Science.gov

Sample records for acquisition radar power

  1. 27. Perimeter acquisition radar building room #301, power supply assembly ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. Perimeter acquisition radar building room #301, power supply assembly - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. 9. View southeast corner of perimeter acquisition radar power plant ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View southeast corner of perimeter acquisition radar power plant room #214, control room; showing central monitoring station console in foreground. Well and booster control panel in left background and electric power management panel on far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  3. 8. Perimeter acquisition radar power plant room #211, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Perimeter acquisition radar power plant room #211, battery equipment room; showing battery racks. The dc power of these batteries is distributed to motor-control centers, the annunciator system, and fire alarm and tripping circuits - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  4. 7. Perimeter acquisition radar power plant room #202, battery equipment ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Perimeter acquisition radar power plant room #202, battery equipment room; showing battery room (in background) and multiple source power converter (in foreground). The picture offers another look at the shock-isolation system developed for each platform - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  5. 25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. Perimeter acquisition radar building room #2M4, (mezzanine), power supply room; computer power supply on left and water flow on right. This room is directly below data processing area (room #318). Sign on right reads: High purity water digital rack - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 33. Perimeter acquisition radar building room #320, perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    33. Perimeter acquisition radar building room #320, perimeter acquisition radar operations center (PAROC), contains the tactical command and control group equipment required to control the par site. Showing spacetrack monitor console - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 30. Perimeter acquisition radar building room #318, showing radar control. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. Perimeter acquisition radar building room #318, showing radar control. Console and line printers - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 26. Perimeter acquisition radar building room #301, transmitter area no. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Perimeter acquisition radar building room #301, transmitter area no. 2; power supply assembly (in foreground) and amplifier modulators - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. 6. View toward southeast, northwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View toward southeast, northwest oblique of perimeter acquisition radar building, with view of par power plant - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  10. 16. Perimeter acquisition radar building room #102, electrical equipment room; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Perimeter acquisition radar building room #102, electrical equipment room; the prime power distribution system. Excellent example of endulum-types shock isolation. The grey cabinet and barrel assemble is part of the polychlorinated biphenyl (PCB) retrofill project - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  11. 8. View toward northeast, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. View toward northeast, southwest oblique of perimeter acquisition radar building showing accessway #101 leading into par power plant from service road B in foreground - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  12. 9. View toward northeast, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. View toward northeast, southwest oblique of perimeter acquisition radar building showing, from left to right, fuel oil pump station, cooling towers, power plant, and diesel intake/exhaust - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. 1. View from south to north of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View from south to north of perimeter acquisition radar power plant diesel engine exhaust and the small engine intake. On the right is the ventilating air intake/exhaust, distinguishable by its square shape, whereas the diesel columns are rectangular - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Power Plant, In Limited Access Area, Southwest of PARB at end of Service Road B, Nekoma, Cavalier County, ND

  14. 41. Perimeter acquisition radar building radar element and coaxial display, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Perimeter acquisition radar building radar element and coaxial display, with drawing of typical antenna section. Drawing, from left to right, shows element, aluminum ground plane, cable connectors and hardware, cable, and back-up ring. Grey area is the concrete wall - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. 2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. HI PAR (ACQUISITION RADAR) TOWER AND ENLISTED MEN (EM) BARRACKS WITH RADAR ATTACHED. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK

  16. View (facing into perimeter acquisition radar building) through first level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View (facing into perimeter acquisition radar building) through first level of utility tunnel. This tunnel connects the PARB with its power plan - Stanley R. Mickelsen Safeguard Complex, Utility Tunnel, Between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. 14. Inner double blast door entrance to perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. Inner double blast door entrance to perimeter acquisition radar building security area - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. 28. Perimeter acquisition radar building room #302, signal process and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    28. Perimeter acquisition radar building room #302, signal process and analog receiver room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  19. 21. Perimeter acquisition radar building room #200, electrical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Perimeter acquisition radar building room #200, electrical equipment room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  20. 35. Perimeter acquisition radar building room #325, showing hard disc ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. Perimeter acquisition radar building room #325, showing hard disc drive - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  1. 32. Perimeter acquisition radar building room #318, closeup of rack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    32. Perimeter acquisition radar building room #318, close-up of rack showing logic chassis - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  2. 24. Perimeter acquisition radar building room #203, communications room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. Perimeter acquisition radar building room #203, communications room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  3. 22. Perimeter acquisition radar building room #201, phase shifter service ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. Perimeter acquisition radar building room #201, phase shifter service platform (level two) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  4. 11. View toward southwest, northeast oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. View toward southwest, northeast oblique of perimeter acquisition radar building showing - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  5. 34. Perimeter acquisition radar building room #325, tape handler room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. Perimeter acquisition radar building room #325, tape handler room - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 23. Perimeter acquisition radar building room #202, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Perimeter acquisition radar building room #202, mechanical equipment room no. 2 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 36. Perimeter acquisition radar building, phase shifter service platform; level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    36. Perimeter acquisition radar building, phase shifter service platform; level three - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 58. Cutaway profile drawing of the perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    58. Cutaway profile drawing of the perimeter acquisition radar - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Gyroklystron-Powered WARLOC Radar

    NASA Astrophysics Data System (ADS)

    Danly, B. G.; Cheung, W. J.; Gregers-Hansen, V.; Linde, G.; Ngo, M.

    2003-12-01

    A high-power, coherent, W-band (94 GHz) millimeter-wave radar has been developed at the Naval Research Laboratory. This radar, named WARLOC, employs a 100 kW peak power, 10 kW average power gyro-klystron as the final power amplifier, an overmoded transmission line system, and a quasi-optical duplexer, together with a high gain antenna, four-channel receiver, and state-of-the-art signal processing. The gyro-amplifiers and the implementation in the WARLOC radar will be described.

  10. 31. Perimeter acquisition radar building room #318, data storage "racks"; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. Perimeter acquisition radar building room #318, data storage "racks"; sign read: M&D controller, logic control buffer, data transmission controller - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  11. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  12. 15. Front security entrance to the perimeter acquisition radar building, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Front security entrance to the perimeter acquisition radar building, showing rotogates 1 and 2 and entrance door to security operations control center (SOCC), room #108 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  13. 18. Perimeter acquisition radar building room #105, deionizers (filter tanks) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Perimeter acquisition radar building room #105, deionizers (filter tanks) for data processor cooling and ice backup; sign reads: Deionizer units provide high-purity water by removal of oxygen, and organic and mineral content from water - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  14. 19. Perimeter acquisition radar building room #105, sign reads: Three ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. Perimeter acquisition radar building room #105, sign reads: Three 660-ton trane chillers, each chiller can supply enough cooling for approximately 250 average air-conditioned homes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  15. 20. Perimeter acquisition radar building room #105, shockisolated platform for ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. Perimeter acquisition radar building room #105, shock-isolated platform for chillers is easily seen on the right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  16. 10. View toward northwest, southwest oblique of perimeter acquisition radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. View toward northwest, southwest oblique of perimeter acquisition radar building, showing docking facility. Left of the knockout panel on lower right is emergency exit blast door #BD5/#127 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. 37. Perimeter acquisition radar building, phase shifter service platform, level ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. Perimeter acquisition radar building, phase shifter service platform, level three; This shows the coaxial switches and transmitter output assembly (located only on this level) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  18. 39. Perimeter acquisition radar building room #504, techinal maintenance and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. Perimeter acquisition radar building room #504, techinal maintenance and repair center (TMRC) and tactical support equipment (TSE) storage area; storage-travel wave tubes - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  19. 17. Perimeter acquisition radar building room #105, mechanical equipment room ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. Perimeter acquisition radar building room #105, mechanical equipment room no. 1; sign reads: Heat exchangers (shell and tube type). Provide precise temperature control of water for cooling critical electronic equipment - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  20. 3. Photocopy of photograph showing acquisition radar from 'Procedures and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Photocopy of photograph showing acquisition radar from 'Procedures and Drills for the NIKE Hercules Missile Battery,' Department of the Army Field Manual, FM-44-82 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1959 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  1. 4. Photocopy of photograph showing battery acquisition radar from 'Procedures ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photocopy of photograph showing battery acquisition radar from 'Procedures and Drills for the NIKE Hercules Missile Battery,' Department of the Army Field Manual, FM-44-82 from Institute for Military History, Carlisle Barracks, Carlisle, PA, 1959 - NIKE Missile Battery PR-79, East Windsor Road south of State Route 101, Foster, Providence County, RI

  2. Minimum acquisition time detection. [of radar targets

    NASA Technical Reports Server (NTRS)

    Brock, H. I.; Hung, J. C.

    1975-01-01

    Two different methods of target detection when the return signal is contaminated with noise are discussed and compared. The first method uses Neyman-Pearson detection philosophy and selects the threshold level to give a desired false alarm probability. The maximum probability of false alarm is constrained by the target cross scan velocity component. The second method (minimum acquisition time detection), which is similar to the ideal observer, selects the threshold level to minimize the expected target acquisition time. The probabilities of false alarm and missed detection are selected so that the errors produced by these effects produce the minimum acquisition time. Three different scan techniques - linear, spiral and two-mode scan - are studied and compared.

  3. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  4. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal.

  5. 42. Perimeter acquisition radar building plaque, commemorating parransferral from U.S. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. Perimeter acquisition radar building plaque, commemorating parransferral from U.S. Army ballistic missile defense organization to U.S. Air Force aerospace defense command (dated 1 October 1977) - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  6. 38. Perimeter acquisition radar building room #414, digital/electrical repair shop; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. Perimeter acquisition radar building room #414, digital/electrical repair shop; showing work areas available for maintenance and equipment repair - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 40. Perimeter acquisition radar building room #510B, chemical, biological, and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    40. Perimeter acquisition radar building room #510B, chemical, biological, and radiological (CBR) air filter room no. 1 - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. Probability of acquisition of three-dimensional imaging laser radar

    NASA Astrophysics Data System (ADS)

    Dong, Li-jun; Zhu, Shao-lan; Sun, Chuan-dong; Gao, Cun-xiao; Song, Zhi-yuan

    2011-06-01

    Three-dimensional imaging laser radar (3-D ladar) is widely used in area of modern military, scientific research, agriculture and industry. Because of its many features such as angle-angle-range capturing, high resolution, anti-jamming ability and no multipath effect ,but it has to scan for target searching, acquiring and tracking. This paper presents a novel probability model of target acquiring which provides a theoretical basis for optimizing the scanning mechanism. The model combines space and time, target moving velocity and ladar scanning velocity together. Then the optimum scanning mechanism to obtain the maximum probability of acquisition and associated with different targets can be gained. The result shows that this model provides a method to optimize parameter for designing of the scanner.

  9. The economics of data acquisition computers for ST and MST radars

    NASA Technical Reports Server (NTRS)

    Watkins, B. J.

    1983-01-01

    Some low cost options for data acquisition computers for ST (stratosphere, troposphere) and MST (mesosphere, stratosphere, troposphere) are presented. The particular equipment discussed reflects choices made by the University of Alaska group but of course many other options exist. The low cost microprocessor and array processor approach presented here has several advantages because of its modularity. An inexpensive system may be configured for a minimum performance ST radar, whereas a multiprocessor and/or a multiarray processor system may be used for a higher performance MST radar. This modularity is important for a network of radars because the initial cost is minimized while future upgrades will still be possible at minimal expense. This modularity also aids in lowering the cost of software development because system expansions should rquire little software changes. The functions of the radar computer will be to obtain Doppler spectra in near real time with some minor analysis such as vector wind determination.

  10. The real-time display of interferometry data for Goldstone radar astronomy data acquisition

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1994-01-01

    A method for visualizing radar interferometry data in real time has been developed for the Goldstone radar astronomy ranging data-acquisition system. The presentation is similar in appearance to a vector field display or data-based grid. This form was selected to facilitate the recognition of characteristic patterns of local variation in the phase and magnitude of complex elements in a two-dimensional data array. The design emphasized efficiency under the demands of real-time processing and remote monitoring. The interferometry 'phase-magnitude' presentation, as it has come to be called, has been used to monitor radar interferometry experiments on three targets, beginning with the asteroid 4179 Toutatis, and continuing with Mars and Mercury.

  11. Data Acquisition System for Multi-Frequency Radar Flight Operations Preparation

    NASA Technical Reports Server (NTRS)

    Leachman, Jonathan

    2010-01-01

    A three-channel data acquisition system was developed for the NASA Multi-Frequency Radar (MFR) system. The system is based on a commercial-off-the-shelf (COTS) industrial PC (personal computer) and two dual-channel 14-bit digital receiver cards. The decimated complex envelope representations of the three radar signals are passed to the host PC via the PCI bus, and then processed in parallel by multiple cores of the PC CPU (central processing unit). The innovation is this parallelization of the radar data processing using multiple cores of a standard COTS multi-core CPU. The data processing portion of the data acquisition software was built using autonomous program modules or threads, which can run simultaneously on different cores. A master program module calculates the optimal number of processing threads, launches them, and continually supplies each with data. The benefit of this new parallel software architecture is that COTS PCs can be used to implement increasingly complex processing algorithms on an increasing number of radar range gates and data rates. As new PCs become available with higher numbers of CPU cores, the software will automatically utilize the additional computational capacity.

  12. MICROPROCESSOR-BASED DATA-ACQUISITION SYSTEM FOR A BOREHOLE RADAR.

    USGS Publications Warehouse

    Bradley, Jerry A.; Wright, David L.

    1987-01-01

    An efficient microprocessor-based system is described that permits real-time acquisition, stacking, and digital recording of data generated by a borehole radar system. Although the system digitizes, stacks, and records independently of a computer, it is interfaced to a desktop computer for program control over system parameters such as sampling interval, number of samples, number of times the data are stacked prior to recording on nine-track tape, and for graphics display of the digitized data. The data can be transferred to the desktop computer during recording, or it can be played back from a tape at a latter time. Using the desktop computer, the operator observes results while recording data and generates hard-copy graphics in the field. Thus, the radar operator can immediately evaluate the quality of data being obtained, modify system parameters, study the radar logs before leaving the field, and rerun borehole logs if necessary. The system has proven to be reliable in the field and has increased productivity both in the field and in the laboratory.

  13. Power centroid radar and its rise from the universal cybernetics duality

    NASA Astrophysics Data System (ADS)

    Feria, Erlan H.

    2014-05-01

    Power centroid radar (PC-Radar) is a fast and powerful adaptive radar scheme that naturally surfaced from the recent discovery of the time-dual for information theory which has been named "latency theory." Latency theory itself was born from the universal cybernetics duality (UC-Duality), first identified in the late 1970s, that has also delivered a time dual for thermodynamics that has been named "lingerdynamics" and anchors an emerging lifespan theory for biological systems. In this paper the rise of PC-Radar from the UC-Duality is described. The development of PC-Radar, US patented, started with Defense Advanced Research Projects Agency (DARPA) funded research on knowledge-aided (KA) adaptive radar of the last decade. The outstanding signal to interference plus noise ratio (SINR) performance of PC-Radar under severely taxing environmental disturbances will be established. More specifically, it will be seen that the SINR performance of PC-Radar, either KA or knowledgeunaided (KU), approximates that of an optimum KA radar scheme. The explanation for this remarkable result is that PC-Radar inherently arises from the UC-Duality, which advances a "first principles" duality guidance theory for the derivation of synergistic storage-space/computational-time compression solutions. Real-world synthetic aperture radar (SAR) images will be used as prior-knowledge to illustrate these results.

  14. State transition storyboards: A tool for designing the Goldstone solar system radar data acquisition system user interface software

    NASA Technical Reports Server (NTRS)

    Howard, S. D.

    1987-01-01

    Effective user interface design in software systems is a complex task that takes place without adequate modeling tools. By combining state transition diagrams and the storyboard technique of filmmakers, State Transition Storyboards were developed to provide a detailed modeling technique for the Goldstone Solar System Radar Data Acquisition System human-machine interface. Illustrations are included with a description of the modeling technique.

  15. DATA ACQUISITION AND APPLICATIONS OF SIDE-LOOKING AIRBORNE RADAR IN THE U. S. GEOLOGICAL SURVEY.

    USGS Publications Warehouse

    Jones, John Edwin; Kover, Allan N.

    1985-01-01

    The Side-Looking Airborne Radar (SLAR) program encompasses a multi-discipline effort involving geologists, hydrologists, engineers, geographers, and cartographers of the U. S. Geological Survey (USGS). Since the program began in 1980, more than 520,000 square miles of aerial coverage of SLAR data in the conterminous United States and Alaska have been acquired or contracted for acquisition. The Geological Survey has supported more than 60 research and applications projects addressing the use of this technology in the earth sciences since 1980. These projects have included preparation of lithographic reproductions of SLAR mosaics, research to improve the cartographic uses of SLAR, research for use of SLAR in assessing earth hazards, and studies using SLAR for energy and mineral exploration through improved geologic mapping.

  16. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a "IF homodyne" receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses.

  17. Phase coded, micro-power impulse radar motion sensor

    DOEpatents

    McEwan, T.E.

    1996-05-21

    A motion sensing, micro-power impulse radar MIR impresses on the transmitted signal, or the received pulse timing signal, one or more frequencies lower than the pulse repetition frequency, that become intermediate frequencies in a ``IF homodyne`` receiver. Thus, many advantages of classical RF receivers can be thereby be realized with ultra-wide band radar. The sensor includes a transmitter which transmits a sequence of electromagnetic pulses in response to a transmit timing signal at a nominal pulse repetition frequency. A receiver samples echoes of the sequence of electromagnetic pulses from objects within the field with controlled timing, in response to a receive timing signal, and generates a sample signal in response to the samples. A timing circuit supplies the transmit timing signal to the transmitter and supplies the receive timing signal to the receiver. The relative timing of the transmit timing signal and the receive timing signal is modulated between a first relative delay and a second relative delay at an intermediate frequency, causing the receiver to sample the echoes such that the time between transmissions of pulses in the sequence and samples by the receiver is modulated at the intermediate frequency. Modulation may be executed by modulating the pulse repetition frequency which drives the transmitter, by modulating the delay circuitry which controls the relative timing of the sample strobe, or by modulating amplitude of the transmitted pulses. The electromagnetic pulses will have a nominal center frequency related to pulse width, and the first relative delay and the second relative delay between which the timing signals are modulated, differ by less than the nominal pulse width, and preferably by about one-quarter wavelength at the nominal center frequency of the transmitted pulses. 5 figs.

  18. A Portable Low-Power Harmonic Radar System and Conformal Tag for Insect Tracking

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Harmonic radar systems provide an effective modality for tracking insect behavior. This paper presents a harmonic radar system proposed to track the migration of the Emerald Ash Borer (EAB). The system offers a unique combination of portability, low power and small tag design. It is comprised of a...

  19. A survey of airborne radar systems for deployment on a High Altitude Powered Platform (HAPP)

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.; Leung, K. C.

