
2014-01-01
The NASA Glenn Research Center's Advanced Noise Control Fan (ANCF) was developed in the early 1990s to provide a convenient test bed to measure and understand fan-generated acoustics, duct propagation, and radiation to the farfield. A series of tests were performed primarily for the use of code validation and tool validation. Rotating Rake mode measurements were acquired for parametric sets of: (1) mode blockage, (2) liner insertion loss, (3) short ducts, and (4) mode reflection.
Franzen, Lutz; Anderski, Juliane; Windbergs, Maike
2015-09-01
For rational development and evaluation of dermal drug delivery, the knowledge of rate and extent of substance penetration into the human skin is essential. However, current analytical procedures are destructive, labor intense and lack a defined spatial resolution. In this context, confocal Raman microscopy bares the potential to overcome current limitations in drug depth profiling. Confocal Raman microscopy already proved its suitability for the acquisition of qualitative penetration profiles, but a comprehensive investigation regarding its suitability for quantitative measurements inside the human skin is still missing. In this work, we present a systematic validation study to deploy confocal Raman microscopy for quantitative drug depth profiling in human skin. After we validated our Raman microscopic setup, we successfully established an experimental procedure that allows correlating the Raman signal of a model drug with its controlled concentration in human skin. To overcome current drawbacks in drug depth profiling, we evaluated different modes of peak correlation for quantitative Raman measurements and offer a suitable operating procedure for quantitative drug depth profiling in human skin. In conclusion, we successfully demonstrate the potential of confocal Raman microscopy for quantitative drug depth profiling in human skin as valuable alternative to destructive state-of-the-art techniques. Copyright © 2015 Elsevier B.V. All rights reserved.
Photoacoustic image reconstruction from ultrasound post-beamformed B-mode image
NASA Astrophysics Data System (ADS)
Zhang, Haichong K.; Guo, Xiaoyu; Kang, Hyun Jae; Boctor, Emad M.
2016-03-01
A requirement to reconstruct photoacoustic (PA) image is to have a synchronized channel data acquisition with laser firing. Unfortunately, most clinical ultrasound (US) systems don't offer an interface to obtain synchronized channel data. To broaden the impact of clinical PA imaging, we propose a PA image reconstruction algorithm utilizing US B-mode image, which is readily available from clinical scanners. US B-mode image involves a series of signal processing including beamforming, followed by envelope detection, and end with log compression. Yet, it will be defocused when PA signals are input due to incorrect delay function. Our approach is to reverse the order of image processing steps and recover the original US post-beamformed radio-frequency (RF) data, in which a synthetic aperture based PA rebeamforming algorithm can be further applied. Taking B-mode image as the input, we firstly recovered US postbeamformed RF data by applying log decompression and convoluting an acoustic impulse response to combine carrier frequency information. Then, the US post-beamformed RF data is utilized as pre-beamformed RF data for the adaptive PA beamforming algorithm, and the new delay function is applied by taking into account that the focus depth in US beamforming is at the half depth of the PA case. The feasibility of the proposed method was validated through simulation, and was experimentally demonstrated using an acoustic point source. The point source was successfully beamformed from a US B-mode image, and the full with at the half maximum of the point improved 3.97 times. Comparing this result to the ground-truth reconstruction using channel data, the FWHM was slightly degraded with 1.28 times caused by information loss during envelope detection and convolution of the RF information.
Xia, Xi; Wang, Yuanyuan; Wang, Xia; Li, Yun; Zhong, Feng; Li, Xiaowei; Huang, Yaoling; Ding, Shuangyang; Shen, Jianzhong
2013-05-31
This paper presents a sensitive and confirmatory multi-residue method for the analysis of 23 veterinary drugs and metabolites belonging to three classes (nitroimidazoles, benzimidazoles, and chloramphenicols) in porcine muscle, liver, and kidney. After extracted with ethyl acetate and basic ethyl acetate sequentially, the crude extracts were defatted with hexane and further purified using Oasis MCX solid-phase extraction cartridges. Rapid determination was carried out by ultra-high performance liquid chromatography-electrospray ionization tandem mass spectrometry. Data acquisition was performed under positive and negative mode simultaneously. Recoveries based on matrix-matched calibrations for meat, liver, and kidney ranged from 50.6 to 108.1%. The method quantification limits were in the range of 3-100ng/kg. Copyright © 2012 Elsevier B.V. All rights reserved.
The Representation of Bilingual Mental Lexicon and English Vocabulary Acquisition
ERIC Educational Resources Information Center
Ying, Zhang
2017-01-01
This paper provides an overview of the theories on the organization and development of L1 mental lexicon and the representation mode of bilingual mental lexicon. It analyzes the structure and characteristics of Chinese EFL learners and their problems in English vocabulary acquisition. On the basis of this, it suggests that English vocabulary…
Serra, H; Nogueira, J M F
2005-11-11
In the present contribution, a new automated on-line hydride generation methodology was developed for dibutyltin and tributyltin speciation at the trace level, using a programmable temperature-vaporizing inlet followed by capillary gas chromatography coupled to mass spectrometry in the selected ion-monitoring mode acquisition (PTV-GC/MS(SIM)). The methodology involves a sequence defined by two running methods, the first one configured for hydride generation with sodium tetrahydroborate as derivatising agent and the second configured for speciation purposes, using a conventional autosampler and data acquisition controlled by the instrument's software. From the method-development experiments, it had been established that injector configuration has a great effect on the speciation of the actual methodology, particularly, the initial inlet temperature (-20 degrees C; He: 150 ml/min), injection volume (2 microl) and solvent characteristics using the solvent venting mode. Under optimized conditions, a remarkable instrumental performance including very good precision (RSD < 4%), excellent linear dynamic range (up to 50 microg/ml) and limits of detection of 0.12 microg/ml and 9 ng/ml, were obtained for dibutyltin and tributyltin, respectively. The feasibility of the present methodology was validated through assays upon in-house spiked water (2 ng/ml) and a certified reference sediment matrix (Community Bureau of Reference, CRM 462, Nr. 330 dibutyltin: 68+/-12 ng/g; tributyltin: 54+/-15 ng/g on dry mass basis), using liquid-liquid extraction (LLE) and solid-phase extraction (SPE) sample enrichment and multiple injections (2 x 5 microl) for sensitivity enhancement. The methodology evidenced high reproducibility, is easy to work-up, sensitive and showed to be a suitable alternative to replace the currently dedicated analytical systems for organotin speciation in environmental matrices at the trace level.
2016-04-21
Selecting Senior Acquisition Officials Assessing the Current Processes and Practices for Recruiting, Confirming, and Retaining Senior Officials...Task Group 2 Terms of Reference (TOR) Selection of Senior Officials in the Acquisition Workforce – Consider ethics rules, congressional committee... Senior Acquisition positions – Re-validate the conflicts of interest and risk mitigation rules “[T]he committee directs the Chair of the Defense Business
Akhilesh, Philomina; Kulkarni, Arti R; Jamhale, Shramika H; Sharma, S D; Kumar, Rajesh; Datta, D
2017-04-25
The purpose of this study was to estimate eye lens dose during brain scans in 16-, 64-, 128- and 256-slice multidetector computed tomography (CT) scanners in helical acquisition mode and to test the feasibility of using radiochromic film as eye lens dosemeter during CT scanning. Eye lens dose measurements were performed using Gafchromic XR-QA2 film on a polystyrene head phantom designed with outer dimensions equivalent to the head size of a reference Indian man. The response accuracy of XR-QA2 film was validated by using thermoluminescence dosemeters. The eye lens dose measured using XR-QA2 film on head phantom for plain brain scanning in helical mode ranged from 43.8 to 45.8 mGy. The XR-QA2 film measured dose values were in agreement with TLD measured dose values within a maximum variation of 8.9%. The good correlation between the two data sets confirms the viability of using XR-QA2 film for eye lens dosimetry. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Digital Beamforming Scatterometer
NASA Technical Reports Server (NTRS)
Rincon, Rafael F.; Vega, Manuel; Kman, Luko; Buenfil, Manuel; Geist, Alessandro; Hillard, Larry; Racette, Paul
2009-01-01
This paper discusses scatterometer measurements collected with multi-mode Digital Beamforming Synthetic Aperture Radar (DBSAR) during the SMAP-VEX 2008 campaign. The 2008 SMAP Validation Experiment was conducted to address a number of specific questions related to the soil moisture retrieval algorithms. SMAP-VEX 2008 consisted on a series of aircraft-based.flights conducted on the Eastern Shore of Maryland and Delaware in the fall of 2008. Several other instruments participated in the campaign including the Passive Active L-Band System (PALS), the Marshall Airborne Polarimetric Imaging Radiometer (MAPIR), and the Global Positioning System Reflectometer (GPSR). This campaign was the first SMAP Validation Experiment. DBSAR is a multimode radar system developed at NASA/Goddard Space Flight Center that combines state-of-the-art radar technologies, on-board processing, and advances in signal processing techniques in order to enable new remote sensing capabilities applicable to Earth science and planetary applications [l]. The instrument can be configured to operate in scatterometer, Synthetic Aperture Radar (SAR), or altimeter mode. The system builds upon the L-band Imaging Scatterometer (LIS) developed as part of the RadSTAR program. The radar is a phased array system designed to fly on the NASA P3 aircraft. The instrument consists of a programmable waveform generator, eight transmit/receive (T/R) channels, a microstrip antenna, and a reconfigurable data acquisition and processor system. Each transmit channel incorporates a digital attenuator, and digital phase shifter that enables amplitude and phase modulation on transmit. The attenuators, phase shifters, and calibration switches are digitally controlled by the radar control card (RCC) on a pulse by pulse basis. The antenna is a corporate fed microstrip patch-array centered at 1.26 GHz with a 20 MHz bandwidth. Although only one feed is used with the present configuration, a provision was made for separate corporate feeds for vertical and horizontal polarization. System upgrades to dual polarization are currently under way. The DBSAR processor is a reconfigurable data acquisition and processor system capable of real-time, high-speed data processing. DBSAR uses an FPGA-based architecture to implement digitally down-conversion, in-phase and quadrature (I/Q) demodulation, and subsequent radar specific algorithms. The core of the processor board consists of an analog-to-digital (AID) section, three Altera Stratix field programmable gate arrays (FPGAs), an ARM microcontroller, several memory devices, and an Ethernet interface. The processor also interfaces with a navigation board consisting of a GPS and a MEMS gyro. The processor has been configured to operate in scatterometer, Synthetic Aperture Radar (SAR), and altimeter modes. All the modes are based on digital beamforming which is a digital process that generates the far-field beam patterns at various scan angles from voltages sampled in the antenna array. This technique allows steering the received beam and controlling its beam-width and side-lobe. Several beamforming techniques can be implemented each characterized by unique strengths and weaknesses, and each applicable to different measurement scenarios. In Scatterometer mode, the radar is capable to.generate a wide beam or scan a narrow beam on transmit, and to steer the received beam on processing while controlling its beamwidth and side-lobe level. Table I lists some important radar characteristics
48 CFR 1401.7001-4 - Acquisition performance measurement systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-pronged approach that includes self assessment, statistical data for validation and flexible quality... regulations governing the acquisition process; and (3) Identify and implement changes necessary to improve the...
SU-F-T-263: Dosimetric Characteristics of the Cine Acquisition Mode of An A-Si EPID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bawazeer, O; Deb, P; Sarasanandarajah, S
2016-06-15
Purpose: To investigate the dosimetric characteristics of Varian a-Si-500 electronic portal imaging device (EPID) operated in cine mode particularly considering linearity with delivered dose, dose rate, field size, phantom thickness, MLC speed and common IMRT fields. Methods: The EPID that attached to a Varian Clinac 21iX linear accelerator, was irradiated with 6 and 18 MV using 600 MU/min. Image acquisition is controlled by the IAS3 software, Trigger delay was 6 ms, BeamOnDelay and FrameStartDelay were zero. Different frame rates were utilized. Cine mode response was calculated using MATLAB as summation of mean pixel values in a region of interest ofmore » the acquired images. The performance of cine mode was compared to integrated mode and dose measurements in water using CC13 ionization chamber. Results: Figure1 illustrates that cine mode has nonlinear response for small MU, when delivering 10 MU was about 0.5 and 0.64 for 6 and 18 MV respectively. This is because the missing acquired images that were calculated around four images missing in each delivery. With the increase MU the response became linear and comparable with integrated mode and ionization chamber within 2%. Figure 2 shows that cine mode has comparable response with integrated mode and ionization chamber within 2% with changing dose rate for 10 MU delivered. This indicates that the dose rate change has no effect on nonlinearity of cine mode response. Except nonlinearity, cine mode is well matched to integrated mode response within 2% for field size, phantom thickness, MLC speed dependences. Conclusion: Cine mode has similar dosimetric characteristics to integrated mode with open and IMRT fields, and the main limitation with cine mode is missing images. Therefore, the calibration of EPID images with this mode should be run with large MU, and when IMRT verification field has low MU, the correction for missing images are required.« less
Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen
2016-08-12
Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.
Ghosh, Payel; Chandler, Adam G; Altinmakas, Emre; Rong, John; Ng, Chaan S
2016-01-01
The aim of this study was to investigate the feasibility of shuttle-mode computed tomography (CT) technology for body perfusion applications by quantitatively assessing and correcting motion artifacts. Noncontrast shuttle-mode CT scans (10 phases, 2 nonoverlapping bed locations) were acquired from 4 patients on a GE 750HD CT scanner. Shuttling effects were quantified using Euclidean distances (between-phase and between-bed locations) of corresponding fiducial points on the shuttle and reference phase scans (prior to shuttle mode). Motion correction with nonrigid registration was evaluated using sum-of-squares differences and distances between centers of segmented volumes of interest on shuttle and references images. Fiducial point analysis showed an average shuttling motion of 0.85 ± 1.05 mm (between-bed) and 1.18 ± 1.46 mm (between-phase), respectively. The volume-of-interest analysis of the nonrigid registration results showed improved sum-of-squares differences from 2950 to 597, between-bed distance from 1.64 to 1.20 mm, and between-phase distance from 2.64 to 1.33 mm, respectively, averaged over all cases. Shuttling effects introduced during shuttle-mode CT acquisitions can be computationally corrected for body perfusion applications.
Chava, Anil K; Bandyopadhyay, Sumi; Chatterjee, Mitali; Mandal, Chitra
2004-01-01
Protozoan parasites including Plasmodia, Leishmania, Trypanosoma, Entamoeba, Trichomonas and others cause diseases in humans and domestic livestock having far-reaching socio-economic implications. They show remarkable propensity to survive within hostile environments encountered during their life cycle, and the identification of molecules that enable them to survive in such milieu is a subject of intense research. Currently available knowledge of the parasite cell surface architecture and biochemistry indicates that sialic acid and its principle derivatives are major components of the glycocalyx and assist the parasite to interact with its external environment through functions ranging from parasite survival, infectivity and host-cell recognition. This review highlights the present state of knowledge with regard to parasite sialobiology with an emphasis on its mode(s) of acquisition and their emerging biological roles, notably as an anti-recognition molecule thereby aiding the pathogen to evade host defense mechanisms.
The Effect of Changing Scan Mode on Trabecular Bone Score Using Lunar Prodigy.
Chen, Weiwen; Slattery, Anthony; Center, Jacqueline; Pocock, Nicholas
2016-10-01
Trabecular bone score (TBS) is a measure of gray scale homogeneity that correlates with trabecular microarchitecture and is an independent predictor of fracture risk. TBS is being increasingly used in the assessment of patients at risk of osteoporosis and has recently been incorporated into FRAX ® . GE Lunar machines acquire spine scans using 1 of 3 acquisition modes depending on abdominal tissue thickness (thin, standard, and thick). From a database review, 30 patients (mean body mass index: 30.8, range 26.2-34.1) were identified who had undergone lumbar spine DXA scans (GE Lunar Prodigy, software 14.10; Lunar Radiation Corporation, Madison, WI) in both standard mode and thick mode, on the same day with no repositioning. Lumbar spine bone mineral density (L1-L4) and TBS were derived from the 30 paired spine scans. There was no significant difference in lumbar spine bone mineral density between the 2 scanning modes. There were, however, significant higher TBS values from the spine scans acquired in thick mode compared to the TBS values derived from spine acquisitions in standard mode (mean TBS difference: 0.24 [20%], standard deviation ±0.10). In conclusion, these preliminary data suggest that TBS values acquired in the GE Lunar Prodigy are dependent on the scanning mode used. Further evaluation is required to confirm the cause and develop appropriate protocols. Copyright © 2016 International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.
Developmental Stages in Receptive Grammar Acquisition: A Processability Theory Account
ERIC Educational Resources Information Center
Buyl, Aafke; Housen, Alex
2015-01-01
This study takes a new look at the topic of developmental stages in the second language (L2) acquisition of morphosyntax by analysing receptive learner data, a language mode that has hitherto received very little attention within this strand of research (for a recent and rare study, see Spinner, 2013). Looking at both the receptive and productive…
Assess the Critical Period Hypothesis in Second Language Acquisition
ERIC Educational Resources Information Center
Du, Lihong
2010-01-01
The Critical Period Hypothesis aims to investigate the reason for significant difference between first language acquisition and second language acquisition. Over the past few decades, researchers carried out a series of studies to test the validity of the hypothesis. Although there were certain limitations in these studies, most of their results…
Li, Tian-xue; Hu, Lang; Zhang, Meng-meng; Sun, Jian; Qiu, Yue; Rui, Jun-qian; Yang, Xing-hao
2014-01-01
There is a growing concern for the sensitive quantification of multiple components using advanced data acquisition method in herbal medicines (HMs). An improved and rugged UPLC-MS/MS method has been developed and validated for sensitive and rapid determination of multiply analytes from Tong-Xie-Yao-Fang (TXYF) decoction in three biological matrices (plasma/brain tissue/urine) using geniposide and formononetin as internal standards. After solid-phase extraction, chromatographic separation was performed on a C18 column using gradient elution. Quantifier and qualifier transitions were monitored using novel Triggered Dynamic multiple reaction monitoring (TdMRM) in the positive ionization mode. A significant peak symmetry and sensitivity improvement in the TdMRM mode was achieved as compared to conventional MRM. The reproducibility (RSD%) was ≤7.9% by applying TdMRM transition while the values were 6.8-20.6% for MRM. Excellent linear calibration curves were obtained under TdMRM transitions over the tested concentration ranges. Intra- and inter-day precisions (RSD%) were ≤14.2% and accuracies (RE%) ranged from -9.6% to 10.6%. The validation data of specificity, carryover, recovery, matrix effect and stability were within the required limits. The method was effectively applied to simultaneously detect and quantify 1 lactone, 2 monoterpene glucosides, 1 alkaloid, 5 flavonoids and 2 chromones in plasma, brain tissue and urine after oral administration of TXYF decoction. In conclusion, this new and reliable method is beneficial for quantification and confirmation assays of multiply components in complex biological samples. Copyright © 2013 Elsevier B.V. All rights reserved.
Starting Processes of High Contraction Ratio Scramjet Inlets
2012-01-01
shortly before injection, at which point the boxes were switched to relative mode via the “ Taka Taka ” box, shown on Fig. 22. This absolute mode...camera used for the Schlieren visualisation, as well as the trigger for the 32 channel data acquisition system used. Figure 22: Taka ... taka box, used to manipulate the resistance mode during testing Figure 23: Typical raw thin film array signal, showing both absolute and relative
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects.
The compact neutron spectrometer at ASDEX Upgrade.
Giacomelli, L; Zimbal, A; Tittelmeier, K; Schuhmacher, H; Tardini, G; Neu, R
2011-12-01
The first neutron spectrometer of ASDEX Upgrade (AUG) was installed in November 2008. It is a compact neutron spectrometer (CNS) based on a BC501A liquid scintillating detector, which can simultaneously measure 2.45-MeV and 14-MeV neutrons emitted from deuterium (D) plasmas and γ radiation. The scintillating detector is coupled to a digital pulse shape discrimination data acquisition (DPSD) system capable of count rates up to 10(6) s(-1). The DPSD system can operate in acquisition and processing mode. With the latter n-γ discrimination is performed off-line based on the two-gate method. The paper describes the tests of the CNS and its installation at AUG. The neutron emission from the D plasma measured during a discharge with high auxiliary heating power was used to validate the CNS performance. The study of the optimal settings for the DPSD data processing to maximize the n-γ discrimination capability of the CNS is reported. The CNS measured both 2.45-MeV and 14-MeV neutrons emitted in AUG D plasmas with a maximum count rate of 5.4 × 10(5) s(-1) (>10 times higher than similar spectrometers previously achieved) with an efficiency of 9.3 × 10(-10) events per AUG neutron.
48 CFR 1401.7001-4 - Acquisition performance measurement systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
...-pronged approach that includes self assessment, statistical data for validation and flexible quality... regulations governing the acquisition process; and (3) Identify and implement changes necessary to improve the... through the review and oversight process. ...
48 CFR 1401.7001-4 - Acquisition performance measurement systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
...-pronged approach that includes self assessment, statistical data for validation and flexible quality... regulations governing the acquisition process; and (3) Identify and implement changes necessary to improve the... through the review and oversight process. ...
48 CFR 1401.7001-4 - Acquisition performance measurement systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
...-pronged approach that includes self assessment, statistical data for validation and flexible quality... regulations governing the acquisition process; and (3) Identify and implement changes necessary to improve the... through the review and oversight process. ...
48 CFR 1401.7001-4 - Acquisition performance measurement systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
...-pronged approach that includes self assessment, statistical data for validation and flexible quality... regulations governing the acquisition process; and (3) Identify and implement changes necessary to improve the... through the review and oversight process. ...
The (Un)Certainty of Selectivity in Liquid Chromatography Tandem Mass Spectrometry
NASA Astrophysics Data System (ADS)
Berendsen, Bjorn J. A.; Stolker, Linda A. M.; Nielen, Michel W. F.
2013-01-01
We developed a procedure to determine the "identification power" of an LC-MS/MS method operated in the MRM acquisition mode, which is related to its selectivity. The probability of any compound showing the same precursor ion, product ions, and retention time as the compound of interest is used as a measure of selectivity. This is calculated based upon empirical models constructed from three very large compound databases. Based upon the final probability estimation, additional measures to assure unambiguous identification can be taken, like the selection of different or additional product ions. The reported procedure in combination with criteria for relative ion abundances results in a powerful technique to determine the (un)certainty of the selectivity of any LC-MS/MS analysis and thus the risk of false positive results. Furthermore, the procedure is very useful as a tool to validate method selectivity.
Spectral CT data acquisition with Medipix3.1
NASA Astrophysics Data System (ADS)
Walsh, M. F.; Nik, S. J.; Procz, S.; Pichotka, M.; Bell, S. T.; Bateman, C. J.; Doesburg, R. M. N.; De Ruiter, N.; Chernoglazov, A. I.; Panta, R. K.; Butler, A. P. H.; Butler, P. H.
2013-10-01
This paper describes the acquisition of spectral CT images using the Medipix3.1 in spectroscopic mode, in which the chip combines 2 × 2 pixel clusters to increase the number of energy thresholds and counters from 2 to 8. During preliminary measurements, it was observed that the temperature, DAC and equalisation stability of the Medipix3.1 outperformed the Medipix3.0, while maintaining similar imaging quality. In this paper, the Medipix3.1 chips were assembled in a quad (2 × 2) layout, with the four ASICs bump-bonded to a silicon semiconductor doped as an np-junction diode. To demonstrate the biological imaging quality that is possible with the Medipix3.1, an image of a mouse injected with gold nano-particle contrast agent was obtained. CT acquisition in spectroscopic mode was enabled and examined by imaging a customised phantom containing multiple contrast agents and biological materials. These acquisitions showed a limitation of imaging performance depending on the counter used. Despite this, identification of multiple materials in the phantom was demonstrated using an in-house material decomposition algorithm. Furthermore, gold nano-particles were separated from biological tissues and bones within the mouse by means of image rendering.
Giraldo, Paula Jimena Ramos; Aguirre, Álvaro Guerrero; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio
2017-04-06
Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: ( i ) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and ( ii ) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases.
Ramos Giraldo, Paula Jimena; Guerrero Aguirre, Álvaro; Muñoz, Carlos Mario; Prieto, Flavio Augusto; Oliveros, Carlos Eugenio
2017-01-01
Smartphones show potential for controlling and monitoring variables in agriculture. Their processing capacity, instrumentation, connectivity, low cost, and accessibility allow farmers (among other users in rural areas) to operate them easily with applications adjusted to their specific needs. In this investigation, the integration of inertial sensors, a GPS, and a camera are presented for the monitoring of a coffee crop. An Android-based application was developed with two operating modes: (i) Navigation: for georeferencing trees, which can be as close as 0.5 m from each other; and (ii) Acquisition: control of video acquisition, based on the movement of the mobile device over a branch, and measurement of image quality, using clarity indexes to select the most appropriate frames for application in future processes. The integration of inertial sensors in navigation mode, shows a mean relative error of ±0.15 m, and total error ±5.15 m. In acquisition mode, the system correctly identifies the beginning and end of mobile phone movement in 99% of cases, and image quality is determined by means of a sharpness factor which measures blurriness. With the developed system, it will be possible to obtain georeferenced information about coffee trees, such as their production, nutritional state, and presence of plagues or diseases. PMID:28383494
Vidal, Jose Luis Martínez; Aguilera-Luiz, María Del Mar; Romero-González, Roberto; Frenich, Antonia Garrido
2009-03-11
A method has been developed and validated for the simultaneous analysis of different veterinary drug residues (macrolides, tetracyclines, quinolones, and sulfonamides) in honey. Honey samples were dissolved with Na(2)EDTA, and veterinary residues were extracted from the supernatant by solid-phase extraction (SPE), using OASIS HLB cartridges. The separation and determination was carried out by ultraperformance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS), using an electrospay ionization source (ESI) in positive mode. Data acquisition under MS/MS was achieved by applying multiple reaction monitoring (MRM) of two ion transitions per compound to provide a high degree of sensitivity and specificity. The method was validated, and mean recoveries were evaluated at three concentration levels (10, 50, and 100 microg/kg), ranging from 70 to 120% except for doxycycline, erythromycin, and tylmicosin with recovery higher than 50% at the three levels assayed. Relative standard deviations (RSDs) of the recoveries were less than 20% within the intraday precision and less than 25% within the interday precision. The limits of quantification (LOQs) were always lower than 4 microg/kg. The developed procedure was applied to 16 honey samples, and erythromycin, sarafloxacin, and tylosin were found in a few samples.
Determination of piracetam in rat plasma by LC-MS/MS and its application to pharmacokinetics.
Wang, Xianqin; Zhu, Jiayin; Xu, Renai; Yang, Xuezhi; Wu, Haiya; Lin, Dan; Ye, Faqing; Hu, Lufeng
2010-10-01
A sensitive and selective liquid chromatography-tandem mass spectrometry method for the determination of piracetam in rat plasma was developed and validated over the concentration range of 0.1-20 µg/mL. After addition of oxiracetam as internal standard, a simplified protein precipitation with trichloroacetic acid (5%) was employed for the sample preparation. Chromatographic separation was performed by a Zorbax SB-Aq column (150 × 2.1 mm, 3.5 µm). The mobile phase was acetonitrile-1% formic acid in water (10:90 v/v) delivered at a flow rate of 0.3 mL/min. The MS data acquisition was accomplished in multiple reaction monitoring mode with a positive electrospray ionization interface. The lower limit of quantification was 0.1 µg/mL. For inter-day and intra-day tests, the precision (RSD) for the entire validation was less than 9%, and the accuracy was within the 94.6-103.2% range. The developed method was successfully applied to pharmacokinetic studies of piracetam in rats following single oral administration dose of 50 mg/kg. Copyright © 2010 John Wiley & Sons, Ltd.
Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.
Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias
2016-12-01
Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.
Galavis, Paulina E; Hollensen, Christian; Jallow, Ngoneh; Paliwal, Bhudatt; Jeraj, Robert
2010-10-01
Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45-60 minutes post-injection of 10 mCi of [(18)F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation.
GALAVIS, PAULINA E.; HOLLENSEN, CHRISTIAN; JALLOW, NGONEH; PALIWAL, BHUDATT; JERAJ, ROBERT
2014-01-01
Background Characterization of textural features (spatial distributions of image intensity levels) has been considered as a tool for automatic tumor segmentation. The purpose of this work is to study the variability of the textural features in PET images due to different acquisition modes and reconstruction parameters. Material and methods Twenty patients with solid tumors underwent PET/CT scans on a GE Discovery VCT scanner, 45–60 minutes post-injection of 10 mCi of [18F]FDG. Scans were acquired in both 2D and 3D modes. For each acquisition the raw PET data was reconstructed using five different reconstruction parameters. Lesions were segmented on a default image using the threshold of 40% of maximum SUV. Fifty different texture features were calculated inside the tumors. The range of variations of the features were calculated with respect to the average value. Results Fifty textural features were classified based on the range of variation in three categories: small, intermediate and large variability. Features with small variability (range ≤ 5%) were entropy-first order, energy, maximal correlation coefficient (second order feature) and low-gray level run emphasis (high-order feature). The features with intermediate variability (10% ≤ range ≤ 25%) were entropy-GLCM, sum entropy, high gray level run emphsis, gray level non-uniformity, small number emphasis, and entropy-NGL. Forty remaining features presented large variations (range > 30%). Conclusion Textural features such as entropy-first order, energy, maximal correlation coefficient, and low-gray level run emphasis exhibited small variations due to different acquisition modes and reconstruction parameters. Features with low level of variations are better candidates for reproducible tumor segmentation. Even though features such as contrast-NGTD, coarseness, homogeneity, and busyness have been previously used, our data indicated that these features presented large variations, therefore they could not be considered as a good candidates for tumor segmentation. PMID:20831489
48 CFR 252.227-7037 - Validation of restrictive markings on technical data.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Validation of restrictive... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.227-7037 Validation of restrictive markings on... following clause: Validation of Restrictive Markings on Technical Data (APR 2012) (a) Definitions. The terms...
48 CFR 252.227-7037 - Validation of restrictive markings on technical data.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Validation of restrictive... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.227-7037 Validation of restrictive markings on... following clause: Validation of Restrictive Markings on Technical Data (JUN 2013) (a) Definitions. The terms...
48 CFR 252.227-7037 - Validation of restrictive markings on technical data.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Validation of restrictive... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.227-7037 Validation of restrictive markings on... following clause: Validation of Restrictive Markings on Technical Data (JUN 2013) (a) Definitions. The terms...
48 CFR 252.227-7037 - Validation of restrictive markings on technical data.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Validation of restrictive... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.227-7037 Validation of restrictive markings on... following clause: Validation of Restrictive Markings on Technical Data (SEP 2011) (a) Definitions. The terms...
48 CFR 252.227-7037 - Validation of restrictive markings on technical data.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Validation of restrictive... AND CONTRACT CLAUSES Text of Provisions And Clauses 252.227-7037 Validation of restrictive markings on... following clause: Validation of Restrictive Markings on Technical Data (SEP 1999) (a) Definitions. The terms...
Navigation assistance: a trade-off between wayfinding support and configural learning support.
Münzer, Stefan; Zimmer, Hubert D; Baus, Jörg
2012-03-01
Current GPS-based mobile navigation assistance systems support wayfinding, but they do not support learning about the spatial configuration of an environment. The present study examined effects of visual presentation modes for navigation assistance on wayfinding accuracy, route learning, and configural learning. Participants (high-school students) visited a university campus for the first time and took a predefined assisted tour. In Experiment 1 (n = 84, 42 females), a presentation mode showing wayfinding information from eye-level was contrasted with presentation modes showing wayfinding information included in views that provided comprehensive configural information. In Experiment 2 (n = 48, 24 females), wayfinding information was included in map fragments. A presentation mode which always showed north on top of the device was compared with a mode which rotated according to the orientation of the user. Wayfinding accuracy (deviations from the route), route learning, and configural learning (direction estimates, sketch maps) were assessed. Results indicated a trade-off between wayfinding and configural learning: Presentation modes providing comprehensive configural information supported the acquisition of configural knowledge at the cost of accurate wayfinding. The route presentation mode supported wayfinding at the cost of configural knowledge acquisition. Both presentation modes based on map fragments supported wayfinding. Individual differences in visual-spatial working memory capacity explained a considerable portion of the variance in wayfinding accuracy, route learning, and configural learning. It is concluded that learning about an unknown environment during assisted navigation is based on the integration of spatial information from multiple sources and can be supported by appropriate visualization. PsycINFO Database Record (c) 2012 APA, all rights reserved.
ERIC Educational Resources Information Center
Starbek, P.; Erjavec, M. Starcic; Peklaj, C.
2010-01-01
The main goal of this study was to explore whether the use of multimedia in genetics instruction contributes more to students' knowledge and comprehension than other instructional modes. We were also concerned with the influence of different instructional modes on the retention of knowledge and comprehension. In a quasi-experimental design, four…
ERIC Educational Resources Information Center
Yilmaz, Yucel
2012-01-01
This study investigated the effects of negative feedback type (i.e., explicit correction vs. recasts), communication mode (i.e., face-to-face communication vs. synchronous computer-mediated communication), and target structure salience (i.e., salient vs. nonsalient) on the acquisition of two Turkish morphemes. Forty-eight native speakers of…
The Sardinia Radio Telescope . From a technological project to a radio observatory
NASA Astrophysics Data System (ADS)
Prandoni, I.; Murgia, M.; Tarchi, A.; Burgay, M.; Castangia, P.; Egron, E.; Govoni, F.; Pellizzoni, A.; Ricci, R.; Righini, S.; Bartolini, M.; Casu, S.; Corongiu, A.; Iacolina, M. N.; Melis, A.; Nasir, F. T.; Orlati, A.; Perrodin, D.; Poppi, S.; Trois, A.; Vacca, V.; Zanichelli, A.; Bachetti, M.; Buttu, M.; Comoretto, G.; Concu, R.; Fara, A.; Gaudiomonte, F.; Loi, F.; Migoni, C.; Orfei, A.; Pilia, M.; Bolli, P.; Carretti, E.; D'Amico, N.; Guidetti, D.; Loru, S.; Massi, F.; Pisanu, T.; Porceddu, I.; Ridolfi, A.; Serra, G.; Stanghellini, C.; Tiburzi, C.; Tingay, S.; Valente, G.
2017-12-01
Context. The Sardinia Radio Telescope (SRT) is the new 64 m dish operated by the Italian National Institute for Astrophysics (INAF). Its active surface, comprised of 1008 separate aluminium panels supported by electromechanical actuators, will allow us to observe at frequencies of up to 116 GHz. At the moment, three receivers, one per focal position, have been installed and tested: a 7-beam K-band receiver, a mono-feed C-band receiver, and a coaxial dual-feed L/P band receiver. The SRT was officially opened in September 2013, upon completion of its technical commissioning phase. In this paper, we provide an overview of the main science drivers for the SRT, describe the main outcomes from the scientific commissioning of the telescope, and discuss a set of observations demonstrating the scientific capabilities of the SRT. Aims: The scientific commissioning phase, carried out in the 2012-2015 period, proceeded in stages following the implementation and/or fine-tuning of advanced subsystems such as the active surface, the derotator, new releases of the acquisition software, etc. One of the main objectives of scientific commissioning was the identification of deficiencies in the instrumentation and/or in the telescope subsystems for further optimization. As a result, the overall telescope performance has been significantly improved. Methods: As part of the scientific commissioning activities, different observing modes were tested and validated, and the first astronomical observations were carried out to demonstrate the science capabilities of the SRT. In addition, we developed astronomer-oriented software tools to support future observers on site. In the following, we refer to the overall scientific commissioning and software development activities as astronomical validation. Results: The astronomical validation activities were prioritized based on technical readiness and scientific impact. The highest priority was to make the SRT available for joint observations as part of European networks. As a result, the SRT started to participate (in shared-risk mode) in European VLBI Network (EVN) and Large European Array for Pulsars (LEAP) observing sessions in early 2014. The validation of single-dish operations for the suite of SRT first light receivers and backends continued in the following year, and was concluded with the first call for shared-risk early-science observations issued at the end of 2015. As discussed in the paper, the SRT capabilities were tested (and optimized when possible) for several different observing modes: imaging, spectroscopy, pulsar timing, and transients.
The Software Design for the Wide-Field Infrared Explorer Attitude Control System
NASA Technical Reports Server (NTRS)
Anderson, Mark O.; Barnes, Kenneth C.; Melhorn, Charles M.; Phillips, Tom
1998-01-01
The Wide-Field Infrared Explorer (WIRE), currently scheduled for launch in September 1998, is the fifth of five spacecraft in the NASA/Goddard Small Explorer (SMEX) series. This paper presents the design of WIRE's Attitude Control System flight software (ACS FSW). WIRE is a momentum-biased, three-axis stabilized stellar pointer which provides high-accuracy pointing and autonomous acquisition for eight to ten stellar targets per orbit. WIRE's short mission life and limited cryogen supply motivate requirements for Sun and Earth avoidance constraints which are designed to prevent catastrophic instrument damage and to minimize the heat load on the cryostat. The FSW implements autonomous fault detection and handling (FDH) to enforce these instrument constraints and to perform several other checks which insure the safety of the spacecraft. The ACS FSW implements modules for sensor data processing, attitude determination, attitude control, guide star acquisition, actuator command generation, command/telemetry processing, and FDH. These software components are integrated with a hierarchical control mode managing module that dictates which software components are currently active. The lowest mode in the hierarchy is the 'safest' one, in the sense that it utilizes a minimal complement of sensors and actuators to keep the spacecraft in a stable configuration (power and pointing constraints are maintained). As higher modes in the hierarchy are achieved, the various software functions are activated by the mode manager, and an increasing level of attitude control accuracy is provided. If FDH detects a constraint violation or other anomaly, it triggers a safing transition to a lower control mode. The WIRE ACS FSW satisfies all target acquisition and pointing accuracy requirements, enforces all pointing constraints, provides the ground with a simple means for reconfiguring the system via table load, and meets all the demands of its real-time embedded environment (16 MHz Intel 80386 processor with 80387 coprocessor running under the VRTX operating system). The mode manager organizes and controls all the software modules used to accomplish these goals, and in particular, the FDH module is tightly coupled with the mode manager.
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nam, Y. B.; Ko, J. S.; Choe, G. H.
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
Validation of the 'full reconnection model' of the sawtooth instability in KSTAR
Nam, Y. B.; Ko, J. S.; Choe, G. H.; ...
2018-03-26
In this paper, the central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the 'full reconnection model'. The radial position of the excited modes right after the crash and time evolution into themore » 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Finally, additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the 'full reconnection model'.« less
Systematic reviews, systematic error and the acquisition of clinical knowledge
2010-01-01
Background Since its inception, evidence-based medicine and its application through systematic reviews, has been widely accepted. However, it has also been strongly criticised and resisted by some academic groups and clinicians. One of the main criticisms of evidence-based medicine is that it appears to claim to have unique access to absolute scientific truth and thus devalues and replaces other types of knowledge sources. Discussion The various types of clinical knowledge sources are categorised on the basis of Kant's categories of knowledge acquisition, as being either 'analytic' or 'synthetic'. It is shown that these categories do not act in opposition but rather, depend upon each other. The unity of analysis and synthesis in knowledge acquisition is demonstrated during the process of systematic reviewing of clinical trials. Systematic reviews constitute comprehensive synthesis of clinical knowledge but depend upon plausible, analytical hypothesis development for the trials reviewed. The dangers of systematic error regarding the internal validity of acquired knowledge are highlighted on the basis of empirical evidence. It has been shown that the systematic review process reduces systematic error, thus ensuring high internal validity. It is argued that this process does not exclude other types of knowledge sources. Instead, amongst these other types it functions as an integrated element during the acquisition of clinical knowledge. Conclusions The acquisition of clinical knowledge is based on interaction between analysis and synthesis. Systematic reviews provide the highest form of synthetic knowledge acquisition in terms of achieving internal validity of results. In that capacity it informs the analytic knowledge of the clinician but does not replace it. PMID:20537172
Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.
2015-07-01
Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less
Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase 1 Technical Report
1990-04-05
MANAGEMENT INFORMATION , COMMUNICATIONS, AND COMPUTER SCIENCES Visual Knowledge in Tactical Planning: Preliminary Knowledge Acquisition Phase I Technical...perceived provides information in multiple modalities and, in fact, we may rely on a non-verbal mode for much of our understanding of the situation...some tasks, almost all the pertinent information is provided via diagrams, maps, znd other illustrations. Visual Knowledge Visual experience forms a
Acquisition of Uropygial Gland Microbiome by Hoopoe Nestlings.
Martín-Vivaldi, Manuel; Soler, Juan José; Martínez-García, Ángela; Arco, Laura; Juárez-García-Pelayo, Natalia; Ruiz-Rodríguez, Magdalena; Martínez-Bueno, Manuel
2017-12-18
Mutualistic symbioses between animals and bacteria depend on acquisition of appropriate symbionts while avoiding exploitation by non-beneficial microbes. The mode of acquisition of symbionts would determine, not only the probability of encountering but also evolutionary outcomes of mutualistic counterparts. The microbiome inhabiting the uropygial gland of the European hoopoe (Upupa epops) includes a variety of bacterial strains, some of them providing antimicrobial benefits. Here, the mode of acquisition and stability of this microbiome is analyzed by means of Automated rRNA Intergenic Spacer Analysis and two different experiments. The first experiment impeded mothers' access to their glands, thus avoiding direct transmission of microorganisms from female to offspring secretions. The second experiment explored the stability of the microbiomes by inoculating glands with secretions from alien nests. The first experiment provoked a reduction in similarity of microbiomes of mother and nestlings. Interestingly, some bacterial strains were more often detected when females had not access to their glands, suggesting antagonistic effects among bacteria from different sources. The second experiment caused an increase in richness of the microbiome of receivers in terms of prevalence of Operational Taxonomic Units (OTUs) that reduced differences in microbiomes of donors and receivers. That occurred because OTUs that were present in donors but not in receivers incorporated to the microbiome of the latter, which provoked that cross-inoculated nestlings got similar final microbiomes that included the most prevalent OTUs. The results are therefore consistent with a central role of vertical transmission in bacterial acquisition by nestling hoopoes and support the idea that the typical composition of the hoopoe gland microbiome is reached by the incorporation of some bacteria during the nestling period. This scenario suggests the existence of a coevolved core microbiome composed by a mix of specialized vertically transmitted strains and facultative symbionts able to coexist with them. The implications of this mixed mode of transmission for the evolution of the mutualism are discussed.
Linear LIDAR versus Geiger-mode LIDAR: impact on data properties and data quality
NASA Astrophysics Data System (ADS)
Ullrich, A.; Pfennigbauer, M.
2016-05-01
LIDAR has become the inevitable technology to provide accurate 3D data fast and reliably even in adverse measurement situations and harsh environments. It provides highly accurate point clouds with a significant number of additional valuable attributes per point. LIDAR systems based on Geiger-mode avalanche photo diode arrays, also called single photon avalanche photo diode arrays, earlier employed for military applications, now seek to enter the commercial market of 3D data acquisition, advertising higher point acquisition speeds from longer ranges compared to conventional techniques. Publications pointing out the advantages of these new systems refer to the other category of LIDAR as "linear LIDAR", as the prime receiver element for detecting the laser echo pulses - avalanche photo diodes - are used in a linear mode of operation. We analyze the differences between the two LIDAR technologies and the fundamental differences in the data they provide. The limitations imposed by physics on both approaches to LIDAR are also addressed and advantages of linear LIDAR over the photon counting approach are discussed.
Huang, Xiaojing; Lauer, Kenneth; Clark, Jesse N.; ...
2015-03-13
We report an experimental ptychography measurement performed in fly-scan mode. With a visible-light laser source, we demonstrate a 5-fold reduction of data acquisition time. By including multiple mutually incoherent modes into the incident illumination, high quality images were successfully reconstructed from blurry diffraction patterns. Thus, this approach significantly increases the throughput of ptychography, especially for three-dimensional applications and the visualization of dynamic systems.
Using Mixed-Modality Learning Strategies via e-Learning for Second Language Vocabulary Acquisition
ERIC Educational Resources Information Center
Yang, Fang-Chuan Ou; Wu, Wen-Chi Vivian
2015-01-01
This study demonstrated an e-learning system, MyEVA, based on a mixed-modality vocabulary strategy in assisting learners of English as a second language (L2 learners) to improve their vocabulary. To explore the learning effectiveness of MyEVA, the study compared four vocabulary-learning techniques, MyEVA in preference mode, MyEVA in basic mode, an…
2006-12-30
55 B. NAVSUP’s Relationship to COMFISC Organization ....................55...effectiveness, and what does this increased capability mean to business? First, the premise of SAP is to keep the amount of administrative paperwork... capability to validate that FISC San Diego’s (FISCSD) contracting activities are reflective of NAVSUP’s policies and practices in the aggregate. 3. A
3D Data Acquisition Platform for Human Activity Understanding
2016-03-02
3D data. The support for the acquisition of such research instrumentation have significantly facilitated our current and future research and educate ...SECURITY CLASSIFICATION OF: In this project, we incorporated motion capture devices, 3D vision sensors, and EMG sensors to cross validate...multimodality data acquisition, and address fundamental research problems of representation and invariant description of 3D data, human motion modeling and
Development of ground-based ELF/VLF receiver system in Wuhan and its first results
NASA Astrophysics Data System (ADS)
Chen, Yanping; Yang, Guobin; Ni, Binbin; Zhao, Zhengyu; Gu, Xudong; Zhou, Chen; Wang, Feng
2016-05-01
A new digital low-frequency receiver system has been developed at Wuhan University for sensitive reception of low-latitude broadband Extremely Low Frequency (ELF) and Very Low Frequency (VLF) radio waves originating from either natural or artificial sources. These low-frequency radio waves are useful for ionospheric remote sensing, geospace environment monitoring, and submarine communications. This paper presents the principle and architecture of the system framework, including magnetic loop antenna design, low-noise analog front-end and digital receiver with data sampling and transmission. A new structure is adopted in the analog front end to provide high common-mode rejection and to reduce interference. On basis of field programmable gate array (FPGA) device and Universal Serial Bus (USB) architecture, the digital receiver is developed along with time keeping and synchronization module. The validity and feasibility of the self-developed ground-based ELF/VLF receiver system is evaluated by first results of experimental data that show the temporal variation of broadband ELF/VLF wave spectral intensity in Wuhan (30.54 °N, 114.37 °E). In addition to the acquisition of VLF transmitter signals at various frequencies, tweek atmospherics are also clearly captured to occur at multiple modes up to n = 6.
