Science.gov

Sample records for acquisition radar building

  1. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  3. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. 28. Perimeter acquisition radar building room #302, signal process and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Perimeter acquisition radar building room #302, signal process and analog receiver room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. 21. Perimeter acquisition radar building room #200, electrical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Perimeter acquisition radar building room #200, electrical equipment room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 35. Perimeter acquisition radar building room #325, showing hard disc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Perimeter acquisition radar building room #325, showing hard disc drive - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 32. Perimeter acquisition radar building room #318, closeup of rack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Perimeter acquisition radar building room #318, close-up of rack showing logic chassis - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 27. Perimeter acquisition radar building room #301, power supply assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Perimeter acquisition radar building room #301, power supply assembly - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. 24. Perimeter acquisition radar building room #203, communications room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Perimeter acquisition radar building room #203, communications room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. 22. Perimeter acquisition radar building room #201, phase shifter service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Perimeter acquisition radar building room #201, phase shifter service platform (level two) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  11. 34. Perimeter acquisition radar building room #325, tape handler room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Perimeter acquisition radar building room #325, tape handler room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  12. 23. Perimeter acquisition radar building room #202, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Perimeter acquisition radar building room #202, mechanical equipment room no. 2 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. 36. Perimeter acquisition radar building, phase shifter service platform; level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Perimeter acquisition radar building, phase shifter service platform; level three - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. 26. Perimeter acquisition radar building room #301, transmitter area no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Perimeter acquisition radar building room #301, transmitter area no. 2; power supply assembly (in foreground) and amplifier modulators - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. 31. Perimeter acquisition radar building room #318, data storage "racks"; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Perimeter acquisition radar building room #318, data storage "racks"; sign read: M&D controller, logic control buffer, data transmission controller - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. 15. Front security entrance to the perimeter acquisition radar building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Front security entrance to the perimeter acquisition radar building, showing rotogates 1 and 2 and entrance door to security operations control center (SOCC), room #108 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. 16. Perimeter acquisition radar building room #102, electrical equipment room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  19. 18. Perimeter acquisition radar building room #105, deionizers (filter tanks) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Perimeter acquisition radar building room #105, deionizers (filter tanks) for data processor cooling and ice backup; sign reads: Deionizer units provide high-purity water by removal of oxygen, and organic and mineral content from water - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  20. 19. Perimeter acquisition radar building room #105, sign reads: Three ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Perimeter acquisition radar building room #105, sign reads: Three 660-ton trane chillers, each chiller can supply enough cooling for approximately 250 average air-conditioned homes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. 20. Perimeter acquisition radar building room #105, shockisolated platform for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Perimeter acquisition radar building room #105, shock-isolated platform for chillers is easily seen on the right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. 37. Perimeter acquisition radar building, phase shifter service platform, level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Perimeter acquisition radar building, phase shifter service platform, level three; This shows the coaxial switches and transmitter output assembly (located only on this level) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  3. 39. Perimeter acquisition radar building room #504, techinal maintenance and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Perimeter acquisition radar building room #504, techinal maintenance and repair center (TMRC) and tactical support equipment (TSE) storage area; storage-travel wave tubes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. 17. Perimeter acquisition radar building room #105, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Perimeter acquisition radar building room #105, mechanical equipment room no. 1; sign reads: Heat exchangers (shell and tube type). Provide precise temperature control of water for cooling critical electronic equipment - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. View (facing into perimeter acquisition radar building) through first level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View (facing into perimeter acquisition radar building) through first level of utility tunnel. This tunnel connects the PARB with its power plan - Stanley R. Mickelsen Safeguard Complex, Utility Tunnel, Between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 42. Perimeter acquisition radar building plaque, commemorating parransferral from U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Perimeter acquisition radar building plaque, commemorating parransferral from U.S. Army ballistic missile defense organization to U.S. Air Force aerospace defense command (dated 1 October 1977) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 38. Perimeter acquisition radar building room #414, digital/electrical repair shop; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Perimeter acquisition radar building room #414, digital/electrical repair shop; showing work areas available for maintenance and equipment repair - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 40. Perimeter acquisition radar building room #510B, chemical, biological, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Perimeter acquisition radar building room #510B, chemical, biological, and radiological (CBR) air filter room no. 1 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. 25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply room; computer power supply on left and water flow on right. This room is directly below data processing area (room #318). Sign on right reads: High purity water digital rack - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. 2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) BARRACKS WITH RADAR ATTACHED. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK

  11. 14. Inner double blast door entrance to perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Inner double blast door entrance to perimeter acquisition radar building security area - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  12. 11. View toward southwest, northeast oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View toward southwest, northeast oblique of perimeter acquisition radar building showing - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. 58. Cutaway profile drawing of the perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Cutaway profile drawing of the perimeter acquisition radar - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. 6. View toward southeast, northwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View toward southeast, northwest oblique of perimeter acquisition radar building, with view of par power plant - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. 8. View toward northeast, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View toward northeast, southwest oblique of perimeter acquisition radar building showing accessway #101 leading into par power plant from service road B in foreground - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. 10. View toward northwest, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View toward northwest, southwest oblique of perimeter acquisition radar building, showing docking facility. Left of the knockout panel on lower right is emergency exit blast door #BD5/#127 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. 9. View toward northeast, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View toward northeast, southwest oblique of perimeter acquisition radar building showing, from left to right, fuel oil pump station, cooling towers, power plant, and diesel intake/exhaust - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  19. 22. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL ROOM. RECEIVER EQUIPMENT ON RIGHT WITH RF RADIATION MONITOR CABINET. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  20. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  1. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  2. 1. VIEW NORTHWEST, operations building, height finder radar tower, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW NORTHWEST, operations building, height finder radar tower, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  3. 1. View from south to north of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from south to north of perimeter acquisition radar power plant diesel engine exhaust and the small engine intake. On the right is the ventilating air intake/exhaust, distinguishable by its square shape, whereas the diesel columns are rectangular - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  4. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  5. 1. EXTERIOR VIEW OF METAL GUARD BUILDING AT THE RADAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR VIEW OF METAL GUARD BUILDING AT THE RADAR DOMES, BUILDING 400, LOOKING WEST-SOUTHWEST. - Mill Valley Air Force Station, Guard Building, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  6. 3. Photocopy of photograph showing acquisition radar from 'Procedures and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph showing acquisition radar from 'Procedures and Drills for the NIKE Hercules Missile Battery,' Department of the Army Field Manual, FM-44-82 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1959 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  7. 4. Photocopy of photograph showing battery acquisition radar from 'Procedures ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph showing battery acquisition radar from 'Procedures and Drills for the NIKE Hercules Missile Battery,' Department of the Army Field Manual, FM-44-82 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1959 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  8. Minimum acquisition time detection. [of radar targets

    NASA Technical Reports Server (NTRS)

    Brock, H. I.; Hung, J. C.

    1975-01-01

    Two different methods of target detection when the return signal is contaminated with noise are discussed and compared. The first method uses Neyman-Pearson detection philosophy and selects the threshold level to give a desired false alarm probability. The maximum probability of false alarm is constrained by the target cross scan velocity component. The second method (minimum acquisition time detection), which is similar to the ideal observer, selects the threshold level to minimize the expected target acquisition time. The probabilities of false alarm and missed detection are selected so that the errors produced by these effects produce the minimum acquisition time. Three different scan techniques - linear, spiral and two-mode scan - are studied and compared.

  9. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  10. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal.

  11. 60. VIEW OF RADAR AREA, STORAGE BUILDINGS AND TANKS, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    60. VIEW OF RADAR AREA, STORAGE BUILDINGS AND TANKS, LOOKING WEST Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  12. 10. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View of back side of radar scanner building no. 104 showing passageway links to other building to east and DR 1 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. 9. View of back side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View of back side of radar scanner building no. 106 showing passageway links to other buildings east and west, and DR 3 antenna in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. Probability of acquisition of three-dimensional imaging laser radar

    NASA Astrophysics Data System (ADS)

    Dong, Li-jun; Zhu, Shao-lan; Sun, Chuan-dong; Gao, Cun-xiao; Song, Zhi-yuan

    2011-06-01

    Three-dimensional imaging laser radar (3-D ladar) is widely used in area of modern military, scientific research, agriculture and industry. Because of its many features such as angle-angle-range capturing, high resolution, anti-jamming ability and no multipath effect ,but it has to scan for target searching, acquiring and tracking. This paper presents a novel probability model of target acquiring which provides a theoretical basis for optimizing the scanning mechanism. The model combines space and time, target moving velocity and ladar scanning velocity together. Then the optimum scanning mechanism to obtain the maximum probability of acquisition and associated with different targets can be gained. The result shows that this model provides a method to optimize parameter for designing of the scanner.

  15. 78. View of radar systems technical publication library, transmitter building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. View of radar systems technical publication library, transmitter building no. 102, second floor. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. 74. Transmitter building no. 102, view of radar digital test ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. Transmitter building no. 102, view of radar digital test and maintenance cabinet area control panel and date storage system showing ampex tape storage devices. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  17. 11. View of south side of radar scanner building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View of south side of radar scanner building no. 104 showing personnel exit door at side building, showing DR 1 antenna from oblique angle on foundation berm with DR 2 and DR 3 antennae in background. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  18. The economics of data acquisition computers for ST and MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.

    1983-01-01

    Some low cost options for data acquisition computers for ST (stratosphere, troposphere) and MST (mesosphere, stratosphere, troposphere) are presented. The particular equipment discussed reflects choices made by the University of Alaska group but of course many other options exist. The low cost microprocessor and array processor approach presented here has several advantages because of its modularity. An inexpensive system may be configured for a minimum performance ST radar, whereas a multiprocessor and/or a multiarray processor system may be used for a higher performance MST radar. This modularity is important for a network of radars because the initial cost is minimized while future upgrades will still be possible at minimal expense. This modularity also aids in lowering the cost of software development because system expansions should rquire little software changes. The functions of the radar computer will be to obtain Doppler spectra in near real time with some minor analysis such as vector wind determination.

  19. Investigation of Radar Propagation in Buildings: A 10 Billion Element Cartesian-Mesh FETD Simulation

    SciTech Connect

    Stowell, M L; Fasenfest, B J; White, D A

    2008-01-14

    In this paper large scale full-wave simulations are performed to investigate radar wave propagation inside buildings. In principle, a radar system combined with sophisticated numerical methods for inverse problems can be used to determine the internal structure of a building. The composition of the walls (cinder block, re-bar) may effect the propagation of the radar waves in a complicated manner. In order to provide a benchmark solution of radar propagation in buildings, including the effects of typical cinder block and re-bar, we performed large scale full wave simulations using a Finite Element Time Domain (FETD) method. This particular FETD implementation is tuned for the special case of an orthogonal Cartesian mesh and hence resembles FDTD in accuracy and efficiency. The method was implemented on a general-purpose massively parallel computer. In this paper we briefly describe the radar propagation problem, the FETD implementation, and we present results of simulations that used over 10 billion elements.

  20. The real-time display of interferometry data for Goldstone radar astronomy data acquisition

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1994-01-01

    A method for visualizing radar interferometry data in real time has been developed for the Goldstone radar astronomy ranging data-acquisition system. The presentation is similar in appearance to a vector field display or data-based grid. This form was selected to facilitate the recognition of characteristic patterns of local variation in the phase and magnitude of complex elements in a two-dimensional data array. The design emphasized efficiency under the demands of real-time processing and remote monitoring. The interferometry 'phase-magnitude' presentation, as it has come to be called, has been used to monitor radar interferometry experiments on three targets, beginning with the asteroid 4179 Toutatis, and continuing with Mars and Mercury.

  1. Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation

    NASA Technical Reports Server (NTRS)

    Leachman, Jonathan

    2010-01-01

    A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.

  2. Three-dimensional Radar Imaging of a Building

    DTIC Science & Technology

    2012-12-01

    Semicontrolled Conditions. IEEE Geoscience and Remote Sensing Letters January 2011, 8, 123–127. 4. Wang, Z.; Fathy, A. Advanced System Level...24. Skolnik, M. I. Introduction to Radar Systems; McGraw Hill: New York, 2001. 25. Gandhi , P. P.; Kassam, S. A. Analysis of CFAR Processors in

  3. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  4. 3. Distant view toward east, west face of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Distant view toward east, west face of perimeter acquisition radar building with data link satellite dish on south side - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. 12. Distant view toward southwest, northeast oblique of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Distant view toward southwest, northeast oblique of perimeter acquisition radar building, with view of site grounds - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 7. Distant view toward southeast, northwest oblique of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Distant view toward southeast, northwest oblique of perimeter acquisition radar building. Cooling towers can be seen on the far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. Comparing EM Models to RCS Measurements for Building-Penetration Radar

    SciTech Connect

    Fasenfest, B; Ueberschaer, R

    2007-05-18

    For the DARPA VisiBuilding program, SRI International and Lawrence Livermore National Laboratory are using a variety of electromagnetic (EM) simulation codes and measurement techniques to analyze how radar pulses interact with building structures and materials. Of primary interest is how interior wall and corner reflections are delayed, attenuated, and dispersed by the exterior wall materials. In this paper, we compare microwave frequency-domain radar cross section (RCS) chamber measurements of scale models of simple buildings to finite-element and finite-difference full-wave time-domain and ray-tracing models. The ability to accurately reconstruct the building from these models is compared with the reconstruction from chamber measurements. We observe that careful attention to the spatial sampling in the EM models is essential to achieving good reconstruction at the higher frequencies.

  8. 115. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. Back side technical facilities S.R. radar transmitter building no. 101, "elevations - sheet 2" - architectural, AS-BLT AW 35-46-03, sheet 5, dated 23 June, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  9. 114. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. Back side technical facilities S.R. radar transmitter building no. 101 "elevations - sheet 1" - architectural, AS-BLT AW 35-46-03, sheet 5, dated 23 June, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  10. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  11. Interferometric synthetic aperture radar: Building tomorrow's tools today

    USGS Publications Warehouse

    Lu, Zhong

    2006-01-01

    A synthetic aperture radar (SAR) system transmits electromagnetic (EM) waves at a wavelength that can range from a few millimeters to tens of centimeters. The radar wave propagates through the atmosphere and interacts with the Earth’s surface. Part of the energy is reflected back to the SAR system and recorded. Using a sophisticated image processing technique, called SAR processing (Curlander and McDonough, 1991), both the intensity and phase of the reflected (or backscattered) signal of each ground resolution element (a few meters to tens of meters) can be calculated in the form of a complex-valued SAR image representing the reflectivity of the ground surface. The amplitude or intensity of the SAR image is determined primarily by terrain slope, surface roughness, and dielectric constants, whereas the phase of the SAR image is determined primarily by the distance between the satellite antenna and the ground targets, slowing of the signal by the atmosphere, and the interaction of EM waves with ground surface. Interferometric SAR (InSAR) imaging, a recently developed remote sensing technique, utilizes the interaction of EM waves, referred to as interference, to measure precise distances. Very simply, InSAR involves the use of two or more SAR images of the same area to extract landscape topography and its deformation patterns.

  12. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  13. 116. Back side technical facilities S.R. radar transmitter building no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. Back side technical facilities S.R. radar transmitter building no. 101, "equipment room details" - mechanical, AS-BLT AW 35-46-03, sheet 73.1, dated 23 January, 1961. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  14. 108. Back side technical facilities S.R. (scanning radar), scanner building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    108. Back side technical facilities S.R. (scanning radar), scanner building no. 104, "first floor & mezzanine plan" - architectural, AS-BLT AW 35-03-89, sheet 1 of 40, dated November, 1960. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. Radar Interferometry for Monitoring the Vibration Characteristics of Buildings and Civil Structures: Recent Case Studies in Spain.

    PubMed

    Luzi, Guido; Crosetto, Michele; Fernández, Enric

    2017-03-24

    The potential of a coherent microwave sensor to monitor the vibration characteristics of civil structures has been investigated in the past decade, and successful case studies have been published by different research teams. This remote sensing technique is based on the interferometric processing of real aperture radar acquisitions. Its capability to estimate, simultaneously and remotely, the displacement of different parts of the investigated structures, with high accuracy and repeatability, is its main advantage with respect to conventional sensors. A considerable amount of literature on this technique is available, including various case studies aimed at testing the ambient vibration of bridges, buildings, and towers. In the last years, this technique has been used in Spain for civil structures monitoring. In this paper, three examples of such case studies are described: the monitoring of the suspended bridge crossing the Ebro River at Amposta, the communications tower of Collserola in Barcelona, and an urban building located in Vilafranca del Penedès, a small town close to Barcelona. This paper summarizes the main outcomes of these case studies, underlining the advantages and limitations of the sensors currently available, and concluding with the possible improvements expected from the next generation of sensors.

  16. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  17. Interferometric acquisition and fire control radar for short-range missile defense with optimized radar distribution (SWORD)

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-07-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept "SWORD" (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of the past investments. The Deptuy Assistant Secretary of the Army for Research and Technology [DAS(R&T)] has a three-year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary Bench-Top Experiment results will be presented in this paper.

  18. U.S. national categorical mapping of building heights by block group from Shuttle Radar Topography Mission data

    USGS Publications Warehouse

    Falcone, James

    2016-01-01

    This dataset is a categorical mapping of estimated mean building heights, by Census block group, in shapefile format for the conterminous United States. The data were derived from the NASA Shuttle Radar Topography Mission, which collected “first return” (top of canopy and buildings) radar data at 30-m resolution in February, 2000 aboard the Space Shuttle Endeavor. These data were processed here to estimate building heights nationally, and then aggregated to block group boundaries. The block groups were then categorized into six classes, ranging from “Low” to “Very High”, based on the mean and standard deviation breakpoints of the data. The data were evaluated in several ways, to include comparing them to a reference dataset of 85,000 buildings for the city of San Francisco for accuracy assessment and to provide contextual definitions for the categories.

  19. Chlorofluorocarbon environmental issues related to conservation acquisition in commercial buildings

    SciTech Connect

    Marseille, T.J.; Baechler, M.C.

    1990-09-01

    Recent scientific evidence strongly suggests that the release of large quantities of chlorofluorocarbon (CFC) gases into the atmosphere will result in environmentally harmful long-term effects. Because of those effects, a massive worldwide effort is currently under way to ban their use. At request of the Bonneville Power Administration, the Pacific Northwest Laboratory conducted a literature search to identify the issues surrounding the CFC phaseout. The search was focused on how these issues impact the commercial building sector. Information was obtained that describes: How the release of CFCs into the atmosphere may affect the global environment; legislative and regulatory programs initiated to restrict CFCs; potential impacts the reduced CFC supply will have on commercial buildings; the most promising CFC substitute technologies; and the potential costs of CFC restriction. 11 refs., 2 tabs.

  20. Application of a portable radar interferometer and terrestrial long-range lidar for high resolution data acquisition of natural rock slopes

    NASA Astrophysics Data System (ADS)

    Kos, Andrew; Strozzi, Tazio; Tomkinson, William; Conforti, Dario; Wiesmann, Andreas

    2010-05-01

    The application of portable radar interferometry using real aperture technology, integrated with long range terrestrial lidar for monitoring unstable rock slopes will be presented. Measurement precision as well as spatial and temporal resolution of the combined methods will be discussed in terms of selected case studies. The advantages of system portability and method of data acquisition will be highlighted since field inaccessibility often hinders the placement of instruments for optimal lines-of-site or range for the acquisition of high resolution data.

  1. PBF Control Building (PER619). Interior in data acquisition room showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Control Building (PER-619). Interior in data acquisition room showing data racks. The system recorded multiple channels of data during tests. INEEL negative no. HD-41-8-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  2. Single-Side Two-Location Spotlight Imaging for Building Based on MIMO Through-Wall-Radar

    PubMed Central

    Jia, Yong; Zhong, Xiaoling; Liu, Jiangang; Guo, Yong

    2016-01-01

    Through-wall-radar imaging is of interest for mapping the wall layout of buildings and for the detection of stationary targets within buildings. In this paper, we present an easy single-side two-location spotlight imaging method for both wall layout mapping and stationary target detection by utilizing multiple-input multiple-output (MIMO) through-wall-radar. Rather than imaging for building walls directly, the images of all building corners are generated to speculate wall layout indirectly by successively deploying the MIMO through-wall-radar at two appropriate locations on only one side of the building and then carrying out spotlight imaging with two different squint-views. In addition to the ease of implementation, the single-side two-location squint-view detection also has two other advantages for stationary target imaging. The first one is the fewer multi-path ghosts, and the second one is the smaller region of side-lobe interferences from the corner images in comparison to the wall images. Based on Computer Simulation Technology (CST) electromagnetic simulation software, we provide multiple sets of validation results where multiple binary panorama images with clear images of all corners and stationary targets are obtained by combining two single-location images with the use of incoherent additive fusion and two-dimensional cell-averaging constant-false-alarm-rate (2D CA-CFAR) detection. PMID:27618039

  3. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  4. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  5. An analytical investigation of acquisition techniques and system integration studies for a radar aircraft guidance research facility, phase 2

    NASA Technical Reports Server (NTRS)

    Thompson, W. S.; Ruedger, W. H.

    1973-01-01

    A review of user requirements and updated instrumentation plans are presented for the aircraft tracking and guidance facility at NASA Wallops Station. User demand has increased as a result of new flight research programs; however, basic requirements remain the same as originally reported. Instrumentation plans remain essentially the same but with plans for up- and down-link telemetry more firm. With slippages in the laser acquisition schedule, added importance is placed on the FPS-16 radar as the primary tracking device until the laser is available. Limited simulation studies of a particular Kalman-type filter are also presented. These studies simulated the use of the filter in a helicopter guidance loop in a real-time mode. Disadvantages and limitations of this mode of operation are pointed out. Laser eyesafety calculations show that laser tracking of aircraft is readily feasible from the eyesafety viewpoint.

  6. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  7. Real Aperture Radar interferometry as a tool for buildings vibration monitoring: Limits and potentials from an experimental study

    NASA Astrophysics Data System (ADS)

    Luzi, Guido; Monserrat, Oriol; Crosetto, Michele

    2012-06-01

    In the last decade several researchers have dealt with the potential of radar interferometry as a remote sensing tool able to provide measurements of vibrations of large structures. More recently the technique has been consolidated thanks to the recent introduction on the market of specifically devoted radar instruments. Exploiting the interferometric capability of coherent radar, successful monitoring of bridges, towers and wind turbine powers has been achieved. This technique allowed looking at the frequency behaviour of civil structures and estimating their amplitude of displacement in the order of fraction of millimetres. The activity here described reports the results of an experimental investigation aimed at evaluating the effectiveness of a coherent Real-Aperture-Radar sensor to estimate the vibration of buildings in an urban environment, through an ambient vibration testing, where the expected amplitude vibration spans within a few to some tens of microns. Critical aspects affecting the retrieval of this information are here discussed, on the basis of some experimental data collected in the last year with a microwave interferometer working at Ku band and available on the market. Preliminary results are shown and suggestions related to the measurement procedures are discussed.

  8. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings

    PubMed Central

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-01-01

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building. PMID:27240379

  9. Indoor Multi-Sensor Acquisition System for Projects on Energy Renovation of Buildings.

    PubMed

    Armesto, Julia; Sánchez-Villanueva, Claudio; Patiño-Cambeiro, Faustino; Patiño-Barbeito, Faustino

    2016-05-28

    Energy rehabilitation actions in buildings have become a great economic opportunity for the construction sector. They also constitute a strategic goal in the European Union (EU), given the energy dependence and the compromises with climate change of its member states. About 75% of existing buildings in the EU were built when energy efficiency codes had not been developed. Approximately 75% to 90% of those standing buildings are expected to remain in use in 2050. Significant advances have been achieved in energy analysis, simulation tools, and computer fluid dynamics for building energy evaluation. However, the gap between predictions and real savings might still be improved. Geomatics and computer science disciplines can really help in modelling, inspection, and diagnosis procedures. This paper presents a multi-sensor acquisition system capable of automatically and simultaneously capturing the three-dimensional geometric information, thermographic, optical, and panoramic images, ambient temperature map, relative humidity map, and light level map. The system integrates a navigation system based on a Simultaneous Localization and Mapping (SLAM) approach that allows georeferencing every data to its position in the building. The described equipment optimizes the energy inspection and diagnosis steps and facilitates the energy modelling of the building.

  10. Talk aloud problem solving: Exploration of acquisition and frequency building in science text

    NASA Astrophysics Data System (ADS)

    Dembek, Ginny

    Discovering new ways to help students attain higher levels of scientific knowledge and to think critically is a national goal (Educate to Innovate campaign). Despite the best intentions, many students struggle to achieve a basic level of science knowledge (NAEP, 2011). The present study examined Talk Aloud Pair Problem Solving and frequency building with five students who were diagnosed with a disability and receive specialized reading instruction in a special education setting. Acquisition was obtained through scripted lessons and frequency building or practice strengthened the student's verbal repertoire making the problem solving process a durable behavior. Overall, students all demonstrated improvements in problem solving performance when compared to baseline. Students became more significantly accurate in performance and maintenance in learning was demonstrated. Generalization probes indicated improvement in student performance. Implications for practice and future research are discussed.