    1979-01-01

    A survey was conducted to find out the system characteristics of commercially available and unclassified military radars suitable for deployment on a stationary platform. A total of ten domestic and eight foreign manufacturers of the radar systems were identified. Questionnaires were sent to manufacturers requesting information concerning the system characteristics: frequency, power used, weight, volume, power radiated, antenna pattern, resolution, display capabilities, pulse repetition frequency, and sensitivity. A literature search was also made to gather the system characteristics information. Results of the survey are documented and comparisons are made among available radar systems.

  20. Mechanical Power Flow Changes during Multijoint Movement Acquisition

    ERIC Educational Resources Information Center

    Kadota, Koji; Matsuo, Tomoyuki; Hashizume, Ken; Tezuka, Kazushi

    2006-01-01

    We investigated the differences in mechanical power flow in early and late practice stages during a cyclic movement consisting of upper arm circumduction to clarify the change in mechanical energy use with skill acquisition. Seven participants practiced the task every other day until their joint angular movements conformed to those of an expert.…

  1. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Fujita, T.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Grossman, M.; Kia, T.; Nesmith, B.

    1988-01-01

    The SP-100 Project was established to develop and demonstrate feasibility of a space reactor power system (SRPS) at power levels of 10's of kilowatts to a megawatt. To help determine systems requirements for the SRPS, a mission and spacecraft were examined which utilize this power system for a space-based radar to observe moving objects. Aspects of the mission and spacecraft bearing on the power system were the primary objectives of this study; performance of the radar itself was not within the scope. The study was carried out by the Systems Design Audit Team of the SP-100 Project.

  2. Development of Ku-band rendezvous radar tracking and acquisition simulation programs

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The fidelity of the Space Shuttle Radar tracking simulation model was improved. The data from the Shuttle Orbiter Radar Test and Evaluation (SORTE) program experiments performed at the White Sands Missile Range (WSMR) were reviewed and analyzed. The selected flight rendezvous radar data was evaluated. Problems with the Inertial Line-of-Sight (ILOS) angle rate tracker were evaluated using the improved fidelity angle rate tracker simulation model.

  3. probing the atmosphere with high power, high resolution radars

    NASA Technical Reports Server (NTRS)

    Hardy, K. R.; Katz, I.

    1969-01-01

    Observations of radar echoes from the clear atmosphere are presented and the scattering mechanisms responsible for the two basic types of clear-air echoes are discussed. The commonly observed dot echo originates from a point in space and usually shows little variation in echo intensity over periods of about 0.1 second. The second type of clear-air radar echo appears diffuse in space, and signal intensities vary considerably over periods of less than 0.1 second. The echoes often occur in thin horizontal layers or as boundaries of convective activity; these are characterized by sharp gradients of refractive index. Some features of clear-air atmospheric structures as observed with radar are presented. These structures include thin stable inversions, convective thermals, Benard convection cells, breaking gravity waves, and high tropospheric layers which are sufficiently turbulent to affect aircraft.

  4. Interferometric acquisition and fire control radar for short-range missile defense with optimized radar distribution (SWORD)

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-07-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept "SWORD" (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of the past investments. The Deptuy Assistant Secretary of the Army for Research and Technology [DAS(R&T)] has a three-year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary Bench-Top Experiment results will be presented in this paper.

  5. Sensitivity of Radar Wave Propagation Power to the Marine Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lentini, N.; Hackett, E. E.

    2014-12-01

    Radar is a remote sensor used for scientific, meteorological, and military applications. Radar waves are affected by the medium through which they propagate, impacting the accuracy of radar measurements. Thus, environmental effects should be understood and quantified. The marine atmospheric boundary layer (MABL) is highly dynamic and turbulent, and affects radar wave propagation. The ocean surface roughness impacts scattering behavior. These effects cause variability in constructive and destructive interference patterns due to reflection from the ocean surface, known as multipath. The atmospheric effects cause radar waves to attenuate and refract; this study focuses on the refractive effects. A high-fidelity, physics-based, parabolic wave equation simulation is used to model the radar propagation and accounts for effects of the rough ocean surface (wind seas and swell) as well as variable refractivity with height and range. We use a robust, variance based, sensitivity analysis method called the Extended Fourier Amplitude Sensitivity Test to quantify which environmental parameters have the most significant effect on the modeled radar wave propagation. In this sensitivity study, the environment is parameterized by 16 variables, 8 ocean surface and 8 atmospheric. Sensitivity analysis is performed for 3 radar frequencies (3, 9, and 15 GHz) and 2 polarizations (horizontal and vertical). Results indicate that radar wave propagation is more sensitive to atmospheric parameters than ocean surface parameters. The mixed layer has the most far-reaching effect over the entire model domain (a range of 60 km and altitudes up to 1 km), characterized by its height and refractivity gradient. The remaining important factors have a predominantly local effect in the region where they occur in the MABL atmospheric structure. At low altitudes, radar wave propagation power is most sensitive to the gradient and curvature of the vertical refractivity profile. This research provides insight

  6. Low-power triggered data acquisition system and method

    NASA Technical Reports Server (NTRS)

    Champaigne, Kevin (Inventor); Sumners, Jonathan (Inventor)

    2012-01-01

    A low-power triggered data acquisition system and method utilizes low-powered circuitry, comparators, and digital logic incorporated into a miniaturized device interfaced with self-generating transducer sensor inputs to detect, identify and assess impact and damage to surfaces and structures wherein, upon the occurrence of a triggering event that produces a signal greater than a set threshold changes the comparator output and causes the system to acquire and store digital data representative of the incoming waveform on at least one triggered channel. The sensors may be disposed in an array to provide triangulation and location of the impact.

  7. The relationship between strength of turbulence and backscattering radar power at HF and VHF

    NASA Technical Reports Server (NTRS)

    Hocking, W. K.

    1983-01-01

    The formulae relating turbulence and other atmospheric parameters to backscattered power for radar observations are reviewed. Emphasis is on the case of scatter from turbulent irregularities which have scales corresponding to the range of isotropic, inertial range turbulence. The applicability of this assumption is discussed. A formula is introduced for the mesosphere which relates ionospheric electron densities to backscattered power.

  8. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices

    DTIC Science & Technology

    2016-02-22

    SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their

  9. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.

    PubMed

    Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper

    2014-01-01

    We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.

  10. Nuclear reactor power as applied to a space-based radar mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L.; Beatty, R.; Bhandari, P.; Chow, E.; Deininger, W.; Ewell, R.; Fujita, T.; Grossman, M.; Bloomfield, H.; Heller, J.

    1988-01-01

    A space-based radar mission and spacecraft are examined to determine system requirements for a 300 kWe space nuclear reactor power system. The spacecraft configuration and its orbit, launch vehicle, and propulsion are described. Mission profiles are addressed, and storage in assembly orbit is considered. Dynamics and attitude control and the problems of nuclear and thermal radiation are examined.

  11. Interference detection and correction applied to incoherent-scatter radar power spectrum measurement

    NASA Technical Reports Server (NTRS)

    Ying, W. P.; Mathews, J. D.; Rastogi, P. K.

    1986-01-01

    A median filter based interference detection and correction technique is evaluated and the method applied to the Arecibo incoherent scatter radar D-region ionospheric power spectrum is discussed. The method can be extended to other kinds of data when the statistics involved in the process are still valid.

  12. Application of a portable radar interferometer and terrestrial long-range lidar for high resolution data acquisition of natural rock slopes

    NASA Astrophysics Data System (ADS)

    Kos, Andrew; Strozzi, Tazio; Tomkinson, William; Conforti, Dario; Wiesmann, Andreas

    2010-05-01

    The application of portable radar interferometry using real aperture technology, integrated with long range terrestrial lidar for monitoring unstable rock slopes will be presented. Measurement precision as well as spatial and temporal resolution of the combined methods will be discussed in terms of selected case studies. The advantages of system portability and method of data acquisition will be highlighted since field inaccessibility often hinders the placement of instruments for optimal lines-of-site or range for the acquisition of high resolution data.

  13. Inference of surface power spectra from inversion of multifrequency polarimetric radar data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jacob J.; Burnette, Charles F.; Farr, Tom G.

    1991-01-01

    During the summer of 1988 an intensive field experiment was conducted in the vicinity of Pisgah lava field in the Mojave Desert. As part of the experiment, physical properties such as microtopography, composition, soil moisture, and dielectric constant at five different sites representing surfaces with rms heights varying from less than one centimeter to tens of centimeters were measured. In addition, polarimetric radar images at P-band, L-band and C-band were acquired at three different incidence angles with the NASA/JPL airborne imaging radar polarimeter. Using trihedral corner reflectors deployed in the area prior to imaging, the radar images were calibrated to provide values for each resolution element in each scene. This paper reports on the derivation of the power spectrum of surface microtopography by solution of the small perturbation model for multiple incidence angle and multiple frequency radar data. Power-law fits to the power spectra have exponents that are nearly the same for all surfaces. These values are close to those from measured microtopography profiles.

  14. Spaceborne laser radar.

    NASA Technical Reports Server (NTRS)

    Flom, T.

    1972-01-01

    Development of laser systems to acquire and track targets in applications such as the rendezvous and docking of two spacecraft. A scan technique is described whereby a narrow laser beam is simultaneously scanned with an equally narrow receiver field-of-view without the aid of mechanical gimbals. Equations are developed in order to examine the maximum acquisition and tracking rates, and the maximum target range for a scanning laser radar system. A recently built prototype of a small, lightweight, low-power-consuming scanning laser radar is described.

  15. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    PubMed Central

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance. PMID:28009819

  16. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network.

    PubMed

    She, Ji; Wang, Fei; Zhou, Jianjiang

    2016-12-21

    Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI) threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  17. Improving crop classification through attention to the timing of airborne radar acquisitions

    NASA Technical Reports Server (NTRS)

    Brisco, B.; Ulaby, F. T.; Protz, R.

    1984-01-01

    Radar remote sensors may provide valuable input to crop classification procedures because of (1) their independence of weather conditions and solar illumination, and (2) their ability to respond to differences in crop type. Manual classification of multidate synthetic aperture radar (SAR) imagery resulted in an overall accuracy of 83 percent for corn, forest, grain, and 'other' cover types. Forests and corn fields were identified with accuracies approaching or exceeding 90 percent. Grain fields and 'other' fields were often confused with each other, resulting in classification accuracies of 51 and 66 percent, respectively. The 83 percent correct classification represents a 10 percent improvement when compared to similar SAR data for the same area collected at alternate time periods in 1978. These results demonstrate that improvements in crop classification accuracy can be achieved with SAR data by synchronizing data collection times with crop growth stages in order to maximize differences in the geometric and dielectric properties of the cover types of interest.

  18. Forth system for coherent-scatter radar data acquisition and processing

    NASA Technical Reports Server (NTRS)

    Rennier, A. D.; Bowhill, S. A.

    1985-01-01

    A real time collection system was developed for the Urbana coherent scatter radar system. The new system, designed for use with a microcomputer, has several advantages over the old system implemented with a minicomputer. The software used to collect the data is described as well as the processing software used to analyze the data. In addition a magnetic tape format for coherent scatter data exchange is given.

  19. An analytical investigation of acquisition techniques and system integration studies for a radar aircraft guidance research facility, phase 2

    NASA Technical Reports Server (NTRS)

    Thompson, W. S.; Ruedger, W. H.

    1973-01-01

    A review of user requirements and updated instrumentation plans are presented for the aircraft tracking and guidance facility at NASA Wallops Station. User demand has increased as a result of new flight research programs; however, basic requirements remain the same as originally reported. Instrumentation plans remain essentially the same but with plans for up- and down-link telemetry more firm. With slippages in the laser acquisition schedule, added importance is placed on the FPS-16 radar as the primary tracking device until the laser is available. Limited simulation studies of a particular Kalman-type filter are also presented. These studies simulated the use of the filter in a helicopter guidance loop in a real-time mode. Disadvantages and limitations of this mode of operation are pointed out. Laser eyesafety calculations show that laser tracking of aircraft is readily feasible from the eyesafety viewpoint.

  20. High-Power Radar Sounders for the Investigation of Jupiter Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.

    2005-01-01

    The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design

  1. Acquisition and use of Orlando, Florida and Continental Airbus radar flight test data

    NASA Technical Reports Server (NTRS)

    Eide, Michael C.; Mathews, Bruce

    1992-01-01

    Westinghouse is developing a lookdown pulse Doppler radar for production as the sensor and processor of a forward looking hazardous windshear detection and avoidance system. A data collection prototype of that product was ready for flight testing in Orlando to encounter low level windshear in corroboration with the FAA-Terminal Doppler Weather Radar (TDWR). Airborne real-time processing and display of the hazard factor were demonstrated with TDWR facilitated intercepts and penetrations of over 80 microbursts in a three day period, including microbursts with hazard factors in excess of .16 (with 500 ft. PIREP altitude loss) and the hazard factor display at 6 n.mi. of a visually transparent ('dry') microburst with TDWR corroborated outflow reflectivities of +5 dBz. Range gated Doppler spectrum data was recorded for subsequent development and refinement of hazard factor detection and urban clutter rejection algorithms. Following Orlando, the data collection radar was supplemental type certified for in revenue service on a Continental Airlines Airbus in an automatic and non-interferring basis with its ARINC 708 radar to allow Westinghouse to confirm its understanding of commercial aircraft installation, interface realities, and urban airport clutter. A number of software upgrades, all of which were verified at the Receiver-Transmitter-Processor (RTP) hardware bench with Orlando microburst data to produce desired advanced warning hazard factor detection, included some preliminary loads with automatic (sliding window average hazard factor) detection and annunciation recording. The current (14-APR-92) configured software is free from false and/or nuisance alerts (CAUTIONS, WARNINGS, etc.) for all take-off and landing approaches, under 2500 ft. altitude to weight-on-wheels, into all encountered airports, including Newark (NJ), LAX, Denver, Houston, Cleveland, etc. Using the Orlando data collected on hazardous microbursts, Westinghouse has developed a lookdown pulse Doppler

  2. Radar principles

    NASA Technical Reports Server (NTRS)

    Sato, Toru

    1989-01-01

    Discussed here is a kind of radar called atmospheric radar, which has as its target clear air echoes from the earth's atmosphere produced by fluctuations of the atmospheric index of refraction. Topics reviewed include the vertical structure of the atmosphere, the radio refractive index and its fluctuations, the radar equation (a relation between transmitted and received power), radar equations for distributed targets and spectral echoes, near field correction, pulsed waveforms, the Doppler principle, and velocity field measurements.

  3. Method of range profile for step frequency MMW radar based on wavelet transform power spectrum estimator

    NASA Astrophysics Data System (ADS)

    Li, Yuehua; Gao, Duntang; Shen, Qinghong; Li, Xingguo

    2001-11-01

    The method of range profile for step frequency MMW radar targets based on wavelet transform power spectrum estimator is studied. We show how the Fourier power spectrum can be detected by using the wavelet function coefficients (WFC) of the DWT. This method can successfully measure the power spectrum in samples for which traditional methods often fail because the sample are finite sized, have a complex geometry, or are varyingly sampled. We demonstrate that the spectrum features, such as the power law index, the magnitude, and the typical scales can be determined by the DWT reconstructed spectrum. We apply this method to the practical step frequency MMW radar target echo signals, and on the condition of the same sampling frequency and sampling data length, it can achieve one dimensional range profile with profile"s resolution superior to FFT"s, so the one dimensional range profile of targets can be analyzed with high resolution, the detail algorithm of range profiles spectrum estimation based on wavelet transforming multirange cells is proposed. Compare with FFT algorithm, using wavelet spectrum estimator of short data series, we can achieves high resolution, high accuracy, and low SNR threshold. The Experiment results make clear that the DWT estimator is a sensitive tool in range profile of step frequency MMW radar.

  4. A compact low cost, high-power broad band SPDT switch for HF and VHF radar

    NASA Astrophysics Data System (ADS)

    Agarwal, Arvind; Sarkar, B. K.

    1993-08-01

    The high power SPDT (single pole double throw) switch is extremely useful as a building block for forming linear and circular polarized beams in high power radars. It can also be used simply as a switch to route the RF to two different feeder lines. This paper brings out the detailed design and development of a broad band, low loss, SPDT switch for high power applications using vacuum relay. This fabricated unit is comparatively economical as the only purchased item is a vacuum relay. The size is also compact and two outputs are adjacent to each other as per the requirements. The constructed SPDT switch operates well from dc to VHF range (200 MHz) and has an insertion loss of less than 0.5 dB and isolation better than 35 dB up to 200 MHz. This switch has been tested for 120 kW peak power at 53 MHz with the load VSWR of 2:1 without any trace of breakdown and is already connected with the Indian MST Radar system. There are 32 such units in the whole radar system.

  5. Design considerations for high-power VHF radar transceivers: The Poker Flat MST radar phase control system

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Johnson, P. E.

    1983-01-01

    Sixty-four separate 50-kW peak-power transmitters are distributed throughout the 200 x 200 meter Poker Flat MST radar antenna array. The relative phase of each transmitter is automatically controlled by a 64-channel unit located in the main building at the edge of the antenna. The phase control unit is described. In operation the RF pulse from a transmitter coupler is power divided and compared with the phase reference in a mixer. The mixer output is low-pass filtered and sampled near the center of the resulting video pulse by an amplifying sample-and-hold integrated circuit. Phase control is effected by maintaining the mixer output pulse near zero volts by amplifying the sample-and-hold output which then drives the voltage-controlled phase shifter in the direction to null the mixer output. The voltage-controlled shifter achieves over 360 deg phase shift in the range from 0.7 to 24 volts. When the voltage into the shifter tracks to either voltage limit the wrap-around control resets the voltage so that the shifter is always operating within its control range.

  6. The high-power X-band planetary radar at Goldstone - Design, development, and early results

    NASA Technical Reports Server (NTRS)

    Hartop, R.; Bathker, D. A.

    1976-01-01

    Selected critical microwave components for a 400-kW very-long-pulse (several hours) X-band radar system are discussed from theoretical and practical viewpoints. Included are the special-sized waveguide and flanges, hybrid power combiner, couplers, switches, polarizer, rotary joints, feedhorn, and radome. The system is installed on the National Aeronautics and Space Administration/Jet Propulsion Laboratory 64-m-diam reflector antenna at Goldstone, CA.

  7. The exploratory development of a high power S-band solid state radar transmitter

    NASA Astrophysics Data System (ADS)

    Hay, J. D.; Kerstenbeck, E. A.; Rahn, D. G.; Halayko, D. W.; Painchaud, G. R.

    A solid-state power amplifier has been developed using 100-W S-band silicon bipolar transistors. The amplifier produces a nominal 400-W peak output power from 2.7 GHz to 3.0 GHz, at pulse widths up to 50 microsec, at a 10 percent maximum duty cycle and 30 percent efficiency. A high-power planar hybrid combiner was also designed to combine 16 amplifiers to provide a nominal 5-kW RF output power. The isolation between combining ports ensures graceful degradation of output power should individual amplifier modules fail, and allows replacement of the modules during transmitter operation. Higher output powers can be achieved by adding more combining ports to the design or by incorporating a second stage of combining to sum the outputs from several 16-way combiners. The feasibility of solid-state radar transmitter technology at S-band is confirmed.