Friend, Margaret; Schmitt, Sara A.; Simpson, Adrianne M.
2017-01-01
Until recently, the challenges inherent in measuring comprehension have impeded our ability to predict the course of language acquisition. The present research reports on a longitudinal assessment of the convergent and predictive validity of the CDI: Words and Gestures and the Computerized Comprehension Task (CCT). The CDI: WG and the CCT evinced good convergent validity however the CCT better predicted subsequent parent reports of language production. Language sample data in the third year confirm this finding: the CCT accounted for 24% of the variance in unique word use. These studies provide evidence for the utility of a behavior-based approach to predicting the course of language acquisition into production. PMID:21928878
McDonald, Amalia R; Muraskin, Jordan; Dam, Nicholas T Van; Froehlich, Caroline; Puccio, Benjamin; Pellman, John; Bauer, Clemens C C; Akeyson, Alexis; Breland, Melissa M; Calhoun, Vince D; Carter, Steven; Chang, Tiffany P; Gessner, Chelsea; Gianonne, Alyssa; Giavasis, Steven; Glass, Jamie; Homann, Steven; King, Margaret; Kramer, Melissa; Landis, Drew; Lieval, Alexis; Lisinski, Jonathan; Mackay-Brandt, Anna; Miller, Brittny; Panek, Laura; Reed, Hayley; Santiago, Christine; Schoell, Eszter; Sinnig, Richard; Sital, Melissa; Taverna, Elise; Tobe, Russell; Trautman, Kristin; Varghese, Betty; Walden, Lauren; Wang, Runtang; Waters, Abigail B; Wood, Dylan C; Castellanos, F Xavier; Leventhal, Bennett; Colcombe, Stanley J; LaConte, Stephen; Milham, Michael P; Craddock, R Cameron
2017-02-01
This data descriptor describes a repository of openly shared data from an experiment to assess inter-individual differences in default mode network (DMN) activity. This repository includes cross-sectional functional magnetic resonance imaging (fMRI) data from the Multi Source Interference Task, to assess DMN deactivation, the Moral Dilemma Task, to assess DMN activation, a resting state fMRI scan, and a DMN neurofeedback paradigm, to assess DMN modulation, along with accompanying behavioral and cognitive measures. We report technical validation from n=125 participants of the final targeted sample of 180 participants. Each session includes acquisition of one whole-brain anatomical scan and whole-brain echo-planar imaging (EPI) scans, acquired during the aforementioned tasks and resting state. The data includes several self-report measures related to perseverative thinking, emotion regulation, and imaginative processes, along with a behavioral measure of rapid visual information processing. Technical validation of the data confirms that the tasks deactivate and activate the DMN as expected. Group level analysis of the neurofeedback data indicates that the participants are able to modulate their DMN with considerable inter-subject variability. Preliminary analysis of behavioral responses and specifically self-reported sleep indicate that as many as 73 participants may need to be excluded from an analysis depending on the hypothesis being tested. The present data are linked to the enhanced Nathan Kline Institute, Rockland Sample and builds on the comprehensive neuroimaging and deep phenotyping available therein. As limited information is presently available about individual differences in the capacity to directly modulate the default mode network, these data provide a unique opportunity to examine DMN modulation ability in relation to numerous phenotypic characteristics. Copyright © 2016 Elsevier Inc. All rights reserved.
Salgueiro-González, N; Turnes-Carou, I; Muniategui-Lorenzo, S; López-Mahía, P; Prada-Rodríguez, D
2013-03-15
This work describes the development and validation of a novel, simple, sensitive and environmental friendly analytical method for the determination of alkylphenols in different types of water samples. The methodology was based on a membrane assisted solvent extraction of only 15 mL of water sample with 500 μL of hexane in combination with liquid chromatography-electrospray ionization tandem mass spectrometry in negative mode (LC-ESI-MS/MS). Acquisition was performed in the multiple reaction monitoring (MRM) mode recording two transitions for the identification of the target compounds. Quantitation is based on the use of deuterated labelled standards as surrogate standards. The figures of merit were satisfactory in all cases: absolute recoveries were close to 50% for most investigated compounds and relative recoveries varied between 81 and 108%. Repeatability and intermediate precision were <20% for all compounds. Uncertainty assessment of measurement was estimated on the basis of an in-house validation according to EURACHEM/CITAC guide. Quantitation limits of the method (MQL) were lower than 0.04 μg L(-1) in all cases, which allow the achievement of the limits established by the Directive 2008/105/EC for surface and seawater samples and by the new proposal COM (2011) 876 final. The feasibility of the proposed method was demonstrated analyzing seawater, surface water and drinking water samples from different areas of A Coruña (Northwest of Spain). The analyses evidenced the presence of nonylphenol in seawater (MQL-0.13 μg L(-1)) and surface water samples (0.12-0.19 μg L(-1)). The highest concentration was observed in drinking water (0.25 μg L(-1)). Copyright © 2013 Elsevier B.V. All rights reserved.
Crestani, Anelise Henrich; Moraes, Anaelena Bragança de; Souza, Ana Paula Ramos de
2017-08-10
To analyze the results of the validation of building enunciative signs of language acquisition for children aged 3 to 12 months. The signs were built based on mechanisms of language acquisition in an enunciative perspective and on clinical experience with language disorders. The signs were submitted to judgment of clarity and relevance by a sample of six experts, doctors in linguistic in with knowledge of psycholinguistics and language clinic. In the validation of reliability, two judges/evaluators helped to implement the instruments in videos of 20% of the total sample of mother-infant dyads using the inter-evaluator method. The method known as internal consistency was applied to the total sample, which consisted of 94 mother-infant dyads to the contents of the Phase 1 (3-6 months) and 61 mother-infant dyads to the contents of Phase 2 (7 to 12 months). The data were collected through the analysis of mother-infant interaction based on filming of dyads and application of the parameters to be validated according to the child's age. Data were organized in a spreadsheet and then converted to computer applications for statistical analysis. The judgments of clarity/relevance indicated no modifications to be made in the instruments. The reliability test showed an almost perfect agreement between judges (0.8 ≤ Kappa ≥ 1.0); only the item 2 of Phase 1 showed substantial agreement (0.6 ≤ Kappa ≥ 0.79). The internal consistency for Phase 1 had alpha = 0.84, and Phase 2, alpha = 0.74. This demonstrates the reliability of the instruments. The results suggest adequacy as to content validity of the instruments created for both age groups, demonstrating the relevance of the content of enunciative signs of language acquisition.
An Empiric HIV Risk Scoring Tool to Predict HIV-1 Acquisition in African Women.
Balkus, Jennifer E; Brown, Elizabeth; Palanee, Thesla; Nair, Gonasagrie; Gafoor, Zakir; Zhang, Jingyang; Richardson, Barbra A; Chirenje, Zvavahera M; Marrazzo, Jeanne M; Baeten, Jared M
2016-07-01
To develop and validate an HIV risk assessment tool to predict HIV acquisition among African women. Data were analyzed from 3 randomized trials of biomedical HIV prevention interventions among African women (VOICE, HPTN 035, and FEM-PrEP). We implemented standard methods for the development of clinical prediction rules to generate a risk-scoring tool to predict HIV acquisition over the course of 1 year. Performance of the score was assessed through internal and external validations. The final risk score resulting from multivariable modeling included age, married/living with a partner, partner provides financial or material support, partner has other partners, alcohol use, detection of a curable sexually transmitted infection, and herpes simplex virus 2 serostatus. Point values for each factor ranged from 0 to 2, with a maximum possible total score of 11. Scores ≥5 were associated with HIV incidence >5 per 100 person-years and identified 91% of incident HIV infections from among only 64% of women. The area under the curve (AUC) for predictive ability of the score was 0.71 (95% confidence interval [CI]: 0.68 to 0.74), indicating good predictive ability. Risk score performance was generally similar with internal cross-validation (AUC = 0.69; 95% CI: 0.66 to 0.73) and external validation in HPTN 035 (AUC = 0.70; 95% CI: 0.65 to 0.75) and FEM-PrEP (AUC = 0.58; 95% CI: 0.51 to 0.65). A discrete set of characteristics that can be easily assessed in clinical and research settings was predictive of HIV acquisition over 1 year. The use of a validated risk score could improve efficiency of recruitment into HIV prevention research and inform scale-up of HIV prevention strategies in women at highest risk.
Emir, Uzay E; Burns, Brian; Chiew, Mark; Jezzard, Peter; Thomas, M Albert
2017-07-01
Water-suppressed MRS acquisition techniques have been the standard MRS approach used in research and for clinical scanning to date. The acquisition of a non-water-suppressed MRS spectrum is used for artefact correction, reconstruction of phased-array coil data and metabolite quantification. Here, a two-scan metabolite-cycling magnetic resonance spectroscopic imaging (MRSI) scheme that does not use water suppression is demonstrated and evaluated. Specifically, the feasibility of acquiring and quantifying short-echo (T E = 14 ms), two-dimensional stimulated echo acquisition mode (STEAM) MRSI spectra in the motor cortex is demonstrated on a 3 T MRI system. The increase in measurement time from the metabolite-cycling is counterbalanced by a time-efficient concentric ring k-space trajectory. To validate the technique, water-suppressed MRSI acquisitions were also performed for comparison. The proposed non-water-suppressed metabolite-cycling MRSI technique was tested for detection and correction of resonance frequency drifts due to subject motion and/or hardware instability, and the feasibility of high-resolution metabolic mapping over a whole brain slice was assessed. Our results show that the metabolite spectra and estimated concentrations are in agreement between non-water-suppressed and water-suppressed techniques. The achieved spectral quality, signal-to-noise ratio (SNR) > 20 and linewidth <7 Hz allowed reliable metabolic mapping of five major brain metabolites in the motor cortex with an in-plane resolution of 10 × 10 mm 2 in 8 min and with a Cramér-Rao lower bound of less than 20% using LCModel analysis. In addition, the high SNR of the water peak of the non-water-suppressed technique enabled voxel-wise single-scan frequency, phase and eddy current correction. These findings demonstrate that our non-water-suppressed metabolite-cycling MRSI technique can perform robustly on 3 T MRI systems and within a clinically feasible acquisition time. © 2017 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Development of a Unix/VME data acquisition system
NASA Astrophysics Data System (ADS)
Miller, M. C.; Ahern, S.; Clark, S. M.
1992-01-01
The current status of a Unix-based VME data acquisition development project is described. It is planned to use existing Fortran data collection software to drive the existing CAMAC electronics via a VME CAMAC branch driver card and associated Daresbury Unix driving software. The first usable Unix driver has been written and produces single-action CAMAC cycles from test software. The data acquisition code has been implemented in test mode under Unix with few problems and effort is now being directed toward finalizing calls to the CAMAC-driving software and ultimate evaluation of the complete system.
Keleshis, C; Ionita, CN; Yadava, G; Patel, V; Bednarek, DR; Hoffmann, KR; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873) PMID:18836570
Keleshis, C; Ionita, Cn; Yadava, G; Patel, V; Bednarek, Dr; Hoffmann, Kr; Verevkin, A; Rudin, S
2008-01-01
A graphical user interface based on LabVIEW software was developed to enable clinical evaluation of a new High-Sensitivity Micro-Angio-Fluoroscopic (HSMAF) system for real-time acquisition, display and rapid frame transfer of high-resolution region-of-interest images. The HSMAF detector consists of a CsI(Tl) phosphor, a light image intensifier (LII), and a fiber-optic taper coupled to a progressive scan, frame-transfer, charged-coupled device (CCD) camera which provides real-time 12 bit, 1k × 1k images capable of greater than 10 lp/mm resolution. Images can be captured in continuous or triggered mode, and the camera can be programmed by a computer using Camera Link serial communication. A graphical user interface was developed to control the camera modes such as gain and pixel binning as well as to acquire, store, display, and process the images. The program, written in LabVIEW, has the following capabilities: camera initialization, synchronized image acquisition with the x-ray pulses, roadmap and digital subtraction angiography acquisition (DSA), flat field correction, brightness and contrast control, last frame hold in fluoroscopy, looped playback of the acquired images in angiography, recursive temporal filtering and LII gain control. Frame rates can be up to 30 fps in full-resolution mode. The user friendly implementation of the interface along with the high framerate acquisition and display for this unique high-resolution detector should provide angiographers and interventionalists with a new capability for visualizing details of small vessels and endovascular devices such as stents and hence enable more accurate diagnoses and image guided interventions. (Support: NIH Grants R01NS43924, R01EB002873).
Validation of a pulsed electric field process to pasteurize strawberry puree
USDA-ARS?s Scientific Manuscript database
An inexpensive data acquisition method was developed to validate the exact number and shape of the pulses applied during pulsed electric fields (PEF) processing. The novel validation method was evaluated in conjunction with developing a pasteurization PEF process for strawberry puree. Both buffered...
Kim, Hyungseup; Park, Yunjong; Ko, Youngwoon; Mun, Yeongjin; Lee, Sangmin; Ko, Hyoungho
2018-01-01
Wearable healthcare systems require measurements from electrocardiograms (ECGs) and photoplethysmograms (PPGs), and the blood pressure of the user. The pulse transit time (PTT) can be calculated by measuring the ECG and PPG simultaneously. Continuous-time blood pressure without using an air cuff can be estimated by using the PTT. This paper presents a biosignal acquisition integrated circuit (IC) that can simultaneously measure the ECG and PPG for wearable healthcare applications. Included in this biosignal acquisition circuit are a voltage mode instrumentation amplifier (IA) for ECG acquisition and a current mode transimpedance amplifier for PPG acquisition. The analog outputs from the ECG and PPG channels are muxed and converted to digital signals using 12-bit successive approximation register (SAR) analog-to-digital converter (ADC). The proposed IC is fabricated by using a standard 0.18 μm CMOS process with an active area of 14.44 mm2. The total current consumption for the multichannel IC is 327 μA with a 3.3 V supply. The measured input referred noise of ECG readout channel is 1.3 μVRMS with a bandwidth of 0.5 Hz to 100 Hz. And the measured input referred current noise of the PPG readout channel is 0.122 nA/√Hz with a bandwidth of 0.5 Hz to 100 Hz. The proposed IC, which is implemented using various circuit techniques, can measure ECG and PPG signals simultaneously to calculate the PTT for wearable healthcare applications.
Vemmer, T; Steinbüchel, C; Bertram, J; Eschner, W; Kögler, A; Luig, H
1997-03-01
The purpose of this study was to determine whether data acquisition in the list mode and iterative tomographic reconstruction would render feasible cardiac phase-synchronized thallium-201 single-photon emission tomography (SPET) of the myocardium under routine conditions without modifications in tracer dose, acquisition time, or number of steps of the a gamma camera. Seventy non-selected patients underwent 201T1 SPET imaging according to a routine protocol (74 MBq/2 mCi 201T1, 180 degrees rotation of the gamma camera, 32 steps, 30 min). Gamma camera data, ECG, and a time signal were recorded in list mode. The cardiac cycle was divided into eight phases, the end-diastolic phase encompassing the QRS complex, and the end-systolic phase the T wave. Both phase- and non-phase-synchronized tomograms based on the same list mode data were reconstructed iteratively. Phase-synchronized and non-synchronized images were compared. Patients were divided into two groups depending on whether or not coronary artery disease had been definitely diagnosed prior to SPET imaging. The numbers of patients in both groups demonstrating defects visible on the phase-synchronized but not on the non-synchronized images were compared. It was found that both postexercise and redistribution phase tomograms were suited for interpretation. The changes from end-diastolic to end-systolic images allowed a comparative assessment of regional wall motility and tracer uptake. End-diastolic tomograms provided the best definition of defects. Additional defects not apparent on non-synchronized images were visible in 40 patients, six of whom did not show any defect on the non-synchronized images. Of 42 patients in whom coronary artery disease had been definitely diagnosed, 19 had additional defects not visible on the non-synchronized images, in comparison to 21 of 28 in whom coronary artery disease was suspected (P < 0.02; chi 2). It is concluded that cardiac phase-synchronized 201T1 SPET of the myocardium was made feasible by list mode data acquisition and iterative reconstruction. The additional findings on the phase-synchronized tomograms, not visible on the non-synchronized ones, represented genuine defects. Cardiac phase-synchronized 201T1 SPET is advantageous in allowing simultaneous assessment of regional wall motion and tracer uptake, and in visualizing smaller defects.
Validation of the ‘full reconnection model’ of the sawtooth instability in KSTAR
NASA Astrophysics Data System (ADS)
Nam, Y. B.; Ko, J. S.; Choe, G. H.; Bae, Y.; Choi, M. J.; Lee, W.; Yun, G. S.; Jardin, S.; Park, H. K.
2018-06-01
The central safety factor (q 0) during sawtooth oscillation has been measured with a great accuracy with the motional Stark effect (MSE) system on KSTAR and the measured value was However, this measurement alone cannot validate the disputed full and partial reconnection models definitively due to non-trivial off-set error (~0.05). Supplemental experiment of the excited m = 2, m = 3 modes that are extremely sensitive to the background q 0 and core magnetic shear definitively validates the ‘full reconnection model’. The radial position of the excited modes right after the crash and time evolution into the 1/1 kink mode before the crash in a sawtoothing plasma suggests that in the MHD quiescent period after the crash and before the crash. Additional measurement of the long lived m = 3, m = 5 modes in a non-sawtoothing discharge (presumably ) further validates the ‘full reconnection model’.
DPLL implementation in carrier acquisition and tracking for burst DS-CDMA receivers.
Guan, Yun-feng; Zhang, Zhao-yang; Lai, Li-feng
2003-01-01
This paper presents the architectures, algorithms, and implementation considerations of the digital phase locked loop (DPLL) used for burst-mode packet DS-CDMA receivers. As we know, carrier offset is a rather challenging problem in CDMA system. According to different applications, different DPLL forms should be adopted to correct different maximum carrier offset in CDMA systems. One classical DPLL and two novel DPLL forms are discussed in the paper. The acquisition range of carrier offset can be widened by using the two novel DPLL forms without any performance degradation such as longer acquisition time or larger variance of the phase error. The maximum acquisition range is 1/(4T), where T is the symbol period. The design can be implemented by FPGA directly.
Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform
Kim, Jongpal; Ko, Hyoungho
2016-01-01
A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004
NASA Astrophysics Data System (ADS)
Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno
2015-09-01
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 s. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.043 75 mAs, were investigated. Both the analytical Feldkamp, Davis and Kress (FDK) algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images. Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode.
Rui, Xue; Cheng, Lishui; Long, Yong; Fu, Lin; Alessio, Adam M.; Asma, Evren; Kinahan, Paul E.; De Man, Bruno
2015-01-01
For PET/CT systems, PET image reconstruction requires corresponding CT images for anatomical localization and attenuation correction. In the case of PET respiratory gating, multiple gated CT scans can offer phase-matched attenuation and motion correction, at the expense of increased radiation dose. We aim to minimize the dose of the CT scan, while preserving adequate image quality for the purpose of PET attenuation correction by introducing sparse view CT data acquisition. Methods We investigated sparse view CT acquisition protocols resulting in ultra-low dose CT scans designed for PET attenuation correction. We analyzed the tradeoffs between the number of views and the integrated tube current per view for a given dose using CT and PET simulations of a 3D NCAT phantom with lesions inserted into liver and lung. We simulated seven CT acquisition protocols with {984, 328, 123, 41, 24, 12, 8} views per rotation at a gantry speed of 0.35 seconds. One standard dose and four ultra-low dose levels, namely, 0.35 mAs, 0.175 mAs, 0.0875 mAs, and 0.04375 mAs, were investigated. Both the analytical FDK algorithm and the Model Based Iterative Reconstruction (MBIR) algorithm were used for CT image reconstruction. We also evaluated the impact of sinogram interpolation to estimate the missing projection measurements due to sparse view data acquisition. For MBIR, we used a penalized weighted least squares (PWLS) cost function with an approximate total-variation (TV) regularizing penalty function. We compared a tube pulsing mode and a continuous exposure mode for sparse view data acquisition. Global PET ensemble root-mean-squares-error (RMSE) and local ensemble lesion activity error were used as quantitative evaluation metrics for PET image quality. Results With sparse view sampling, it is possible to greatly reduce the CT scan dose when it is primarily used for PET attenuation correction with little or no measureable effect on the PET image. For the four ultra-low dose levels simulated, sparse view protocols with 41 and 24 views best balanced the tradeoff between electronic noise and aliasing artifacts. In terms of lesion activity error and ensemble RMSE of the PET images, these two protocols, when combined with MBIR, are able to provide results that are comparable to the baseline full dose CT scan. View interpolation significantly improves the performance of FDK reconstruction but was not necessary for MBIR. With the more technically feasible continuous exposure data acquisition, the CT images show an increase in azimuthal blur compared to tube pulsing. However, this blurring generally does not have a measureable impact on PET reconstructed images. Conclusions Our simulations demonstrated that ultra-low-dose CT-based attenuation correction can be achieved at dose levels on the order of 0.044 mAs with little impact on PET image quality. Highly sparse 41- or 24- view ultra-low dose CT scans are feasible for PET attenuation correction, providing the best tradeoff between electronic noise and view aliasing artifacts. The continuous exposure acquisition mode could potentially be implemented in current commercially available scanners, thus enabling sparse view data acquisition without requiring x-ray tubes capable of operating in a pulsing mode. PMID:26352168
NASA Technical Reports Server (NTRS)
Livingston, John M.
2004-01-01
NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).
Computational Simulation of Acoustic Modes in Rocket Combustors
NASA Technical Reports Server (NTRS)
Harper, Brent (Technical Monitor); Merkle, C. L.; Sankaran, V.; Ellis, M.
2004-01-01
A combination of computational fluid dynamic analysis and analytical solutions is being used to characterize the dominant modes in liquid rocket engines in conjunction with laboratory experiments. The analytical solutions are based on simplified geometries and flow conditions and are used for careful validation of the numerical formulation. The validated computational model is then extended to realistic geometries and flow conditions to test the effects of various parameters on chamber modes, to guide and interpret companion laboratory experiments in simplified combustors, and to scale the measurements to engine operating conditions. In turn, the experiments are used to validate and improve the model. The present paper gives an overview of the numerical and analytical techniques along with comparisons illustrating the accuracy of the computations as a function of grid resolution. A representative parametric study of the effect of combustor mean flow Mach number and combustor aspect ratio on the chamber modes is then presented for both transverse and longitudinal modes. The results show that higher mean flow Mach numbers drive the modes to lower frequencies. Estimates of transverse wave mechanics in a high aspect ratio combustor are then contrasted with longitudinal modes in a long and narrow combustor to provide understanding of potential experimental simulations.
Continuous scanning mode for ptychography
Clark, Jesse N.; Huang, Xiaojing; Harder, Ross J.; ...
2014-10-15
We outline how ptychographic imaging can be performed without the need for discrete scan positions. Through an idealized experiment, we demonstrate how a discrete-position scan regime can be replaced with a continuously scanned one with suitable modification of the reconstruction scheme based on coherent modes. Thus, the impact of this is that acquisition times can be reduced, significantly aiding ptychographic imaging with x rays, electrons, or visible light.
Design Consideration and Performance of Networked Narrowband Waveforms for Tactical Communications
2010-09-01
four proposed CPM modes, with perfect acquisition parameters, for both coherent and noncoherent detection using an iterative receiver with both inner...Figure 1: Bit error rate performance of various CPM modes with coherent and noncoherent detection. Figure 3 shows the corresponding relationship...symbols. Table 2 summarises the parameter Coherent results (cross) Noncoherent results (diamonds) Figur 1: Bit Error Rate Pe f rmance of
Adaptive hyperspectral imager: design, modeling, and control
NASA Astrophysics Data System (ADS)
McGregor, Scot; Lacroix, Simon; Monmayrant, Antoine
2015-08-01
An adaptive, hyperspectral imager is presented. We propose a system with easily adaptable spectral resolution, adjustable acquisition time, and high spatial resolution which is independent of spectral resolution. The system yields the possibility to define a variety of acquisition schemes, and in particular near snapshot acquisitions that may be used to measure the spectral content of given or automatically detected regions of interest. The proposed system is modelled and simulated, and tests on a first prototype validate the approach to achieve near snapshot spectral acquisitions without resorting to any computationally heavy post-processing, nor cumbersome calibration
NASA Astrophysics Data System (ADS)
Taasti, Vicki T.; Michalak, Gregory J.; Hansen, David C.; Deisher, Amanda J.; Kruse, Jon J.; Krauss, Bernhard; Muren, Ludvig P.; Petersen, Jørgen B. B.; McCollough, Cynthia H.
2018-01-01
Dual energy CT (DECT) has been shown, in theoretical and phantom studies, to improve the stopping power ratio (SPR) determination used for proton treatment planning compared to the use of single energy CT (SECT). However, it has not been shown that this also extends to organic tissues. The purpose of this study was therefore to investigate the accuracy of SPR estimation for fresh pork and beef tissue samples used as surrogates of human tissues. The reference SPRs for fourteen tissue samples, which included fat, muscle and femur bone, were measured using proton pencil beams. The tissue samples were subsequently CT scanned using four different scanners with different dual energy acquisition modes, giving in total six DECT-based SPR estimations for each sample. The SPR was estimated using a proprietary algorithm (syngo.via DE Rho/Z Maps, Siemens Healthcare, Forchheim, Germany) for extracting the electron density and the effective atomic number. SECT images were also acquired and SECT-based SPR estimations were performed using a clinical Hounsfield look-up table. The mean and standard deviation of the SPR over large volume-of-interests were calculated. For the six different DECT acquisition methods, the root-mean-square errors (RMSEs) for the SPR estimates over all tissue samples were between 0.9% and 1.5%. For the SECT-based SPR estimation the RMSE was 2.8%. For one DECT acquisition method, a positive bias was seen in the SPR estimates, having a mean error of 1.3%. The largest errors were found in the very dense cortical bone from a beef femur. This study confirms the advantages of DECT-based SPR estimation although good results were also obtained using SECT for most tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKisson, John
The source code for the Java Data Acquisition suite provides interfaces to the JLab built USB FPGA ADC across a LAN network. Each jDaq node provides ListMode data from JLab built detector systems and readouts.
Hi-Res scan mode in clinical MDCT systems: Experimental assessment of spatial resolution performance
Cruz-Bastida, Juan P.; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P.; Chen, Guang-Hong
2016-01-01
Purpose: The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. Methods: A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0–16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. Results: At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. Conclusions: The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions. PMID:27147351
Cruz-Bastida, Juan P; Gomez-Cardona, Daniel; Li, Ke; Sun, Heyi; Hsieh, Jiang; Szczykutowicz, Timothy P; Chen, Guang-Hong
2016-05-01
The introduction of a High-Resolution (Hi-Res) scan mode and another associated option that combines Hi-Res mode with the so-called High Definition (HD) reconstruction kernels (referred to as a Hi-Res/HD mode in this paper) in some multi-detector CT (MDCT) systems offers new opportunities to increase spatial resolution for some clinical applications that demand high spatial resolution. The purpose of this work was to quantify the in-plane spatial resolution along both the radial direction and tangential direction for the Hi-Res and Hi-Res/HD scan modes at different off-center positions. A technique was introduced and validated to address the signal saturation problem encountered in the attempt to quantify spatial resolution for the Hi-Res and Hi-Res/HD scan modes. Using the proposed method, the modulation transfer functions (MTFs) of a 64-slice MDCT system (Discovery CT750 HD, GE Healthcare) equipped with both Hi-Res and Hi-Res/HD modes were measured using a metal bead at nine different off-centered positions (0-16 cm with a step size of 2 cm); at each position, both conventional scans and Hi-Res scans were performed. For each type of scan and position, 80 repeated acquisitions were performed to reduce noise induced uncertainties in the MTF measurements. A total of 15 reconstruction kernels, including eight conventional kernels and seven HD kernels, were used to reconstruct CT images of the bead. An ex vivo animal study consisting of a bone fracture model was performed to corroborate the MTF results, as the detection of this high-contrast and high frequency task is predominantly determined by spatial resolution. Images of this animal model generated by different scan modes and reconstruction kernels were qualitatively compared with the MTF results. At the centered position, the use of Hi-Res mode resulted in a slight improvement in the MTF; each HD kernel generated higher spatial resolution than its counterpart conventional kernel. However, the MTF along the tangential direction of the scan field of view (SFOV) was significantly degraded at off-centered positions, yet the combined Hi-Res/HD mode reduced this azimuthal MTF degradation. Images of the animal bone fracture model confirmed the improved spatial resolution at the off-centered positions through the use of the Hi-Res mode and HD kernels. The Hi-Res/HD scan improve spatial resolution of MDCT systems at both centered and off-centered positions.
Manufactured Porous Ambient Surface Simulants
NASA Technical Reports Server (NTRS)
Carey, Elizabeth M.; Peters, Gregory H.; Chu, Lauren; Zhou, Yu Meng; Cohen, Brooklin; Panossian, Lara; Green, Jacklyn R.; Moreland, Scott; Backes, Paul
2016-01-01
The planetary science decadal survey for 2013-2022 (Vision and Voyages, NRC 2011) has promoted mission concepts for sample acquisition from small solar system bodies. Numerous comet-sampling tools are in development to meet this standard. Manufactured Porous Ambient Surface Simulants (MPASS) materials provide an opportunity to simulate variable features at ambient temperatures and pressures to appropriately test potential sample acquisition systems for comets, asteroids, and planetary surfaces. The original "flavor" of MPASS materials is known as Manufactured Porous Ambient Comet Simulants (MPACS), which was developed in parallel with the development of the Biblade Comet Sampling System (Backes et al., in review). The current suite of MPACS materials was developed through research of the physical and mechanical properties of comets from past comet missions results and modeling efforts, coordination with the science community at the Jet Propulsion Laboratory and testing of a wide range of materials and formulations. These simulants were required to represent the physical and mechanical properties of cometary nuclei, based on the current understanding of the science community. Working with cryogenic simulants can be tedious and costly; thus MPACS is a suite of ambient simulants that yields a brittle failure mode similar to that of cryogenic icy materials. Here we describe our suite of comet simulants known as MPACS that will be used to test and validate the Biblade Comet Sampling System (Backes et al., in review).
Restivo, Annalaura; Degano, Ilaria; Ribechini, Erika; Colombini, Maria Perla
2014-01-01
A method for the HPLC-MS/MS analysis of phenols, including phenolic acids and naphtoquinones, using an amide-embedded phase column was developed and compared to the literature methods based on classical C18 stationary phase columns. RP-Amide is a recently developed polar embedded stationary phase, whose wetting properties mean that up to 100% water can be used as an eluent. The increased retention and selectivity for polar compounds and the possibility of working in 100% water conditions make this column particularly interesting for the HPLC analysis of phenolic acids and derivatives. In this study, the chromatographic separation was optimised on an HPLC-DAD, and was used to separate 13 standard phenolic acids and derivatives. The method was validated on an HPLC-ESI-Q-ToF. The acquisition was performed in negative polarity and MS/MS target mode. Ionisation conditions and acquisition parameters for the Q-ToF detector were investigated by working on collision energies and fragmentor potentials. The performance of the method was fully evaluated on standards. Moreover, several raw materials containing phenols were analysed: walnut, gall, wine, malbec grape, French oak, red henna and propolis. Our method allowed us to characterize the phenolic composition in a wide range of matrices and to highlight possible matrix effects. PMID:24551158
A Production System Model of Capturing Reactive Moving Targets. M.S. Thesis
NASA Technical Reports Server (NTRS)
Jagacinski, R. J.; Plamondon, B. D.; Miller, R. A.
1984-01-01
Subjects manipulated a control stick to position a cursor over a moving target that reacted with a computer-generated escape strategy. The cursor movements were described at two levels of abstraction. At the upper level, a production system described transitions among four modes of activity; rapid acquisition, close following, a predictive mode, and herding. Within each mode, differential equations described trajectory-generating mechanisms. A simulation of this two-level model captures the targets in a manner resembling the episodic time histories of human subjects.
48 CFR 301.603-2 - Selection and appointment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Selection and appointment. 301.603-2 Section 301.603-2 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL... individual as a Contracting Officer only when a valid organizational need is demonstrated and after...
48 CFR 301.603-2 - Selection and appointment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Selection and appointment. 301.603-2 Section 301.603-2 Federal Acquisition Regulations System HEALTH AND HUMAN SERVICES GENERAL... individual as a Contracting Officer only when a valid organizational need is demonstrated and after...
40 CFR 1065.546 - Validation of minimum dilution ratio for PM batch sampling.
Code of Federal Regulations, 2010 CFR
2010-07-01
... flows and/or tracer gas concentrations for transient and ramped modal cycles to validate the minimum... mode-average values instead of continuous measurements for discrete mode steady-state duty cycles... molar flow data. This involves determination of at least two of the following three quantities: Raw...
Lucentini, Luca; Ferretti, Emanuele; Veschetti, Enrico; Achene, Laura; Turrio-Baldassarri, Luigi; Ottaviani, Massimo; Bogialli, Sara
2009-01-01
A simple and sensitive liquid chromatographic-tandem mass spectrometric (LC/MS/MS) method has been developed and validated to confirm and quantify acrylamide monomer (AA) in drinking water using [13C3] acrylamide as internal standard (IS). After a preconcentration by solid-phase extraction with spherical activated carbon, analytes were chromatographed on IonPac ICE-AS1 column (9 x 250 mm) under isocratic conditions using acetonitrile-water-0.1 M formic acid (43 + 52 + 5, v/v/v) as the mobile phase. Analysis was achieved using a triple-quadrupole mass analyzer equipped with a turbo ion spray interface. For confirmation and quantification of the analytes, MS data acquisition was performed in the multireaction monitoring mode, selecting 2 precursor ion to product ion transitions for both AA and IS. The method was validated for linearity, sensitivity, accuracy, precision, extraction efficiency, and matrix effect. Linearity in tap water was observed over the concentration range 0.1-2.0 microg/L. Limits of detection and quantification were 0.02 and 0.1 microg/L, respectively. Interday and intraday assays were performed across 3 validation levels (0.1, 0.5, and 1.5 microg/L). Accuracy (as mean recovery) ranged from 89.3 to 96.2% with relative standard deviation <7.98%. Performance characteristics of this LC/MS/MS method make it suitable for regulatory confirmatory analysis of AA in drinking water in compliance with European Union and U.S. Environmental Protection Agency standards.
48 CFR 47.305-1 - Solicitation requirements.
Code of Federal Regulations, 2012 CFR
2012-10-01
... much of the following data as is applicable to the particular acquisition: (a) Modes of transportation... packaging; e.g., box, carton, crate, drum, bundle, skids, and when applicable, package number from the...
48 CFR 47.305-1 - Solicitation requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... much of the following data as is applicable to the particular acquisition: (a) Modes of transportation... packaging; e.g., box, carton, crate, drum, bundle, skids, and when applicable, package number from the...
48 CFR 47.305-1 - Solicitation requirements.
Code of Federal Regulations, 2014 CFR
2014-10-01
... much of the following data as is applicable to the particular acquisition: (a) Modes of transportation... packaging; e.g., box, carton, crate, drum, bundle, skids, and when applicable, package number from the...
48 CFR 47.305-1 - Solicitation requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... much of the following data as is applicable to the particular acquisition: (a) Modes of transportation... packaging; e.g., box, carton, crate, drum, bundle, skids, and when applicable, package number from the...
48 CFR 47.305-1 - Solicitation requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... much of the following data as is applicable to the particular acquisition: (a) Modes of transportation... packaging; e.g., box, carton, crate, drum, bundle, skids, and when applicable, package number from the...
Beard, B B; Stewart, J R; Shiavi, R G; Lorenz, C H
1995-01-01
Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating.
Beard, Brian B.; Stewart, James R.; Shiavi, Richard G.; Lorenz, Christine H.
2018-01-01
Background Gating methods developed for electrocardiographic-triggered radionuclide ventriculography are being used with nonimaging detectors. These methods have not been compared on the basis of their real-time performance or suitability for determination of load-independent indexes of left ventricular function. This work evaluated the relative merits of different gating methods for nonimaging radionuclude ventriculographic studies, with particular emphasis on their suitability for real-time measurements and the determination of pressure-volume loops. Methods and Results A computer model was used to investigate the relative accuracy of forward gating, backward gating, and phase-mode gating. The durations of simulated left ventricular time-activity curves were randomly varied. Three acquisition parameters were considered: frame rate, acceptance window, and sample size. Twenty-five studies were performed for each combination of acquisition parameters. Hemodynamic and shape parameters from each study were compared with reference parameters derived directly from the random time-activity curves. Backward gating produced the largest errors under all conditions. For both forward gating and phase-mode gating, ejection fraction was underestimated and time to end systole and normalized peak ejection rate were overestimated. For the hemodynamic parameters, forward gating was marginally superior to phase-mode gating. The mean difference in errors between forward and phase-mode gating was 1.47% (SD 2.78%). However, for root mean square shape error, forward gating was several times worse in every case and seven times worse than phase-mode gating on average. Conclusions Both forward and phase-mode gating are suitable for real-time hemodynamic measurements by nonimaging techniques. The small statistical difference between the methods is not clinically significant. The true shape of the time-activity curve is maintained most accurately by phase-mode gating. PMID:9420820
Penchala, Sujan Dilly; Tjia, John; El Sherif, Omar; Back, David J; Khoo, Saye H; Else, Laura J
2013-08-01
A sensitive high-performance reverse phase liquid chromatography-positive ion electrospray tandem mass spectrometry method was developed and validated for the quantification of telaprevir and its inactive R-diastereomer (VRT-127394) in human plasma. The analytes and the internal standard (telaprevir-d11) were extracted from plasma by liquid-liquid extraction using tert-Butyl methyl ether (TBME). Chromatographic separation was achieved on a reversed-phase Accucore C18 column with a gradient programme consisting of water:ammonia (25%), 100:0.01 (v/v) (mobile phase A) and ACN:MeOH:ammonia (25%), 15:85:0.01 (v/v/v) (mobile phase B). The MS acquisition was performed with selective reaction monitoring mode using the respective [M+H](+) ions, m/z 680.59→322.42 for telaprevir and VRT-127394, and 691.15→110.13 for telaprevir-d11. The assay exhibited a linear dynamic range of 5-5000ng/mL for telaprevir and VRT-127394. Acceptable precision (%RSD<6.5%) and accuracy (94-108%) were obtained for concentrations over the range of the standard curve. A procedure was established to stabilise the plasma to prevent ex vivo interconversion of the isomers. Copyright © 2013 Elsevier B.V. All rights reserved.
Effective count rates for PET scanners with reduced and extended axial field of view
NASA Astrophysics Data System (ADS)
MacDonald, L. R.; Harrison, R. L.; Alessio, A. M.; Hunter, W. C. J.; Lewellen, T. K.; Kinahan, P. E.
2011-06-01
We investigated the relationship between noise equivalent count (NEC) and axial field of view (AFOV) for PET scanners with AFOVs ranging from one-half to twice those of current clinical scanners. PET scanners with longer or shorter AFOVs could fulfill different clinical needs depending on exam volumes and site economics. Using previously validated Monte Carlo simulations, we modeled true, scattered and random coincidence counting rates for a PET ring diameter of 88 cm with 2, 4, 6, and 8 rings of detector blocks (AFOV 7.8, 15.5, 23.3, and 31.0 cm). Fully 3D acquisition mode was compared to full collimation (2D) and partial collimation (2.5D) modes. Counting rates were estimated for a 200 cm long version of the 20 cm diameter NEMA count-rate phantom and for an anthropomorphic object based on a patient scan. We estimated the live-time characteristics of the scanner from measured count-rate data and applied that estimate to the simulated results to obtain NEC as a function of object activity. We found NEC increased as a quadratic function of AFOV for 3D mode, and linearly in 2D mode. Partial collimation provided the highest overall NEC on the 2-block system and fully 3D mode provided the highest NEC on the 8-block system for clinically relevant activities. On the 4-, and 6-block systems 3D mode NEC was highest up to ~300 MBq in the anthropomorphic phantom, above which 3D NEC dropped rapidly, and 2.5D NEC was highest. Projected total scan time to achieve NEC-density that matches current clinical practice in a typical oncology exam averaged 9, 15, 24, and 61 min for the 8-, 6-, 4-, and 2-block ring systems, when using optimal collimation. Increasing the AFOV should provide a greater than proportional increase in NEC, potentially benefiting patient throughput-to-cost ratio. Conversely, by using appropriate collimation, a two-ring (7.8 cm AFOV) system could acquire whole-body scans achieving NEC-density levels comparable to current standards within long, but feasible, scan times.
Development of an Experimental Rig for Investigation of Higher Order Modes in Ducts
NASA Technical Reports Server (NTRS)
Gerhold, Carl H.; Cabell, Randolph H.; Brown, Martha C.
2006-01-01
Continued progress to reduce fan noise emission from high bypass ratio engine ducts in aircraft increasingly relies on accurate description of the sound propagation in the duct. A project has been undertaken at NASA Langley Research Center to investigate the propagation of higher order modes in ducts with flow. This is a two-pronged approach, including development of analytic models (the subject of a separate paper) and installation of a laboratory-quality test rig. The purposes of the rig are to validate the analytical models and to evaluate novel duct acoustic liner concepts, both passive and active. The dimensions of the experimental rig test section scale to between 25% and 50% of the aft bypass ducts of most modern engines. The duct is of rectangular cross section so as to provide flexibility to design and fabricate test duct liner samples. The test section can accommodate flow paths that are straight through or offset from inlet to discharge, the latter design allowing investigation of the effect of curvature on sound propagation and duct liner performance. The maximum air flow rate through the duct is Mach 0.3. Sound in the duct is generated by an array of 16 high-intensity acoustic drivers. The signals to the loudspeaker array are generated by a multi-input/multi-output feedforward control system that has been developed for this project. The sound is sampled by arrays of flush-mounted microphones and a modal decomposition is performed at the frequency of sound generation. The data acquisition system consists of two arrays of flush-mounted microphones, one upstream of the test section and one downstream. The data are used to determine parameters such as the overall insertion loss of the test section treatment as well as the effect of the treatment on a modal basis such as mode scattering. The methodology used for modal decomposition is described, as is a description of the mode generation control system. Data are presented which demonstrate the performance of the controller to generate the desired mode while suppressing all other cut on modes in the duct.
Factors Influencing Consonant Acquisition in Brazilian Portuguese-Speaking Children
ERIC Educational Resources Information Center
Ceron, Marizete Ilha; Gubiani, Marileda Barichello; de Oliveira, Camila Rosa; Keske-Soares, Márcia
2017-01-01
Purpose: We sought to provide valid and reliable data on the acquisition of consonant sounds in speakers of Brazilian Portuguese. Method: The sample comprised 733 typically developing monolingual speakers of Brazilian Portuguese (ages 3;0-8;11 [years;months]). The presence of surface speech error patterns, the revised percentage consonants…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-18
...] General Services Administration Acquisition Regulation; Submission for OMB Review; Zero Burden Information... regarding zero burden information collection reports. A notice was published in the Federal Register at 76... our estimate of the public burden of this collection of information is accurate and based on valid...
Gregoski, Mathew J.; Mueller, Martina; Vertegel, Alexey; Shaporev, Aleksey; Jackson, Brenda B.; Frenzel, Ronja M.; Sprehn, Sara M.; Treiber, Frank A.
2012-01-01
Objective. Current generation smartphones' video camera technologies enable photoplethysmographic (PPG) acquisition and heart rate (HR) measurement. The study objective was to develop an Android application and compare HRs derived from a Motorola Droid to electrocardiograph (ECG) and Nonin 9560BT pulse oximeter readings during various movement-free tasks. Materials and Methods. HRs were collected simultaneously from 14 subjects, ages 20 to 58, healthy or with clinical conditions, using the 3 devices during 5-minute periods while at rest, reading aloud under observation, and playing a video game. Correlation between the 3 devices was determined, and Bland-Altman plots for all possible pairs of devices across all conditions assessed agreement. Results. Across conditions, all device pairs showed high correlations. Bland-Altman plots further revealed the Droid as a valid measure for HR acquisition. Across all conditions, the Droid compared to ECG, 95% of the data points (differences between devices) fell within the limits of agreement. Conclusion. The Android application provides valid HRs at varying levels of movement free mental/perceptual motor exertion. Lack of electrode patches or wireless sensor telemetric straps make it advantageous for use in mobile-cell-phone-delivered health promotion and wellness programs. Further validation is needed to determine its applicability while engaging in physical movement-related activities. PMID:22272197
Gregoski, Mathew J; Mueller, Martina; Vertegel, Alexey; Shaporev, Aleksey; Jackson, Brenda B; Frenzel, Ronja M; Sprehn, Sara M; Treiber, Frank A
2012-01-01
Objective. Current generation smartphones' video camera technologies enable photoplethysmographic (PPG) acquisition and heart rate (HR) measurement. The study objective was to develop an Android application and compare HRs derived from a Motorola Droid to electrocardiograph (ECG) and Nonin 9560BT pulse oximeter readings during various movement-free tasks. Materials and Methods. HRs were collected simultaneously from 14 subjects, ages 20 to 58, healthy or with clinical conditions, using the 3 devices during 5-minute periods while at rest, reading aloud under observation, and playing a video game. Correlation between the 3 devices was determined, and Bland-Altman plots for all possible pairs of devices across all conditions assessed agreement. Results. Across conditions, all device pairs showed high correlations. Bland-Altman plots further revealed the Droid as a valid measure for HR acquisition. Across all conditions, the Droid compared to ECG, 95% of the data points (differences between devices) fell within the limits of agreement. Conclusion. The Android application provides valid HRs at varying levels of movement free mental/perceptual motor exertion. Lack of electrode patches or wireless sensor telemetric straps make it advantageous for use in mobile-cell-phone-delivered health promotion and wellness programs. Further validation is needed to determine its applicability while engaging in physical movement-related activities.
2011-03-09
task stability, technology application certainty, risk, and transaction-specific investments impact the selection of the optimal mode of governance...technology application certainty, risk, and transaction-specific investments impact the selection of the optimal mode of governance. Our model views...U.S. Defense Industry. The 1990s were a perfect storm of technological change, consolidation , budget downturns, environmental uncertainty, and the
A high-efficiency HPGe coincidence system for environmental analysis.