  11. Effects of various event building techniques on data acquisition system architectures

    SciTech Connect

    Barsotti, E.; Booth, A.; Bowden, M.

    1990-04-01

    The preliminary specifications for various new detectors throughout the world including those at the Superconducting Super Collider (SSC) already make it clear that existing event building techniques will be inadequate for the high trigger and data rates anticipated for these detectors. In the world of high-energy physics many approaches have been taken to solving the problem of reading out data from a whole detector and presenting a complete event to the physicist, while simultaneously keeping deadtime to a minimum. This paper includes a review of multiprocessor and telecommunications interconnection networks and how these networks relate to event building in general, illustrating advantages of the various approaches. It presents a more detailed study of recent research into new event building techniques which incorporate much greater parallelism to better accommodate high data rates. The future in areas such as front-end electronics architectures, high speed data links, event building and online processor arrays is also examined. Finally, details of a scalable parallel data acquisition system architecture being developed at Fermilab are given. 35 refs., 31 figs., 1 tab.

  12. Floodplain management: Land acquisition versus preservation of historic buildings in Cambridge, Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Bennett, Wendy J.; Mitchell, Bruce

    1983-07-01

    Non-structural adjustments in floodplain management are often avoided because they are seen to infringe on personal rights, adversely affect property values and restrict local tax bases. Land acquisition programs in urban areas encounter a further problem when they lead to demolition of buildings and other structures considered to have historical or architectural value. An experience in Cambridge, Ontario demonstrates that the potential conflict between flood damage reduction and historical preservation objectives can be exacerbated as a result of uncoordinated planning efforts, inflexibility in interpreting mandates, unclear roles for participating agencies, and lack of cooperation Many of these dilemmas can be resolved through consultation and discussion early in the planning process as well as through a willingness to be flexible and to search for a compromise

  13. Technological Supports for Onsite and Distance Education and Students' Perceptions of Acquisition of Thinking and Team-Building Skills

    ERIC Educational Resources Information Center

    Thomas, Jennifer D. E.; Morin, Danielle

    2010-01-01

    This paper compares students' perceptions of support provided in the acquisition of various thinking and team-building skills, resulting from the various activities, resources and technologies (ART) integrated into an upper level Distributed Computing (DC) course. The findings indicate that students perceived strong support for their acquisition…

  14. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  16. Technology access from the FS-X radar program. Lessons for technology transfer and US acquisition policy

    NASA Astrophysics Data System (ADS)

    Chang, Ike Y., Jr.

    The FS-X is a cooperative aircraft development program launched in 1989 between the United States and Japan. The FS-X program entitles the U.S. government and U.S. industry access to Japanese FS-X technology. This report explores the issue of U.S. access and possible licensed transfer of Japanese FS-X radar technology for use by the U.S. government and industry. The FS-X radar program is significant in that it may be the first program to develop an operational active phased array radar (APAR) for airborne fire control. APAR technology has the benefits of superior performance, rehability, and maintainability. Nevertheless, because of stringent U.S. program requirements and high production costs, APAR has not yet become an operational reality in the United States. The FS-X is, therefore, important in that it may signify growing strengths of Japan in a technical area historically dominated by U.S. firms.

  17. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  18. How does the interaction between spelling and motor processes build up during writing acquisition?

    PubMed

    Kandel, Sonia; Perret, Cyril

    2015-03-01

    How do we recall a word's spelling? How do we produce the movements to form the letters of a word? Writing involves several processing levels. Surprisingly, researchers have focused either on spelling or motor production. However, these processes interact and cannot be studied separately. Spelling processes cascade into movement production. For example, in French, producing letters PAR in the orthographically irregular word PARFUM (perfume) delays motor production with respect to the same letters in the regular word PARDON (pardon). Orthographic regularity refers to the possibility of spelling a word correctly by applying the most frequent sound-letter conversion rules. The present study examined how the interaction between spelling and motor processing builds up during writing acquisition. French 8-10 year old children participated in the experiment. This is the age handwriting skills start to become automatic. The children wrote regular and irregular words that could be frequent or infrequent. They wrote on a digitizer so we could collect data on latency, movement duration and fluency. The results revealed that the interaction between spelling and motor processing was present already at age 8. It became more adult-like at ages 9 and 10. Before starting to write, processing irregular words took longer than regular words. This processing load spread into movement production. It increased writing duration and rendered the movements more dysfluent. Word frequency affected latencies and cascaded into production. It modulated writing duration but not movement fluency. Writing infrequent words took longer than frequent words. The data suggests that orthographic regularity has a stronger impact on writing than word frequency. They do not cascade in the same extent.

  19. Technology Access from the FS-X Radar Program. Lessons for Technology Transfer and U.S. Acquisition Policy

    DTIC Science & Technology

    1994-01-01

    acquisition approaches of the Japan Defence Agency ODA) also offer promising alternatives for the Department of Defense (DoD) to adapt to the lean post... manufacturi - DARPA Defense Advanced Research Projects Agency DBS direct broadcast satellite Dem/Val Demonstration/ Validation DoC Department of Commerce...assure the quality of modules that will go into an APAR system. Contractor incentives to move in this direction will likely grow because of lean post

  20. Comparing Software Acquisition Models Against Each Other: The Build vs. Buy vs. Rent Trade Study

    DTIC Science & Technology

    2012-04-30

    quality of the technical processes used by this supplier (e.g., CMMI Level 3, ISO 9001 )? Has this supplier done other projects in this application domain...Acquisition Career Management , ASN (RD&A)  Program Executive Officer, SHIPS  Commander, Naval Sea Systems Command  Program Executive Officer...Technology)  Deputy Director, Acquisition Career Management , U.S. Army  Office of Procurement and Assistance Management Headquarters, Department of

  1. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  2. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  3. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  4. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  5. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  6. Dual-Band Deramp Radar Design for Ocean Current Measurements

    NASA Technical Reports Server (NTRS)

    Haynes, Mark S.

    2005-01-01

    A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.

  7. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  8. Reactor building temperature reduction project data acquisition, evaluations and proposed actions. Arkansas nuclear one, Unit 1

    SciTech Connect

    France, E.R.

    1991-06-01

    On August 1, 1987 Arkansas Power and Light maintenance personnel made a power entry at Arkansas Nuclear One, Unit 1. They discovered that the steam generator cavity temperature was too high for personnel comfort. AP and L management requested that the available temperature data be recorded throughout the reactor building (RB). Hand held thermometers, infrared thermography, and existing RTD`s were utilized. Temperatures were found to range from 100F near the basement to 165F in the dome area. A temperature of 183F was found above the A steam generator cavity. As a result of this finding, AP and L and the Nuclear Regulatory Commission decided that an in depth evaluation of the RB temperatures and their effect on the safe operation of the plant was needed. The original design temperature was 110F. This section discusses the monitoring systems installed, the results of the evaluation and the corrective actions taken.

  9. Surface Ruptures and Building Damage of the 2003 Bam, Iran, Earthquake Mapped by Satellite Synthetic Aperture Radar Interferometric Correlation

    NASA Technical Reports Server (NTRS)

    Fielding, Eric J.; Talebian, M.; Rosen, P. A.; Nazari, H.; Jackson, J. A.; Ghorashi, M.; Walker, R.

    2005-01-01

    We use the interferometric correlation from Envisat synthetic aperture radar (SAR) images to map the details of the surface ruptures related to the 26 December 2003 earthquake that devastated Bam, Iran. The main strike-slip fault rupture south of the city of Bam has a series of four segments with left steps shown by a narrow line of low correlation in the coseismic interferogram. This also has a clear expression in the field because of the net extension across the fault. Just south of the city limits, the surface strain becomes distributed over a width of about 500 m, probably because of a thicker layer of soft sedimentary material.

  10. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  11. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  12. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain-Computer Interface: Case Studies.

    PubMed

    Pinegger, Andreas; Wriessnegger, Selina C; Faller, Josef; Müller-Putz, Gernot R

    2016-01-01

    One important aspect in non-invasive brain-computer interface (BCI) research is to acquire the electroencephalogram (EEG) in a proper way. From an end-user perspective, it means with maximum comfort and without any extra inconveniences (e.g., washing the hair), whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently. In this work, we evaluated three different commercially available EEG acquisition systems that differ in the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control), and user satisfaction (comfort). We found that water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode-based system caused the least inconveniences. Therefore, building a reliable BCI is possible with all the evaluated systems, and it is on the user to decide which system meets the given requirements best.

  13. Evaluation of Different EEG Acquisition Systems Concerning Their Suitability for Building a Brain–Computer Interface: Case Studies

    PubMed Central

    Pinegger, Andreas; Wriessnegger, Selina C.; Faller, Josef; Müller-Putz, Gernot R.

    2016-01-01

    One important aspect in non-invasive brain–computer interface (BCI) research is to acquire the electroencephalogram (EEG) in a proper way. From an end-user perspective, it means with maximum comfort and without any extra inconveniences (e.g., washing the hair), whereas from a technical perspective, the signal quality has to be optimal to make the BCI work effectively and efficiently. In this work, we evaluated three different commercially available EEG acquisition systems that differ in the type of electrodes (gel-, water-, and dry-based), the amplifier technique, and the data transmission method. Every system was tested regarding three different aspects, namely, technical, BCI effectiveness and efficiency (P300 communication and control), and user satisfaction (comfort). We found that water-based system had the lowest short circuit noise level, the hydrogel-based system had the highest P300 spelling accuracies, and the dry electrode-based system caused the least inconveniences. Therefore, building a reliable BCI is possible with all the evaluated systems, and it is on the user to decide which system meets the given requirements best. PMID:27746714

  14. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  15. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  16. UWB micro-doppler radar for human gait analysis using joint range-time-frequency representation

    NASA Astrophysics Data System (ADS)

    Wang, Yazhou; Fathy, Aly E.

    2013-05-01

    In this paper, we present a novel, standalone ultra wideband (UWB) micro-Doppler radar sensor that goes beyond simple range or micro-Doppler detection to combined range-time-Doppler frequency analysis. Moreover, it can monitor more than one human object in both line-of-sight (LOS) and through wall scenarios, thus have full human objects tracking capabilities. The unique radar design is based on narrow pulse transceiver, high speed data acquisition module, and wideband antenna array. For advanced radar post-data processing, joint range-time-frequency representation has been performed. Characteristics of human walking activity have been analyzed using the radar sensor by precisely tracking the radar object and acquiring range-time-Doppler information simultaneously. The UWB micro-Doppler radar prototype is capable of detecting Doppler frequency range from -180 Hz to +180 Hz, which allows a maximum target velocity of 9 m/s. The developed radar sensor can also be extended for many other applications, such as respiration and heartbeat detection of trapped survivors under building debris.

  17. Python-ARM Radar Toolkit

    SciTech Connect

    Jonathan Helmus, Scott Collis

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  18. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  19. Air and Missile Defense Radar (AMDR)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-384 Air and Missile Defense Radar (AMDR) As of FY 2017 President’s Budget Defense Acquisition...Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then Year UCR

  20. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. Rapid and Robust Damage Detection using Radar Remote Sensing

    NASA Astrophysics Data System (ADS)

    Yun, S.; Fielding, E. J.; Simons, M.; Webb, F.; Rosen, P. A.; Owen, S. E.

    2012-12-01

    Under ARIA (Advanced Rapid Imaging and Analysis) project at JPL and Caltech, we developed a prototype algorithm and data system to rapidly detect surface change caused by natural or man-made damage using a radar remote sensing technique of InSAR coherence. We tested the algorithm with a building demolition site in the City of Pasadena, California. The results show clear signal at the demolition site, with about 150% SNR improvement compared to conventional approach. Out of fourteen strongest detected signals, we confirmed that at least eleven of them were associated with real demolition and construction projects. We applied the algorithm to the February 2011 M6.3 Christchurch earthquake in New Zealand, which killed 185 people and caused financial damage of US $16-24 billion. We produced a damage proxy map (DPM) using radar data from ALOS satellite (Figure A), where red pixels identify regions where there may have been earthquake induced building damage, landslides, and liquefaction. The distribution of the red regions agrees well with the post-earthquake assessment performed on the ground by inspectors from the New Zealand government and summarized in their damage assessment zone map (Figure B). The DPM was derived from radar data acquired 3 days after the earthquake, whereas the ground truth zone map was first published 4 months after the earthquake. In addition to all-weather and day-and-night capability of radar, the sensitivity of radar signal to surface property change is high enough for reliable damage assessment. Current and future satellite and airborne missions should keep the expected composite data acquisition latency within a day. Rapidly produced accurate damage assessment maps will help saving people, assisting effective prioritization of rescue operations at early stage of response, and significantly improve timely situational awareness for emergency management and national / international assessment for response and recovery.

  2. Acquisition of Requests and Apologies in Spanish and French: Impact of Study Abroad and Strategy-Building Intervention

    ERIC Educational Resources Information Center

    Cohen, Andrew D.; Shively, Rachel L.

    2007-01-01

    The primary aim of this study was to assess the impact of a curricular intervention on study-abroad students' use of language- and culture-learning strategies and on their acquisition of requests and apologies. The intervention consisted of a brief face-to-face orientation to learning speech acts, a self-study guidebook on language and culture…

  3. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  4. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  5. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  6. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel.

    PubMed

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-12-11

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology.

  7. Adjustment of Sonar and Laser Acquisition Data for Building the 3D Reference Model of a Canal Tunnel †

    PubMed Central

    Moisan, Emmanuel; Charbonnier, Pierre; Foucher, Philippe; Grussenmeyer, Pierre; Guillemin, Samuel; Koehl, Mathieu

    2015-01-01

    In this paper, we focus on the construction of a full 3D model of a canal tunnel by combining terrestrial laser (for its above-water part) and sonar (for its underwater part) scans collected from static acquisitions. The modeling of such a structure is challenging because the sonar device is used in a narrow environment that induces many artifacts. Moreover, the location and the orientation of the sonar device are unknown. In our approach, sonar data are first simultaneously denoised and meshed. Then, above- and under-water point clouds are co-registered to generate directly the full 3D model of the canal tunnel. Faced with the lack of overlap between both models, we introduce a robust algorithm that relies on geometrical entities and partially-immersed targets, which are visible in both the laser and sonar point clouds. A full 3D model, visually promising, of the entrance of a canal tunnel is obtained. The analysis of the method raises several improvement directions that will help with obtaining more accurate models, in a more automated way, in the limits of the involved technology. PMID:26690444

  8. Study to investigate and evaluate means of optimizing the radar function for the space shuttle. [(pulse radar)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results are discussed of a study to define a radar and antenna system which best suits the space shuttle rendezvous requirements. Topics considered include antenna characteristics and antenna size tradeoffs, fundamental sources of measurement errors inherent in the target itself, backscattering crosssection models of the target and three basic candidate radar types. Antennas up to 1.5 meters in diameter are within specified installation constraints, however, a 1 meter diameter paraboloid and a folding, four slot backfeed on a two gimbal mount implemented for a spiral acquisition scan is recommended. The candidate radar types discussed are: (1) noncoherent pulse radar (2) coherent pulse radar and (3) pulse Doppler radar with linear FM ranging. The radar type recommended is a pulse Doppler with linear FM ranging. Block diagrams of each radar system are shown.

  9. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  10. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  11. 3. AIR TO GROUND RADAR TYPE GT2122 & GRRR 2324, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. AIR TO GROUND RADAR TYPE GT2122 & GRRR 2324, CIRCA 1978, INTERIOR OF BUILDING 408, LOOKING WEST. - Mill Valley Air Force Station, Operations Building & Annex, East Ridgecrest Boulevard, Mount Tamalpais, Mill Valley, Marin County, CA

  12. Soil-penetrating synthetic aperture radar

    SciTech Connect

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  13. Detail view of southeast corner of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of southeast corner of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing Signal Corps Radar (S.C.R.) 296 Station 5 Tower concrete pier in background, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  14. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  15. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  16. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  17. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  18. Exterior view, looking west OvertheHorizon Backscatter Radar Network, Tulelake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view, looking west - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Receiver Building, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  19. Interior view, looking northwest OvertheHorizon Backscatter Radar Network, Tulelake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view, looking northwest - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Receiver Building, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  20. Exterior view, looking west OvertheHorizon Backscatter Radar Network, Tulelake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view, looking west - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Receiver Building, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  1. Exterior view, looking southeast OvertheHorizon Backscatter Radar Network, Tulelake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view, looking southeast - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Receiver Building, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  2. Exterior view, looking southwest OvertheHorizon Backscatter Radar Network, Tulelake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior view, looking southwest - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Four Receiver Building, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  3. Analysis of Debris Flow Disaster due to Heavy Rain by X-Band MP Radar Data

    NASA Astrophysics Data System (ADS)

    Nishio, M.; Mori, M.

    2016-06-01

    On August 20 of 2014, Hiroshima City (Japan) was struck by local heavy rain from an autumnal rain front. The resultant debris flow disaster claimed 75 victims and destroyed many buildings. From 1:30 am to 4:30 am on August 20, the accumulated rainfall in Hiroshima City exceeded 200 mm. Serious damage occurred in the Asakita and Asaminami wards of Hiroshima City. As a disaster prevention measure, local heavy rain (localized torrential rains) is usually observed by the Automated Meteorological Data Acquisition System (AMeDAS) operated by the Japan Meteorological Agency (JMA) and by the C-band radar operated by the Ministry of Land, Infrastructure, Transport and Tourism (MLIT) of Japan, with spatial resolutions of 2.5 km and 1 km, respectively. The new X-band MP radar system enables more detailed rainfall observations than the C-band radar. In fact, this radar can observe local rainfall throughout Japan in near-real time over a minimum mesh size of 250 m. A fine-scale accumulated rainfall monitoring system is crucial for disaster prevention, and potential disasters can be alerted by the hazard levels of the accumulated rainfall.

  4. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  5. A novel digital receiver concept for ISRO's future remote sensing radars

    NASA Astrophysics Data System (ADS)

    Desai, Nilesh; Vachhani, J. G.; Soin, Sumit; Agrawal, Rinku; Rao, C. V. N.; Gujraty, Virendra; Rana, Surindersingh

    2006-12-01

    Technology development related to digital, antenna and RF subsystems for Microwave Radar Sensors like Synthetic Aperture Radar, Scatterometer, Altimeter and Radiometer is one of the major activities under ISRO's microwave remote sensing programme, since 1980s. These technologies are now being gainfully utilized for building ISRO's operational Earth Observation missions involving microwave sensors like Radar Imaging Satellite, RISAT SAR, Oceansat-2 Scatterometer, Megha-Tropiques, MADRAS and Airborne SAR for Disaster Management, DMSAR. Concurrently, advanced technology developments in these fields are underway to meet the major technological challenges of building ISRO's proposed advanced microwave missions like ultra-high resolution SAR's, Synthetic Aperture Radiometer (SARAD), Milli-meter and sub-millimeter wave sounders and SAR Constellations for Disaster management as well as Interferometric, Polarmetric and polarmetric interferometry applications. Also, these hardware are being designed with core radar electronics concept, in which the same RF and digital hardware sub-units / modules will be utilized to build different microwave radar sensors. One of the major and common requirements for all these active and passive microwave sensors is the moderate to highspeed data acquisition and signal processing system. Traditionally, the Data acquisition units for all these radar sensors are implemented as stand-alone units, following the radar receivers. For ISRO's C-band airborne SAR (ASAR) and RISAT high resolution SAR, we have designed and developed High Speed 8-bit ADC based I/Q Digitisers, operating at 30.814 MHz and 250 MHz sampling rates, respectively. With the increasing demand of wide bandwidth and ultra-high resolution in imaging and non-imaging radar systems, the technology trend worldwide is towards a digital receiver, involving bandpass or IF sampling, thus eliminating the need for RF down converters and analog IQ demodulators. In order to evolve a generic

  6. Building Detection in SAR Imagery

    SciTech Connect

    Steinbach, Ryan Matthew; Koch, Mark William; Moya, Mary M; Goold, Jeremy

    2014-08-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.

  7. Building detection in SAR imagery

    SciTech Connect

    Steinbach, Ryan Matthew

    2015-04-01

    Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. I present two techniques that are effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed techniques assume that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped. In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint, where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. For the first technique, constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. The second technique calculates weights for the connections and then performs a series of increasingly relaxed hard and soft thresholds. This results in groups of various levels on their validity. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results demonstrate the outcome of the two techniques. The two techniques are compared and discussed.

  8. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  9. Laser doppler and radar interferometer for contactless measurements on unaccessible tie-rods on monumental buildings: Santa Maria della Consolazione Temple in Todi

    NASA Astrophysics Data System (ADS)

    Gioffré, M.; Cavalagli, N.; Pepi, C.; Trequattrini, M.

    2017-01-01

    Non-contact measurements can be effectively used in civil engineering to assess the variation of structural performance with time. In the last decades this approach has received considerable interests from researchers working in the field of structural health monitoring (SHM). Indeed, non-contact measurements are very attractive because it is possible to perform non intrusive and non destructive investigations even being at a significant distance from the targets. Within this context, contactless measurements of the tie-rod vibrations in the Santa Maria della Consolazione Temple in Todi (Italy) are presented in this paper. In particular, laser vibrometer and radar interferometer measurements are used to estimate natural frequencies and mode shapes. This information is crucial to obtain the tensile axial force in the tie-rods, which can be used as an indicator of structural integrity or possible failure. Furthermore, a novel approach is proposed where drones (Unmanned Aerial Vehicles) can be successfully used to improve the effectiveness and the accuracy of the experimental activities.

  10. Airborne laser scan data: a valuable tool with which to infer weather radar partial beam blockage in urban environments

    NASA Astrophysics Data System (ADS)

    Cremonini, Roberto; Moisseev, Dmitri; Chandrasekar, Venkatachalam

    2016-10-01

    High-spatial-resolution weather radar observations are of primary relevance for hydrological applications in urban areas. However, when weather radars are located within metropolitan areas, partial beam blockages and clutter by buildings can seriously affect the observations. Standard simulations with simple beam propagation models and digital elevation models (DEMs) are usually not able to evaluate buildings' contribution to partial beam blockages. In recent years airborne laser scanners (ALSs) have evolved to the state-of-the-art technique for topographic data acquisition. Providing small footprint diameters (10-30 cm), ALS data allow accurate reconstruction of buildings and forest canopy heights. Analyzing the three weather C-band radars located in the metropolitan area of Helsinki, Finland, the present study investigates the benefits of using ALS data for quantitative estimations of partial beam blockages. The results obtained applying beam standard propagation models are compared with stratiform 24 h rainfall accumulation to evaluate the effects of partial beam blockages due to constructions and trees. To provide a physical interpretation of the results, the detailed analysis of beam occultations is achieved by open spatial data sets and open-source geographic information systems.

  11. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  12. External calibration technique of millimeter-wave cloud radar

    NASA Astrophysics Data System (ADS)

    Wen, Tao; Zhao, Zeng-Liang; Yao, Zhi-Gang; Han, Zhi-Gang; Guo, Lin-Da

    2016-10-01

    The millimeter-wave cloud radar can provide a large number of fine and reliable information for the inversion of cloud macro and micro parameters. A key link of using the millimeter-wave cloud radar to detect the cloud is that the radar must be calibrated. Due to the precision components and severe environment of millimeter-wave cloud radar, subtle changes may take place in the operation process of cloud radar, unless the cloud radar is calibrated regularly. Although the calibration system inside the cloud radar can track and monitor the main working parameters and correct the detection results, it fails to consider the characteristics of the antenna and the mutual influence among different components of cloud radar. Therefore, the external calibration for cloud radar system is very important. Combined with the actual situation of cloud radar under domestic onboard platform, this paper builds a complete external calibration technique process of cloud radar based on the calm sea, providing the theoretical support for the external calibration experiments of the airborne and even satellite-borne millimeter-wave cloud radar developed by our country.

  13. Ground/Air Task Oriented Radar (G/ATOR)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-386 Ground/Air Task Oriented Radar (G/ATOR) As of FY 2017 President’s Budget Defense...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  14. Interactive knowledge acquisition tools

    NASA Technical Reports Server (NTRS)

    Dudziak, Martin J.; Feinstein, Jerald L.

    1987-01-01

    The problems of designing practical tools to aid the knowledge engineer and general applications used in performing knowledge acquisition tasks are discussed. A particular approach was developed for the class of knowledge acquisition problem characterized by situations where acquisition and transformation of domain expertise are often bottlenecks in systems development. An explanation is given on how the tool and underlying software engineering principles can be extended to provide a flexible set of tools that allow the application specialist to build highly customized knowledge-based applications.

  15. Optical aurora and its relationship to measurements from satellites, VHF radar and incoherent scatter radars

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1974-01-01

    Examples are given of coordinated programs in Alaska which involve satellites, radars, ground optical instrumentation, and other types of observing satellites for the study of atmospheric and magnetospheric geophysics. Programs include coincidence data acquisition, scheduled data acquisition, and planned experiments. The use of optical triangulation techniques to determine the position of the aurora in order to place the other measurements in the perspective of the overall auroral morphology is detailed.