  8. Noncontact tremor characterization using low-power wideband radar technology.

    PubMed

    Blumrosen, Gaddi; Uziel, Moshe; Rubinsky, Boris; Porrat, Dana

    2012-03-01

    Continuous monitoring and analysis of tremor is important for the diagnosis and establishment of treatments in many neurological disorders. This paper describes noncontact assessment of tremor characteristics obtained by an experimental new ultrawideband (UWB) system. The system is based on transmission of a wideband electromagnetic signal with extremely low power, and analysis of the received signal, which is composed of many propagation paths reflected from the patient and its surroundings. A description of the physical principles behind the technology, a criterion, and efficient algorithms to assess tremor characteristics from the bulk UWB measurements are given. A feasibility test for the technology was conducted using a UWB system prototype, an arm model that mimics tremor, and a reference video system. The set of UWB system frequencies and amplitudes estimations were highly correlated with the video system estimations with an average error in the scale of 0.1 Hz and 1 mm for the frequency and amplitude estimations, respectively. The new UWB-based system does not require attaching active markers or inertial sensors to the body, can give displacement information and kinematic features from multiple body parts, is not limited by the range captured by the optical lens, has high indoor volume coverage as it can penetrate through walls, and does not require calibration to obtain amplitude estimations.

  9. Nuclear reactor power for a space-based radar. SP-100 project

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin

    1986-01-01

    A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.

  10. An algorithm for power line detection and warning based on a millimeter-wave radar video.

    PubMed

    Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting

    2011-12-01

    Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm.

  11. The MU radar with active phased array system. I - Antenna and power amplifiers. II - In-house equipment

    NASA Astrophysics Data System (ADS)

    Fukao, S.; Sato, T.; Tsuda, T.; Kato, S.; Wakasugi, K.

    1985-12-01

    The MU (middle and upper atmosphere) radar of Japan, a 46.5 MHz pulse-modulated monostatic Doppler radar with an active phased array system, is described. The system's nominal beam width is 3.6 deg, and the peak radiation power is 1 MW with maximum average power of 50 kW. The system is composed of 475 crossed three-subelement Yagi antennas and an equivalent number of solid state power amplifiers. Each Yagi antenna is driven by a transmitter-receiver module with peak output power of 2.4 kW. This configuration enables very fast and almost continuous beam steering that has not been realized by other mesosphere-stratosphere-troposphere radars. The system's antenna and power amplifiers are described, as is the in-house equipment related to transmission reception, on-line data processing, and system control.

  12. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  13. Observations of vertical velocity power spectra with the SOUSY VHF radar

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.; Rottger, J.; Holden, D. N.

    1986-01-01

    A data set taken with the SOUSY VHF radar from October 28 to November 13, 1981 was used to calculate the power spectrum of the vertical velocities directly from the vertical beam measurements. The spectral slopes for the frequency spectra have been determined out to periods of several days and have been found to have values near -1 in the troposphere and shallower slopes in the lower stratosphere. The value of -1 is in agreement with the value found by Larsen et al. (1985) and Balsley and Carter (1982) in the range from a few minutes to 1 hr.

  14. Assessment of Gravity Wave Momentum Flux Measurement Capabilities by Meteor Radars Having Different Transmitter Power and Antenna Configurations

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.; Janches, D.; Hocking, W. K.; Mitchell, N. J.; Taylor, M. J.

    2011-01-01

    Measurement capabilities of five meteor radars are assessed and compared to determine how well radars having different transmitted power and antenna configurations perform in defining mean winds, tidal amplitudes, and gravity wave (GW) momentum fluxes. The five radars include two new-generation meteor radars on Tierra del Fuego, Argentina (53.8 deg S) and on King George Island in the Antarctic (62.1 deg S) and conventional meteor radars at Socorro, New Mexico (34.1 deg N, 106.9 deg W), Bear Lake Observatory, Utah (approx 41.9 deg N, 111.4 deg W), and Yellowknife, Canada (62.5 deg N, 114.3 deg W). Our assessment employs observed meteor distributions for June of 2009, 2010, or 2011 for each radar and a set of seven test motion fields including various superpositions of mean winds, constant diurnal tides, constant and variable semidiurnal tides, and superposed GWs having various amplitudes, scales, periods, directions of propagation, momentum fluxes, and intermittencies. Radars having higher power and/or antenna patterns yielding higher meteor counts at small zenith angles perform well in defining monthly and daily mean winds, tidal amplitudes, and GW momentum fluxes, though with expected larger uncertainties in the daily estimates. Conventional radars having lower power and a single transmitting antenna are able to describe monthly mean winds and tidal amplitudes reasonably well, especially at altitudes having the highest meteor counts. They also provide qualitative estimates of GW momentum fluxes at the altitudes having the highest meteor counts; however, these estimates are subject to uncertainties of approx 20 to 50% and uncertainties rapidly become excessive at higher and lower altitudes. Estimates of all quantities degrade somewhat for more complex motion fields.

  15. High Power mm-Wave Transmitter System for Radar or Telecommunications

    NASA Technical Reports Server (NTRS)

    Stride, S. L.; McMaster, R. L.; Pogorzelski, R. J.

    2003-01-01

    Future NASA deep space missions able to provide tens of kilo-watts of spacecraft DC power, make it feasible to employ high power RF telecommunications systems. Traditional flight systems (e.g., Cassini), constrained by limited DC power, used a single high-gain 4m Cassegrain reflector fed by a single lower power (20W) transmitter. Increased available DC power means that high power (1000 W) transmitters can be used. Rather than continue building traditional single-transmitter systems it now becomes feasible to engineer and build multi-element active arrays that can illuminate a dish. Illuminating a 2m dish with a spherical wavefront from an offset 1kW active array can provide sufficient ERP (Effective Radiated Power) when compared to a larger Cassegrain dish. Such a system has the advantage of lower mass, lower volume, improved reliability, less stringent pointing requirements, lower cost and risk. We propose to design and build a prototype Ka-band transmit antenna with an active sub-array using 125W TWTAs. The system could be applied to a telecommunications downlink or radar transmitter used for missions such as JIMO.

  16. Applications of Microwave Antenna Array for Wireless Power Transmission and Radar Imaging in Complex Environment

    NASA Astrophysics Data System (ADS)

    Zhang, Ce

    The focus of my research interests lies in the application of microwave antenna array system and array signal processing techniques to problems in wireless power transmission and radar imaging. The two research areas share the same underlying mathematical principle of time reversality of electromagnetic wave propagation. Based on this principle, the array antenna system and the associated signal processing algorithm are further improved to adapt to different scenarios. In my dissertation, the rest part presents an optimal algorithm for wireless power transmission with beamforming array. The optimal weight distribution on antenna array elements is found based on time reversal eigenmode technique. Our method is adaptive to the medium of the channel and can be applied to arbitrarily positioned antenna without degradation of efficiency. This novel method is analytically studied and verified with numerical electromagnetic simulations. The second part presents a new problem called "Hard-Wall Radar Imaging" (HWRI) has been proposed when the electromagnetic waves cannot penetrate the shielding walls (such as metallic walls). The research methodology involves algorithm development combined with experimental results to gain more insights into the real microwave imaging system. First, we implemented the imaging system with the conventional time reversal DORT (Decomposition of Time-Reversal Operator) imaging algorithm and adapted it into a new signal processing technique (multiplicative array technique) to obtain the image in the proposed scenario. Second, after having identified the drawbacks of the rest imaging system, the imaging system is improved to distributed MIMO radar configuration. The new imaging algorithm is also developed based on the techniques of Direction-of-Arrival(DoA) estimation and adaptive nulling. From this algorithm, the experimental results show that the new imaging system can localize two targets correctly. To resolve the problem of spurious clutter

  17. High-power pulsed diode laser for automotive scanning radar sensor

    NASA Astrophysics Data System (ADS)

    Kimura, Yuji; Matsushita, Noriyuki; Kato, Hisaya; Abe, Katsunori; Atsumi, Kinya

    2000-02-01

    High performance pulsed AlGaAs/GaAs wide stripe diode laser has been developed for the automotive distance-measuring scanning radar sensor. The laser diode is required high output power of 15 W and a long time reliability in spite of being used in a harsh environment such as wide temperature range, mechanical vibrations at the front bumper and so on. The device is designed by employing a multiple quantum well structure as an active layer for high output power with low drive current and high temperature operations. Moreover we reduce catastrophic optical damage power level and control the beam divergence angle by introducing optimized optical waveguide layers. In the chips bonding part, we developed a new thin film Au-Sn-Ni solder system. The bonding temperature can be lowered by using this system, whereby the thermal damage to the laser diode can be reduced. Furthermore, highly stable bonding is carried out by improving wetting ability in this system. We have achieved more than 22 W light output power at 20A pulse current under room temperature and more than 16 W light output power under 90 degrees Celsius. High reliability over 10,000 hours is performed for automotive use under pulsed operation at 90 degrees Celsius, 50 ns pulse width, 8 kHz frequency and 15 W light output power.

  18. High Power K Sub a -band Transmitter for Planetary Radar and Spacecraft Uplink

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Hartop, R. W.; Stone, E. W.; Imbriale, W. A.; Stone, D.; Caplan, M.

    1984-01-01

    A proposed conceptual design of a 400 kW continuous wave (CW)K sub a band transmitter and associated microwave components to be used for planetary radar and serve as a prototype for future spacecraft uplinks is discussed. System requirements for such a transmitter are presented. Performance of the proposed high-power millimeter wave tube, the gyroklystron is discussed. Parameters of the proposed power amplifier, beam supply, and monitor and control devices are also presented. Microwave transmission line components consisting of signal monitoring devices, signal filtering devices, and an overmoded corrugated feed are discussed. Finally, an assessment of the state of the art technology to meet the system requirements is given and possible areas of difficulty are summarized.

  19. Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station.

    PubMed

    Zheng, Jianyu; Wang, Hui; Fu, Jianbin; Wei, Li; Pan, Shilong; Wang, Lixian; Liu, Jianguo; Zhu, Ninghua

    2014-03-10

    A fiber-distributed Ultra-wideband (UWB) noise radar was achieved, which consists of a chaotic UWB noise source based on optoelectronic oscillator (OEO), a fiber-distributed transmission link, a colorless base station (BS), and a cross-correlation processing module. Due to a polarization modulation based microwave photonic filter and an electrical UWB pass-band filter embedded in the feedback loop of the OEO, the power spectrum of chaotic UWB signal could be shaped and notch-filtered to avoid the spectrum-overlay-induced interference to the narrow band signals. Meanwhile, the wavelength-reusing could be implemented in the BS by means of the distributed polarization modulation-to-intensity modulation conversion. The experimental comparison for range finding was carried out as the chaotic UWB signal was notch-filtered at 5.2 GHz and 7.8 GHz or not. Measured results indicate that space resolution with cm-level could be realized after 3-km fiber transmission thanks to the excellent self-correlation property of the UWB noise signal provided by the OEO. The performance deterioration of the radar raised by the energy loss of the notch-filtered noise signal was negligible.

  20. Data acquisition system for sorbent injection test program at Virginia Power Yorktown Power Station Unit 2

    SciTech Connect

    Francis, C.; Scharpf, G.H. Jr.

    1995-06-01

    Virginia Power has installed an ABB Boiler Performance Optimization System (BPOS) at their Yorktown Power Station Unit 2, in conjunction with an in-furnace, sorbent injection, sulfur dioxide emissions reduction test program., This system was selected as offering lower cost and long-term benefits to the station than using dedicated test equipment and personnel for the test program. In addition to providing data acquisition and storage functions for characterization of the effect of sorbent injection on boiler performance, sorbent injection equipment performance, and emissions reduction, the system performs on-line plant heat rate and controllable losses calculations. The BPOS included the following advanced features: (1) Access to test and operating results for station operators, station engineering staff and sorbent injection project staff at their own work spaces at the station and at remote locations. (2) Boiler section surface cleanliness models to aid the boiler operators with soot blowing and to assess the impact of sorbent injection on individual boiler surfaces. (3) Interfaces to the station`s distributed control system (DCS), the sorbent injection system`s programmable logic controller (PLC), and to a data logger used for test instrumentation. (4) Model-based calculations for sorbent injection system control setpoints implemented in BPOS computer system. (5) On-line continuous calculation of sorbent injection system performance indices.

  1. Power versus performance tradeoffs of GPU-accelerated backprojection-based synthetic aperture radar image formation

    NASA Astrophysics Data System (ADS)

    Portillo, Ricardo; Arunagiri, Sarala; Teller, Patricia J.; Park, Song J.; Nguyen, Lam H.; Deroba, Joseph C.; Shires, Dale

    2011-06-01

    The continuing miniaturization and parallelization of computer hardware has facilitated the development of mobile and field-deployable systems that can accommodate terascale processing within once prohibitively small size and weight constraints. General-purpose Graphics Processing Units (GPUs) are prominent examples of such terascale devices. Unfortunately, the added computational capability of these devices often comes at the cost of larger demands on power, an already strained resource in these systems. This study explores power versus performance issues for a workload that can take advantage of GPU capability and is targeted to run in field-deployable environments, i.e., Synthetic Aperture Radar (SAR). Specifically, we focus on the Image Formation (IF) computational phase of SAR, often the most compute intensive, and evaluate two different state-of-the-art GPU implementations of this IF method. Using real and simulated data sets, we evaluate performance tradeoffs for single- and double-precision versions of these implementations in terms of time-to-solution, image output quality, and total energy consumption. We employ fine-grain direct-measurement techniques to capture isolated power utilization and energy consumption of the GPU device, and use general and radarspecific metrics to evaluate image output quality. We show that double-precision IF can provide slight image improvement to low-reflective areas of SAR images, but note that the added quality may not be worth the higher power and energy costs associated with higher precision operations.

  2. Power line characterization from an airborne data collection with a millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Bui, Long Q.

    2014-05-01

    Enhancing the operational safety of small, maneuverable rotorcraft has been a critical consideration in the development of next generation situational awareness sensor suites. From landing assistance to target detection and obstacle avoidance, millimeter wave radars have become the leading candidate for such solutions due to their ability to operate in degraded visual environments, whether it is weather, induced debris, or night conditions that must be dealt with. Power lines pose arguably the largest safety risk for helicopter operation due to their difficulty in detection and proper identification to support avoidance maneuvering, where even under perfect conditions they can be nearly invisible to the naked eye. The backscatter phenomenology from braided power lines has been well-studied and formulated in previous literature, albeit mainly in controlled laboratory settings or limited field trials. Subsequently, the ability to simply detect power lines at operational distances up to around 2 km has been demonstrated. In this work, an analysis is performed on the measureable characteristics of power lines captured in a representative operational environment for helicopters. The test location included a diverse set of power line configurations with surrounding ground and tower clutter, representing a realistic scenario. A radiometrically calibrated w-band real-beam FMCW sensor allows the study and estimation of target RCS, as well as evaluation against the developed theory. All analysis is performed on dynamically captured data from a helicopter, where platform dynamics and system stability also play a significant role in a processed result. Results from this work will aid the effective development of next generation situational awareness systems.

  3. Neuromuscular adaptations during the acquisition of muscle strength, power and motor tasks.

    PubMed

    Moritani, T

    1993-01-01

    Neuromuscular performance is determined not only by the size of the involved muscles, but also by the ability of the nervous system to appropriately activate the muscles. Adaptive changes in the nervous system in response to training are referred to as neural adaptation. This article briefly reviews current evidence regarding the neural adaptations during the acquisition of muscle strength power and motor tasks and will be organized under four main topics, namely: (i) muscle strength gain: neural factors versus hypertrophy, (ii) neural adaptations during power training, (iii) neuromuscular adaptations during the acquisition of a motor task, and (iv) neuromuscular adaptations during a ballistic movement.

  4. Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator/Power Oscillator) Optical Parametric Oscillator

    DTIC Science & Technology

    1997-09-30

    SEP 1997 2. REPORT TYPE 3. DATES COVERED 00-00-1997 to 00-00-1997 4. TITLE AND SUBTITLE Acquisition of a Nd-Yag Pumped MOPO (Master Oscillator...unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 ACQUISITION OF A ND-YAG PUMPED MOPO (MASTER OSCILLATOR / POWER OSCILLATOR) OPTICAL...instrument is configured in a master oscillator/power oscillator configuration, hence the designation MOPO . The MOPO will be used in conjunction

  5. Low-power analog integrated circuits for wireless ECG acquisition systems.

    PubMed

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  6. Multifunctional data acquisition and analysis and optical sensors: a Bonneville Power Administration (BPA) update

    NASA Astrophysics Data System (ADS)

    Erickson, Dennis C.; Donnelly, Matt K.

    1995-04-01

    The authors present a design concept describing a multifunctional data acquisition and analysis architecture for advanced power system monitoring. The system is tailored to take advantage of the salient features of low energy sensors, particularly optical types. The discussion of the system concept and optical sensors is based on research at BPA and PNL and on progress made at existing BPA installations and other sites in the western power system.

  7. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise power-gating method, and noise level with an alternating input and chopper stabilization technique is fabricated with a 0.13-μm CMOS. Using the reconfigurable architecture of the IA, various combinations of the low-noise schemes are investigated. The combination of power gating and chopper stabilization shows a lower noise performance than the combination of power gating and alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from 10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of the power gating and chopper stabilization scheme.

  8. Technology access from the FS-X radar program. Lessons for technology transfer and US acquisition policy

    NASA Astrophysics Data System (ADS)

    Chang, Ike Y., Jr.

    The FS-X is a cooperative aircraft development program launched in 1989 between the United States and Japan. The FS-X program entitles the U.S. government and U.S. industry access to Japanese FS-X technology. This report explores the issue of U.S. access and possible licensed transfer of Japanese FS-X radar technology for use by the U.S. government and industry. The FS-X radar program is significant in that it may be the first program to develop an operational active phased array radar (APAR) for airborne fire control. APAR technology has the benefits of superior performance, rehability, and maintainability. Nevertheless, because of stringent U.S. program requirements and high production costs, APAR has not yet become an operational reality in the United States. The FS-X is, therefore, important in that it may signify growing strengths of Japan in a technical area historically dominated by U.S. firms.

  9. A Reduced Power Digital Electronics System for a Digital Beamforming Space Exploration Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Carter, L. M.; Rincon, R. F.; Novak, M.

    2016-10-01

    We will discuss design of an orbital P-band (70 cm wavelength) digital beamforming radar system that is modular and can be used for imaging polarimetry of Earth and rocky planets and moons, as well as asteroids and comets.

  10. The PROUST radar

    NASA Technical Reports Server (NTRS)

    Bertin, F.; Glass, M.; Ney, R.; Petitdidier, M.