Britton, R; Davies, A V; Burnett, J L; Jackson, M J
2015-08-01
The Comprehensive Nuclear-Test-Ban Treaty (CTBT) is supported by a network of certified laboratories which must meet certain sensitivity requirements for CTBT relevant radionuclides. At the UK CTBT Radionuclide Laboratory (GBL15), a high-efficiency, dual-detector gamma spectroscopy system has been developed to improve the sensitivity of measurements for treaty compliance, greatly reducing the time required for each sample. Utilising list-mode acquisition, each sample can be counted once, and processed multiple times to further improve sensitivity. For the 8 key radionuclides considered, Minimum Detectable Activities (MDA's) were improved by up to 37% in standard mode (when compared to a typical CTBT detector system), with the acquisition time required to achieve the CTBT sensitivity requirements reduced from 6 days to only 3. When utilising the system in coincidence mode, the MDA for (60) Co in a high-activity source was improved by a factor of 34 when compared to a standard CTBT detector, and a factor of 17 when compared to the dual-detector system operating in standard mode. These MDA improvements will allow the accurate and timely quantification of radionuclides that decay via both singular and cascade γ emission, greatly enhancing the effectiveness of CTBT laboratories. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Frequency identification of vibration signals using video camera image data.
Jeng, Yih-Nen; Wu, Chia-Hung
2012-10-16
This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system.
Frequency Identification of Vibration Signals Using Video Camera Image Data
Jeng, Yih-Nen; Wu, Chia-Hung
2012-01-01
This study showed that an image data acquisition system connecting a high-speed camera or webcam to a notebook or personal computer (PC) can precisely capture most dominant modes of vibration signal, but may involve the non-physical modes induced by the insufficient frame rates. Using a simple model, frequencies of these modes are properly predicted and excluded. Two experimental designs, which involve using an LED light source and a vibration exciter, are proposed to demonstrate the performance. First, the original gray-level resolution of a video camera from, for instance, 0 to 256 levels, was enhanced by summing gray-level data of all pixels in a small region around the point of interest. The image signal was further enhanced by attaching a white paper sheet marked with a black line on the surface of the vibration system in operation to increase the gray-level resolution. Experimental results showed that the Prosilica CV640C CMOS high-speed camera has the critical frequency of inducing the false mode at 60 Hz, whereas that of the webcam is 7.8 Hz. Several factors were proven to have the effect of partially suppressing the non-physical modes, but they cannot eliminate them completely. Two examples, the prominent vibration modes of which are less than the associated critical frequencies, are examined to demonstrate the performances of the proposed systems. In general, the experimental data show that the non-contact type image data acquisition systems are potential tools for collecting the low-frequency vibration signal of a system. PMID:23202026
McGaghie, William C; Cohen, Elaine R; Wayne, Diane B
2011-01-01
United States Medical Licensing Examination (USMLE) scores are frequently used by residency program directors when evaluating applicants. The objectives of this report are to study the chain of reasoning and evidence that underlies the use of USMLE Step 1 and 2 scores for postgraduate medical resident selection decisions and to evaluate the validity argument about the utility of USMLE scores for this purpose. This is a research synthesis using the critical review approach. The study first describes the chain of reasoning that underlies a validity argument about using test scores for a specific purpose. It continues by summarizing correlations of USMLE Step 1 and 2 scores and reliable measures of clinical skill acquisition drawn from nine studies involving 393 medical learners from 2005 to 2010. The integrity of the validity argument about using USMLE Step 1 and 2 scores for postgraduate residency selection decisions is tested. The research synthesis shows that USMLE Step 1 and 2 scores are not correlated with reliable measures of medical students', residents', and fellows' clinical skill acquisition. The validity argument about using USMLE Step 1 and 2 scores for postgraduate residency selection decisions is neither structured, coherent, nor evidence based. The USMLE score validity argument breaks down on grounds of extrapolation and decision/interpretation because the scores are not associated with measures of clinical skill acquisition among advanced medical students, residents, and subspecialty fellows. Continued use of USMLE Step 1 and 2 scores for postgraduate medical residency selection decisions is discouraged.
Fatal Neonatal Herpes Simplex Infection Likely from Unrecognized Breast Lesions.
Field, Scott S
2016-02-01
Type 1 herpes simplex virus (HSV-1) is very prevalent yet in rare circumstances can lead to fatal neonatal disease. Genital acquisition of type 2 HSV is the usual mode for neonatal herpes, but HSV-1 transmission by genital or extragenital means may result in greater mortality rates. A very rare scenario is presented in which the mode of transmission was likely through breast lesions. The lesions were seen by nurses as well as the lactation consultant and obstetrician in the hospital after delivery of the affected baby but not recognized as possibly being caused by herpes. The baby died 9 days after birth with hepatic failure and disseminated intravascular coagulation. Peripartum health care workers need to be aware of potential nongenital (including from the breast[s]) neonatal herpes acquisition, which can be lethal. © The Author(s) 2015.
A multichannel EEG acquisition scheme based on single ended amplifiers and digital DRL.
Haberman, Marcelo Alejandro; Spinelli, Enrique Mario
2012-12-01
Single ended (SE) amplifiers allow implementing biopotential front-ends with a reduced number of parts, being well suited for preamplified electrodes or compact EEG headboxes. On the other hand, given that each channel has independent gain; mismatching between these gains results in poor common-mode rejection ratios (CMRRs) (about 30 dB considering 1% tolerance components). This work proposes a scheme for multichannel EEG acquisition systems based on SE amplifiers and a novel digital driven right leg (DDRL) circuit, which overcome the poor CMRR of the front-end stage providing a high common mode reduction at power line frequency (up to 80 dB). A functional prototype was built and tested showing the feasibility of the proposed technique. It provided EEG records with negligible power line interference, even in very aggressive EMI environments.
Cosmic Origins Spectrograph: On-Orbit Performance of Target Acquisitions
NASA Astrophysics Data System (ADS)
Penton, Steven V.
2010-07-01
COS is a slit-less spectrograph with a very small aperture (R=1.2500). To achieve the desired wavelength accuracies, HST+COS must center the target to within 0.100 of the center of the aperture for the FUV channel, and 0.0400 for NUV. During SMOV and early Cycle 17 we fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. In Cycle 17, we also adjusted the COSto- FGS offsets in the SIAF file. This allows us to recommend skipping the time consuming ACQ/SEARCH in cases where the target coordinates are well known. Here we will compare the on-orbit performance of all COS TA modes in terms of centering accuracy, efficiency, and required signal-to-noise (S/N).
49 CFR 1522.101 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program § 1522.101 Applicability. This subpart governs the use of TSA-approved validation firms and validators to...
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program § 1522.119 Training. (a) Initial training. The validation firm must ensure that its validators and...
Measuring Recognition Performance Using Computer-Based and Paper-Based Methods.
ERIC Educational Resources Information Center
Federico, Pat-Anthony
1991-01-01
Using a within-subjects design, computer-based and paper-based tests of aircraft silhouette recognition were administered to 83 male naval pilots and flight officers to determine the relative reliabilities and validities of 2 measurement modes. Relative reliabilities and validities of the two modes were contingent on the multivariate measurement…
Faure, Emmanuel; Savy, Thierry; Rizzi, Barbara; Melani, Camilo; Stašová, Olga; Fabrèges, Dimitri; Špir, Róbert; Hammons, Mark; Čúnderlík, Róbert; Recher, Gaëlle; Lombardot, Benoît; Duloquin, Louise; Colin, Ingrid; Kollár, Jozef; Desnoulez, Sophie; Affaticati, Pierre; Maury, Benoît; Boyreau, Adeline; Nief, Jean-Yves; Calvat, Pascal; Vernier, Philippe; Frain, Monique; Lutfalla, Georges; Kergosien, Yannick; Suret, Pierre; Remešíková, Mariana; Doursat, René; Sarti, Alessandro; Mikula, Karol; Peyriéras, Nadine; Bourgine, Paul
2016-01-01
The quantitative and systematic analysis of embryonic cell dynamics from in vivo 3D+time image data sets is a major challenge at the forefront of developmental biology. Despite recent breakthroughs in the microscopy imaging of living systems, producing an accurate cell lineage tree for any developing organism remains a difficult task. We present here the BioEmergences workflow integrating all reconstruction steps from image acquisition and processing to the interactive visualization of reconstructed data. Original mathematical methods and algorithms underlie image filtering, nucleus centre detection, nucleus and membrane segmentation, and cell tracking. They are demonstrated on zebrafish, ascidian and sea urchin embryos with stained nuclei and membranes. Subsequent validation and annotations are carried out using Mov-IT, a custom-made graphical interface. Compared with eight other software tools, our workflow achieved the best lineage score. Delivered in standalone or web service mode, BioEmergences and Mov-IT offer a unique set of tools for in silico experimental embryology. PMID:26912388
Design of a Facility to Test the Advanced Stirling Radioisotope Generator Engineering Unit
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Schreiber, Jeffrey G.; Oriti, Salvatore M.; Meer, David W.; Brace, Michael H.; Dugala, Gina
2009-01-01
The Advanced Stirling Radioisotope Generator (ASRG) is being considered to power deep space missions. An engineering unit, the ASRG-EU, was designed and fabricated by Lockheed Martin under contract to the Department of Energy. This unit is currently on an extended operation test at NASA Glenn Research Center to generate performance data and validate the life and reliability predictions for the generator and the Stirling convertors. A special test facility was designed and built for testing the ASRG-EU. Details of the test facility design are discussed. The facility can operate the convertors under AC bus control or with the ASRG-EU controller. It can regulate input thermal power in either a fixed temperature or fixed power mode. An enclosure circulates cooled air around the ASRG-EU to remove heat rejected from the ASRG-EU by convection. A custom monitoring and data acquisition system supports the test. Various safety features, which allow 2417 unattended operation, are discussed.
Huang, Z H; Li, N; Rao, K F; Liu, C T; Huang, Y; Ma, M; Wang, Z J
2018-03-01
Genotoxicants can be identified as aneugens and clastogens through a micronucleus (MN) assay. The current high-content screening-based MN assays usually discriminate an aneugen from a clastogen based on only one parameter, such as the MN size, intensity, or morphology, which yields low accuracies (70-84%) because each of these parameters may contribute to the results. Therefore, the development of an algorithm that can synthesize high-dimensionality data to attain comparative results is important. To improve the automation and accuracy of detection using the current parameter-based mode of action (MoA), the MN MoA signatures of 20 chemicals were systematically recruited in this study to develop an algorithm. The results of the algorithm showed very good agreement (93.58%) between the prediction and reality, indicating that the proposed algorithm is a validated analytical platform for the rapid and objective acquisition of genotoxic MoA messages.
Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii.
Singh, Niharika; Goel, Gunjan; Raghav, Mamta
2015-01-01
Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed.
Insights into virulence factors determining the pathogenicity of Cronobacter sakazakii
Singh, Niharika; Goel, Gunjan; Raghav, Mamta
2015-01-01
Cronobacter sakazakii is an opportunistic pathogen associated with outbreaks of life-threatening necrotizing enterocolitis, meningitis and sepsis in neonates and infants. The pathogen possesses an array of virulence factors which aid in tissue adhesion, invasion and host cell injury. Although the identification and validation of C. sakazakii virulence factors has been hindered by availability of suitable neonatal animal model, various studies has reported outer membrane protein A (ompA) as a potential virulence marker. Various other plasmid associated genes such as filamentous hemagglutinin (fhaBC), Cronobacter plasminogen activator (cpa) and genes responsible for iron acquisition (eitCBAD and iucABD/iutA) have been reported in different strains of C. sakazakii. Besides these proposed virulence factors, several biophysical growth factors such as formation of biofilms and resistance to various environmental stresses also contributes to the pathogenic potential of this pathogen. This review provides an update on virulence determinants associated with the pathogenesis of C. sakazakii. The potential reservoirs of the pathogen, mode of transmission and epidemiology are also discussed. PMID:25950947
NASA Technical Reports Server (NTRS)
Phatak, A. V.
1980-01-01
A systematic analytical approach to the determination of helicopter IFR precision approach requirements is formulated. The approach is based upon the hypothesis that pilot acceptance level or opinion rating of a given system is inversely related to the degree of pilot involvement in the control task. A nonlinear simulation of the helicopter approach to landing task incorporating appropriate models for UH-1H aircraft, the environmental disturbances and the human pilot was developed as a tool for evaluating the pilot acceptance hypothesis. The simulated pilot model is generic in nature and includes analytical representation of the human information acquisition, processing, and control strategies. Simulation analyses in the flight director mode indicate that the pilot model used is reasonable. Results of the simulation are used to identify candidate pilot workload metrics and to test the well known performance-work-load relationship. A pilot acceptance analytical methodology is formulated as a basis for further investigation, development and validation.
Optimization of image quality and dose for Varian aS500 electronic portal imaging devices (EPIDs).
McGarry, C K; Grattan, M W D; Cosgrove, V P
2007-12-07
This study was carried out to investigate whether the electronic portal imaging (EPI) acquisition process could be optimized, and as a result tolerance and action levels be set for the PIPSPro QC-3V phantom image quality assessment. The aim of the optimization process was to reduce the dose delivered to the patient while maintaining a clinically acceptable image quality. This is of interest when images are acquired in addition to the planned patient treatment, rather than images being acquired using the treatment field during a patient's treatment. A series of phantoms were used to assess image quality for different acquisition settings relative to the baseline values obtained following acceptance testing. Eight Varian aS500 EPID systems on four matched Varian 600C/D linacs and four matched Varian 2100C/D linacs were compared for consistency of performance and images were acquired at the four main orthogonal gantry angles. Images were acquired using a 6 MV beam operating at 100 MU min(-1) and the low-dose acquisition mode. Doses used in the comparison were measured using a Farmer ionization chamber placed at d(max) in solid water. The results demonstrated that the number of reset frames did not have any influence on the image contrast, but the number of frame averages did. The expected increase in noise with corresponding decrease in contrast was also observed when reducing the number of frame averages. The optimal settings for the low-dose acquisition mode with respect to image quality and dose were found to be one reset frame and three frame averages. All patients at the Northern Ireland Cancer Centre are now imaged using one reset frame and three frame averages in the 6 MV 100 MU min(-1) low-dose acquisition mode. Routine EPID QC contrast tolerance (+/-10) and action (+/-20) levels using the PIPSPro phantom based around expected values of 190 (Varian 600C/D) and 225 (Varian 2100C/D) have been introduced. The dose at dmax from electronic portal imaging has been reduced by approximately 28%, and while the image quality has been reduced, the images produced are still clinically acceptable.
Wang, Jian; Chow, Willis; Chang, James; Wong, Jon W
2017-01-18
A semiautomated qualitative method for target screening of 448 pesticide residues in fruits and vegetables was developed and validated using ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole Orbitrap high-resolution mass spectrometry (UHPLC/ESI Q-Orbitrap). The Q-Orbitrap Full MS/dd-MS 2 (data dependent acquisition) was used to acquire product-ion spectra of individual pesticides to build a compound database or an MS library, while its Full MS/DIA (data independent acquisition) was utilized for sample data acquisition from fruit and vegetable matrices fortified with pesticides at 10 and 100 μg/kg for target screening purpose. Accurate mass, retention time and response threshold were three key parameters in a compound database that were used to detect incurred pesticide residues in samples. The concepts and practical aspects of in-spectrum mass correction or solvent background lock-mass correction, retention time alignment and response threshold adjustment are discussed while building a functional and working compound database for target screening. The validated target screening method is capable of screening at least 94% and 99% of 448 pesticides at 10 and 100 μg/kg, respectively, in fruits and vegetables without having to evaluate every compound manually during data processing, which significantly reduced the workload in routine practice.
Modeling human target acquisition in ground-to-air weapon systems
NASA Technical Reports Server (NTRS)
Phatak, A. V.; Mohr, R. L.; Vikmanis, M.; Wei, K. C.
1982-01-01
The problems associated with formulating and validating mathematical models for describing and predicting human target acquisition response are considered. In particular, the extension of the human observer model to include the acquisition phase as well as the tracking segment is presented. Relationship of the Observer model structure to the more complex Standard Optimal Control model formulation and to the simpler Transfer Function/Noise representation is discussed. Problems pertinent to structural identifiability and the form of the parameterization are elucidated. A systematic approach toward the identification of the observer acquisition model parameters from ensemble tracking error data is presented.
Advanced online control mode selection for gas turbine aircraft engines
NASA Astrophysics Data System (ADS)
Wiseman, Matthew William
The modern gas turbine aircraft engine is a complex, highly nonlinear system the operates in a widely varying environment. Traditional engine control techniques based on the hydro mechanical control concepts of early turbojet engines are unable to deliver the performance required from today's advanced engine designs. A new type of advanced control utilizing multiple control modes and an online mode selector is investigated, and various strategies for improving the baseline mode selection architecture are introduced. The ability to five-tune actuator command outputs is added to the basic mode selection and blending process, and mode selection designs that we valid for the entire flight envelope are presented. Methods for optimizing the mode selector to improve overall engine performance are also discussed. Finally, using flight test data from a GE F110-powered F16 aircraft, the full-envelope mode selector designs are validated and shown to provide significant performance benefits. Specifically, thrust command tracking is enhanced while critical engine limits are protected, with very little impact on engine efficiency.
49 CFR 1522.113 - Withdrawal of approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program... TSA-approved validation firm if the validation firm ceases to meet the standards for approval, fails...
IP Network Design and Implementation for the Caltech-USGS Element of TriNet
NASA Astrophysics Data System (ADS)
Johnson, M. L.; Busby, R.; Watkins, M.; Schwarz, S.; Hauksson, E.
2001-12-01
The new seismic network IP numbering scheme for the Caltech-USGS element of TriNet is designed to provide emergency response plans for computer outages and/or telemetry circuit failures so that data acquisition may continue with minimal interruption. IP numbers from the seismic stations through the Caltech acquisition machines are numbered using private, non-routable IP addresses, which allows the network administrator to create redundancy in the network design, more freedom in choosing IP numbers, and uniformity in the LAN and WAN network addressing. The network scheme used by the Caltech-USGS element of TriNet is designed to create redundancy and load sharing over three or more T1 circuits. A T1 circuit can support 80 dataloggers sending data at a design rate of 19.2 kbps or 120 dataloggers transmitting at a nominal rate of 12.8 kbps. During a circuit detour, the 80 dataloggers on the failed T1 are equally divided between the remaining two circuits. This increases the loads on the remaining two circuits to 120 dataloggers, which is the maximum load each T1 can handle at the nominal rate. Each T1 circuit has a router interface onto a LAN at Caltech with an independent subnet address. Some devices, such as Solaris computers, allow a single interface to be numbered with several IP addresses, a so called "multinetted" interface. This allows the central acquisition computers to appear with distinct addresses that are routable via different T1 circuits, but simplifies the physical cables between devices. We identify these T1 circuits as T1-1, T1-2, and T1-3. At the remote end, each Frame Relay Access Device (FRAD) and connected datalogger(s) is a subnetted LAN. The numbering is arranged so the second octet in the LAN IP address of the FRAD and datalogger identify the datalogger's primary and alternate T1 circuits. For example; a LAN with an IP address of 10.12.0.0/24 has T1-1 as its primary T1, and T1-2 as its alternate circuit. Stations with this number scheme are sometimes referred to as group "12". LANs with IP addresses of 10.23.0.0/24 have T1-2 as the primary circuit, and T1-3 as the alternate circuit. Static routes on the acquisition system are used to direct traffic through the primary T1. The network can operate in one of three modes. The most common and desirable mode is "normal", where all three T1's are operational and Caltech has both a primary and secondary central acquisition system running. The second mode is a "failover", where the primary acquisition system is down (due to maintenance or failure) and the secondary acquisition system assumes the primary role. This includes sending acknowledgments to dataloggers and multicasts to the rest of the network. The third mode is a circuit detour. The port numbers on the central acquisition system for the dataloggers on the failed T1 are changed to match the auxiliary ports on the dataloggers. This allows for the auxiliary ports on the dataloggers to receive acknowledgements from the acquiring system through the detoured circuit. The static routes on the system are changed to go through the detoured circuit as specified by the group's IP numbers. At this point the two working T1's will be running at full capacity but the data acquisition will continue with minimal interruption while the third T1 is being restored. The primary acquisition computer continues to listen for data on the failed T1 should things improve spontaneously.
Glauser, Gaétan; Grund, Baptiste; Gassner, Anne-Laure; Menin, Laure; Henry, Hugues; Bromirski, Maciej; Schütz, Frédéric; McMullen, Justin; Rochat, Bertrand
2016-03-15
A paradigm shift is underway in the field of quantitative liquid chromatography-mass spectrometry (LC-MS) analysis thanks to the arrival of recent high-resolution mass spectrometers (HRMS). The capability of HRMS to perform sensitive and reliable quantifications of a large variety of analytes in HR-full scan mode is showing that it is now realistic to perform quantitative and qualitative analysis with the same instrument. Moreover, HR-full scan acquisition offers a global view of sample extracts and allows retrospective investigations as virtually all ionized compounds are detected with a high sensitivity. In time, the versatility of HRMS together with the increasing need for relative quantification of hundreds of endogenous metabolites should promote a shift from triple-quadrupole MS to HRMS. However, a current "pitfall" in quantitative LC-HRMS analysis is the lack of HRMS-specific guidance for validated quantitative analyses. Indeed, false positive and false negative HRMS detections are rare, albeit possible, if inadequate parameters are used. Here, we investigated two key parameters for the validation of LC-HRMS quantitative analyses: the mass accuracy (MA) and the mass-extraction-window (MEW) that is used to construct the extracted-ion-chromatograms. We propose MA-parameters, graphs, and equations to calculate rational MEW width for the validation of quantitative LC-HRMS methods. MA measurements were performed on four different LC-HRMS platforms. Experimentally determined MEW values ranged between 5.6 and 16.5 ppm and depended on the HRMS platform, its working environment, the calibration procedure, and the analyte considered. The proposed procedure provides a fit-for-purpose MEW determination and prevents false detections.
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Paula D.; Rudeen, David Keith; Lord, David L.
2014-08-01
SANSMIC is solution mining software that was developed and utilized by SNL in its role as geotechnical advisor to the US DOE SPR for planning purposes. Three SANSMIC leach modes - withdrawal, direct, and reverse leach - have been revalidated with multiple test cases for each mode. The withdrawal mode was validated using high quality data from recent leach activity while the direct and reverse modes utilized data from historical cavern completion reports. Withdrawal results compared very well with observed data, including the location and size of shelves due to string breaks with relative leached volume differences ranging from 6more » - 10% and relative radius differences from 1.5 - 3%. Profile comparisons for the direct mode were very good with relative leached volume differences ranging from 6 - 12% and relative radius differences from 5 - 7%. First, second, and third reverse configurations were simulated in order to validate SANSMIC over a range of relative hanging string and OBI locations. The first-reverse was simulated reasonably well with relative leached volume differences ranging from 1 - 9% and relative radius differences from 5 - 12%. The second-reverse mode showed the largest discrepancies in leach profile. Leached volume differences ranged from 8 - 12% and relative radius differences from 1 - 10%. In the third-reverse, relative leached volume differences ranged from 10 - 13% and relative radius differences were %7E4 %. Comparisons to historical reports were quite good, indicating that SANSMIC is essentially the same as documented and validated in the early 1980's.« less
Microscope mode secondary ion mass spectrometry imaging with a Timepix detector.
Kiss, Andras; Jungmann, Julia H; Smith, Donald F; Heeren, Ron M A
2013-01-01
In-vacuum active pixel detectors enable high sensitivity, highly parallel time- and space-resolved detection of ions from complex surfaces. For the first time, a Timepix detector assembly was combined with a secondary ion mass spectrometer for microscope mode secondary ion mass spectrometry (SIMS) imaging. Time resolved images from various benchmark samples demonstrate the imaging capabilities of the detector system. The main advantages of the active pixel detector are the higher signal-to-noise ratio and parallel acquisition of arrival time and position. Microscope mode SIMS imaging of biomolecules is demonstrated from tissue sections with the Timepix detector.
Top DoD Management Challenges, Fiscal Year 2018
2018-01-01
Afghan Human Resource Information Management System to validate ANDSF personnel numbers and salaries; • Afghan Personnel Pay System to facilitate...unit strength accountability and personnel verification; and • Core Information Management System to improve accountability of equipment inventories...ACQUISITION AND CONTRACT MANAGEMENT Federal Acquisition Regulation requires contractor performance information be collected in the Contractor
Criterion-Related Validity of Measuring Sight-Word Acquisition with Curriculum-Based Assessment
ERIC Educational Resources Information Center
Burns, Matthew K.; Mosack, Jill L.
2005-01-01
Curriculum-Based Assessment for Instructional Design (CBA-ID) provides data used to ensure an appropriately challenging learning task. One aspect of appropriate challenge measured by CBA-ID, called the acquisition rate (AR), involves the amount of new information a student could acquire and retain during initial learning. Previous research…
Radio controlled release apparatus for animal data acquisition devices
Stamps, James Frederick
2000-01-01
A novel apparatus for reliably and selectively releasing a data acquisition package from an animal for recovery. The data package comprises two parts: 1) an animal data acquisition device and 2) a co-located release apparatus. One embodiment, which is useful for land animals, the release apparatus includes two major components: 1) an electronics package, comprising a receiver; a decoder comparator, having at plurality of individually selectable codes; and an actuator circuit and 2) a release device, which can be a mechanical device, which acts to release the data package from the animal. To release a data package from a particular animal, a radio transmitter sends a coded signal which is decoded to determine if the code is valid for that animal data package. Having received a valid code, the release device is activated to release the data package from the animal for subsequent recovery. A second embodiment includes floatation means and is useful for releasing animal data acquisition devices attached to sea animals. This embodiment further provides for releasing a data package underwater by employing an acoustic signal.
A Strategy for Reforming Avionics Acquisition and Support
1988-07-01
are observable: " Some problems manifest symptoms in one operating mode but not in another. The pilot directly controls some radar operating modes by...for each flight. Their removals occurred in the flight controls , inertial navigation, head-up display, radar, and instru- ments. Although removals...accrue a comparable amount of service time. 6Automatic stations can test 50 LRU types although the Air Force has chosen to test only 37 of them at the
Reconfigurable wireless monitoring systems for bridges: validation on the Yeondae Bridge
NASA Astrophysics Data System (ADS)
Kim, Junhee; Lynch, Jerome P.; Zonta, Daniele; Lee, Jong-Jae; Yun, Chung-Bang
2009-03-01
The installation of a structural monitoring system on a medium- to large-span bridge can be a challenging undertaking due to high system costs and time consuming installations. However, these historical challenges can be eliminated by using wireless sensors as the primary building block of a structural monitoring system. Wireless sensors are low-cost data acquisition nodes that utilize wireless communication to transfer data from the sensor to the data repository. Another advantageous characteristic of wireless sensors is their ability to be easily removed and reinstalled in another sensor location on the same structure; this installation modularity is highlighted in this study. Wireless sensor nodes designed for structural monitoring applications are installed on the 180 m long Yeondae Bridge (Korea) to measure the dynamic response of the bridge to controlled truck loading. To attain a high nodal density with a small number (20) of wireless sensors, the wireless sensor network is installed three times with each installation concentrating sensors in one portion of the bridge. Using forced and free vibration response data from the three installations, the modal properties of the bridge are accurately identified. Intentional nodal overlapping of the three different sensor installations allows mode shapes from each installation to be stitched together into global mode shapes. Specifically, modal properties of the Yeondae Bridge are derived off-line using frequency domain decomposition (FDD) modal analysis methods.
1988-09-01
defense programs lost far more to inefficient procedures than to fraud and dishonesty * (President’s Commission, l986c:15). Based on the Commission...recommendations from current studies, lessons learned from a successful program, and DOD expert opinions to develop an acquisition management strategy that...established for the alternative(s) selected in the preceding phase. 5. In the concept demonstration/validation phase the technical risk and economic
TARGET's role in knowledge acquisition, engineering, validation, and documentation
NASA Technical Reports Server (NTRS)
Levi, Keith R.
1994-01-01
We investigate the use of the TARGET task analysis tool for use in the development of rule-based expert systems. We found TARGET to be very helpful in the knowledge acquisition process. It enabled us to perform knowledge acquisition with one knowledge engineer rather than two. In addition, it improved communication between the domain expert and knowledge engineer. We also found it to be useful for both the rule development and refinement phases of the knowledge engineering process. Using the network in these phases required us to develop guidelines that enabled us to easily translate the network into production rules. A significant requirement for TARGET remaining useful throughout the knowledge engineering process was the need to carefully maintain consistency between the network and the rule representations. Maintaining consistency not only benefited the knowledge engineering process, but also has significant payoffs in the areas of validation of the expert system and documentation of the knowledge in the system.
Family Mode Deactivation Therapy Results and Implications
ERIC Educational Resources Information Center
Apsche, Jack A.; Bass, Christopher K.
2006-01-01
This article highlights the inclusion of Mode Deactivation Therapy as a treatment modality for families in crisis. As an empirically validated treatment, Mode Deactivation Therapy has been effective in treating a wide variety of psychological issues. Mode Deactivation Therapy, (MDT) was developed to treat adolescents with disorders of conduct…
49 CFR 1522.121 - Security threat assessments for personnel of TSA-approved validation firms.
Code of Federal Regulations, 2010 CFR
2010-10-01
...-approved validation firms. 1522.121 Section 1522.121 Transportation Other Regulations Relating to... FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation... for personnel of TSA-approved validation firms. Each of the following must successfully complete a...
Reliability and validity of the Safe Routes to school parent and student surveys
2011-01-01
Background The purpose of this study is to assess the reliability and validity of the U.S. National Center for Safe Routes to School's in-class student travel tallies and written parent surveys. Over 65,000 tallies and 374,000 parent surveys have been completed, but no published studies have examined their measurement properties. Methods Students and parents from two Charlotte, NC (USA) elementary schools participated. Tallies were conducted on two consecutive days using a hand-raising protocol; on day two students were also asked to recall the previous days' travel. The recall from day two was compared with day one to assess 24-hour test-retest reliability. Convergent validity was assessed by comparing parent-reports of students' travel mode with student-reports of travel mode. Two-week test-retest reliability of the parent survey was assessed by comparing within-parent responses. Reliability and validity were assessed using kappa statistics. Results A total of 542 students participated in the in-class student travel tally reliability assessment and 262 parent-student dyads participated in the validity assessment. Reliability was high for travel to and from school (kappa > 0.8); convergent validity was lower but still high (kappa > 0.75). There were no differences by student grade level. Two-week test-retest reliability of the parent survey (n = 112) ranged from moderate to very high for objective questions on travel mode and travel times (kappa range: 0.62 - 0.97) but was substantially lower for subjective assessments of barriers to walking to school (kappa range: 0.31 - 0.76). Conclusions The student in-class student travel tally exhibited high reliability and validity at all elementary grades. The parent survey had high reliability on questions related to student travel mode, but lower reliability for attitudinal questions identifying barriers to walking to school. Parent survey design should be improved so that responses clearly indicate issues that influence parental decision making in regards to their children's mode of travel to school. PMID:21651794
Learning the manifold of quality ultrasound acquisition.
El-Zehiry, Noha; Yan, Michelle; Good, Sara; Fang, Tong; Zhou, S Kevin; Grady, Leo
2013-01-01
Ultrasound acquisition is a challenging task that requires simultaneous adjustment of several acquisition parameters (the depth, the focus, the frequency and its operation mode). If the acquisition parameters are not properly chosen, the resulting image will have a poor quality and will degrade the patient diagnosis and treatment workflow. Several hardware-based systems for autotuning the acquisition parameters have been previously proposed, but these solutions were largely abandoned because they failed to properly account for tissue inhomogeneity and other patient-specific characteristics. Consequently, in routine practice the clinician either uses population-based parameter presets or manually adjusts the acquisition parameters for each patient during the scan. In this paper, we revisit the problem of autotuning the acquisition parameters by taking a completely novel approach and producing a solution based on image analytics. Our solution is inspired by the autofocus capability of conventional digital cameras, but is significantly more challenging because the number of acquisition parameters is large and the determination of "good quality" images is more difficult to assess. Surprisingly, we show that the set of acquisition parameters which produce images that are favored by clinicians comprise a 1D manifold, allowing for a real-time optimization to maximize image quality. We demonstrate our method for acquisition parameter autotuning on several live patients, showing that our system can start with a poor initial set of parameters and automatically optimize the parameters to produce high quality images.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, K; Barbarits, J; Humenik, R
Purpose: Chang’s mathematical formulation is a common method of attenuation correction applied on reconstructed Jaszczak phantom images. Though Chang’s attenuation correction method has been used for 360° angle acquisition, its applicability for 180° angle acquisition remains a question with one vendor’s camera software producing artifacts. The objective of this work is to ensure that Chang’s attenuation correction technique can be applied for reconstructed Jaszczak phantom images acquired in both 360° and 180° mode. Methods: The Jaszczak phantom filled with 20 mCi of diluted Tc-99m was placed on the patient table of Siemens e.cam™ (n = 2) and Siemens Symbia™ (nmore » = 1) dual head gamma cameras centered both in lateral and axial directions. A total of 3 scans were done at 180° and 2 scans at 360° orbit acquisition modes. Thirty two million counts were acquired for both modes. Reconstruction of the projection data was performed using filtered back projection smoothed with pre reconstruction Butterworth filter (order: 6, cutoff: 0.55). Reconstructed transaxial slices were attenuation corrected by Chang’s attenuation correction technique as implemented in the camera software. Corrections were also done using a modified technique where photon path lengths for all possible attenuation paths through a pixel in the image space were added to estimate the corresponding attenuation factor. The inverse of the attenuation factor was utilized to correct the attenuated pixel counts. Results: Comparable uniformity and noise were observed for 360° acquired phantom images attenuation corrected by the vendor technique (28.3% and 7.9%) and the proposed technique (26.8% and 8.4%). The difference in uniformity for 180° acquisition between the proposed technique (22.6% and 6.8%) and the vendor technique (57.6% and 30.1%) was more substantial. Conclusion: Assessment of attenuation correction performance by phantom uniformity analysis illustrated improved uniformity with the proposed algorithm compared to the camera software.« less
NASA Technical Reports Server (NTRS)
Thompson, W. S.; Ruedger, W. H.
1973-01-01
A review of user requirements and updated instrumentation plans are presented for the aircraft tracking and guidance facility at NASA Wallops Station. User demand has increased as a result of new flight research programs; however, basic requirements remain the same as originally reported. Instrumentation plans remain essentially the same but with plans for up- and down-link telemetry more firm. With slippages in the laser acquisition schedule, added importance is placed on the FPS-16 radar as the primary tracking device until the laser is available. Limited simulation studies of a particular Kalman-type filter are also presented. These studies simulated the use of the filter in a helicopter guidance loop in a real-time mode. Disadvantages and limitations of this mode of operation are pointed out. Laser eyesafety calculations show that laser tracking of aircraft is readily feasible from the eyesafety viewpoint.
NASA Technical Reports Server (NTRS)
Chie, C. M.; Su, Y. T.; Lindsey, W. C.; Koukos, J.
1984-01-01
The autonomous and integrated aspects of the operation of the AIRS (Autonomous Integrated Receive System) are discussed from a system operation point of view. The advantages of AIRS compared to the existing SSA receive chain equipment are highlighted. The three modes of AIRS operation are addressed in detail. The configurations of the AIRS are defined as a function of the operating modes and the user signal characteristics. Each AIRS configuration selection is made up of three components: the hardware, the software algorithms and the parameters used by these algorithms. A comparison between AIRS and the wide dynamics demodulation (WDD) is provided. The organization of the AIRS analytical/simulation software is described. The modeling and analysis is for simulating the performance of the PN subsystem is documented. The frequence acquisition technique using a frequency-locked loop is also documented. Doppler compensation implementation is described. The technological aspects of employing CCD's for PN acquisition are addressed.
NASA Astrophysics Data System (ADS)
Proffitt, Charles R.; Birkmann, Stephan; Ferruit, Pierre; Guilbert, Aurelie; Holler, Bryan J.; Stansberry, John
2017-10-01
The NIRSpec Instrument on the James Webb Space Telescope will allow near-IR spectroscopy in the wavelength range between 0.6 and 5.3 microns with resolving power of ~100, 1000, or 2700. We review strategies for performing spectral observations of solar system objects using each of NIRSpec's available observing modes, including the integral field unit (IFU), multi-Object Spectroscopy (MOS), and fixed slit (FS) templates, and discuss how the choice of mode affects the limiting target brightness as well as the detailed wavelength and spatial coverage obtained. We also discuss the expected pointing accuracy and target acquisition options for moving targets, including the use and limitations of the Wide Aperture Target Acquisition (WATA) capability and of the pre-defined field points that will be available for use with the MOS template to enable the use of custom micro-shutter patterns including ones emulating very long slits.
49 CFR 1522.123 - Conduct of assessments.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program... immediately to TSA. (d) No authorization to take remedial or disciplinary action. Neither the validation firm...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, R.J.
1997-04-01
The primary purpose of the "modification and validation of an automotive data processing unit (DPU), compressed video system, and communications equipment" cooperative research and development agreement (CRADA) was to modify and validate both hardware and software, developed by Scientific Atlanta, Incorporated (S-A) for defense applications (e.g., rotary-wing airplanes), for the commercial sector surface transportation domain (i.e., automobiles and trucks). S-A also furnished a state-of-the-art compressed video digital storage and retrieval system (CVDSRS), and off-the-shelf data storage and transmission equipment to support the data acquisition system for crash avoidance research (DASCAR) project conducted by Oak Ridge National Laboratory (ORNL). In turn,more » S-A received access to hardware and technology related to DASCAR. DASCAR was subsequently removed completely and installation was repeated a number of times to gain an accurate idea of complete installation, operation, and removal of DASCAR. Upon satisfactory completion of the DASCAR construction and preliminary shakedown, ORNL provided NHTSA with an operational demonstration of DASCAR at their East Liberty, OH test facility. The demonstration included an on-the-road demonstration of the entire data acquisition system using NHTSA'S test track. In addition, the demonstration also consisted of a briefing, containing the following: ORNL generated a plan for validating the prototype data acquisition system with regard to: removal of DASCAR from an existing vehicle, and installation and calibration in other vehicles; reliability of the sensors and systems; data collection and transmission process (data integrity); impact on the drivability of the vehicle and obtrusiveness of the system to the driver; data analysis procedures; conspicuousness of the vehicle to other drivers; and DASCAR installation and removal training and documentation. In order to identify any operational problems not captured by the systems testing and evaluation, the validation plan also addressed a short-term pilot research program to manipulate DASCAR under operational conditions using "naive" drivers. The effort exercised the fill capabilities of the data acquisition system. ORNL subsequently evaluated and pilot tested the data acquisition system using the validation plan. The plan was implemented in full at the NHTSA East Liberty, OH test facility, and was carried out as a cooperative effort with the Vehicle Research and Test Center staff. ORNL determined the reliability of the sensors and systems by exercising DASCAR For one vehicle type, ORNL evaluated systems reliability over a continuous period of 30 days with particular attention paid to maintenance of calibration and data integrity.« less
Risk analysis of analytical validations by probabilistic modification of FMEA.
Barends, D M; Oldenhof, M T; Vredenbregt, M J; Nauta, M J
2012-05-01
Risk analysis is a valuable addition to validation of an analytical chemistry process, enabling not only detecting technical risks, but also risks related to human failures. Failure Mode and Effect Analysis (FMEA) can be applied, using a categorical risk scoring of the occurrence, detection and severity of failure modes, and calculating the Risk Priority Number (RPN) to select failure modes for correction. We propose a probabilistic modification of FMEA, replacing the categorical scoring of occurrence and detection by their estimated relative frequency and maintaining the categorical scoring of severity. In an example, the results of traditional FMEA of a Near Infrared (NIR) analytical procedure used for the screening of suspected counterfeited tablets are re-interpretated by this probabilistic modification of FMEA. Using this probabilistic modification of FMEA, the frequency of occurrence of undetected failure mode(s) can be estimated quantitatively, for each individual failure mode, for a set of failure modes, and the full analytical procedure. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.
Full-field wrist pulse signal acquisition and analysis by 3D Digital Image Correlation
NASA Astrophysics Data System (ADS)
Xue, Yuan; Su, Yong; Zhang, Chi; Xu, Xiaohai; Gao, Zeren; Wu, Shangquan; Zhang, Qingchuan; Wu, Xiaoping
2017-11-01
Pulse diagnosis is an essential part in four basic diagnostic methods (inspection, listening, inquiring and palpation) in traditional Chinese medicine, which depends on longtime training and rich experience, so computerized pulse acquisition has been proposed and studied to ensure the objectivity. To imitate the process that doctors using three fingertips with different pressures to feel fluctuations in certain areas containing three acupoints, we established a five dimensional pulse signal acquisition system adopting a non-contacting optical metrology method, 3D digital image correlation, to record the full-field displacements of skin fluctuations under different pressures. The system realizes real-time full-field vibration mode observation with 10 FPS. The maximum sample frequency is 472 Hz for detailed post-processing. After acquisition, the signals are analyzed according to the amplitude, pressure, and pulse wave velocity. The proposed system provides a novel optical approach for digitalizing pulse diagnosis and massive pulse signal data acquisition for various types of patients.
Fault detection, isolation, and diagnosis of self-validating multifunctional sensors.
Yang, Jing-Li; Chen, Yin-Sheng; Zhang, Li-Li; Sun, Zhen
2016-06-01
A novel fault detection, isolation, and diagnosis (FDID) strategy for self-validating multifunctional sensors is presented in this paper. The sparse non-negative matrix factorization-based method can effectively detect faults by using the squared prediction error (SPE) statistic, and the variables contribution plots based on SPE statistic can help to locate and isolate the faulty sensitive units. The complete ensemble empirical mode decomposition is employed to decompose the fault signals to a series of intrinsic mode functions (IMFs) and a residual. The sample entropy (SampEn)-weighted energy values of each IMFs and the residual are estimated to represent the characteristics of the fault signals. Multi-class support vector machine is introduced to identify the fault mode with the purpose of diagnosing status of the faulty sensitive units. The performance of the proposed strategy is compared with other fault detection strategies such as principal component analysis, independent component analysis, and fault diagnosis strategies such as empirical mode decomposition coupled with support vector machine. The proposed strategy is fully evaluated in a real self-validating multifunctional sensors experimental system, and the experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID research topic of self-validating multifunctional sensors.
Adin, Christopher A; Royal, Kenneth D; Moore, Brandon; Jacob, Megan
2018-06-13
To evaluate the safety and usability of a wearable, waterproof high-definition camera/case for acquisition of surgical images by sterile personnel. An in vitro study to test the efficacy of biodecontamination of camera cases. Usability for intraoperative image acquisition was assessed in clinical procedures. Two waterproof GoPro Hero4 Silver camera cases were inoculated by immersion in media containing Staphylococcus pseudointermedius or Escherichia coli at ≥5.50E+07 colony forming units/mL. Cases were biodecontaminated by manual washing and hydrogen peroxide plasma sterilization. Cultures were obtained by swab and by immersion in enrichment broth before and after each contamination/decontamination cycle (n = 4). The cameras were then applied by a surgeon in clinical procedures by using either a headband or handheld mode and were assessed for usability according to 5 user characteristics. Cultures of all poststerilization swabs were negative. One of 8 cultures was positive in enrichment broth, consistent with a low level of contamination in 1 sample. Usability of the camera was considered poor in headband mode, with limited battery life, inability to control camera functions, and lack of zoom function affecting image quality. Handheld operation of the camera by the primary surgeon improved usability, allowing close-up still and video intraoperative image acquisition. Vaporized hydrogen peroxide sterilization of this camera case was considered effective for biodecontamination. Handheld operation improved usability for intraoperative image acquisition. Vaporized hydrogen peroxide sterilization and thorough manual washing of a waterproof camera may provide cost effective intraoperative image acquisition for documentation purposes. © 2018 The American College of Veterinary Surgeons.
Sun, Yupeng; Li, Li; Liao, Man; Su, Min; Wan, Changchen; Zhang, Lantong; Zhang, Hailin
2018-05-30
In this study, a systematic data acquisition and mining strategy aimed at the traditional Chinese medicine (TCM) complex system based on ultra high-performance liquid chromatography coupled with quadrupole time of flight mass spectrometry (UHPLC-Q-TOF-MS) was reported. The workflow of this strategy is as follows: First, the high resolution mass data are acquired by both data-dependent acquisition mode (DDA) and data-independent acquisition mode (DIA). Then a global data mining that combined targeted and non-targeted compound finding is applied to analyze mass spectral data. Furthermore, some assistant tools, such as key product ions (KPIs), are employed for compound hunting and identification. The TCM Ziwan (ZW, Aster tataricus rhizoma) was used to illustrate this strategy for the first time. In this research, total 131 compounds including organic acids, peptides, terpenes, steroids, flavonoids, coumarins, anthraquinones and aldehydes were identified or tentatively characterized in ZW based on accurate mass measurements within ±5 ppm error, and 50 of them were unambiguously confirmed by comparing standard compounds. Afterwards, based on the traditional Chinese medical theory and the key determinants of firing patterns of ventral tegmental area (VTA) dopamine (DA) neurons in the development of depression, the confirmed compounds were subsequently evaluated the pharmacological effect of activity of VTA DA neurons and anti-depressive efficacy. This research provided not only a chemical profiling for further in vivo study of ZW, but also an efficient data acquisition and mining strategy to profile the chemical constituents and find new bioactive substances for other TCM complex system. Copyright © 2018 Elsevier B.V. All rights reserved.