  16. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-12-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA, the National Imagery and Mapping Agency, and the German and Italian Space Agencies. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and better than 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. Data processing will be completed by the end of 2002. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  17. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-05-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA). The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and about 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Data processing will be completed by the end of 2002. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  18. 48 CFR 907.105 - Contents of written acquisition plans.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... acquisition plans. (b)(16) Environmental and energy conservation objectives. Incorporate sustainable building considerations including building location and regional planning considerations into planning for new...

  19. Through-Wall Imaging Radar

    DTIC Science & Technology

    2012-01-01

    receiver dynamic range to be applied to the target scene behind the wall. A time-division multiplexed ( TDM ), multiple-input, multiple-output (MIMO...by the data-acquisition computer. The TDM MIMO radar system sequences through each of the 44 bistatic combinations, acquiring one range profile at...96 5. 75 5. 75 2 FiGurE 5. In this cartoon of the time-division multiplexed ( TDM ), multiple-input, multiple-output (MIMO) array lay- out [compare to

  20. Northeast Artificial Intelligence Consortium Annual Report. Volume 6. 1988 Building an Intelligent Assistant: The Acquisition, Integration, and Maintenance of Complex Distributed Tasks

    DTIC Science & Technology

    1989-10-01

    sser, W. Bruce Croft, Beverly Woolf TELECTE I APPOOVED FOR PUBLIC RELESr3; DISTRIBUTION UNL!, JITED. This effe1A was fun ed partially by the...Acquisition, Integration, and Maintenance of Complex Distributed Tasks 12. PERSONAL AUTHORS Victor R. Lesser, W. Bruce Croft, Beverly Woolf 13a. TYPE...Acquisition, Integration, and Maintenance of Complez Distributed Tasks Victor R. Lesser W. Bruce Croft Beverly Woolf Department of Computer and Information

  1. 50. View of waveguides beginning to move toward two radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. View of waveguides beginning to move toward two radar scanner switches (two per radar scanner building) by vertical bends; also tuning devices are located here. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  2. General view of Antenna Array and building complex, looking northeast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Antenna Array and building complex, looking northeast - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Antenna Array, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  3. General view of Antenna Array and building complex, looking southwest ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of Antenna Array and building complex, looking southwest - Over-the-Horizon Backscatter Radar Network, Tulelake Radar Site Receive Sector Six Antenna Array, Unnamed Road West of Double Head Road, Tulelake, Siskiyou County, CA

  4. X-Band Radar for Studies of Tropical Storms from High Altitude UAV Platform

    NASA Technical Reports Server (NTRS)

    Rodriquez, Shannon; Heymsfield, Gerald; Li, Lihua; Bradley, Damon

    2007-01-01

    modified from a marine radar transceiver. It is capable of measuring vertical reflectivity and velocity profile while being a lower-cost, smaller size, and lighter weight version of the NASA ER-2 Doppler Radar (EDOP), which has flown during many NASA field campaigns and has provided valuable scientific information on hurricanes and weather phenomena. Unfortunately, EDOP is too large and heavy for most UAV platforms, but the experience gained with this instrument provided us with the heritage to build a new low-cost, light-weight, smaller system that will be capable of flying on UAVs. The scanning subsystem uses a TWT transmitter and provides measurements of 3D reflectivity/wind fields in-clouds. Conical scanning of the radar beam at a 35 deg. incidence angle will also provide information of surface wind speed and direction derived from the surface return over a single 360 deg. sweep. URAD data system will be Linux based with the capability of autonomous operation. It will utilize cutting edge digital receiver and FPGA technologies to carry out the data acquisition and processing tasks. High speed navigation data from the aircraft will also be captured and saved along with radar data for 3D measurement field reconstruction and aircraft motion correction. There is a tremendous potential for UAVs to carry down-looking weather radars for measurements of reflectivity, horizontal and vertical winds from tropical storms. With operation from HUAV platforms, the dual beam X-band radar under development promises to provide greatly needed information for tropical storm research.

  5. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  6. 20. SITE BUILDING 002 SCANNER BUILDING IN COMPUTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. SITE BUILDING 002 - SCANNER BUILDING - IN COMPUTER ROOM LOOKING AT "CONSOLIDATED MAINTENANCE OPERATIONS CENTER" JOB AREA AND OPERATION WORK CENTER. TASKS INCLUDE RADAR MAINTENANCE, COMPUTER MAINTENANCE, CYBER COMPUTER MAINTENANCE AND RELATED ACTIVITIES. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  7. 25. SITE BUILDING 002 SCANNER BUILDING OPERATIONS CENTER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. SITE BUILDING 002 - SCANNER BUILDING - OPERATIONS CENTER - MWOC IN OPERATION AT 1930 ZULU TIME, 26 OCTOBER, 1999. MWOC SCREEN ALSO SHOWS RADAR "FACE A" AND "FACE B" ACTIVE STATUS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  8. 5. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 90MM STANDARD LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. 6. SITE BUILDING 002 SCANNER BUILDING AT "A" ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. SITE BUILDING 002 - SCANNER BUILDING - AT "A" FACE (ON SOUTH SIDE) LOOKING DIRECTLY UP RADAR SYSTEM EMITTER/ANTENNA ARRAY FACE WITH 65MM WIDE ANGLE LENS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  10. 9. SITE BUILDING 002 SCANNER BUILDING LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. SITE BUILDING 002 - SCANNER BUILDING - LOOKING AT "C" FACE RADAR SYSTEM EMITTER/ANTENNA. VIEW IS LOOKING SOUTH 30° EAST (NOTE: "C" FACE NOT IN USE AT FACILITY). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  11. 29. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) AT SYSTEM LAYOUT GRID 17. GENERAL OBLIQUE VIEW OF "A" FACE INTERIOR SHOWING RADAR EMITTER/ANTENNA INTERFACE ELECTRONICS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  12. Investigating nearby exoplanets via interstellar radar

    NASA Astrophysics Data System (ADS)

    Scheffer, Louis K.

    2014-01-01

    Interstellar radar is a potential intermediate step between passive observation of exoplanets and interstellar exploratory missions. Compared with passive observation, it has the traditional advantages of radar astronomy. It can measure surface characteristics, determine spin rates and axes, provide extremely accurate ranges, construct maps of planets, distinguish liquid from solid surfaces, find rings and moons, and penetrate clouds. It can do this even for planets close to the parent star. Compared with interstellar travel or probes, it also offers significant advantages. The technology required to build such a radar already exists, radar can return results within a human lifetime, and a single facility can investigate thousands of planetary systems. The cost, although too high for current implementation, is within the reach of Earth's economy.

  13. 61. VIEW SHOWING NORTH SIDE OF RADAR ROAD AND STORAGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    61. VIEW SHOWING NORTH SIDE OF RADAR ROAD AND STORAGE BUILDINGS Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  14. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  15. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  16. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  17. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  18. Covert situational awareness with handheld ultrawideband short-pulse radar

    NASA Astrophysics Data System (ADS)

    Barnes, Mark A.; Nag, Soumya; Payment, Tim

    2001-08-01

    Law enforcement and emergency services all face the difficult task of determining the locations of people within a building. A handheld radar able to detect motion through walls and other obstructions has been developed to fill this need. This paper describes the attributes and difficulties of the radar design and includes test results of the radar's performance. This discussion begins by summarizing key user requirements and the electromagnetic losses of typical building materials. Ultra-wideband (UWB) short pulse radars are well suited for a handheld sensor primarily because of their inherit time isolation in high clutter environments and their capability to achieve high resolution at low spectral center frequencies. There are also constraints that complicate the system design. Using a technique referred to as time-modulation allows the radars to reject range ambiguities and enhances electromagnetic compatibility with similar radars and ambient systems. An outline of the specifications of the radar developed and a process diagram on how it generates a motion map showing range and direction of the people moving within structures is included. Images are then presented to illustrate its performance. The images include adults, child, and a dog. The test results also include data showing the radar's performance through a variety of building materials.

  19. Geoarchaeological research of the mid-age Ilyas Bey complex buildings with ground penetrating radar in Miletus, Aydin, Western Anatolia, Turkey

    NASA Astrophysics Data System (ADS)

    Kadioğlu, S.; Kadioğlu, Y. K.; Akyol, A. A.

    2008-07-01

    The ancient Miletus which were one of the most important city of ancient Iona, are today of great value from cultural standpoint of Turkey. Miletus, situated near the village of Balat in the present district of Soke was founded on a peninsula, approximately 2.5 km long. In the Byzantine period, the city boundaries were quite reduced. In 1424 Miletus was taken inside of the Ottoman Empire and was completely abandoned in the 17th century. Ancient Miletus excavation studies were first begun in 1899 by in Berlin Museum and interrupted during the World War I. At present, the extensive restoration works in Ilyas Bey Complex has applied as a project since 2006. Ilyas Bey Complex that includes Mosque, Medresah and baths situated on the archaeological area in ancient Miletus. Impressive Mosque built in 1404 by Ilyas Bey, Emir of Menteseogullari founded in 1279 and the complex was named after him, is one of the most remarkable buildings of mid-age Miletus. There are two main purposes of the study are (1) to determine archaeological remains of the study area underneath Ilyas Bey Complex and (2) to define the nature of main rock unit and their sources in the vicinity or Aegean region. After preliminary archaeometrical studies, acquired GPR profile data paralleled each other in Ilyas Bey Mosque and its around, Medresah Courtyard and inner Courtyard of the Mosque. After processing 2D parallel GPR profiles, we constructed 3D data volume by lining processed 2D profiles up to correlate remain signatures from each profile for each studied area. It was obtained transparent 3D visualisation of GPR data by assigning a new colour scale for the amplitude range and by constructing a new opacity function instead of the linear opacity function. Therefore we could successfully image the archaeological remains in an interactive transparent 3D volume and its sub-volumes, starting at different depth levels or limited profiles. The archaeometrical (geological and mineralogical, petrographical

  20. 30. SITE BUILDING 002 SCANNER BUILDING FLOOR 3A ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. SITE BUILDING 002 - SCANNER BUILDING - FLOOR 3A ("A" FACE) INTERIOR BETWEEN GRIDS 17-A1 AND 18-A1, SHOWING REAR OF RADAR EMITTER ELECTRONIC INTERFACE TERMINAL NO. 3147-20, "RECEIVER TRANSMITTER RADAR" MODULE. VIEW IS ALSO SHOWING BUILDING FIRE STOP MATERIAL AT BOTTOM OF FLOOR. NOTE: WALL SLOPES BOTTOM TO TOP INWARD; STRUCTURAL ELEMENT IN FOREGROUND. VIEW ALSO SHOWS PIPING GRID OF CHILLED WATER LINES FOR ELECTRONIC SYSTEMS COOLING. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  1. The TerraSAR-X/TanDEM-X Formation Acquisition-from Planning to Realization

    NASA Astrophysics Data System (ADS)

    Kahle, Ralph; Schlepp, Benjamin; Meissner, Florian; Kirschner, Michael; Kiehling, Reinhard

    2012-09-01

    On June 21, 2010 the TanDEM-X satellite (TDX) was injected into orbit at 15,700 km distance from its twin satellite TerraSAR-X (TSX), which has been in orbit since 2007. Already one month later TDX acquired a formation with TSX in order to build up the first single-pass radar interferometer in space. Within three years of close formation flying with flexible baselines ranging from 150 m to a few kilometers the twin satellites will collect interferometric radar measurements for the generation of a global digital elevation model with unprecedented accuracy. This paper elaborates on the TDX pre-launch analysis performed in the fields of collision assessment during orbit injection and target formation acquisition. To avoid a critical close approach shortly after TDX separation, the risk of collision between the already flying TSX satellite and the newly injected elements (DNEPR upper-stage, gas dynamic shield, and TDX satellite) had to be carefully analyzed. Further, the paper discusses a fuel-saving formation acquisition strategy, for which the maneuver budget is analyzed as a function of launch day and launch injection accuracy. Finally, flight results are presented to illustrate the successful formation acquisition realized in July 2010 and the formation reconfiguration process from the 20 km wide formation into the 300-400 m close formation performed in October 2010. This reconfiguration marked the start of the bi-static TDX/TSX instrument operation.

  2. Shuttle Imaging Radar-A (SIR-A) experiment

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Editor); Cimino, J. B. (Editor)

    1982-01-01

    The SIR-A experiment was conducted in order to acquire radar data over a variety of regions to further understanding of the radar signatures of various geologic features. The capability of the Shuttle as a scientific platform for observation of the Earth's resources was assessed. The SIR-A sensor operated nominally and the full data acquisition capacity of the optical recorder was used.

  3. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  4. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  5. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  6. Ku-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Magnusson, H. G.; Goff, M. F.

    1984-01-01

    All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.

  7. Integrated multi-domain radar demonstration

    NASA Astrophysics Data System (ADS)

    Shilepsky, Carol C.; Bucknell, Mary; Taylor, Rick

    1991-12-01

    The objective of the IMRD program is to apply artificial intelligence techniques to the adaptive control of a state-of-the-art radar environment. The radar operates in the C-Band and is located within the Rome Laboratory Surveillance Facility (RLSF), Building 106, Griffiss Air Force Base (GAFB). The artificial intelligence is embedded in an adaptive control expert system which is written in Prolog. This system identifies sources of interference in each antenna beam position of the surveillance region and responds with the appropriate adaptive controls to maximize the probability of target detection consistent with operator-specified tactical objectives. In addition, the system has the following features: (1) radar inputs provided by a real, as opposed to a simulated, radar; (2) real-time operation with one scan response time of ten seconds or less; (3) modular design for rulebase and system evolution; (4) extensive parameterization for different radar configurations and operational specifications; and (5) control of a large number of radar parameters. The report includes IMRD organization, parameterization options for configuring it to different environments, the expert system software development, and results.

  8. Detail view of northwest side of Signal Corps Radar (S.C.R.) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of northwest side of Signal Corps Radar (S.C.R.) 296 Station 5 Transmitter Building foundation, showing portion of concrete gutter drainage system and asphalt floor tiles, camera facing north - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  9. Soviet Weapon-System Acquisition

    DTIC Science & Technology

    1991-09-01

    available in theIWest, provides the central coordination and policy guidance for Soviet weapons acquisition and oversees all military-related research...Machine Building Nuclear weapons and high- (MISREDMASH), (MSM) energy lasers i Ministry of Ship Building Naval vessels and naval (MINSUDPROM), (MSP) weapons...MINRADPROM), (MRP) equipment, guidance -and- control systems, navigation 3 equipment, and military computers Ministry of Communications

  10. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  11. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    NASA Astrophysics Data System (ADS)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported in space communications, radio navigation, radio science, and ground-based radio and radar astronomy.

  14. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. Urban area navigation using active millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Corken, Richard A.; Evans, Michael A.

    2002-08-01

    An active MilliMeter Wave (MMW) system exploiting forward squinting Synthetic Aperture Radar (SAR) techniques can provide high resolution imagery. Such a radar offers a compact, all weather, day/night solution to the problem of accurate airborne navigation. Interpreting radar imagery of very cluttered urban areas is challenging, thus complicating autonomous navigation within such areas. For example, imagery is subject to effects such as layover distortions due to the height of buildings and also considerable radar shadowing. In this paper we examine the use of synthetic imagery to capture the key elements of the radar imagery. The MMW imagery can then be related to the physical models from which the synthetic imagery is generated leading to improved scene understanding. This paper describes the modeling process adopted and compares real imagery from a 35GHz forward squinting SAR radar with the synthetically generated imagery. The modeling process includes provision for terrain undulation, man-made and natural clutter regions and the ability to generate a sequence of imagery from a specified flight path. Examples presented include a representative urban area containing a variety of building structures. An important part of this research is the required fidelity of the synthetic scene model and therefore investigations into the level of detail required are also presented. Further work aims to exploit the synthetic imagery for navigational purposes through registration with the actual radar image thereby automatically locating key building structures with the imagery.

  16. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  17. Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.

    1982-01-01

    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.

  18. Probabilistic forecasts based on radar rainfall uncertainty

    NASA Astrophysics Data System (ADS)

    Liguori, S.; Rico-Ramirez, M. A.

    2012-04-01

    The potential advantages resulting from integrating weather radar rainfall estimates in hydro-meteorological forecasting systems is limited by the inherent uncertainty affecting radar rainfall measurements, which is due to various sources of error [1-3]. The improvement of quality control and correction techniques is recognized to play a role for the future improvement of radar-based flow predictions. However, the knowledge of the uncertainty affecting radar rainfall data can also be effectively used to build a hydro-meteorological forecasting system in a probabilistic framework. This work discusses the results of the implementation of a novel probabilistic forecasting system developed to improve ensemble predictions over a small urban area located in the North of England. An ensemble of radar rainfall fields can be determined as the sum of a deterministic component and a perturbation field, the latter being informed by the knowledge of the spatial-temporal characteristics of the radar error assessed with reference to rain-gauges measurements. This approach is similar to the REAL system [4] developed for use in the Southern-Alps. The radar uncertainty estimate can then be propagated with a nowcasting model, used to extrapolate an ensemble of radar rainfall forecasts, which can ultimately drive hydrological ensemble predictions. A radar ensemble generator has been calibrated using radar rainfall data made available from the UK Met Office after applying post-processing and corrections algorithms [5-6]. One hour rainfall accumulations from 235 rain gauges recorded for the year 2007 have provided the reference to determine the radar error. Statistics describing the spatial characteristics of the error (i.e. mean and covariance) have been computed off-line at gauges location, along with the parameters describing the error temporal correlation. A system has then been set up to impose the space-time error properties to stochastic perturbations, generated in real-time at

  19. The Status of Functional Categories in Child Second Language Acquisition: Evidence from the Acquisition of CP.

    ERIC Educational Resources Information Center

    Haznedar, Belma

    2003-01-01

    Examines the status of the functional categories in child second language (L2) acquisition of English. Results from longitudinally-collected data are reported, presenting counterevidence for recent hypotheses on early L2 acquisition that assume the following: (1) structure building approach according to which the acquisition of functional…

  20. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  1. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  2. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  3. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  4. Polarization Radar Processing Technology

    DTIC Science & Technology

    1989-10-01

    Oi"C FILE ( J qII RADC-TR-89-144 In-House Report October 1989 AD-A215 242 POLARIZATION RADAR PROCESSING TECHNOLOGY Kenneth C. Stiefvater, Russell D...NO. NO. NO. ACCESSION NO. 62702F 4506 11 58 11. TITLE (Include Security Classification) POLARIZATION RADAR PROCESSING TECHNOLOGY 12. PERSONAL AUTHOR(S

  5. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  6. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  7. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  8. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  9. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  10. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  11. View of the PAVE PAWS radar from approach along Spencer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from approach along Spencer Paul Road, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. View of the PAVE PAWS radar from main base, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from main base, looking east - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. View of the PAVE PAWS radar from main base, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from main base, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. 52. View from ground level showing lower radar scanner switch ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. View from ground level showing lower radar scanner switch with open port door in radar scanner building 105 showing emanating waveguides from lower switch in vertical run; photograph also shows catwalk to upper scanner switch in upper left side of photograph and structural supports. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  15. New distributed radar technology based on UAV or UGV application

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.; Contarino, Vincent M.

    2013-05-01

    Regular micro and nano radars cannot provide reliable tracking of low altitude low profile aerial targets in urban and mountain areas because of reflection and re-reflections from buildings and terrain. They become visible and vulnerable to guided missiles if positioned on a tower or blimp. Doppler radar cannot distinguish moving cars and small low altitude aerial targets in an urban area. A new concept of pocket size distributed radar technology based on the application of UAV (Unmanned Air Vehicles), UGV (Unmanned Ground Vehicles) is proposed for tracking of low altitude low profile aerial targets at short and medium distances for protection of stadium, camp, military facility in urban or mountain areas.

  16. Three-dimensional radar imaging techniques and systems for near-field applications

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  17. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  18. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    PubMed

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  19. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  20. Radar Technology Development at NASA/JPL

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2011-01-01

    Radar at JPL and worldwide is enjoying a period of unprecedented development. JPL's science-driven program focuses on exploiting commercially available components to build new technologies to meet NASA's science goals. Investments in onboard-processing, advanced digital systems, and efficient high-power devices, point to a new generation of high-performance scientific SAR systems in the US. Partnerships are a key strategy for US missions in the coming decade

  1. D Modelling the Invisible Using Ground Penetrating Radar

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Lampropoulos, K.; Georgopoulos, A.; Moropoulou, A.

    2017-02-01

    An interdisciplinary team from the National Technical University of Athens is performing the restoration of the Holy Aedicule, which covers the Tomb of Christ within the Church of the Holy Sepulchre in Jerusalem. The first important task was to geometrically document the monument for the production of the necessary base material on which the structural and material prospection studies would be based. One task of this action was to assess the structural behavior of this edifice in order to support subsequent works. It was imperative that the internal composition of the construction be documented as reliably as possible. To this end several data acquisition techniques were employed, among them ground penetrating radar. Interpretation of these measurements revealed the position of the rock, remnants of the initial cave of the burial of Christ. This paper reports on the methodology employed to construct the 3D model of the rock and introduce it into the 3D model of the whole building, thus enhancing the information about the structure. The conversion of the radargrams to horizontal sections of the rock is explained and the construction of the 3D model and its insertion into the 3D model of the Holy Aedicule is described.

  2. Spaceborne meteorological radar studies

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1988-01-01

    Various radar designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne radar that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather radars. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength radar/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather radars. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular radar design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM radar designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.

  3. Evaluation of radar imagery for geological and cartographic applications

    USGS Publications Warehouse

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    The House/Senate conference report on H.R. 4930 (96th Congress), the Department of the Interior and Related Agencies Appropriations bill, 1980, stated that the U.S. Geological Survey should "begin the use of side-looking airborne radar imagery for topographic and geological mapping, and geological resource surveys in promising areas, particularly Alaska." In response to this mandate, the Survey acquired radar data and began scientific studies to analyze and interpret these data. About 70 percent of the project funding was used to acquire radar imagery and to evaluate Alaskan applications. Results of these studies indicate that radar images have a unique incremental value for certain geologic and cartographic applications but that the images are best suited for use as supplemental information sources or as primary data sources in areas of persistent cloud cover.The value of radar data is greatest for geologic mapping and resource surveys, particularly for mineral and petroleum exploration, where the objective is to locate any single feature or group of features that may control the occurrences of these resources. Radar images are considered by oil and gas companies to be worth the cost of data acquisition within a limited area of active exploration.Radar images also have incremental value for geologic site studies and hazard mapping. The need in these cases is TO inventory all geologic hazards to human life, property, resources, and the environment. For other geologic applications, radar images have a relatively small incremental value over a combination of Landsat images and aerial photographs.The value of radar images for cartographic applications is minimal, except when they are used as a substitute for aerial photographs and topographic maps in persistently cloud-covered areas. If conventional data sources are not available, radar images provide useful information on terrain relief, landforms, drainage patterns, and land cover. Screen less lithography is a low

  4. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  6. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  7. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  8. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  9. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-11-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  10. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  11. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    through-foliage target detection using UWB radar sensor network based on real-world data; 2. Foliage clutter modeling using UWB radars; 3. Outdoor UWB...channel modeling based on field data; 4. Multi-target detection using radar sensor networks (theoretical studies); 5. SVD-QR and graph theory for MIMO...Superimposed code based channel assignment in multi-radio multi-channel wireless mesh networks. 15. SUBJECT TERMS Radar Sensor Network, UWB Radar, Sense

  12. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  13. Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topography adjacent to Signal Corps Radar (S.C.R.) 296 Station 5, showing conditions before construction, May 28, 1943, this drawing shows the Bonita Ridge access road retaining wall and general conditions at Bonita Ridge before the construction of Signal Corps Radar (S.C.R.) 296 Station 5 - Fort Barry, Signal Corps Radar 296, Station 5, Transmitter Building Foundation, Point Bonita, Marin Headlands, Sausalito, Marin County, CA

  14. Space Radar Image of Boston, Massachusetts

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image of the area surrounding Boston, Mass., shows how a spaceborne radar system distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. The bright white area at the right center of the image is downtown Boston. The wide river below and to the left of the city is the Charles River in Boston's Back Bay neighborhood. The dark green patch to the right of the Back Bay is Boston Common. A bridge across the north end of Back Bay connects the cities of Boston and Cambridge. The light green areas that dominate most of the image are the suburban communities surrounding Boston. The many ponds that dot the region appear as dark irregular spots. Many densely populated urban areas show up as red in the image due to the alignment of streets and buildings to the incoming radar beam. North is toward the upper left. The image was acquired on October 9, 1994, by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) as it flew aboard the space shuttle Endeavour. This area is centered at 42.4 degrees north latitude, 71.2 degrees west longitude. The area shown is approximately 37 km by 18 km (23 miles by 11 miles). Colors are assigned to different radar frequencies and polarizations as follows: red is L-band horizontally transmitted, horizontally received; green is L-band horizontally transmitted, vertically received; blue is C-band horizontally transmitted, vertically received. SIR-C/X-SAR, a cooperative mission of the German, Italian and United States space agencies, is part of NASA's Mission to Planet Earth program.