    1986-01-01

    The Stratosphere-Troposphere (ST) radar called PROUST works at 935 MHz using the same klystron and antenna as the coherent-scatter radar. The use of this equipment for ST work has required some important modifications of the transmitting system and the development of receiving, data processing and acquisition (1984,1985) equipment. The modifications are discussed.

  11. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems: Volume 1

    DTIC Science & Technology

    2016-01-06

    2009. [Sca10] Scacchi, W. (2010). The Future of Research in Free /Open Source Software Development, Proc. ACM Workshop Future of Software Engineering...SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems Volume I 6 January 2016 Dr. Walt...Scacchi Dr. Thomas A. Alspaugh Institute for Software Research University University of California, Irvine Approved for public release; distribution is

  12. Low-power wireless ECG acquisition and classification system for body sensor networks.

    PubMed

    Lee, Shuenn-Yuh; Hong, Jia-Hua; Hsieh, Cheng-Han; Liang, Ming-Chun; Chang Chien, Shih-Yu; Lin, Kuang-Hao

    2015-01-01

    A low-power biosignal acquisition and classification system for body sensor networks is proposed. The proposed system consists of three main parts: 1) a high-pass sigma delta modulator-based biosignal processor (BSP) for signal acquisition and digitization, 2) a low-power, super-regenerative on-off keying transceiver for short-range wireless transmission, and 3) a digital signal processor (DSP) for electrocardiogram (ECG) classification. The BSP and transmitter circuits, which are the body-end circuits, can be operated for over 80 days using two 605 mAH zinc-air batteries as the power supply; the power consumption is 586.5 μW. As for the radio frequency receiver and DSP, which are the receiving-end circuits that can be integrated in smartphones or personal computers, power consumption is less than 1 mW. With a wavelet transform-based digital signal processing circuit and a diagnosis control by cardiologists, the accuracy of beat detection and ECG classification are close to 99.44% and 97.25%, respectively. All chips are fabricated in TSMC 0.18-μm standard CMOS process.

  13. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices

    DTIC Science & Technology

    2015-05-01

    seeking ways to reduce acquisition cost and effort through shared development/use of common OA software system components (proprietary/ open source Apps...Government) open source software  and others Emerging challenges in achieving BBP via OA Web/mobile software systems  Acquisition program managers/staff...Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web-Based and Mobile Devices Walt Scacchi and Thomas

  14. 4. VIEW NORTHEAST, radar tower (unknown function), prime search radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW NORTHEAST, radar tower (unknown function), prime search radar tower, emergency power building, and height finder radar tower - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. Low-Power Temperature-Swing Adsorption for Mars Atmosphere Acquisition

    NASA Technical Reports Server (NTRS)

    Finn, J. E.

    1999-01-01

    The promise of ISRU-based mission architectures for Mars surface exploration will begin to be realized during the next decade as robotic spacecraft sent to Mars carry components and whole chemical plants for producing propellants from the planet's atmosphere. These chemical plants will need to perform three primary operations: acquisition of atmospheric carbon dioxide, reactions to transform the gas into oxygen and possibly fuel, and storage of the products. This presentation focuses on development of technologies at NASA Ames Research Center for the first of these operations, carbon dioxide acquisition. The carbon dioxide acquisition component for a propellant production plant has several general, top level requirements. It has a stringent requirement for minimal power consumption; a critical need for long-term reliability over the period of time the chemical plant must operate (say, 500 days); a production rate requirement for carbon dioxide; and a state point requirement (particularly pressure) for the CO2 produced. The first two requirements help determine the best technological approach, while the latter two generally define the characteristics (e.g., size and power consumption) of the device. Mass and volume must be minimized, as usual.

  16. Technology Access from the FS-X Radar Program. Lessons for Technology Transfer and U.S. Acquisition Policy

    DTIC Science & Technology

    1994-01-01

    acquisition approaches of the Japan Defence Agency ODA) also offer promising alternatives for the Department of Defense (DoD) to adapt to the lean post... manufacturi - DARPA Defense Advanced Research Projects Agency DBS direct broadcast satellite Dem/Val Demonstration/ Validation DoC Department of Commerce...assure the quality of modules that will go into an APAR system. Contractor incentives to move in this direction will likely grow because of lean post

  17. High-powered Radar Sounders for the Investigation of Jupiter's Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Rodriguez, E.; Edelstein, Wendy

    2003-01-01

    This talk will address the main drivers in the design of a radar sounder for the JIMO mission and provide a potential solution that will optimize the chances of success in the detection of ice/water interface and sub-surface stratigraphy.

  18. In-Containment Signal Acquisition and Data Transmission via Power Lines within High Dose Areas of Nuclear Power Plants

    SciTech Connect

    Mueller Steffen; Wibbing Sascha; Weigel Robert; Koelpin Alexander; Dennerlein, Juergen; Janke, Iryna; Weber, Johannes

    2015-07-01

    Signal acquisition and data transmission for innovative sensor systems and networks inside the containment of nuclear power plants (NPPs) is still a challenge with respect to safety, performance, reliability, availability, and costs. This especially applies to equipment upgrades for existing plants, special measurements, but also for new builds. This paper presents a novel method for efficient and cost-effective sensor signal acquisition and data transmission via power lines, in order to cope with the disadvantages of common system architectures that often suffer from poor signal integrity due to raw data transmissions via long cables, huge efforts and costs for installation, and low flexibility with respect to maintenance and upgrades. A transmitter-receiver architecture is proposed that allows multiplexing of multiple sensor inputs for unidirectional point-to-point transmission by superimposing information signals on existing AC or DC supply lines, but also on active and inactive sensor wires, or spare cables, using power line communication (PLC) technology. Based on commercial off-the-shelf (COTS) electronic parts, a radiation hard transmitter hardware is designed to operate in harsh environment within the containment during full plant operation. The system's modular approach allows application specific trade-offs between redundancy and throughput regarding data transmission, as well as various sensor input front-ends which are compatible with state of the art systems. PLC technology eliminates the need for costly installation of additional cables and wall penetrations, while providing a complementary and diverse communication technology for upgrades of existing systems. At the receiver side in low dose areas, signals are extracted from the power line, demodulated, and de-multiplexed, in order to regain the original sensor signal information and provide it either in analog or digital output format. Successful laboratory qualification tests, field trails, and a

  19. Planetary radar studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    A catalog of lunar and radar anomalies was generated to provide a base for comparison with Venusian radar signatures. The relationships between lunar radar anomalies and regolith processes were investigated, and a consortium was formed to compare lunar and Venusian radar images of craters. Time was scheduled at the Arecibo Observatory to use the 430 MHz radar to obtain high resolution radar maps of six areas of the lunar suface. Data from 1978 observations of Mare Serenitas and Plato are being analyzed on a PDP 11/70 computer to construct the computer program library necessary for the eventual reduction of the May 1981 and subsequent data acquisitions. Papers accepted for publication are presented.

  20. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R. F.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar systems designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  1. Goldstone solar system radar signal processing

    NASA Technical Reports Server (NTRS)

    Jurgens, R.; Satorius, E.; Sanchez, O.

    1992-01-01

    A performance analysis of the planetary radar data acquisition system is presented. These results extend previous computer simulation analysis and are facilitated by the development of a simple analytical model that predicts radar system performance over a wide range of operational parameters. The results of this study are useful to both the radar system designer and the science investigator in establishing operational radar data acquisition parameters which result in the best systems performance for a given set of input conditions.

  2. Two-beam-coupling correlator for synthetic aperture radar image recognition with power-law scattering centers preenhancement.

    PubMed

    Haji-Saeed, Bahareh; Woods, Charles L; Kierstead, John; Khoury, Jed

    2008-06-01

    Synthetic radar image recognition is an area of interest for military applications including automatic target recognition, air traffic control, and remote sensing. Here a dynamic range compression two-beam-coupling joint transform correlator for detecting synthetic aperture radar targets is utilized. The joint input image consists of a prepower-law, enhanced scattering center of the input image and a linearly synthesized power-law-enhanced scattering center template. Enhancing the scattering center of both the synthetic template and the input image furnishes the conditions for achieving dynamic range compression correlation in two-beam coupling. Dynamic range compression (a) enhances the signal-to-noise ratio, (b) enhances the high frequencies relative to low frequencies, and (c) converts the noise to high frequency components. This improves the correlation-peak intensity to the mean of the surrounding noise significantly. Dynamic range compression correlation has already been demonstrated to outperform many optimal correlation filters in detecting signals in severe noise environments. The performance is evaluated via established metrics such as peak-to-correlation energy, Horner efficiency, and correlation-peak intensity. The results showed significant improvement as the power increased.

  3. Low-power millimeter-wave radar observations of the atmosphere

    NASA Technical Reports Server (NTRS)

    Ronnau, James F.; Gogineni, S. Prasad

    1993-01-01

    Historically, cloud structures, dynamics, and precipitation processes have been observed and measured with sensors from two different spatial resolutions. Laser-based sensors have volume resolutions on the order of 10(exp -4) to 10(exp -2) cubic meters for a 1-s sample. Radar systems operating at wavelengths between 1 and 10 cm have resolutions on the order of 10(exp 4) to 10(exp 7) cubic meters. The resolutions of micro-wave systems depend primarily on the system RF bandwidth and antenna bandwidth. Both resolution regimes were useful in the study of cloud structures and processes - the former for determining resolution on the individual cloud particle scale and the latter for studying the coarse characteristics of cloud dynamics and structure. There are, however, cloud processes and structures that occur on scales that lie between these two regimes: the process of entrainment, where outside air is brought within the cloud boundaries; the mixing of in-cloud particles with different histories; cloud particle coalescence; and ice formation. The use of mm-wave (30- to 300-GHz) radars offers an opportunity to observe cloud processes at these scales and determine their influence on precipitation development, cloud albedos, cloud lifetimes, chemical cycling of tract substances, aircraft icing, and other meteorological phenomena. To determine the usefulness of a 35-GHz radar for observing these precipitation and cloud processes, a research program was initiated. The objectives of this program are to develop a 35-GHz radar, to measure scattering from precipitation and clouds, and to develop a model to compute scattering from clouds using the finite-difference time-domain (FDTD) technique.

  4. A Compact Two-Stage 120 W GaN High Power Amplifier for SweepSAR Radar Systems

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Horst, Stephen; Price, Douglas; Hoffman, James; Veilleux, Louise

    2014-01-01

    This work presents the design and measured results of a fully integrated switched power two-stage GaN HEMT high-power amplifier (HPA) achieving 60% power-added efficiency at over 120Woutput power. This high-efficiency GaN HEMT HPA is an enabling technology for L-band SweepSAR interferometric instruments that enable frequent repeat intervals and high-resolution imagery. The L-band HPA was designed using space-qualified state-of-the-art GaN HEMT technology. The amplifier exhibits over 34 dB of power gain at 51 dBm of output power across an 80 MHz bandwidth. The HPA is divided into two stages, an 8 W driver stage and 120 W output stage. The amplifier is designed for pulsed operation, with a high-speed DC drain switch operating at the pulsed-repetition interval and settles within 200 ns. In addition to the electrical design, a thermally optimized package was designed, that allows for direct thermal radiation to maintain low-junction temperatures for the GaN parts maximizing long-term reliability. Lastly, real radar waveforms are characterized and analysis of amplitude and phase stability over temperature demonstrate ultra-stable operation over temperature using integrated bias compensation circuitry allowing less than 0.2 dB amplitude variation and 2 deg phase variation over a 70 C range.

  5. A prototype of wireless power and data acquisition system for large detectors

    NASA Astrophysics Data System (ADS)

    De Lurgio, P.; Djurcic, Z.; Drake, G.; Hashemian, R.; Kreps, A.; Oberling, M.; Pearson, T.; Sahoo, H.

    2015-06-01

    We have developed a prototype detector and data acquisition module that incorporates wireless power and wireless data transmission techniques. The module has no electrical connections. It receives power using photovoltaic devices, and communicates control, timing, trigger, and data using the 802.11n wireless communication standard. The work is part of a study for building a large detector having many readout channels, where it is desirable to reduce the cable plant and infrastructure. The system could also be deployed in smaller detectors that require mobility or are difficult to cable due to extreme conditions. We describe the design and operation of the prototype module, including benchmark performance measurements, and discuss aspect and issues in extrapolating to a large detector system.

  6. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally. PMID:27898004

  7. Reconfigurable Multiparameter Biosignal Acquisition SoC for Low Power Wearable Platform.

    PubMed

    Kim, Jongpal; Ko, Hyoungho

    2016-11-25

    A low power and low noise reconfigurable analog front-end (AFE) system on a chip (SoC) for biosignal acquisition is presented. The presented AFE can be reconfigured for use in electropotential, bioimpedance, electrochemical, and photoelectrical modes. The advanced healthcare services based on multiparameter physiological biosignals can be easily implemented with these multimodal and highly reconfigurable features of the proposed system. The reconfigurable gain and input referred noise of the core instrumentation amplifier block are 25 dB to 52 dB, and 1 μVRMS, respectively. The power consumption of the analog blocks in one readout channel is less than 52 μW. The reconfigurable capability among various modes of applications including electrocardiogram, blood glucose concentration, respiration, and photoplethysmography are shown experimentally.

  8. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    The benefits of high-power solar electric propulsion (SEP) for both NASA's human and science exploration missions combined with the technology investment from the Space Technology Mission Directorate have enabled the development of a 50kW-class SEP mission. NASA mission concepts developed, including the Asteroid Redirect Robotic Mission, and those proposed by contracted efforts for the 30kW-class demonstration have a range of xenon propellant loads from 100's of kg up to 10,000 kg. A xenon propellant load of 10 metric tons represents greater than 10% of the global annual production rate of xenon. A single procurement of this size with short-term delivery can disrupt the xenon market, driving up pricing, making the propellant costs for the mission prohibitive. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper discusses approaches for acquiring on the order of 10 MT of xenon propellant considering realistic programmatic constraints to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for mission campaigns utilizing multiple high-power solar electric propulsion vehicles requiring 100's of metric tons of xenon over an extended period of time where a longer term acquisition approach could be implemented.

  9. The development of a power spectral density processor for C and L band airborne radar scatterometer sensor systems

    NASA Technical Reports Server (NTRS)

    Harrison, D. A., III; Chladek, J. T.

    1983-01-01

    A real-time signal processor was developed for the NASA/JSC L-and C-band airborne radar scatterometer sensor systems. The purpose of the effort was to reduce ground data processing costs. Conversion of two quadrature channels of data (like and cross polarized) was made to obtain Power Spectral Density (PSD) values. A chirp-z transform (CZT) approach was used to filter the Doppler return signal and improved high frequency and angular resolution was realized. The processors have been tested with record signals and excellent results were obtained. CZT filtering can be readily applied to scatterometers operating at other wavelengths by altering the sample frequency. The design of the hardware and software and the results of the performance tests are described in detail.

  10. Environmental Characterization for Target Acquisition. Report 3. New Concepts for Evaluating Low-Grazing Angle Radar Measurements

    DTIC Science & Technology

    1993-06-01

    results. One should be able to look at a color display of power returns for test MS5502 and one for test MS6701 and be confident that what appears as a...given color on one test is comparable with the same color on another test. To this end, some effort was made to determine the bounds of data and metric...10-’ inteval Figure~~N C3 (het2of6 C16~~~~~~~~~~~~~~ ApedxCRlvn ’"Ts St aaadAayi eut Measured data, linear scale 3-D plot of measured data, linear

  11. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Efforts were focused on: (1) acquisition of radar data at Arecibo; (2) examination of raw data; (3) reduction of the unmodulated data to background-free, calibrated spectra; (4) integration and coherent analyses of the phase-coded data; and (5) calculation of Doppler shifts and preliminary values for echo limb-to-limb bandwidths, radar cross sections, and circular polarization ratios. Asteroids observed to data have radar properties distinct from those of the rocky terrestrial planets and those of the icy Galilean satellites.

  12. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    PubMed

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  13. Radar Men on the Moon: A Brief Survey of Fission Surface Power Studies

    SciTech Connect

    Bennett, Gary L.

    2008-01-21

    This paper reviews some of the salient fission surface power studies, including those dating back to the early SNAP (Systems for Nuclear Auxiliary Power) program. Particular attention will be focused on the more recent Space Exploration Initiative (including the related Synthesis Group report) and Vision for Space Exploration. Commonalties in these studies will be noted; for example, many studies have shown that powers in the range of 100 kWe are required for human-tended bases on the Moon and Mars. Just as advanced human civilizations depend upon electrical power so will advanced, human-occupied lunar and Mars bases with powers rising into the megawatt level for bases with manufacturing and resource utilization capabilities. The role of radioisotope power sources will also be noted.

  14. A low-noise low-power EEG acquisition node for scalable brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2007-05-01

    Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.

  15. Low-power system for the acquisition of the respiratory signal of neonates using diaphragmatic electromyography

    PubMed Central

    Torres, Róbinson; López-Isaza, Sergio; Mejía-Mejía, Elisa; Paniagua, Viviana; González, Víctor

    2017-01-01

    Introduction An apnea episode is defined as the cessation of breathing for ≥15 seconds or as any suspension of breathing accompanied by hypoxia and bradycardia. Obtaining information about the respiratory system in a neonate can be accomplished using electromyography signals from the diaphragm muscle. Objective The purpose of this paper is to illustrate a method by which the respiratory and electrocardiographic signals from neonates can be obtained using diaphragmatic electromyography. Materials and methods The system was developed using single-supply, micropower components, which deliver a low-power consumption system appropriate for the development of portable devices. The stages of the system were tested in both adult and neonate patients. Results The system delivers signals as those expected in both patients and allows the acquisition of respiratory signals directly from the diaphragmatic electromyography. Conclusion This low-power system may present a good alternative for monitoring the cardiac and respiratory activity in newborn babies, both in the hospital and at home. Significance The system delivers good signals but needs to be validated for its use in neonates. It is being used in the Neonatal Intensive Care Unit of the Hospital General de Medellín Luz Castro de Gutiérrez. PMID:28260954

  16. Intercontinental Bistatic Radar Test Observation of Asteroid 1998 WT24

    NASA Technical Reports Server (NTRS)

    Righini, S.; Poppi, S.; Montebugnoli, S.; DiMartino, M.; Saba, L.; Delbo, M.; Ostro, S.; Monari, J.; Poloni, M.; Orlati, A.