Morbach, Caroline; Gelbrich, Götz; Breunig, Margret; Tiffe, Theresa; Wagner, Martin; Heuschmann, Peter U; Störk, Stefan
2018-02-14
Variability related to image acquisition and interpretation is an important issue of echocardiography in clinical trials. Nevertheless, there is no broadly accepted standard method for quality assessment of echocardiography in clinical research reports. We present analyses based on the echocardiography quality-assurance program of the ongoing STAAB cohort study (characteristics and course of heart failure stages A-B and determinants of progression). In 43 healthy individuals (mean age 50 ± 14 years; 18 females), duplicate echocardiography scans were acquired and mutually interpreted by one of three trained sonographers and an EACVI certified physician, respectively. Acquisition (AcV), interpretation (InV), and inter-observer variability (IOV; i.e., variability between the acquisition-interpretation sequences of two different observers), were determined for selected M-mode, B-mode, and Doppler parameters. We calculated Bland-Altman upper 95% limits of absolute differences, implying that 95% of measurement differences were smaller/equal to the given value: e.g. LV end-diastolic volume (mL): 25.0, 25.0, 27.9; septal e' velocity (cm/s): 3.03, 1.25, 3.58. Further, 90, 85, and 80% upper limits of absolute differences were determined for the respective parameters. Both, acquisition and interpretation, independently and sizably contributed to IOV. As such, separate assessment of AcV and InV is likely to aid in echocardiography training and quality-assurance. Our results further suggest to routinely determine IOV in clinical trials as a comprehensive measure of imaging quality. The derived 95, 90, 85, and 80% upper limits of absolute differences are suggested as reproducibility targets of future studies, thus contributing to the international efforts of standardization in quality-assurance.
The Attitude Determination Scale for Value Acquisition: A Validity and Reliability Study
ERIC Educational Resources Information Center
Cetin, Saban
2017-01-01
This study aims to develop a measurement tool having measurement reliability with the aim of determining attitudes for values acquisition of secondary school students. The study was conducted on totally 325 high school senior students as 200 female and 125 male students in spring semester of 2014-2015 educational year. In the study, expert opinion…
Rayleigh wave acoustic emission during crack propagation in steel
NASA Astrophysics Data System (ADS)
Horne, Michael R.
2003-07-01
An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the SSP.
Rayleigh wave acoustic emission during crack propagation in steel
NASA Astrophysics Data System (ADS)
Horne, Michael R.
An investigation was conducted of the existence of seismic surface pulses (SSP) on crack faces in near-failure fatigue. An SSP has components of various modes of wave propagation. The component with the largest amplitude is a Rayleigh surface wave pulse. The possibility that these surface modes have much higher amplitudes than bulk modes of acoustic emission (AE) was illustrated by an idealized thought experiment relating an SSP on a half-space to the response of crack faces to crack extension. A number of aspects of AE monitoring in finite objects were investigated. Attributes of surface wave propagation on the edge of a specimen were found to be easier to monitor than other modes of wave propagation. Wavelet analysis was used to compare the characteristics of brittle AE with other sources. A new testing paradigm was developed to reduce interference from secondary sources of AE and enhance the investigation of AE from critical crack behavior. Unique specimen design features were developed, data acquisition features sought and validated, a dead weight load frame was modified, and data analysis procedures were developed. Criteria based on velocity, frequency content, amplitude and shape were devised to determine if an AE event is an SSP. The tests were designed to mimic load conditions on structures such as bridges and hence investigate the difference between AE generated in field conditions and that of typical laboratory conditions. Varieties of steel, from very ductile to very brittle, were tested. It was concluded that plastic zone formation, considered a secondary source of AE, was found not to interfere with the SSP activity. The SSP was found experimentally to have 2-3 times the amplitude of the bulk wave AE. The lack of sufficient AE did not allow for determination of conclusive changes in the AE as the specimens approached failure. However, it was found that brittle crack extension in fatigue and ductile failure can produce wave propagation resembling the SSP.
Hatherly, Robert; Brolin, Fredrik; Oldner, Åsa; Sundin, Anders; Lundblad, Henrik; Maguire, Gerald Q; Jonsson, Cathrine; Jacobsson, Hans; Noz, Marilyn E
2014-03-01
Diagnosis of new bone growth in patients with compound tibia fractures or deformities treated using a Taylor spatial frame is difficult with conventional radiography because the frame obstructs the images and creates artifacts. The use of Na(18)F PET studies may help to eliminate this difficulty. Patients were positioned on the pallet of a clinical PET/CT scanner and made as comfortable as possible with their legs immobilized. One bed position covering the site of the fracture, including the Taylor spatial frame, was chosen for the study. A topogram was performed, as well as diagnostic and attenuation correction CT. The patients were given 2 MBq of Na(18)F per kilogram of body weight. A 45-min list-mode acquisition was performed starting at the time of injection, followed by a 5-min static acquisition 60 min after injection. The patients were examined 6 wk after the Taylor spatial frame had been applied and again at 3 mo to assess new bone growth. A list-mode reconstruction sequence of 1 × 1,800 and 1 × 2,700 s, as well as the 5-min static scan, allowed visualization of regional bone turnover. With Na(18)F PET/CT, it was possible to confirm regional bone turnover as a means of visualizing bone remodeling without the interference of artifacts from the Taylor spatial frame. Furthermore, dynamic list-mode acquisition allowed different sequences to be performed, enabling, for example, visualization of tracer transport from blood to the fracture site.
THE IMPACT OF MODE OF ACQUISITION ON BIOLOGICAL MARKERS OF PAEDIATRIC HEPATITIS C VIRUS INFECTION
England, Kirsty; Thorne, Claire; Harris, Helen; Ramsay, Mary; Newell, Marie-Louise
2012-01-01
Background Despite the introduction of blood donor screening, worldwide, children continue to become infected with HCV via un-sterile medical injections, receipt of unscreened blood and isolated hospital contamination outbreaks. It is plausible that the natural history and disease progression in these children might differ from that of their vertically infected counterparts. Materials and Methods Vertically and parenterally HCV infected children were prospectively followed within the European Paediatric HCV Network and the UK National HCV Register respectively. Biological profiles were compared. Results Vertically and parenterally HCV infected children differed in terms of some key characteristics including the male:female ratio and the proportion of children receiving therapy. Parenterally infected children were more likely to have at least one hepatomegaly event during follow-up, 20% vs. 10%. Parenteral infection did not significantly affect the odds of being consistently viraemic, AOR 1.14 p=0.703 and there was no significant difference in the odds of having consistently elevated ALT levels and mode of acquisition, AOR 0.83 p=0.748. The proportion of children with 2 or more markers of HCV infection did not differ significantly by mode of acquisition, χ21.13 p=0.288. Conclusions This analysis does not support substantial differences between vertically and parenterally infected groups but there are specific mechanisms identified requiring further investigation. Given the continued parenteral infection of children worldwide it is vital that knowledge of disease progression in this group is accurate and that the differences in comparison to vertically infected children are clarified to inform more accurate and individualised clinical management. PMID:21762285
NASA Astrophysics Data System (ADS)
Dardanelli, G.; Carella, M.
2013-09-01
This article summarizes the experience gained between 2012 and 2013 by the department of "Civil Engineering, Environmental, Aerospace and Materials" of University of Palermo on the integrated survey of Ninni Park Cassara Park in Palermo and the subsequent testing of methods, tools and techniques based on current research regarding the acquisition and processing of GNSS (Global Navigation Satellite System) data and laser-scanner. A fruitful time dedicated to the design of the survey has allowed us to become aware of the critical issues that the site presents because of its vast extent and diversity in size and number of the elements of which it is composed. The work has been addressed thematizing the elements to detect and selecting the techniques as possible economic and fast to be applied in the acquisition phase. Sixteen control points evenly distributed within the site were first materialized and detected with static GNSS mode. The survey mode NRTK (Network Real Time Kinematic) of the elements was then planned and carried out. The survey of the numerous planting was done by exploiting the mode with EGNOS (European Geostationary Navigation Overlay Service) correction. We continued the work experimenting with MMS (Mobile Mapping System) acquisition through which it was possible to acquire data on the morphology of the terrain, the conditions of the state of footpaths, buildings and on the distribution of street furniture. The point clouds obtained were subjected to both automatic and manual procedures to verify, finally, their actual descriptive possibilities of real forms detected.
Monitoring proton radiation therapy with in-room PET imaging
NASA Astrophysics Data System (ADS)
Zhu, Xuping; España, Samuel; Daartz, Juliane; Liebsch, Norbert; Ouyang, Jinsong; Paganetti, Harald; Bortfeld, Thomas R.; El Fakhri, Georges
2011-07-01
We used a mobile positron emission tomography (PET) scanner positioned within the proton therapy treatment room to study the feasibility of proton range verification with an in-room, stand-alone PET system, and compared with off-line equivalent studies. Two subjects with adenoid cystic carcinoma were enrolled into a pilot study in which in-room PET scans were acquired in list-mode after a routine fractionated treatment session. The list-mode PET data were reconstructed with different time schemes to generate in-room short, in-room long and off-line equivalent (by skipping coincidences from the first 15 min during the list-mode reconstruction) PET images for comparison in activity distribution patterns. A phantom study was followed to evaluate the accuracy of range verification for different reconstruction time schemes quantitatively. The in-room PET has a higher sensitivity compared to the off-line modality so that the PET acquisition time can be greatly reduced from 30 to <5 min. Features in deep-site, soft-tissue regions were better retained with in-room short PET acquisitions because of the collection of 15O component and lower biological washout. For soft tissue-equivalent material, the distal fall-off edge of an in-room short acquisition is deeper compared to an off-line equivalent scan, indicating a better coverage of the high-dose end of the beam. In-room PET is a promising low cost, high sensitivity modality for the in vivo verification of proton therapy. Better accuracy in Monte Carlo predictions, especially for biological decay modeling, is necessary.
Dynamic phase-sensitive optical coherence elastography at a true kilohertz frame-rate
NASA Astrophysics Data System (ADS)
Singh, Manmohan; Wu, Chen; Liu, Chih-Hao; Li, Jiasong; Schill, Alexander; Nair, Achuth; Larin, Kirill V.
2016-03-01
Dynamic optical coherence elastography (OCE) techniques have rapidly emerged as a noninvasive way to characterize the biomechanical properties of tissue. However, clinical applications of the majority of these techniques have been unfeasible due to the extended acquisition time because of multiple temporal OCT acquisitions (M-B mode). Moreover, multiple excitations, large datasets, and prolonged laser exposure prohibit their translation to the clinic, where patient discomfort and safety are critical criteria. Here, we demonstrate the feasibility of noncontact true kilohertz frame-rate dynamic optical coherence elastography by directly imaging a focused air-pulse induced elastic wave with a home-built phase-sensitive OCE system. The OCE system was based on a 4X buffered Fourier Domain Mode Locked swept source laser with an A-scan rate of ~1.5 MHz, and imaged the elastic wave propagation at a frame rate of ~7.3 kHz. Because the elastic wave directly imaged, only a single excitation was utilized for one line scan measurement. Rather than acquiring multiple temporal scans at successive spatial locations as with previous techniques, here, successive B-scans were acquired over the measurement region (B-M mode). Preliminary measurements were taken on tissue-mimicking agar phantoms of various concentrations, and the results showed good agreement with uniaxial mechanical compression testing. Then, the elasticity of an in situ porcine cornea in the whole eye-globe configuration at various intraocular pressures was measured. The results showed that this technique can acquire a depth-resolved elastogram in milliseconds. Furthermore, the ultra-fast acquisition ensured that the laser safety exposure limit for the cornea was not exceeded.
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-01-01
Background and Aims Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens. Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern – potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Methods Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Key Results Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. Conclusions The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. PMID:28025285
Acoustic-Structure Interaction in Rocket Engines: Validation Testing
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Joji, Scott S.; Parks, Russel A.; Brown, Andrew M.
2009-01-01
While analyzing a rocket engine component, it is often necessary to account for any effects that adjacent fluids (e.g., liquid fuels or oxidizers) might have on the structural dynamics of the component. To better characterize the fully coupled fluid-structure system responses, an analytical approach that models the system as a coupled expansion of rigid wall acoustic modes and in vacuo structural modes has been proposed. The present work seeks to experimentally validate this approach. To experimentally observe well-coupled system modes, the test article and fluid cavities are designed such that the uncoupled structural frequencies are comparable to the uncoupled acoustic frequencies. The test measures the natural frequencies, mode shapes, and forced response of cylindrical test articles in contact with fluid-filled cylindrical and/or annular cavities. The test article is excited with a stinger and the fluid-loaded response is acquired using a laser-doppler vibrometer. The experimentally determined fluid-loaded natural frequencies are compared directly to the results of the analytical model. Due to the geometric configuration of the test article, the analytical model is found to be valid for natural modes with circumferential wave numbers greater than four. In the case of these modes, the natural frequencies predicted by the analytical model demonstrate excellent agreement with the experimentally determined natural frequencies.
Smart RC elements for long-life monitoring of civil infrastructures
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Pozzi, Matteo; Forti, Marco; Bursi, Oreste S.
2005-05-01
A research effort has been launched at the University of Trento, aimed at developing an innovative distributed construction system based on smart prefabricated concrete elements allowing for real-time condition assessment of civil infrastructures. So far, two reduced-scale prototypes have been produced, each consisting of a 0.2 by 0.3 by 5.6m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optics Sensors (FOS) at the lower edge. The sensors employed are Fiber Bragg Grating (FBG) -based and can measure finite displacements both in statics and dynamics. The acquisition module uses a single commercial interrogation unit and a software-controlled optical switch, allowing acquisition of dynamic multi-channel signals from FBG-FOS, with a sample frequency of 625 Hz per channel. The performance of the system underwent validation I n the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including concrete cover spalling and partial corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. This paper presents in detail the results of the experiment and demonstrates how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.
49 CFR 1522.127 - Assessment report.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program...) The assessment report must include the following information, in addition to any other information...
Human torso phantom for imaging of heart with realistic modes of cardiac and respiratory motion
Boutchko, Rostyslav; Balakrishnan, Karthikayan; Gullberg, Grant T; O& #x27; Neil, James P
2013-09-17
A human torso phantom and its construction, wherein the phantom mimics respiratory and cardiac cycles in a human allowing acquisition of medical imaging data under conditions simulating patient cardiac and respiratory motion.
NASA Technical Reports Server (NTRS)
Muszynska, A.
1985-01-01
The operation of rotor rigs used to demonstrate various instability phenomena occurring in rotating machines is described. The instability phenomena demonstrated included oil whirl/whip antiswirl, rub, loose rotating parts, water-lubricated bearing instabilities, and cracked shaft. The rotor rigs were also used to show corrective measures for preventing instabilities. Vibrational response data from the rigs were taken with modern, computerized instrumentation. The rotor nonsynchronous perturbation rig demonstrated modal identification techniques for rotor/bearing systems. Computer-aided data acquisition and presentation, using the dynamic stiffness method, makes it possible to identify rotor and bearing parameters for low modes. The shaft mode demonstrator presented the amplified modal shape line of the shaft excited by inertia forces of unbalance (synchronous perturbation). The first three bending modes of the shaft can be demonstrated. The user-friendly software, Orbits, presented a simulation of rotor precessional motion that is characteristic of various instability phenomena. The data presentation demonstration used data measured on a turbine driven compressor train as an example of how computer aided data acquisition and presentation assists in identifying rotating machine malfunctions.
Cosmic Origins Spectrograph : Target Acquisition Performance and Updated Guidelines
NASA Astrophysics Data System (ADS)
Penton, Steven V.; Keyes, C.; Osterman, S.; Sahnow, D.; Soderblom, D.; COS IDT Team; STScI COS Team
2010-01-01
The Cosmic Origins Spectrograph (COS) is a slit-less spectrograph with a very small aperture (radius = 1.25"). To achieve the desired wavelength accuracy of <15 km/s, HST+COS must center the target to within 0.1” of the center of the aperture. This is the angle subtended by a typical AAS poster when viewed from over 1400 miles away. During SMOV we have fine-tuned the COS target acquisition (TA) procedures to exceed this accuracy for all three COS TA modes; NUV imaging, NUV spectroscopic, and FUV spectroscopic. We will compare all COS TA modes in terms of centering accuracy, efficiency (elapsed time), and required signal-to-noise for all targets suitable for use with COS. We will also provide updated recommendations for the options of all TA modes (e.g., SCAN-SIZE and NUM-POS of ACQ/PEAKD). We have observed in SMOV that HST is providing an excellent initial 1-σ blind pointing accuracy of ±0.4” in both the along-dispersion and cross-dispersion directions. We will discuss the implications of this, and other lessons learned in SMOV, on Cycle 17 and 18 HST+COS TAs.
NASA Astrophysics Data System (ADS)
Korte, Andrew R.; Lee, Young Jin
2013-06-01
We have recently developed a multiplex mass spectrometry imaging (MSI) method which incorporates high mass resolution imaging and MS/MS and MS3 imaging of several compounds in a single data acquisition utilizing a hybrid linear ion trap-Orbitrap mass spectrometer (Perdian and Lee, Anal. Chem. 82, 9393-9400, 2010). Here we extend this capability to obtain positive and negative ion MS and MS/MS spectra in a single MS imaging experiment through polarity switching within spiral steps of each raster step. This methodology was demonstrated for the analysis of various lipid class compounds in a section of mouse brain. This allows for simultaneous imaging of compounds that are readily ionized in positive mode (e.g., phosphatidylcholines and sphingomyelins) and those that are readily ionized in negative mode (e.g., sulfatides, phosphatidylinositols and phosphatidylserines). MS/MS imaging was also performed for a few compounds in both positive and negative ion mode within the same experimental set-up. Insufficient stabilization time for the Orbitrap high voltage leads to slight deviations in observed masses, but these deviations are systematic and were easily corrected with a two-point calibration to background ions.
49 CFR 1522.109 - TSA review and approval.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., DEPARTMENT OF HOMELAND SECURITY SECURITY RULES FOR ALL MODES OF TRANSPORTATION TSA-APPROVED VALIDATION FIRMS AND VALIDATORS TSA-Approved Validation Firms and Validators for the Certified Cargo Screening Program... that the applicant is qualified to be a validation firm. (b) Notice.—(1) Approval. If an application is...
fastSIM: a practical implementation of fast structured illumination microscopy.
Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer
2015-01-16
A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5 × 16.5 µm 2 , free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.
fastSIM: a practical implementation of fast structured illumination microscopy
NASA Astrophysics Data System (ADS)
Lu-Walther, Hui-Wen; Kielhorn, Martin; Förster, Ronny; Jost, Aurélie; Wicker, Kai; Heintzmann, Rainer
2015-03-01
A significant improvement in acquisition speed of structured illumination microscopy (SIM) opens a new field of applications to this already well-established super-resolution method towards 3D scanning real-time imaging of living cells. We demonstrate a method of increased acquisition speed on a two-beam SIM fluorescence microscope with a lateral resolution of ~100 nm at a maximum raw data acquisition rate of 162 frames per second (fps) with a region of interest of 16.5 × 16.5 µm2, free of mechanically moving components. We use a programmable spatial light modulator (ferroelectric LCOS) which promises precise and rapid control of the excitation pattern in the sample plane. A passive Fourier filter and a segmented azimuthally patterned polarizer are used to perform structured illumination with maximum contrast. Furthermore, the free running mode in a modern sCMOS camera helps to achieve faster data acquisition.
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Verification and validation (V&V) is a highly challenging undertaking for SLS structural dynamics models due to the magnitude and complexity of SLS subassemblies and subassemblies. Responses to challenges associated with V&V of Space Launch System (SLS) structural dynamics models are presented in Volume I of this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA). (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976). (3) Mode Consolidation (MC). Finally, (4) Experimental Mode Verification (EMV). This document contains the appendices to Volume I.
2012-03-05
Alarm button. Under the GPS frame are two smaller frames. On the left is a frame with buttons labeled Tractor Guidance and Acquisition Error... GPS ) and the Attitude Heading Reference System (AHRS) data. 5.2 Using the Data Acquisition Simulator Software The simulator and a practice set... acquisition for one polarity of the TX (33ms dead band for relay switching + 33 ms of waveforms). When the GPS is being used this is usually “1”, but may be
Fast GPU-based computation of spatial multigrid multiframe LMEM for PET.
Nassiri, Moulay Ali; Carrier, Jean-François; Després, Philippe
2015-09-01
Significant efforts were invested during the last decade to accelerate PET list-mode reconstructions, notably with GPU devices. However, the computation time per event is still relatively long, and the list-mode efficiency on the GPU is well below the histogram-mode efficiency. Since list-mode data are not arranged in any regular pattern, costly accesses to the GPU global memory can hardly be optimized and geometrical symmetries cannot be used. To overcome obstacles that limit the acceleration of reconstruction from list-mode on the GPU, a multigrid and multiframe approach of an expectation-maximization algorithm was developed. The reconstruction process is started during data acquisition, and calculations are executed concurrently on the GPU and the CPU, while the system matrix is computed on-the-fly. A new convergence criterion also was introduced, which is computationally more efficient on the GPU. The implementation was tested on a Tesla C2050 GPU device for a Gemini GXL PET system geometry. The results show that the proposed algorithm (multigrid and multiframe list-mode expectation-maximization, MGMF-LMEM) converges to the same solution as the LMEM algorithm more than three times faster. The execution time of the MGMF-LMEM algorithm was 1.1 s per million of events on the Tesla C2050 hardware used, for a reconstructed space of 188 x 188 x 57 voxels of 2 x 2 x 3.15 mm3. For 17- and 22-mm simulated hot lesions, the MGMF-LMEM algorithm led on the first iteration to contrast recovery coefficients (CRC) of more than 75 % of the maximum CRC while achieving a minimum in the relative mean square error. Therefore, the MGMF-LMEM algorithm can be used as a one-pass method to perform real-time reconstructions for low-count acquisitions, as in list-mode gated studies. The computation time for one iteration and 60 millions of events was approximately 66 s.
Picture-Word Differences in the Acquisition and Retention of Paired Associates
ERIC Educational Resources Information Center
Postman, Leo
1978-01-01
In a study of paired-associate learning and retention, the mode of presentation (pictures versus words) of the stimuli and the responses was varied factorially. Results pose difficulties for current interpretations of picture-word differences. (Editor/RK)
ERIC Educational Resources Information Center
Adeleke, A. A.; Joshua, E. O.
2015-01-01
Physics literacy plays a crucial part in global technological development as several aspects of science and technology apply concepts and principles of physics in their operations. However, the acquisition of scientific literacy in physics in our society today is not encouraging enough to the desirable standard. Therefore, this study focuses on…
Simpson, Susan G.; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B.; Castelnuovo, Gianluca
2018-01-01
Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population. PMID:29740379
Simpson, Susan G; Pietrabissa, Giada; Rossi, Alessandro; Seychell, Tahnee; Manzoni, Gian Mauro; Munro, Calum; Nesci, Julian B; Castelnuovo, Gianluca
2018-01-01
Objective: The aim of this study was to examine the psychometric properties and factorial structure of the Schema Mode Inventory for Eating Disorders (SMI-ED) in a disordered eating population. Method: 573 participants with disordered eating patterns as measured by the Eating Disorder Examination Questionnaire (EDE-Q) completed the 190-item adapted version of the Schema Mode Inventory (SMI). The new SMI-ED was developed by clinicians/researchers specializing in the treatment of eating disorders, through combining items from the original SMI with a set of additional questions specifically representative of the eating disorder population. Psychometric testing included Confirmatory Factor Analysis (CFA) and internal consistency (Cronbach's α). Multivariate Analyses of Covariance (MANCOVA) was also run to test statistical differences between the EDE-Q subscales on the SMI-ED modes, while controlling for possible confounding variables. Results: Factorial analysis confirmed an acceptable 16-related-factors solution for the SMI-ED, thus providing preliminary evidence for the adequate validity of the new measure based on internal structure. Concurrent validity was also established through moderate to high correlations on the modes most relevant to eating disorders with EDE-Q subscales. This study represents the first step in creating a psychometrically sound instrument for measuring schema modes in eating disorders, and provides greater insight into the relevant schema modes within this population. Conclusion: This research represents an important preliminary step toward understanding and labeling the schema mode model for this clinical group. Findings from the psychometric evaluation of SMI-ED suggest that this is a useful tool which may further assist in the measurement and conceptualization of schema modes in this population.
Consistency of FMEA used in the validation of analytical procedures.
Oldenhof, M T; van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Vredenbregt, M J; Weda, M; Barends, D M
2011-02-20
In order to explore the consistency of the outcome of a Failure Mode and Effects Analysis (FMEA) in the validation of analytical procedures, an FMEA was carried out by two different teams. The two teams applied two separate FMEAs to a High Performance Liquid Chromatography-Diode Array Detection-Mass Spectrometry (HPLC-DAD-MS) analytical procedure used in the quality control of medicines. Each team was free to define their own ranking scales for the probability of severity (S), occurrence (O), and detection (D) of failure modes. We calculated Risk Priority Numbers (RPNs) and we identified the failure modes above the 90th percentile of RPN values as failure modes needing urgent corrective action; failure modes falling between the 75th and 90th percentile of RPN values were identified as failure modes needing necessary corrective action, respectively. Team 1 and Team 2 identified five and six failure modes needing urgent corrective action respectively, with two being commonly identified. Of the failure modes needing necessary corrective actions, about a third were commonly identified by both teams. These results show inconsistency in the outcome of the FMEA. To improve consistency, we recommend that FMEA is always carried out under the supervision of an experienced FMEA-facilitator and that the FMEA team has at least two members with competence in the analytical method to be validated. However, the FMEAs of both teams contained valuable information that was not identified by the other team, indicating that this inconsistency is not always a drawback. Copyright © 2010 Elsevier B.V. All rights reserved.
Fiberfox: facilitating the creation of realistic white matter software phantoms.
Neher, Peter F; Laun, Frederik B; Stieltjes, Bram; Maier-Hein, Klaus H
2014-11-01
Phantom-based validation of diffusion-weighted image processing techniques is an important key to innovation in the field and is widely used. Openly available and user friendly tools for the flexible generation of tailor-made datasets for the specific tasks at hand can greatly facilitate the work of researchers around the world. We present an open-source framework, Fiberfox, that enables (1) the intuitive definition of arbitrary artificial white matter fiber tracts, (2) signal generation from those fibers by means of the most recent multi-compartment modeling techniques, and (3) simulation of the actual MR acquisition that allows for the introduction of realistic MRI-related effects into the final image. We show that real acquisitions can be closely approximated by simulating the acquisition of the well-known FiberCup phantom. We further demonstrate the advantages of our framework by evaluating the effects of imaging artifacts and acquisition settings on the outcome of 12 tractography algorithms. Our findings suggest that experiments on a realistic software phantom might change the conclusions drawn from earlier hardware phantom experiments. Fiberfox may find application in validating and further developing methods such as tractography, super-resolution, diffusion modeling or artifact correction. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Arevalo, S.; Atwood, C.; Bell, P.; Blacker, T. D.; Dey, S.; Fisher, D.; Fisher, D. A.; Genalis, P.; Gorski, J.; Harris, A.; Hill, K.; Hurwitz, M.; Kendall, R. P.; Meakin, R. L.; Morton, S.; Moyer, E. T.; Post, D. E.; Strawn, R.; Veldhuizen, D. v.; Votta, L. G.; Wynn, S.; Zelinski, G.
2008-07-01
In FY2008, the U.S. Department of Defense (DoD) initiated the Computational Research and Engineering Acquisition Tools and Environments (CREATE) program, a 360M program with a two-year planning phase and a ten-year execution phase. CREATE will develop and deploy three computational engineering tool sets for DoD acquisition programs to use to design aircraft, ships and radio-frequency antennas. The planning and execution of CREATE are based on the 'lessons learned' from case studies of large-scale computational science and engineering projects. The case studies stress the importance of a stable, close-knit development team; a focus on customer needs and requirements; verification and validation; flexible and agile planning, management, and development processes; risk management; realistic schedules and resource levels; balanced short- and long-term goals and deliverables; and stable, long-term support by the program sponsor. Since it began in FY2008, the CREATE program has built a team and project structure, developed requirements and begun validating them, identified candidate products, established initial connections with the acquisition programs, begun detailed project planning and development, and generated the initial collaboration infrastructure necessary for success by its multi-institutional, multidisciplinary teams.
Development and Validation of a Mobile Device-based External Ventricular Drain Simulator.
Morone, Peter J; Bekelis, Kimon; Root, Brandon K; Singer, Robert J
2017-10-01
Multiple external ventricular drain (EVD) simulators have been created, yet their cost, bulky size, and nonreusable components limit their accessibility to residency programs. To create and validate an animated EVD simulator that is accessible on a mobile device. We developed a mobile-based EVD simulator that is compatible with iOS (Apple Inc., Cupertino, California) and Android-based devices (Google, Mountain View, California) and can be downloaded from the Apple App and Google Play Store. Our simulator consists of a learn mode, which teaches users the procedure, and a test mode, which assesses users' procedural knowledge. Twenty-eight participants, who were divided into expert and novice categories, completed the simulator in test mode and answered a postmodule survey. This was graded using a 5-point Likert scale, with 5 representing the highest score. Using the survey results, we assessed the module's face and content validity, whereas construct validity was evaluated by comparing the expert and novice test scores. Participants rated individual survey questions pertaining to face and content validity a median score of 4 out of 5. When comparing test scores, generated by the participants completing the test mode, the experts scored higher than the novices (mean, 71.5; 95% confidence interval, 69.2 to 73.8 vs mean, 48; 95% confidence interval, 44.2 to 51.6; P < .001). We created a mobile-based EVD simulator that is inexpensive, reusable, and accessible. Our results demonstrate that this simulator is face, content, and construct valid. Copyright © 2017 by the Congress of Neurological Surgeons
Digital gamma-gamma coincidence HPGe system for environmental analysis.
Marković, Nikola; Roos, Per; Nielsen, Sven Poul
2017-08-01
The performance of a new gamma-gamma coincidence spectrometer system for environmental samples analysis at the Center for Nuclear Technologies of the Technical University of Denmark (DTU) is reported. Nutech Coincidence Low Energy Germanium Sandwich (NUCLeGeS) system consists of two HPGe detectors in a surface laboratory with a digital acquisition system used to collect the data in time-stamped list mode with 10ns time resolution. The spectrometer is used in both anticoincidence and coincidence modes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Rønning, Helene Thorsen; Einarsen, Kristin; Asp, Tone Normann
2006-06-23
A simple and rapid method for the determination and confirmation of chloramphenicol in several food matrices with LC-MS/MS was developed. Following addition of d5-chloramphenicol as internal standard, meat, seafood, egg, honey and milk samples were extracted with acetonitrile. Chloroform was then added to remove water. After evaporation, the residues were reconstituted in methanol/water (3+4) before injection. The urine and plasma samples were after addition of internal standard applied to a Chem Elut extraction cartridge, eluted with ethyl acetate, and hexane washed. Also these samples were reconstituted in methanol/water (3+4) after evaporation. By using an MRM acquisition method in negative ionization mode, the transitions 321-->152, 321-->194 and 326-->157 were used for quantification, confirmation and internal standard, respectively. Quantification of chloramphenicol positive samples regardless of matrix could be achieved with a common water based calibration curve. The validation of the method was based on EU-decision 2002/657 and different ways of calculating CCalpha and CCbeta were evaluated. The common CCalpha and CCbeta for all matrices were 0.02 and 0.04 microg/kg for the 321-->152 ion transition, and 0.02 and 0.03 microg/kg for the 321-->194 ion transition. At fortification level 0.1 microg/kg the within-laboratory reproducibility is below 25%.
Meyer, Markus R; Caspar, Achim; Brandt, Simon D; Maurer, Hans H
2014-01-01
The first synthetic tryptamines have entered the designer drug market in the late 1990s and were distributed as psychedelic recreational drugs. In the meantime, several analogs have been brought onto the market indicating a growing interest in this drug class. So far, only scarce analytical data were available on the detectability of tryptamines in human biosamples. Therefore, the aim of the presented study was the development and full validation of a method for their detection in human urine and plasma and their quantification in human plasma. The liquid chromatography-linear ion trap mass spectrometry method presented covered 37 tryptamines as well as five β-carbolines, ibogaine, and yohimbine. Compounds were analyzed after protein precipitation of urine or fast liquid-liquid extraction of plasma using an LXQ linear ion trap coupled to an Accela ultra ultra high-performance liquid chromatography system. Data mining was performed via information-dependent acquisition or targeted product ion scan mode with positive electrospray ionization. The assay was selective for all tested substances with limits of detection in urine between 10 and 100 ng/mL and in plasma between 1 and 100 ng/mL. A validated quantification in plasma according to international recommendation could be demonstrated for 33 out of 44 analytes.
Kawakami, Shogo; Ishiyama, Hiromichi; Satoh, Takefumi; Tsumura, Hideyasu; Sekiguchi, Akane; Takenaka, Kouji; Tabata, Ken-Ichi; Iwamura, Masatsugu; Hayakawa, Kazushige
2017-08-01
To compare prostate contours on conventional stepping transverse image acquisitions with those on twister-based sagittal image acquisitions. Twenty prostate cancer patients who were planned to have permanent interstitial prostate brachytherapy were prospectively accrued. A transrectal ultrasonography probe was inserted, with the patient in lithotomy position. Transverse images were obtained with stepping movement of the transverse transducer. In the same patient, sagittal images were also obtained through rotation of the sagittal transducer using the "Twister" mode. The differences of prostate size among the two types of image acquisitions were compared. The relationships among the difference of the two types of image acquisitions, dose-volume histogram (DVH) parameters on the post-implant computed tomography (CT) analysis, as well as other factors were analyzed. The sagittal image acquisitions showed a larger prostate size compared to the transverse image acquisitions especially in the anterior-posterior (AP) direction ( p < 0.05). Interestingly, relative size of prostate apex in AP direction in sagittal image acquisitions compared to that in transverse image acquisitions was correlated to DVH parameters such as D 90 ( R = 0.518, p = 0.019), and V 100 ( R = 0.598, p = 0.005). There were small but significant differences in the prostate contours between the transverse and the sagittal planning image acquisitions. Furthermore, our study suggested that the differences between the two types of image acquisitions might correlated to dosimetric results on CT analysis.
Ecological Validity in Eye-Tracking: An Empirical Study
ERIC Educational Resources Information Center
Spinner, Patti; Gass, Susan M.; Behney, Jennifer
2013-01-01
Eye-trackers are becoming increasingly widespread as a tool to investigate second language (L2) acquisition. Unfortunately, clear standards for methodology--including font size, font type, and placement of interest areas--are not yet available. Although many researchers stress the need for ecological validity--that is, the simulation of natural…
Do Multiple-Choice Options Inflate Estimates of Vocabulary Size on the VST?
ERIC Educational Resources Information Center
Stewart, Jeffrey
2014-01-01
Validated under a Rasch framework (Beglar, 2010), the Vocabulary Size Test (VST) (Nation & Beglar, 2007) is an increasingly popular measure of decontextualized written receptive vocabulary size in the field of second language acquisition. However, although the validation indicates that the test has high internal reliability, still unaddressed…
Validation of Mode-S Meteorological Routine Air Report aircraft observations
NASA Astrophysics Data System (ADS)
Strajnar, B.
2012-12-01
The success of mesoscale data assimilation depends on the availability of three-dimensional observations with high spatial and temporal resolution. This paper describes an example of such observations, available through Mode-S air traffic control system composed of ground radar and transponders on board the aircraft. The meteorological information is provided by interrogation of a dedicated meteorological data register, called Meteorological Routine Air Report (MRAR). MRAR provides direct measurements of temperature and wind, but is only returned by a small fraction of aircraft. The quality of Mode-S MRAR data, collected at the Ljubljana Airport, Slovenia, is assessed by its comparison with AMDAR and high-resolution radiosonde data sets, which enable high- and low-level validation, respectively. The need for temporal smoothing of raw Mode-S MRAR data is also studied. The standard deviation of differences between smoothed Mode-S MRAR and AMDAR is 0.35°C for temperature, 0.8 m/s for wind speed and below 10 degrees for wind direction. The differences with respect to radiosondes are larger, with standard deviations of approximately 1.7°C, 3 m/s and 25 degrees for temperature, wind speed and wind direction, respectively. It is concluded that both wind and temperature observations from Mode-S MRAR are accurate and therefore potentially very useful for data assimilation in numerical weather prediction models.
25 CFR 547.11 - What are the minimum technical standards for money and credit handling?
Code of Federal Regulations, 2014 CFR
2014-04-01
... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii... specifically designed to prevent repetition of validation numbers; and (B) Has some form of checkcode or other...
25 CFR 547.11 - What are the minimum technical standards for money and credit handling?
Code of Federal Regulations, 2013 CFR
2013-04-01
... interface is: (i) Involved in the play of a game; (ii) In audit mode, recall mode or any test mode; (iii... specifically designed to prevent repetition of validation numbers; and (B) Has some form of checkcode or other...
Urine Multi-drug Screening with GC-MS or LC-MS-MS Using SALLE-hybrid PPT/SPE.
Lee, Junhui; Park, Jiwon; Go, Ahra; Moon, Heesung; Kim, Sujin; Jung, Sohee; Jeong, Wonjoon; Chung, Heesun
2018-05-14
To intoxicated patients in the emergency room, toxicological analysis can be considerably helpful for identifying the involved toxicants. In order to develop a urine multi-drug screening (UmDS) method, gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS-MS) were used to determine targeted and unknown toxicants in urine. A GC-MS method in scan mode was validated for selectivity, limit of detection (LOD) and recovery. An LC-MS-MS multiple reaction monitoring (MRM) method was validated for lower LOD, recovery and matrix effect. The results of the screening analysis were compared with patient medical records to check the reliability of the screen. Urine samples collected from an emergency room were extracted through a combination of salting-out assisted liquid-liquid extraction (SALLE) and hybrid protein precipitation/solid phase extraction (hybrid PPT/SPE) plates and examined by GC-MS and LC-MS-MS. GC-MS analysis was performed as unknown drug screen and LC-MS-MS analysis was conducted as targeted drug screen. After analysis by GC-MS, a library search was conducted using an in-house library established with the automated mass spectral deconvolution and identification system (AMDISTM). LC-MS-MS used Cliquid®2.0 software for data processing and acquisition in MRM mode. An UmDS method by GC-MS and LC-MS-MS was developed by using a SALLE-hybrid PPT/SPE and in-house library. The results of UmDS by GC-MS and LC-MS-MS showed that toxicants could be identified from 185 emergency room patient samples containing unknown toxicants. Zolpidem, acetaminophen and citalopram were the most frequently encountered drugs in emergency room patients. The UmDS analysis developed in this study can be used effectively to detect toxic substances in a short time. Hence, it could be utilized in clinical and forensic toxicology practices.
NASA Astrophysics Data System (ADS)
Zhang, Jian-Song; Zhang, Liu-Juan; Chen, Ai-Xi; Abdel-Aty, Mahmoud
2018-06-01
We study the dynamics of the three-qubit system interacting with multi-mode without rotating wave approximation (RWA). A physical realization of the system without direct qubits interactions with dephasing bath is proposed. It is shown that non-Markovian characters of the purity of the three qubits and the coupling strength of modes are stronger enough the RWA is no longer valid. The influences of the dephasing of qubits and interactions of modes on the dynamics of genuine multipartite entanglement and bipartite correlations of qubits are investigated. The multipartite and bipartite quantum correlations could be generated faster if we increase the coupling strength of modes and the RWA is not valid when the coupling strength is strong enough. The unitary transformations approach adopted here can be extended to other systems such as circuit or cavity quantum electrodynamic systems in the strong coupling regime.
Validation of Alternatives to Aliphatic Isocyanate Polyurethanes
NASA Technical Reports Server (NTRS)
Curran, Jerome
2007-01-01
The National Aeronautics and Space Administration (NASA) Headquarters chartered the Acquisition Pollution Prevention (AP2) Office to coordinate agency activities affecting pollution prevention issues identified during system and component acquisition and sustainment processes. The primary objective of this effort is to demonstrate and validate alternatives to aliphatic isocyanate polyurethane coatings. Successful completion of this project will result in one or more isocyanate-free coating systems qualified for use at Air Force Space Command (AFSPC) and NASA centers participating in this study. The objective of this project is to qualify the candidates under the specifications for the standard system. This project will compare coating performance of the proposed alternatives to existing coating systems or standards.
NASA Astrophysics Data System (ADS)
Benalcazar, Wladimir A.; Jiang, Zhi; Marks, Daniel L.; Geddes, Joseph B.; Boppart, Stephen A.
2009-02-01
We validate a molecular imaging technique called Nonlinear Interferometric Vibrational Imaging (NIVI) by comparing vibrational spectra with those acquired from Raman microscopy. This broadband coherent anti-Stokes Raman scattering (CARS) technique uses heterodyne detection and OCT acquisition and design principles to interfere a CARS signal generated by a sample with a local oscillator signal generated separately by a four-wave mixing process. These are mixed and demodulated by spectral interferometry. Its confocal configuration allows the acquisition of 3D images based on endogenous molecular signatures. Images from both phantom and mammary tissues have been acquired by this instrument and its spectrum is compared with its spontaneous Raman signatures.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy
NASA Astrophysics Data System (ADS)
Li, Hao; Yang, Haw
2018-03-01
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
A versatile optical microscope for time-dependent single-molecule and single-particle spectroscopy.
Li, Hao; Yang, Haw
2018-03-28
This work reports the design and implementation of a multi-function optical microscope for time-dependent spectroscopy on single molecules and single nanoparticles. It integrates the now-routine single-object measurements into one standalone platform so that no reconfiguration is needed when switching between different types of sample or spectroscopy modes. The illumination modes include evanescent field through total internal reflection, dark-field illumination, and epi-excitation onto a diffraction-limited spot suitable for confocal detection. The detection modes include spectrally resolved line imaging, wide-field imaging with dual-color capability, and two-color single-element photon-counting detection. The switch between different spectroscopy and data acquisition modes is fully automated and executed through computer programming. The capability of this microscope is demonstrated through selected proof-of-principle experiments.
Next generation PET data acquisition architectures
NASA Astrophysics Data System (ADS)
Jones, W. F.; Reed, J. H.; Everman, J. L.; Young, J. W.; Seese, R. D.
1997-06-01
New architectures for higher performance data acquisition in PET are proposed. Improvements are demanded primarily by three areas of advancing PET state of the art. First, larger detector arrays such as the Hammersmith ECAT/sup (R/) EXACT HR/sup ++/ exceed the addressing capacity of 32 bit coincidence event words. Second, better scintillators (LSO) make depth-of interaction (DOI) and time-of-flight (TOF) operation more practical. Third, fully optimized single photon attenuation correction requires higher rates of data collection. New technologies which enable the proposed third generation Real Time Sorter (RTS III) include: (1) 80 Mbyte/sec Fibre Channel RAID disk systems, (2) PowerPC on both VMEbus and PCI Local bus, and (3) quadruple interleaved DRAM controller designs. Data acquisition flexibility is enhanced through a wider 64 bit coincidence event word. PET methodology support includes DOI (6 bits), TOF (6 bits), multiple energy windows (6 bits), 512/spl times/512 sinogram indexes (18 bits), and 256 crystal rings (16 bits). Throughput of 10 M events/sec is expected for list-mode data collection as well as both on-line and replay histogramming. Fully efficient list-mode storage for each PET application is provided by real-time bit packing of only the active event word bits. Real-time circuits provide DOI rebinning.
Guo, Jing; Ng, Waichiu; Yuan, Jie; Li, Suwen; Chan, Mansun
2016-06-01
Microelectrode array (MEA) can be used in the study of neurodegenerative diseases by monitoring the chemical neurotransmitter release and the electrical potential simultaneously at the cellular level. Currently, the MEA technology is migrating to more electrodes and higher electrode density, which raises power and area constraints on the design of acquisition IC. In this paper, we report the design of a 200-channel dual-mode acquisition IC with highly efficient usage of power and area. Under the constraints of target noise and fast settling, the current channel design saves power by including a novel current buffer biased in discrete time (DT) before the TIA (transimpedance amplifier). The 200 channels are sampled at 20 kS/s and quantized by column-wise SAR ADCs. The prototype IC was fabricated in a 0.18 μm CMOS process. Silicon measurements show the current channel has 21.6 pArms noise with cyclic voltammetry (CV) and 0.48 pArms noise with constant amperometry (CA) while consuming 12.1 μW . The voltage channel has 4.07 μVrms noise in the bandwidth of 100 kHz and 0.2% nonlinearity while consuming 9.1 μW. Each channel occupies 0.03 mm(2) area, which is among the smallest.
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, M.B.; Buchanan, M.V.
1988-05-19
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electronically programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity. 6 figs.
Multiplexed electronically programmable multimode ionization detector for chromatography
Wise, Marcus B.; Buchanan, Michelle V.
1989-01-01
Method and apparatus for detecting and differentiating organic compounds based on their electron affinity. An electron capture detector cell (ECD) is operated in a plurality of multiplexed electroncially programmable operating modes to alter the detector response during a single sampling cycle to acquire multiple simultaneous chromatograms corresponding to each of the different operating modes. The cell is held at a constant subatmospheric pressure while the electron collection bias voltage applied to the cell is modulated electronically to allow acquisition of multiple chromatograms for a single sample elution from a chromatograph representing three distinctly different response modes. A system is provided which automatically controls the programmed application of bias pulses at different intervals and/or amplitudes to switch the detector from an ionization mode to the electron capture mode and various degrees therebetween to provide an improved means of tuning an ECD for multimode detection and improved specificity.
Virtual temporal bone dissection system: OSU virtual temporal bone system: development and testing.
Wiet, Gregory J; Stredney, Don; Kerwin, Thomas; Hittle, Bradley; Fernandez, Soledad A; Abdel-Rasoul, Mahmoud; Welling, D Bradley
2012-03-01
The objective of this project was to develop a virtual temporal bone dissection system that would provide an enhanced educational experience for the training of otologic surgeons. A randomized, controlled, multi-institutional, single-blinded validation study. The project encompassed four areas of emphasis: structural data acquisition, integration of the system, dissemination of the system, and validation. Structural acquisition was performed on multiple imaging platforms. Integration achieved a cost-effective system. Dissemination was achieved on different levels including casual interest, downloading of software, and full involvement in development and validation studies. A validation study was performed at eight different training institutions across the country using a two-arm randomized trial where study subjects were randomized to a 2-week practice session using either the virtual temporal bone or standard cadaveric temporal bones. Eighty subjects were enrolled and randomized to one of the two treatment arms; 65 completed the study. There was no difference between the two groups using a blinded rating tool to assess performance after training. A virtual temporal bone dissection system has been developed and compared to cadaveric temporal bones for practice using a multicenter trial. There was no statistical difference between practice on the current simulator compared to practice on human cadaveric temporal bones. Further refinements in structural acquisition and interface design have been identified, which can be implemented prior to full incorporation into training programs and used for objective skills assessment. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
NASA Astrophysics Data System (ADS)
Shokralla, Shaddy Samir Zaki
Multi-frequency eddy current measurements are employed in estimating pressure tube (PT) to calandria tube (CT) gap in CANDU fuel channels, a critical inspection activity required to ensure fitness for service of fuel channels. In this thesis, a comprehensive characterization of eddy current gap data is laid out, in order to extract further information on fuel channel condition, and to identify generalized applications for multi-frequency eddy current data. A surface profiling technique, generalizable to multiple probe and conductive material configurations has been developed. This technique has allowed for identification of various pressure tube artefacts, has been independently validated (using ultrasonic measurements), and has been deployed and commissioned at Ontario Power Generation. Dodd and Deeds solutions to the electromagnetic boundary value problem associated with the PT to CT gap probe configuration were experimentally validated for amplitude response to changes in gap. Using the validated Dodd and Deeds solutions, principal components analysis (PCA) has been employed to identify independence and redundancies in multi-frequency eddy current data. This has allowed for an enhanced visualization of factors affecting gap measurement. Results of the PCA of simulation data are consistent with the skin depth equation, and are validated against PCA of physical experiments. Finally, compressed data acquisition has been realized, allowing faster data acquisition for multi-frequency eddy current systems with hardware limitations, and is generalizable to other applications where real time acquisition of large data sets is prohibitive.