  15. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  16. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  17. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  18. Radar Cross Section Measurements

    DTIC Science & Technology

    1986-09-30

    Radar 54 17. Measured Range Sidelobe Performance of Chirp Radar 56 18. Range and Cross Range Image of Target Dror.’ŕ Vehicle 57 19. Incoherent rms...the measured range resolution, 4.9 in, closely agrees with the theoretical performance for this weighting. The measured range sidelobe performance...Interval 4.89in. 2% kHz 300 kHz 310 kHz (b) Expanded Scale + 5 ft from Target Figure 17. Measured Range Sidelobe Performance of

  19. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  20. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  1. Airborne MIMO GMTI Radar

    DTIC Science & Technology

    2011-03-31

    applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. Conventional phased array radars form a single coherent transmit beam and...intentionally left blank. 1. INTRODUCTION Conventional phased - array radars form a single coherent transmit beam and measure the backscattered response... steering vector for a SI MO array with nr"/? receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. The waveforms

  2. Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, looking southeast, Satellite Communications Terminal Building (Building 5771) to left, Gate House (Building 5764) to right of center - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  3. Intercontinental Bistatic Radar Test Observation of Asteroid 1998 WT24

    NASA Technical Reports Server (NTRS)

    Righini, S.; Poppi, S.; Montebugnoli, S.; DiMartino, M.; Saba, L.; Delbo, M.; Ostro, S.; Monari, J.; Poloni, M.; Orlati, A.

    2002-01-01

    We describe the first intercontinental planetary radar test performed in Italy observing the near Earth asteroid (NEA) 33342 (1998 WT24) in December 2001 by means of the bistatic configurations Goldstone (California, USA)-Medicina (Italy) and Evpatoria (Ukraine)-Medicina. The experiment goal was to characterize the system for realtime radar follow-up observations of NEAs and artificial orbiting debris, in the framework of a feasibility study which aims at using the Sardinia Radio Telescope, at present under construction, also as a planetary radar facility. We report the preliminary results of the radar observations carried out by the IRA-CNR (Instituto di Radioastronomia - Consiglio Nazionale delle Ricerche) and the OATo (Osservatorio Astronomico di Torino) groups, aimed at exploring the scientific potentials of a new space radar program, using the existing facilities in Italy. The planetary radar technique is uniquely capable of investigating geometry and surface properties of various solar system objects, demonstrating advantages over the optical methods in its high spatial resolution and ability to obtain three-dimensional images. A single radar detection allows to obtain extremely accurate orbital elements, improving the instantaneous positional uncertainties by orders of magnitude with respect to an optically determined orbit. Radar is a powerful means to spatially resolve NEAs by measuring the distribution of the echo power in time delay (range) and Doppler frequency (line-of-sight velocity) with extreme precision in each coordinate, as it provides detailed information about the target physical properties like size, shape, rotation, near-surface bulk density and roughness and internal density distribution. The Medicina 32m antenna had been successfully used for the first time as the receiving part of a bistatic configuration during a test experiment (September 2001) held to check the capabilities of the entire data acquisition system. This test was possible

  4. Digital Elevation Models of Greenland based on combined radar and laser altimetry as well as high-resolution stereoscopic imagery

    NASA Astrophysics Data System (ADS)

    Levinsen, J. F.; Smith, B. E.; Sandberg Sorensen, L.; Khvorostovsky, K.; Simonsen, S. B.; Forsberg, R.

    2015-12-01

    A number of Digital Elevation Models (DEMs) of Greenland exist, each of which are applicable for different purposes. This study presents two such DEMs: One developed by merging contemporary radar and laser altimeter data, and one derived from high-resolution stereoscopic imagery. All products are made freely available. The former DEM covers the entire Greenland. It is specific to the year 2010, providing it with an advantage over previous models suffering from either a reduced spatial/ temporal data coverage or errors from surface elevation changes (SEC) occurring during data acquisition. Radar data are acquired with Envisat and CryoSat-2, and laser data with the Ice, Cloud, and land Elevation Satellite, the Land, Vegetation, and Ice Sensor, and the Airborne Topographic Mapper. Correcting radar data for errors from slope effects and surface penetration of the echoes, and merging these with laser data, yields a DEM capable of resolving both surface depressions as well as topographic features at higher altitudes. The spatial resolution is 2 x 2 km, making the DEM ideal for application in surface mass balance studies, SEC detection from radar altimetry, or for correcting such data for slope-induced errors. The other DEM is developed in a pilot study building the expertise to map all ice-free parts of Greenland. The work combines WorldView-2 and -3 as well as GeoEye1 imagery from 2014 and 2015 over the Disko, Narsaq, Tassilaq, and Zackenberg regions. The novelty of the work is the determination of the product specifications after elaborate discussions with interested parties from government institutions, the tourist industry, etc. Thus, a 10 m DEM, 1.5 m orthophotos, and vector maps are produced. This opens to the possibility of using orthophotos with up-to-date contour lines or for deriving updated coastlines to aid, e.g., emergency management. This allows for a product development directly in line with the needs of parties with specific interests in Greenland.

  5. Effective GPR Data Acquisition and Imaging

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    We have demonstrated that dense GPR data acquisition typically antenna step increment less than 1/10 wave length can provide clear 3-dimeantiona subsurface images, and we created 3DGPR images. Now we are interested in developing GPR survey methodologies which required less data acquisition time. In order to speed up the data acquisition, we are studying efficient antenna positioning for GPR survey and 3-D imaging algorithm. For example, we have developed a dual sensor "ALIS", which combines GPR with metal detector (Electromagnetic Induction sensor) for humanitarian demining, which acquires GPR data by hand scanning. ALIS is a pulse radar system, which has a frequency range 0.5-3GHz.The sensor position tracking system has accuracy about a few cm, and the data spacing is typically more than a few cm, but it can visualize the mines, which has a diameter about 8cm. 2 systems of ALIS have been deployed by Cambodian Mine Action Center (CMAC) in mine fields in Cambodia since 2009 and have detected more than 80 buried land mines. We are now developing signal processing for an array type GPR "Yakumo". Yakumo is a SFCW radar system which is a multi-static radar, consisted of 8 transmitter antennas and 8 receiver antennas. We have demonstrated that the multi-static data acquisition is not only effective in data acquisition, but at the same time, it can increase the quality of GPR images. Archaeological survey by Yakumo in large areas, which are more than 100m by 100m have been conducted, for promoting recovery from Tsunami attacked East Japan in March 2011. With a conventional GPR system, we are developing an interpolation method of radar signals, and demonstrated that it can increase the quality of the radar images, without increasing the data acquisition points. When we acquire one dimensional GPR profile along a survey line, we can acquire relatively high density data sets. However, when we need to relocate the data sets along a "virtual" survey line, for example a

  6. Scalable Deployment of Advanced Building Energy Management Systems

    DTIC Science & Technology

    2013-06-01

    Building Automation and Control Network BDAS Building Data Acquisition System BEM building energy model BIM building information modeling BMS...A prototype toolkit to seamlessly and automatically transfer a Building Information Model ( BIM ) to a Building Energy Model (BEM) has been...circumvent the need to manually construct and maintain a detailed building energy simulation model . This detailed

  7. Can Compressed Sensing Be Applied To Dual-Polarimetric Weather Radars?

    NASA Astrophysics Data System (ADS)

    Mishra, K.; Kruger, A.; Krajewski, W. F.

    2013-12-01

    The recovery of sparsely-sampled signals has long attracted considerable research interest in various fields such as reflection seismology, microscopy, and astronomy. Recently, such recovery techniques have been formalized as a sampling method called compressed sensing (CS) which uses few linear and non-adaptive measurements to reconstruct a signal that is sparse in a known domain. Many radar and remote sensing applications require efficient and rapid data acquisition. CS techniques have, therefore, enormous potential in dramatically changing the way the radar samples and processes data. A number of recent studies have investigated CS for radar applications with emphasis on point target radars, and synthetic aperture radar (SAR) imaging. CS radar holds the promise of compressing-while-sampling, and may yield simpler receiver hardware which uses low-rate ADCs and eliminates pulse compression/matched filter. The need of fewer measurements also implies that a CS radar may need smaller dwell times without significant loss of information. Finally, CS radar data could be used for improving the quality of low-resolution radar observations. In this study, we explore the feasibility of using CS for dual-polarimetric weather radars. In order to recover a signal in CS framework, two conditions must be satisfied: sparsity and incoherence. The sparsity of weather radar measurements can be modeled in several domains such as time, frequency, joint time-frequency domain, or polarimetric measurement domains. The condition of incoherence relates to the measurement process which, in a radar scenario, would imply designing an incoherent transmit waveform or an equivalent scanning strategy with an existing waveform. In this study, we formulate a sparse signal model for precipitation targets as observed by a polarimetric weather radar. The applicability of CS for such a signal model is then examined through simulations of incoherent measurements along with real weather data obtained

  8. 1. Northeast face of missile site control building, commonly known ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Northeast face of missile site control building, commonly known as the missile site radar building, showing open blast door #BD2. This emergency escape, at stair no. 12, is NEMP/RFI-shielded and 16" thick. The large circle in the center is the radar face, also known as the antennae array aperture. The small circle to the right of the radar face is the "Q" channel. The antennae atop the turret provided lightning protection for the building - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND

  9. Mergers + acquisitions.

    PubMed

    Hoppszallern, Suzanna

    2002-05-01

    The hospital sector in 2001 led the health care field in mergers and acquisitions. Most deals involved a network augmenting its presence within a specific region or in a market adjacent to its primary service area. Analysts expect M&A activity to increase in 2002.

  10. Acquisition strategies

    SciTech Connect

    Zimmer, M.J.; Lynch, P.W. )

    1993-11-01

    Acquiring projects takes careful planning, research and consideration. Picking the right opportunities and avoiding the pitfalls will lead to a more valuable portfolio. This article describes the steps to take in evaluating an acquisition and what items need to be considered in an evaluation.

  11. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This radar image shows the massive urbanization of Los Angeles, California. The image extends from the Santa Monica Bay at the left to the San Gabriel Mountains at the right. Downtown Los Angeles is in the center of the image. The runways of the Los Angeles International Airport appear as black strips at the left center of the image. The waterways of Marina del Rey are seen just above the airport. The San Gabriel Mountains and the city of Pasadena are at the right center of the image. Black areas on the mountains on the right are fire scars from the 1993 Altadena fire. The Rose Bowl is shown as a small circle near the right center. The complex freeway system is visible as dark lines throughout the image. Some city areas, such as Santa Monica in the upper left, appear red due to the alignment of streets and buildings to the incoming radar beam. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth. This image is centered at 34.04 degrees North latitude and 118.2 degrees West longitude with North pointing toward the upper right. The area shown measures 40 kilometers by 50 kilometers (25 miles by 31 miles).

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publiction provides archival reports on developments in programs managed by JPL Telecommunications and Mission Operations Directorate (TMOD), which now includes the former communications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The Orbital Debris Radar Program, funded by the Office of Space Systems Development, makes use of the planetary radar capability when the antennas are configured at science instruments making direct observations of planets, their satellites, and asteroids of our solar system.

  14. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of San Francisco, California, taken on October 3,1994. The image is about 40 kilometers by 55 kilometers (25 miles by 34 miles) with north toward the upper right. Downtown San Francisco is visible in the center of the image with the city of Oakland east (to the right) across San Francisco Bay. Also visible in the image is the Golden Gate Bridge (left center) and the Bay Bridge connecting San Francisco and Oakland. North of the Bay Bridge is Treasure Island. Alcatraz Island appears as a small dot northwest of Treasure Island. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on orbit 56. The image is centered at 37 degrees north latitude, 122degrees west longitude. This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do other smooth surfaces such as airport runways. Suburban areas, with the low-density housing and tree-lined streets that are typical of San Francisco, appear as lighter gray. Areas with high-rise buildings, such as those seen in the downtown areas, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight conditions. SIR-C/X-SAR uses three microwave wavelengths: the L-band (24 cm), C-band (6 cm) and X-band (3cm). The multi-frequency data will be used by the international scientific community to better understand the global environment and how it is changing. The SIR-C/X-SAR data, complemented by aircraft and ground studies, will give scientists clearer insights into those environmental changes

  15. User guide to the Magellan synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.; Mcconnell, Shannon L.; Leff, Craig E.; Austin, Richard S.; Beratan, Kathi K.; Rokey, Mark J.

    1995-01-01

    The Magellan radar-mapping mission collected a large amount of science and engineering data. Now available to the general scientific community, this data set can be overwhelming to someone who is unfamiliar with the mission. This user guide outlines the mission operations and data set so that someone working with the data can understand the mapping and data-processing techniques used in the mission. Radar-mapping parameters as well as data acquisition issues are discussed. In addition, this user guide provides information on how the data set is organized and where specific elements of the set can be located.

  16. HYPERCP data acquisition system

    SciTech Connect

    Kaplan, D.M.; Luebke, W.R.; Chakravorty, A.

    1997-12-31

    For the HyperCP experiment at Fermilab, we have assembled a data acquisition system that records on up to 45 Exabyte 8505 tape drives in parallel at up to 17 MB/s. During the beam spill, data axe acquired from the front-end digitization systems at {approx} 60 MB/s via five parallel data paths. The front-end systems achieve typical readout deadtime of {approx} 1 {mu}s per event, allowing operation at 75-kHz trigger rate with {approx_lt}30% deadtime. Event building and tapewriting are handled by 15 Motorola MVME167 processors in 5 VME crates.

  17. 66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  18. Ground settlement monitoring from temporarily persistent scatterers between two SAR acquisitions

    USGS Publications Warehouse

    Lei, Z.; Xiaoli, D.; Guangcai, F.; Zhong, L.

    2009-01-01

    We present an improved differential interferometric synthetic aperture radar (DInSAR) analysis method that measures motions of scatterers whose phases are stable between two SAR acquisitions. Such scatterers are referred to as temporarily persistent scatterers (TPS) for simplicity. Unlike the persistent scatterer InSAR (PS-InSAR) method that relies on a time-series of interferograms, the new algorithm needs only one interferogram. TPS are identified based on pixel offsets between two SAR images, and are specially coregistered based on their estimated offsets instead of a global polynomial for the whole image. Phase unwrapping is carried out based on an algorithm for sparse data points. The method is successfully applied to measure the settlement in the Hong Kong Airport area. The buildings surrounded by vegetation were successfully selected as TPS and the tiny deformation signal over the area was detected. ??2009 IEEE.

  19. Informational Analysis for Compressive Sampling in Radar Imaging

    PubMed Central

    Zhang, Jingxiong; Yang, Ke

    2015-01-01

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation. PMID:25811226

  20. Applications of radar imagery to arctic and subarctic problems

    NASA Technical Reports Server (NTRS)

    Cannon, P. J.

    1980-01-01

    Radar imagery provides year around data acquisition of areas in the Arctic and the Subarctic. The foremost factor influencing the choice of radar imagery as the major data source was the demand for neotric data. The weather is so adverse in parts of Alaska that radar imagery was the only remote sensing technique which could meet the demand. The major map products derived from radar imagery are landform maps and lineament maps. These maps are used to make environmental assessments of areas and to reconstruct the geomorphic history of certain regions or features. Since radar imagery provides information about geologic structure and geomorphic features, it can be used to determine the relationship which exists between geologic structure and geomorphology. Important geologic information related to surface roughness can be obtained through a dry snow cover. Radar imagery is the only remote sensing technique which can provide information needed about sea ice through a cloud cover and dry snow, during strong wind conditions, and throughout the Arctic night.

  1. 18. RADAR BED/SLAB AND ROOF OPENING FOR BEAM, WITH MIRROR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. RADAR BED/SLAB AND ROOF OPENING FOR BEAM, WITH MIRROR ABOVE, ROOM 3001, PENTHOUSE. - Hughes Aircraft Company, Assembly & Manufacturing Building, 6775 Centinela Avenue, Los Angeles, Los Angeles County, CA

  2. Oblique view to south OvertheHorizon Backscatter Radar Network, Mountain ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oblique view to south - Over-the-Horizon Backscatter Radar Network, Mountain Home Air Force Operations Building, On Desert Street at 9th Avenue Mountain Home Air Force Base, Mountain Home, Elmore County, ID

  3. 7. CLOSEUP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  4. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    2007-10-01

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  5. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  6. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  7. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  8. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  10. Coordinated Radar Resource Management for Networked Phased Array Radars

    DTIC Science & Technology

    2014-12-01

    Research and Development Canada Ottawa, Canada K1A 0Z4 Email: Peter.Moo@drdc-rddc.gc.ca Abstract A phased array radar has the ability to rapidly and...search and Development Canada (DRDC) Ottawa to analyse the performance of radar resource management techniques for naval radars operating in a littoral

  11. Radar image San Francisco Bay Area, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The San Francisco Bay Area in California and its surroundings are shown in this radar image from the Shuttle Radar Topography Mission (SRTM). On this image, smooth areas, such as the bay, lakes, roads and airport runways appear dark, while areas with buildings and trees appear bright. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market district in San Francisco, appear bright due to the alignment of streets and buildings with respect to the incoming radar beam. Three of the bridges spanning the Bay are seen in this image. The Bay Bridge is in the center and extends from the city of San Francisco to Yerba Buena and Treasure Islands, and from there to Oakland. The Golden Gate Bridge is to the left and extends from San Francisco to Sausalito. The Richmond-San Rafael Bridge is in the upper right and extends from San Rafael to Richmond. Angel Island is the large island east of the Golden Gate Bridge, and lies north of the much smaller Alcatraz Island. The Alameda Naval Air Station is seen just below the Bay Bridge at the center of the image. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen on the left side of the image. The fault trace is the straight feature filled with linear reservoirs, which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east.

    This radar image was acquired by just one of SRTM's two antennas and, consequently, does not show topographic data, but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover and urbanization. The overall faint striping pattern in the images is a data processing artifact due to the

  12. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  13. Coherent IR radar technology

    NASA Astrophysics Data System (ADS)

    Gschwendtner, A. B.; Harney, R. C.; Hull, R. J.

    Recent progress in the development of coherent IR radar equipment is reviewed, focusing on the Firepond laser radar installation and the more compact systems derived for it. The design and capabilities of Firepond as a long-range satellite-tracking device are outlined. The technological improvements necessary to make laser radar mobile are discussed: a lightweight, stable 5-10-W transmitter laser for both CW and pulsed operation, a 12-element HgCdTe detector array, an eccentric-pupil Ritchey-Chretien telescope, and a combination of near-field phase modification and anamorphic expansion to produce a fan beam of relatively uniform intensity. Sample images obtained with a prototype system are shown, and the applicability of the mobile system to range-resolved coherent DIAL measurement is found to be similar to that of a baseline DIAL system.

  14. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  15. Improved ground-penetrating radar, bridge decks

    SciTech Connect

    Warhus, J.P.; Mast, J.E.; Johansson, E.M.; Nelson, S.D.

    1993-11-29

    Inspection of high-value structures, like bridges and buildings, using Ground Penetrating Radar (GPR) is an application of a technology that is growing in importance. In a typical inspection application, inspectors use GPR to locate structural components, like embedded reinforcing bars, to avoid weakening the structure while collecting core samples for detailed inspection. Advanced GPR, integrated with imaging technologies for use as an NDE tool, can provide the capability to quickly locate and characterize construction flaws and wear- or age-induced damage in these structures without resorting to destructive methods. In this paper, we discuss an important inspection application, namely, concrete bridge deck inspection. We describe an advanced bridge deck inspection system concept (Ground Penetrating Imaging Radar, GPIR) and present results from experiments designed to simulate the concept.

  16. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  17. SSC/BCD data acquisition system proposal

    SciTech Connect

    Barsotti, E.; Bowden, M.; Swoboda, C.

    1989-04-01

    The proposed new data acquisition system architecture takes event fragments off a detector over fiber optics and to a parallel event building switch. The parallel event building switch concept, taken from the telephone communications industry, along with expected technology improvements in fiber-optic data transmission speeds over the next few years, should allow data acquisition system rates to increase dramatically and exceed those rates needed for the SSC. This report briefly describes the switch architecture and fiber optics for a SSC data acquisition system.

  18. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  19. Space Radar Image of Sacramento, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a spaceborne radar image of the city of Sacramento, the capital of California. Urban areas appear pink and the surrounding agricultural areas are green and blue. The Sacramento River is the curving dark line running from the left side of the image (northwest) to the bottom right. The American River is the dark curving line in the center. Sacramento is built at the junction of these two rivers and the state Capitol building is in the bright pink-white area southeast of the junction. The straighter dark line (lower center) is the Sacramento River Deep Water Ship Channel which allows ship access from San Francisco. The black areas in the center are the runways of the Sacramento Executive airport. The city of Davis, California is seen as a pink area in lower left. This image was acquired by Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) onboard the space shuttle Endeavour on October 2, 1994. The image is 27.0 kilometers by 38.4 kilometers (17 miles by 24 miles) and is centered at 38.6 degrees North latitude, 125.1 degrees West longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations of the radar as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Mission to Planet Earth.

  20. Space radar image of New Orleans, Louisiana

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This image of the area surrounding the city of New Orleans, Louisiana in the southeastern United States demonstrates the ability of multi-frequency imaging radar to distinguish different types of land cover. The dark area in the center is Lake Pontchartrain. The thin line running across the lake is a causeway connecting New Orleans to the city of Mandeville. Lake Borgne is the dark area in the lower right of the image. The Mississippi River appears as a dark, wavy line in the lower left. The white dots on the Mississippi are ships. The French Quarter is the brownish square near the left center of the image. Lakefront Airport, a field used mostly for general aviation, is the bright spot near the center, jutting out into Lake Pontchartrain. The image was acquired by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) during orbit 39 of space shuttle Endeavour on October 2, 1994. The area is located at 30.10 degrees north latitude and 89.1 degrees west longitude. The area shown is approximately 100 kilometers (60 miles) by 50 kilometers (30 miles). The colors in this image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the C-band (horizontally transmitted and received); blue represents the L-band (vertically transmitted and received). The green areas are primarily vegetation consisting of swamp land and swamp forest (bayou) growing on sandy soil, while the pink areas are associated with reflections from buildings in urban and suburban areas. Different tones and colors in the vegetation areas will be studied by scientists to see how effective imaging radar data is in discriminating between different types of wetlands. Accurate maps of coastal wetland areas are important to ecologists studying wild fowl and the coastal environment.

  1. Capabilities and limitations of the Jicamarca radar as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.; Farley, D. T.

    1983-01-01

    The Jicamarca radar (Long. 76.52W, Lat. 11.56S), located at 20 km from Lima at approximately 500 meters over sea level, is surrounded by mountains which provide a good shield from man-made interference. The radio horizon goes from a few hundred meters, across the dry valley where it is located, to 15 km, along the valley in the direction of the continental divide. This limits the clutter to 15 km, except for one high peak at 21 km. It is the most equatorial of all existing MST radars. Its proximity to the Andes, makes its location unique for the study of lee waves and orographic-induced turbulence. Vertical as well as horizontal projections of MST velocities are obtained by simultaneously pointing with different sections of the antenna into three or four different directions. The transmitters, receivers, and systems for data acquisition, processing, and control are included.

  2. FPGA Sequencer for Radar Altimeter Applications

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Pollard, Brian D.; Chen, Curtis W.

    2011-01-01

    A sequencer for a radar altimeter provides accurate attitude information for a reliable soft landing of the Mars Science Laboratory (MSL). This is a field-programmable- gate-array (FPGA)-only implementation. A table loaded externally into the FPGA controls timing, processing, and decision structures. Radar is memory-less and does not use previous acquisitions to assist in the current acquisition. All cycles complete in exactly 50 milliseconds, regardless of range or whether a target was found. A RAM (random access memory) within the FPGA holds instructions for up to 15 sets. For each set, timing is run, echoes are processed, and a comparison is made. If a target is seen, more detailed processing is run on that set. If no target is seen, the next set is tried. When all sets have been run, the FPGA terminates and waits for the next 50-millisecond event. This setup simplifies testing and improves reliability. A single vertex chip does the work of an entire assembly. Output products require minor processing to become range and velocity. This technology is the heart of the Terminal Descent Sensor, which is an integral part of the Entry Decent and Landing system for MSL. In addition, it is a strong candidate for manned landings on Mars or the Moon.

  3. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  4. Microwave radar oceanographic investigations

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1988-01-01

    The Radar Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour Radar (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.

  5. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  6. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  7. Side looking radar calibration study

    NASA Technical Reports Server (NTRS)

    Edwards, W. D.

    1975-01-01

    Calibration of an airborne sidelooking radar is accomplished by the use of a model that relates the radar parameters to the physical mapping situation. Topics discussed include: characteristics of the transmitters; the antennas; target absorption and reradiation; the receiver and map making or radar data processing; and the calibration process.