    2002-01-01

    We describe the first intercontinental planetary radar test performed in Italy observing the near Earth asteroid (NEA) 33342 (1998 WT24) in December 2001 by means of the bistatic configurations Goldstone (California, USA)-Medicina (Italy) and Evpatoria (Ukraine)-Medicina. The experiment goal was to characterize the system for realtime radar follow-up observations of NEAs and artificial orbiting debris, in the framework of a feasibility study which aims at using the Sardinia Radio Telescope, at present under construction, also as a planetary radar facility. We report the preliminary results of the radar observations carried out by the IRA-CNR (Instituto di Radioastronomia - Consiglio Nazionale delle Ricerche) and the OATo (Osservatorio Astronomico di Torino) groups, aimed at exploring the scientific potentials of a new space radar program, using the existing facilities in Italy. The planetary radar technique is uniquely capable of investigating geometry and surface properties of various solar system objects, demonstrating advantages over the optical methods in its high spatial resolution and ability to obtain three-dimensional images. A single radar detection allows to obtain extremely accurate orbital elements, improving the instantaneous positional uncertainties by orders of magnitude with respect to an optically determined orbit. Radar is a powerful means to spatially resolve NEAs by measuring the distribution of the echo power in time delay (range) and Doppler frequency (line-of-sight velocity) with extreme precision in each coordinate, as it provides detailed information about the target physical properties like size, shape, rotation, near-surface bulk density and roughness and internal density distribution. The Medicina 32m antenna had been successfully used for the first time as the receiving part of a bistatic configuration during a test experiment (September 2001) held to check the capabilities of the entire data acquisition system. This test was possible

  17. Development of land based radar polarimeter processor system

    NASA Technical Reports Server (NTRS)

    Kronke, C. W.; Blanchard, A. J.

    1983-01-01

    The processing subsystem of a land based radar polarimeter was designed and constructed. This subsystem is labeled the remote data acquisition and distribution system (RDADS). The radar polarimeter, an experimental remote sensor, incorporates the RDADS to control all operations of the sensor. The RDADS uses industrial standard components including an 8-bit microprocessor based single board computer, analog input/output boards, a dynamic random access memory board, and power supplis. A high-speed digital electronics board was specially designed and constructed to control range-gating for the radar. A complete system of software programs was developed to operate the RDADS. The software uses a powerful real time, multi-tasking, executive package as an operating system. The hardware and software used in the RDADS are detailed. Future system improvements are recommended.

  18. Multi-channel Data Acquisition System for a 500 m DC HTS Power Cable in Ishikari

    NASA Astrophysics Data System (ADS)

    Ivanov, Yury V.; Chikumoto, Noriko; Watanabe, Hirofumi; Takano, Hirohisa; Inoue, Noriyuki; Yamaguchi, Satarou

    Reduction of heat penetrating into the cryogenic region is the important method of optimization of superconducting devices. In the cases of short-range power transmission lines and compact HTS devices like magnets, the heat leakage through current leads is relatively large. In order to decrease this contribution, current leads equipped with Peltier elements can be used. The mentioned technology is being actively developed in the Chubu University. Commercial samples of Peltier current leads are installed at the terminals of 500-meter DC HTS cable in Ishikari (Hokkaido). This cable is designed for 5 kA. The inner conducting layer consists of 37 DI-BSCCO HTS tapes from Sumitomo Electric Industries, Ltd. with a critical current of 180 A; and the outer one consists of 35 tapes of the same type. Each end of the cable's tape is connected to the individual Peltier current lead. Accordingly, each of the two terminals is equipped with 72 Peltier current leads, 144 pieces in total. In order to examine behavior of the current leads in detail, each piece is supplied with two thermocouples; there are also voltage taps on feedthrough and on HTS tape end. In addition, current through Peltier current lead can be measured by means of individual current transformer. The hardware part of the data acquisition system includes four Keithley 3706A multimeters equipped with 60-channel model 3724 FET multiplexer cards. Therefore, 144 data blocks are formed. Furthermore, there are 72 measurements of a voltage drop across HTS tape. Sampling period is set to be 3 s. The program part of the data acquisition system was written using LabVIEW software solution (National Instruments Corp.).

  19. The Construction, Enactment, and Maintenance of Power-as-Domination through an Acquisition: The Case of TWA and Ozark Airlines.

    ERIC Educational Resources Information Center

    Pierce, Tamyra; Dougherty, Debbie S.

    2002-01-01

    Explores how domination was created, enacted, and maintained in the acquisition of Ozark Airlines by TWA. Uses the concepts of resources, hegemony, and resistance from the functionalist, Marxist, and postmodern traditions, respectively, to understand power-as-domination as a complex communication process. Reveals how communication practices were…

  20. Considerations for Choosing Microwave Transistors in High Power Shipboard Search Radars.

    DTIC Science & Technology

    1983-09-30

    transistors, one crucial problem is the matching of the power output from the interaction zone at the emitter periphery to the antenna with high d.c...because they are all diffused and constructed differently; i.e., overlay, fishbone and interdigitated. All have internal matching in both input and output... fishbone - overlay *1 - matrix - interdigitated o Emitter periphery/base area ratio (EP/BA) o RF power per emitter length o Watts per

  1. Radar Waveform Pulse Analysis Measurement System for High-Power GaN Amplifiers

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Perkovic-Martin, Dragana; Jenabi, Masud; Hoffman, James

    2012-01-01

    This work presents a measurement system to characterize the pulsed response of high-power GaN amplifiers for use in space-based SAR platforms that require very strict amplitude and phase stability. The measurement system is able to record and analyze data on three different time scales: fast, slow, and long, which allows for greater detail of the mechanisms that impact amplitude and phase stability. The system is fully automated through MATLAB, which offers both instrument control capability and in-situ data processing. To validate this system, a high-power GaN HEMT amplifier operated in saturation was characterized. The fast time results show that variations to the amplitude and phase are correlated to DC supply transients, while long time characteristics are correlated to temperature changes.

  2. Reconfigurable L-Band Radar

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.

    2008-01-01

    The reconfigurable L-Band radar is an ongoing development at NASA/GSFC that exploits the capability inherently in phased array radar systems with a state-of-the-art data acquisition and real-time processor in order to enable multi-mode measurement techniques in a single radar architecture. The development leverages on the L-Band Imaging Scatterometer, a radar system designed for the development and testing of new radar techniques; and the custom-built DBSAR processor, a highly reconfigurable, high speed data acquisition and processing system. The radar modes currently implemented include scatterometer, synthetic aperture radar, and altimetry; and plans to add new modes such as radiometry and bi-static GNSS signals are being formulated. This development is aimed at enhancing the radar remote sensing capabilities for airborne and spaceborne applications in support of Earth Science and planetary exploration This paper describes the design of the radar and processor systems, explains the operational modes, and discusses preliminary measurements and future plans.

  3. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    PubMed

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  4. Use of low power EM radar sensors for speech articulator measurements

    SciTech Connect

    Holzrichter, J.F.; Burnett, G.C.

    1997-05-14

    Very low power electromagnetic (EM) wave sensors are being used to measure speech articulator motions such as the vocal fold oscillations, jaw, tongue, and the soft palate. Data on vocal fold motions, that correlate well with established laboratory techniques, as well as data on the jaw, tongue, and soft palate are shown. The vocal fold measurements together with a volume air flow model are being used to perform pitch synchronous estimates of the voiced transfer functions using ARMA (autoregressive moving average) techniques. 6 refs., 5 figs.

  5. Radar applications overview

    NASA Astrophysics Data System (ADS)

    Greenspan, Marshall

    1996-06-01

    During the fifty years since its initial development as a means of providing early warning of airborne attacks against allied countries during World War II, radar systems have developed to the point of being highly mobile and versatile systems capable of supporting a wide variety of remote sensing applications. Instead of being tied to stationary land-based sites, radar systems have found their way into highly mobile land vehicles as well as into aircraft, missiles, and ships of all sizes. Of all these applications, however, the most exciting revolution has occurred in the airborne platform arena where advanced technology radars can be found in all shapes and sizes...ranging from the large AWACS and Joint STARS long range surveillance and targeting systems to small millimeter wave multi-spectral sensors on smart weapons that can detect and identify their targets through the use of highly sophisticated digital signal processing hardware and software. This paper presents an overview of these radar applications with the emphasis on modern airborne sensors that span the RF spectrum. It will identify and describe the factors that influence the parameters of low frequency and ultra wide band radars designed to penetrate ground and dense foliage environments and locate within them buried mines, enemy armor, and other concealed or camouflaged weapons of war. It will similarly examine the factors that lead to the development of airborne radar systems that support long range extended endurance airborne surveillance platforms designed to detect and precision-located both small high speed airborne threats as well as highly mobile time critical moving and stationary surface vehicles. The mission needs and associated radar design impacts will be contrasted with those of radar systems designed for high maneuverability rapid acquisition tactical strike warfare platforms, and shorter range cued air-to-surface weapons with integral smart radar sensors.

  6. Equatorial MU Radar project

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mamoru; Hashiguchi, H.; Tsuda, Toshitaka; Yamamoto, Masayuki

    Research Institute for Sustainable Humanosphere, Kyoto University (RISH) has been studying the atmosphere by using radars. The first big facility was the MU (Middle and Upper atmosphere) radar installed in Shiga, Japan in 1984. This is one of the most powerful and multi-functional radar, and is successful of revealing importance of atmospheric waves for the dynamical vertical coupling processes. The next big radar was the Equatorial Atmosphere Radar (EAR) installed at Kototabang, West Sumatra, Indonesia in 2001. The EAR was operated under close collaboration with LAPAN (Indonesia National Institute for Aeronautics and Space), and conducted the long-term continuous observations of the equatorial atmosphere/ionosphere for more than 10 years. The MU radar and the EAR are both utilized for inter-university and international collaborative research program for long time. National Institute for Polar Research (NIPR) joined EISCAT Scientific Association together with Nagoya University, and developed the PANSY radar at Syowa base in Antarctica as a joint project with University of Tokyo. These are the efforts of radar study of the atmosphere/ionosphere in the polar region. Now we can find that Japan holds a global network of big atmospheric/ionospheric radars. The EAR has the limitation of lower sensitivity compared with the other big radars shown above. RISH now proposes a plan of Equatorial MU Radar (EMU) that is to establish the MU-radar class radar next to the EAR. The EMU will have an active phased array antenna with the 163m diameter and 1055 cross-element Yagis. Total output power of the EMU will be more than 500kW. The EMU can detect turbulent echoes from the mesosphere (60-80km). In the ionosphere incoherent-scatter observations of plasma density, drift, and temperature would be possible. Multi-channel receivers will realize radar-imaging observations. The EMU is one of the key facilities in the project "Study of coupling processes in the solar-terrestrial system

  7. Capabilities of radar as they might relate to entomological studies

    NASA Technical Reports Server (NTRS)

    Skolnik, M. I.

    1979-01-01

    A tutoral background of radar capabilities and its potential for insect research is provided. The basic principles and concepts of radar were reviewed. Information on current radar equipment was examined. Specific issues related to insect research included; target cross-section, radar frequency, tracking target recognition and false alarms, clutter reduction, radar transmitter power, and ascertained atmospheric processes.

  8. Introduction to Radar Signal and Data Processing: The Opportunity

    DTIC Science & Technology

    2006-09-01

    Antenna elements Figure 10: The Power and Data Domain Approaches for STAP. Much attention today is put on the so-called reduced-dimension (RD) STAP...radar evolution from the early days up today , taxonomy of radar and radar equation). Subsequently, Section 3 considers the schematic of a modern radar... power micro-wave (µw) magnetron for higher frequency for radar. More details on the radar history can be found in [1] from which the previous notes

  9. The DOE/NASA wind turbine data acquisition system. Part 3: Unattended power performance monitor

    NASA Technical Reports Server (NTRS)

    Halleyy, A.; Heidkamp, D.; Neustadter, H.; Olson, R.

    1983-01-01

    Software documentation, operational procedures, and diagnostic instructions for development version of an unattended wind turbine performance monitoring system is provided. Designed to be used for off line intelligent data acquisition in conjunction with the central host computer.

  10. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1983-01-01

    For 80 Sappho, 356 Liguria, 694 Ekard, and 2340 Hathor, data were taken simultaneously in the same sense of circular polarization as transmitted (SC) as well as in the opposite (OC) sense. Graphs show the average OC and SC radar echo power spectra soothed to a resolution of EFB Hz and plotted against Doppler frequency. Radar observations of the peculiar object 2201 Oljato reveal an unusual set of echo power spectra. The albedo and polarization ratio remain fairly constant but the bandwidths range from approximately 0.8 Hz to 1.4 Hz and the spectral shapes vary dramatically. Echo characteristics within any one date's approximately 2.5-hr observation period do not fluctuate very much. Laboratory measurements of the radar frequency electrical properties of particulate metal-plus-silicate mixtures can be combined with radar albedo estimates to constrain the bulk density and metal weight, fraction in a hypothetical asteroid regolith having the same particle size distribution as lab samples.

  11. Design of an Ultra-Efficient GaN High Power Amplifier for Radar Front-Ends Using Active Harmonic Load-Pull

    NASA Technical Reports Server (NTRS)

    Thrivikraman, Tushar; Hoffman, James

    2012-01-01

    This work presents a new measurement technique, mixed-signal active harmonic load-pull (MSALP) developed by Anterverta-mw in partnership with Maury Microwave, that allows for wide-band ultra-high efficiency amplifiers to be designed using GaN technology. An overview of the theory behind active load-pull is presented and why load-pull is important for high-power device characterization. In addition, an example procedure is presented that outlines a methodology for amplifier design using this measurement system. Lastly, measured results of a 10W GaN amplifier are presented. This work aims to highlight the benefit of using this sophisticated measurement systems for to optimize amplifier design for real radar waveforms that in turn will simplify implementation of space-based radar systems

  12. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  13. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  14. Air and Missile Defense Radar (AMDR)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-384 Air and Missile Defense Radar (AMDR) As of FY 2017 President’s Budget Defense Acquisition...Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then Year UCR

  15. Low-Power Temperature-Swing Adsorption for Mars Atmosphere Acquisition

    NASA Technical Reports Server (NTRS)

    Finn, J. E.

    1999-01-01

    The promise of In-Situ Resource Utilization (ISRU)-based mission architectures for Mars surface exploration will begin to be realized during the next decade as robotic spacecraft sent to Mars carry components and whole chemical plants for producing propellants from the planet's atmosphere. These chemical plants will need to perform three primary operations: acquisition of atmospheric carbon dioxide, reactions to transform the gas into oxygen and possibly fuel, and storage of the products. This presentation focuses on development of technologies at NASA Ames Research Center for the first of these operations, carbon dioxide acquisition.

  16. Advances in automated noise data acquisition and noise source modeling for power reactors

    SciTech Connect

    Clapp, N.E. Jr.; Kryter, R.C.; Sweeney, F.J.; Renier, J.A.

    1981-01-01

    A newly expanded program, directed toward achieving a better appreciation of both the strengths and limitations of on-line, noise-based, long-term surveillance programs for nuclear reactors, is described. Initial results in the complementary experimental (acquisition and automated screening of noise signatures) and theoretical (stochastic modeling of likely noise sources) areas of investigation are given.

  17. Radar frequency radiation

    NASA Astrophysics Data System (ADS)

    Malowicki, E.

    1981-11-01

    A method is presented for the determination of radar frequency radiation power densities that the PAVE PAWS radar system could produce in its air and ground environment. The effort was prompted by the concern of the people in the vicinity of OTIS AFB MA and BEALE AFB CA about the possible radar frequency radiation hazard of the PAVE PAWS radar. The method is based on the following main assumptions that: (a) the total field can be computed as the vector summation of the individual fields due to each antenna element; (b) the individual field can be calculated using distances for which the field point is in the far field of the antenna element. An RFR computer program was coded for the RADC HE 6180 digital computer and exercised to calculate the radiation levels in the air and ground space for the present baseline and the possible Six DB and 10 DB growth systems of the PAVE PAWS radar system at OTIS AFB MA. The average radiation levels due to the surveillance fence were computed for three regions: in the air space in front of the radar, at the radar hazard fence at OTIS AFB MA and at representative ground points in the OTIS AFB vicinity. It was concluded that the radar frequency radiation of PAVE PAWS does not present a hazard to personnel provided there is no entry to the air hazard zone or to the area within the hazard fence. The method developed offers a cost effective way to determine radiation levels from a phased array radar especially in the near field and transition regions.

  18. Integration of WERA Ocean Radar into Tsunami Early Warning Systems

    NASA Astrophysics Data System (ADS)

    Dzvonkovskaya, Anna; Helzel, Thomas; Kniephoff, Matthias; Petersen, Leif; Weber, Bernd

    2016-04-01

    High-frequency (HF) ocean radars give a unique capability to deliver simultaneous wide area measurements of ocean surface current fields and sea state parameters far beyond the horizon. The WERA® ocean radar system is a shore-based remote sensing system to monitor ocean surface in near real-time and at all-weather conditions up to 300 km offshore. Tsunami induced surface currents cause increasing orbital velocities comparing to normal oceanographic situation and affect the measured radar spectra. The theoretical approach about tsunami influence on radar spectra showed that a tsunami wave train generates a specific unusual pattern in the HF radar spectra. While the tsunami wave is approaching the beach, the surface current pattern changes slightly in deep water and significantly in the shelf area as it was shown in theoretical considerations and later proved during the 2011 Japan tsunami. These observed tsunami signatures showed that the velocity of tsunami currents depended on a tsunami wave height and bathymetry. The HF ocean radar doesn't measure the approaching wave height of a tsunami; however, it can resolve the surface current velocity signature, which is generated when tsunami reaches the shelf edge. This strong change of the surface current can be detected by a phased-array WERA system in real-time; thus the WERA ocean radar is a valuable tool to support Tsunami Early Warning Systems (TEWS). Based on real tsunami measurements, requirements for the integration of ocean radar systems into TEWS are already defined. The requirements include a high range resolution, a narrow beam directivity of phased-array antennas and an accelerated data update mode to provide a possibility of offshore tsunami detection in real-time. The developed software package allows reconstructing an ocean surface current map of the area observed by HF radar based on the radar power spectrum processing. This fact gives an opportunity to issue an automated tsunami identification message

  19. Obstacle penetrating dynamic radar imaging system

    DOEpatents

    Romero, Carlos E.; Zumstein, James E.; Chang, John T.; Leach, Jr.. Richard R.

    2006-12-12

    An obstacle penetrating dynamic radar imaging system for the detection, tracking, and imaging of an individual, animal, or object comprising a multiplicity of low power ultra wideband radar units that produce a set of return radar signals from the individual, animal, or object, and a processing system for said set of return radar signals for detection, tracking, and imaging of the individual, animal, or object. The system provides a radar video system for detecting and tracking an individual, animal, or object by producing a set of return radar signals from the individual, animal, or object with a multiplicity of low power ultra wideband radar units, and processing said set of return radar signals for detecting and tracking of the individual, animal, or object.

  20. Planetary Radar

    NASA Technical Reports Server (NTRS)

    Neish, Catherine D.; Carter, Lynn M.

    2015-01-01

    This chapter describes the principles of planetary radar, and the primary scientific discoveries that have been made using this technique. The chapter starts by describing the different types of radar systems and how they are used to acquire images and accurate topography of planetary surfaces and probe their subsurface structure. It then explains how these products can be used to understand the properties of the target being investigated. Several examples of discoveries made with planetary radar are then summarized, covering solar system objects from Mercury to Saturn. Finally, opportunities for future discoveries in planetary radar are outlined and discussed.