[Failure modes and effects analysis in the prescription, validation and dispensing process].
Delgado Silveira, E; Alvarez Díaz, A; Pérez Menéndez-Conde, C; Serna Pérez, J; Rodríguez Sagrado, M A; Bermejo Vicedo, T
2012-01-01
To apply a failure modes and effects analysis to the prescription, validation and dispensing process for hospitalised patients. A work group analysed all of the stages included in the process from prescription to dispensing, identifying the most critical errors and establishing potential failure modes which could produce a mistake. The possible causes, their potential effects, and the existing control systems were analysed to try and stop them from developing. The Hazard Score was calculated, choosing those that were ≥ 8, and a Severity Index = 4 was selected independently of the hazard Score value. Corrective measures and an implementation plan were proposed. A flow diagram that describes the whole process was obtained. A risk analysis was conducted of the chosen critical points, indicating: failure mode, cause, effect, severity, probability, Hazard Score, suggested preventative measure and strategy to achieve so. Failure modes chosen: Prescription on the nurse's form; progress or treatment order (paper); Prescription to incorrect patient; Transcription error by nursing staff and pharmacist; Error preparing the trolley. By applying a failure modes and effects analysis to the prescription, validation and dispensing process, we have been able to identify critical aspects, the stages in which errors may occur and the causes. It has allowed us to analyse the effects on the safety of the process, and establish measures to prevent or reduce them. Copyright © 2010 SEFH. Published by Elsevier Espana. All rights reserved.
NASA Technical Reports Server (NTRS)
Duncan, L. M.; Reddell, J. P.; Schoonmaker, P. B.
1975-01-01
Techniques and support software for the efficient performance of simulation validation are discussed. Overall validation software structure, the performance of validation at various levels of simulation integration, guidelines for check case formulation, methods for real time acquisition and formatting of data from an all up operational simulator, and methods and criteria for comparison and evaluation of simulation data are included. Vehicle subsystems modules, module integration, special test requirements, and reference data formats are also described.
Reliability and validity of the Safe Routes to school parent and student surveys.
McDonald, Noreen C; Dwelley, Amanda E; Combs, Tabitha S; Evenson, Kelly R; Winters, Richard H
2011-06-08
The purpose of this study is to assess the reliability and validity of the U.S. National Center for Safe Routes to School's in-class student travel tallies and written parent surveys. Over 65,000 tallies and 374,000 parent surveys have been completed, but no published studies have examined their measurement properties. Students and parents from two Charlotte, NC (USA) elementary schools participated. Tallies were conducted on two consecutive days using a hand-raising protocol; on day two students were also asked to recall the previous days' travel. The recall from day two was compared with day one to assess 24-hour test-retest reliability. Convergent validity was assessed by comparing parent-reports of students' travel mode with student-reports of travel mode. Two-week test-retest reliability of the parent survey was assessed by comparing within-parent responses. Reliability and validity were assessed using kappa statistics. A total of 542 students participated in the in-class student travel tally reliability assessment and 262 parent-student dyads participated in the validity assessment. Reliability was high for travel to and from school (kappa > 0.8); convergent validity was lower but still high (kappa > 0.75). There were no differences by student grade level. Two-week test-retest reliability of the parent survey (n=112) ranged from moderate to very high for objective questions on travel mode and travel times (kappa range: 0.62-0.97) but was substantially lower for subjective assessments of barriers to walking to school (kappa range: 0.31-0.76). The student in-class student travel tally exhibited high reliability and validity at all elementary grades. The parent survey had high reliability on questions related to student travel mode, but lower reliability for attitudinal questions identifying barriers to walking to school. Parent survey design should be improved so that responses clearly indicate issues that influence parental decision making in regards to their children's mode of travel to school. © 2011 McDonald et al; licensee BioMed Central Ltd.
Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal ( p < 0.001) and supramarginal gyrus ( p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.
NASA Astrophysics Data System (ADS)
Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an
2017-03-01
Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.
NASA Astrophysics Data System (ADS)
Miéville, Frédéric A.; Bolard, Gregory; Benkreira, Mohamed; Ayestaran, Paul; Gudinchet, François; Bochud, François; Verdun, Francis R.
2011-03-01
The noise power spectrum (NPS) is the reference metric for understanding the noise content in computed tomography (CT) images. To evaluate the noise properties of clinical multidetector (MDCT) scanners, local 2D and 3D NPSs were computed for different acquisition reconstruction parameters. A 64- and a 128-MDCT scanners were employed. Measurements were performed on a water phantom in axial and helical acquisition modes. CT dose index was identical for both installations. Influence of parameters such as the pitch, the reconstruction filter (soft, standard and bone) and the reconstruction algorithm (filtered-back projection (FBP), adaptive statistical iterative reconstruction (ASIR)) were investigated. Images were also reconstructed in the coronal plane using a reformat process. Then 2D and 3D NPS methods were computed. In axial acquisition mode, the 2D axial NPS showed an important magnitude variation as a function of the z-direction when measured at the phantom center. In helical mode, a directional dependency with lobular shape was observed while the magnitude of the NPS was kept constant. Important effects of the reconstruction filter, pitch and reconstruction algorithm were observed on 3D NPS results for both MDCTs. With ASIR, a reduction of the NPS magnitude and a shift of the NPS peak to the low frequency range were visible. 2D coronal NPS obtained from the reformat images was impacted by the interpolation when compared to 2D coronal NPS obtained from 3D measurements. The noise properties of volume measured in last generation MDCTs was studied using local 3D NPS metric. However, impact of the non-stationarity noise effect may need further investigations.
Ringselle, Björn; Prieto-Ruiz, Inés; Andersson, Lars; Aronsson, Helena; Bergkvist, Göran
2017-02-01
Competitive crops are a central component of resource-efficient weed control, especially for problematic perennial weeds such as Elymus repens Competition not only reduces total weed biomass, but denial of resources can also change the allocation pattern - potentially away from the underground storage organs that make perennial weeds difficult to control. Thus, the competition mode of crops may be an important component in the design of resource-efficient cropping systems. Our aim was to determine how competition from companion crops with different modes of competition affect E. repens biomass acquisition and allocation and discuss that in relation to how E. repens responds to different levels of light and nutrient supply. Greenhouse experiments were conducted with E. repens growing in interspecific competition with increasing density of perennial ryegrass or red clover, or growing at three levels of both light and nutrient supply. Elymus repens total biomass decreased with increasing biomass of the companion crop and the rate of decrease was higher with red clover than with perennial ryegrass, particularly for E. repens rhizome biomass. A reduced nutrient supply shifted E. repens allocation towards below-ground biomass while a reduced light supply shifted it towards shoot biomass. Red clover caused no change in E. repens allocation pattern, while ryegrass mostly shifted the allocation towards below-ground biomass, but the change was not correlated with ryegrass biomass. The companion crop mode of competition influences both the suppression rate of E. repens biomass acquisition and the likelihood of shifts in E. repens biomass allocation. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Technical advances in proteomics: new developments in data-independent acquisition.
Hu, Alex; Noble, William S; Wolf-Yadlin, Alejandro
2016-01-01
The ultimate aim of proteomics is to fully identify and quantify the entire complement of proteins and post-translational modifications in biological samples of interest. For the last 15 years, liquid chromatography-tandem mass spectrometry (LC-MS/MS) in data-dependent acquisition (DDA) mode has been the standard for proteomics when sampling breadth and discovery were the main objectives; multiple reaction monitoring (MRM) LC-MS/MS has been the standard for targeted proteomics when precise quantification, reproducibility, and validation were the main objectives. Recently, improvements in mass spectrometer design and bioinformatics algorithms have resulted in the rediscovery and development of another sampling method: data-independent acquisition (DIA). DIA comprehensively and repeatedly samples every peptide in a protein digest, producing a complex set of mass spectra that is difficult to interpret without external spectral libraries. Currently, DIA approaches the identification breadth of DDA while achieving the reproducible quantification characteristic of MRM or its newest version, parallel reaction monitoring (PRM). In comparative de novo identification and quantification studies in human cell lysates, DIA identified up to 89% of the proteins detected in a comparable DDA experiment while providing reproducible quantification of over 85% of them. DIA analysis aided by spectral libraries derived from prior DIA experiments or auxiliary DDA data produces identification and quantification as reproducible and precise as that achieved by MRM/PRM, except on low‑abundance peptides that are obscured by stronger signals. DIA is still a work in progress toward the goal of sensitive, reproducible, and precise quantification without external spectral libraries. New software tools applied to DIA analysis have to deal with deconvolution of complex spectra as well as proper filtering of false positives and false negatives. However, the future outlook is positive, and various researchers are working on novel bioinformatics techniques to address these issues and increase the reproducibility, fidelity, and identification breadth of DIA.
Small instrument to volcanic seismic signals
NASA Astrophysics Data System (ADS)
Carreras, Normandino; Gomariz, Spartacus; Manuel, Antoni
2014-05-01
Currently, the presence of volcanoes represents a threat to their local populations, and for this reason, scientific communities invest resources to monitor seismic activity of an area, and to obtain information to identify risk situations. To perform such monitoring, it can use different general purpose acquisition systems commercially available, but these devices do not meet to the specifications of reduced dimensions, low weight, low power consumption and low cost. These features allow the system works in autonomous mode for a long period of time, and it makes easy to be carried and to be installed. In the line of designing a volcanic acquisition system with the previously mentioned specifications, exists the Volcanology Department of CSIC, developers of a system with some of these specifications. The objective of this work is to improve the energy consumption requirements of the previous system, providing three channels of data acquisition and with the possibility to transmit data acquisition via radio frequency to a base station, allowing operation it in remote mode. The developed acquisition system consists of three very low-power acquisition modules of Texas Instruments (ADS1246), and this is designed to capture information of the three coordinate axes. A microprocessor also of Texas Instruments (MSP430F5438) is used to work in low-power, due to it is ready to run this consumption and also takes advantage the power save mode in certain moments when system is not working. This system is configurable by serial port, and it has a SD memory to storage data. Contrast to the previous system, it has a RF communication module incorporated specially to work in remote mode of Lynx (YLX-TRM8053-025-05), and boasts also with a GPS module which keeps the time reference synchronized with module of SANAV (GM-1315LA). Thanks to this last selection of components, it is designed a small system about 106 x 106 mm. Assuming that the power supply system is working during all the time, except GPS (it works the 1.4% of time) and the RF communications (it works the 20% of time), it has been able to obtain experimental consumption data of prototype developed. That is the reason why the final power supply of system with one channel active is of 110,5mW when using the communication module. If it calculates the power supply without communication, this consumes about 71mW. The new system needs to work at 3.3V, and the calculations have made in base of that. In contrast, the previous system needs 12V, and does not use RF communications. In order to compare those two versions, is used the power supply as reference, up to 696mW in this previous system. Finally it can be concluded that the implemented electronic design has up to three channels to acquire seismic data, it has the ability to transmit these data by radio frequency to a base station, and power consumption is lower than the initial prototype. The experimental results allow providing an operating time of a year, with weight of 4,84 Kg if the equipment used li-ion batteries.
NASA Astrophysics Data System (ADS)
Dal Moro, Giancarlo; Moustafa, Sayed S. R.; Al-Arifi, Nassir S.
2018-01-01
Rayleigh waves often propagate according to complex mode excitation so that the proper identification and separation of specific modes can be quite difficult or, in some cases, just impossible. Furthermore, the analysis of a single component (i.e., an inversion procedure based on just one objective function) necessarily prevents solving the problems related to the non-uniqueness of the solution. To overcome these issues and define a holistic analysis of Rayleigh waves, we implemented a procedure to acquire data that are useful to define and efficiently invert the three objective functions defined from the three following "objects": the velocity spectra of the vertical- and radial-components and the Rayleigh-wave particle motion (RPM) frequency-offset data. Two possible implementations are presented. In the first case we consider classical multi-offset (and multi-component) data, while in a second possible approach we exploit the data recorded by a single three-component geophone at a fixed offset from the source. Given the simple field procedures, the method could be particularly useful for the unambiguous geotechnical exploration of large areas, where more complex acquisition procedures, based on the joint acquisition of Rayleigh and Love waves, would not be economically viable. After illustrating the different kinds of data acquisition and the data processing, the results of the proposed methodology are illustrated in a case study. Finally, a series of theoretical and practical aspects are discussed to clarify some issues involved in the overall procedure (data acquisition and processing).
NASA Astrophysics Data System (ADS)
Lage, E.; Tapias, G.; Villena, J.; Desco, M.; Vaquero, J. J.
2010-08-01
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 × 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s-1 when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
Lage, E; Tapias, G; Villena, J; Desco, M; Vaquero, J J
2010-08-07
We present a new high-performance and low-cost approach for implementing radiation detection acquisition systems. The basic elements used are charge-integrating ADCs and a set of components encapsulated in an HDL (hardware definition language) library which makes it possible to implement several acquisition tasks such as time pickoff and coincidence detection using a new and simple trigger technique that we name WMLET (width-modulated leading-edge timing). As proof of concept, a 32-channel hybrid PET/SPECT acquisition system based on these elements was developed and tested. This demonstrator consists of a master module responsible for the generation and distribution of trigger signals, 2 x 16-channel ADC cards (12-bit resolution) for data digitization and a 32-bit digital I/O PCI card for handling data transmission to a personal computer. System characteristics such as linearity, maximum transmission rates or timing resolution in coincidence mode were evaluated with test and real detector signals. Imaging capabilities of the prototype were also evaluated using different detector configurations. The performance tests showed that this implementation is able to handle data rates in excess of 600k events s(-1) when acquiring simultaneously 32 channels (96-byte events). ADC channel linearity is >98.5% in energy quantification. Time resolution in PET mode for the tested configurations ranges from 3.64 ns FWHM to 7.88 ns FWHM when signals from LYSO-based detectors are used. The measured energy resolution matched the expected values for the detectors evaluated and single elements of crystal matrices can be neatly separated in the acquired flood histograms.
On-orbit operations and offline data processing of CALET onboard the ISS
NASA Astrophysics Data System (ADS)
Asaoka, Y.; Ozawa, S.; Torii, S.; Adriani, O.; Akaike, Y.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakahira, S.; Nishimura, J.; de Nolfo, G. A.; Okuno, S.; Ormes, J. F.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S. B.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.
2018-07-01
The CALorimetric Electron Telescope (CALET), launched for installation on the International Space Station (ISS) in August, 2015, has been accumulating scientific data since October, 2015. CALET is intended to perform long-duration observations of high-energy cosmic rays onboard the ISS. CALET directly measures the cosmic-ray electron spectrum in the energy range of 1 GeV to 20 TeV with a 2% energy resolution above 30 GeV. In addition, the instrument can measure the spectrum of gamma rays well into the TeV range, and the spectra of protons and nuclei up to a PeV. In order to operate the CALET onboard ISS, JAXA Ground Support Equipment (JAXA-GSE) and the Waseda CALET Operations Center (WCOC) have been established at JAXA and Waseda University, respectively. Scientific operations using CALET are planned at WCOC, taking into account orbital variations of geomagnetic rigidity cutoff. Scheduled command sequences are used to control the CALET observation modes on orbit. Calibration data acquisition by, for example, recording pedestal and penetrating particle events, a low-energy electron trigger mode operating at high geomagnetic latitude, a low-energy gamma-ray trigger mode operating at low geomagnetic latitude, and an ultra heavy trigger mode, are scheduled around the ISS orbit while maintaining maximum exposure to high-energy electrons and other high-energy shower events by always having the high-energy trigger mode active. The WCOC also prepares and distributes CALET flight data to collaborators in Italy and the United States. As of August 31, 2017, the total observation time is 689 days with a live time fraction of the total time of ∼ 84%. Nearly 450 million events are collected with a high-energy (E > 10 GeV) trigger. In addition, calibration data acquisition and low-energy trigger modes, as well as an ultra-heavy trigger mode, are consistently scheduled around the ISS orbit. By combining all operation modes with the excellent-quality on-orbit data collected thus far, it is expected that a five-year observation period will provide a wealth of new and interesting results.
48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.
Code of Federal Regulations, 2010 CFR
2010-10-01
... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (JUN 1995) (a) Definitions. (1) As used in this clause...
48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.
Code of Federal Regulations, 2011 CFR
2011-10-01
... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...
48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.
Code of Federal Regulations, 2012 CFR
2012-10-01
... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...
48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.
Code of Federal Regulations, 2014 CFR
2014-10-01
... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...
48 CFR 252.227-7019 - Validation of asserted restrictions-Computer software.
Code of Federal Regulations, 2013 CFR
2013-10-01
... restrictions-Computer software. 252.227-7019 Section 252.227-7019 Federal Acquisition Regulations System...—Computer software. As prescribed in 227.7104(e)(3) or 227.7203-6(c), use the following clause: Validation of Asserted Restrictions—Computer Software (SEP 2011) (a) Definitions. (1) As used in this clause...
Electronic Switching Spherical Array (ESSA) antenna systems
NASA Technical Reports Server (NTRS)
Hockensmith, R. P.
1984-01-01
ESSA (Electronic Switching Spherical Array) is an antenna system conceived, developed and qualified for linking satellite data transmissions with NASA's tracking and data relay satellites (TDRSS) and tracking and data acquisition satellites (TDAS). ESSA functions in the S band frequency region, cover 2 pi or more steradians with directional gain and operates in multiple selectable modes. ESSA operates in concert with the NASA's TDRS standard transponder in the retrodirective mode or independently in directional beam, program track and special modes. Organizations and projects to the ESSA applications for NASA's space use are introduced. Coverage gain, weight power and implementation and other performance information for satisfying a wide range of data rate requirements are included.
The selective digital integrator: A new device for modulated polarization spectroscopy
NASA Astrophysics Data System (ADS)
Vrancic, Aljosa
1998-12-01
A new device, a selective digital integrator (SDI), for the acquisition of modulated polarization spectroscopy (MPS) signals is described. Special attention is given to the accurate measurement of very small (AC component of interest <10-3 x DC component), rapidly modulated (~50 kHz) signals at or below noise levels. Various data acquisition methods and problems associated with the collection of modulated signals are discussed. The SDI solves most of these problems and has the following advantages: it provides the average-time resolved profile of a modulated signal; it eliminates errors if the modulation is not sinusoidal; it enables separate measurements of the various phases of the signal modulation cycle; it permits simultaneous measurement of absorption, circular dichroism (CD) and linear dichroism (LD) spectra; it facilitates 3-D absorbance measurements; it has a wide gain-switching-free dynamic range (10 orders of magnitude or more); it offers a constant S/N ratio mode of operation; it eliminates the need for photomultiplier voltage feedback, and it has faster scanning speeds. The time-resolution, selectivity, wide dynamic range, and low-overhead on-the-fly data processing are useful for other modulated spectroscopy (MS) and non-MS experiments such as pulse height distribution and time-resolved pulse counting measurements. The advantages of the MPS-SDI method are tested on the first Rydberg electronic transitions of (+)-3- methylcyclopentanone. The experimental results validate the predicted SDI capabilities. However, they also point to two difficulties that had not been noted previously: the presence of LD in a gaseous sample and a pressure- dependence of the relative peak heights of the CD spectrum. Models for these anomalies are proposed. The presence of the oscillatory LD (but not an LD background) is explained with a sample cell model based on the observed polarization-dependent time-resolved profiles of transmitted light intensity. To obtain expressions for these intensities, a theoretical background, which provides a new approach to the treatment of light/matter interaction, is included as an Appendix. To explain the second anomaly, present only at high optical densities, a model based on the presence of scattered light is introduced and verified. The mode of correction for the scattering problem is outlined.
Heat Entrapment Effects Within Liquid Acquisition Devices
NASA Technical Reports Server (NTRS)
Duval, W. M. B.; Chato, D. J.; Doherty, M. P.
2010-01-01
We introduce a model problem to address heat entrapment effects or the local accumulation of thermal energy within liquid acquisition devices. We show that the parametric space consists of six parameters, namely the Rayleigh and Prandtl numbers, the aspect ratio, and heat flux ratios for the bottom, side, and top boundaries of the enclosure. For the range of Ra considered 1 to 10(sup 9), beyond Ra on the order of 10(sup 5), convective instability is the dominant mode of convection in comparison to natural convection. The flow field transitions to asymmetric modes at Ra on the order of 10(sup 7). Direct numerical simulation of a large geometric length scale prototype for Ra on the order of 10(sup 9) shows that the flow field evolves from small wavelength instability which gives rise to nonlinear growth of thermals, propagation of the instability occurs via growth of secondary and tertiary modes, and a travelling wave mode occurs prior to asymmetry. The effect of a large aspect ratio is to increase the number of modes in the vertical direction. Due to the slow diffusion of heat in the prototype, asymptotic states are not readily attained, we show that dynamical similarity can be used for a model which allows the attainment of asymptotic states and that transition to a chaotic state occurs for Ra on the order of 10(sup 9) via a broadband power spectrum. These dynamical events show that for the baseline condition in which heat is absorbed from background laboratory environment, higher heat flux is absorbed at the top and bottom boundaries of the enclosure than a nominal value of 34.9 ergs per square centimeter -second.
What is the spatial sampling of MISR?
Atmospheric Science Data Center
2014-12-08
... spatial resolution of the sensors without exceeding the data transfer quotas, MISR can be operated in two different data acquisition modes: ... data at the full resolution, but only for limited periods of time and therefore for limited regions, typically about 300 km in length (along ...
Management of reliability and maintainability; a disciplined approach to fleet readiness
NASA Technical Reports Server (NTRS)
Willoughby, W. J., Jr.
1981-01-01
Material acquisition fundamentals were reviewed and include: mission profile definition, stress analysis, derating criteria, circuit reliability, failure modes, and worst case analysis. Military system reliability was examined with emphasis on the sparing of equipment. The Navy's organizational strategy for 1980 is presented.
Lee, Heon-Woo; Seo, Ji-Hyung; Choi, Seung-Ki; Lee, Kyung-Tae
2007-01-30
A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5>166.1 for itopride and m/z 342.3>111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2=0.9999) over the studied range (0.5-1000 ng mL(-1)) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.
NASA Astrophysics Data System (ADS)
Poli, D.; Remondino, F.; Angiuli, E.; Agugiaro, G.
2015-02-01
Today the use of spaceborne Very High Resolution (VHR) optical sensors for automatic 3D information extraction is increasing in the scientific and civil communities. The 3D Optical Metrology (3DOM) unit of the Bruno Kessler Foundation (FBK) in Trento (Italy) has collected VHR satellite imagery, as well as aerial and terrestrial data over Trento for creating a complete testfield for investigations on image radiometry, geometric accuracy, automatic digital surface model (DSM) generation, 2D/3D feature extraction, city modelling and data fusion. This paper addresses the radiometric and the geometric aspects of the VHR spaceborne imagery included in the Trento testfield and their potential for 3D information extraction. The dataset consist of two stereo-pairs acquired by WorldView-2 and by GeoEye-1 in panchromatic and multispectral mode, and a triplet from Pléiades-1A. For reference and validation, a DSM from airborne LiDAR acquisition is used. The paper gives details on the project, dataset characteristics and achieved results.
NASA Astrophysics Data System (ADS)
Cros, Maria; Joemai, Raoul M. S.; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-08-01
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
Cros, Maria; Joemai, Raoul M S; Geleijns, Jacob; Molina, Diego; Salvadó, Marçal
2017-07-17
This study aims to develop and test software for assessing and reporting doses for standard patients undergoing computed tomography (CT) examinations in a 320 detector-row cone-beam scanner. The software, called SimDoseCT, is based on the Monte Carlo (MC) simulation code, which was developed to calculate organ doses and effective doses in ICRP anthropomorphic adult reference computational phantoms for acquisitions with the Aquilion ONE CT scanner (Toshiba). MC simulation was validated by comparing CTDI measurements within standard CT dose phantoms with results from simulation under the same conditions. SimDoseCT consists of a graphical user interface connected to a MySQL database, which contains the look-up-tables that were generated with MC simulations for volumetric acquisitions at different scan positions along the phantom using any tube voltage, bow tie filter, focal spot and nine different beam widths. Two different methods were developed to estimate organ doses and effective doses from acquisitions using other available beam widths in the scanner. A correction factor was used to estimate doses in helical acquisitions. Hence, the user can select any available protocol in the Aquilion ONE scanner for a standard adult male or female and obtain the dose results through the software interface. Agreement within 9% between CTDI measurements and simulations allowed the validation of the MC program. Additionally, the algorithm for dose reporting in SimDoseCT was validated by comparing dose results from this tool with those obtained from MC simulations for three volumetric acquisitions (head, thorax and abdomen). The comparison was repeated using eight different collimations and also for another collimation in a helical abdomen examination. The results showed differences of 0.1 mSv or less for absolute dose in most organs and also in the effective dose calculation. The software provides a suitable tool for dose assessment in standard adult patients undergoing CT examinations in a 320 detector-row cone-beam scanner.
Lippok, Norman; Villiger, Martin; Jun, Chang–Su; Bouma, Brett E.
2015-01-01
Fiber–based polarization sensitive OFDI is more challenging than free–space implementations. Using multiple input states, fiber–based systems provide sample birefringence information with the benefit of a flexible sample arm but come at the cost of increased system and acquisition complexity, and either reduce acquisition speed or require increased acquisition bandwidth. Here we show that with the calibration of a single polarization state, fiber–based configurations can approach the conceptual simplicity of traditional free–space configurations. We remotely control the polarization state of the light incident at the sample using the eigenpolarization states of a wave plate as a reference, and determine the Jones matrix of the output fiber. We demonstrate this method for polarization sensitive imaging of biological samples. PMID:25927775
NASA Astrophysics Data System (ADS)
Sherman, Justin; Azzari, Phillip; Crilly, P. B.; Duke-Tinson, Omar; James, Royce W.; Karama, Jackson; Page, E. J.; Schlank, Carter; Zuniga, Jonathan
2014-10-01
CGAPL is conducting small investigations in plasma physics and magneto-hydrodynamics buoy positioning. For data management, we are developing capability to analyze/digitize data with a National Instruments Data Acquisition board, 2 MS/s sampling rate (long time scale), and an Express Octopus card, 125 MS/s sampling rate (short scale). Sampling at 12 bits precision, we use LabVIEW as a programing language; GUIs will control variables in 1 or more concurrent runs and monitor of diagnostics. HPX utilizes high density (1013 cm3 up), low pressure (.01 T) Ar gas (fill pressure: on 104 mTorr order). Helicon/W Mode plasmas become a diagnostics test-bed for other investigations and a tool for future spacecraft propulsion devices. Plasmas created by directing energy into gas-filled Pyrex tube; power supply and matching box, up to 250 W power in 20-100 MHz frequencies, provide energy to ignite. Uniform magnetic field needed to reach the W-Mode. We employ an electromagnet to B-field while an acceleration coil positions plasma in vacuum chamber, facilitating analysis. Initial field requirements and accuracy calibration have been completed. Progress on development and implementation of probes and DAQ/GUI system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.
Munaretto, Juliana S; May, Marília M; Saibt, Nathália; Zanella, Renato
2016-07-22
This study proposed a strategy to identify and quantify 182 organic contaminants from different chemical classes, as for instance pesticides, veterinary drug and personal care products, in fish fillet using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToF/MS). For this purpose, two different scan methods (full scan and all ions MS/MS) were evaluated to assess the best option for screening analysis in spiked fish fillet samples. In general, full scan acquisition was found to be more reliable (84%) in the automatic identification and quantification when compared to all ions MS/MS with 72% of the compounds detected. Additionally, a qualitative automatic search showed a mass accuracy error below 5ppm for 77% of the compounds in full scan mode compared to only 52% in all ions MS/MS scan. However, all ions MS/MS provides fragmentation information of the target compounds. Undoubtedly, structural information of a wide number of compounds can be obtained using high resolution mass spectrometry (HRMS), but it is necessary thoroughly assess it, in order to choose the best scan mode. Copyright © 2016 Elsevier B.V. All rights reserved.
Nakagawa, Motoo; Ozawa, Yoshiyuki; Nomura, Norikazu; Inukai, Sachiko; Tsubokura, Satoshi; Sakurai, Keita; Shimohira, Masashi; Ogawa, Masaki; Shibamoto, Yuta
2016-04-01
We evaluated the ability of dual source CT (DSCT) with ECG-triggered high-pitch spiral acquisition (Flash Spiral Cardio mode) to depict the morphological features of ventricles in pediatric patients with congenital heart defects (CHD). Between July 2013 and April 2015, 78 pediatric patients with CHD (median age 4 months) were examined using DSCT with the Flash Spiral Cardio mode. The types of ventricular abnormalities were ventricular septal defect (VSD) in 42 (the malaligned type in 11, perimembranous type in 23, supracristal type in 2, atrioventricular type in 2, and muscular type in 4), single ventricle (SV) in 11, and congenital corrected transposition of the great arteries (ccTGA) in 4. We evaluated the accuracy of the diagnosis of the VSD type. In cases of SV and ccTGA, we assessed the detectability of the anatomical features of both ventricles for a diagnosis of ventricular situs. DSCT confirmed the diagnoses for all VSDs. The type of defect was precisely diagnosed for all patients. The anatomical features of both ventricles were also depicted and ventricular situs of SV and ccTGA was correctly diagnosed. The results suggest that DSCT has the ability to clearly depict the configuration of ventricles.
COS Target Acquisition Guidelines, Recommendations, and Interpretation
NASA Astrophysics Data System (ADS)
Keyes, Charles (Tony) D.; Penton, Steven V.
2010-06-01
Based upon analysis of SMOV and Cycle 17 observations through April 2010, this ISR expands, updates, and supersedes recommendations and information provided about target acquisitions (TA) in the COS Instrument Handbook version 2. This ISR provides an overview of COS TA, presents general guidelines and recommendations for crafting COS TAs, establishes COS TA centering accuracy requirements to achieve COS photometric, velocity, and resolution objectives, and summarizes the performance of the COS on-board TA modes as compared to these centering requirements. Updated TA strategy recommendations are given where appropriate, a user-oriented table lists where to find important quantities for the analysis and interpretation of COS TAs, and a brief appendix with additional supporting information is included. An overview of COS TA strategies is provided in Section 2 and Table 1; important updates to ACQ/SEARCH requirements and SEARCH-SIZE recommendations as a function of target coordinate accuracy are given in Tables 2 and 3; COS TA performance by mode is described in Section 5; important header keywords that are useful for evaluating the quality of COS TAs are listed in Table 5 along with where to find them; Table 6 gives a summary of COS TA modes, options, and recommended values; Section 7 summarizes updated recommendations and guidelines for COS TA; and Appendix A provides additional useful COS TA information.
Guermandi, Marco; Bigucci, Alessandro; Franchi Scarselli, Eleonora; Guerrieri, Roberto
2015-01-01
We present a system for the acquisition of EEG signals based on active electrodes and implementing a Driving Right Leg circuit (DgRL). DgRL allows for single-ended amplification and analog-to-digital conversion, still guaranteeing a common mode rejection in excess of 110 dB. This allows the system to acquire high-quality EEG signals essentially removing network interference for both wet and dry-contact electrodes. The front-end amplification stage is integrated on the electrode, minimizing the system's sensitivity to electrode contact quality, cable movement and common mode interference. The A/D conversion stage can be either integrated in the remote back-end or placed on the head as well, allowing for an all-digital communication to the back-end. Noise integrated in the band from 0.5 to 100 Hz is comprised between 0.62 and 1.3 μV, depending on the configuration. Current consumption for the amplification and A/D conversion of one channel is 390 μA. Thanks to its low noise, the high level of interference suppression and its quick setup capabilities, the system is particularly suitable for use outside clinical environments, such as in home care, brain-computer interfaces or consumer-oriented applications.
Measurement of sedentary behaviour in population health surveys: a review and recommendations
LeBlanc, Allana G.; Colley, Rachel C.; Saunders, Travis J.
2017-01-01
Background The purpose of this review was to determine the most valid and reliable questions for targeting key modes of sedentary behaviour (SB) in a broad range of national and international health surveillance surveys. This was done by reviewing the SB modules currently used in population health surveys, as well as examining SB questionnaires that have performed well in psychometric testing. Methods Health surveillance surveys were identified via scoping review and contact with experts in the field. Previous systematic reviews provided psychometric information on pediatric questionnaires. A comprehensive search of four bibliographic databases was used to identify studies reporting psychometric information for adult questionnaires. Only surveys/studies published/used in English or French were included. Results The review identified a total of 16 pediatric and 18 adult national/international surveys assessing SB, few of which have undergone psychometric testing. Fourteen pediatric and 35 adult questionnaires with psychometric information were included. While reliability was generally good to excellent for questions targeting key modes of SB, validity was poor to moderate, and reported much less frequently. The most valid and reliable questions targeting specific modes of SB were combined to create a single questionnaire targeting key modes of SB. Discussion Our results highlight the importance of including SB questions in survey modules that are adaptable, able to assess various modes of SB, and that exhibit adequate reliability and validity. Future research could investigate the psychometric properties of the module we have proposed in this paper, as well as other questionnaires currently used in national and international population health surveys. PMID:29250468
Measurement of sedentary behaviour in population health surveys: a review and recommendations.
Prince, Stephanie A; LeBlanc, Allana G; Colley, Rachel C; Saunders, Travis J
2017-01-01
The purpose of this review was to determine the most valid and reliable questions for targeting key modes of sedentary behaviour (SB) in a broad range of national and international health surveillance surveys. This was done by reviewing the SB modules currently used in population health surveys, as well as examining SB questionnaires that have performed well in psychometric testing. Health surveillance surveys were identified via scoping review and contact with experts in the field. Previous systematic reviews provided psychometric information on pediatric questionnaires. A comprehensive search of four bibliographic databases was used to identify studies reporting psychometric information for adult questionnaires. Only surveys/studies published/used in English or French were included. The review identified a total of 16 pediatric and 18 adult national/international surveys assessing SB, few of which have undergone psychometric testing. Fourteen pediatric and 35 adult questionnaires with psychometric information were included. While reliability was generally good to excellent for questions targeting key modes of SB, validity was poor to moderate, and reported much less frequently. The most valid and reliable questions targeting specific modes of SB were combined to create a single questionnaire targeting key modes of SB. Our results highlight the importance of including SB questions in survey modules that are adaptable, able to assess various modes of SB, and that exhibit adequate reliability and validity. Future research could investigate the psychometric properties of the module we have proposed in this paper, as well as other questionnaires currently used in national and international population health surveys.
Predictive searching algorithm for Fourier ptychography
NASA Astrophysics Data System (ADS)
Li, Shunkai; Wang, Yifan; Wu, Weichen; Liang, Yanmei
2017-12-01
By capturing a set of low-resolution images under different illumination angles and stitching them together in the Fourier domain, Fourier ptychography (FP) is capable of providing high-resolution image with large field of view. Despite its validity, long acquisition time limits its real-time application. We proposed an incomplete sampling scheme in this paper, termed the predictive searching algorithm to shorten the acquisition and recovery time. Informative sub-regions of the sample’s spectrum are searched and the corresponding images of the most informative directions are captured for spectrum expansion. Its effectiveness is validated by both simulated and experimental results, whose data requirement is reduced by ˜64% to ˜90% without sacrificing image reconstruction quality compared with the conventional FP method.
Supporting the Use of CERT (registered trademark) Secure Coding Standards in DoD Acquisitions
2012-07-01
Capability Maturity Model IntegrationSM (CMMI®) [Davis 2009]. SM Team Software Process, TSP, and Capability Maturity Model Integration are service...STP Software Test Plan TEP Test and Evaluation Plan TSP Team Software Process V & V verification and validation CMU/SEI-2012-TN-016 | 47...Supporting the Use of CERT® Secure Coding Standards in DoD Acquisitions Tim Morrow ( Software Engineering Institute) Robert Seacord ( Software
Van Vleet, Thomas M.; DeGutis, Joseph M.; Merzenich, Michael M.; Simpson, Gregory V.; Zomet, Ativ; Dabit, Sawsan
2016-01-01
Efficient self-regulation of alertness declines with age exacerbating normal declines in performance across multiple cognitive domains, including learning and skill acquisition. Previous cognitive intervention studies have shown that it is possible to enhance alertness in patients with acquired brain injury and marked attention impairments, and that this benefit generalizes to improvements in more global cognitive functions. In the current preliminary studies, we sought to test whether this approach, that targets both tonic (over a period of minutes) and phasic (moment-to-moment) alertness, can improve key executive functioning declines in older adults, and enhance the rate of skill acquisition. The results of both experiments 1 and 2 demonstrate that, compared to active control training, alertness training significantly enhanced performance in several validated executive function measures. In experiment 2, alertness training significantly improved skill acquisition compared to active control training in a well-characterized speed of processing task, with the largest benefits shown in the most challenging speed of processing blocks. The results of the current study suggest that targeting intrinsic alertness in cognitive training provides a novel approach to improve executive functions in older adults and may be a useful adjunct treatment to enhance benefits gained in other clinically validated treatments. PMID:27372902
NASA Technical Reports Server (NTRS)
Litt, Jonathan S.; Sowers, T Shane; Liu, Yuan; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The National Aeronautics and Space Administration (NASA) has developed independent airframe and engine models that have been integrated into a single real-time aircraft simulation for piloted evaluation of propulsion control algorithms. In order to have confidence in the results of these evaluations, the integrated simulation must be validated to demonstrate that its behavior is realistic and that it meets the appropriate Federal Aviation Administration (FAA) certification requirements for aircraft. The paper describes the test procedures and results, demonstrating that the integrated simulation generally meets the FAA requirements and is thus a valid testbed for evaluation of propulsion control modes.
Simulation of solar array slewing of Indian remote sensing satellite
NASA Astrophysics Data System (ADS)
Maharana, P. K.; Goel, P. S.
The effect of flexible arrays on sun tracking for the IRS satellite is studied. Equations of motion of satellites carrying a rotating flexible appendage are developed following the Newton-Euler approach and utilizing the constrained modes of the appendage. The drive torque, detent torque and friction torque in the SADA are included in the model. Extensive simulations of the slewing motion are carried out. The phenomena of back-stepping, step-missing, step-slipping and the influences of array flexibility in the acquisition mode are observed for certain combinations of parameters.
Boehm, L; Wambaugh, M; Riney, T; Kunzelman, C
1996-04-01
We examined the effects of physical attractiveness on the assumed mode of HIV acquisition. 176 students read a description of an HIV-positive target whose photograph was placed above the description. A 2 (target gender) by 2 (attractive or unattractive target) factorial design was used. Unattractive targets were perceived as more likely to have acquired HIV through homosexual relationships. Further, men were perceived as more likely than women to have acquired HIV homosexually. Attractiveness did not bias health-care allocations regarding the infected target.
Augmented Virtual Reality: How to Improve Education Systems
ERIC Educational Resources Information Center
Fernandez, Manuel
2017-01-01
This essay presents and discusses the developing role of virtual and augmented reality technologies in education. Addressing the challenges in adapting such technologies to focus on improving students' learning outcomes, the author discusses the inclusion of experiential modes as a vehicle for improving students' knowledge acquisition.…
Transient Convection Due to Imposed Heat Flux: Application to Liquid-Acquisition Devices
NASA Technical Reports Server (NTRS)
Duval, Walter M. B.; Chato, David J.; Doherty, Michael P.
2014-01-01
A model problem is considered that addresses the effect of heat load from an ambient laboratory environment on the temperature rise of liquid nitrogen inside an enclosure. This model has applications to liquid acquisition devices inside the cryogenic storage tanks used to transport vapor-free propellant to the main engine. We show that heat loads from Q = 0.001 to 10 W, with corresponding Rayleigh numbers from Ra = 109 to 1013, yield a range of unsteady convective states and temperature rise in the liquid. The results show that Q = 1 to 10 W (Ra = 1012 to 1013) yield temperature distributions along the enclosure height that are similar in trend to experimental measurements. Unsteady convection, which shows selfsimilarity in its planforms, is predicted for the range of heat-load conditions. The onset of convection occurs from a free-convection-dominated base flow that becomes unstable against convective instability generated at the bottom of the enclosure while the top of the enclosure is convectively stable. A number of modes are generated with small-scale thermals at the bottom of the enclosure in which the flow selforganizes into two symmetric modes prior to the onset of the propagation of the instability. These symmetric vertical modes transition to asymmetric modes that propagate as a traveling-wave-type motion of convective modes and are representative of the asymptotic convective state of the flow field. Intense vorticity production is created in the core of the flow field due to the fact that there is shear instability between the vertical and horizontal modes. For the higher Rayleigh numbers, 1012 to 1013, there is a transition from a stationary to a nonstationary response time signal of the flow and temperature fields with a mean value that increases with time over various time bands and regions of the enclosure.
Current target acquisition methodology in force on force simulations
NASA Astrophysics Data System (ADS)
Hixson, Jonathan G.; Miller, Brian; Mazz, John P.
2017-05-01
The U.S. Army RDECOM CERDEC NVESD MSD's target acquisition models have been used for many years by the military community in force on force simulations for training, testing, and analysis. There have been significant improvements to these models over the past few years. The significant improvements are the transition of ACQUIRE TTP-TAS (ACQUIRE Targeting Task Performance Target Angular Size) methodology for all imaging sensors and the development of new discrimination criteria for urban environments and humans. This paper is intended to provide an overview of the current target acquisition modeling approach and provide data for the new discrimination tasks. This paper will discuss advances and changes to the models and methodologies used to: (1) design and compare sensors' performance, (2) predict expected target acquisition performance in the field, (3) predict target acquisition performance for combat simulations, and (4) how to conduct model data validation for combat simulations.
S-NPP CrIS Full Resolution Sensor Data Record Processing and Evaluations
NASA Astrophysics Data System (ADS)
Chen, Y.; Han, Y.; Wang, L.; Tremblay, D. A.; Jin, X.; Weng, F.
2014-12-01
The Cross-track Infrared Sounder (CrIS) on Suomi National Polar-orbiting Partnership Satellite (S-NPP) is a Fourier transform spectrometer. It provides a total of 1305 channels in the normal mode for sounding the atmosphere. CrIS can also be operated in the full spectral resolution (FSR) mode, in which the MWIR and SWIR band interferograms are recorded with the same maximum path difference as the LWIR band and with spectral resolution of 0.625 cm-1 for all three bands (total 2211 channels). NOAA will operate CrIS in FSR mode in December 2014 and the Joint Polar Satellite System (JPSS). Up to date, the FSR mode has been commanded three times in-orbit (02/23/2012, 03/12/2013, and 08/27/2013). Based on CrIS Algorithm Development Library (ADL), CrIS full resolution Processing System (CRPS) has developed to generate the FSR Sensor Data Record (SDR). This code can also be run for normal mode and truncation mode SDRs with recompiling. Different calibration approaches are implemented in the code in order to study the ringing effect observed in CrIS normal mode SDR and to support to select the best calibration algorithm for J1. We develop the CrIS FSR SDR Validation System to quantify the CrIS radiometric and spectral accuracy, since they are crucial for improving its data assimilation in the numerical weather prediction, and for retrieving atmospheric trace gases. In this study, CrIS full resolution SDRs are generated from CRPS using the data collected from FSR mode of S-NPP, and the radiometric and spectral accuracy are assessed by using the Community Radiative Transfer Model (CRTM) and European Centre for Medium-Range Weather Forecasts (ECMWF) forecast fields. The biases between observation and simulations are evaluated to estimate the FOV-2-FOV variability and bias under clear sky over ocean. Double difference method and Simultaneous Nadir Overpass (SNO) method are also used to assess the CrIS radiance consistency with well-validated IASI. Two basic frequency validation methods (absolute and relative spectral validations) are used to assess the CrIS spectral accuracy. Results show that CrIS SDRs from FSR have similar radiometric and spectral accuracy as those from normal mode.
Method and apparatus for high speed data acquisition and processing
Ferron, J.R.
1997-02-11
A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.
NASA Astrophysics Data System (ADS)
Wu, Binlin; Smith, Jason; Zhang, Lin; Gao, Xin; Alfano, Robert R.
2018-02-01
Worldwide breast cancer incidence has increased by more than twenty percent in the past decade. It is also known that in that time, mortality due to the affliction has increased by fourteen percent. Using optical-based diagnostic techniques, such as Raman spectroscopy, has been explored in order to increase diagnostic accuracy in a more objective way along with significantly decreasing diagnostic wait-times. In this study, Raman spectroscopy with 532-nm excitation was used in order to incite resonance effects to enhance Stokes Raman scattering from unique biomolecular vibrational modes. Seventy-two Raman spectra (41 cancerous, 31 normal) were collected from nine breast tissue samples by performing a ten-spectra average using a 500-ms acquisition time at each acquisition location. The raw spectral data was subsequently prepared for analysis with background correction and normalization. The spectral data in the Raman Shift range of 750- 2000 cm-1 was used for analysis since the detector has highest sensitivity around in this range. The matrix decomposition technique nonnegative matrix factorization (NMF) was then performed on this processed data. The resulting leave-oneout cross-validation using two selective feature components resulted in sensitivity, specificity and accuracy of 92.6%, 100% and 96.0% respectively. The performance of NMF was also compared to that using principal component analysis (PCA), and NMF was shown be to be superior to PCA in this study. This study shows that coupling the resonance Raman spectroscopy technique with subsequent NMF decomposition method shows potential for high characterization accuracy in breast cancer detection.