  8. Space Radar Image of Los Angeles, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is a radar image of Los Angeles, California, taken on October 2, 1994. Visible in the image are Long Beach Harbor at the bottom right (south corner of the image), Los Angeles International Airport at the bottom center, with Santa Monica just to the left of it and the Hollywood Hills to the left of Santa Monica. Also visible in the image are the freeway systems of Los Angeles, which appear as dark lines. The San Gabriel Mountains (center top) and the communities of San Fernando Valley, Simi Valley and Palmdale can be seen on the left-hand side. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on its 24th orbit. The image is centered at 34 degrees north latitude, 118 degrees west longitude. The area shown is approximately 100 kilometers by 52 kilometers (62 miles by 32 miles). This single-frequency SIR-C image was obtained by the L-band (24 cm) radar channel, horizontally transmitted and received. Portions of the Pacific Ocean visible in this image appear very dark as do freeways and other flat surfaces such as the airport runways. Mountains in the image are dark grey, with brighter patches on the mountain slopes, which face in the direction of the radar illumination (from the top of the image). Suburban areas, with the low-density housing and tree-lined streets that are typical of Los Angeles, appear as lighter grey. Areas with high-rise buildings, such as downtown Los Angeles, appear in very bright white, showing a higher density of housing and streets which run parallel to the radar flight track. Scientists hope to use radar image data from SIR-C/X-SAR to map fire scars in areas prone to brush fires, such as Los Angeles. In this image, the Altadena fire area is visible in the top center of the image as a patch of mountainous terrain which is slightly darker than the nearby mountains. Using all the radar frequency and polarization images provided by SIR

  9. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  10. 18. PANORAMIC VIEW OF RADAR SITE, LOOKING WEST, SHOWING NORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. PANORAMIC VIEW OF RADAR SITE, LOOKING WEST, SHOWING NORTH-WEST HELIPAD AT UPPER LEFT AND CIRCLE BUILDING PAD Everett Weinreb, photographer, March 1988 - Los Pinetos Nike Missile Site, Santa Clara Road, Los Angeles National Forest, Sylmar, Los Angeles County, CA

  11. 23. View of junction of passageway link with radar transmitter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. View of junction of passageway link with radar transmitter building 102 (view looking south) showing main personnel entrance door. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  12. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  13. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    by the WERA radars to TEWS. The radar measurements can be used to confirm a pre-warning and raise a tsunami alert. The output data of WERA processing software can be easily integrated into existing TEWS due to flexible data format, fast update rate and quality control of measurements. The archived radar data can be used for further hazard analysis and research purposes. The newly launched Tsunami Warning Center in Oman is one of the most sophisticated tsunami warning system world-wide applying a mix of well proven state-of-the-art subsystems. It allows the acquisition of data from many different sensor systems including seismic stations, GNSS, tide gauges, and WERA ocean radars in one acquisition system providing access to all sensor data via a common interface. The TEWS in Oman also integrates measurements of a modern network of HF ocean radars to verify tsunami simulations, which give additional scenario quality information and confirmation to the decision support.

  14. Interception of LPI Radar Signals

    DTIC Science & Technology

    1991-11-01

    AD-A246 315!I! I!! II I’ IIi INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee DEFENCE RESEARCH ESTABLISHMENT OTTAWA TECHNICAL NOTE 91-23 Canadd...November 1991Ottawa 92-041269’ 2 2 18 II.2t1111111I 111111! !_ 1+1 efrc nadonds INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee Radar E"Sect&ion... radar may employ against current EW receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current

  15. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  16. Netted LPI RADARs

    DTIC Science & Technology

    2011-09-01

    Characteristics ALQ-172 B-52G/H Self- protection Track/search radar jamming, steerable jam beams , software programmable, phased array antenna ...bore sight: knowing the pattern of the antenna’s gain, two or more intercepts within the antenna main beam are sufficient to determine the...14 a. Low Level Antenna Sidelobes .............14 b. Antenna Scan Patterns ...................18 4. Carrier Frequency Selection

  17. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  18. Frequency Diverse Array Radar

    DTIC Science & Technology

    2010-09-01

    the methods for electronic scanning of antenna systems. Techniques that have been studied in this connection include frequency variation, phase shift...an array antenna instantaneously into a desired direction where no mechanical mechanism is involved in the scanning process. Electronic scanning... methods including phase scanning, time delay scanning, and frequency scanning have been used in various radar applications; however new and cheaper

  19. Passive MIMO Radar Detection

    DTIC Science & Technology

    2013-09-01

    Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Dependence on SNR...71 4.3.3 Dependence on SNR and DNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Interpretations...described as a passive radar network. The topology of such networks is described as bistatic, multistatic, or multiple-input multiple-output, depending on

  20. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  1. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  2. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  3. Within compound, from Guard Tower (Building 5762), looking southwest, Technical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Guard Tower (Building 5762), looking southwest, Technical Equipment Building (Building 5760) to left, Microwave Tower (associated with Building 5769) and Civil Engineering Storage Building (Building 5766) to left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  4. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, M.; Vermillion, C.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.

  5. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Vermillion, C. H.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.

  6. Ground-penetrating radar for buried mine detection

    SciTech Connect

    Sargis, P.D.; Lee, F.D.; Fulkerson, E.S.; McKinley, B.J.; Aimonetti, W.D.

    1994-04-01

    Lawrence Livermore National Laboratory (LLNL) is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. The authors have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical description of the system is presented, describing the wideband antennas, the video pulser, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware are off-the-shelf components. The data was processed using LLNL-developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter are presented.

  7. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2016-08-01

    Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge

  8. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    DTIC Science & Technology

    2014-03-01

    VHSIC Development .........................................................................34 3. RFID Development...product service code RAA Rapid Acquisition Authority RCS radar cross section REF Rapid Equipping Force RFID radio frequency identification RDT... RFID technology. 28 1. The Semiconductor Industry This section divides the early semiconductor industry history into three periods based on the

  9. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  10. Scanning ARM Cloud Radars Part I. Operational Sampling Strategies

    SciTech Connect

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2013-12-03

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  11. Common Modular Multimode Radar (CMMR) Software Acquisition Study.

    DTIC Science & Technology

    1981-03-01

    Software Mgmt . Subgroup SDDL Clark Walker ATLAS Designated Control Agent (AF) SDDS Maj. Phil Merkley Configuration Management SDNA Capt. George Radic CMMR...Facility AEG Oscar Sepp ATLAS Language Control Agent AWZ Charles Marshall Configuration Mgmt . of Computer Resources ACCX Capt. Bob Gaffney ASD Cost...Agent LOWW Ray Armstrong CMMR Direction NAVMAT 042 Richard Berry Joint Configuration Mgmt . Reg. 08Y Owen McOmber Navy HOL Control Agent 08Y Rick

  12. Exterior with Technical Equipment Building (Building 5760) in background left, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior with Technical Equipment Building (Building 5760) in background left, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Power Plant, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. Radar Target Recognition Using Bispectrum Correlation

    DTIC Science & Technology

    2007-06-01

    21 2. Inverse Synthetic Aperture Radar ...................................................22 3. Range Profiles...characteristics need to be stored. 2. Inverse Synthetic Aperture Radar We often identify things based on pictures and Synthetic Aperture Radar (SAR) is an...By taking multiple discrete measurements while translating the radar , a larger effective aperture can be created. Inverse Synthetic Aperture Radar

  14. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  15. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  16. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  17. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  18. Spaceborne Radar Study

    DTIC Science & Technology

    1974-06-28

    If comm beam contact is lost, the instrumentation data are sent via the omnichannel transmitter on command of the ground station. There are six ways...comm’beam) at all times except when comm beam contact is lost. A two-way omnidirectional (backup) command link is provided for initial stabilization...via either the oomm beam or the omnichannel . Satellite instrumentation data are sent to the ground station following every radar signal transmission

  19. Shuttle imaging radar experiment

    USGS Publications Warehouse

    Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.

    1982-01-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.

  20. Weather Radar Studies.

    DTIC Science & Technology

    2014-09-26

    and Doppler weather radar data from the National Center for Atmospheric Research JAWS program and the National .Severe Storms Laboratory, are being...Atmospheric Research JAWS program and the National Severe Storms Laboratory, are being analyzed to develop low-altitude wind-shear detection algorithms...pictures, and dusted for fingerprints. The wind sensors, rain gauge, and antenna were destroyed but the DCP, solar panel, and other site components

  1. The Radar Roadmap

    DTIC Science & Technology

    2013-01-01

    LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c...ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE...object bistatic radars. The former allows high resolution without the use of pulse compression techniques and the latter promises cheaper systems by

  2. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  3. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  4. Cognitive Nonlinear Radar

    DTIC Science & Technology

    2013-01-01

    Devices and Method for Detecting Emplacement of Improvised Explosive Devices, U. S. Patent 7,680,599, Mar. 16, 2010. 11. Steele, D.; Rotondo, F.; Houck...Patent 7,987,068, Jul. 26, 2011. 9 14. Keller, W. Active Improvised Explosive Device (IED) Electronic Signature Detection , U. S. Patent...operate without interfering with each other. The CNR uses a narrowband, nonlinear radar target detection methodology. This methodology has the advantage

  5. Weather Radar Studies.

    DTIC Science & Technology

    1985-03-31

    National Center for Atmospheric Research JAWS program and the National Severe Storms Laboratory are being analyzed to develop low-altitude wind shear...public through low-altitude wind shear aviation weather products the National Technical Information Service, NEXR I turbulence., Springfield, VA 22161. 19...were analyzed preliminarily to determine wind shear characteristics in the Memphis area. Doppler weather radar data from the National Center for

  6. An Acquisition Guide for Executives

    EPA Pesticide Factsheets

    This guide covers the following subjects; What is Acquisition?, Purpose and Primary Functions of the Agency’s Acquisition System, Key Organizations in Acquisitions, Legal Framework, Key Players in Acquisitions, Acquisition Process, Acquisition Thresholds

  7. Space Radar Image of San Francisco, California

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This image of San Francisco, California shows how the radar distinguishes between densely populated urban areas and nearby areas that are relatively unsettled. Downtown San Francisco is at the center and the city of Oakland is at the right across the San Francisco Bay. Some city areas, such as the South of Market, called the SOMA district in San Francisco, appear bright red due to the alignment of streets and buildings to the incoming radar beam. Various bridges in the area are also visible including the Golden Gate Bridge (left center) at the opening of San Francisco Bay, the Bay Bridge (right center) connecting San Francisco and Oakland, and the San Mateo Bridge (bottom center). All the dark areas on the image are relatively smooth water: the Pacific Ocean to the left, San Francisco Bay in the center, and various reservoirs. Two major faults bounding the San Francisco-Oakland urban areas are visible on this image. The San Andreas fault, on the San Francisco peninsula, is seen in the lower left of the image. The fault trace is the straight feature filled with linear reservoirs which appear dark. The Hayward fault is the straight feature on the right side of the image between the urban areas and the hillier terrain to the east. The image is about 42 kilometers by 58 kilometers (26 miles by 36 miles) with north toward the upper right. This area is centered at 37.83 degrees north latitude, 122.38 degrees east longitude. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture (SIR-C/X-SAR) imaging radar when it flew aboard the space shuttle Endeavour on October 3, 1994. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  8. Space Radar Image of Canberra, Australia

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Australia's capital city, Canberra, is shown in the center of this spaceborne radar image. Images like this can help urban planners assess land use patterns. Heavily developed areas appear in bright patchwork patterns of orange, yellow and blue. Dense vegetation appears bright green, while cleared areas appear in dark blue or black. Located in southeastern Australia, the site of Canberra was selected as the capital in 1901 as a geographic compromise between Sydney and Melbourne. Design and construction of the city began in 1908 under the supervision of American architect Walter Burley-Griffin. Lake Burley-Griffin is located above and to the left of the center of the image. The bright pink area is the Parliament House. The city streets, lined with government buildings, radiate like spokes from the Parliament House. The bright purple cross in the lower left corner of the image is a reflection from one of the large dish-shaped radio antennas at the Tidbinbilla, Canberra Deep Space Network Communication Complex, operated jointly by NASA and the Australian Space Office. This image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 10, 1994, onboard the space shuttle Endeavour. The image is 28 kilometers by 25 kilometers (17 miles by 15 miles) and is centered at 35.35 degrees south latitude, 149.17 degrees east longitude. North is toward the upper left. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is L-band, horizontally transmitted and vertically received; and blue is C-band, horizontally transmitted and vertically received. SIR-C/X-SAR, a joint mission of the German, Italian, and United States space agencies, is part of NASA's Office of Mission to Planet Earth.

  9. Radar clutter classification

    NASA Astrophysics Data System (ADS)

    Stehwien, Wolfgang

    1989-11-01

    The problem of classifying radar clutter as found on air traffic control radar systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control radars. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.

  10. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  11. Nordic Snow Radar Experiment

    NASA Astrophysics Data System (ADS)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  12. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of

  13. Ground Penetrating Radar Technologies in Ukraine

    NASA Astrophysics Data System (ADS)

    Pochanin, Gennadiy P.; Masalov, Sergey A.

    2014-05-01

    Transient electromagnetic fields are of great interest in Ukraine. The following topics are studied by research teams, with high-level achievements all over the world: (i) Ultra-Wide Band/Short-pulse radar techniques (IRE and LLC "Transient Technologies", for more information please visit http://applied.ire.kharkov.ua/radar%20systems_their%20components%20and%20relevant%20technologies_e.html and http://viy.ua); (ii) Ground Penetrating Radar (GPR) with stepped frequency sounding signals (IRE); (iii) Continuous-Wave (CW) radar with phase-shift keying signals (IRE); and (iv) Radio-wave interference investigation (Scientific and Technical Centre of The Subsurface Investigation, http://geophysics.ua). GPR applications are mainly in search works, for example GPR is often used to search for treasures. It is also used to identify leaks and diffusion of petroleum in soil, in storage areas, as well as for fault location of pipelines. Furthermore, GPR is used for the localization of underground utilities and for diagnostics of the technical state of hydro dams. Deeper GPR probing was performed to identify landslides in Crimea. Rescue radar with CW signal was designed in IRE to search for living people trapped under the rubble of collapsed buildings. The fourth version of this radar has been recently created, showing higher stability and noise immunity. Radio-wave interference investigation allows studying the soil down to tens of meters. It is possible to identify areas with increased conductivity (moisture) of the soil. LLC "Transient Technologies" is currently working with Shevchenko Kyiv University on a cooperation program in which the construction of a test site is one of the planned tasks. In the framework of this program, a GPR with a 300 MHz antenna was handed to the geological Faculty of the University. Employees of "Transient Technologies" held introductory lectures with a practical demonstration for students majoring in geophysics. The authors participated to GPR

  14. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  15. Potential and limits of InSAR data for building reconstruction in built-up areas

    NASA Astrophysics Data System (ADS)

    Stilla, U.; Soergel, U.; Thoennessen, U.

    The automatic reconstruction of buildings for the generation of city models is of great interest for different tasks. Three-dimensional information can be directly obtained from both, laser (LIDAR) and radar (InSAR) measurements. The features of both sensors are compared. The data acquisition by SAR is described, with emphasis on the special properties of the interferometric SAR principle. A segmentation approach for building reconstruction is proposed. The results show that building reconstruction is possible from InSAR, but the achievable level of detail cannot compete with LIDAR. The main source of limitation is the inherent side-looking scene illumination of SAR, giving rise to disturbing phenomena interfering with often large parts of the scene. Geometric constraints for the location and size of such problem areas are derived. To identify areas of unreliable data in SAR images of a built-up area, corresponding elevation data are analysed. The impact of the phenomena layover, shadow and dominant scattering at building locations is considered. For this task, a hybrid elevation reference is required. The buildings and the surrounding ground are represented as CAD planes. Natural objects like trees and bushes remain in the raster representation.

  16. DSPS in data acquisition

    SciTech Connect

    Kirsch, M.; Haeupke, T.; Oelschlaeger, R.; Struck, B.

    1997-12-31

    Off-the-shelf and customized DSP boards in different bus architectures are perfectly suited to act as building blocks for flexible and high performance data acquisition systems. Due to their architecture they can be used to enhance the performance of existing equipment as add ons, as state-of-the-art readout controllers, event builders, on-the-fly data formatters and higher level trigger processors. Applications covering the above mentioned fields with Motorolas 96002 HARC DSP in the DESY HERMES and H1 experiments, at the focal plane polarimeter at KVI and the NIST high flux neutron backscattering spectrometer will be presented. Future possibilities with VME, PCI and PMC boards based on Analog Devices SHARC DSP will be discussed. Systems on the base of Texas Instruments TMS320C6X promise to provide unprecedented performance.

  17. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  18. Radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  19. Radar Studies of Aviation Hazards

    DTIC Science & Technology

    1994-05-31

    4. TITLE AND SURTITLE S. FUNDING NUMBERS RADAR STUDIES OF AVIATION HAZARDS F1 9628-93- C -0054 _____________ __PE63707F 6. AUTHOR(S) PR278 1...foilowing processing steps have been adopted: a. acquire single scan radar data, b. distinguish individual storms, c . eliminate spurious data for...occurred only with radar reflectivities above 40 dBZ at the -10° C level and cloud tops above the -200C level. Lightning occurred only when tops extended

  20. Radar Image, Hokkaido, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers

  1. A Novel Method for Speech Acquisition and Enhancement by 94 GHz Millimeter-Wave Sensor

    PubMed Central

    Chen, Fuming; Li, Sheng; Li, Chuantao; Liu, Miao; Li, Zhao; Xue, Huijun; Jing, Xijing; Wang, Jianqi

    2015-01-01

    In order to improve the speech acquisition ability of a non-contact method, a 94 GHz millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact speech acquisition method was shown to have high directional sensitivity, and to be immune to strong acoustical disturbance. However, MMW radar speech is often degraded by combined sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper, an algorithm combining empirical mode decomposition (EMD) and mutual information entropy (MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive components, and then an adaptive threshold was employed to remove the noise from the radar speech. The experimental results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech is greatly suppressed and the speech sounds become more pleasant to human listeners after being enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement method will provide a promising alternative for various applications associated with speech detection. PMID:26729126

  2. A Novel Method for Speech Acquisition and Enhancement by 94 GHz Millimeter-Wave Sensor.

    PubMed

    Chen, Fuming; Li, Sheng; Li, Chuantao; Liu, Miao; Li, Zhao; Xue, Huijun; Jing, Xijing; Wang, Jianqi

    2015-12-31

    In order to improve the speech acquisition ability of a non-contact method, a 94 GHz millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact speech acquisition method was shown to have high directional sensitivity, and to be immune to strong acoustical disturbance. However, MMW radar speech is often degraded by combined sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper, an algorithm combining empirical mode decomposition (EMD) and mutual information entropy (MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive components, and then an adaptive threshold was employed to remove the noise from the radar speech. The experimental results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech is greatly suppressed and the speech sounds become more pleasant to human listeners after being enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement method will provide a promising alternative for various applications associated with speech detection.

  3. GeoSAR: A Radar Terrain Mapping System for the New Millennium

    NASA Technical Reports Server (NTRS)

    Thompson, Thomas; vanZyl, Jakob; Hensley, Scott; Reis, James; Munjy, Riadh; Burton, John; Yoha, Robert

    2000-01-01

    GeoSAR Geographic Synthetic Aperture Radar) is a new 3 year effort to build a unique, dual-frequency, airborne Interferometric SAR for mapping of terrain. This is being pursued via a Consortium of the Jet Propulsion Laboratory (JPL), Calgis, Inc., and the California Department of Conservation. The airborne portion of this system will operate on a Calgis Gulfstream-II aircraft outfitted with P- and X-band Interferometric SARs. The ground portions of this system will be a suite of Flight Planning Software, an IFSAR Processor and a Radar-GIS Workstation. The airborne P-band and X-band radars will be constructed by JPL with the goal of obtaining foliage penetration at the longer P-band wavelengths. The P-band and X-band radar will operate at frequencies of 350 Mhz and 9.71 Ghz with bandwidths of either 80 or 160 Mhz. The airborne radars will be complemented with airborne laser system for measuring antenna positions. Aircraft flight lines and radar operating instructions will be computed with the Flight Planning Software The ground processing will be a two-step step process. First, the raw radar data will be processed into radar images and interferometer derived Digital Elevation Models (DEMs). Second, these radar images and DEMs will be processed with a Radar GIS Workstation which performs processes such as Projection Transformations, Registration, Geometric Adjustment, Mosaicking, Merging and Database Management. JPL will construct the IFSAR Processor and Calgis, Inc. will construct the Radar GIS Workstation. The GeoSAR Project was underway in November 1996 with a goal of having the radars and laser systems fully integrated onto the Calgis Gulfstream-II aircraft in early 1999. Then, Engineering Checkout and Calibration-Characterization Flights will be conducted through November 1999. The system will be completed at the end of 1999 and ready for routine operations in the year 2000.

  4. Library Research and Statistics. Research on Libraries and Librarianship in 2001; Number of Libraries in the United States and Canada; Highlights of NCES Surveys; Library Acquisition Expenditures, 2000-2001: U.S. Public, Academic, Special, and Government Libraries; LJ Budget Report: The New Wariness; Price Indexes for Public and Academic Libraries; Library Buildings 2001: Keep on Constructin'; Expenditures for Resources in School Library Media Centers, 1999-2000: New Money, Old Books.

    ERIC Educational Resources Information Center

    Lynch, Mary Jo; Oder, Norman; Halstead, Kent; Fox, Bette-Lee; Miller, Marilyn L.; Schontz, Marilyn L.

    2002-01-01

    Presents eight articles that discuss research on libraries and librarianship; number of libraries in the U.S. and Canada; highlights of NCES (National Center for Education Statistics) surveys; library acquisition expenditures; budgets; price indexes; library buildings construction; and expenditures for school library media center resources. (LRW)

  5. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  6. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP... Selective Availability Anti-spoofing Module SIMCERT - Simulator Certification SOC - Space Operations Center SORTS - Status of Resources and Training System

  7. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  8. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) in the following areas: space communications, radio navigation, radio science, and ground-based radio and radar astronomy. This document also reports on the activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by another NASA program office through and with the cooperation of OSC. This is the Orbital Debris Radar Program with the Office of Space Systems Development.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Operations (OSO). The TDA Office also performs work funded by two other NASA program offices through and with the cooperation of the OSO. These are the Orbital Debris Radar Program and 21st Century Communication Studies.

  12. Planetary radar studies. [radar mapping of the Moon and radar signatures of lunar and Venus craters

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    Progress made in studying the evolution of Venusian craters and the evolution of infrared and radar signatures of lunar crater interiors is reported. Comparison of radar images of craters on Venus and the Moon present evidence for a steady state Venus crater population. Successful observations at the Arecibo Observatory yielded good data on five nights when data for a mix of inner and limb areas were acquired. Lunar craters with radar bright ejects are discussed. An overview of infrared radar crater catalogs in the data base is included.

  13. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  14. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  15. Interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  16. RADAR "SAIL" satellite concept

    NASA Astrophysics Data System (ADS)

    Aguttes, Jean Paul; Sombrin, Jacques; Conde, Eric

    1996-11-01

    The Radar SAIL concept is based on the use of a rectangular antenna lying in the dawn-dusk orbital plane with the length (along speed vector) smaller than the height. Such geometry makes it possible to place the solar cells on the back of the antenna, to use gravity gradient stabilisation, and to implement multipath-free GPS interferometric measurement of the antenna deformation thus allowing structural relaxation. Less obviously, the geometry favours the RADAR design too, by allowing grating lobes and therefore a lower density of built-in electronic in the active antenna. The antenna can be thin and packed for launch inside a cylinder-shaped bus having pyrotechnic doors for the antenna deployement and bearing the rest of the payload and the service equipment. With respect to a standard design of performant missions, cost savings come from the bus, whose functions (AOCS, power supply) are simplified, from the launch since the mass budget and the stowing configuration become compatible with medium size rockets (LLV2/3, DELTA-LITE, LM-4.), and from the active antenna built-in electronics. The RADAR SAIL concept is all the more cost effective when the mission requires a large, high and short antenna, i.e. high resolution (<5m), low frequency band (L or S or even P), high revisiting, multiple frequencies. Mission implementation and funding can be favored by the new capability to share the satellite between autonomous regional operators. Combined with ground DBF (digital beam forming) technique, the concept allows extremely simple and low cost missions providing a fixed wide swath (10 to 15 m resolution within 500km to 1000 km swath) for systematic surveillance or monitoring.

  17. Venus - First Radar Test

    NASA Technical Reports Server (NTRS)

    1990-01-01

    After traveling more than 1.5 billion kilometers (948 million miles), the Magellan spacecraft was inserted into orbit around Venus on Aug. 10, 1990. This mosaic consists of adjacent pieces of two Magellan image strips obtained on Aug. 16 in the first radar test. The radar test was part of a planned In Orbit Checkout sequence designed to prepare the Magellan spacecraft and radar to begin mapping after Aug. 31. The strip on the left was returned to the Goldstone Deep Space Network station in California; the strip to the right was received at the DSN in Canberra, Australia. A third station that will be receiving Magellan data is located near Madrid, Spain. Each image strip is 20 km (12 miles) wide and 16,000 km (10,000 miles) long. This mosaic is a small portion 80 km (50 miles) long. This image is centered at 21 degrees north latitude and 286.8 degrees east longitude, southeast of a volcanic highland region called Beta Regio. The resolution of the image is about 120 meters (400 feet), 10 times better than previous images of the same area of Venus, revealing many new geologic features. The bright line trending northwest southeast across the center of the image is a fracture or fault zone cutting the volcanic plains. In the upper left corner of the image, a multiple ring circular feature of probable volcanic origin can be seen, approximately 4.27 km (2.65 miles) across. The bright and dark variations seen in the plains surrounding these features correspond to volcanic lava flows of varying ages. The volcanic lava flows in the southern half of the image have been cut by north south trending faults. This area is similar geologically to volcanic deposits seen on Earth at Hawaii and the Snake River Plains in Idaho.