  1. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, Thomas E.

    1998-01-01

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings.

  2. Short range micro-power impulse radar with high resolution swept range gate with damped transmit and receive cavities

    DOEpatents

    McEwan, T.E.

    1998-06-30

    A radar range finder and hidden object locator is based on ultra-wide band radar with a high resolution swept range gate. The device generates an equivalent time amplitude scan with atypical range of 4 inches to 20 feet, and an analog range resolution as limited by a jitter of on the order of 0.01 inches. A differential sampling receiver is employed to effectively eliminate ringing and other aberrations induced in the receiver by the near proximity of the transmit antenna, so a background subtraction is not needed, simplifying the circuitry while improving performance. Uses of the invention include a replacement of ultrasound devices for fluid level sensing, automotive radar, such as cruise control and parking assistance, hidden object location, such as stud and rebar finding. Also, this technology can be used when positioned over a highway lane to collect vehicle count and speed data for traffic control. Techniques are used to reduce clutter in the receive signal, such as decoupling the receive and transmit cavities by placing a space between them, using conductive or radiative damping elements on the cavities, and using terminating plates on the sides of the openings. 20 figs.

  3. A barrier radar concept

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Ball, C.; Weissman, I.

    A description is given of a low power, light-weight radar that can be quickly set up and operated on batteries for extended periods of time to detect airborne intruders. With low equipment and operating costs, it becomes practical to employ a multiplicity of such radars to provide an unbroken intrusion fence over the desired perimeter. Each radar establishes a single transmitted fan beam extending vertically from horizon to horizon. The beam is generated by a two-face array antenna built in an A-frame configuration and is shaped, through phasing of the array elements, to concentrate the transmitter power in a manner consistent with the expected operating altitude ceiling of the targets of interest. The angular width of this beam in the dimension transverse to the fan depends on the radar transmission frequency and the antenna aperture dimension, but is typically wide enough so that a target at the maximum altitude or range will require tens of seconds to pass through the beam. A large number of independent samples of radar data will thus be available to provide many opportunities for target detection.

  4. Spaceborne radar

    NASA Technical Reports Server (NTRS)

    Moore, R. K.; Eckerman, J.; Meneghini, R.; Atlas, D.; Boerner, W. M.; Cherry, S.; Clark, J. F.; Doviak, R. J.; Goldhirsh, J.; Lhermitte, R. M.

    1981-01-01

    The spaceborne radar panel considered how radar could be used to measure precipitation from satellites. The emphasis was on how radar could be used with radiometry (at microwave, visible (VIS), and infrared (IR) wavelengths) to reduce the uncertainties of measuring precipitation with radiometry alone. In addition, the fundamental electromagnetic interactions involved in the measurements were discussed to determine the key work areas for research and development to produce effective instruments. Various approaches to implementing radar systems on satellites were considered for both shared and dedicated instruments. Finally, a research and development strategy was proposed for establishing the parametric relations and retrieval algorithms required for extracting precipitation information from the radar and associated radiometric data.

  5. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.

    PubMed

    Zhang, Fan; Holleman, Jeremy; Otis, Brian P

    2012-08-01

    Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ Vrms, and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ Vrms, and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ Vrms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.

  6. Compact, battery powered, wireless digitizers for in situ data acquisitions in the sino-united spherical tokamak

    NASA Astrophysics Data System (ADS)

    Liu, Yangqing; Tan, Yi; Ke, Rui; Yang, Hao; Wang, Wenhao; Gao, Zhe

    2015-07-01

    Potential isolation and long cable drive are very important in acquiring certain signals from tokamak diagnostics. Compact, battery powered, wireless digitizers for in situ data acquisition have been developed and routinely used in the sino-united spherical tokamak to solve the problems of isolation and long cables. The wireless digitizers utilize the integrated analog to digital converters and the static random access memory of microcontrollers but transfer data wirelessly. They consist of simple and concise circuits but have considerable performances of 12-16 bit in resolution and 500-1000 kS/s in sample rate. Wireless triggering and energy saving are two major challenges of the wireless digitizers. Wireless transceivers in the data link layer are used as trigger and can reduce the trigger jitters to be smaller than 1 μs. In order to reduce the energy consumption, the wireless digitizers are waken only when the tokamak is about to discharge. After discharges, they turn to a periodic checking mode with current consumption smaller than 200 μA. Because of low duty cycle, the wireless digitizers have a battery life of up to four weeks. In general, the wireless digitizers have better performance than normal isolation amplifiers and can greatly simplify the cable connections. They are very suitable for the data acquisition of dangerous and/or susceptible analog signals in tokamaks.

  7. Compact, battery powered, wireless digitizers for in situ data acquisitions in the sino-united spherical tokamak.

    PubMed

    Liu, Yangqing; Tan, Yi; Ke, Rui; Yang, Hao; Wang, Wenhao; Gao, Zhe

    2015-07-01

    Potential isolation and long cable drive are very important in acquiring certain signals from tokamak diagnostics. Compact, battery powered, wireless digitizers for in situ data acquisition have been developed and routinely used in the sino-united spherical tokamak to solve the problems of isolation and long cables. The wireless digitizers utilize the integrated analog to digital converters and the static random access memory of microcontrollers but transfer data wirelessly. They consist of simple and concise circuits but have considerable performances of 12-16 bit in resolution and 500-1000 kS/s in sample rate. Wireless triggering and energy saving are two major challenges of the wireless digitizers. Wireless transceivers in the data link layer are used as trigger and can reduce the trigger jitters to be smaller than 1 μs. In order to reduce the energy consumption, the wireless digitizers are waken only when the tokamak is about to discharge. After discharges, they turn to a periodic checking mode with current consumption smaller than 200 μA. Because of low duty cycle, the wireless digitizers have a battery life of up to four weeks. In general, the wireless digitizers have better performance than normal isolation amplifiers and can greatly simplify the cable connections. They are very suitable for the data acquisition of dangerous and/or susceptible analog signals in tokamaks.

  8. Identification of Field Line Resonances in the Magnetosphere Using the Super Dual Auroral Radar Network (superdarn): New ``CROSS-POWER and Cross-Phase Technique

    NASA Astrophysics Data System (ADS)

    Mazzino, L.; Fenrich, F. R.

    2010-12-01

    Field Line Resonances (FLRs) are Ultra Low Frequency (ULF) standing waves that appear in discrete frequencies and occur in Earth’s Magnetic Field as a result of wave coupling of MHD compressional and Shear Alfvén waves. The main purpose of the new ‘cross-power and cross-phase’ technique, presented in this analysis, is to systematically identify FLR occurrence using data from the Super Dual Auroral Radar Network (SuperDARN), a radar network that detects coherent echoes from plasma irregularities that are aligned with the field lines. SuperDARN data has been successfully used for more than 17 years to identify FLRs, due to its large coverage over the polar cap and auroral region. Specifications of the instrument as well as the algorithm used by this new technique will be explained in detail. As an example we will apply the technique to a known 1.9 mHz FLR that occurred on November 20th 2003 at 22:30-23:00 UT detected by the Prince George station. Discussion of the application of this technique to automatically detect other events, and the future statistical analysis of all events identified will be presented.

  9. The Rubble Rescue Radar (RRR): A low power hand-held microwave device for the detection of trapped human personnel

    SciTech Connect

    Haddad, W.S.

    1997-04-10

    Each year, innocent human lives are lost in collapsed structures as a result of both natural and man-made disasters. We have developed a prototype device, called the Rubble Rescue Radar (RRR) as a aid to workers trying to locate trapped victims in urban search and rescue operations. The RRR is a motion sensor incorporating Micropower Impulse Radar and is capable of detecting human breathing motions through reinforced concrete. It is lightweight, and designed to be handled by a single operator for local searches in areas where trapped victims are expected. Tests of the first prototype device were conducted on site at LLNL using a mock rubble pile consisting of a reinforced concrete pipe with two concrete floor slabs placed against one side, and random concrete and asphalt debris piled against the other. This arrangement provides safe and easy access for instruments and/or human subjects. Breathing signals of a human subject were recorded with the RRR through one floor slab plus the wall of the pipe, two slabs plus the wall of the pipe, and the random rubble plus the wall of the pipe. Breathing and heart beat signals were also recorded of a seated human subject at a distance of 1 meter with no obstructions. Results and photographs of the experimental work are presented, and a design concept for the next generation device is described.

  10. DS Sentry: an acquisition ASIC for smart, micro-power sensing applications

    NASA Astrophysics Data System (ADS)

    Liobe, John; Fiscella, Mark; Moule, Eric; Balon, Mark; Bocko, Mark; Ignjatovic, Zeljko

    2011-06-01

    Unattended ground monitoring that combines seismic and acoustic information can be a highly valuable tool in intelligence gathering; however there are several prerequisites for this approach to be viable. The first is high sensitivity as well as the ability to discriminate real threats from noise and other spurious signals. By combining ground sensing with acoustic and image monitoring this requirement may be achieved. Moreover, the DS Sentry®provides innate spurious signal rejection by the "active-filtering" technique employed as well as embedding some basic statistical analysis. Another primary requirement is spatial and temporal coverage. The ideal is uninterrupted, long-term monitoring of an area. Therefore, sensors should be densely deployed and consume very little power. Furthermore, sensors must be inexpensive and easily deployed to allow dense placements in critical areas. The ADVIS DS Sentry®, which is a fully-custom integrated circuit that enables smart, micro-power monitoring of dynamic signals, is the foundation of the proposed system. The core premise behind this technology is the use of an ultra-low power front-end for active monitoring of dynamic signals in conjunction with a highresolution, Σ Δ-based analog-to-digital converter, which utilizes a novel noise rejection technique and is only employed when a potential threat has been detected. The DS Sentry® can be integrated with seismic accelerometers and microphones and user-programmed to continuously monitor for signals with specific signatures such as impacts, footsteps, excavation noise, vehicle-induced ground vibrations, or speech, while consuming only microwatts of power. This will enable up to several years of continuous monitoring on a single small battery while concurrently mitigating false threats.

  11. Xenon Acquisition Strategies for High-Power Electric Propulsion NASA Missions

    NASA Technical Reports Server (NTRS)

    Herman, Daniel A.; Unfried, Kenneth G.

    2015-01-01

    Solar electric propulsion (SEP) has been used for station-keeping of geostationary communications satellites since the 1980s. Solar electric propulsion has also benefitted from success on NASA Science Missions such as Deep Space One and Dawn. The xenon propellant loads for these applications have been in the 100s of kilograms range. Recent studies performed for NASA's Human Exploration and Operations Mission Directorate (HEOMD) have demonstrated that SEP is critically enabling for both near-term and future exploration architectures. The high payoff for both human and science exploration missions and technology investment from NASA's Space Technology Mission Directorate (STMD) are providing the necessary convergence and impetus for a 30-kilowatt-class SEP mission. Multiple 30-50- kilowatt Solar Electric Propulsion Technology Demonstration Mission (SEP TDM) concepts have been developed based on the maturing electric propulsion and solar array technologies by STMD with recent efforts focusing on an Asteroid Redirect Robotic Mission (ARRM). Xenon is the optimal propellant for the existing state-of-the-art electric propulsion systems considering efficiency, storability, and contamination potential. NASA mission concepts developed and those proposed by contracted efforts for the 30-kilowatt-class demonstration have a range of xenon propellant loads from 100s of kilograms up to 10,000 kilograms. This paper examines the status of the xenon industry worldwide, including historical xenon supply and pricing. The paper will provide updated information on the xenon market relative to previous papers that discussed xenon production relative to NASA mission needs. The paper will discuss the various approaches for acquiring on the order of 10 metric tons of xenon propellant to support potential near-term NASA missions. Finally, the paper will discuss acquisitions strategies for larger NASA missions requiring 100s of metric tons of xenon will be discussed.

  12. RADAR WARNING SYSTEM,

    DTIC Science & Technology

    RADAR TRACKING, *AIRCRAFT DEFENSE SYSTEMS, RADAR EQUIPMENT, AIR TO AIR, SEARCH RADAR, GUIDED MISSILES, HIGH SPEED BOMBING, EARLY WARNING SYSTEMS, FIRE CONTROL SYSTEM COMPONENTS, AIRCRAFT, TIME, CHINA.

  13. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations

    PubMed Central

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-01-01

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10−4 to 3.16 × 10−2 M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R2 = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications. PMID:27049390

  14. A Portable Low-Power Acquisition System with a Urease Bioelectrochemical Sensor for Potentiometric Detection of Urea Concentrations.

    PubMed

    Ma, Wei-Jhe; Luo, Ching-Hsing; Lin, Jiun-Ling; Chou, Sin-Houng; Chen, Ping-Hung; Syu, Mei-Jywan; Kuo, Shin-Hung; Lai, Shin-Chi

    2016-04-02

    This paper presents a portable low-power battery-driven bioelectrochemical signal acquisition system for urea detection. The proposed design has several advantages, including high performance, low cost, low-power consumption, and high portability. A LT1789-1 low-supply-voltage instrumentation amplifier (IA) was used to measure and amplify the open-circuit potential (OCP) between the working and reference electrodes. An MSP430 micro-controller was programmed to process and transduce the signals to the custom-developed software by ZigBee RF module in wireless mode and UART in able mode. The immobilized urease sensor was prepared by embedding urease into the polymer (aniline-co-o-phenylenediamine) polymeric matrix and then coating/depositing it onto a MEMS-fabricated Au working electrode. The linear correlation established between the urea concentration and the potentiometric change is in the urea concentrations range of 3.16 × 10(-4) to 3.16 × 10(-2) M with a sensitivity of 31.12 mV/log [M] and a precision of 0.995 (R² = 0.995). This portable device not only detects urea concentrations, but can also operate continuously with a 3.7 V rechargeab-le lithium-ion battery (500 mA·h) for at least four days. Accordingly, its use is feasible and even promising for home-care applications.

  15. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    DOE PAGES

    Abbasi, R.; Takai, H.; Allen, C.; ...

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe themore » design and performance of the TARA transmitter and receiver systems.« less

  16. Telescope Array Radar (TARA) Observatory for Ultra-High Energy Cosmic Rays

    SciTech Connect

    Abbasi, R.; Takai, H.; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Abou Bakr Othman, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W.H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Thomson, G. B.; Von Maluski, D.

    2014-08-19

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest “conventional” cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  17. Telescope Array Radar (TARA) observatory for Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Othman, M. Abou Bakr; Allen, C.; Beard, L.; Belz, J.; Besson, D.; Byrne, M.; Farhang-Boroujeny, B.; Gardner, A.; Gillman, W. H.; Hanlon, W.; Hanson, J.; Jayanthmurthy, C.; Kunwar, S.; Larson, S. L.; Myers, I.; Prohira, S.; Ratzlaff, K.; Sokolsky, P.; Takai, H.; Thomson, G. B.; Von Maluski, D.

    2014-12-01

    Construction was completed during summer 2013 on the Telescope Array RAdar (TARA) bi-static radar observatory for Ultra-High Energy Cosmic Rays (UHECR). TARA is co-located with the Telescope Array, the largest "conventional" cosmic ray detector in the Northern Hemisphere, in radio-quiet Western Utah. TARA employs an 8 MW Effective Radiated Power (ERP) VHF transmitter and smart receiver system based on a 250 MS/s data acquisition system in an effort to detect the scatter of sounding radiation by UHECR-induced atmospheric ionization. TARA seeks to demonstrate bi-static radar as a useful new remote sensing technique for UHECRs. In this report, we describe the design and performance of the TARA transmitter and receiver systems.

  18. A radar-enabled collaborative sensor network integrating COTS technology for surveillance and tracking.

    PubMed

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R; Demirer, R Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios.

  19. A new color, IR, and radar data fusion for obstacle detection and collision warning

    NASA Astrophysics Data System (ADS)

    Yonemoto, Naruto; Yamamoto, Kazuo; Yamada, Kimio

    2004-08-01

    Helicopters often strike against obstacles such as power lines. We are developing an obstacle detection and warning system for civil helicopters to reduce such collisions. A color camera, an Infrared (IR) camera and a Millimeter Wave (MMW) radar are employed as its sensors. This paper describes an image and data fusion of color and infrared images with the millimeter wave information. An outline of the obstacle detection and warning system is described first. Then, we propose a newly developed on-board system based on a fast AD converter. A new algorithm is also proposed to identify the nearest target using the radar signal where there are other far large-RCS obstacles. As the result, the system can achieve 30 cycles per second of IR and color image acquisition, radar data processing, distance calculation, fusing all data and displaying them. Finally, we propose a future plan for flight experiments planned in this year.

  20. A Radar-Enabled Collaborative Sensor Network Integrating COTS Technology for Surveillance and Tracking

    PubMed Central

    Kozma, Robert; Wang, Lan; Iftekharuddin, Khan; McCracken, Ernest; Khan, Muhammad; Islam, Khandakar; Bhurtel, Sushil R.; Demirer, R. Murat

    2012-01-01

    The feasibility of using Commercial Off-The-Shelf (COTS) sensor nodes is studied in a distributed network, aiming at dynamic surveillance and tracking of ground targets. Data acquisition by low-cost (<$50 US) miniature low-power radar through a wireless mote is described. We demonstrate the detection, ranging and velocity estimation, classification and tracking capabilities of the mini-radar, and compare results to simulations and manual measurements. Furthermore, we supplement the radar output with other sensor modalities, such as acoustic and vibration sensors. This method provides innovative solutions for detecting, identifying, and tracking vehicles and dismounts over a wide area in noisy conditions. This study presents a step towards distributed intelligent decision support and demonstrates effectiveness of small cheap sensors, which can complement advanced technologies in certain real-life scenarios. PMID:22438713

  1. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation.

    PubMed

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-12-31

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal-oxide-semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms.

  2. Low-Power Photoplethysmogram Acquisition Integrated Circuit with Robust Light Interference Compensation

    PubMed Central

    Kim, Jongpal; Kim, Jihoon; Ko, Hyoungho

    2015-01-01

    To overcome light interference, including a large DC offset and ambient light variation, a robust photoplethysmogram (PPG) readout chip is fabricated using a 0.13-μm complementary metal–oxide–semiconductor (CMOS) process. Against the large DC offset, a saturation detection and current feedback circuit is proposed to compensate for an offset current of up to 30 μA. For robustness against optical path variation, an automatic emitted light compensation method is adopted. To prevent ambient light interference, an alternating sampling and charge redistribution technique is also proposed. In the proposed technique, no additional power is consumed, and only three differential switches and one capacitor are required. The PPG readout channel consumes 26.4 μW and has an input referred current noise of 260 pArms. PMID:26729122

  3. Millimeter radar improves target identification

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2011-06-01

    Recently developed millimeter wave radar has advantages for target identification over conventional microwave radar which typically use lower frequencies. We describe the pertinent features involved in the construction of the new millimeter wave radar, the pseudo-optical cavity source and the quasi-optical duplexer. The long wavelength relative to light allows the radar beam to penetrate through most weather because the wavelength is larger than the particle size for dust, drizzle rain, fog. Further the mm wave beam passes through an atmospheric transmission window that provides a dip in attenuation. The higher frequency than conventional radar provides higher Doppler frequencies, for example, than X-band radar. We show by simulation that small characteristic vibrations and slow turns of an aircraft become visible so that the Doppler signature improves identification. The higher frequency also reduces beam width, which increases transmit and receive antenna gains. For the same power the transmit beam extends to farther range and the increase in receive antenna gain increases signal to noise ratio for improved detection and identification. The narrower beam can also reduce clutter and reject other noise more readily. We show by simulation that the radar can be used at lower elevations over the sea than conventional radar.