Method and apparatus for high speed data acquisition and processing
Ferron, John R.
1997-01-01
A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.
Design and development of C-arm based cone-beam CT for image-guided interventions: initial results
NASA Astrophysics Data System (ADS)
Chen, Guang-Hong; Zambelli, Joseph; Nett, Brian E.; Supanich, Mark; Riddell, Cyril; Belanger, Barry; Mistretta, Charles A.
2006-03-01
X-ray cone-beam computed tomography (CBCT) is of importance in image-guided intervention (IGI) and image-guided radiation therapy (IGRT). In this paper, we present a cone-beam CT data acquisition system using a GE INNOVA 4100 (GE Healthcare Technologies, Waukesha, Wisconsin) clinical system. This new cone-beam data acquisition mode was developed for research purposes without interfering with any clinical function of the system. It provides us a basic imaging pipeline for more advanced cone-beam data acquisition methods. It also provides us a platform to study and overcome the limiting factors such as cone-beam artifacts and limiting low contrast resolution in current C-arm based cone-beam CT systems. A geometrical calibration method was developed to experimentally determine parameters of the scanning geometry to correct the image reconstruction for geometric non-idealities. Extensive phantom studies and some small animal studies have been conducted to evaluate the performance of our cone-beam CT data acquisition system.
Information management system breadboard data acquisition and control system.
NASA Technical Reports Server (NTRS)
Mallary, W. E.
1972-01-01
Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.
Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.
Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh
2015-01-01
This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.
NASA Astrophysics Data System (ADS)
Joshi, Ramesh; Singh, Manoj; Jadav, H. M.; Misra, Kishor; Kulkarni, S. V.; ICRH-RF Group
2010-02-01
Ion Cyclotron Resonance Heating (ICRH) is a promising heating method for a fusion device due to its localized power deposition profile, a direct ion heating at high density, and established technology for high RF power generation and transmission at low cost. Multiple analog pulse with different duty cycle in master of digital pulse for Data acquisition and Control system for steady state RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya to produce pre ionization and second analog pulse will produce heating. The control system software is based upon single digital pulse operation for RF source. It is planned to integrate multiple analog pulses with different duty cycle in master of digital pulse for Data acquisition and Control system for RF ICRH System(RF ICRH DAC) to be used for operating of RF Generator in Aditya tokamak. The task of RF ICRH DAC is to control and acquisition of all ICRH system operation with all control loop and acquisition for post analysis of data with java based tool. For pre ionization startup as well as heating experiments using multiple RF Power of different powers and duration. The experiment based upon the idea of using single RF generator to energize antenna inside the tokamak to radiate power twise, out of which first analog pulse will produce pre ionization and second analog pulse will produce heating. The whole system is based on standard client server technology using tcp/ip protocol. DAC Software is based on linux operating system for highly reliable, secure and stable system operation in failsafe manner. Client system is based on tcl/tk like toolkit for user interface with c/c++ like environment which is reliable programming languages widely used on stand alone system operation with server as vxWorks real time operating system like environment. The paper is focused on the Data acquisition and monitoring system software on Aditya RF ICRH System with analog pulses in slave mode with digital pulse in master mode for control acquisition and monitoring and interlocking.
Park, Ji Eun; Park, Bumwoo; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
Objective To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Materials and Methods Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Results Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Conclusion Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease. PMID:29089831
Measuring Explicit and Implicit Knowledge: A Psychometric Study in SLA
ERIC Educational Resources Information Center
Ebadi, Mandana Rohollahzadeh; Abedalaziz, Nabeel; Saad, Mohd Rashid Mohd
2015-01-01
Lack of valid means of measuring explicit and implicit knowledge in acquisition of second language is a concern issue in investigations of explicit and implicit learning. This paper endeavors to validate the use of four tests (i.e., Untimed Judgment Grammatical Test, UJGT; Test of Metalinguistic Knowledge, TMK; Elicited Oral Imitation Test, EOIT;…
Risk analysis by FMEA as an element of analytical validation.
van Leeuwen, J F; Nauta, M J; de Kaste, D; Odekerken-Rombouts, Y M C F; Oldenhof, M T; Vredenbregt, M J; Barends, D M
2009-12-05
We subjected a Near-Infrared (NIR) analytical procedure used for screening drugs on authenticity to a Failure Mode and Effects Analysis (FMEA), including technical risks as well as risks related to human failure. An FMEA team broke down the NIR analytical method into process steps and identified possible failure modes for each step. Each failure mode was ranked on estimated frequency of occurrence (O), probability that the failure would remain undetected later in the process (D) and severity (S), each on a scale of 1-10. Human errors turned out to be the most common cause of failure modes. Failure risks were calculated by Risk Priority Numbers (RPNs)=O x D x S. Failure modes with the highest RPN scores were subjected to corrective actions and the FMEA was repeated, showing reductions in RPN scores and resulting in improvement indices up to 5.0. We recommend risk analysis as an addition to the usual analytical validation, as the FMEA enabled us to detect previously unidentified risks.
Limited Transfer of Newly Acquired Movement Patterns across Walking and Running in Humans
Ogawa, Tetsuya; Kawashima, Noritaka; Ogata, Toru; Nakazawa, Kimitaka
2012-01-01
The two major modes of locomotion in humans, walking and running, may be regarded as a function of different speed (walking as slower and running as faster). Recent results using motor learning tasks in humans, as well as more direct evidence from animal models, advocate for independence in the neural control mechanisms underlying different locomotion tasks. In the current study, we investigated the possible independence of the neural mechanisms underlying human walking and running. Subjects were tested on a split-belt treadmill and adapted to walking or running on an asymmetrically driven treadmill surface. Despite the acquisition of asymmetrical movement patterns in the respective modes, the emergence of asymmetrical movement patterns in the subsequent trials was evident only within the same modes (walking after learning to walk and running after learning to run) and only partial in the opposite modes (walking after learning to run and running after learning to walk) (thus transferred only limitedly across the modes). Further, the storage of the acquired movement pattern in each mode was maintained independently of the opposite mode. Combined, these results provide indirect evidence for independence in the neural control mechanisms underlying the two locomotive modes. PMID:23029490
NASA Astrophysics Data System (ADS)
Moreno-Herrero, F.; Colchero, J.; Gómez-Herrero, J.; Baró, A. M.
2004-03-01
The capabilities of the atomic force microscope for imaging biomolecules under physiological conditions has been systematically investigated. Contact, dynamic, and jumping modes have been applied to four different biological systems: DNA, purple membrane, Alzheimer paired helical filaments, and the bacteriophage φ29. These samples have been selected to cover a wide variety of biological systems in terms of sizes and substrate contact area, which make them very appropriate for the type of comparative studies carried out in the present work. Although dynamic mode atomic force microscopy is clearly the best choice for imaging soft samples in air, in liquids there is not a leading technique. In liquids, the most appropriate imaging mode depends on the sample characteristics and preparation methods. Contact or dynamic modes are the best choices for imaging molecular assemblies arranged as crystals such as the purple membrane. In this case, the advantage of image acquisition speed predominates over the disadvantage of high lateral or normal force. For imaging individual macromolecules, which are weakly bonded to the substrate, lateral and normal forces are the relevant factors, and hence the jumping mode, an imaging mode which minimizes lateral and normal forces, is preferable to other imaging modes.
Yang, F; Cao, N; Young, L; Howard, J; Logan, W; Arbuckle, T; Sponseller, P; Korssjoen, T; Meyer, J; Ford, E
2015-06-01
Though failure mode and effects analysis (FMEA) is becoming more widely adopted for risk assessment in radiation therapy, to our knowledge, its output has never been validated against data on errors that actually occur. The objective of this study was to perform FMEA of a stereotactic body radiation therapy (SBRT) treatment planning process and validate the results against data recorded within an incident learning system. FMEA on the SBRT treatment planning process was carried out by a multidisciplinary group including radiation oncologists, medical physicists, dosimetrists, and IT technologists. Potential failure modes were identified through a systematic review of the process map. Failure modes were rated for severity, occurrence, and detectability on a scale of one to ten and risk priority number (RPN) was computed. Failure modes were then compared with historical reports identified as relevant to SBRT planning within a departmental incident learning system that has been active for two and a half years. Differences between FMEA anticipated failure modes and existing incidents were identified. FMEA identified 63 failure modes. RPN values for the top 25% of failure modes ranged from 60 to 336. Analysis of the incident learning database identified 33 reported near-miss events related to SBRT planning. Combining both methods yielded a total of 76 possible process failures, of which 13 (17%) were missed by FMEA while 43 (57%) identified by FMEA only. When scored for RPN, the 13 events missed by FMEA ranked within the lower half of all failure modes and exhibited significantly lower severity relative to those identified by FMEA (p = 0.02). FMEA, though valuable, is subject to certain limitations. In this study, FMEA failed to identify 17% of actual failure modes, though these were of lower risk. Similarly, an incident learning system alone fails to identify a large number of potentially high-severity process errors. Using FMEA in combination with incident learning may render an improved overview of risks within a process.
Survey of CRISM Transition Phase Observations
NASA Astrophysics Data System (ADS)
Seelos, F. P.; Murchie, S. L.; Choo, T. H.; McGovern, J. A.
2006-12-01
The Mars Reconnaissance Orbiter (MRO) transition phase extends from the end of aerobraking (08/30/06) to the start of the Primary Science Phase (PSP) (11/08/2006). Within this timeframe, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will acquire Mars scene observations in association with the deployment of the telescope cover (09/27/06) and during the operational checkout of the full science payload (09/29/06 - 10/05/06). The CRISM cover opening sequence includes scene observations that will be used to verify deployment and to validate the on-orbit instrument wavelength calibration. The limited cover opening observation set consists of: 1. A hyperspectral nadir scan acquired as the cover is deployed (first light) 2. A single targeted (gimbaled) hyperspectral observation in the northern plains 3. A restricted duration nadir multispectral strip The high level objectives for the science payload checkout are to obtain observations in support of in-flight wavelength, radiometric, and geometric instrument calibration, to acquire data that will contribute to the development of a first-order hyperspectral atmospheric correction, and to exercise numerous spacecraft and instrument observing modes and strategies that will be employed during PSP. The science payload checkout also enables a unique collaboration between the Mars Express OMEGA and CRISM teams, with both spectrometers slated to observe common target locations with a minimal time offset for the purpose of instrument cross-calibration. The priority CRISM observations for the payload checkout include: 1. Multispectral nadir and hyperspectral off-nadir targeted observations in support of the cross-calibration experiment with OMEGA 2. Terminator-to-terminator multispectral data acquisition demonstrating the strategy that will be used to construct the global multispectral survey map 3. Terminator-to-terminator atmospheric emission phase function (EPF) data acquisition demonstrating the observation sequence at the core of the atmospheric monitoring and seasonal change campaigns 4. A hyperspectral nadir observation from a spectrally bland region that will contribute to an improved flat field correction 5. An extended hyperspectral nadir scan with a large variation in atmospheric path length to establish a CRISM-tailored aerosol scaling spectrum 6. Nadir and off-nadir multispectral and hyperspectral coordinated observations with HiRISE and CTX to demonstrate this fundamental operational capability and to assess relative alignment 7. A hyperspectral targeted observation in support of Phoenix landing site selection 8. Initial observation of spatially extensive spectrally compelling regions such as Meridiani Planum and Nili Fossae The CRISM observations planned for the transition phase will allow for robust on-orbit validation of the instrument wavelength, radiometric, and geometric calibration. These observations also comprise an accurate sampling of the observing modes and strategies that will be employed in PSP. The spatial and spectral characteristics of the CRISM transition phase data products will be presented in the context of the CRISM science objectives.
Drug spend and acquisitive offending by substance misusers.
Hayhurst, Karen P; Jones, Andrew; Millar, Tim; Pierce, Matthias; Davies, Linda; Weston, Samantha; Donmall, Michael
2013-06-01
The need to generate income to fund drug misuse is assumed to be a driver of involvement in acquisitive crime. We examined the influence of drug misuse expenditure, and other factors, on acquisitive offending. Clients (N=1380) seeking drug treatment within 94 of 149 Drug Action Teams (DATs) across England completed a comprehensive survey, incorporating validated scales and self-report measures, such as levels of drug and alcohol use and offending. Forty per cent (N=554) had committed acquisitive crime in the previous month. Regression analysis showed that acquisitive offending was associated with the presence of problematic use of crack cocaine, poly-drug use, sharing injecting equipment, unsafe sex, overdose risk, higher drug spend, unemployment, reduced mental wellbeing, and younger age. Rates of acquisitive crime among drug users are high. Drug using offenders can be distinguished from drug using non-offenders by problematic crack cocaine use, younger age, income-related factors, and indicators of a chaotic life style and complex needs. Behavioural and demographic factors were associated more strongly with acquisitive crime than drug use expenditure, suggesting that the need to finance drug use is not necessarily the main factor driving acquisitive offending by drug users. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Oura, Masaki; Wagai, Tatsuya; Chainani, Ashish; Miyawaki, Jun; Sato, Hiromi; Matsunami, Masaharu; Eguchi, Ritsuko; Kiss, Takayuki; Yamaguchi, Takashi; Nakatani, Yasuhiro; Togashi, Tadashi; Katayama, Tetsuo; Ogawa, Kanade; Yabashi, Makina; Tanaka, Yoshihito; Kohmura, Yoshiki; Tamasaku, Kenji; Shin, Shik; Ishikawa, Tetsuya
2014-01-01
In order to utilize high-brilliance photon sources, such as X-ray free-electron lasers (XFELs), for advanced time-resolved photoelectron spectroscopy (TR-PES), a single-shot CCD-based data acquisition system combined with a high-resolution hemispherical electron energy analyzer has been developed. The system’s design enables it to be controlled by an external trigger signal for single-shot pump–probe-type TR-PES. The basic performance of the system is demonstrated with an offline test, followed by online core-level photoelectron and Auger electron spectroscopy in ‘single-shot image’, ‘shot-to-shot image (image-to-image storage or block storage)’ and ‘shot-to-shot sweep’ modes at soft X-ray undulator beamline BL17SU of SPring-8. In the offline test the typical repetition rate for image-to-image storage mode has been confirmed to be about 15 Hz using a conventional pulse-generator. The function for correcting the shot-to-shot intensity fluctuations of the exciting photon beam, an important requirement for the TR-PES experiments at FEL sources, has been successfully tested at BL17SU by measuring Au 4f photoelectrons with intentionally controlled photon flux. The system has also been applied to hard X-ray PES (HAXPES) in ‘ordinary sweep’ mode as well as shot-to-shot image mode at the 27 m-long undulator beamline BL19LXU of SPring-8 and also at the SACLA XFEL facility. The XFEL-induced Ti 1s core-level spectrum of La-doped SrTiO3 is reported as a function of incident power density. The Ti 1s core-level spectrum obtained at low power density is consistent with the spectrum obtained using the synchrotron source. At high power densities the Ti 1s core-level spectra show space-charge effects which are analysed using a known mean-field model for ultrafast electron packet propagation. The results successfully confirm the capability of the present data acquisition system for carrying out the core-level HAXPES studies of condensed matter induced by the XFEL. PMID:24365935
Jeon, Joonryong
2017-01-01
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size. PMID:28704945
Heo, Gwanghee; Jeon, Joonryong
2017-07-12
In this paper, a data compression technology-based intelligent data acquisition (IDAQ) system was developed for structural health monitoring of civil structures, and its validity was tested using random signals (El-Centro seismic waveform). The IDAQ system was structured to include a high-performance CPU with large dynamic memory for multi-input and output in a radio frequency (RF) manner. In addition, the embedded software technology (EST) has been applied to it to implement diverse logics needed in the process of acquiring, processing and transmitting data. In order to utilize IDAQ system for the structural health monitoring of civil structures, this study developed an artificial filter bank by which structural dynamic responses (acceleration) were efficiently acquired, and also optimized it on the random El-Centro seismic waveform. All techniques developed in this study have been embedded to our system. The data compression technology-based IDAQ system was proven valid in acquiring valid signals in a compressed size.
1990-05-01
Obtain Thermistor Operating Characteristics ................................. 82 25. Ag+/Ci" Thermometric Titration ........................... 85 26...Experiment Program for Thermometric Titrations ............... 85 27. Appearance of the Spreadsheet in the Analysis Mode ............ 86 28...rate experiments, carbon dioxide exhalation monitoring, stream turbidity measurement, photosynthesis monitoring, pendulum timing, thermometric titrations
ERIC Educational Resources Information Center
Lin, Wen-Chuan
2012-01-01
Traditional, cognitive-oriented theories of English language acquisition tend to employ experimental modes of inquiry and neglect social, cultural and historical contexts. In this paper, I review the theoretical debate over methodology by examining ontological, epistemological and methodological controversies around cognitive-oriented theories. I…
Two Computer-Assisted Experiments
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2013-01-01
Two computer-assisted experiments are described: (i) determination of the speed of ultrasound waves in water and (ii) measurement of the thermal expansion of an aluminum-based alloy. A new data-acquisition system developed by PASCO scientific is used. In both experiments, the "Keep" mode of recording data is employed: the data are…
Measures in 2015 Using a DSLR and Video Lucky Imaging
NASA Astrophysics Data System (ADS)
Cotterell, David
2017-10-01
Measures of 31 pairs taken in 2015 are reported. A 202mm, f/15 Maksutov-Cassegrain and a DSLR in video crop mode were used for the acquisition of âlucky imagesâ. Calibration was via essentially stationary wider pairs, as analyzed and discussed.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Hixon, Duane R.; Sutliff, Daniel L.
2018-01-01
A rotating rake mode measurement system was designed to measure acoustic duct modes generated by a fan stage. After analysis of the measured data, the mode coefficient amplitudes and phases were quantified. Early studies using this system found that mode power levels computed from rotating rake measured data would agree with the far-field power levels. However, this agreement required that the sound from the noise sources within the duct propagated outward from the duct exit without reflection and previous studies suggested conditions could exist where significant reflections could occur. This paper shows that mounting a second rake to the rotating system, with an offset in both the axial and the azimuthal directions, measures the data necessary to determine the modes propagating in both directions within a duct. The rotating rake data analysis technique was extended to include the data measured by the second rake. The analysis resulted in a set of circumferential mode coefficients at each of the two rake microphone locations. Radial basis functions were then least-squares fit to this data to obtain the radial mode coefficients for the modes propagating in both directions within the duct while accounting for the presence of evanescent modes. The validation of the dual-rotating-rake measurements was conducted using data from a combination of experiments and numerical calculations to compute reflection coefficients and other mode coefficient ratios. Compared to results from analytical and numerical computations, the results from dual-rotating-rake measured data followed the expected trends when frequency, mode number, and duct termination geometry were changed.
Mastinu, Enzo; Ortiz-Catalan, Max; Hakansson, Bo
2015-01-01
Compact and low-noise Analog Front-Ends (AFEs) are becoming increasingly important for the acquisition of bioelectric signals in portable system. In this work, we compare two popular AFEs available on the market, namely the ADS1299 (Texas Instruments) and the RHA2216 (Intan Technologies). This work develops towards the identification of suitable acquisition modules to design an affordable, reliable and portable device for electromyography (EMG) acquisition and prosthetic control. Device features such as Common Mode Rejection (CMR), Input Referred Noise (IRN) and Signal to Noise Ratio (SNR) were evaluated, as well as the resulting accuracy in myoelectric pattern recognition (MPR) for the decoding of motion intention. Results reported better noise performances and higher MPR accuracy for the ADS1299 and similar SNR values for both devices.
Agricultural Land Cover from Multitemporal C-Band SAR Data
NASA Astrophysics Data System (ADS)
Skriver, H.
2013-12-01
Henning Skriver DTU Space, Technical University of Denmark Ørsteds Plads, Building 348, DK-2800 Lyngby e-mail: hs@space.dtu.dk Problem description This paper focuses on land cover type from SAR data using high revisit acquisitions, including single and dual polarisation and fully polarimetric data, at C-band. The data set were acquired during an ESA-supported campaign, AgriSAR09, with the Radarsat-2 system. Ground surveys to obtain detailed land cover maps were performed during the campaign. Classification methods using single- and dual-polarisation data, and fully polarimetric data are used with multitemporal data with short revisit time. Results for airborne campaigns have previously been reported in Skriver et al. (2011) and Skriver (2012). In this paper, the short revisit satellite SAR data will be used to assess the trade-off between polarimetric SAR data and data as single or dual polarisation SAR data. This is particularly important in relation to the future GMES Sentinel-1 SAR satellites, where two satellites with a relatively wide swath will ensure a short revisit time globally. Questions dealt with are: which accuracy can we expect from a mission like the Sentinel-1, what is the improvement of using polarimetric SAR compared to single or dual polarisation SAR, and what is the optimum number of acquisitions needed. Methodology The data have sufficient number of looks for the Gaussian assumption to be valid for the backscatter coefficients for the individual polarizations. The classification method used for these data is therefore the standard Bayesian classification method for multivariate Gaussian statistics. For the full-polarimetric cases two classification methods have been applied, the standard ML Wishart classifier, and a method based on a reversible transform of the covariance matrix into backscatter intensities. The following pre-processing steps were performed on both data sets: The scattering matrix data in the form of SLC products were coregistered, converted to covariance matrix format and multilooked to a specific equivalent number of looks. Results The multitemporal data improve significantly the classification results, and single acquisition data cannot provide the necessary classification performance. The multitemporal data are especially important for the single and dual polarization data, but less important for the fully polarimetric data. The satellite data set produces realistic classification results based on about 2000 fields. The best classification results for the single-polarized mode provide classification errors in the mid-twenties. Using the dual-polarized mode reduces the classification error with about 5 percentage points, whereas the polarimetric mode reduces it with about 10 percentage points. These results show, that it will be possible to obtain reasonable results with relatively simple systems with short revisit time. This very important result shows that systems like the Sentinel-1 mission will be able to produce fairly good results for global land cover classification. References Skriver, H. et al., 2011, 'Crop Classification using Short-Revisit Multitemporal SAR Data', IEEE J. Sel. Topics in Appl. Earth Obs. Rem. Sens., vol. 4, pp. 423-431. Skriver, H., 2012, 'Crop classification by multitemporal C- and L-band single- and dual-polarization and fully polarimetric SAR', IEEE Trans. Geosc. Rem. Sens., vol. 50, pp. 2138-2149.
2016-08-01
area denial environments . Near peer adversaries continue to develop low observable aircraft , proliferate counter-precision guided munition systems ...when the Air Force had significantly more control over its requirements validation and acquisition processes. The only tactical aircraft currently in... systems such as the F-35A. Interestingly, upgrades to these previously fielded aircraft also take longer after JCIDS was implemented than it did to
2012-04-01
Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of information is estimated to average 1 hour...including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports , 1215 Jefferson...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE
NASA Astrophysics Data System (ADS)
Meyer, Sebastian; Gianoli, Chiara; Magallanes, Lorena; Kopp, Benedikt; Tessonnier, Thomas; Landry, Guillaume; Dedes, George; Voss, Bernd; Parodi, Katia
2017-02-01
Ion beam therapy offers the possibility of a highly conformal tumor-dose distribution; however, this technique is extremely sensitive to inaccuracies in the treatment procedures. Ambiguities in the conversion of Hounsfield units of the treatment planning x-ray CT to relative stopping power (RSP) can cause uncertainties in the estimated ion range of up to several millimeters. Ion CT (iCT) represents a favorable solution allowing to directly assess the RSP. In this simulation study we investigate the performance of the integration-mode configuration for carbon iCT, in comparison with a single-particle approach under the same set-up. The experimental detector consists of a stack of 61 air-filled parallel-plate ionization chambers, interleaved with 3 mm thick PMMA absorbers. By means of Monte Carlo simulations, this design was applied to acquire iCTs of phantoms of tissue-equivalent materials. An optimization of the acquisition parameters was performed to reduce the dose exposure, and the implications of a reduced absorber thickness were assessed. In order to overcome limitations of integration-mode detection in the presence of lateral tissue heterogeneities a dedicated post-processing method using a linear decomposition of the detector signal was developed and its performance was compared to the list-mode acquisition. For the current set-up, the phantom dose could be reduced to below 30 mGy with only minor image quality degradation. By using the decomposition method a correct identification of the components and a RSP accuracy improvement of around 2.0% was obtained. The comparison of integration- and list-mode indicated a slightly better image quality of the latter, with an average median RSP error below 1.8% and 1.0%, respectively. With a decreased absorber thickness a reduced RSP error was observed. Overall, these findings support the potential of iCT for low dose RSP estimation, showing that integration-mode detectors with dedicated post-processing strategies can provide a RSP accuracy comparable to list-mode configurations.
Interactive specification acquisition via scenarios: A proposal
NASA Technical Reports Server (NTRS)
Hall, Robert J.
1992-01-01
Some reactive systems are most naturally specified by giving large collections of behavior scenarios. These collections not only specify the behavior of the system, but also provide good test suites for validating the implemented system. Due to the complexity of the systems and the number of scenarios, however, it appears that automated assistance is necessary to make this software development process workable. Interactive Specification Acquisition Tool (ISAT) is a proposed interactive system for supporting the acquisition and maintenance of a formal system specification from scenarios, as well as automatic synthesis of control code and automated test generation. This paper discusses the background, motivation, proposed functions, and implementation status of ISAT.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
NASA Astrophysics Data System (ADS)
Kalosakas, G.; Aubry, S.; Tsironis, G. P.
1998-10-01
We use a stationary and normal mode analysis of the semiclassical Holstein model in order to connect the low-frequency linear polaron modes to low-lying far-infrared lines of the acetanilide spectrum and through parameter fitting we comment on the validity of the polaron results in this system.
Prototype learning and dissociable categorization systems in Alzheimer's disease.
Heindel, William C; Festa, Elena K; Ott, Brian R; Landy, Kelly M; Salmon, David P
2013-08-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer's disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. Copyright © 2013 Elsevier Ltd. All rights reserved.
Prototype Learning and Dissociable Categorization Systems in Alzheimer’s Disease
Heindel, William C.; Festa, Elena K.; Ott, Brian R.; Landy, Kelly M.; Salmon, David P.
2015-01-01
Recent neuroimaging studies suggest that prototype learning may be mediated by at least two dissociable memory systems depending on the mode of acquisition, with A/Not-A prototype learning dependent upon a perceptual representation system located within posterior visual cortex and A/B prototype learning dependent upon a declarative memory system associated with medial temporal and frontal regions. The degree to which patients with Alzheimer’s disease (AD) can acquire new categorical information may therefore critically depend upon the mode of acquisition. The present study examined A/Not-A and A/B prototype learning in AD patients using procedures that allowed direct comparison of learning across tasks. Despite impaired explicit recall of category features in all tasks, patients showed differential patterns of category acquisition across tasks. First, AD patients demonstrated impaired prototype induction along with intact exemplar classification under incidental A/Not-A conditions, suggesting that the loss of functional connectivity within visual cortical areas disrupted the integration processes supporting prototype induction within the perceptual representation system. Second, AD patients demonstrated intact prototype induction but impaired exemplar classification during A/B learning under observational conditions, suggesting that this form of prototype learning is dependent on a declarative memory system that is disrupted in AD. Third, the surprisingly intact classification of both prototypes and exemplars during A/B learning under trial-and-error feedback conditions suggests that AD patients shifted control from their deficient declarative memory system to a feedback-dependent procedural memory system when training conditions allowed. Taken together, these findings serve to not only increase our understanding of category learning in AD, but to also provide new insights into the ways in which different memory systems interact to support the acquisition of categorical knowledge. PMID:23751172
Mode coupling at connectors in mode-division multiplexed transmission over few-mode fiber.
Vuong, Jordi; Ramantanis, Petros; Frignac, Yann; Salsi, Massimiliano; Genevaux, Philippe; Bendimerad, Djalal F; Charlet, Gabriel
2015-01-26
In mode-division multiplexed (MDM) transmission systems, mode coupling is responsible for inter-modal crosstalk. We consider the transmission of modulated signals over a few-mode fiber (FMF) having low mode coupling and large differential mode group delay in the presence of a non-ideal fiber connection responsible for extra mode coupling. In this context, we first analytically derive the coupling matrix of the multimode connector and we numerically study the dependence of the matrix coefficients as a function of the butt-joint connection characteristics. The numerical results are then validated through an experiment with a five-mode setup. Finally, through numerical simulations, we assess the impact of the connector on the signal quality investigating different receiver digital signal processing (DSP) schemes.
Vonaparti, A; Lyris, E; Angelis, Y S; Panderi, I; Koupparis, M; Tsantili-Kakoulidou, A; Peters, R J B; Nielen, M W F; Georgakopoulos, C
2010-06-15
Unification of the screening protocols for a wide range of doping agents has become an important issue for doping control laboratories. This study presents the development and validation of a generic liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) screening method of 241 small molecule analytes from various categories of prohibited substances (stimulants, narcotics, diuretics, beta(2)-agonists, beta-blockers, hormone antagonists and modulators, glucocorticosteroids and anabolic agents). It is based on a single-step liquid-liquid extraction of hydrolyzed urine and the use of a rapid-resolution liquid chromatography/high-resolution time-of-flight mass spectrometric system acquiring continuous full scan data. Electrospray ionization in the positive mode was used. Validation parameters consisted of identification capability, limit of detection, specificity, ion suppression, extraction recovery, repeatability and mass accuracy. Detection criteria were established on the basis of retention time reproducibility and mass accuracy. The suitability of the methodology for doping control was demonstrated with positive urine samples. The preventive role of the method was proved by the case where full scan acquisition with accurate mass measurement allowed the retrospective reprocessing of acquired data from past doping control samples for the detection of a designer drug, the stimulant 4-methyl-2-hexanamine, which resulted in re-reporting a number of stored samples as positives for this particular substance, when, initially, they had been reported as negatives. Copyright (c) 2010 John Wiley & Sons, Ltd.
Estimation of viscoelastic surface wave parameters using a low cost optical deflection method
NASA Astrophysics Data System (ADS)
Brum, J.; Balay, G.; Arzúa, A.; Núñez, I.; Negreira, C.
2010-01-01
In this work an optical deflection method was used to study surface vibrations created by a low frequency source placed on the sample's surface. The optical method consists in placing a laser beam perpendicularly the sample's surface (gelatine based phantom). A beam-splitter is placed between the laser and the sample to project the reflected beam into a screen. As the surface moves due to the action of the low frequency source the laser beam on the screen also moves. Recording this movement with a digital camera allow us to reconstruct de surface motion using the light reflection law. If the scattering of the surface is very strong (such the one in biological tissue) a lens is placed between the surface and the beam-splitter to collect the scattered light. As validation method the surface movement was measured using a 10 MHz ultrasonic transducer placed normal to the surface in pulse-eco mode. The optical measurements were in complete agreement with the acoustical measurements. The optical measurement has the following advantages over the acoustic: 2-dimensional motion could be recorded and it is low cost. Since the acquisition was synchronized and the source-laser beam distance is known, measuring the time of flight an estimation of the surface wave velocity is obtained in order to measure the elasticity of the sample. The authors conclude that a reliable optical, low cost method for obtaining surface wave parameters of biological tissue was developed and successfully validate.
Closed-loop control of renal perfusion pressure in physiological experiments.
Campos-Delgado, D U; Bonilla, I; Rodríguez-Martínez, M; Sánchez-Briones, M E; Ruiz-Hernández, E
2013-07-01
This paper presents the design, experimental modeling, and control of a pump-driven renal perfusion pressure (RPP)-regulatory system to implement precise and relatively fast RPP regulation in rats. The mechatronic system is a simple, low-cost, and reliable device to automate the RPP regulation process based on flow-mediated occlusion. Hence, the regulated signal is the RPP measured in the left femoral artery of the rat, and the manipulated variable is the voltage applied to a dc motor that controls the occlusion of the aorta. The control system is implemented in a PC through the LabView software, and a data acquisition board NI USB-6210. A simple first-order linear system is proposed to approximate the dynamics in the experiment. The parameters of the model are chosen to minimize the error between the predicted and experimental output averaged from eight input/output datasets at different RPP operating conditions. A closed-loop servocontrol system based on a pole-placement PD controller plus dead-zone compensation was proposed for this purpose. First, the feedback structure was validated in simulation by considering parameter uncertainty, and constant and time-varying references. Several experimental tests were also conducted to validate in real time the closed-loop performance for stepwise and fast switching references, and the results show the effectiveness of the proposed automatic system to regulate the RPP in the rat, in a precise, accurate (mean error less than 2 mmHg) and relatively fast mode (10-15 s of response time).
Pilolli, Rosa; De Angelis, Elisabetta; Monaci, Linda
2018-02-13
In recent years, mass spectrometry (MS) has been establishing its role in the development of analytical methods for multiple allergen detection, but most analyses are being carried out on low-resolution mass spectrometers such as triple quadrupole or ion traps. In this investigation, performance provided by a high resolution (HR) hybrid quadrupole-Orbitrap™ MS platform for the multiple allergens detection in processed food matrix is presented. In particular, three different acquisition modes were compared: full-MS, targeted-selected ion monitoring with data-dependent fragmentation (t-SIM/dd2), and parallel reaction monitoring. In order to challenge the HR-MS platform, the sample preparation was kept as simple as possible, limited to a 30-min ultrasound-aided protein extraction followed by clean-up with disposable size exclusion cartridges. Selected peptide markers tracing for five allergenic ingredients namely skim milk, whole egg, soy flour, ground hazelnut, and ground peanut were monitored in home-made cookies chosen as model processed matrix. Timed t-SIM/dd2 was found the best choice as a good compromise between sensitivity and accuracy, accomplishing the detection of 17 peptides originating from the five allergens in the same run. The optimized method was validated in-house through the evaluation of matrix and processing effects, recoveries, and precision. The selected quantitative markers for each allergenic ingredient provided quantification of 60-100 μg ingred /g allergenic ingredient/matrix in incurred cookies.
Debowski, S; Wood, R E; Bandura, A
2001-12-01
Following instruction in basic skills for electronic search, participants who practiced in a guided exploration mode developed stronger self-efficacy and greater satisfaction than those who practiced in a self-guided exploratory mode. Intrinsic motivation was not affected by exploration mode. On 2 post-training tasks, guided exploration participants produced more effective search strategies. expended less effort, made fewer errors, rejected fewer lines of search, and achieved higher performance. Relative lack of support for self-regulatory factors as mediators of exploration mode impacts was attributed to the uninformative feedback from electronic search, which causes most people to remain at a novice level and to require external guidance for development of self-efficacy and skills. Self-guided learning will be more effective on structured tasks with more informative feedback and for individuals with greater expertise on dynamic tasks.
Jeong, Hyeonjeong; Sugiura, Motoaki; Sassa, Yuko; Wakusawa, Keisuke; Horie, Kaoru; Sato, Shigeru; Kawashima, Ryuta
2010-04-01
Second language (L2) acquisition necessitates learning and retrieving new words in different modes. In this study, we attempted to investigate the cortical representation of an L2 vocabulary acquired in different learning modes and in cross-modal transfer between learning and retrieval. Healthy participants learned new L2 words either by written translations (text-based learning) or in real-life situations (situation-based learning). Brain activity was then measured during subsequent retrieval of these words. The right supramarginal gyrus and left middle frontal gyrus were involved in situation-based learning and text-based learning, respectively, whereas the left inferior frontal gyrus was activated when learners used L2 knowledge in a mode different from the learning mode. Our findings indicate that the brain regions that mediate L2 memory differ according to how L2 words are learned and used. Copyright 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baptista, Mariana, E-mail: marianabaptista@ctn.ist.utl.pt; Di Maria, Salvatore; Barros, Sílvia
2015-07-15
Purpose: Due to its capability to more accurately detect deep lesions inside the breast by removing the effect of overlying anatomy, digital breast tomosynthesis (DBT) has the potential to replace the standard mammography technique in clinical screening exams. However, the European Guidelines for DBT dosimetry are still a work in progress and there are little data available on organ doses other than to the breast. It is, therefore, of great importance to assess the dosimetric performance of DBT with respect to the one obtained with standard digital mammography (DM) systems. The aim of this work is twofold: (i) to studymore » the dosimetric properties of a combined DBT/DM system (MAMMOMAT Inspiration Siemens{sup ®}) for a tungsten/rhodium (W/Rh) anode/filter combination and (ii) to evaluate organs doses during a DBT examination. Methods: For the first task, measurements were performed in manual and automatic exposure control (AEC) modes, using two homogeneous breast phantoms: a PMMA slab phantom and a 4 cm thick breast-shaped rigid phantom, with 50% of glandular tissue in its composition. Monte Carlo (MC) simulations were performed using Monte Carlo N-Particle eXtended v.2.7.0. A MC model was implemented to mimic DM and DBT acquisitions for a wide range of x-ray spectra (24 –34 kV). This was used to calculate mean glandular dose (MGD) and to compute series of backscatter factors (BSFs) that could be inserted into the DBT dosimetric formalism proposed by Dance et al. Regarding the second aim of the study, the implemented MC model of the clinical equipment, together with a female voxel phantom (“Laura”), was used to calculate organ doses considering a typical DBT acquisition. Results were compared with a standard two-view mammography craniocaudal (CC) acquisition. Results: Considering the AEC mode, the acquisition of a single CC view results in a MGD ranging from 0.53 ± 0.07 mGy to 2.41 ± 0.31 mGy in DM mode and from 0.77 ± 0.11 mGy to 2.28 ± 0.32 mGy in DBT mode. Regarding the BSF, the results achieved may lead to a MGD correction of about 6%, contributing to the improvement of the current guidelines used in these applications. Finally, considering the MC results obtained for the organ dose study, the radiation doses found for the tissues of the body other than the breast were in the range of tens of μSv, and are in part comparable to the ones obtained in standard DM. Nevertheless, in a single DBT examination, some organs (such as lung and thyroid) receive higher doses (of about 9% and 21%, respectively) with respect to the CC DM acquisition. Conclusions: Taking into account an average breast with a thickness of 4.5 cm, the MGDs for DM and DBT acquisitions were below the achievable value (2.0 mGy) defined by the European protocol. Additionally, in the case of a fusion imaging study (DM + DBT), the MGD for a 4.5 cm thick breast is of the order of 1.88 ± 0.36 mGy. Finally, organ dose evaluations underline the need to improve awareness concerning dose estimation of DBT exams for some organs, especially when radiation risk is assessed by using the effective dose.« less
Williams, G E; Cuvo, A J
1986-01-01
The research was designed to validate procedures to teach apartment upkeep skills to severely handicapped clients with various categorical disabilities. Methodological features of this research included performance comparisons between general and specific task analyses, effect of an impasse correction baseline procedure, social validation of training goals, natural environment assessments and contingencies, as well as long-term follow-up. Subjects were taught to perform upkeep responses on their air conditioner-heating unit, electric range, refrigerator, and electrical appliances within the context of a multiple-probe across subjects experimental design. The results showed acquisition, long-term maintenance, and generalization of the upkeep skills to a nontraining apartment. General task analyses were recommended for assessment and specific task analyses for training. The impasse correction procedure generally did not produce acquisition. PMID:3710947
Post-image acquisition processing approaches for coherent backscatter validation
NASA Astrophysics Data System (ADS)
Smith, Christopher A.; Belichki, Sara B.; Coffaro, Joseph T.; Panich, Michael G.; Andrews, Larry C.; Phillips, Ronald L.
2014-10-01
Utilizing a retro-reflector from a target point, the reflected irradiance of a laser beam traveling back toward the transmitting point contains a peak point of intensity known as the enhanced backscatter (EBS) phenomenon. EBS is dependent on the strength regime of turbulence currently occurring within the atmosphere as the beam propagates across and back. In order to capture and analyze this phenomenon so that it may be compared to theory, an imaging system is integrated into the optical set up. With proper imaging established, we are able to implement various post-image acquisition techniques to help determine detection and positioning of EBS which can then be validated with theory by inspection of certain dependent meteorological parameters such as the refractive index structure parameter, Cn2 and wind speed.
Zhang, Jian; Niu, Xin; Yang, Xue-zhi; Zhu, Qing-wen; Li, Hai-yan; Wang, Xuan; Zhang, Zhi-guo; Sha, Hong
2014-09-01
To design the pulse information which includes the parameter of pulse-position, pulse-number, pulse-shape and pulse-force acquisition and analysis system with function of dynamic recognition, and research the digitalization and visualization of some common cardiovascular mechanism of single pulse. To use some flexible sensors to catch the radial artery pressure pulse wave and utilize the high frequency B mode ultrasound scanning technology to synchronously obtain the information of radial extension and axial movement, by the way of dynamic images, then the gathered information was analyzed and processed together with ECG. Finally, the pulse information acquisition and analysis system was established which has the features of visualization and dynamic recognition, and it was applied to serve for ten healthy adults. The new system overcome the disadvantage of one-dimensional pulse information acquisition and process method which was common used in current research area of pulse diagnosis in traditional Chinese Medicine, initiated a new way of pulse diagnosis which has the new features of dynamic recognition, two-dimensional information acquisition, multiplex signals combination and deep data mining. The newly developed system could translate the pulse signals into digital, visual and measurable motion information of vessel.
ERIC Educational Resources Information Center
Udofia, Nsikak-Abasi; Nlebem, Bernard S.
2013-01-01
This study was to validate training modules that can help provide requisite skills for Senior Secondary school students in plantain flour processing enterprises for self-employment and to enable them pass their examination. The study covered Rivers State. Purposive sampling technique was used to select a sample size of 205. Two sets of structured…
Effects of Task Index Variations On Transfer of Training Criteria. Final Report.
ERIC Educational Resources Information Center
Mirabella, Angelo; Wheaton, George R.
The concluding series of a research program designed to validate a battery of task indexes for use in forecasting the effectiveness of training devices is described. Phase I collated 17 task indexes and applied them to sonar training devices, while in Phase II the 17 index battery was validated, using skill acquisition measures as criteria.…
Content Validity of Game-Based Assessment: Case Study of a Serious Game for ICT Managers in Training
ERIC Educational Resources Information Center
Hummel, Hans G. K.; Joosten-ten Brinke, Desirée; Nadolski, Rob J.; Baartman, Liesbeth K. J.
2017-01-01
Serious games foster the acquisition of complex problem-solving skills. Assessment of such skills should be in line with instruction, and within a serious game environment its content validity should equal face-to-face assessment. Research on assessment in serious gaming has remained rather scarce. This article shows how assessment can be…
ERIC Educational Resources Information Center
Kilgus, Stephen P.; von der Embse, Nathaniel P.; Scott, Katherine; Paxton, Sara
2015-01-01
The purpose of this investigation was to develop and initially validate the "Intervention Selection Profile-Social Skills" (ISP-SS), a novel brief social skills assessment method intended for use at Tier 2. Participants included 54 elementary school teachers and their 243 randomly selected students. Teachers rated students on two rating…
Bryce, Steven M.; Bernacki, Derek T.; Bemis, Jeffrey C.; Dertinger, Stephen D.
2015-01-01
Several endpoints associated with cellular responses to DNA damage as well as overt cytotoxicity were multiplexed into a miniaturized, “add and read” type flow cytometric assay. Reagents included a detergent to liberate nuclei, propidium iodide and RNase to serve as a pan-DNA dye, fluorescent antibodies against γH2AX, phospho-histone H3, and p53, and fluorescent microspheres for absolute nuclei counts. The assay was applied to TK6 cells and 67 diverse reference chemicals that served as a training set. Exposure was for 24 hrs in 96 well plates, and unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. At 4 and 24 hrs aliquots were removed and added to microtiter plates containing the reagent mix. Following a brief incubation period robotic sampling facilitated walk-away data acquisition. Univariate analyses identified biomarkers and time points that were valuable for classifying agents into one of three groups: clastogenic, aneugenic, or non-genotoxic. These mode of action predictions were optimized with a forward-stepping process that considered Wald test p-values, receiver operator characteristic curves, and pseudo R2 values, among others. A particularly high performing multinomial logistic regression model was comprised of four factors: 4hr γH2AX and phospho-histone H3 values, and 24 hr p53 and polyploidy values. For the training set chemicals, the four-factor model resulted in 94% concordance with our a priori classifications. Cross validation occurred via a leave-one-out approach, and in this case 91% concordance was observed. A test set of 17 chemicals that were not used to construct the model were evaluated, some of which utilized a short-term treatment in the presence of a metabolic activation system, and in 16 cases mode of action was correctly predicted. These initial results are encouraging as they suggest a machine learning strategy can be used to rapidly and reliably predict new chemicals’ genotoxic mode of action based on data from an efficient and highly scalable multiplexed assay. PMID:26764165
Bryce, Steven M; Bernacki, Derek T; Bemis, Jeffrey C; Dertinger, Stephen D
2016-04-01
Several endpoints associated with cellular responses to DNA damage as well as overt cytotoxicity were multiplexed into a miniaturized, "add and read" type flow cytometric assay. Reagents included a detergent to liberate nuclei, RNase and propidium iodide to serve as a pan-DNA dye, fluorescent antibodies against γH2AX, phospho-histone H3, and p53, and fluorescent microspheres for absolute nuclei counts. The assay was applied to TK6 cells and 67 diverse reference chemicals that served as a training set. Exposure was for 24 hrs in 96-well plates, and unless precipitation or foreknowledge about cytotoxicity suggested otherwise, the highest concentration was 1 mM. At 4- and 24-hrs aliquots were removed and added to microtiter plates containing the reagent mix. Following a brief incubation period robotic sampling facilitated walk-away data acquisition. Univariate analyses identified biomarkers and time points that were valuable for classifying agents into one of three groups: clastogenic, aneugenic, or non-genotoxic. These mode of action predictions were optimized with a forward-stepping process that considered Wald test p-values, receiver operator characteristic curves, and pseudo R(2) values, among others. A particularly high performing multinomial logistic regression model was comprised of four factors: 4 hr γH2AX and phospho-histone H3 values, and 24 hr p53 and polyploidy values. For the training set chemicals, the four-factor model resulted in 94% concordance with our a priori classifications. Cross validation occurred via a leave-one-out approach, and in this case 91% concordance was observed. A test set of 17 chemicals that were not used to construct the model were evaluated, some of which utilized a short-term treatment in the presence of a metabolic activation system, and in 16 cases mode of action was correctly predicted. These initial results are encouraging as they suggest a machine learning strategy can be used to rapidly and reliably predict new chemicals' genotoxic mode of action based on data from an efficient and highly scalable multiplexed assay. © 2016 Wiley Periodicals, Inc.