  18. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1996-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.

  19. Space Radar Image of Mississippi Delta

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is a radar image of the Mississippi River Delta where the river enters into the Gulf of Mexico along the coast of Louisiana. This multi-frequency image demonstrates the capability of the radar to distinguish different types of wetlands surfaces in river deltas. This image was acquired by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on October 2, 1995. The image is centered on latitude 29.3 degrees North latitude and 89.28 degrees West longitude. The area shown is approximately 63 kilometers by 43 kilometers (39 miles by 26 miles). North is towards the upper right of the image. As the river enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid-continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil and the numerous bright spots along the outside of the delta are drilling platforms. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad red stripe running northwest to southeast down the left side of the image. The bright spots within the channel are ships. The colors in the image are assigned to different frequencies and polarizations of the radar as follows: red is L-band vertically transmitted, vertically received; green is C-band vertically transmitted, vertically received; blue is X-band vertically transmitted, vertically received. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars

  20. Radar Studies on Kamb Ice Stream

    NASA Astrophysics Data System (ADS)

    Pettersson, R.; Osterhouse, D. J.; Mulhausen, A.; Welch, B. C.; Strandli, C. W.; Jacobel, R. W.

    2006-12-01

    During the past two Antarctic field seasons we acquired approximately 1600 km of ground-based ice- penetrating radar data on the lower trunk of Kamb Ice Stream (KIS) as part of radar, GPS and modeling study with scientists at the University of California Santa Cruz examining the possibility of ice stream reactivation. We present here a summary of radar results from this work and preliminary interpretations. Our working hypothesis is that the reactivation of the stagnant KIS may be triggered by excess influx of basal water produced by increased basal strain heating when mass builds up in the upper reaches of the locked ice stream. Using radar data, we have quantified variations in the amplitude of radar reflections from the ice-bed interface to estimate different provenances of occurrence of basal water. The weakest-reflecting ice-bed interface is found at a "sticky spot" in the middle of the ice stream trunk where ice appears to have become grounded over a large bedrock bump. At the sticky spot, bore holes drilled by California Technical Institute in 2000 showed a dry bed. A more highly reflective bed is located to either side of the sticky spot in regions of faster flow of KIS including one location where bore holes showed water at the ice-bed interface. However, the brightest bed is located approximately 80~km upstream of the sticky spot, where ice velocities are still on the order of 120~m a-1. Here radar reflected power is up to 1.5 times higher than elsewhere in the trunk despite the ice being 40% deeper. From this pattern of bed reflectivity we hypothesize that conditions allowing for rapid flow still exist under most areas of KIS and that sticky spots, like the one studied here, have played a key role in the ice stream shut down. We have also produced a map of detailed bed topography and tracked internal reflection layers over the sticky spot. We are able to trace the evolution of folds in the radar internal stratigraphy in this region in both time and space

  1. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  2. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    Reflectivity Core Recognition 68 IV-10 Middle-Level Precursor Recognition 69 IV-l I Early Microburst Hazard Declaration 70 IV-12 Example of Results from...Denver Test Bed 106 V-I Selected Product Types 14 V-2 Encoded Map Size (in ELMs ) for Terminal Map Data Set 119 V-3 Encoded Map Size (in ELMs ) for En...Route Data Sets 119 V-4 Encoded Map Size (in ELMs ) for Terminal Map Data Set 125 xiii WEATHER RADAR STUDIES 1. INTRODUCTION The principal areas of

  3. A data acquisition architecture for the SSC

    SciTech Connect

    Partridge, R.

    1990-01-01

    An SSC data acquisition architecture applicable to high-p{sub T} detectors is described. The architecture is based upon a small set of design principles that were chosen to simplify communication between data acquisition elements while providing the required level of flexibility and performance. The architecture features an integrated system for data collection, event building, and communication with a large processing farm. The interface to the front end electronics system is also discussed. A set of design parameters is given for a data acquisition system that should meet the needs of high-p{sub T} detectors at the SSC.

  4. Buffer Gas Acquisition and Storage

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.; Callahan, Richard A.; Delgado, H. (Technical Monitor)

    2001-01-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture Of CO2 Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO, freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (ND, and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193K and 10 kpa to 300 kPa. Concentrations were measured with a gas chromatograph that used a thermoconductivity (TCD) detector with helium (He) as the carrier gas. The general trend as the temperature was lowered was for the membranes to become more selective, In addition, the relative permeation rates between the three gases changed with temperature. The end result was to provide design parameters that could be used to separate CO2 from N2 and Ar.

  5. Buffer gas acquisition and storage

    NASA Astrophysics Data System (ADS)

    Parrish, Clyde F.; Lueck, Dale E.; Jennings, Paul A.

    2001-02-01

    The acquisition and storage of buffer gases (primarily argon and nitrogen) from the Mars atmosphere provides a valuable resource for blanketing and pressurizing fuel tanks and as a buffer gas for breathing air for manned missions. During the acquisition of carbon dioxide (CO2), whether by sorption bed or cryo-freezer, the accompanying buffer gases build up in the carbon dioxide acquisition system, reduce the flow of CO2 to the bed, and lower system efficiency. It is this build up of buffer gases that provide a convenient source, which must be removed, for efficient capture of CO2. Removal of this buffer gas barrier greatly improves the charging rate of the CO2 acquisition bed and, thereby, maintains the fuel production rates required for a successful mission. Consequently, the acquisition, purification, and storage of these buffer gases are important goals of ISRU plans. Purity of the buffer gases is a concern e.g., if the CO2 freezer operates at 140 K, the composition of the inert gas would be approximately 21 percent CO2, 50 percent nitrogen, and 29 percent argon. Although there are several approaches that could be used, this effort focused on a hollow-fiber membrane (HFM) separation method. This study measured the permeation rates of CO2, nitrogen (N2), and argon (Ar) through a multiple-membrane system and the individual membranes from room temperature to 193 K and 10 kPa to 300 kPa. Concentrations were measured with a gas chromatograph. The end result was data necessary to design a system that could separate CO2, N2, and Ar. .

  6. Localization and Mapping Using Only a Rotating FMCW Radar Sensor

    PubMed Central

    Vivet, Damien; Checchin, Paul; Chapuis, Roland

    2013-01-01

    Rotating radar sensors are perception systems rarely used in mobile robotics. This paper is concerned with the use of a mobile ground-based panoramic radar sensor which is able to deliver both distance and velocity of multiple targets in its surrounding. The consequence of using such a sensor in high speed robotics is the appearance of both geometric and Doppler velocity distortions in the collected data. These effects are, in the majority of studies, ignored or considered as noise and then corrected based on proprioceptive sensors or localization systems. Our purpose is to study and use data distortion and Doppler effect as sources of information in order to estimate the vehicle's displacement. The linear and angular velocities of the mobile robot are estimated by analyzing the distortion of the measurements provided by the panoramic Frequency Modulated Continuous Wave (FMCW) radar, called IMPALA. Without the use of any proprioceptive sensor, these estimates are then used to build the trajectory of the vehicle and the radar map of outdoor environments. In this paper, radar-only localization and mapping results are presented for a ground vehicle moving at high speed. PMID:23567523

  7. Syntax acquisition.

    PubMed

    Crain, Stephen; Thornton, Rosalind

    2012-03-01

    Every normal child acquires a language in just a few years. By 3- or 4-years-old, children have effectively become adults in their abilities to produce and understand endlessly many sentences in a variety of conversational contexts. There are two alternative accounts of the course of children's language development. These different perspectives can be traced back to the nature versus nurture debate about how knowledge is acquired in any cognitive domain. One perspective dates back to Plato's dialog 'The Meno'. In this dialog, the protagonist, Socrates, demonstrates to Meno, an aristocrat in Ancient Greece, that a young slave knows more about geometry than he could have learned from experience. By extension, Plato's Problem refers to any gap between experience and knowledge. How children fill in the gap in the case of language continues to be the subject of much controversy in cognitive science. Any model of language acquisition must address three factors, inter alia: 1. The knowledge children accrue; 2. The input children receive (often called the primary linguistic data); 3. The nonlinguistic capacities of children to form and test generalizations based on the input. According to the famous linguist Noam Chomsky, the main task of linguistics is to explain how children bridge the gap-Chomsky calls it a 'chasm'-between what they come to know about language, and what they could have learned from experience, even given optimistic assumptions about their cognitive abilities. Proponents of the alternative 'nurture' approach accuse nativists like Chomsky of overestimating the complexity of what children learn, underestimating the data children have to work with, and manifesting undue pessimism about children's abilities to extract information based on the input. The modern 'nurture' approach is often referred to as the usage-based account. We discuss the usage-based account first, and then the nativist account. After that, we report and discuss the findings of several

  8. Radar Imaging and Feature Extraction

    DTIC Science & Technology

    2007-11-02

    aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and motion compensation, superresolution SAR image formation... superresolution image formation, and two parametric methods, MCRELAX (Motion Compensation RELAX) and MCCLEAN (Motion Compensation CLEAN), for simultaneous target...Direction Estimation) together with WRELAX) algorithm is proposed for the superresolution time delay estimation.

  9. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  10. Radar Control Optimal Resource Allocation

    DTIC Science & Technology

    2015-07-13

    Dartmouth, Nova Scotia, Canada by the McMaster University Intelligent PIXel (IPIX) X-band Polarimetric Coherent Radar during the OHGR - Dartmouth...Distribution is unlimited Wind Direction N Figure 7: Radar data collection site at OHGR, Nova Scotia. Source:[15] to having a significant wave height of 0.7 m

  11. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dybdal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1986-09-01

    The development of an instrumentation radar that uses a chirp waveform to achieve high range resolution is described. Such range resolution capability is required for two reasons: (1) to evaluate the response of targets to the operational waveforms used in high-performance radars; and (2) to obtain a means of separating the individual mechanisms that comprise the target scattering response to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house-fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in. range resolution. A key feature of the radar is its ability to combine amplitude weighting with a high degree of waveform fidelity, with the result being very good range sidelobe performance.

  12. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  13. Shuttle Imaging Radar - Geologic applications

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Bridges, L.; Waite, W.; Kaupp, V.

    1982-01-01

    The Space Shuttle, on its second flight (November 12, 1981), carried the first science and applications payload which provided an early demonstration of Shuttle's research capabilities. One of the experiments, the Shuttle Imaging Radar-A (SIR-A), had as a prime objective to evaluate the capability of spaceborne imaging radars as a tool for geologic exploration. The results of the experiment will help determine the value of using the combination of space radar and Landsat imagery for improved geologic analysis and mapping. Preliminary analysis of the Shuttle radar imagery with Seasat and Landsat imagery from similar areas provides evidence that spaceborne radars can significantly complement Landsat interpretation, and vastly improve geologic reconnaissance mapping in those areas of the world that are relatively unmapped because of perpetual cloud cover.

  14. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  15. Radar SLAM using visual features

    NASA Astrophysics Data System (ADS)

    Callmer, Jonas; Törnqvist, David; Gustafsson, Fredrik; Svensson, Henrik; Carlbom, Pelle

    2011-12-01

    A vessel navigating in a critical environment such as an archipelago requires very accurate movement estimates. Intentional or unintentional jamming makes GPS unreliable as the only source of information and an additional independent supporting navigation system should be used. In this paper, we suggest estimating the vessel movements using a sequence of radar images from the preexisting body-fixed radar. Island landmarks in the radar scans are tracked between multiple scans using visual features. This provides information not only about the position of the vessel but also of its course and velocity. We present here a navigation framework that requires no additional hardware than the already existing naval radar sensor. Experiments show that visual radar features can be used to accurately estimate the vessel trajectory over an extensive data set.

  16. RJARS: RAND’s Version of the Jamming Aircraft and Radar Simulation

    DTIC Science & Technology

    1991-01-01

    29 C. UPDTR--Over-Terrain Visibility........................ 32 D. UPDRS --Update Search Radars........................... 36 1...179 A.5. Update Searchers ( UPDRS ) Flow Chart ....................... 180 A.6. Update Optical Search and Acquisition Flow Chart...RJARS contains 11 updating modules: 1. UPDCK System clock 2. UPDAC Aircraft positions and maneuvers 3. UPDTR Over-terrain visibility 4. UPDRS Search

  17. Defense Acquisition Workforce Modernization

    DTIC Science & Technology

    2010-07-01

    Acquisition , Technology & Logistics, 2000). PBSA “involves acquisition strategies, methods, and techniques that describe and communicate measurable ... Acquisition Workforce Distribution of DoD Workforce and Attrition Rates Seperation Rates Distribution of Workforce by Years of Service 38 A final issue... measurement . 14 Provisions within the IMPROVE Act demand greater accountability from the acquisition workforce, improve financial management, expand

  18. Investigating Second Language Acquisition.

    ERIC Educational Resources Information Center

    Jordens, Peter, Ed.; Lalleman, Josine, Ed.

    Essays in second language acquisition include: "The State of the Art in Second Language Acquisition Research" (Josine Lalleman); "Crosslinguistic Influence with Special Reference to the Acquisition of Grammar" (Michael Sharwood Smith); "Second Language Acquisition by Adult Immigrants: A Multiple Case Study of Turkish and…

  19. Wind Farms and Radar

    DTIC Science & Technology

    2008-01-01

    capabilities. The challenge is to evolve the current system, and to design future sytems to effectively distinguish and mitigate a source of clutter...not transponding) but also might also come close to solving the interference problem for transponding aircraft. 12 DISTRIBUTION LIST Assistant ...Secretary of the Navy (Research, Development & Acquisition) 1000 Navy Pentagon Washington, DC 20350-1000 Assistant Deputy Administrator for

  20. Development of NASA's Next Generation L-Band Digital Beamforming Synthetic Aperture Radar (DBSAR-2)

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael; Fatoyinbo, Temilola; Osmanoglu, Batuhan; Lee, Seung-Kuk; Ranson, K. Jon; Marrero, Victor; Yeary, Mark

    2014-01-01

    NASA's Next generation Digital Beamforming SAR (DBSAR-2) is a state-of-the-art airborne L-band radar developed at the NASA Goddard Space Flight Center (GSFC). The instrument builds upon the advanced architectures in NASA's DBSAR-1 and EcoSAR instruments. The new instrument employs a 16-channel radar architecture characterized by multi-mode operation, software defined waveform generation, digital beamforming, and configurable radar parameters. The instrument has been design to support several disciplines in Earth and Planetary sciences. The instrument was recently completed, and tested and calibrated in a anechoic chamber.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  4. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DS) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  5. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on the activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data, information systems, and reimbursable DSN work performed for other space agencies through NASA.

  6. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  7. A Noncontact FMCW Radar Sensor for Displacement Measurement in Structural Health Monitoring

    PubMed Central

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-01-01

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy. PMID:25822139

  8. A noncontact FMCW radar sensor for displacement measurement in structural health monitoring.

    PubMed

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-03-26

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy.

  9. Mars Radar Observations with the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.

    2002-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.

  10. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  11. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  12. FIRE_CI2_ETL_RADAR

    Atmospheric Science Data Center

    2015-11-25

    FIRE_CI2_ETL_RADAR Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  Radar Spatial Coverage:  (37.06, -95.34) Spatial ... Search Guide Documents:  ETL_RADAR Guide Readme Files:  Readme ETL_RADAR (PS) ...

  13. 47 CFR 80.273 - Radar standards.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Radar standards. 80.273 Section 80.273... MARITIME SERVICES Equipment Authorization for Compulsory Ships § 80.273 Radar standards. (a) Radar... with radar must comply with the following standards (all incorporated by reference, see § 80.7):...

  14. RADAR OBSERVATION CONDITIONS OF POOR VISIBILITY,

    DTIC Science & Technology

    Ship navigational radar is an effective means for revealing above-water objects in conditions of poor visibility. A radar image of the surrounding...radar observation and with the competent operation of the set, radar is a reliable means of detection of encountered vessels in conditions of poor

  15. Radar, Insect Population Ecology, and Pest Management

    NASA Technical Reports Server (NTRS)

    Vaughn, C. R. (Editor); Wolf, W. (Editor); Klassen, W. (Editor)

    1979-01-01

    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives.

  16. Evaluation of meteorological airborne Doppler radar

    NASA Technical Reports Server (NTRS)

    Hildebrand, P. H.; Mueller, C. K.

    1984-01-01

    This paper will discuss the capabilities of airborne Doppler radar for atmospheric sciences research. The evaluation is based on airborne and ground based Doppler radar observations of convective storms. The capability of airborne Doppler radar to measure horizontal and vertical air motions is evaluated. Airborne Doppler radar is shown to be a viable tool for atmospheric sciences research.

  17. Radar scattering of linear dunes and mega-yardangs: Application to Titan

    NASA Astrophysics Data System (ADS)

    Paillou, Philippe; Seignovert, Benoît; Radebaugh, Jani; Wall, Stephen

    2016-05-01

    Cassini RADAR T8 acquisitions over the Belet Sand Sea on Titan, and show that the linear dunes encountered there are likely to be of both Egyptian and Namibian type. We also show that the radar-bright linear features observed in Cassini RADAR T64 and T83 acquisitions are very likely to be mega-yardangs, possible remnants of ancient lake basins at mid-latitude, formed when Titan's climate was different.

  18. Large phased-array radars

    SciTech Connect

    Brookner, D.E.

    1988-12-15

    Large phased-array radars can play a very important part in arms control. They can be used to determine the number of RVs being deployed, the type of targeting of the RVs (the same or different targets), the shape of the deployed objects, and possibly the weight and yields of the deployed RVs. They can provide this information at night as well as during the day and during rain and cloud covered conditions. The radar can be on the ground, on a ship, in an airplane, or space-borne. Airborne and space-borne radars can provide high resolution map images of the ground for reconnaissance, of anti-ballistic missile (ABM) ground radar installations, missile launch sites, and tactical targets such as trucks and tanks. The large ground based radars can have microwave carrier frequencies or be at HF (high frequency). For a ground-based HF radar the signal is reflected off the ionosphere so as to provide over-the-horizon (OTH) viewing of targets. OTH radars can potentially be used to monitor stealth targets and missile traffic.

  19. Output tube emission characteristics of operational radars

    NASA Astrophysics Data System (ADS)

    Matheson, R. J.; Smilley, J. D.; Falcon, G. D.; Lawrence, V. S.

    1982-01-01

    Measurement of the emission spectra and other characteristics of many radars operating in the government frequency bands is described. The emission spectra of 19 different types of radars, selected to show the different emission spectrum characteristics produced by a variety of radar output tube technologies are presented. The radars include examples of ground based search, airport surveillance, weather, and height finding radars operating in L band, S band, or C band. The RSMS, contained within a mobile van, is described, along with the measurement techniques used for obtaining radar emission characteristics. The emission limits imposed by the Radar Spectrum Engineering Criteria (RSEC) are displayed with each emission spectrum.

  20. Space Radar Image of Vesuvius, Italy

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's Mission to Planet Earth.

  1. Radar detection of moving objects around corners

    NASA Astrophysics Data System (ADS)

    Sume, A.; Gustafsson, M.; Jänis, A.; Nilsson, S.; Rahm, J.; Örbom, A.

    2009-05-01

    Detection of moving objects around corners, with no direct line-of-sight to the objects, is demonstrated in experiments using a coherent test-range radar. A setting was built up on the test-range ground consisting of two perpendicular wall sections forming a corner, with an opposite wall, intended to mimic a street scenario on a reduced scale. Two different wall materials were used, viz. light concrete and metallic walls. The latter choice served as reference, with elimination of transmission through the walls, e.g. facilitating comparison with theoretical calculations. Standard radar reflectors were used as one kind of target objects, in horizontal, circular movement, produced by a turntable. A human formed a second target, both walking and at standstill with micro-Doppler movements of body parts. The radar signal was produced by frequency stepping of a gated CW (Continuous Wave) waveform over a bandwidth of 2 or 4 GHz, between 8.5 and 12.5 GHz. Standard Doppler signal processing has been applied, consisting of a double FFT. The first of these produced "range profiles", on which the second FFT was applied for specific range gates, which resulted in Doppler frequency spectra, used for the detection. The reference reflectors as well as the human could be detected in this scenario. The target detections were achieved both in the wave component having undergone specular reflection in the opposite wall (strongest) as well as the diffracted component around the corner. Time-frequency analysis using Short Time Fourier Transform technique brought out micro-Doppler components in the signature of a walking human. These experiments have been complemented with theoretical field calculations and separate reflection measurements of common building materials.

  2. A 94-GHz millimeter-wave sensor for speech signal acquisition.

    PubMed

    Li, Sheng; Tian, Ying; Lu, Guohua; Zhang, Yang; Lv, Hao; Yu, Xiao; Xue, Huijun; Zhang, Hua; Wang, Jianqi; Jing, Xijing

    2013-10-24

    High frequency millimeter-wave (MMW) radar-like sensors enable the detection of speech signals. This novel non-acoustic speech detection method has some special advantages not offered by traditional microphones, such as preventing strong-acoustic interference, high directional sensitivity with penetration, and long detection distance. A 94-GHz MMW radar sensor was employed in this study to test its speech acquisition ability. A 34-GHz zero intermediate frequency radar, a 34-GHz superheterodyne radar, and a microphone were also used for comparison purposes. A short-time phase-spectrum-compensation algorithm was used to enhance the detected speech. The results reveal that the 94-GHz radar sensor showed the highest sensitivity and obtained the highest speech quality subjective measurement score. This result suggests that the MMW radar sensor has better performance than a traditional microphone in terms of speech detection for detection distances longer than 1 m. As a substitute for the traditional speech acquisition method, this novel speech acquisition method demonstrates a large potential for many speech related applications.

  3. A 94-GHz Millimeter-Wave Sensor for Speech Signal Acquisition

    PubMed Central

    Li, Sheng; Tian, Ying; Lu, Guohua; Zhang, Yang; Lv, Hao; Yu, Xiao; Xue, Huijun; Zhang, Hua; Wang, Jianqi; Jing, Xijing

    2013-01-01

    High frequency millimeter-wave (MMW) radar-like sensors enable the detection of speech signals. This novel non-acoustic speech detection method has some special advantages not offered by traditional microphones, such as preventing strong-acoustic interference, high directional sensitivity with penetration, and long detection distance. A 94-GHz MMW radar sensor was employed in this study to test its speech acquisition ability. A 34-GHz zero intermediate frequency radar, a 34-GHz superheterodyne radar, and a microphone were also used for comparison purposes. A short-time phase-spectrum-compensation algorithm was used to enhance the detected speech. The results reveal that the 94-GHz radar sensor showed the highest sensitivity and obtained the highest speech quality subjective measurement score. This result suggests that the MMW radar sensor has better performance than a traditional microphone in terms of speech detection for detection distances longer than 1 m. As a substitute for the traditional speech acquisition method, this novel speech acquisition method demonstrates a large potential for many speech related applications. PMID:24284764

  4. The Clementine bistatic radar experiment.

    PubMed

    Nozette, S; Lichtenberg, C L; Spudis, P; Bonner, R; Ort, W; Malaret, E; Robinson, M; Shoemaker, E M

    1996-11-29

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  5. Gyroklystron-Powered WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  6. The Clementine Bistatic Radar Experiment

    NASA Technical Reports Server (NTRS)

    Nozette, S.; Lichtenberg, C. L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E. M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, beta, for selected lunar areas. Observations of the lunar south pole yield a same-sense polarization enhancement around beta = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  7. The Clementine bistatic radar experiment

    USGS Publications Warehouse

    Nozette, S.; Lichtenberg, C.L.; Spudis, P.; Bonner, R.; Ort, W.; Malaret, E.; Robinson, M.; Shoemaker, E.M.

    1996-01-01

    During the Clementine 1 mission, a bistatic radar experiment measured the magnitude and polarization of the radar echo versus bistatic angle, ??, for selected lunar areas. Observations of the lunar south pole yield a same- sense polarization enhancement around ?? = 0. Analysis shows that the observed enhancement is localized to the permanently shadowed regions of the lunar south pole. Radar observations of periodically solar-illuminated lunar surfaces, including the north pole, yielded no such enhancement. A probable explanation for these differences is the presence of low-loss volume scatterers, such as water ice, in the permanently shadowed region at the south pole.

  8. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1982-01-01

    The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.

  9. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-07-01

    Radar investigations were conducted of selected minor planets, including: (1) observations during 1981-82 of 10 potential targets (2 Pallas, 8 Flora, 12 Victoria, 15 Eunomia, 19 Fortuna, 22 Kalliope, 132 Aethra, 219 Thusnelda, 433 Eros, and 2100 Ra-Shalom); and (2) continued analyses of observational data obtained during 1980-81 for 10 other asteroids (4 Vesta, 7 Iris, 16 Psyche, 75 Eurydike, 97 Klotho, 216 Kleopatra, 1685 Toro, 1862 Apollo, 1865 Cerberus, and 1915 Quetzalcoatl). Scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements: (1) yield estimates of target size, shape, and spin vector; (2) place constraints on topography, morphology, and composition of the planetary surface; (3) yield refined estimates of target orbital parameters; (4) reveal the presence of asteroidal satellites.