  4. Durability patch and damage dosimeter: a portable battery-powered data acquisition computer and durability patch design process

    NASA Astrophysics Data System (ADS)

    Haugse, Eric D.; Johnson, Patrick E.; Smith, David L.; Rogers, Lynn C.

    2000-05-01

    Repairs of secondary structure can be accomplished by restoring structural integrity at the damaged area and increasing the structure's damping in the repair region. Increased damping leads to a reduction in resonant response and a repair that will survive for the life of the aircraft. In order to design a repair with effective damping properties, the in-service structural strains and temperatures must be known. A rugged, small and lightweight data acquisition unit called the Damage Dosimeter has been developed to accomplish this task with minimal impact to the aircraft system. Running autonomously off of battery power, the Damage Dosimeter measures three channels of strain at sample rates as high as 15 kilo-samples per second and a single channel of temperature. It merges the functionality of both analog signal conditioning and a digital single board computer on one 3.5 by 5 inch card. The Damage Dosimeter allows an engineer to easily instrument an in-service aircraft to assess the structural response characteristics necessary to properly select damping materials. This information in conjunction with analysis and design procedures can be used to design a repair with optimum effectiveness. This paper will present the motivation behind the development of the Damage Dosimeter along with an overview of its functional capabilities and design. In-service flight data and analysis results will be discussed for two applications. The paper will also describe how the Damage Dosimeter is used to enable the Durability Patch design process.

  5. Rain radar instrument definition

    NASA Astrophysics Data System (ADS)

    Vincent, Nicolas; Chenebault, J.; Suinot, Noel; Mancini, Paolo L.

    1996-12-01

    As a result of a pre-phase a study, founded by ESA, this paper presents the definition of a spaceborne Rain Radar, candidate instrument for earth explorer precipitation mission. Based upon the description of user requirements for such a dedicated mission, a mission analysis defines the most suitable space segment. At system level, a parametric analysis compares pros and cons of instrument concepts associated with rain rate retrieval algorithms in order to select the most performing one. Several trade-off analysis at subsystem level leads then to the definition of the proposed design. In particular, as pulse compression is implemented in order to increase the radar sensitivity, the selected method to achieve a pulse response with a side-lobe level below--60 dB is presented. Antenna is another critical rain radar subsystem and several designs are com pared: direct radiating array, single or dual reflector illuminated by single or dual feed arrays. At least, feasibility of centralized amplification using TWTA is compared with criticality of Tx/Rx modules for distributed amplification. Mass and power budgets of the designed instrument are summarized as well as standard deviations and bias of simulated rain rate retrieval profiles. The feasibility of a compliant rain radar instrument is therefore demonstrated.

  6. 3. Distant view toward east, west face of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Distant view toward east, west face of perimeter acquisition radar building with data link satellite dish on south side - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  7. 12. Distant view toward southwest, northeast oblique of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Distant view toward southwest, northeast oblique of perimeter acquisition radar building, with view of site grounds - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  8. 7. Distant view toward southeast, northwest oblique of perimeter acquisition ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Distant view toward southeast, northwest oblique of perimeter acquisition radar building. Cooling towers can be seen on the far right - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  9. Study to investigate and evaluate means of optimizing the radar function for the space shuttle. [(pulse radar)

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Results are discussed of a study to define a radar and antenna system which best suits the space shuttle rendezvous requirements. Topics considered include antenna characteristics and antenna size tradeoffs, fundamental sources of measurement errors inherent in the target itself, backscattering crosssection models of the target and three basic candidate radar types. Antennas up to 1.5 meters in diameter are within specified installation constraints, however, a 1 meter diameter paraboloid and a folding, four slot backfeed on a two gimbal mount implemented for a spiral acquisition scan is recommended. The candidate radar types discussed are: (1) noncoherent pulse radar (2) coherent pulse radar and (3) pulse Doppler radar with linear FM ranging. The radar type recommended is a pulse Doppler with linear FM ranging. Block diagrams of each radar system are shown.

  10. Planetary radar

    NASA Technical Reports Server (NTRS)

    Taylor, R. M.

    1980-01-01

    The radar astronomy activities supported by the Deep Space Network during June, July, and August 1980 are reported. The planetary bodies observed were Venus, Mercury, and the asteroid Toro. Data were obtained at both S and X band, and the observations were considered successful.

  11. Solar Radar Astronomy with LOFAR

    NASA Astrophysics Data System (ADS)

    Rodriguez, P.

    2003-04-01

    A new approach to the study of the Sun's corona and its dynamical processes is possible with radar investigations in the frequency range of about 10-50 MHz. The range of electron densities of the solar corona is such that radio waves at these frequencies can provide diagnostic radar echoes of large scale phenomena such as coronal mass ejections (CMEs). We expect that the frequency shift imposed on the echo signal by an earthward-moving CME will provide a direct measurement of the velocity, thereby providing a good estimate of the arrival time at Earth. It is known that CMEs are responsible for the largest geomagnetic storms at Earth, which are capable of causing power grid blackouts, satellite electronic upsets, and degradation of radio communications circuits. Thus, having accurate forecasts of potential CME-initiated geomagnetic storms is of practical space weather interest. New high power transmitting arrays are becoming available, along with proposed modifications to existing research facilities, that will allow the use of radio waves to study the solar corona by the radar echo technique. Of particular interest for such solar radar investigations is the bistatic configuration with the Low Frequency Array (LOFAR). The LOFAR facility will have an effective receiving area of about 1 square km at solar radar frequencies. Such large effective area will provide the receiving antenna gain needed for detailed investigations of solar coronal dynamics. Conservative estimates of the signal-to-noise ratio for solar radar echoes as a function of the integration time required to achieve a specified detection level (e.g., ~ 5 dB) indicate that time resolutions of 10s of seconds can be achieved. Thus, we are able to resolve variations in the solar radar cross section on time scales which will provide new information on the plasma dynamical processes associated with the solar corona, such as CMEs. It is the combination of high transmitted power and large effective receiving

  12. Soil-penetrating synthetic aperture radar

    SciTech Connect

    Boverie, B.; Brock, B.C.; Doerry, A.W.

    1994-12-01

    This report summarizes the results for the first year of a two year Laboratory Directed Research and Development (LDRD) effort. This effort included a system study, preliminary data acquisition, and preliminary algorithm development. The system study determined the optimum frequency and bandwidth, surveyed soil parameters and targets, and defined radar cross section in lossy media. The data acquisition imaged buried objects with a rail-SAR. Algorithm development included a radar echo model, three-dimensional processing, sidelobe optimization, phase history data interpolation, and clutter estimation/cancellation.

  13. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  14. TRMM radar

    NASA Technical Reports Server (NTRS)

    Okamoto, Kenichi

    1993-01-01

    The results of a conceptual design study and the performance of key components of the Bread Board Model (BBM) of the Tropical Rainfall Measuring Mission (TRMM) radar are presented. The radar, which operates at 13.8 GHz and is designed to meet TRMM mission objectives, has a minimum measurable rain rate of 0.5 mm/h with a range resolution of 250 m, a horizontal resolution of about 4 km, and a swath width of 220 km. A 128-element active phased array system is adopted to achieve contiguous scanning within the swath. The basic characteristics of BBM were confirmed by experiments. The development of EM started with the cooperation of NASDA and CRL.

  15. Two terminal micropower radar sensor

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  16. Two terminal micropower radar sensor

    DOEpatents

    McEwan, T.E.

    1995-11-07

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  17. Radar Sounder

    DTIC Science & Technology

    1988-09-01

    over the shorter time period (resulting in a multilook SAR ) with the result that spatial resolution, the usual r~ason for using SAR techniques, degrades...Field - - - ALT 21. Sea Surface Topography - - - SAR , ALT 22. Ocean Waves (sea, swell, surf) V. Good Some V. Good SAR , ALT * with additional lower freq...OLS - Operational Line-scan System radiometer (4-6 GHz?) ALT - Altimeter •* good at low microwave SAR - Synthetic Aperture frequencies Radar + over

  18. Fly eye radar or micro-radar sensor technology

    NASA Astrophysics Data System (ADS)

    Molchanov, Pavlo; Asmolova, Olga

    2014-05-01

    To compensate for its eye's inability to point its eye at a target, the fly's eye consists of multiple angularly spaced sensors giving the fly the wide-area visual coverage it needs to detect and avoid the threats around him. Based on a similar concept a revolutionary new micro-radar sensor technology is proposed for detecting and tracking ground and/or airborne low profile low altitude targets in harsh urban environments. Distributed along a border or around a protected object (military facility and buildings, camp, stadium) small size, low power unattended radar sensors can be used for target detection and tracking, threat warning, pre-shot sniper protection and provides effective support for homeland security. In addition it can provide 3D recognition and targets classification due to its use of five orders more pulses than any scanning radar to each space point, by using few points of view, diversity signals and intelligent processing. The application of an array of directional antennas eliminates the need for a mechanical scanning antenna or phase processor. It radically decreases radar size and increases bearing accuracy several folds. The proposed micro-radar sensors can be easy connected to one or several operators by point-to-point invisible protected communication. The directional antennas have higher gain, can be multi-frequency and connected to a multi-functional network. Fly eye micro-radars are inexpensive, can be expendable and will reduce cost of defense.

  19. Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    PubMed Central

    Zito, Domenico; Pepe, Domenico; Neri, Bruno; Zito, Fabio; De Rossi, Danilo; Lanatà, Antonio

    2008-01-01

    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported. PMID:18389068

  20. Space Radar Image of Long Island Optical/Radar

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This pair of images of the Long Island, New York region is a comparison of an optical photograph (top) and a radar image (bottom), both taken in darkness in April 1994. The photograph at the top was taken by the Endeavour astronauts at about 3 a.m. Eastern time on April 20, 1994. The image at the bottom was acquired at about the same time four days earlier on April 16,1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) system aboard the space shuttle Endeavour. Both images show an area approximately 100 kilometers by 40 kilometers (62 miles by 25 miles) that is centered at 40.7 degrees North latitude and 73.5 degrees West longitude. North is toward the upper right. The optical image is dominated by city lights, which are particularly bright in the densely developed urban areas of New York City located on the left half of the photo. The brightest white zones appear on the island of Manhattan in the left center, and Central Park can be seen as a darker area in the middle of Manhattan. To the northeast (right) of the city, suburban Long Island appears as a less densely illuminated area, with the brightest zones occurring along major transportation and development corridors. Since radar is an active sensing system that provides its own illumination, the radar image shows a great amount of surface detail, despite the night-time acquisition. The colors in the radar image were obtained using the following radar channels: red represents the L-band (horizontally transmitted and received); green represents the L-band (horizontally transmitted and vertically received); blue represents the C-band (horizontally transmitted and vertically received). In this image, the water surface - the Atlantic Ocean along the bottom edge and Long Island Sound shown at the top edge - appears red because small waves at the surface strongly reflect the horizontally transmitted and received L-band radar signal. Networks of highways and railroad lines are clearly

  1. Coded continuous wave meteor radar

    NASA Astrophysics Data System (ADS)

    Vierinen, Juha; Chau, Jorge L.; Pfeffer, Nico; Clahsen, Matthias; Stober, Gunter

    2016-03-01

    The concept of a coded continuous wave specular meteor radar (SMR) is described. The radar uses a continuously transmitted pseudorandom phase-modulated waveform, which has several advantages compared to conventional pulsed SMRs. The coding avoids range and Doppler aliasing, which are in some cases problematic with pulsed radars. Continuous transmissions maximize pulse compression gain, allowing operation at lower peak power than a pulsed system. With continuous coding, the temporal and spectral resolution are not dependent on the transmit waveform and they can be fairly flexibly changed after performing a measurement. The low signal-to-noise ratio before pulse compression, combined with independent pseudorandom transmit waveforms, allows multiple geographically separated transmitters to be used in the same frequency band simultaneously without significantly interfering with each other. Because the same frequency band can be used by multiple transmitters, the same interferometric receiver antennas can be used to receive multiple transmitters at the same time. The principles of the signal processing are discussed, in addition to discussion of several practical ways to increase computation speed, and how to optimally detect meteor echoes. Measurements from a campaign performed with a coded continuous wave SMR are shown and compared with two standard pulsed SMR measurements. The type of meteor radar described in this paper would be suited for use in a large-scale multi-static network of meteor radar transmitters and receivers. Such a system would be useful for increasing the number of meteor detections to obtain improved meteor radar data products.

  2. An MSK Radar Waveform

    NASA Technical Reports Server (NTRS)

    Quirk, Kevin J.; Srinivasan, Meera

    2012-01-01

    The minimum-shift-keying (MSK) radar waveform is formed by periodically extending a waveform that separately modulates the in-phase and quadrature- phase components of the carrier with offset pulse-shaped pseudo noise (PN) sequences. To generate this waveform, a pair of periodic PN sequences is each passed through a pulse-shaping filter with a half sinusoid impulse response. These shaped PN waveforms are then offset by half a chip time and are separately modulated on the in-phase and quadrature phase components of an RF carrier. This new radar waveform allows an increase in radar resolution without the need for additional spectrum. In addition, it provides self-interference suppression and configurable peak sidelobes. Compared strictly on the basis of the expressions for delay resolution, main-lobe bandwidth, effective Doppler bandwidth, and peak ambiguity sidelobe, it appears that bi-phase coded (BPC) outperforms the new MSK waveform. However, a radar waveform must meet certain constraints imposed by the transmission and reception of the modulation, as well as criteria dictated by the observation. In particular, the phase discontinuity of the BPC waveform presents a significant impediment to the achievement of finer resolutions in radar measurements a limitation that is overcome by using the continuous phase MSK waveform. The phase continuity, and the lower fractional out-of-band power of MSK, increases the allowable bandwidth compared with BPC, resulting in a factor of two increase in the range resolution of the radar. The MSK waveform also has been demonstrated to have an ambiguity sidelobe structure very similar to BPC, where the sidelobe levels can be decreased by increasing the length of the m-sequence used in its generation. This ability to set the peak sidelobe level is advantageous as it allows the system to be configured to a variety of targets, including those with a larger dynamic range. Other conventionally used waveforms that possess an even greater

  3. Radar observations of asteroid 1986 JK

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.; Yeomans, D. K.; Chodas, P. W.; Goldstein, R. M.; Jurgens, R. F.; Thompson, T. W.

    1989-01-01

    The asteroid 1986 JK was observed with a 3.5 cm-wavelength radar in May and June, 1986, at less than 0.029 AU; its radar echo power circular polarization ratio indicates single backscattering from smooth surface elements. A working model constructed for the asteroid in light of these radar data postulates a 1-2 km object whose shape has little elongation and some polar flattening. Orbital and physical characteristics are rather cometlike. The radar astrometric data obtained are noted to be extremely powerful for orbit-improvement, so that a search ephemeris whose uncertainty is an order-of-magnitude smaller than that based on relevant optical data alone can be prepared by combining optical and radar data.

  4. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  5. Comet radar explorer

    NASA Astrophysics Data System (ADS)

    Farnham, Tony; Asphaug, Erik; Barucci, Antonella; Belton, Mike; Bockelee-Morvan, Dominique; Brownlee, Donald; Capria, Maria Teresa; Carter, Lynn; Chesley, Steve; Farnham, Tony; Gaskell, Robert; Gim, Young; Heggy, Essam; Herique, Alain; Klaasen, Ken; Kofman, Wlodek; Kreslavsky, Misha; Lisse, Casey; Orosei, Roberto; Plaut, Jeff; Scheeres, Dan

    will enjoy significant simplifying benefits compared to using the same instrument for Mars or lunar radar science: (1) The proximity of operations leads to a much higher signal to noise, as much as +30 dB. (2) The lack of an ionosphere simplifies data modeling and analysis. (3) The body is globally illuminated during every data acquisition, minimizing ambiguity or 'clutter' and allowing for tomographic reconstruction. What is novel is the data processing, where instead of a planar radargram approach we coherently process the data into an image of the deep interior. CORE thus uses a MARSIS-SHARAD heritage radar to make coherent reflection sounding measurements, a 'CAT SCAN' of a comet nucleus. What is unique about this mission compared to the Mars radars mentioned above, is that the target is a finite mass of dirty ice in free space, rather than a sheet of dirty ice draped on a planet surface. The depth of penetration (kilometers), attainable resolution (decameters), and the target materials, are more or less the same. This means that the science story is robust, and the radar implementation is robust. The target is comet 10P/Tempel 2, discovered by Wilhelm Tempel in 1873 and observed on most apparitions since. It has been extensively studied, in part because of interest as a CRAF target in the mid-1980s, and much is known about it. Tempel 2 is one of the largest known comet nuclei, 16×8×8 km (about the same size as Halley) [1] and has rotation period 8.9 hours [3,5,6,7,9]. The spin state is evolving with time, spinning up by ˜10 sec per perihelion pass [5,7]. The comet is active, but not exceedingly so, especially given its size. The water production is measured at ˜ 4 × 1028 mol/sec at its peak [2], a factor of 25 lower than comet Halley, and it is active over only ˜2% of its surface. The dust environment is well known, producing a factor of ˜100 less dust than Halley. Comet References: [1] A'Hearn et al., ApJ 347, 1155, 1989 [2] Feldman and Festou, ACM 1991, p

  6. The Italian involvement in Cassini radar

    NASA Astrophysics Data System (ADS)

    Nirchio, F.; Pernice, B.; Borgarelli, L.; Dionisio, C.

    1991-12-01

    The Radio Frequency Electronic Subsystem (RFES) of the Cassini radar is described. The requirements of the Cassini radar are summarized. The design parameters taken into consideration in developing the RFES are described. The RFES interfaces with the High Gain Antenna (HGA) for signal transmission and reception. The operational parameters of the Cassini radar are presented. The front end electronics (FEE), microwave receiver (MR), high power amplifier (HPA), frequency generator (FG), digital chip generator (DCG), Chirp Up Converter and Amplifier (CUCA) and power supply of the RFES are described.

  7. A 200-Channel Area-Power-Efficient Chemical and Electrical Dual-Mode Acquisition IC for the Study of Neurodegenerative Diseases.