Current Mode Neutron Noise Measurements in the Zero Power Reactor CROCUS
NASA Astrophysics Data System (ADS)
Pakari, O.; Lamirand, V.; Perret, G.; Braun, L.; Frajtag, P.; Pautz, A.
2018-01-01
The present article is an overview of developments and results regarding neutron noise measurements in current mode at the CROCUS zero power facility. Neutron noise measurements offer a non-invasive method to determine kinetic reactor parameters such as the prompt decay constant at criticality α = βeff / λ, the effective delayed neutron fraction βeff, and the mean generation time λ for code validation efforts. At higher detection rates, i.e. above 2×104 cps in the used configuration at 0.1 W, the previously employed pulse charge amplification electronics with BF3 detectors yielded erroneous results due to dead time effects. Future experimental needs call for higher sensitivity in detectors, higher detection rates or higher reactor powers, and thus a generally more versatile measurement system. We, therefore, explored detectors operated with current mode acquisition electronics to accommodate the need. We approached the matter in two ways: 1) By using the two compensated 10B-coated ionization chambers available in CROCUS as operational monitors. The compensated current signal of these chambers was extracted from coremonitoring output channels. 2) By developing a new current mode amplification station to be used with other available detectors in core. Characteristics and first noise measurements of the new current system are presented. We implemented post-processing of the current signals from 1)and 2) with the APSD/CPSD method to determine α. At two critical states (0.5 and 1.5 W), using the 10B ionization chambers and their CPSD estimate, the prompt decay constant was measured after 1.5 hours to be α=(156.9 ± 4.3) s-1 (1σ). This result is within 1σ of statistical uncertainties of previous experiments and MCNPv5-1.6 predictions using the ENDF/B-7.1 library. The newsystem connected to a CFUL01 fission chamber using the APSDestimate at 100 mW after 33 min yielded α = (160.8 ± 6.3) s-1, also within 1σ agreement. The improvements to previous neutron noise measurementsinclude shorter measurement durations that can achievecomparable statistical uncertainties and measurements at higherdetection rates.
Kim, Jun Young; Arooj, Mahreen; Kim, Siu; Hwang, Swan; Kim, Byeong-Woo; Park, Ki Hun; Lee, Keun Woo
2014-01-01
Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives. PMID:24465730
T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yilin; Yin, Fang-Fang; Cai, Jing, E-mail: jing.cai@duke.edu
2015-08-15
Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundantmore » images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the feasibility of this technique. Results: 4D data acquisition completeness (C{sub p}) increases as NR increases in an inverse-exponential fashion (C{sub p} = 100 − 99 × exp(−0.18 × N{sub R}), when N{sub B} = 6, fitted using 29 patients’ data). The N{sub R} required for 4D-MRI reconstruction (defined as achieving 95% completeness, C{sub p} = 95%, N{sub R} = N{sub R,95}) is proportional to N{sub B} (N{sub R,95} ∼ 2.86 × N{sub B}, r = 1.0), but independent of N{sub S} and P{sub 0}. Simulated XCAT 4D-MRI showed a clear pattern of respiratory motion. Tumor motion trajectories measured on 4D-MRI were comparable to the average input signal, with a mean relative amplitude error of 2.7% ± 2.9%. Reconstructed 4D-MRI for healthy volunteers illustrated clear respiratory motion on three orthogonal planes, with minimal image artifacts. The artifacts were presumably caused by breathing irregularity and incompleteness of data acquisition (95% acquired only). The mean relative amplitude error between critical structure trajectory and average breathing curve for 12 healthy volunteers is 2.5 ± 0.3 mm in superior–inferior direction. Conclusions: A novel T2-weighted retrospective phase sorting 4D-MRI technique has been developed and successfully applied on digital phantom and healthy volunteers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, F; Cao, N; Young, L
2014-06-15
Purpose: Though FMEA (Failure Mode and Effects Analysis) is becoming more widely adopted for risk assessment in radiation therapy, to our knowledge it has never been validated against actual incident learning data. The objective of this study was to perform an FMEA analysis of an SBRT (Stereotactic Body Radiation Therapy) treatment planning process and validate this against data recorded within an incident learning system. Methods: FMEA on the SBRT treatment planning process was carried out by a multidisciplinary group including radiation oncologists, medical physicists, and dosimetrists. Potential failure modes were identified through a systematic review of the workflow process. Failuremore » modes were rated for severity, occurrence, and detectability on a scale of 1 to 10 and RPN (Risk Priority Number) was computed. Failure modes were then compared with historical reports identified as relevant to SBRT planning within a departmental incident learning system that had been active for two years. Differences were identified. Results: FMEA identified 63 failure modes. RPN values for the top 25% of failure modes ranged from 60 to 336. Analysis of the incident learning database identified 33 reported near-miss events related to SBRT planning. FMEA failed to anticipate 13 of these events, among which 3 were registered with severity ratings of severe or critical in the incident learning system. Combining both methods yielded a total of 76 failure modes, and when scored for RPN the 13 events missed by FMEA ranked within the middle half of all failure modes. Conclusion: FMEA, though valuable, is subject to certain limitations, among them the limited ability to anticipate all potential errors for a given process. This FMEA exercise failed to identify a significant number of possible errors (17%). Integration of FMEA with retrospective incident data may be able to render an improved overview of risks within a process.« less
An RF Sensor for Gauging Screen-Channel Liquid Acquisition Devices for Cryogenic Propellants
NASA Technical Reports Server (NTRS)
Zimmerli, Gregory A.; Metzger, Scott; Asipauskas, Marius
2014-01-01
A key requirement of a low-gravity screen-channel liquid acquisition device (LAD) is the need to retain 100% liquid in the channel in response to propellant outflow and spacecraft maneuvers. The point at which a screen-channel LAD ingests vapor is known as breakdown, and can be measured several different ways such as: visual observation of bubbles in the LAD channel outflow; a sudden change in pressure drop between the propellant tank and LAD sump outlet; or, an indication by wet-dry sensors placed in the LAD channel or outflow stream. Here we describe a new type of sensor for gauging a screen-channel LAD, the Radio Frequency Mass Gauge (RFMG). The RFMG measures the natural electromagnetic modes of the screen-channel LAD, which is very similar to an RF waveguide, to determine the amount of propellant in the channel. By monitoring several of the RF modes, we show that the RFMG acts as a global sensor of the LAD channel propellant fill level, and enables detection of LAD breakdown even in the absence of outflow. This paper presents the theory behind the RFMG-LAD sensor, measurements and simulations of the RF modes of a LAD channel, and RFMG detection of LAD breakdown in a channel using a simulant fluid during inverted outflow and long-term stability tests.
Göbl, Rüdiger; Navab, Nassir; Hennersperger, Christoph
2018-06-01
Research in ultrasound imaging is limited in reproducibility by two factors: First, many existing ultrasound pipelines are protected by intellectual property, rendering exchange of code difficult. Second, most pipelines are implemented in special hardware, resulting in limited flexibility of implemented processing steps on such platforms. With SUPRA, we propose an open-source pipeline for fully software-defined ultrasound processing for real-time applications to alleviate these problems. Covering all steps from beamforming to output of B-mode images, SUPRA can help improve the reproducibility of results and make modifications to the image acquisition mode accessible to the research community. We evaluate the pipeline qualitatively, quantitatively, and regarding its run time. The pipeline shows image quality comparable to a clinical system and backed by point spread function measurements a comparable resolution. Including all processing stages of a usual ultrasound pipeline, the run-time analysis shows that it can be executed in 2D and 3D on consumer GPUs in real time. Our software ultrasound pipeline opens up the research in image acquisition. Given access to ultrasound data from early stages (raw channel data, radiofrequency data), it simplifies the development in imaging. Furthermore, it tackles the reproducibility of research results, as code can be shared easily and even be executed without dedicated ultrasound hardware.
NASA Technical Reports Server (NTRS)
Koch, L. Danielle
2012-01-01
Fan inflow distortion tone noise has been studied computationally and experimentally. Data from two experiments in the NASA Glenn Advanced Noise Control Fan rig have been used to validate acoustic predictions. The inflow to the fan was distorted by cylindrical rods inserted radially into the inlet duct one rotor chord length upstream of the fan. The rods were arranged in both symmetric and asymmetric circumferential patterns. In-duct and farfield sound pressure level measurements were recorded. It was discovered that for positive circumferential modes, measured circumferential mode sound power levels in the exhaust duct were greater than those in the inlet duct and for negative circumferential modes, measured total circumferential mode sound power levels in the exhaust were less than those in the inlet. Predicted trends in overall sound power level were proven to be useful in identifying circumferentially asymmetric distortion patterns that reduce overall inlet distortion tone noise, as compared to symmetric arrangements of rods. Detailed comparisons between the measured and predicted radial mode sound power in the inlet and exhaust duct indicate limitations of the theory.
Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...
2017-06-14
New experimental studies and modelling of the coherent edge harmonic oscillation (EHO), which regulates the conventional Quiescent H-mode (QH-mode) edge, validate the proposed hypothesis of edge rotational shear in destabilizing the low-n kink-peeling mode as the additional drive mechanism for the EHO. The observed minimum edge E×B shear required for the EHO decreases linearly with pedestal collisionalitymore » $$\
Correlates of mammographic density in B-mode ultrasound and real time elastography.
Jud, Sebastian Michael; Häberle, Lothar; Fasching, Peter A; Heusinger, Katharina; Hack, Carolin; Faschingbauer, Florian; Uder, Michael; Wittenberg, Thomas; Wagner, Florian; Meier-Meitinger, Martina; Schulz-Wendtland, Rüdiger; Beckmann, Matthias W; Adamietz, Boris R
2012-07-01
The aim of our study involved the assessment of B-mode imaging and elastography with regard to their ability to predict mammographic density (MD) without X-rays. Women, who underwent routine mammography, were prospectively examined with additional B-mode ultrasound and elastography. MD was assessed quantitatively with a computer-assisted method (Madena). The B-mode and elastography images were assessed by histograms with equally sized gray-level intervals. Regression models were built and cross validated to examine the ability to predict MD. The results of this study showed that B-mode imaging and elastography were able to predict MD. B-mode seemed to give a more accurate prediction. R for B-mode image and elastography were 0.67 and 0.44, respectively. Areas in the B-mode images that correlated with mammographic dense areas were either dark gray or of intermediate gray levels. Concerning elastography only the gray levels that represent extremely stiff tissue correlated positively with MD. In conclusion, ultrasound seems to be able to predict MD. Easy and cheap utilization of regular breast ultrasound machines encourages the use of ultrasound in larger case-control studies to validate this method as a breast cancer risk predictor. Furthermore, the application of ultrasound for breast tissue characterization could enable comprehensive research concerning breast cancer risk and breast density in young and pregnant women.
Why the T in Smart: A Constructive Synergy
2003-01-01
Acquisition Review Quarterly — Summer 2003 284 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of...currently valid OMB control number. 1. REPORT DATE 2003 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Why The "T" In Smart: A...reveals how the Close Acquisition Review Quarterly — Summer 2003 286 may help insure up-to-date-training systems are available when new equipment systems
NASA Technical Reports Server (NTRS)
Chien, Steve A.
1996-01-01
A key obstacle hampering fielding of AI planning applications is the considerable expense of developing, verifying, updating, and maintainting the planning knowledge base (KB). Planning systems must be able to compare favorably in terms of software lifecycle costs to other means of automation such as scripts or rule-based expert systems. This paper describes a planning application of automated imaging processing and our overall approach to knowledge acquisition for this application.
Capability and Development Time Trade-off Analysis in Systems-of-Systems
2011-04-30
failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE APR 2011 2. REPORT TYPE...activities of the Naval Postgraduate School’s Acquisition Research Program in its first seven years. The sheer volume of research products—almost 600...determine its value. We take seriously the pernicious effects of the so-called “theory– practice” gap, which would separate the acquisition scholar
Lexical Link Analysis Application: Improving Web Service to Acquisition Visibility Portal Phase III
2015-04-30
It is a supervised learning method but best for Big Data with low dimensions. It is an approximate inference good for Big Data and Hadoop ...Each process produces large amounts of information ( Big Data ). There is a critical need for automation, validation, and discovery to help acquisition...can inform managers where areas might have higher program risk and how resource and big data management might affect the desired return on investment
NASA Astrophysics Data System (ADS)
Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.
2015-04-01
Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.
de Souza E Silva, Christina G; Kaminsky, Leonard A; Arena, Ross; Christle, Jeffrey W; Araújo, Claudio Gil S; Lima, Ricardo M; Ashley, Euan A; Myers, Jonathan
2018-05-01
Background Maximal oxygen uptake (VO 2 max) is a powerful predictor of health outcomes. Valid and portable reference values are integral to interpreting measured VO 2 max; however, available reference standards lack validation and are specific to exercise mode. This study was undertaken to develop and validate a single equation for normal standards for VO 2 max for the treadmill or cycle ergometer in men and women. Methods Healthy individuals ( N = 10,881; 67.8% men, 20-85 years) who performed a maximal cardiopulmonary exercise test on either a treadmill or a cycle ergometer were studied. Of these, 7617 and 3264 individuals were randomly selected for development and validation of the equation, respectively. A Brazilian sample (1619 individuals) constituted a second validation cohort. The prediction equation was determined using multiple regression analysis, and comparisons were made with the widely-used Wasserman and European equations. Results Age, sex, weight, height and exercise mode were significant predictors of VO 2 max. The regression equation was: VO 2 max (ml kg -1 min -1 ) = 45.2 - 0.35*Age - 10.9*Sex (male = 1; female = 2) - 0.15*Weight (pounds) + 0.68*Height (inches) - 0.46*Exercise Mode (treadmill = 1; bike = 2) ( R = 0.79, R 2 = 0.62, standard error of the estimate = 6.6 ml kg -1 min -1 ). Percentage predicted VO 2 max for the US and Brazilian validation cohorts were 102.8% and 95.8%, respectively. The new equation performed better than traditional equations, particularly among women and individuals ≥60 years old. Conclusion A combined equation was developed for normal standards for VO 2 max for different exercise modes derived from a US national registry. The equation provided a lower average error between measured and predicted VO 2 max than traditional equations even when applied to an independent cohort. Additional studies are needed to determine its portability.
Adaptive electric potential sensors for smart signal acquisition and processing
NASA Astrophysics Data System (ADS)
Prance, R. J.; Beardsmore-Rust, S.; Prance, H.; Harland, C. J.; Stiffell, P. B.
2007-07-01
Current applications of the Electric Potential Sensor operate in a strongly (capacitively) coupled limit, with the sensor physically close to or touching the source. This mode of operation screens the sensor effectively from the majority of external noise. To date however the full capability of these sensors operating in a remote mode has not been realised outside of a screened environment (Faraday cage). This paper describes the results of preliminary work in tailoring the response of the sensors to particular signals and so reject background noise, thereby enhancing both the dynamic range and signal to noise ratio significantly.
Gorman, Jamie C; Crites, Michael J
2013-08-01
We report an experiment in which we investigated differential transfer between unimanual (one-handed), bimanual (two-handed), and intermanual (different peoples' hands) coordination modes. People perform some manual tasks faster than others ("mode effects"). However, little is known about transfer between coordination modes. To investigate differential transfer, we draw hypotheses from two perspectives--information based and constraint based--of bimanual and interpersonal coordination and skill acquisition. Participants drove a teleoperated rover around a circular path in sets of two 2-min trials using two of the different coordination modes. Speed and variability of the rover's path were measured. Order of coordination modes was manipulated to examine differential transfer and mode effects. Differential transfer analyses revealed patterns of positive transfer from simpler (localized spatiotemporal constraints) to more complex (distributed spatiotemporal constraints) coordination modes paired with negative transfer in the opposite direction. Mode effects indicated that intermanual performance was significantly faster than unimanual performance, and bimanual performance was intermediate. Importantly, all of these effects disappeared with practice. The observed patterns of differential transfer between coordination modes may be better accounted for by a constraint-based explanation of differential transfer than by an information-based one. Mode effects may be attributable to anticipatory movements based on dyads' access to mutual visual information. Although people may be faster using more-complex coordination modes, when operators transition between modes, they may be more effective transitioning from simpler (e.g., bimanual) to more complex (e.g., intermanual) modes than vice versa. However, this difference may be critical only for novel or rarely practiced tasks.
Effect of Modality and Task Type on Interlanguage Variation
ERIC Educational Resources Information Center
Kim, Hye Yeong
2017-01-01
An essential component for assessing the accuracy and fluency of language learners is understanding how mode of communication and task type affect performance in second-language (L2) acquisition. This study investigates how text-based synchronous computer-mediated communication (SCMC) and face-to-face (F2F) oral interaction can influence the…
Gross Motor Skill Acquisition in Adolescents with Down Syndrome
ERIC Educational Resources Information Center
Meegan, Sarah; Maraj, Brian K. V.; Weeks, Daniel; Chua, Romeo
2006-01-01
The purpose of this study was to assess whether verbal-motor performances deficits exhibited by individuals with Down syndrome limited their ability to acquire gross motor skills when given visual and verbal instruction together and then transferred to either a visual or verbal instructional mode to reproduce the movement. Nine individuals with…
Darwin's Intertextual Baby: Erasmus Darwin as Precursor in Child Psychology.
ERIC Educational Resources Information Center
Bradley, Ben S.
1994-01-01
Notes that Charles Darwin's observations on babies are not examples of data collected to test hypotheses. Draws from Bakhtin to argue that they extend and vary existing modes of discourse, primarily debates about the place of instinct in language acquisition, traceable to his grandfather, Erasmus Darwin. Concludes that the significance of Darwin's…
The Value of Picture-Book Reading-Based Collaborative Output Activities for Vocabulary Retention
ERIC Educational Resources Information Center
Sun, Chia-Ho
2017-01-01
This study investigated the effects of three instructional modes: picture-book reading-only (PRO), picture-book reading plus vocabulary instruction (PRVI), and picture-book reading plus reading-based collaborative output activity (PRCOA) on young adult EFL (English as a foreign language) learners' vocabulary acquisition and retention. Eighty…
Davis, S C; Makarov, A A; Hughes, J D
1999-01-01
Analysis of sub-ppb levels of polynuclear aromatic hydrocarbons (PAHs) in drinking water by high performance liquid chromatography (HPLC) fluorescence detection typically requires large water samples and lengthy extraction procedures. The detection itself, although selective, does not give compound identity confirmation. Benchtop gas chromatography/mass spectrometry (GC/MS) systems operating in the more sensitive selected ion monitoring (SIM) acquisition mode discard spectral information and, when operating in scanning mode, are less sensitive and scan too slowly. The selectivity of hyperthermal surface ionisation (HSI), the high column flow rate capacity of the supersonic molecular beam (SMB) GC/MS interface, and the high acquisition rate of time-of-flight (TOF) mass analysis, are combined here to facilitate a rapid, specific and sensitive technique for the analysis of trace levels of PAHs in water. This work reports the advantages gained by using the GC/HSI-TOF system over the HPLC fluorescence method, and discusses in some detail the nature of the instrumentation used.
The electromagnetic interference of mobile phones on the function of a γ-camera.
Javadi, Hamid; Azizmohammadi, Zahra; Mahmoud Pashazadeh, Ali; Neshandar Asli, Isa; Moazzeni, Taleb; Baharfar, Nastaran; Shafiei, Babak; Nabipour, Iraj; Assadi, Majid
2014-03-01
The aim of the present study is to evaluate whether or not the electromagnetic field generated by mobile phones interferes with the function of a SPECT γ-camera during data acquisition. We tested the effects of 7 models of mobile phones on 1 SPECT γ-camera. The mobile phones were tested when making a call, in ringing mode, and in standby mode. The γ-camera function was assessed during data acquisition from a planar source and a point source of Tc with activities of 10 mCi and 3 mCi, respectively. A significant visual decrease in count number was considered to be electromagnetic interference (EMI). The percentage of induced EMI with the γ-camera per mobile phone was in the range of 0% to 100%. The incidence of EMI was mainly observed in the first seconds of ringing and then mitigated in the following frames. Mobile phones are portable sources of electromagnetic radiation, and there is interference potential with the function of SPECT γ-cameras leading to adverse effects on the quality of the acquired images.
Dong, Ying; Yan, Kuan; Ma, Yanhua; Wang, Shan; He, Genye; Deng, Jing; Yang, Zhiyong
2015-10-01
A novel, reliable and sensitive liquid chromatography-tandem mass spectrometry (LC-MS-MS) method was developed with dynamic multiple reaction monitoring (dMRM) mode for the simultaneous screening of 71 stimulants and 7 metabolites in human urine using unsophisticated MS instruments (Agilent triple-quadruple 6410 B mass spectrometer). With a known retention time of an analyte, dMRM algorithm monitors each MRM transition only around its expected retention time. Therefore, dMRM enables the maximization of dwell times and provides much higher sensitivity and reproducibility than the conventional multiple reaction monitoring mode (cMRM). After precipitation of protein, the urine sample was injected into LC-MS-MS system directly without sample pre-concentration. For comparison, cMRM and dMRM acquisitions were performed under the same chromatographic conditions. The result showed that the signal response and quality of the chromatograms for each stimulant improved significantly with dMRM over cMRM. The method has been fully validated giving limits of detection (0.1-25 ng/mL) satisfactory for its application to anti-doping analysis. The repeatability of the concentrations and the retention times are good both for intra- and for inter-day experiments (%CV of concentrations always <20 and %CV of retention times <0.5). The method also afforded satisfactory results in terms of accuracy, matrix effect and specificity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Silva, F G A; de Moura, M F S F; Dourado, N; Xavier, J; Pereira, F A M; Morais, J J L; Dias, M I R; Lourenço, P J; Judas, F M
2017-08-01
Fracture characterization of human cortical bone under mode II loading was analyzed using a miniaturized version of the end-notched flexure test. A data reduction scheme based on crack equivalent concept was employed to overcome uncertainties on crack length monitoring during the test. The crack tip shear displacement was experimentally measured using digital image correlation technique to determine the cohesive law that mimics bone fracture behavior under mode II loading. The developed procedure was validated by finite element analysis using cohesive zone modeling considering a trapezoidal with bilinear softening relationship. Experimental load-displacement curves, resistance curves and crack tip shear displacement versus applied displacement were used to validate the numerical procedure. The excellent agreement observed between the numerical and experimental results reveals the appropriateness of the proposed test and procedure to characterize human cortical bone fracture under mode II loading. The proposed methodology can be viewed as a novel valuable tool to be used in parametric and methodical clinical studies regarding features (e.g., age, diseases, drugs) influencing bone shear fracture under mode II loading.
The breakdown of the weakly-nonlinear regime for kinetic instabilities
NASA Astrophysics Data System (ADS)
Sanz-Orozco, David; Berk, Herbert; Wang, Ge
2017-10-01
The evolution of marginally-unstable waves that interact resonantly with populations of energetic particles is governed by a well-known cubic integro-differential equation for the mode amplitude. One of the outcomes predicted by the equation is the so-called ``explosive'' regime, where the amplitude grows indefinitely, eventually taking the equation outside of its domain of validity. Beyond this point, only full Vlasov simulations will accurately describe the evolution of the mode amplitude. In this work, we study the breakdown of the cubic equation in detail. We find that, while the cubic equation is still valid, the distribution function of the energetic particles locally flattens or ``folds'' in phase space. This feature is unexpected in view of the assumptions of the theory that are given in. We also derive fifth-order terms in the wave equation, which not only give us a more accurate description of the marginally-unstable modes, but they also allow us to predict the breakdown of the cubic equation. Our findings allow us to better understand the transition between weakly-nonlinear modes and the long-term chirping modes that ultimately emerge.
Initial transport validation studies using NSTX-U L-mode plasmas
NASA Astrophysics Data System (ADS)
Guttenfelder, Walter; Battaglia, D.; Bell, R. E.; Boyer, M. D.; Crocker, N.; Diallo, A.; Ferraro, N.; Gerhardt, S. P.; Kaye, S. M.; Leblanc, B. P.; Liu, D.; Menard, J. E.; Mueller, D.; Myer, C.; Podesta, M.; Raman, R.; Ren, Y.; Sabbagh, S.; Smith, D.
2016-10-01
A variety of stationary L-mode plasmas have been successfully developed in NSTX-U for physics validation studies. The plasmas span a range of density (1-4 ×1019 m-3) , plasma current (0.65-1.0 MA), and neutral beam heating power (<=4 MW), taking advantage of new, more tangential neutral beam sources to vary rotation profiles. Transport analysis (TRANSP) and turbulence measurements (BES, reflectometry) of these plasmas will be illustrated and compared with initial microstability and transport predictions. In particular, the normalized beta of these L-modes range between βN = 1-2, providing a valuable bridge in parameter space between (i) H-modes at comparable beta in conventional tokamaks (R/a 3, βN 2), where transport models have been largely developed and tested, and (ii) low-aspect-ratio H-modes at higher beta (R/a 1.5-1.7, βN 5), where transport models are less tested and challenged by stronger electromagnetic and equilibrium effects. This work is supported by US DOE contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Davis, A. B.; Qu, Z.
2014-12-01
The main goal of NASA's OCO-2 mission is to perform XCO2 column measurements from space with an unprecedented (~1 ppm) precision and accuracy that will enable modelers to globally map CO2 sources and sinks. To achieve this goal, the mission is critically dependent on XCO2product validation that, in turn, is highly dependent on successful use of OCO-2's "target mode" data acquisition. In target mode, OCO-2 rotates in such a way that, as long as it is above the horizon, it looks at a Total Carbon Column Observing Network (TCCON) station equipped with a powerful Fourier Transform spectrometer. TCCON stations measure, among other things, XCO2by looking straight at the Sun. This translates to a far simpler forward model for TCCON than for OCO-2. In the ideal world, OCO-2's spectroscopic signals result from the cumulative gaseous absorption for one direct transmission of sunlight to the ground (like for TCCON), followed by one diffuse reflection, and one direct transmission to the instrument—at a variety of viewing angles in traget mode. In the real world, all manner of multiple surface reflections and/or scatterings contribute to the signal. See figure. In the idealized world of the OCO-2 operational forward model (used in nadir, glint and target modes), the horizontal variability of the scattering atmosphere and reflecting surface are ignored, leading to the adoption of a 1D vector radiative transfer (vRT) model. This is the source of forward model error that we are investigating, with a focus on target mode. In principle, atmospheric variability in the horizontal plane—largely due to clouds—can be avoided by careful screening. Also, it is straightforward to account for angular variability of the surface reflection model in the 1D vRT framework. But it is not clear how unavoidable horizontal variations of the surface reflectivity affects the OCO-2 signal, even if the reflection was isotropic (Lambertian). To characterize this OCO-2 "adjacency" effect, we use a simple surface variability model with a single spatial frequency in each direction, and a single albedo contrast at a time for realistic aerosol and gaseous profiles. This specific 3D RT error is compared with other documented forward model errors and translated into XCO2 error in ppm, for programatic consideration and eventual mitigation.
Kalanoor, Basanth S; Ronen, Maria; Oren, Ziv; Gerber, Doron; Tischler, Yaakov R
2017-03-31
The low-frequency vibrational (LFV) modes of biomolecules reflect specific intramolecular and intermolecular thermally induced fluctuations that are driven by external perturbations, such as ligand binding, protein interaction, electron transfer, and enzymatic activity. Large efforts have been invested over the years to develop methods to access the LFV modes due to their importance in the studies of the mechanisms and biological functions of biomolecules. Here, we present a method to measure the LFV modes of biomolecules based on Raman spectroscopy that combines volume holographic filters with a single-stage spectrometer, to obtain high signal-to-noise-ratio spectra in short acquisition times. We show that this method enables LFV mode characterization of biomolecules even in a hydrated environment. The measured spectra exhibit distinct features originating from intra- and/or intermolecular collective motion and lattice modes. The observed modes are highly sensitive to the overall structure, size, long-range order, and configuration of the molecules, as well as to their environment. Thus, the LFV Raman spectrum acts as a fingerprint of the molecular structure and conformational state of a biomolecule. The comprehensive method we present here is widely applicable, thus enabling high-throughput study of LFV modes of biomolecules.
Orbital operations with the Shuttle Infrared Telescope Facility /SIRTF/
NASA Technical Reports Server (NTRS)
Werner, M. W.; Lorell, K. R.
1981-01-01
The Shuttle Infrared Telescope Facility (SIRTF) is a cryogenically-cooled, 1-m-class telescope that will be operated from the Space Shuttle as an observatory for infrared astronomy. This paper discusses the scientific constraints on and the requirements for pointing and controlling SIRTF as well as several aspects of SIRTF orbital operations. The basic pointing requirement is for an rms stability of 0.25 arcsec, which is necessary to realize the full angular resolution of the 5-micron diffraction-limited SIRTF. Achieving this stability requires the use of hardware and software integral to SIRTF working interactively with the gyrostabilized Shuttle pointing-mount. The higher sensitivity of SIRTF, together with orbital and time constraints, puts a premium on rapid target acquisition and on efficient operational and observational procedures. Several possible acquisition modes are discussed, and the importance of source acquisition by maximizing the output of an infrared detector is emphasized.
Science observations with the IUE using the one-gyro mode
NASA Technical Reports Server (NTRS)
Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, Chris R.; Perez, M. R.; Webb, J.
1990-01-01
The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked which will rely on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.
Science observations with the IUE using the one-gyro mode
NASA Technical Reports Server (NTRS)
Imhoff, C.; Pitts, R.; Arquilla, R.; Shrader, C.; Perez, M.; Webb, J.
1990-01-01
The International Ultraviolet Explorer (IUE) attitude control system originally included an inertial reference package containing six gyroscopes for three axis stabilization. The science instrument includes a prime and redundant Field Error Sensor (FES) camera for target acquisition and offset guiding. Since launch, four of the six gyroscopes have failed. The current attitude control system utilizes the remaining two gyros and a Fine Sun Sensor (FSS) for three axis stabilization. When the next gyro fails, a new attitude control system will be uplinked, which will relay on the remaining gyro and the FSS for general three axis stabilization. In addition to the FSS, the FES cameras will be required to assist in maintaining fine attitude control during target acquisition. This has required thoroughly determining the characteristics of the FES cameras and the spectrograph aperture plate as well as devising new target acquisition procedures. The results of this work are presented.
Impact of laser phase and amplitude noises on streak camera temporal resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wlotzko, V., E-mail: wlotzko@optronis.com; Optronis GmbH, Ludwigstrasse 2, 77694 Kehl; Uhring, W.
2015-09-15
Streak cameras are now reaching sub-picosecond temporal resolution. In cumulative acquisition mode, this resolution does not entirely rely on the electronic or the vacuum tube performances but also on the light source characteristics. The light source, usually an actively mode-locked laser, is affected by phase and amplitude noises. In this paper, the theoretical effects of such noises on the synchronization of the streak system are studied in synchroscan and triggered modes. More precisely, the contribution of band-pass filters, delays, and time walk is ascertained. Methods to compute the resulting synchronization jitter are depicted. The results are verified by measurement withmore » a streak camera combined with a Ti:Al{sub 2}O{sub 3} solid state laser oscillator and also a fiber oscillator.« less
2010-04-01
Characteristics associated with “Free Flight” Shroud and Stage Separation and Mode Switching in LENS II Michael S. Holden, PhD CUBRC , Inc. 4455 Genesee...ADDRESS(ES) CUBRC , Inc. 4455 Genesee Street Buffalo, NY 14225, USA 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND...switching and inlet-starting validation • Validation to CFD community ( CUBRC /UM) Figure 32: Numerical Simulation of the Unsteady Flow Dynamics during
Sharif, Behzad; Bresler, Yoram
2013-01-01
Patient-Adaptive Reconstruction and Acquisition Dynamic Imaging with Sensitivity Encoding (PARADISE) is a dynamic MR imaging scheme that optimally combines parallel imaging and model-based adaptive acquisition. In this work, we propose the application of PARADISE to real-time cardiac MRI. We introduce a physiologically improved version of a realistic four-dimensional cardiac-torso (NCAT) phantom, which incorporates natural beat-to-beat heart rate and motion variations. Cardiac cine imaging using PARADISE is simulated and its performance is analyzed by virtue of the improved phantom. Results verify the effectiveness of PARADISE for high resolution un-gated real-time cardiac MRI and its superiority over conventional acquisition methods. PMID:24398475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, D; Papanikolaou, N; Gutierrez, A
2015-06-15
Introduction Quality assurance of the image quality for image guided localization systems is crucial to ensure accurate visualization and localization of target volumes. In this study, the long term stability of selected image parameters was assessed and evaluated for CBCT mode, planar radiographic kV mode and MV mode. Methods and Materials: The CATPHAN, QckV-1 and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50) being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for Uniformity,more » Noise, Spatial Resolution and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F Low Detector for the kV planar radiographic mode. Results A total of 20 and 10 measurements were acquired for the planar radiographic and CBCT systems respectively over a two month period. Values were normalized to the mean and the standard deviations (STD) were recorded. For the planar radiographic spatial resolution, the STD for f30, f40, f50 were 0.004, 0.002, 0.002 and 0.005, 0.007, 0.008 for the kV and MV, respectively. The average recorded dose for kV was 38.7±2.7 μGy. The STD of the evaluated metrics for the S20 acquisition were: 0.444(f30), 0.067(f40), 0.062(f50), 0.018(Water/poly-HU constancy), 0.028(uniformity) and 0.106(noise). The standard deviations for the M20 acquisition were: 0.108(f30), 0.073(f40), 0.091(f50), 0.008(Water/poly-HU constancy), 0.005(uniformity) and 0.005(noise). Using these, tolerances can be reported as a warning and action threshold of 1σ and 2σ. Conclusion A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iView imaging systems. Consistent imaging and dosimetric properties over the evaluated time frame were noted. This work was funded in part by the Cancer Prevention Research Institute of Texas Pre doctoral fellowship training grant (RP140105) to Dennis N. Stanley M.Sc.« less
Stanley, Dennis N; Rasmussen, Karl; Kirby, Neil; Papanikolaou, Nikos; Gutiérrez, Alonso N
2018-05-01
A robust image quality assurance and analysis methodology for image-guided localization systems is crucial to ensure the accurate localization and visualization of target tumors. In this study, the long-term stability of selected image parameters was assessed and evaluated for the cone-beam computed tomography (CBCT) mode, planar radiographic kV mode, and the radiographic MV mode of an Elekta VersaHD. The CATPHAN, QckV-1, and QC-3 phantoms were used to evaluate the image quality parameters. The planar radiographic images were analyzed in PIPSpro™ with spatial resolution (f30, f40, f50), contrast to noise ratio (CNR) and noise being recorded. For XVI CBCT, Head and Neck Small20 (S20) and Pelvis Medium20 (M20) standard acquisition modes were evaluated for uniformity, noise, spatial resolution, and HU constancy. Dose and kVp for the XVI were recorded using the Unfors RaySafe Xi system with the R/F low detector for the kV planar radiographic mode. For each metric, values were normalized to the mean and the standard deviations were recorded. A total of 30 measurements were performed on a single Elekta VersaHD linear accelerator over an 18-month period without significant adjustment or recalibration to the XVI or iViewGT systems during the evaluated time frame. For the planar radiographic spatial resolution, the normalized standard deviation values of the f30, f40, and f50 were 0.004, 0.003, and 0.003 and 0.015, 0.009, and 0.017 for kV and MV, respectively. The average recorded dose for kV was 67.96 μGy. The standard deviations of the evaluated metrics for the S20 acquisition were 0.083(f30), 0.058(f40), 0.056(f50), 0.021(Water/poly-HU constancy), 0.029(uniformity) and 0.028(noise). The standard deviations for the M20 acquisition were 0.093(f30), 0.043(f40), 0.037(f50), 0.016(Water/poly-HU constancy), 0.010(uniformity) and 0.011(Noise). A study was performed to assess the stability of the basic image quality parameters recommended by TG-142 for the Elekta XVI and iViewGT imaging systems. The two systems show consistent imaging and dosimetric properties over the evaluated time frame. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Toliver, Paul; Ozdur, Ibrahim; Agarwal, Anjali; Woodward, T. K.
2013-05-01
In this paper, we describe a detailed performance comparison of alternative single-pixel, single-mode LIDAR architectures including (i) linear-mode APD-based direct-detection, (ii) optically-preamplified PIN receiver, (iii) PINbased coherent-detection, and (iv) Geiger-mode single-photon-APD counting. Such a comparison is useful when considering next-generation LIDAR on a chip, which would allow one to leverage extensive waveguide-based structures and processing elements developed for telecom and apply them to small form-factor sensing applications. Models of four LIDAR transmit and receive systems are described in detail, which include not only the dominant sources of receiver noise commonly assumed in each of the four detection limits, but also additional noise terms present in realistic implementations. These receiver models are validated through the analysis of detection statistics collected from an experimental LIDAR testbed. The receiver is reconfigurable into four modes of operation, while transmit waveforms and channel characteristics are held constant. The use of a diffuse hard target highlights the importance of including speckle noise terms in the overall system analysis. All measurements are done at 1550 nm, which offers multiple system advantages including less stringent eye safety requirements and compatibility with available telecom components, optical amplification, and photonic integration. Ultimately, the experimentally-validated detection statistics can be used as part of an end-to-end system model for projecting rate, range, and resolution performance limits and tradeoffs of alternative integrated LIDAR architectures.
Dabre, Romain; Azad, Nazanin; Schwämmle, Achim; Lämmerhofer, Michael; Lindner, Wolfgang
2011-04-01
Several methods for the separation of vitamins on HPLC columns were already validated in the last 20 years. However, most of the techniques focus on separating either fat- or water-soluble vitamins and only few methods are intended to separate lipophilic and hydrophilic vitamins simultaneously. A mixed-mode reversed-phase weak anion exchange (RP-WAX) stationary phase was developed in our laboratory in order to address such mixture of analytes with different chemical characteristics, which are difficult to separate on standard columns. The high versatility in usage of the RP-WAX chromatographic material allowed a baseline separation of ten vitamins within a single run, seven water-soluble and three fat-soluble, using three different chromatographic modes: some positively charged vitamins are eluted in ion exclusion and ion repulsion modes whereas the negatively charged molecules are eluted in the ion exchange mechanism. The non-charged molecules are eluted in a classical reversed-phase mode, regarding their polarities. The method was validated for the vitamin analysis in tablets, evaluating selectivity, robustness, linearity, accuracy, and precision. The validated method was finally employed for the analysis of the vitamin content of some commercially available supplement tablets. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Robust sliding mode control applied to double Inverted pendulum system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahjoub, Sonia; Derbel, Nabil; Mnif, Faical
A three hierarchical sliding mode control is presented for a class of an underactuated system which can overcome the mismatched perturbations. The considered underactuated system is a double inverted pendulum (DIP), can be modeled by three subsystems. Such structure allows the construction of several designs of hierarchies for the controller. For all hierarchical designs, the asymptotic stability of every layer sliding mode surface and the sliding mode surface of subsystems are proved theoretically by Barbalat's lemma. Simulation results show the validity of these methods.
NASA Astrophysics Data System (ADS)
Zhao, Shuangle; Zhang, Xueyi; Sun, Shengli; Wang, Xudong
2017-08-01
TI C2000 series digital signal process (DSP) chip has been widely used in electrical engineering, measurement and control, communications and other professional fields, DSP TMS320F28035 is one of the most representative of a kind. When using the DSP program, need data acquisition and data processing, and if the use of common mode C or assembly language programming, the program sequence, analogue-to-digital (AD) converter cannot be real-time acquisition, often missing a lot of data. The control low accelerator (CLA) processor can run in parallel with the main central processing unit (CPU), and the frequency is consistent with the main CPU, and has the function of floating point operations. Therefore, the CLA coprocessor is used in the program, and the CLA kernel is responsible for data processing. The main CPU is responsible for the AD conversion. The advantage of this method is to reduce the time of data processing and realize the real-time performance of data acquisition.
Validating a biometric authentication system: sample size requirements.
Dass, Sarat C; Zhu, Yongfang; Jain, Anil K
2006-12-01
Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent. This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.
Novel Composites for Wing and Fuselage Applications. Task 1; Novel Wing Design Concepts
NASA Technical Reports Server (NTRS)
Suarez, J. A.; Buttitta, C.; Flanagan, G.; DeSilva, T.; Egensteiner, W.; Bruno, J.; Mahon, J.; Rutkowski, C.; Collins, R.; Fidnarick, R.;
1996-01-01
Design trade studies were conducted to arrive at advanced wing designs that integrated new material forms with innovative structural concepts and cost-effective fabrication methods. A representative spar was selected for design, fabrication, and test to validate the predicted performance. Textile processes, such as knitting, weaving and stitching, were used to produce fiber preforms that were later fabricated into composite span through epoxy Resin Transfer Molding (RTM), Resin Film Infusion (RFI), and consolidation of commingled thermoplastic and graphite tows. The target design ultimate strain level for these innovative structural design concepts was 6000 mu in. per in. The spars were subjected to four-point beam bending to validate their structural performance. The various material form /processing combination Y-spars were rated for their structural efficiency and acquisition cost. The acquisition cost elements were material, tooling, and labor.
Flex Fuel Optimized SI and HCCI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Guoming; Schock, Harold; Yang, Xiaojian
The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight enginemore » cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for the electrical variable valve timing (VVT) actuating system and satisfactory electrical VVT responses were obtained. Target engine control system was designed and fabricated at MSU for both single-cylinder optical and multi-cylinder metal engines. Finally, the developed control-oriented engine model was successfully implemented into the HIL simulation environment. The Chrysler 2.0L I4 DI engine was modified to fit the two-step vale with electrical variable valve timing actuating system. A used prototype engine was used as the base engine and the cylinder head was modified for the two-step valve with electrical VVT actuating system. Engine validation tests indicated that cylinder #3 has very high blow-by and it cannot be reduced with new pistons and rings. Due to the time constraint, it was decided to convert the four-cylinder engine into a single cylinder engine by blocking both intake and exhaust ports of the unused cylinders. The model-based combustion mode transition control algorithm was developed in the MSU HIL simulation environment and the Simulink based control strategy was implemented into the target engine controller. With both single-cylinder metal engine and control strategy ready, stable HCCI combustion was achived with COV of 2.1% Motoring tests were conducted to validate the actuator transient operations including valve lift, electrical variable valve timing, electronic throttle, multiple spark and injection controls. After the actuator operations were confirmed, 15-cycle smooth combustion mode transition from SI to HCCI combustion was achieved; and fast 8-cycle smooth combustion mode transition followed. With a fast electrical variable valve timing actuator, the number of engine cycles required for mode transition can be reduced down to five. It was also found that the combustion mode transition is sensitive to the charge air and engine coolant temperatures and regulating the corresponding temperatures to the target levels during the combustion mode transition is the key for a smooth combustion mode transition. As a summary, the proposed combustion mode transition strategy using the hybrid combustion mode that starts with the SI combustion and ends with the HCCI combustion was experimentally validated on a metal engine. The proposed model-based control approach made it possible to complete the SI-HCCI combustion mode transition within eight engine cycles utilizing the well controlled hybrid combustion mode. Without intensive control-oriented engine modeling and HIL simulation study of using the hybrid combustion mode during the mode transition, it would be impossible to validate the proposed combustion mode transition strategy in a very short period.« less
NASA Astrophysics Data System (ADS)
Mora, Carla; Jiménez, Juan Javier; Pina, Pedro; Catalão, João; Vieira, Gonçalo
2017-01-01
The mountainous and ice-free terrains of the maritime Antarctic generate complex mosaics of snow patches, ranging from tens to hundreds of metres. These can only be accurately mapped using high-resolution remote sensing. In this paper we evaluate the application of radar scenes from TerraSAR-X in High Resolution SpotLight mode for mapping snow patches at a test area on Fildes Peninsula (King George Island, South Shetlands). Snow-patch mapping and characterization of snow stratigraphy were conducted at the time of image acquisition on 12 and 13 January 2012. Snow was wet in all studied snow patches, with coarse-grain and rounded crystals showing advanced melting and with frequent ice layers in the snow pack. Two TerraSAR-X scenes in HH and VV polarization modes were analysed, with the former showing the best results when discriminating between wet snow, lake water and bare soil. However, significant overlap in the backscattering signal was found. Average wet-snow backscattering was -18.0 dB in HH mode, with water showing -21.1 dB and bare soil showing -11.9 dB. Single-band pixel-based and object-oriented image classification methods were used to assess the classification potential of TerraSAR-X SpotLight imagery. The best results were obtained with an object-oriented approach using a watershed segmentation with a support vector machine (SVM) classifier, with an overall accuracy of 92 % and Kappa of 0.88. The main limitation was the west to north-west facing snow patches, which showed significant error, an issue related to artefacts from the geometry of satellite imagery acquisition. The results show that TerraSAR-X in SpotLight mode provides high-quality imagery for mapping wet snow and snowmelt in the maritime Antarctic. The classification procedure that we propose is a simple method and a first step to an implementation in operational mode if a good digital elevation model is available.
CytometryML and other data formats
NASA Astrophysics Data System (ADS)
Leif, Robert C.
2006-02-01
Cytology automation and research will be enhanced by the creation of a common data format. This data format would provide the pathology and research communities with a uniform way for annotating and exchanging images, flow cytometry, and associated data. This specification and/or standard will include descriptions of the acquisition device, staining, the binary representations of the image and list-mode data, the measurements derived from the image and/or the list-mode data, and descriptors for clinical/pathology and research. An international, vendor-supported, non-proprietary specification will allow pathologists, researchers, and companies to develop and use image capture/analysis software, as well as list-mode analysis software, without worrying about incompatibilities between proprietary vendor formats. Presently, efforts to create specifications and/or descriptions of these formats include the Laboratory Digital Imaging Project (LDIP) Data Exchange Specification; extensions to the Digital Imaging and Communications in Medicine (DICOM); Open Microscopy Environment (OME); Flowcyt, an extension to the present Flow Cytometry Standard (FCS); and CytometryML. The feasibility of creating a common data specification for digital microscopy and flow cytometry in a manner consistent with its use for medical devices and interoperability with both hospital information and picture archiving systems has been demonstrated by the creation of the CytometryML schemas. The feasibility of creating a software system for digital microscopy has been demonstrated by the OME. CytometryML consists of schemas that describe instruments and their measurements. These instruments include digital microscopes and flow cytometers. Optical components including the instruments' excitation and emission parts are described. The description of the measurements made by these instruments includes the tagged molecule, data acquisition subsystem, and the format of the list-mode and/or image data. Many of the CytometryML data-types are based on the Digital Imaging and Communications in Medicine (DICOM). Binary files for images and list-mode data have been created and read.