  10. Interior, looking northwest Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  11. Exterior, looking west Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Civil Engineering Storage Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  12. Interior, looking northeast Beale Air Force Base, Perimeter Acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, looking northeast - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. Quest-2003 Polarimetric Signature Trial: Experiment Design, SAR Calibration, Data Acquisition and Initial Results

    DTIC Science & Technology

    2004-11-01

    quatre dtalonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial). La BFC Shearwater offre un terrain relativement...des passages du radar. L’acquisition de I’ensemble de donn~es PolSAR a dtd effectude Ai l’aide du capteur SAR entidrement polarim6trique a6roportd...6tait constitu6 de quatre rdflecteurs 5 coin (CR), quatre 6talonneurs radar actifs (ARC) et deux stations de base GPS (systbme de positionnement mondial

  14. Studies on Radar and Non-radar Sensor Networks

    DTIC Science & Technology

    2006-06-15

    selection based on specific applications. References [1] Q . Liang, "Waveform Design and Diversity in Radar Sensor Networks: Theoretical Analysis and...Application to Automatic Target Recognition," submitted to IEEE Trans on Aerospace and Electronic Systems. [2] Q . Liang, "Waveform Design and Diversity in...Sensor Networks, June 2006, New York. [3] Q . Liang, "Radar Sensor Networks: Algorithms for Waveform Design and Diversity with Appli- cation to ATR with

  15. Historical aspects of radar atmospheric dynamics

    NASA Technical Reports Server (NTRS)

    Kato, Susumu

    1989-01-01

    A review of the history of radar techniques which have been applied to atmospheric observation is given. The author starts with ionosphere observation with the ionosonde, symbolizing as it does the earliest history of radar observation, and proceeds to later developments in radar observation such as the use of partial reflection, meteor, and incoherent scatter radars. Mesosphere stratosphere troposphere (MST) radars are discussed in terms of lower atmosphere observation.

  16. Improved Timing Scheme for Spaceborne Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew; Fischman, Mark

    2004-01-01

    An improved timing scheme has been conceived for operation of a scanning satellite-borne rain-measuring radar system. The scheme allows a real-time-generated solution, which is required for auto targeting. The current timing scheme used in radar satellites involves pre-computing a solution that allows the instrument to catch all transmitted pulses without transmitting and receiving at the same time. Satellite altitude requires many pulses in flight at any time, and the timing solution to prevent transmit and receive operations from colliding is usually found iteratively. The proposed satellite has a large number of scanning beams each with a different range to target and few pulses per beam. Furthermore, the satellite will be self-targeting, so the selection of which beams are used will change from sweep to sweep. The proposed timing solution guarantees no echo collisions, can be generated using simple FPGA-based hardware in real time, and can be mathematically shown to deliver the maximum number of pulses per second, given the timing constraints. The timing solution is computed every sweep, and consists of three phases: (1) a build-up phase, (2) a feedback phase, and (3) a build-down phase. Before the build-up phase can begin, the beams to be transmitted are sorted in numerical order. The numerical order of the beams is also the order from shortest range to longest range. Sorting the list guarantees no pulse collisions. The build-up phase begins by transmitting the first pulse from the first beam on the list. Transmission of this pulse starts a delay counter, which stores the beam number and the time delay to the beginning of the receive window for that beam. The timing generator waits just long enough to complete the transmit pulse plus one receive window, then sends out the second pulse. The second pulse starts a second delay counter, which stores its beam number and time delay. This process continues until an output from the first timer indicates there is less

  17. Acquisition in USTRANSCOM: An Organizational Assessment

    DTIC Science & Technology

    2009-12-01

    in the Harvard Business Review, a team’s success or failure at collaborating reflects the philosophy of top executives in the organization ( Gratton ...improvement act: Five years later. Acquisition Review Quarterly, summer, 1–21. Gratton , L., & Erickson, T.J. (2007). 8 ways to build collaborative teams

  18. The Reading Venture: Accelerating Language Acquisition.

    ERIC Educational Resources Information Center

    Sifontes, Aida I.; Baez, Dodie

    This presentation describes how to use reading to improve second language acquisition. Part 1, "Building Awareness of Reading Habits and Attitudes," has students report their habits and attitudes about reading in English and their native language and recognize the importance of reading for improving English skills. Part 2, "Choosing a Book," has…

  19. Modeling the Distinct Phases of Skill Acquisition

    ERIC Educational Resources Information Center

    Tenison, Caitlin; Anderson, John R.

    2016-01-01

    A focus of early mathematics education is to build fluency through practice. Several models of skill acquisition have sought to explain the increase in fluency because of practice by modeling both the learning mechanisms driving this speedup and the changes in cognitive processes involved in executing the skill (such as transitioning from…

  20. Language Acquisition without an Acquisition Device

    ERIC Educational Resources Information Center

    O'Grady, William

    2012-01-01

    Most explanatory work on first and second language learning assumes the primacy of the acquisition phenomenon itself, and a good deal of work has been devoted to the search for an "acquisition device" that is specific to humans, and perhaps even to language. I will consider the possibility that this strategy is misguided and that language…

  1. Ground Penetrating Radar, Barrow, Alaska

    DOE Data Explorer

    John Peterson

    2015-03-06

    This is 500 MHz Ground Penetrating Radar collected along the AB Line in Intensive Site 1 beginning in October 2012 and collected along L2 in Intensive Site 0 beginning in September 2011. Both continue to the present.

  2. NASA Radar Images Asteroid Toutatis

    NASA Video Gallery

    This 64-frame movie of asteroid Toutatis was generated from data by Goldstone's Solar System Radar on Dec. 12 and 13, 2012. In the movie clips, the rotation of the asteroid appears faster than it o...

  3. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  4. Solar Radar Astronomy with LOFAR

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.

    2003-04-01

    A new approach to the study of the Sun's corona and its dynamical processes is possible with radar investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic radar echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the radar echo technique. Of particular interest for such solar radar investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar radar frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar radar echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar radar cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving

  5. The NASA Polarimetric Radar (NPOL)

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Wolff, David B.

    2013-01-01

    Characteristics of the NASA NPOL S-band dual-polarimetric radar are presented including its operating characteristics, field configuration, scanning capabilities and calibration approaches. Examples of precipitation science data collections conducted using various scan types, and associated products, are presented for different convective system types and previous field campaign deployments. Finally, the NASA NPOL radar location is depicted in its home base configuration within the greater Wallops Flight Facility precipitation research array supporting NASA Global Precipitation Measurement Mission ground validation.

  6. Radar Imaging and Target Identification

    DTIC Science & Technology

    2009-02-09

    Methods in Wave Propagation, Vaxjo, Swe- den. • February 19, 2008, "Radar Imaging", math colloquium, Brigham- Young University. • January 31, 2008...manuscript, namely "Radar detection using sparsely distributed 19 apertures in urban environments", Ling Wang, II- Young Son, Trond Varslot, C. Evren...Coinmun. COM- 20, pp. 774-780, 1972. [24] M. Tomlinson, "New automatic equalizer employing modulo arithmetic," Electron. Lett. 7, pp. 138-139, 1971

  7. Synthetic Aperture Radar Simulation Study

    DTIC Science & Technology

    1984-03-01

    multilook are discussed. A chapter is devoted to elevation and planimetric data bases. In addition, six- teen pictures of SAR images from Hughes Aircraft, as...scans. Figure 5.4-1 is a photograph ot two SAR displays. The tirst display is made up ot six subscans and has a multilook ot one. Note that tading is...dentfi by block number) * Synthetic Aperture Radar ( SAR ) Simulation Study Radar Simulation Data Bases 5/~t. 4th.- Computer Image Generation Display 20

  8. Feature analysis for indoor radar target classification

    NASA Astrophysics Data System (ADS)

    Bufler, Travis D.; Narayanan, Ram M.

    2016-05-01

    This paper analyzes the spectral features from human beings and indoor clutter for building and tuning Support Vector Machines (SVMs) classifiers for the purpose of classifying stationary human targets. The spectral characteristics were obtained through simulations using Finite Difference Time Domain (FDTD) techniques where the radar cross section (RCS) of humans and indoor clutter objects were captured over a wide range of frequencies, polarizations, aspect angles, and materials. Additionally, experimental data was obtained using a vector network analyzer. Two different feature sets for class discrimination are used from the acquired target and clutter RCS spectral data sets. The first feature vectors consist of the raw spectral characteristics, while the second set of feature vectors are statistical features extracted over a set frequency interval. Utilizing variables of frequency and polarization, a SVM classifier can be trained to classify unknown targets as a human or clutter. Classification accuracy over 80% can be effectively achieved given appropriate features.

  9. Representing radar QPE and QPF uncertainties using radar ensembles

    NASA Astrophysics Data System (ADS)

    Sempere-Torres, D.; Llort, X.; Roca, J.; Pegram, G.

    2009-09-01

    In the last years, new comprehension of the physics underlying the radar measurements as well as new technological advancements have allowed radar community to propose better algorithms and methodologies and significant advancements have been achieved in improving Quantitative Precipitation Estimates (QPE) and Quantitative Precipitation forecasting (QPF) by radar. Thus the study of the 2D uncertainties field associated to these estimates has become an important subject, specially to enhance the use of radar QPE and QPF in hydrological studies, as well as in providing a reference for satellite precipitations measurements. In this context the use of radar-based rainfall ensembles (i.e. equiprobable rainfall field scenarios generated to be compatible with the observations/forecasts and with the inferred structure of the uncertainties) has been seen as an extremely interesting tool to represent their associated uncertainties. The generation of such radar ensembles requires first the full characterization of the 3D field of associated uncertainties (2D spatial plus temporal), since rainfall estimates show an error structure highly correlated in space and time. A full methodology to deal with this kind of radar-based rainfall ensembles is presented. Given a rainfall event, the 2D uncertainty fields associated to the radar estimates are defined for every time step using a benchmark, or reference field, based on the best available estimate of the rainfall field. This benchmark is built using an advanced non parametric interpolation of a dense raingauge network able to use the spatial structure provided by the radar observations, and is confined to the region in which this combination could be taken as a reference measurement (Velasco-Forero et al. 2008, doi:10.1016/j.advwatres.2008.10.004). Then the spatial and temporal structures of these uncertainty fields are characterized and a methodology to generate consistent multiple realisations of them is used to generate the

  10. Precipitation observations from high frequency spaceborne polarimetric synthetic aperture radar and ground-based radar: Theory and model validation

    NASA Astrophysics Data System (ADS)

    Fritz, Jason P.

    Global weather monitoring is a very useful tool to better understand the Earth's hydrological cycle and provide critical information for emergency and warning systems in severe cases. Developed countries have installed numerous ground-based radars for this purpose, but they obviously are not global in extent. To address this issue, the Tropical Rainfall Measurement Mission (TRMM) was launched in 1997 and has been quite successful. The follow-on Global Precipitation Measurement (GPM) mission will replace TRMM once it is launched. However, a single precipitation radar satellite is still limited, so it would be beneficial if additional existing satellite platforms can be used for meteorological purposes. Within the past few years, several X-band Synthetic Aperture Radar (SAR) satellites have been launched and more are planned. While the primary SAR application is surface monitoring, and they are heralded as "all weather'' systems, strong precipitation induces propagation and backscatter effects in the data. Thus, there exists a potential for weather monitoring using this technology. The process of extracting meteorological parameters from radar measurements is essentially an inversion problem that has been extensively studied for radars designed to estimate these parameters. Before attempting to solve the inverse problem for SAR data, however, the forward problem must be addressed to gain knowledge on exactly how precipitation impacts SAR imagery. This is accomplished by simulating storms in SAR data starting from real measurements of a storm by ground-based polarimetric radar. In addition, real storm observations by current SAR platforms are also quantitatively analyzed by comparison to theoretical results using simultaneous acquisitions by ground radars even in single polarization. For storm simulation, a novel approach is presented here using neural networks to accommodate the oscillations present when the particle scattering requires the Mie solution, i

  11. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows: Radar QPE (Kwon et al.; Hall et al.; Chen and Chandrasekar; Seo and Krajewski; Sandford).

  12. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  13. Building Awareness.

    ERIC Educational Resources Information Center

    Meilach, Dona Z.

    2001-01-01

    Discusses the importance of developing students' building awareness by exploring logos, or buildings that symbolize a country, to learn about architecture and the cultures in different countries. Explores categories of buildings. Includes examples of logos from around the world. (CMK)

  14. 5. View toward west, east face ("B" wall) of perimeter ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View toward west, east face ("B" wall) of perimeter acquisition radar building - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. CNA Independent Assessment: Air Force Acquisition. Return to Excellence

    DTIC Science & Technology

    2009-02-01

    integrated master plans and integrated master schedules, and it became the DOD propo- nent for systems engineering through the introduction of Mil-Std...but the Air Force has its Space-Based In- 1 frared Radar System , CSAR-X search and rescue helicopter, and KC- X aerial tanker, now in its fourth...symptoms that indicate problems with its acquisition system and processes. Some of the most pressing of these symptoms have been: Numerous cost

  16. EARLY SYNTACTIC ACQUISITION.

    ERIC Educational Resources Information Center

    KELLEY, K.L.

    THIS PAPER IS A STUDY OF A CHILD'S EARLIEST PRETRANSFORMATIONAL LANGUAGE ACQUISITION PROCESSES. A MODEL IS CONSTRUCTED BASED ON THE ASSUMPTIONS (1) THAT SYNTACTIC ACQUISITION OCCURS THROUGH THE TESTING OF HYPOTHESES REFLECTING THE INITIAL STRUCTURE OF THE ACQUISITION MECHANISM AND THE LANGUAGE DATA TO WHICH THE CHILD IS EXPOSED, AND (2) THAT…

  17. C-Band Radar Imagery, Dallas-Fort Worth, Texas

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Dallas-Fort Worth metropolitan area in Texas is shown on this image collected by the C-band radar of the Shuttle Radar Topography Mission (SRTM). On this radar image, smooth areas, such as lakes, roads and airport runways appear dark. Rougher features, such as buildings and trees, appear bright. Downtown Dallas is the bright area at the center of the image, alongside the dark linear floodway of the Trinity River. Dark linear runways of two airports are also seen: Love Field near downtown Dallas in the image center, and Dallas-Fort Worth International Airport in the upper left corner. The semi-circular terminal buildings of the international airport can also be seen in the area between the runways. Several large lakes, including Lake Ray Hubbard (upper right) and Joe Pool Lake (lower left) are also seen. Images like these, along with the SRTM topographic data, will be used by urban planners to study and monitor land use, and update maps and geographic information systems for the area. This image represents just 4 seconds of data collection time by the SRTM instrument. The overall diagonal linear pattern is a data processing artifact due to the quick turn-around browse nature of this image. These artifacts will be removed with further data processing.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR

  18. Exterior, looking west, Equipment Building to left, Tower at center, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Exterior, looking west, Equipment Building to left, Tower at center, Civil Engineering Storage Building (Building 5765) at left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, Microwave Equipment Building, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  19. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build...-way acquisition and clearance services may be incorporated into the design-build contract if...

  20. Within compound, from Gate House, looking northwest, Power Plant (Building ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Within compound, from Gate House, looking northwest, Power Plant (Building 5761) to left, Electrical Substation (Building 5770) and Supply Warehouse (Building 5768) center, Satellite Communications Terminal (Building 5771) to far left - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  1. 23 CFR 710.313 - Design-build projects.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Design-build projects. 710.313 Section 710.313 Highways... REAL ESTATE Project Development § 710.313 Design-build projects. (a) In the case of a design-build...-way acquisition and clearance services may be incorporated into the design-build contract if...

  2. Improving Radar Snowfall Measurements Using a Video Disdrometer

    NASA Astrophysics Data System (ADS)

    Newman, A. J.; Kucera, P. A.

    2005-05-01

    A video disdrometer has been recently developed at NASA/Wallops Flight Facility in an effort to improve surface precipitation measurements. The recent upgrade of the UND C-band weather radar to dual-polarimetric capabilities along with the development of the UND Glacial Ridge intensive atmospheric observation site has presented a valuable opportunity to attempt to improve radar estimates of snowfall. The video disdrometer, referred to as the Rain Imaging System (RIS), has been deployed at the Glacial Ridge site for most of the 2004-2005 winter season to measure size distributions, precipitation rate, and density estimates of snowfall. The RIS uses CCD grayscale video camera with a zoom lens to observe hydrometers in a sample volume located 2 meters from end of the lens and approximately 1.5 meters away from an independent light source. The design of the RIS may eliminate sampling errors from wind flow around the instrument. The RIS has proven its ability to operate continuously in the adverse conditions often observed in the Northern Plains. The RIS is able to provide crystal habit information, variability of particle size distributions for the lifecycle of the storm, snowfall rates, and estimates of snow density. This information, in conjunction with hand measurements of density and crystal habit, will be used to build a database for comparisons with polarimetric data from the UND radar. This database will serve as the basis for improving snowfall estimates using polarimetric radar observations. Preliminary results from several case studies will be presented.

  3. Indoor imagery with a 3D through-wall synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Sévigny, Pascale; DiFilippo, David J.; Laneve, Tony; Fournier, Jonathan

    2012-06-01

    Through-wall radar imaging is an emerging technology with great interest to military and police forces operating in an urban environment. A through-wall imaging radar can potentially provide interior room layouts as well as detection and localization of targets of interest within a building. In this paper, we present our through-wall radar system mounted on the side of a vehicle and driven along a path in front of a building of interest. The vehicle is equipped with a LIDAR (Light Detection and Ranging) and motion sensors that provide auxiliary information. The radar uses an ultra wideband frequency-modulated continuous wave (FMCW) waveform to obtain high range resolution. Our system is composed of a vertical linear receive array to discriminate targets in elevation, and two transmit elements operated in a slow multiple-input multiple output (MIMO) configuration to increase the achievable elevation resolution. High resolution in the along-track direction is obtained through synthetic aperture radar (SAR) techniques. We present experimental results that demonstrate the 3-D capability of the radar. We further demonstrate target detection behind challenging walls, and imagery of internal wall features. Finally, we discuss future work.

  4. 49. View of waveguide system entering building no. 105 (typical ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. View of waveguide system entering building no. 105 (typical of all radar scanner buildings), showing testing connection points and monitoring equipment. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  5. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  6. All-digital radar architecture

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo A.

    2014-10-01

    All digital radar architecture requires exclude mechanical scan system. The phase antenna array is necessarily large because the array elements must be co-located with very precise dimensions and will need high accuracy phase processing system for aggregate and distribute T/R modules data to/from antenna elements. Even phase array cannot provide wide field of view. New nature inspired all digital radar architecture proposed. The fly's eye consists of multiple angularly spaced sensors giving the fly simultaneously thee wide-area visual coverage it needs to detect and avoid the threats around him. Fly eye radar antenna array consist multiple directional antennas loose distributed along perimeter of ground vehicle or aircraft and coupled with receiving/transmitting front end modules connected by digital interface to central processor. Non-steering antenna array allows creating all-digital radar with extreme flexible architecture. Fly eye radar architecture provides wide possibility of digital modulation and different waveform generation. Simultaneous correlation and integration of thousands signals per second from each point of surveillance area allows not only detecting of low level signals ((low profile targets), but help to recognize and classify signals (targets) by using diversity signals, polarization modulation and intelligent processing. Proposed all digital radar architecture with distributed directional antenna array can provide a 3D space vector to the jammer by verification direction of arrival for signals sources and as result jam/spoof protection not only for radar systems, but for communication systems and any navigation constellation system, for both encrypted or unencrypted signals, for not limited number or close positioned jammers.

  7. Improving a data-acquisition software system with abstract data type components

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1990-01-01

    Abstract data types and object-oriented design are active research areas in computer science and software engineering. Much of the interest is aimed at new software development. Abstract data type packages developed for a discontinued software project were used to improve a real-time data-acquisition system under maintenance. The result saved effort and contributed to a significant improvement in the performance, maintainability, and reliability of the Goldstone Solar System Radar Data Acquisition System.

  8. Knowledge Acquisition for an Expert System in the Air Force Civil Engineering Operations Branch

    DTIC Science & Technology

    1988-09-01

    Knowledge Acquisition................. 35 Initial Interview........................ 35 Initial Knowledge Translation ..... 37 Second Knowledge...Acquisition.................. 37 Second Interview.......................... 37 Second Knowledge Translation ............. 38 Automation...Initial Knowledge Translation . The literature expressed that knowledge acquisition was the most difficult portion of building an expert system. But

  9. Radar Mosaic of Africa

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This is an image of equatorial Africa, centered on the equator at longitude 15degrees east. This image is a mosaic of almost 4,000 separate images obtained in 1996 by the L-band imaging radar onboard the Japanese Earth Resources Satellite. Using radar to penetrate the persistent clouds prevalent in tropical forests, the Japanese Earth Resources Satellite was able for the first time to image at high resolution this continental scale region during single flooding seasons. The area shown covers about 7.4 million square kilometers (2.8 million square miles) of land surface, spans more than 5,000 kilometers(3,100 miles) east and west and some 2,000 kilometers (1,240 miles) north and south. North is up in this image. At the full resolution of the mosaic (100 meters or 330 feet), this image is more than 500 megabytes in size, and was processed from imagery totaling more than 60 gigabytes.

    Central Africa was imaged twice in 1996, once between January and March, which is the major low-flood season in the Congo Basin, and once between October and November, which is the major high-flood season in the Congo Basin. The red color corresponds to the data from the low-flood season, the green to the high-flood season, and the blue to the 'texture' of the low-flood data. The forests appear green as a result, the flooded and palm forests, as well as urban areas, appear yellow, the ocean and lakes appear black, and savanna areas appear blue, black or green, depending on the savanna type, surface topography and other factors. The areas of the image that are black and white were mapped only between January and March 1996. In these areas, the black areas are savanna or open water, the gray are forests, and the white areas are flooded forests or urban areas. The Congo River dominates the middle of the image, where the nearby forests that are periodically flooded by the Congo and its tributaries stand out as yellow. The Nile River flows north from Lake Victoria in the middle right of

  10. Micro pulse laser radar

    NASA Technical Reports Server (NTRS)

    Spinhirne, James D. (Inventor)

    1993-01-01

    An eye safe, compact, solid state lidar for profiling atmospheric cloud and aerosol scattering is disclosed. The transmitter of the micro pulse lidar is a diode pumped micro-J pulse energy, high repetition rate Nd:YLF laser. Eye safety is obtained through beam expansion. The receiver employs a photon counting solid state Geiger mode avalanche photodiode detector. Data acquisition is by a single card multichannel scaler. Daytime background induced quantum noise is controlled by a narrow receiver field-of-view and a narrow bandwidth temperature controlled interference filter. Dynamic range of the signal is limited to optical geometric signal compression. Signal simulations and initial atmospheric measurements indicate that micropulse lider systems are capable of detecting and profiling all significant cloud and aerosol scattering through the troposphere and into the stratosphere. The intended applications are scientific studies and environmental monitoring which require full time, unattended measurements of the cloud and aerosol height structure.

  11. Bistatic synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Yates, Gillian

    Synthetic aperture radar (SAR) allows all-weather, day and night, surface surveillance and has the ability to detect, classify and geolocate objects at long stand-off ranges. Bistatic SAR, where the transmitter and the receiver are on separate platforms, is seen as a potential means of countering the vulnerability of conventional monostatic SAR to electronic countermeasures, particularly directional jamming, and avoiding physical attack of the imaging platform. As the receiving platform can be totally passive, it does not advertise its position by RF emissions. The transmitter is not susceptible to jamming and can, for example, operate at long stand-off ranges to reduce its vulnerability to physical attack. This thesis examines some of the complications involved in producing high-resolution bistatic SAR imagery. The effect of bistatic operation on resolution is examined from a theoretical viewpoint and analytical expressions for resolution are developed. These expressions are verified by simulation work using a simple 'point by point' processor. This work is extended to look at using modern practical processing engines for bistatic geometries. Adaptations of the polar format algorithm and range migration algorithm are considered. The principal achievement of this work is a fully airborne demonstration of bistatic SAR. The route taken in reaching this is given, along with some results. The bistatic SAR imagery is analysed and compared to the monostatic imagery collected at the same time. Demonstrating high-resolution bistatic SAR imagery using two airborne platforms represents what I believe to be a European first and is likely to be the first time that this has been achieved outside the US (the UK has very little insight into US work on this topic). Bistatic target characteristics are examined through the use of simulations. This also compares bistatic imagery with monostatic and gives further insight into the utility of bistatic SAR.

  12. Ultrawideband through-wall radar for detecting the motion of people in real time

    NASA Astrophysics Data System (ADS)

    Nag, Soumya; Barnes, Mark A.; Payment, Tim; Holladay, Gary

    2002-07-01

    Law enforcement officers and search-and-rescue workers often face the difficult task of determining the locations of people inside a building or obscured by smoke and debris. To address this problem, Time Domain Corporation (TDC) has developed a real-time, hand-held radar to detect the motion of persons in range and azimuth through non-metallic walls. This radar is a time modulated ultra-wide band (TM-UWB) impulse radar that generates a two-dimensional (2D) representation of moving targets in real time. The intentional transmit power emitted from the radar is comparable to the FCC Part 15, Class B limits. It has the following benefits: (1) covertness because of its ultra-low power noise-like signal, (2) high resolution at low radio frequencies for penetrating building materials, (3) reduced range ambiguities and clutter fold-over because of pseudo-random time modulation, and (4) clutter rejection because of the ultra-wide bandwidth of the signal. In this paper, an outline of the key parameters of the TDC prototype radar RadarVision2000 (RV2000) and a brief description of the algorithm that generates a motion map showing the range and direction of the moving people are presented. Some typical radar images of multiple targets for a variety of building materials and cluttered environment obtained using the prototype are shown. Finally, the paper presents some preliminary results for resolving the targets in the elevation plane along with a processing technique for reducing the intensity of multi-path responses in the images.

  13. Technology: Photonics illuminates the future of radar

    NASA Astrophysics Data System (ADS)

    McKinney, Jason D.

    2014-03-01

    The first implementation of a fully photonics-based coherent radar system shows how photonic methods for radio-frequency signal generation and measurement may facilitate the development of software-defined radar systems. See Letter p.341

  14. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  15. Meteorological radar facility. Part 1: System design

    NASA Technical Reports Server (NTRS)

    Brassaw, L. L., Jr.; Hamren, S. D.; Mullins, W. H.; Schweitzer, B. P.

    1976-01-01

    A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed.

  16. Extended target recognition in cognitive radar networks.

    PubMed

    Wei, Yimin; Meng, Huadong; Liu, Yimin; Wang, Xiqin

    2010-01-01

    We address the problem of adaptive waveform design for extended target recognition in cognitive radar networks. A closed-loop active target recognition radar system is extended to the case of a centralized cognitive radar network, in which a generalized likelihood ratio (GLR) based sequential hypothesis testing (SHT) framework is employed. Using Doppler velocities measured by multiple radars, the target aspect angle for each radar is calculated. The joint probability of each target hypothesis is then updated using observations from different radar line of sights (LOS). Based on these probabilities, a minimum correlation algorithm is proposed to adaptively design the transmit waveform for each radar in an amplitude fluctuation situation. Simulation results demonstrate performance improvements due to the cognitive radar network and adaptive waveform design. Our minimum correlation algorithm outperforms the eigen-waveform solution and other non-cognitive waveform design approaches.

  17. German Radar Observation Shuttle Experiment (ROSE)

    NASA Technical Reports Server (NTRS)

    Sleber, A. J.; Hartl, P.; Haydn, R.; Hildebrandt, G.; Konecny, G.; Muehlfeld, R.

    1984-01-01

    The success of radar sensors in several different application areas of interest depends on the knowledge of the backscatter of radar waves from the targets of interest, the variance of these interaction mechanisms with respect to changing measurement parameters, and the determination of the influence of he measuring systems on the results. The incidence-angle dependency of the radar cross section of different natural targets is derived. Problems involved by the combination of data gained with different sensors, e.g., MSS-, TM-, SPOTand SAR-images are analyzed. Radar cross-section values gained with ground-based radar spectrometers and spaceborne radar imaging, and non-imaging scatterometers and spaceborne radar images from the same areal target are correlated. The penetration of L-band radar waves into vegetated and nonvegetated surfaces is analyzed.

  18. Measurement of momentum flux using two meteor radars in Indonesia

    NASA Astrophysics Data System (ADS)

    Matsumoto, Naoki; Shinbori, Atsuki; Riggin, Dennis M.; Tsuda, Toshitaka

    2016-03-01

    Two nearly identical meteor radars were operated at Koto Tabang (0.20° S, 100.32° E), West Sumatra, and Biak (1.17° S, 136.10° E), West Papua, in Indonesia, separated by approximately 4000 km in longitude on the Equator. The zonal and meridional momentum flux, u'w' and v'w', where u, v, and w are the eastward, northward, and vertical wind velocity components, respectively, were estimated at 86 to 94 km altitudes using the meteor radar data by applying a method proposed by Hocking (2005). The observed u'w' at the two sites agreed reasonably well at 86, 90, and 94 km during the observation periods when the data acquisition rate was sufficiently large enough. Variations in v'w' were consistent between 86, 90, and 94 km altitudes at both sites. The climatological variation in the monthly averaged u'w' and v'w' was investigated using the long-term radar data at Koto Tabang from November 2002 to November 2013. The seasonal variations in u'w' and v'w' showed a repeatable semiannual and annual cycles, respectively. u'w' showed eastward values in February-April and July-September and v'w' was northward in June to August at 90-94 km, both of which were generally anti-phase with the mean zonal and meridional winds, having the same periodicity. Our results suggest the usefulness of the Hocking method.

  19. MW 08-multi-beam air and surface surveillance radar

    NASA Astrophysics Data System (ADS)

    1989-09-01

    Signal of the Netherlands has developed and is marketing the MW 08, a 3-D radar to be used for short to medium range surveillance, target acquisition, and tracking. MW 08 is a fully automated detecting and tracking radar. It is designed to counter threats from aircraft and low flying antiship missiles. It can also deal with the high level missile threat. MW 08 operates in the 5 cm band using one antenna for both transmitting and receiving. The antenna is an array, consisting of 8 stripline antennas. The received radar energy is processed by 8 receiver channels. These channels come together in the beam forming network, in which 8 virtual beams are formed. From this beam pattern, 6 beams are used for the elevation coverage of 0-70 degrees. MW 08's output signals of the beam former are further handled by FFT and plot processors for target speed information, clutter rejection, and jamming suppression. A general purpose computer handles target track initiation, and tracking. Tracking data are transferred to the command and control systems with 3-D target information for fastest possible lockon.

  20. Data Acquisition and Mass Storage

    NASA Astrophysics Data System (ADS)

    Vande Vyvre, P.

    2004-08-01

    The experiments performed at supercolliders will constitute a new challenge in several disciplines of High Energy Physics and Information Technology. This will definitely be the case for data acquisition and mass storage. The microelectronics, communication, and computing industries are maintaining an exponential increase of the performance of their products. The market of commodity products remains the largest and the most competitive market of technology products. This constitutes a strong incentive to use these commodity products extensively as components to build the data acquisition and computing infrastructures of the future generation of experiments. The present generation of experiments in Europe and in the US already constitutes an important step in this direction. The experience acquired in the design and the construction of the present experiments has to be complemented by a large R&D effort executed with good awareness of industry developments. The future experiments will also be expected to follow major trends of our present world: deliver physics results faster and become more and more visible and accessible. The present evolution of the technologies and the burgeoning of GRID projects indicate that these trends will be made possible. This paper includes a brief overview of the technologies currently used for the different tasks of the experimental data chain: data acquisition, selection, storage, processing, and analysis. The major trends of the computing and networking technologies are then indicated with particular attention paid to their influence on the future experiments. Finally, the vision of future data acquisition and processing systems and their promise for future supercolliders is presented.

  1. Radar Observation of Insects - Mosquitoes

    NASA Technical Reports Server (NTRS)

    Frost, E.; Downing, J.

    1979-01-01

    Tests were conducted at several sites over the coastal lowlands of New Jersey and over a region of high plains and low mountains in Oklahoma. In one area, a salt marsh in New Jersey, extensive ground tests were combined with laboratory data on expected insect backscatter to arrive at an extremely convincing model of the insect origin of most Dot Angels. A great deal of insight was studied from radar on the buildup and dispersal of insect swarms, since radar can follow where other means of trapping and observation cannot. Data on large-scale behavior as a function of wind and topography are presented. Displayed techniques which show individual or small swarm motion within some larger cloud or mass, or which can show the overall motion over great distances were developed. The influence of wind and terrain on insect motion and dispersal is determined from radar data.

  2. Scanning ARM Cloud Radar Handbook

    SciTech Connect

    Widener, K; Bharadwaj, N; Johnson, K

    2012-06-18

    The scanning ARM cloud radar (SACR) is a polarimetric Doppler radar consisting of three different radar designs based on operating frequency. These are designated as follows: (1) X-band SACR (X-SACR); (2) Ka-band SACR (Ka-SACR); and (3) W-band SACR (W-SACR). There are two SACRs on a single pedestal at each site where SACRs are deployed. The selection of the operating frequencies at each deployed site is predominantly determined by atmospheric attenuation at the site. Because RF attenuation increases with atmospheric water vapor content, ARM's Tropical Western Pacific (TWP) sites use the X-/Ka-band frequency pair. The Southern Great Plains (SGP) and North Slope of Alaska (NSA) sites field the Ka-/W-band frequency pair. One ARM Mobile Facility (AMF1) has a Ka/W-SACR and the other (AMF2) has a X/Ka-SACR.

  3. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  4. The Shuttle Radar Topography Mission: A Global DEM

    NASA Technical Reports Server (NTRS)

    Farr, Tom G.; Kobrick, Mike

    2000-01-01

    Digital topographic data are critical for a variety of civilian, commercial, and military applications. Scientists use Digital Elevation Models (DEM) to map drainage patterns and ecosystems, and to monitor land surface changes over time. The mountain-building effects of tectonics and the climatic effects of erosion can also be modeled with DEW The data's military applications include mission planning and rehearsal, modeling and simulation. Commercial applications include determining locations for cellular phone towers, enhanced ground proximity warning systems for aircraft, and improved maps for backpackers. The Shuttle Radar Topography Mission (SRTM) (Fig. 1), is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense. The mission is designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and south latitude. The DEM will have 30 m pixel spacing and about 15 m vertical errors.

  5. A High-Voltage UWB Coupled-Line Directional Coupler for Radar

    NASA Astrophysics Data System (ADS)

    Farr, Everett G.; Atchley, Lanney M.; Ellibee, Donald E.; Lawry, Dean I.

    The simplest method of building ultra-wideband (UWB) radar systems requires two antennas, one each for transmission and reception. To save space, it would be preferable to use a single antenna, so a UWB, high-voltage directional coupler is needed. In support of that goal, we develop here coupled-line directional couplers. We begin by describing the time-domain theory of operation of such couplers, and we optimize the impedances for maximum return signal. We then design, build and test two versions of high-voltage coupled-line directional couplers. We incorporate the directional couplers into a low-voltage UWB radar system, and we observe scattering back from a comer reflector. We identify possible improvements to the directional couplers and the UWB radar system.

  6. Radar operation in a hostile electromagnetic environment

    SciTech Connect

    Doerry, Armin Walter

    2014-03-01

    Radar ISR does not always involve cooperative or even friendly targets. An adversary has numerous techniques available to him to counter the effectiveness of a radar ISR sensor. These generally fall under the banner of jamming, spoofing, or otherwise interfering with the EM signals required by the radar sensor. Consequently mitigation techniques are prudent to retain efficacy of the radar sensor. We discuss in general terms a number of mitigation techniques.

  7. An MSK Waveform for Radar Applications

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2009-01-01

    We introduce a minimum shift keying (MSK) waveform developed for use in radar applications. This waveform is characterized in terms of its spectrum, autocorrelation, and ambiguity function, and is compared with the conventionally used bi-phase coded (BPC) radar signal. It is shown that the MSK waveform has several advantages when compared with the BPC waveform, and is a better candidate for deep-space radar imaging systems such as NASA's Goldstone Solar System Radar.

  8. SAR Ambiguity Study for the Cassini Radar

    NASA Technical Reports Server (NTRS)

    Hensley, Scott; Im, Eastwood; Johnson, William T. K.

    1993-01-01

    The Cassini Radar's synthetic aperture radar (SAR) ambiguity analysis is unique with respect to other spaceborne SAR ambiguity analyses owing to the non-orbiting spacecraft trajectory, asymmetric antenna pattern, and burst mode of data collection. By properly varying the pointing, burst mode timing, and radar parameters along the trajectory this study shows that the signal-to-ambiguity ratio of better than 15 dB can be achieved for all images obtained by the Cassini Radar.

  9. FMCW Radar Jamming Techniques and Analysis

    DTIC Science & Technology

    2013-09-01

    discussed. 14. SUBJECT TERMS FMCW Radar , LPI , Jamming, Electronic Warfare 15. NUMBER OF PAGES 103 16. PRICE CODE 17. SECURITY CLASSIFICATION...Among the many variations of LPI radar systems, Frequency-Modulated Continuous Wave ( FMCW ) radar has not only the ability to avoid detection, but... LPI radars and possible electronic protection (EP) mechanisms that may be implemented in the FMCW emitter. The research questions can be summarized

  10. Sensing through the wall imaging using the Army Research Lab ultra-wideband synchronous impulse reconstruction (UWB SIRE) radar

    NASA Astrophysics Data System (ADS)

    Nguyen, Lam; Ressler, Marc; Sichina, Jeffrey

    2008-04-01

    The U.S. Army Research Laboratory (ARL), as part of a mission and customer funded exploratory program, has developed a new low-frequency, ultra-wideband (UWB) synthetic aperture radar (SAR). The radar is capable of penetrating enclosed areas (buildings) and generating SAR imagery. This supports the U.S. Army's need for intelligence on the configuration, content, and human presence inside these enclosed areas. The radar system is mounted on a ground based vehicle traveling along the road and is configured with an array of antennas pointing toward the enclosed areas of interest. This paper will describe an experiment conducted recently at Aberdeen Proving Ground (APG), Maryland. In this paper we briefly describe the UWB SIRE radar and the test setup in the experiment. We will also describe the signal processing and the image techniques used to produce the SAR imagery. Finally, we will present SAR imagery of the building and its internal structure from different viewing directions.

  11. Electromagnetic modelling of Ground Penetrating Radar responses to complex targets

    NASA Astrophysics Data System (ADS)

    Pajewski, Lara; Giannopoulos, Antonis

    2014-05-01

    defined through a constant real value, or else its frequency-dispersion properties can be taken into account by incorporating into the model Debye approximations. The electromagnetic source can be represented as a simple line of current (in the case of two-dimensional models), a Hertzian dipole, a bow tie antenna, or else, the realistic description of a commercial antenna can be included in the model [2]. Preliminary results for some of the proposed cells are presented, obtained by using GprMax [3], a freeware tool which solves Maxwell's equations by using a second order in space and time Finite-Difference Time-Domain algorithm. B-Scans and A-Scans are calculated at 1.5 GHz, for the total electric field and for the field back-scattered by targets embedded in the cells. A detailed description of the structures, together with the relevant numerical results obtained to date, are available for the scientific community on the website of COST Action TU1208, www.GPRadar.eu. Research groups working on the development of electromagnetic forward- and inverse-scattering techniques, as well as on imaging methods, might test and compare the accuracy and applicability of their approaches on the proposed set of scenarios. The aim of this initiative is not that of identifying the best methods, but more properly to indicate the range of reliability of each approach, highlighting its advantages and drawbacks. In the future, the realisation of the proposed concrete cells and the acquisition of GPR experimental data would allow a very effective benchmark for forward and inverse scattering methods. References [1] R. Yelf, A. Ward, "Nine steps to concrete wisdom." Proc. 13th International Conference on Ground Penetrating Radar, Lecce, Italy, 21-25 June 2010, pp. 1-8. [2] C. Warren, A. Giannopoulos, "Creating FDTD models of commercial GPR antennas using Taguchi's optimisation method." Geophysics (2011), 76, article ID G37. [3] A. Giannopoulos, "Modelling ground penetrating radar by GPRMAX

  12. 3D wind field retrieval from spaceborne Doppler radar

    NASA Astrophysics Data System (ADS)

    Lemaêtre, Y.; Viltard, N.

    2012-11-01

    Numerous space missions carrying a radar are presently envisioned, particularly to study tropical rain systems. Among those missions, BOITATA is a joint effort between Brazil (INPE/AEB) and France (CNES). The goal is to embark a Doppler radar with scanning possibilities onboard a low-orbiting satellite. This instrument should be implemented in addition to a Passive Microwave Radiometer (PMR) between 19 and 183 GHz, an improved ScaraB-like broadband radiometer, a mm/submm PMR and a lightning detection instrument. This package would be meant to document the feedback of the ice microphysics on the rain systems life cycle and on their heat and radiative budgets. Since the microphysics and the water and energy budgets are strongly driven by the dynamics, the addition of a Doppler radar with scanning possibilities could provide precious information (3D wind and rain fields). It would allow us to build a large statistics of such critical information over the entire tropics and for all the stages of development of the convection. This information could be used to better understand the tropical convection and to improve convection parameterization relevant for cloud and climate models and associated applications such as now-casting and risk prevention. The present work focuses on the feasibility to retrieve 3D winds in precipitating areas from such a radar. A simulator of some parts of the spaceborne radar is developed to estimate the precision on the retrieved wind field depending on the scanning strategies and instrumental parameters and to determine the best sampling parameters.

  13. Detection of Marine Radar Targets

    NASA Astrophysics Data System (ADS)

    Briggs, John N.

    A radar must detect targets before it can display them. Yet manufacturers' data sheets rarely tell us what the products will detect at what range. Many of the bigger radars are Type Approved so we consult the relevant IMO performance standard A 477 (XII). Paraphrasing Section 3.1 of the draft forthcoming revision (NAV 41/6): under normal propagation conditions with the scanner at height of 15 m, in the absence of clutter, the radar is required to give clear indication of an object such as a navigational buoy having a radar cross section area (RCS) of 10 m2 at 2 n.m. and, as examples, coastlines whose ground rises to 60/6 m at ranges of 20/7 n.m., a ship of 5000 tons at any aspect at 7 n.m. and a small vessel 10 m long at 3 n.m.This helps, but suppose we must pick up a 5 m2 buoy at g km? What happens in clutter? Should we prefer S- or X-band? To answer such questions we use equations which define the performance of surveillance radars, but the textbooks and specialist papers containing them often generalize with aeronautical and defence topics, making life difficult for the nonspecialist.This paper attempts a concise and self-contained engineering account of all main factors affecting detection of passive and active targets on civil marine and vessel traffic service (VTS) radars. We develop a set of equations for X- and S-band (3 and 10 cm, centred on 9400 and 3000 MHz respectively), suited for spreadsheet calculation.Sufficient theory is sketched in to indicate where results should be valid. Some simplifications of conventional treatments have been identified.

  14. Temperate Ice Depth Sounding Radar (TIDSoR)

    NASA Astrophysics Data System (ADS)

    Jara, V.; Player, K.; Gogineni, S.; Rodriguez, F.; Thompson, L.

    2007-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last few years. A key variable in the study of glacier dynamics is ice thickness. A few attempts have been made to develop airborne sounding radars for temperate-ice thickness measurements [Arcone et al., 2000]. There is an urgent need for compact radar for routine ice thickness measurements from ground-based and airborne platforms. Radars (Radio Detection and Ranging) have been widely used to measure ice thickness in Greenland and Antarctica. However, the radars used in these areas operate in the VHF and UHF part of the electromagnetic spectrum. Due to the composition of temperate ice, the attenuation and back-scatter from large pockets of water makes UHF and VHF ineffective in sounding of its thickness. Radars operating in lower part of the HF spectrum are required for sounding temperate ice. We are designing and developing a Temperate Ice Depth-Sounding Radar (TIDSoR) that can penetrate through the water pockets and provide a more accurate measurement of the ice thickness. TIDSoR is a light-weight system for ground-based operations in mountainous terrain or aerial surveys in which weight is an important factor, such as in an UAV. TIDSoR operates on two channels in the HF spectrum using two-linear, frequency-modulated chirp waveforms. The two chirp frequency ranges are 7 to 8 MHz and 13.5 to 14.5 MHz. The radar will operate from a 12-V battery and is designed to weigh less than 2 kg, excluding the battery. The radar consists of three main sections: Digital, RF and antenna. The digital-section generates the transmitter waveforms, timing and control signals, and digitizes processes and stores the received signal. The RF-section consists of a transmitter with a 20-W peak-power amplifier, band-pass filters, and a switching system for a shared antenna. The receiver consists of a blanking switch, a limiter, a low-noise amplifier, a band-pass filter and a data acquisition

  15. Texture-based seismic damage assessment on radar data: a preliminary comparison between COSMO/SkyMed and TerraSAR-X datasets

    NASA Astrophysics Data System (ADS)

    Harb, Mostapha; Dell'Acqua, Fabio

    2013-04-01

    This study focuses on remote sensing technology as a disaster monitoring tool. It emphasizes on Synthetic-aperture radar (SAR) applications to extract geo-information relevant to damage assessment on the block level from single post disaster imagery. The procedure undertaken was previously developed by our group, based on discovered correlations between texture measures on radar images and the extent of seismic damage in any given urban block. Ground truthing was based on a "Damaged Area Ratio" (DAR) damage indicator, computed as the area ratio of the damaged buildings to the block area. The damaged buildings were detected using data from high-resolution airborne sensors, thus only high levels of damage, mainly with ceiling partial or complete collapse, were considered due to the limitation of the space borne technology in detecting slight to moderate damages as well as the sandwich damages. The urban areas in the studied cities were allocated into a number of blocks, where DAR was calculated for each block. After that, damage categorization was applied using thresholds on the DAR values of the selected blocks. This work continues the investigation on the linear correlation between the textural features and the calculated damage indicator DAR. For that purpose, data acquisitions were analysed from two different SAR satellite sensors, TerraSAR-X and COSMO/Sky-Med. As test cases, damages from two earthquakes were analysed with different geometric resolutions: L'Aquila 2009 using High Resolution Spotlight images and Haiti 2010 using Strip Map images. The data were analysed with similar techniques for the sake of an objective comparison on the variations on the linear correlations. The funding and support of the Italian Department of Civil Protection through the "Progetto Esecutivo 2012-13", as well as the support from the German Aerospace Agency through the LAN 1240 project are gratefully acknowledged.

  16. Developments in ground-penetrating radar at LLNL

    SciTech Connect

    Sargis, P.D.

    1994-05-01

    Lawrence Livermore National Laboratory (LLNL) is developing a side-looking, ground-penetrating impulse radar system that will eventually be mounted on an airborne platform to locate buried minefields. Presently, the radar system is mounted on top of a 60-foot adjustable boom. Several unique as well as commercial antennas having bandwidths in the 200 to 2000 MHz range are being experimented with. Also, LLNL-developed monocycle pulse generators are tailored to be most efficient over this frequency range. A technical description of the system will be presented with details about the video pulser, the wideband antennas, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware consist of off-the-shelf components. Testing of this system is conducted on a minefield located at the Nevada Test Site (NTS). The minefield contains real and surrogate mines of various sizes placed in natural vegetation. Some areas of the minefield have been cleared for non-cluttered studies. In addition, both metal and plastic mines are buried in the minefield. There is room in the NTS minefield for burying additional objects, such as unexploded ordnance, and this is expected to be done in the future. Recent results indicate success in imaging the NTS minefield using the GPR system. The data has been processed using in-house image reconstruction software, and has been registered with the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter will be presented.

  17. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  18. Synthetic Aperture Radar Oceanographic Investigations.

    DTIC Science & Technology

    1987-03-01

    Shuchman, P.G. Teleki, S.V. Hsiao, O.H. Shemdin , and W.E. Brown, Synthetic Aperture Radar Imaging of Ocean Waves : Comparison with Wave Measurements, J... Shemdin , Synthetic Aperture Radar Imaging of Ocean Waves during the Marineland Experiment, IEEE J. Oceanic Eg., OE-8, pp. 83-90, 1983. 12. R.A...If the surface reflectivity is assumed to be spatially un- section. are computed from the wave height spectrum as correlated, i.e. follows . (x. Y. t

  19. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  20. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  1. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  2. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  3. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  4. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  5. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  6. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  7. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  8. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for National Deck Officer Endorsements § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (b) If...

  9. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  10. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...

  11. 46 CFR 11.480 - Radar observer.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar observer. 11.480 Section 11.480 Shipping COAST... ENDORSEMENTS Professional Requirements for Deck Officers § 11.480 Radar observer. (a) This section contains the requirements that an applicant must meet to qualify as a radar observer. (Part 15 of this chapter specifies...

  12. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 GRT or over which are radar equipped, must hold an...

  13. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  14. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  15. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  16. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  17. 46 CFR 167.40-40 - Radar.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Radar. 167.40-40 Section 167.40-40 Shipping COAST GUARD... Requirements § 167.40-40 Radar. All mechanically propelled vessels of 1,600 gross tons and over in ocean or coastwise service must be fitted with a marine radar system for surface navigation. Facilities for...

  18. 46 CFR 15.815 - Radar observers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Radar observers. 15.815 Section 15.815 Shipping COAST... Computations § 15.815 Radar observers. (a) Each person in the required complement of deck officers, including the master, on inspected vessels of 300 gross tons or over which are radar equipped, shall hold...

  19. 46 CFR 130.310 - Radar.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Radar. 130.310 Section 130.310 Shipping COAST GUARD... EQUIPMENT AND SYSTEMS Navigational Equipment § 130.310 Radar. Each vessel of 100 or more gross tons must be fitted with a general marine radar in the pilothouse....

  20. 46 CFR 169.726 - Radar reflector.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Radar reflector. 169.726 Section 169.726 Shipping COAST... Control, Miscellaneous Systems, and Equipment § 169.726 Radar reflector. Each nonmetallic vessel less than 90 feet in length must exhibit a radar reflector of suitable size and design while underway. Markings...