SU-E-J-158: Audiovisual Biofeedback Reduces Image Artefacts in 4DCT: A Digital Phantom Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollock, S; Kipritidis, J; Lee, D
2015-06-15
Purpose: Irregular breathing motion has a deleterious impact on 4DCT image quality. The breathing guidance system: audiovisual biofeedback (AVB) is designed to improve breathing regularity, however, its impact on 4DCT image quality has yet to be quantified. The purpose of this study was to quantify the impact of AVB on thoracic 4DCT image quality by utilizing the digital eXtended Cardiac Torso (XCAT) phantom driven by lung tumor motion patterns. Methods: 2D tumor motion obtained from 4 lung cancer patients under two breathing conditions (i) without breathing guidance (free breathing), and (ii) with guidance (AVB). There were two breathing sessions, yieldingmore » 8 tumor motion traces. This tumor motion was synchronized with the XCAT phantom to simulate 4DCT acquisitions under two acquisition modes: (1) cine mode, and (2) prospective respiratory-gated mode. Motion regularity was quantified by the root mean square error (RMSE) of displacement. The number of artefacts was visually assessed for each 4DCT and summed up for each breathing condition. Inter-session anatomic reproducibility was quantified by the mean absolute difference (MAD) between the Session 1 4DCT and Session 2 4DCT. Results: AVB improved tumor motion regularity by 30%. In cine mode, the number of artefacts was reduced from 61 in free breathing to 40 with AVB, in addition to AVB reducing the MAD by 34%. In gated mode, the number of artefacts was reduced from 63 in free breathing to 51 with AVB, in addition to AVB reducing the MAD by 23%. Conclusion: This was the first study to compare the impact of breathing guidance on 4DCT image quality compared to free breathing, with AVB reducing the amount of artefacts present in 4DCT images in addition to improving inter-session anatomic reproducibility. Results thus far suggest that breathing guidance interventions could have implications for improving radiotherapy treatment planning and interfraction reproducibility.« less
Ring artifact reduction in synchrotron x-ray tomography through helical acquisition
NASA Astrophysics Data System (ADS)
Pelt, Daniël M.; Parkinson, Dilworth Y.
2018-03-01
In synchrotron x-ray tomography, systematic defects in certain detector elements can result in arc-shaped artifacts in the final reconstructed image of the scanned sample. These ring artifacts are commonly found in many applications of synchrotron tomography, and can make it difficult or impossible to use the reconstructed image in further analyses. The severity of ring artifacts is often reduced in practice by applying pre-processing on the acquired data, or post-processing on the reconstructed image. However, such additional processing steps can introduce additional artifacts as well, and rely on specific choices of hyperparameter values. In this paper, a different approach to reducing the severity of ring artifacts is introduced: a helical acquisition mode. By moving the sample parallel to the rotation axis during the experiment, the sample is detected at different detector positions in each projection, reducing the effect of systematic errors in detector elements. Alternatively, helical acquisition can be viewed as a way to transform ring artifacts to helix-like artifacts in the reconstructed volume, reducing their severity. We show that data acquired with the proposed mode can be transformed to data acquired with a virtual circular trajectory, enabling further processing of the data with existing software packages for circular data. Results for both simulated data and experimental data show that the proposed method is able to significantly reduce ring artifacts in practice, even compared with popular existing methods, without introducing additional artifacts.
Agusti, A; Soler-Cataluña, J J; Molina, J; Morejon, E; Garcia-Losa, M; Roset, M; Badia, X
2015-10-01
The COPD assessment test (CAT) is a questionnaire that assesses the impact of chronic obstructive pulmonary disease (COPD) on health status, but some patients have difficulties filling it up by themselves. We examined whether the mode of administration of the Spanish version of CAT (self vs. interviewer) influences its scores and/or psychometric properties. Observational, prospective study in 49 Spanish centers that includes clinically stable COPD patients (n = 153) and patients hospitalized because of an exacerbation (ECOPD; n = 224). The CAT was self-administered (CAT-SA) or administered by an interviewer (CAT-IA) based on the investigator judgment of the patient's capacity. To assess convergent validity, the Saint George's Respiratory Disease Questionnaire (SGRQ) and the London Chest Activity of Daily Living (LCADL) instrument were also administered. Psychometric properties were compared across modes of administration. A total of 118 patients (31 %) completed the CAT-SA and 259 (69 %) CAT-IA. Multiple regression analysis showed that mode of administration did not affect CAT scores. The CAT showed excellent psychometric properties in both modes of administration. Internal consistency coefficients (Cronbach's alpha) were high (0.86 for CAT-SA and 0.85 for CAT-IA) as was test-retest reliability (intraclass correlation coefficients of 0.83 for CAT-SA and CAT-IA). Correlations with SGRQ and LCADL were moderate to strong both in CAT-SA and CAT-IA, indicating good convergent validity. Similar results were observed when testing longitudinal validity. The mode of administration does not influence CAT scores or its psychometric properties. Hence, both modes of administration can be used in clinical practice depending on the physician judgment of patient's capacity.
Development of a Data Acquisition System for Unmanned Aerial Vehicle (UAV) System Identification
NASA Astrophysics Data System (ADS)
Lear, Donald Joseph
Aircraft system identification techniques are developed for fixed wing Unmanned Aerial Vehicles (UAV). The use of a designed flight experiment with measured system inputs/outputs can be used to derive aircraft stability derivatives. This project set out to develop a methodology to support an experiment to model pitch damping in the longitudinal short-period mode of a UAV. A Central Composite Response Surface Design was formed using angle of attack and power levels as factors to test for the pitching moment coefficient response induced by a multistep pitching maneuver. Selecting a high-quality data acquisition platform was critical to the success of the project. This system was designed to support fixed wing research through the addition of a custom air data vane capable of measuring angle of attack and sideslip, as well as an airspeed sensor. A Pixhawk autopilot system serves as the core and modification of the device firmware allowed for the integration of custom sensors and custom RC channels dedicated to performing system identification maneuvers. Tests were performed on all existing Pixhawk sensors to validate stated uncertainty values. The air data system was calibrated in a low speed wind tunnel and dynamic performance was verified. The assembled system was then installed in a commercially available UAV known as an Air Titan FPV in order to test the Pixhawk's automated flight maneuvers and determine the final performance of each sensor. Flight testing showed all the critical sensors produced acceptable data for further research. The Air Titan FPV airframe was found to be very flexible and did not lend itself well to accurate measurement of inertial properties. This realization prohibited the construction of the required math models for longitudinal dynamics. It is recommended that future projects using the developed methods choose an aircraft with a more rigid airframe.
Drug screening in medical examiner casework by high-resolution mass spectrometry (UPLC-MSE-TOF).
Rosano, Thomas G; Wood, Michelle; Ihenetu, Kenneth; Swift, Thomas A
2013-10-01
Postmortem drug findings yield important analytical evidence in medical examiner casework, and chromatography coupled with nominal mass spectrometry (MS) serves as the predominant general unknown screening approach. We report screening by ultra performance liquid chromatography (UPLC) coupled with hybrid quadrupole time-of-flight mass spectrometer (MS(E)-TOF), with comparison to previously validated nominal mass UPLC-MS and UPLC-MS-MS methods. UPLC-MS(E)-TOF screening for over 950 toxicologically relevant drugs and metabolites was performed in a full-spectrum (m/z 50-1,000) mode using an MS(E) acquisition of both molecular and fragment ion data at low (6 eV) and ramped (10-40 eV) collision energies. Mass error averaged 1.27 ppm for a large panel of reference drugs and metabolites. The limit of detection by UPLC-MS(E)-TOF ranges from 0.5 to 100 ng/mL and compares closely with UPLC-MS-MS. The influence of column recovery and matrix effect on the limit of detection was demonstrated with ion suppression by matrix components correlating closely with early and late eluting reference analytes. Drug and metabolite findings by UPLC-MS(E)-TOF were compared with UPLC-MS and UPLC-MS-MS analyses of postmortem blood in 300 medical examiner cases. Positive findings by all methods totaled 1,528, with a detection rate of 57% by UPLC-MS, 72% by UPLC-MS-MS and 80% by combined UPLC-MS and UPLC-MS-MS screening. Compared with nominal mass screening methods, UPLC-MS(E)-TOF screening resulted in a 99% detection rate and, in addition, offered the potential for the detection of nontargeted analytes via high-resolution acquisition of molecular and fragment ion data.
Fungicidal Monoclonal Antibody C7 Interferes with Iron Acquisition in Candida albicans ▿ †
Brena, Sonia; Cabezas-Olcoz, Jonathan; Moragues, María D.; Fernández de Larrinoa, Iñigo; Domínguez, Angel; Quindós, Guillermo; Pontón, José
2011-01-01
We have developed a monoclonal antibody (MAb), C7, that reacts with the Als3p and enolase present in the Candida albicans cell wall and exerts three anti-Candida activities: candidacidal activity and inhibition of both adhesion and filamentation. To investigate the mode of action of MAb C7 on fungal viability, we examined changes in the genome-wide gene expression profile of C. albicans grown in the presence of a subinhibitory concentration of MAb C7 (12.5 μg/ml) by using microarrays. A total of 49 genes were found to be differentially expressed upon treatment with MAb C7. Of these, 28 were found to be upregulated and 21 were found to be downregulated. The categories of upregulated genes with the largest number of variations were those involved in iron uptake or related to iron homeostasis (42.86%), while the energy-related group accounted for 38.10% of the downregulated genes (8/21). Results were validated by real-time PCR. Since these effects resembled those found under iron-limited conditions, the activity of MAb C7 on C. albicans mutants with deletions in key genes implicated in the three iron acquisition systems described in this yeast was also assessed. Only mutants lacking the TPK1 gene and, to a lesser extent, the TPK2 gene were less sensitive to the candidacidal effect of MAb C7. FeCl3 or hemin at concentrations of ≥7.8 μM reversed the candidacidal effect of MAb C7 on C. albicans in a concentration-dependent manner. The results presented in this study provide evidence that the candidacidal effect of MAb C7 is related to the blockage of the reductive iron uptake pathway of C. albicans. PMID:21518848
Model Validation of an RSRM Transporter Through Full-scale Operational and Modal Testing
NASA Technical Reports Server (NTRS)
Brillhart, Ralph; Davis, Joshua; Allred, Bradley
2009-01-01
The Reusable Solid Rocket Motor (RSRM) segments, which are part of the current Space Shuttle system and will provide the first stage of the Ares launch vehicle, must be transported from their manufacturing facility in Promontory, Utah, to a railhead in Corinne, Utah. This approximately 25-mile trip on secondary paved roads is accomplished using a special transporter system which lifts and conveys each individual segment. ATK Launch Systems (ATK) has recently obtained a new set of these transporters from Scheuerle, a company in Germany. The transporter is a 96-wheel, dual tractor vehicle that supports the payload via a hydraulic suspension. Since this system is a different design than was previously used, computer modeling with validation via test is required to ensure that the environment to which the segment is exposed is not too severe for this space-critical hardware. Accurate prediction of the loads imparted to the rocket motor is essential in order to prevent damage to the segment. To develop and validate a finite element model capable of such accurate predictions, ATA Engineering, Inc., teamed with ATK to perform a modal survey of the transport system, including a forward RSRM segment. A set of electrodynamic shakers was placed around the transporter at locations capable of exciting the transporter vehicle dynamics. Forces from the shakers with varying phase combinations were applied using sinusoidal sweep excitation. The relative phase of the shaker forcing functions was adjusted to match the shape characteristics of each of several target modes, thereby customizing each sweep run for exciting a particular mode. The resulting frequency response functions (FRF) from this series of sine sweeps allowed identification of all target modes and other higher-order modes, allowing good comparison to the finite element model. Furthermore, the survey-derived modal frequencies were correlated with peak frequencies observed during road-going operating tests. This correlation enabled verification of the most significant modes contributing to real-world loading of the motor segment under transport. After traditional model updating, dynamic simulation of the transportation environment was compared to the measured operating data to provided further validation of the analysis model. KEYWORDS Validation, correlation, modal test, rocket motor, transporter
NASA Astrophysics Data System (ADS)
Schratz, Patrick; Herrmann, Tobias; Brenning, Alexander
2017-04-01
Computational and statistical prediction methods such as the support vector machine have gained popularity in remote-sensing applications in recent years and are often compared to more traditional approaches like maximum-likelihood classification. However, the accuracy assessment of such predictive models in a spatial context needs to account for the presence of spatial autocorrelation in geospatial data by using spatial cross-validation and bootstrap strategies instead of their now more widely used non-spatial equivalent. The R package sperrorest by A. Brenning [IEEE International Geoscience and Remote Sensing Symposium, 1, 374 (2012)] provides a generic interface for performing (spatial) cross-validation of any statistical or machine-learning technique available in R. Since spatial statistical models as well as flexible machine-learning algorithms can be computationally expensive, parallel computing strategies are required to perform cross-validation efficiently. The most recent major release of sperrorest therefore comes with two new features (aside from improved documentation): The first one is the parallelized version of sperrorest(), parsperrorest(). This function features two parallel modes to greatly speed up cross-validation runs. Both parallel modes are platform independent and provide progress information. par.mode = 1 relies on the pbapply package and calls interactively (depending on the platform) parallel::mclapply() or parallel::parApply() in the background. While forking is used on Unix-Systems, Windows systems use a cluster approach for parallel execution. par.mode = 2 uses the foreach package to perform parallelization. This method uses a different way of cluster parallelization than the parallel package does. In summary, the robustness of parsperrorest() is increased with the implementation of two independent parallel modes. A new way of partitioning the data in sperrorest is provided by partition.factor.cv(). This function gives the user the possibility to perform cross-validation at the level of some grouping structure. As an example, in remote sensing of agricultural land uses, pixels from the same field contain nearly identical information and will thus be jointly placed in either the test set or the training set. Other spatial sampling resampling strategies are already available and can be extended by the user.
NASA Astrophysics Data System (ADS)
Yusmaita, E.; Nasra, Edi
2018-04-01
This research aims to produce instrument for measuring chemical literacy assessment in basic chemistry courses with solubility topic. The construction of this measuring instrument is adapted to the PISA (Programme for International Student Assessment) problem’s characteristics and the Syllaby of Basic Chemistry in KKNI-IndonesianNational Qualification Framework. The PISA is a cross-country study conducted periodically to monitor the outcomes of learners' achievement in each participating country. So far, studies conducted by PISA include reading literacy, mathematic literacy and scientific literacy. Refered to the scientific competence of the PISA study on science literacy, an assessment designed to measure the chemical literacy of the chemistry department’s students in UNP. The research model used is MER (Model of Educational Reconstruction). The validity and reliability values of discourse questions is measured using the software ANATES. Based on the acquisition of these values is obtained a valid and reliable chemical literacy questions.There are seven question items limited response on the topic of solubility with valid category, the acquisition value of test reliability is 0,86, and has a difficulty index and distinguishing good
McConnell, Bridget L.; Urushihara, Kouji; Miller, Ralph R.
2009-01-01
Three conditioned suppression experiments with rats investigated contrasting predictions made by the extended comparator hypothesis and acquisition-focused models of learning, specifically, modified SOP and the revised Rescorla-Wagner model, concerning retrospective revaluation. Two target cues (X and Y) were partially reinforced using a stimulus relative validity design (i.e., AX-Outcome/ BX-No outcome/ CY-Outcome/ DY-No outcome), and subsequently one of the companion cues for each target was extinguished in compound (BC-No outcome). In Experiment 1, which used spaced trials for relative validity training, greater suppression was observed to target cue Y for which the excitatory companion cue had been extinguished relative to target cue X for which the nonexcitatory companion cue had been extinguished. Experiment 2 replicated these results in a sensory preconditioning preparation. Experiment 3 massed the trials during relative validity training, and the opposite pattern of data was observed. The results are consistent with the predictions of the extended comparator hypothesis. Furthermore, this set of experiments is unique in being able to differentiate between these models without invoking higher-order comparator processes. PMID:20141324
2016-12-13
plate and novel all-fiber fused coupler. Such work has laid the platform to demonstrate the mitigation of thermal mode instability through vortex beam...at IIT Madras to experimentally validate the above results as well as to explore the generation of vortex modes through a spiral phase plate and...modes through spiral phase plates and novel all-fiber fused couplers. We have demonstrated the excitation of a vortex mode with charge 1 through a
Deutsch, Judith E; Romney, Wendy; Reynolds, Jan; Manal, Tara Jo
2015-10-08
PTNow.org is an evidence-based, on-line portal created by a professional membership association to promote use of evidence in practice and to help decrease unwarranted variation in practice. The site contains synthesis documents designed to promote efficient clinical reasoning. These documents were written and peer-reviewed by teams of content experts and master clinicians. The purpose of this paper is to report on the content and construct validity as well as usability of the site. Physical therapist participants used clinical summaries (available in 3 formats--as a full summary with hyperlinks, "quick takes" with hyperlinks, and a portable two-page version) on the PTNow.org site to answer knowledge acquisition and clinical reasoning questions related to four patient scenarios. They also responded to questions about ease of use related to website navigation and about format and completeness of information using a 1-5 Likert scale. Responses were coded to reflect how participants used the site and then were summarized descriptively. Preferences for clinical summary format were analyzed using an analysis of variance (ANOVA) and a Dunnett T3 post hoc analysis. Seventeen participants completed the study. Clinical relevance and completeness ratings by experienced clinicians, which were used as the measure of content validity, ranged from 3.1 to 4.6 on a 5 point scale. Construct validity based on the information on the PTNow.org site was supported for knowledge acquisition questions 66 % of the time and for clinical reasoning questions 40 % of the time. Usability ratings for the full clinical summary were 4.6 (1.2); for the quick takes, 3.5 (.98); and for the portable clinical summary, 4.0 (.45). Participants preferred the full clinical summary over the other two formats (F = 5.908, P = 0.007). One hundred percent of the participants stated that they would recommend the PTNow site to their colleagues. Prelimary evidence supported both content validity and construct validity of knowledge acquisition, and partially supported construct validity of clinical reasoning for the clinical summaries on the PTNow.org site. Usability was supported, with users preferring the full clinical summary over the other two formats. Iterative design is ongoing.
NASA Astrophysics Data System (ADS)
Guillemaut, C.; Metzger, C.; Moulton, D.; Heinola, K.; O’Mullane, M.; Balboa, I.; Boom, J.; Matthews, G. F.; Silburn, S.; Solano, E. R.; contributors, JET
2018-06-01
The design and operation of future fusion devices relying on H-mode plasmas requires reliable modelling of edge-localized modes (ELMs) for precise prediction of divertor target conditions. An extensive experimental validation of simple analytical predictions of the time evolution of target plasma loads during ELMs has been carried out here in more than 70 JET-ITER-like wall H-mode experiments with a wide range of conditions. Comparisons of these analytical predictions with diagnostic measurements of target ion flux density, power density, impact energy and electron temperature during ELMs are presented in this paper and show excellent agreement. The analytical predictions tested here are made with the ‘free-streaming’ kinetic model (FSM) which describes ELMs as a quasi-neutral plasma bunch expanding along the magnetic field lines into the Scrape-Off Layer without collisions. Consequences of the FSM on energy reflection and deposition on divertor targets during ELMs are also discussed.
Sliding mode disturbance observer-based control of a twin rotor MIMO system.
Rashad, Ramy; El-Badawy, Ayman; Aboudonia, Ahmed
2017-07-01
This work proposes a robust tracking controller for a helicopter laboratory setup known as the twin rotor MIMO system (TRMS) using an integral sliding mode controller. To eliminate the discontinuity in the control signal, the controller is augmented by a sliding mode disturbance observer. The actuator dynamics is handled using a backstepping approach which is applicable due to the continuous chattering-free nature of the command signals generated using the disturbance observer based controller. To avoid the complexity of analytically differentiating the command signals, a first order sliding mode differentiator is used. Stability analysis of the closed loop system and the ultimate boundedness of the tracking error is proved using Lyapunov stability arguments. The proposed controller is validated by several simulation studies and is compared to other schemes in the literature. Experimental results using a hardware-in-the-loop system validate the robustness and effectiveness of the proposed controller. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Petter, C H; Heigl, N; Rainer, M; Bakry, R; Pallua, J; Bonn, G K; Huck, C W
2009-01-01
Fourier-transform infrared (FT-IR) based mapping and imaging is a fast emerging technology which is being increasingly applied to investigate tissues in the high-throughput mode. The high resolution close to the cellular level, the possibility to determine the bio-distribution of molecules of interest (proteins, peptides, lipids, carbohydrates) without any pre-treatment and the offer to yield molecular structure information have brought evidence that this technique allows to gain new insights in cancer pathology. Thus, several individual mainly protein and peptide cancer markers ("biomarkers") can be identified from FT-IR tissue images, enabling accurate discrimination between healthy and tumour areas. Optimal data acquisition (spatial resolution, spectral resolution, signal to noise ratio), classification, and validation are necessary to establish practical protocols that can be translated to the qualitative and quantitative clinical routine analysis. Thereby, the development of modern fast infrared imaging systems has strongly supported its acceptance in clinical histopathology. In this review, the necessity of analysis based on global cancer statistics, instrumental setups and developments, experimental state of the art are summarised and applications to investigate different kinds of cancer (e.g., prostate, breast, cervical, colon, oral cavity) are shown and discussed in detail.
Urban Modelling Performance of Next Generation SAR Missions
NASA Astrophysics Data System (ADS)
Sefercik, U. G.; Yastikli, N.; Atalay, C.
2017-09-01
In synthetic aperture radar (SAR) technology, urban mapping and modelling have become possible with revolutionary missions TerraSAR-X (TSX) and Cosmo-SkyMed (CSK) since 2007. These satellites offer 1m spatial resolution in high-resolution spotlight imaging mode and capable for high quality digital surface model (DSM) acquisition for urban areas utilizing interferometric SAR (InSAR) technology. With the advantage of independent generation from seasonal weather conditions, TSX and CSK DSMs are much in demand by scientific users. The performance of SAR DSMs is influenced by the distortions such as layover, foreshortening, shadow and double-bounce depend up on imaging geometry. In this study, the potential of DSMs derived from convenient 1m high-resolution spotlight (HS) InSAR pairs of CSK and TSX is validated by model-to-model absolute and relative accuracy estimations in an urban area. For the verification, an airborne laser scanning (ALS) DSM of the study area was used as the reference model. Results demonstrated that TSX and CSK urban DSMs are compatible in open, built-up and forest land forms with the absolute accuracy of 8-10 m. The relative accuracies based on the coherence of neighbouring pixels are superior to absolute accuracies both for CSK and TSX.
A microfluidic array for high-content screening at whole-organism resolution
NASA Astrophysics Data System (ADS)
Migliozzi, D.; Cornaglia, M.; Mouchiroud, L.; Auwerx, J.; Gijs, M. A. M.
2018-02-01
A main step for the development and the validation of medical drugs is the screening on whole organisms, which gives the systemic information that is missing when using cellular models. Among the organisms of choice, Caenorhabditis elegansis a soil worm which catches the interest of researchers who study systemic physiopathology (e.g. metabolic and neurodegenerative diseases) because: (1) its large genetic homology with humans supports translational analysis; (2) worms are much easier to handle and grow in large amounts compared to rodents, for which (3) the costs and (4) the ethical concerns are substantial.C. elegansis therefore well suited for large screens, dose-response analysis and target-discovery involving an entire organism. We have developed and tested a microfluidic array for high-content screening, enabling the selection of small populations of its first larval stage in many separated chambers divided into channels for multiplexed screens. With automated protocols for feeding, drug administration and image acquisition, our chip enables the study of the nematodes throughout their entire lifespan. By using a paralyzing agent and a mitochondrial-stress inducer as case studies, we have demonstrated large field-of-view motility analysis, and worm-segmentation/signal-detection for mode-of-action quantification with genetically-encoded fluorescence reporters.
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-01-01
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro. PMID:26295394
Use of Low-Cost Acquisition Systems with an Embedded Linux Device for Volcanic Monitoring.
Moure, David; Torres, Pedro; Casas, Benito; Toma, Daniel; Blanco, María José; Del Río, Joaquín; Manuel, Antoni
2015-08-19
This paper describes the development of a low-cost multiparameter acquisition system for volcanic monitoring that is applicable to gravimetry and geodesy, as well as to the visual monitoring of volcanic activity. The acquisition system was developed using a System on a Chip (SoC) Broadcom BCM2835 Linux operating system (based on DebianTM) that allows for the construction of a complete monitoring system offering multiple possibilities for storage, data-processing, configuration, and the real-time monitoring of volcanic activity. This multiparametric acquisition system was developed with a software environment, as well as with different hardware modules designed for each parameter to be monitored. The device presented here has been used and validated under different scenarios for monitoring ocean tides, ground deformation, and gravity, as well as for monitoring with images the island of Tenerife and ground deformation on the island of El Hierro.
An intelligent data acquisition system for fluid mechanics research
NASA Technical Reports Server (NTRS)
Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.
1989-01-01
This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.
Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.
New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less
Methodologies for Verification and Validation of Space Launch System (SLS) Structural Dynamic Models
NASA Technical Reports Server (NTRS)
Coppolino, Robert N.
2018-01-01
Responses to challenges associated with verification and validation (V&V) of Space Launch System (SLS) structural dynamics models are presented in this paper. Four methodologies addressing specific requirements for V&V are discussed. (1) Residual Mode Augmentation (RMA), which has gained acceptance by various principals in the NASA community, defines efficient and accurate FEM modal sensitivity models that are useful in test-analysis correlation and reconciliation and parametric uncertainty studies. (2) Modified Guyan Reduction (MGR) and Harmonic Reduction (HR, introduced in 1976), developed to remedy difficulties encountered with the widely used Classical Guyan Reduction (CGR) method, are presented. MGR and HR are particularly relevant for estimation of "body dominant" target modes of shell-type SLS assemblies that have numerous "body", "breathing" and local component constituents. Realities associated with configuration features and "imperfections" cause "body" and "breathing" mode characteristics to mix resulting in a lack of clarity in the understanding and correlation of FEM- and test-derived modal data. (3) Mode Consolidation (MC) is a newly introduced procedure designed to effectively "de-feature" FEM and experimental modes of detailed structural shell assemblies for unambiguous estimation of "body" dominant target modes. Finally, (4) Experimental Mode Verification (EMV) is a procedure that addresses ambiguities associated with experimental modal analysis of complex structural systems. Specifically, EMV directly separates well-defined modal data from spurious and poorly excited modal data employing newly introduced graphical and coherence metrics.
Validation of nonlinear gyrokinetic simulations of L- and I-mode plasmas on Alcator C-Mod
Creely, A. J.; Howard, N. T.; Rodriguez-Fernandez, P.; ...
2017-03-02
New validation of global, nonlinear, ion-scale gyrokinetic simulations (GYRO) is carried out for L- and I-mode plasmas on Alcator C-Mod, utilizing heat fluxes, profile stiffness, and temperature fluctuations. Previous work at C-Mod found that ITG/TEM-scale GYRO simulations can match both electron and ion heat fluxes within error bars in I-mode [White PoP 2015], suggesting that multi-scale (cross-scale coupling) effects [Howard PoP 2016] may be less important in I-mode than in L-mode. New results presented here, however, show that global, nonlinear, ion-scale GYRO simulations are able to match the experimental ion heat flux, but underpredict electron heat flux (at most radii),more » electron temperature fluctuations, and perturbative thermal diffusivity in both L- and I-mode. Linear addition of electron heat flux from electron scale runs does not resolve this discrepancy. These results indicate that single-scale simulations do not sufficiently describe the I-mode core transport, and that multi-scale (coupled electron- and ion-scale) transport models are needed. In conclusion a preliminary investigation with multi-scale TGLF, however, was unable to resolve the discrepancy between ion-scale GYRO and experimental electron heat fluxes and perturbative diffusivity, motivating further work with multi-scale GYRO simulations and a more comprehensive study with multi-scale TGLF.« less
Task-Based Oral Computer-Mediated Communication and L2 Vocabulary Acquisition
ERIC Educational Resources Information Center
Yanguas, Inigo
2012-01-01
The present study adds to the computer-mediated communication (CMC) literature by exploring oral learner-to-learner interaction using Skype, a free and widely used Internet software program. In particular, this task-based study has a two-fold goal. Firstly, it explores possible differences between two modes of oral CMC (audio and video) and…
Single chip camera device having double sampling operation
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nixon, Robert (Inventor)
2002-01-01
A single chip camera device is formed on a single substrate including an image acquisition portion for control portion and the timing circuit formed on the substrate. The timing circuit also controls the photoreceptors in a double sampling mode in which are reset level is first read and then after an integration time a charged level is read.
Velocity fields and spectrum peculiarities in Beta Cephei stars
NASA Technical Reports Server (NTRS)
Lesh, J. R.
1980-01-01
The acquisition of short wavelength spectra of Beta Cephei variable stars from the International Ultraviolet Explorer is reported. A total of 122 images of 10 variable stars and 3 comparison stars were obtained. All of the images were observed in the high dispersion mode through a small aperture. The development of image processing methods is also briefly discussed.
ERIC Educational Resources Information Center
Yue, Sun; Ying, Wang; Jingxia, Liu
2015-01-01
Facing the current situation that Chinese students are poor in English productive ability, the mode of only English-medium teaching is put forward to completely improve students' English abilities and comprehensive competence by creating second language acquisition atmosphere. Since few studies have been conducted on students' attitudes toward…
The NASA Space Shuttle Earth Observations Office
NASA Technical Reports Server (NTRS)
Helfert, Michael R.; Wood, Charles A.
1989-01-01
The NASA Space Shuttle Earth Observations Office conducts astronaut training in earth observations, provides orbital documentation for acquisition of data and catalogs, and analyzes the astronaut handheld photography upon the return of Space Shuttle missions. This paper provides backgrounds on these functions and outlines the data constraints, organization, formats, and modes of access within the public domain.
Why do mammals hop? Understanding the ecology, biomechanics and evolution of bipedal hopping.
McGowan, Craig P; Collins, Clint E
2018-06-15
Bipedal hopping is a specialized mode of locomotion that has arisen independently in at least five groups of mammals. We review the evolutionary origins of these groups, examine three of the most prominent hypotheses for why bipedal hopping may have arisen, and discuss how this unique mode of locomotion influences the behavior and ecology of modern species. While all bipedal hoppers share generally similar body plans, differences in underlying musculoskeletal anatomy influence what performance benefits each group may derive from this mode of locomotion. Based on a review of the literature, we conclude that the most likely reason that bipedal hopping evolved is associated with predator avoidance by relatively small species in forested environments. Yet, the morphological specializations associated with this mode of locomotion have facilitated the secondary acquisition of performance characteristics that enable these species to be highly successful in ecologically demanding environments such as deserts. We refute many long-held misunderstandings about the origins of bipedal hopping and identify potential areas of research that would advance the understanding of this mode of locomotion. © 2018. Published by The Company of Biologists Ltd.
Liang, Peng; Wu, Wenlong; Wei, Jincheng; Yuan, Lulu; Xia, Xue; Huang, Xia
2011-08-01
A bioelectrochemical system (BES) can be operated in both "microbial fuel cell" (MFC) and "microbial electrolysis cell" (MEC) modes, in which power is delivered and invested respectively. To enhance the electric current production, a BES was operated in MFC mode first and a capacitor was used to collect power from the system. Then the charged capacitor discharged electrons to the system itself, switching into MEC mode. This alternate charging and discharging (ACD) mode helped the system produce 22-32% higher average current compared to an intermittent charging (IC) mode, in which the capacitor was first charged from an MFC and then discharged to a resistor, at 21.6 Ω external resistance, 3.3 F capacitance and 300 mV charging voltage. The effects of external resistance, capacitance and charging voltage on average current were studied. The average current reduced as the external resistance and charging voltage increased and was slightly affected by the capacitance. Acquisition of higher average current in the ACD mode was attributed to the shorter discharging time compared to the charging time, as well as a higher anode potential caused by discharging the capacitor. Results from circuit analysis and quantitatively calculation were consistent with the experimental observations.
Kelly, Christine A.; Hewett, Paul C.; Mensch, Barbara S.; Rankin, Johanna; Nsobya, Sam; Kalibala, Sam; Kakande, Pamela
2015-01-01
Understanding the transmission dynamics of HIV and other sexually transmitted infections is critically dependent on accurate behavioral data. This paper investigates the effect of questionnaire delivery mode on the quality of sexual behavior reporting in a survey conducted in Kampala in 2010 among 18–24 year old females using the women’s instrument of the 2006 Uganda Demographic and Health Survey. We compare the reported prevalence of five sexual outcomes across three interview modes: traditional face-to-face interview (FTFI) in which question rewording was permitted, FTFI administered via computer-assisted personal interviewing (CAPI) in which questions were read as written, and audio computer-assisted self-interviewing (ACASI). We then assess the validity of the data by evaluating reporting of sexual experience against three biological markers. Results suggest that ACASI elicits higher reporting of some key indicators than face-to-face interviews, but self-reports from all interview methods were subject to validity concerns when compared with biomarker data. The paper highlights the important role biomarkers play in sexual behavior research. PMID:24615574
Software for Acquiring Image Data for PIV
NASA Technical Reports Server (NTRS)
Wernet, Mark P.; Cheung, H. M.; Kressler, Brian
2003-01-01
PIV Acquisition (PIVACQ) is a computer program for acquisition of data for particle-image velocimetry (PIV). In the PIV system for which PIVACQ was developed, small particles entrained in a flow are illuminated with a sheet of light from a pulsed laser. The illuminated region is monitored by a charge-coupled-device camera that operates in conjunction with a data-acquisition system that includes a frame grabber and a counter-timer board, both installed in a single computer. The camera operates in "frame-straddle" mode where a pair of images can be obtained closely spaced in time (on the order of microseconds). The frame grabber acquires image data from the camera and stores the data in the computer memory. The counter/timer board triggers the camera and synchronizes the pulsing of the laser with acquisition of data from the camera. PIVPROC coordinates all of these functions and provides a graphical user interface, through which the user can control the PIV data-acquisition system. PIVACQ enables the user to acquire a sequence of single-exposure images, display the images, process the images, and then save the images to the computer hard drive. PIVACQ works in conjunction with the PIVPROC program which processes the images of particles into the velocity field in the illuminated plane.
Diagnostic System for Decomposition Studies of Energetic Materials
2017-10-03
transition states and reaction pathways are sought. The overall objective for these combined experimental studies and quantum mechanics investigations...peak-to-peak 1 min: 50,000:1 ( 8.6×10-6 AU noise) peak-to-peak Interferometer UltraScan linear air bearing scanner with True -Alignment Aperture... True 24 bit dynamic range for all scan velocities, dual channel data acquisition Validation Internal validation unit, 6 positions, certified
NASA Technical Reports Server (NTRS)
Mueller, James L.
2001-01-01
This Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) contract supports acquisition of match up radiometric and bio-optical data for validation of Sea-Viewing Wide Field-of-view Sensor (SeaWiFS) and other ocean color satellites, and evaluation of uncertainty budgets and protocols for in situ measurements of normalized water leaving radiances.
Integrating respiratory gating into a megavoltage cone-beam CT system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Jenghwa; Sillanpaa, Jussi; Ling, Clifton C.
2006-07-15
We have previously described a low-dose megavoltage cone beam computed tomography (MV CBCT) system capable of producing projection image using one beam pulse. In this study, we report on its integration with respiratory gating for gated radiotherapy. The respiratory gating system tracks a reflective marker on the patient's abdomen midway between the xiphoid and umbilicus, and disables radiation delivery when the marker position is outside predefined thresholds. We investigate two strategies for acquiring gated scans. In the continuous rotation-gated acquisition, the linear accelerator (LINAC) is set to the fixed x-ray mode and the gantry makes a 5 min, 360 deg.continuousmore » rotation, during which the gating system turns the radiation beam on and off, resulting in projection images with an uneven distribution of projection angles (e.g., in 70 arcs each covering 2 deg.). In the gated rotation-continuous acquisition, the LINAC is set to the dynamic arc mode, which suspends the gantry rotation when the gating system inhibits the beam, leading to a slightly longer (6-7 min) scan time, but yielding projection images with more evenly distributed projection angles (e.g., {approx}0.8 deg.between two consecutive projection angles). We have tested both data acquisition schemes on stationary (a contrast detail and a thoracic) phantoms and protocol lung patients. For stationary phantoms, a separate motion phantom not visible in the images is used to trigger the RPM system. Frame rate is adjusted so that approximately 450 images (13 MU) are acquired for each scan and three-dimensional tomographic images reconstructed using a Feldkamp filtered backprojection algorithm. The gated rotation-continuous acquisition yield reconstructions free of breathing artifacts. The tumor in parenchymal lung and normal tissues are easily discernible and the boundary between the diaphragm and the lung sharply defined. Contrast-to-noise ratio (CNR) is not degraded relative to nongated scans of stationary phantoms. The continuous rotation-gated acquisition scan also yields tomographic images with discernible anatomic features; however, streak artifacts are observed and CNR is reduced by approximately a factor of 4. In conclusion, we have successfully developed a gated MV CBCT system to verify the patient positioning for gated radiotherapy.« less
Genheimer, Hannah; Andreatta, Marta; Asan, Esther; Pauli, Paul
2017-12-20
Since exposure therapy for anxiety disorders incorporates extinction of contextual anxiety, relapses may be due to reinstatement processes. Animal research demonstrated more stable extinction memory and less anxiety relapse due to vagus nerve stimulation (VNS). We report a valid human three-day context conditioning, extinction and return of anxiety protocol, which we used to examine effects of transcutaneous VNS (tVNS). Seventy-five healthy participants received electric stimuli (unconditioned stimuli, US) during acquisition (Day1) when guided through one virtual office (anxiety context, CTX+) but never in another (safety context, CTX-). During extinction (Day2), participants received tVNS, sham, or no stimulation and revisited both contexts without US delivery. On Day3, participants received three USs for reinstatement followed by a test phase. Successful acquisition, i.e. startle potentiation, lower valence, higher arousal, anxiety and contingency ratings in CTX+ versus CTX-, the disappearance of these effects during extinction, and successful reinstatement indicate validity of this paradigm. Interestingly, we found generalized reinstatement in startle responses and differential reinstatement in valence ratings. Altogether, our protocol serves as valid conditioning paradigm. Reinstatement effects indicate different anxiety networks underlying physiological versus verbal responses. However, tVNS did neither affect extinction nor reinstatement, which asks for validation and improvement of the stimulation protocol.
Upper Rio Grande Simulation Model (URGSIM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roach, Jesse; & Tidwell, Vincent
2010-08-05
URGSIM estimates the location of surface water and groundwater resources in the upper Rio Grande Basin between the Colorado-New Mexico state line, and Caballo Reservoir from 1975 - 2045. It is a mass balance hydrology model of the Upper Rio Grande surface water, groundwater, and water demand systems which runs at a monthly timestep from 1975-1999 in calibration mode, 2000-2004 in validation mode, and 2005-2045 in scenario analysis mode.
NASA Astrophysics Data System (ADS)
Qian, Feng; Zhou, Wanlu; Kaluvan, Suresh; Zhang, Haifeng; Zuo, Lei
2018-04-01
Vibration energy harvesting has been extensively studied in recent years to explore a continuous power source for sensor networks and low-power electronics. Torsional vibration widely exists in mechanical engineering; however, it has not yet been well exploited for energy harvesting. This paper presents a theoretical model and an experimental validation of a torsional vibration energy harvesting system comprised of a shaft and a shear mode piezoelectric transducer. The piezoelectric transducer position on the surface of the shaft is parameterized by two variables that are optimized to obtain the maximum power output. The piezoelectric transducer can work in d 15 mode (pure shear mode), coupled mode of d 31 and d 33, and coupled mode of d 33, d 31 and d 15, respectively, when attached at different angles. Approximate expressions of voltage and power are derived from the theoretical model, which gave predictions in good agreement with analytical solutions. Physical interpretations on the implicit relationship between the power output and the position parameters of the piezoelectric transducer is given based on the derived approximate expression. The optimal position and angle of the piezoelectric transducer is determined, in which case, the transducer works in the coupled mode of d 15, d 31 and d 33.
An enhanced sine dwell method as applied to the Galileo core structure modal survey
NASA Technical Reports Server (NTRS)
Smith, Kenneth S.; Trubert, Marc
1990-01-01
An incremental modal survey performed in 1988 on the core structure of the Galileo spacecraft with its adapters with the purpose of assessing the dynamics of the new portions of the structure is considered. Emphasis is placed on the enhancements of the sine dwell method employed in the test. For each mode, response data is acquired at 32 frequencies in a narrow band enclosing the resonance, utilizing the SWIFT technique. It is pointed out that due to the simplicity of the data processing involved, the diagnostic and modal-parameter data is available within several minutes after data acquisition; however, compared with straight curve-fitting approaches, the method requires more time for data acquisition.
NASA Astrophysics Data System (ADS)
Greuter, U.; Buehler, C.; Rasmussen, P.; Emmenegger, M.; Maden, D.; Koennecke, M.; Schlumpf, N.
We present the basic concept and the realization of our fully configurable data-acquisition hardware for the neutron scattering instruments at SINQ. This system allows collection of the different data entities and event-related signals generated by the various detector units. It offers a variety of synchronization options, including a time-measuring mode for time-of-flight determinations. Based on configurable logic (FPGA, CPLD), event rates up to the MHz range can be processed and transmitted to a programmable online data-reduction system (Histogram Memory). It is implemented on a commercially available VME Power PC module running a real-time operating system (VxWorks).
Navigator GPS Receiver for Fast Acquisition and Weak Signal Space Applications
NASA Technical Reports Server (NTRS)
Winternitz, Luke; Moreau, Michael; Boegner, Gregory J.; Sirotzky, Steve
2004-01-01
NASA Goddard Space Flight Center (GSFC) is developing a new space-borne GPS receiver that can operate effectively in the full range of Earth orbiting missions from Low Earth Orbit (LEO) to geostationary and beyond. Navigator is designed to be a fully space flight qualified GPS receiver optimized for fast signal acquisition and weak signal tracking. The fast acquisition capabilities provide exceptional time to first fix performance (TIFF) with no a priori receiver state or GPS almanac information, even in the presence of high Doppler shifts present in LEO (or near perigee in highly eccentric orbits). The fast acquisition capability also makes it feasible to implement extended correlation intervals and therefore significantly reduce Navigator s acquisition threshold. This greatly improves GPS observability when the receiver is above the GPS constellation (and satellites must be tracked from the opposite side of the Earth) by providing at least 10 dB of increased acquisition sensitivity. Fast acquisition and weak signal tracking algorithms have been implemented and validated on a hardware development board. A fully functional version of the receiver, employing most of the flight parts, with integrated navigation software is expected by mid 2005. An ultimate goal of this project is to license the Navigator design to an industry partner who will then market the receiver as a commercial product.
Bijlsma, Lubertus; Sancho, Juan V; Pitarch, Elena; Ibáñez, Maria; Hernández, Félix
2009-04-10
An ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the simultaneous quantification and confirmation of 11 basic/acidic illicit drugs and relevant metabolites in surface and urban wastewater at ng/L levels. The sample pre-treatment consisted of a solid-phase extraction using Oasis MCX cartridges. Analyte deuterated compounds were used as surrogate internal standards (except for norbenzoylecgonine and norcocaine) to compensate for possible errors resulting from matrix effects and those associated to the sample preparation procedure. After SPE enrichment, the selected drugs were separated within 6min under UHPLC optimized conditions. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer (TQD from Waters) in positive-ion mode (ESI+) was used. The excellent selectivity and sensitivity of the TQD analyzer in selected reaction monitoring mode allowed quantification and reliable identification at the LOQ levels. Satisfactory recoveries (70-120%) and precision (RSD<20%) were obtained for most compounds in different types of water samples, spiked at two concentration levels [limit of quantification (LOQ) and 10LOQ]. Thus, surface water was spiked at 30 ng/L and 300 ng/L (amphetamine and amphetamine-like stimulants), 10 ng/L and 100 ng/L (cocaine and its metabolites), 300 ng/L and 3000 ng/L (tetrahydrocannabinol-COOH). Recovery experiments in effluent and influent wastewater were performed at spiking levels of three and fifteen times higher than the levels spiked in surface water, respectively. The validated method was applied to urban wastewater samples (influent and effluent). The acquisition of three selected reaction monitoring transitions per analyte allowed positive findings to be confirmed by accomplishment of ion ratios between the quantification transition and two additional specific confirmation transitions. In general, drug consumption increased in the weekends and during an important musical event. The highest concentration levels were 27.5 microg/L and 10.5 microg/L, which corresponded to 3,4-methylenedioxymethamphetamine (MDMA, or ecstasy) and to benzoylecgonine (a cocaine metabolite), respectively. The wastewater treatment plants showed good removal efficiency (>99%) for low levels of illicit drugs in water, but some difficulties were observed when high drug levels were present in wastewaters.
Place and direction learning in a spatial T-maze task by neonatal piglets
Elmore, Monica R. P.; Dilger, Ryan N.; Johnson, Rodney W.
2013-01-01
Pigs are a valuable animal model for studying neurodevelopment in humans due to similarities in brain structure and growth. The development and validation of behavioral tests to assess learning and memory in neonatal piglets are needed. The present study evaluated the capability of 2-wk old piglets to acquire a novel place and direction learning spatial T-maze task. Validity of the task was assessed by the administration of scopolamine, an anti-cholinergic drug that acts on the hippocampus and other related structures, to impair spatial memory. During acquisition, piglets were trained to locate a milk reward in a constant place in space, as well as direction (east or west), in a plus-shaped maze using extra-maze visual cues. Following acquisition, reward location was reversed and piglets were re-tested to assess learning and working memory. The performance of control piglets in the maze improved over time (P < 0.0001), reaching performance criterion (80% correct) on day 5 of acquisition. Correct choices decreased in the reversal phase (P < 0.0001), but improved over time. In a separate study, piglets were injected daily with either phosphate buffered saline (PBS; control) or scopolamine prior to testing. Piglets administered scopolamine showed impaired performance in the maze compared to controls (P = 0.03), failing to reach performance criterion after 6 days of acquisition testing. Collectively, these data demonstrate that neonatal piglets can be tested in a spatial T-maze task to assess hippocampal-dependent learning and memory. PMID:22526690