    PubMed

    Guo, Jing; Ng, Waichiu; Yuan, Jie; Li, Suwen; Chan, Mansun

    2016-06-01

    Microelectrode array (MEA) can be used in the study of neurodegenerative diseases by monitoring the chemical neurotransmitter release and the electrical potential simultaneously at the cellular level. Currently, the MEA technology is migrating to more electrodes and higher electrode density, which raises power and area constraints on the design of acquisition IC. In this paper, we report the design of a 200-channel dual-mode acquisition IC with highly efficient usage of power and area. Under the constraints of target noise and fast settling, the current channel design saves power by including a novel current buffer biased in discrete time (DT) before the TIA (transimpedance amplifier). The 200 channels are sampled at 20 kS/s and quantized by column-wise SAR ADCs. The prototype IC was fabricated in a 0.18 μm CMOS process. Silicon measurements show the current channel has 21.6 pArms noise with cyclic voltammetry (CV) and 0.48 pArms noise with constant amperometry (CA) while consuming 12.1 μW . The voltage channel has 4.07 μVrms noise in the bandwidth of 100 kHz and 0.2% nonlinearity while consuming 9.1 μW. Each channel occupies 0.03 mm(2) area, which is among the smallest.

  8. Portable receiver for radar detection

    DOEpatents

    Lopes, Christopher D.; Kotter, Dale K.

    2008-10-14

    Various embodiments are described relating to a portable antenna-equipped device for multi-band radar detection. The detection device includes a plurality of antennas on a flexible substrate, a detection-and-control circuit, an indicator and a power source. The antenna may include one or more planar lithographic antennas that may be fabricated on a thin-film substrate. Each antenna may be tuned to a different selection frequency or band. The antennas may include a bolometer for radar detection. Each antenna may include a frequency selective surface for tuning to the selection frequency.

  9. Radar and Lidar Radar DEM

    NASA Technical Reports Server (NTRS)

    Liskovich, Diana; Simard, Marc

    2011-01-01

    Using radar and lidar data, the aim is to improve 3D rendering of terrain, including digital elevation models (DEM) and estimates of vegetation height and biomass in a variety of forest types and terrains. The 3D mapping of vegetation structure and the analysis are useful to determine the role of forest in climate change (carbon cycle), in providing habitat and as a provider of socio-economic services. This in turn will lead to potential for development of more effective land-use management. The first part of the project was to characterize the Shuttle Radar Topography Mission DEM error with respect to ICESat/GLAS point estimates of elevation. We investigated potential trends with latitude, canopy height, signal to noise ratio (SNR), number of LiDAR waveform peaks, and maximum peak width. Scatter plots were produced for each variable and were fitted with 1st and 2nd degree polynomials. Higher order trends were visually inspected through filtering with a mean and median filter. We also assessed trends in the DEM error variance. Finally, a map showing how DEM error was geographically distributed globally was created.

  10. Ground/Air Task Oriented Radar (G/ATOR)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-386 Ground/Air Task Oriented Radar (G/ATOR) As of FY 2017 President’s Budget Defense...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY

  11. Data acquisition for a real time fault monitoring and diagnosis knowledge-based system for space power system

    NASA Technical Reports Server (NTRS)

    Wilhite, Larry D.; Lee, S. C.; Lollar, Louis F.

    1989-01-01

    The design and implementation of the real-time data acquisition and processing system employed in the AMPERES project is described, including effective data structures for efficient storage and flexible manipulation of the data by the knowledge-based system (KBS), the interprocess communication mechanism required between the data acquisition system and the KBS, and the appropriate data acquisition protocols for collecting data from the sensors. Sensor data are categorized as critical or noncritical data on the basis of the inherent frequencies of the signals and the diagnostic requirements reflected in their values. The critical data set contains 30 analog values and 42 digital values and is collected every 10 ms. The noncritical data set contains 240 analog values and is collected every second. The collected critical and noncritical data are stored in separate circular buffers. Buffers are created in shared memory to enable other processes, i.e., the fault monitoring and diagnosis process and the user interface process, to freely access the data sets.

  12. Temperate Ice Depth Sounding Radar (TIDSoR)

    NASA Astrophysics Data System (ADS)

    Jara, V.; Player, K.; Gogineni, S.; Rodriguez, F.; Thompson, L.

    2007-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last few years. A key variable in the study of glacier dynamics is ice thickness. A few attempts have been made to develop airborne sounding radars for temperate-ice thickness measurements [Arcone et al., 2000]. There is an urgent need for compact radar for routine ice thickness measurements from ground-based and airborne platforms. Radars (Radio Detection and Ranging) have been widely used to measure ice thickness in Greenland and Antarctica. However, the radars used in these areas operate in the VHF and UHF part of the electromagnetic spectrum. Due to the composition of temperate ice, the attenuation and back-scatter from large pockets of water makes UHF and VHF ineffective in sounding of its thickness. Radars operating in lower part of the HF spectrum are required for sounding temperate ice. We are designing and developing a Temperate Ice Depth-Sounding Radar (TIDSoR) that can penetrate through the water pockets and provide a more accurate measurement of the ice thickness. TIDSoR is a light-weight system for ground-based operations in mountainous terrain or aerial surveys in which weight is an important factor, such as in an UAV. TIDSoR operates on two channels in the HF spectrum using two-linear, frequency-modulated chirp waveforms. The two chirp frequency ranges are 7 to 8 MHz and 13.5 to 14.5 MHz. The radar will operate from a 12-V battery and is designed to weigh less than 2 kg, excluding the battery. The radar consists of three main sections: Digital, RF and antenna. The digital-section generates the transmitter waveforms, timing and control signals, and digitizes processes and stores the received signal. The RF-section consists of a transmitter with a 20-W peak-power amplifier, band-pass filters, and a switching system for a shared antenna. The receiver consists of a blanking switch, a limiter, a low-noise amplifier, a band-pass filter and a data acquisition

  13. Comparison of Ground-Penetrating Radar and Low-Frequency Electromagnetic Sounding for Detection and Characterization of Groundwater on Mars

    NASA Technical Reports Server (NTRS)

    Grimm, R. E.

    2003-01-01

    Two orbital, ground-penetrating radars, MARSIS and SHARAD, are scheduled for Mars flight, with detection of groundwater a high priority. While these radars will doubtlessly provide significant new information on the subsurface of Mars, thin films of adsorbed water in the cryosphere will strongly attenuate radar signals and prevent characterization of any true aquifers, if present. Scattering from 10-m scale layering or wavelength-size regolith heterogeneities will also degrade radar performance. Dielectric contrasts are sufficiently small for low-porosity, deep aquifers that groundwater cannot be reliably identified. In contrast, low-frequency (mHz-kHz) soundings are ideally suited to groundwater detection due to their great depths of penetration and the high electrical conductivity (compared to cold, dry rock) of groundwater. A variety of low-frequency methods span likely ranges of mass, volume, and power resources, but all require acquisition at or near the planetary surface. Therefore the current generation of orbital radars will provide useful global reconnaissance for subsequent targeted exploration at low frequency. Introduction: Electromagnetic (EM) methods

  14. Radar applications of gigawatt sources at millimeter wave frequencies

    SciTech Connect

    Bruder, J.A.; Belcher, M.L. . Research Inst.)

    1991-06-01

    The high transmit powers provided by free electron laser (FEL) sources in combination with the narrow antenna beamwidths achievable at millimeter wave (MMW) frequencies offer potential for use in a number of radar applications. Potential applications of high power millimeter wave sources include satellite imaging, low angle radar tracking, radar astronomy, and a number of other possible applications such as atmospheric research, space debris detection, and space vehicle tracking. 3 refs., 3 figs.

  15. Optical aurora and its relationship to measurements from satellites, VHF radar and incoherent scatter radars

    NASA Technical Reports Server (NTRS)

    Romick, G. J.

    1974-01-01

    Examples are given of coordinated programs in Alaska which involve satellites, radars, ground optical instrumentation, and other types of observing satellites for the study of atmospheric and magnetospheric geophysics. Programs include coincidence data acquisition, scheduled data acquisition, and planned experiments. The use of optical triangulation techniques to determine the position of the aurora in order to place the other measurements in the perspective of the overall auroral morphology is detailed.

  16. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-12-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA, the National Imagery and Mapping Agency, and the German and Italian Space Agencies. The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and better than 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. Data processing will be completed by the end of 2002. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  17. The Shuttle Radar Topography Mission

    NASA Astrophysics Data System (ADS)

    Farr, T. G.; Kobrick, M.

    2001-05-01

    The Shuttle Radar Topography Mission (SRTM), which flew successfully aboard Endeavour in February 2000, is a cooperative project between NASA and the National Imagery and Mapping Agency (NIMA). The mission was designed to use a single-pass radar interferometer to produce a digital elevation model of the Earth's land surface between about 60 degrees north and 56 degrees south latitude. The DEM will have 30 m horizontal resolution and about 15 m vertical errors. Two ortho-rectified C-band image mosaics are also planned. SRTM used a modification of the radar instrument that comprised the Spaceborne Radar Laboratory that flew twice on the Shuttle Endeavour in 1994. To collect the interferometric data, a 60 m mast, additional C-band antenna, and improved tracking and navigation devices were added. A second X-band antenna was also added by the German Space Agency, and produced higher resolution topographic measurements in strips nested within the full, C-band coverage. First results indicate that the radars and ancillary instruments worked very well. Data played back to the ground during the flight were processed to DEMs and products released hours after acquisition. An extensive program for calibration and verification of the SRTM data is now underway. When complete later this year, systematic processing of the data will begin, with final products emerging a continent at a time. Data processing will be completed by the end of 2002. Products will be transferred to the US Geological Survey's EROS Data Center for civilian archive and distribution. NIMA will handle Department of Defense distribution. * Work performed under contract to NASA.

  18. Through-Wall Imaging Radar

    DTIC Science & Technology

    2012-01-01

    receiver dynamic range to be applied to the target scene behind the wall. A time-division multiplexed ( TDM ), multiple-input, multiple-output (MIMO...by the data-acquisition computer. The TDM MIMO radar system sequences through each of the 44 bistatic combinations, acquiring one range profile at...96 5. 75 5. 75 2 FiGurE 5. In this cartoon of the time-division multiplexed ( TDM ), multiple-input, multiple-output (MIMO) array lay- out [compare to

  19. RADAR "SAIL" satellite concept

    NASA Astrophysics Data System (ADS)

    Aguttes, Jean Paul; Sombrin, Jacques; Conde, Eric

    1996-11-01

    The Radar SAIL concept is based on the use of a rectangular antenna lying in the dawn-dusk orbital plane with the length (along speed vector) smaller than the height. Such geometry makes it possible to place the solar cells on the back of the antenna, to use gravity gradient stabilisation, and to implement multipath-free GPS interferometric measurement of the antenna deformation thus allowing structural relaxation. Less obviously, the geometry favours the RADAR design too, by allowing grating lobes and therefore a lower density of built-in electronic in the active antenna. The antenna can be thin and packed for launch inside a cylinder-shaped bus having pyrotechnic doors for the antenna deployement and bearing the rest of the payload and the service equipment. With respect to a standard design of performant missions, cost savings come from the bus, whose functions (AOCS, power supply) are simplified, from the launch since the mass budget and the stowing configuration become compatible with medium size rockets (LLV2/3, DELTA-LITE, LM-4.), and from the active antenna built-in electronics. The RADAR SAIL concept is all the more cost effective when the mission requires a large, high and short antenna, i.e. high resolution (<5m), low frequency band (L or S or even P), high revisiting, multiple frequencies. Mission implementation and funding can be favored by the new capability to share the satellite between autonomous regional operators. Combined with ground DBF (digital beam forming) technique, the concept allows extremely simple and low cost missions providing a fixed wide swath (10 to 15 m resolution within 500km to 1000 km swath) for systematic surveillance or monitoring.

  20. The proposed flatland radar

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Gage, K. S.; Vanzandt, T. E.; Nastrom, G. D.

    1986-01-01

    A flexible very high frequency (VHF) stratosphere-troposphere (ST) radar configured for meteorological research is to be constructed near Urbana, Illinois. Measurement of small vertical velocities associated with synoptic-scale meteorology can be performed. A large Doppler microwave radar (CHILL) is located a few km from the site of the proposed ST radar. Since the microwave radar can measure the location and velocity of hydrometeors and the VHF ST radar can measure clear (or cloudy) air velocities, simultaneous observations by these two radars of stratiform or convective weather systems would provide valuable meteorological information.

  1. Survey of Ultra-wideband Radar

    NASA Astrophysics Data System (ADS)

    Mokole, Eric L.; Hansen, Pete

    The development of UWB radar over the last four decades is very briefly summarized. A discussion of the meaning of UWB is followed by a short history of UWB radar developments and discussions of key supporting technologies and current UWB radars. Selected UWB radars and the associated applications are highlighted. Applications include detecting and imaging buried mines, detecting and mapping underground utilities, detecting and imaging objects obscured by foliage, through-wall detection in urban areas, short-range detection of suicide bombs, and the characterization of the impulse responses of various artificial and naturally occurring scattering objects. In particular, the Naval Research Laboratory's experimental, low-power, dual-polarized, short-pulse, ultra-high resolution radar is used to discuss applications and issues of UWB radar. Some crucial issues that are problematic to UWB radar are spectral availability, electromagnetic interference and compatibility, difficulties with waveform control/shaping, hardware limitations in the transmission chain, and the unreliability of high-power sources for sustained use above 2 GHz.

  2. Characterizing Subglacial Interfaces With Airborne Radar Sounding Techniques

    NASA Astrophysics Data System (ADS)

    Peters, M. E.; Blankenship, D. D.; Morse, D. L.

    2004-12-01

    Ice sheets are sensitive indicators of global change including sea-level rise. An ice sheet's subglacial interface is an important factor controlling its dynamic behavior. In particular, the grounding zones of ice streams and subglacial lakes are complex systems involving the interaction of the moving ice mass with underlying materials such as liquid water, saturated lubricating tills, and rough or frozen bedrock sticky spots. Imaging and characterizing the subglacial environment of ice sheets is fundamental to understanding these complex systems. Airborne radar sounding is a powerful and well-known technique for studying ice sheets and glaciers and their contiguous underlying environments. We present results from data acquired in 2001 over the ice stream C grounding zone in West Antarctica, as well as over a hypothesized subglacial lake near the South Pole. These data were acquired using a uniquely configured coherent airborne radar system. Our focus has been to characterize the subglacial interface through radar echo analysis based on reflection and scattering theory. The radar system uses a programmable signal source linked to a 10 kW transmitter and a dual-channel coherent down-conversion receiver. The radar operates in chirped pulse mode at 60 MHz with 15 MHz bandwidth. High and low-gain channels allow for recording a wide dynamic range of echoes simultaneously and without range-dependent gain control. Data acquisition includes integrations of 16 returned radar signals about every 15 cm along-track. Pulse compression and synthetic aperture radar (SAR) processing were components of data analysis. Subglacial echoes are influenced by the physical properties of the interface such as the composition and roughness of the materials at the interface. Other important factors include dielectric losses and volumetric scattering losses from propagation through the ice as well as transmission and refraction at the air-ice interface. Unfocussed SAR narrows the along

  3. Distributed radar sensors for aircraft detection

    NASA Astrophysics Data System (ADS)

    Canavan, G. H.

    1991-04-01

    Radars suitable for aircraft detection could be deployed on singlet space-based interceptor (SBI) platforms. They could operate at short ranges and still achieve useful search rates. Powers are modest and insensitive to frequency; the dominant costs are the pulsers and phased-array elements. A fundamental simplification results from mounting the radar on the life jacket rather than the SBI. Many satellites could be processed to derive aircraft trajectories sufficiently accurate for the commitment of fighters or defensive missiles.

  4. The Southern Argentine Agile Meteor Radar (SAAMER)

    NASA Astrophysics Data System (ADS)

    Janches, Diego

    2014-11-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53 S) in May 2008. SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large number of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars. In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions. The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source, of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables detailed study of showers at high southern latitudes (e.g July Phoenicids or Puppids complex). Finally, SAAMER is ideal for the deployment of complementary instrumentation in both, permanent

  5. The MST radar technique: A tool for investigations of turbulence spectra

    NASA Technical Reports Server (NTRS)

    Larsen, M. F.

    1983-01-01

    The feasibility of the MST radar as a tool for investigating turbulence spectra is discussed. Power spectral measurements using radar data are discussed. The characteristics of stratospheric turbulence are described. A model of the mesoscale turbulent process is developed.

  6. Pacific Barrier Radar III (PACBAR III)

    NASA Astrophysics Data System (ADS)

    Miller, C. D.; Sigler, J. D.

    1983-11-01

    The Pacific Barrier (PACBAR III) C-band radar is being installed at the Western Space and Missile Center to furnish Revolution 0 detection of foreign launches. Previously installed on a tracking ship, the upgraded system will also identify and target space objects, maintain a catalog, and cover maneuvers and decay of space objects. Nominal operation will comprise a search of a predesignated 15 deg azimuth with the capability of detecting a 6 sq m target in a 400 km orbit, track spacecraft in orbits up to 800 km altitude, have a range resolution of about 80 yd, provide realtime payload and rocket body discrimination, and transmit two-way digital message traffic between the Center and NORAD in Cheyenne Mt. Interlaced vertical and horizontal pulses will augment the search and acquisition capabilities, and the antenna will have a 140 deg plunge range. The transmitter will function at 5.4-5.65 GHz, 320 p/sec, with a peak power of 0.8 MW, and the system will have a nonambiguous range of 32,768 nmi.

  7. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Mondéjar, Albert; Benveniste, Jérôme; Naeije, Marc; Escolà, Roger; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Ambrózio, Américo; Restano, Marco

    2016-07-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Études Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  8. Broadview Radar Altimetry Toolbox

    NASA Astrophysics Data System (ADS)

    Escolà, Roger; Garcia-Mondejar, Albert; Moyano, Gorka; Roca, Mònica; Terra-Homem, Miguel; Friaças, Ana; Martinho, Fernando; Schrama, Ernst; Naeije, Marc; Ambrozio, Americo; Restano, Marco; Benveniste, Jérôme

    2016-04-01

    The universal altimetry toolbox, BRAT (Broadview Radar Altimetry Toolbox) which can read all previous and current altimetry missions' data, incorporates now the capability to read the upcoming Sentinel-3 L1 and L2 products. ESA endeavoured to develop and supply this capability to support the users of the future Sentinel-3 SAR Altimetry Mission. BRAT is a collection of tools and tutorial documents designed to facilitate the processing of radar altimetry data. This project started in 2005 from the joint efforts of ESA (European Space Agency) and CNES (Centre National d'Etudes Spatiales), and it is freely available at http://earth.esa.int/brat. The tools enable users to interact with the most common altimetry data formats. The BratGUI is the front-end for the powerful command line tools that are part of the BRAT suite. BRAT can also be used in conjunction with MATLAB/IDL (via reading routines) or in C/C++/Fortran via a programming API, allowing the user to obtain desired data, bypassing the data-formatting hassle. BRAT can be used simply to visualise data quickly, or to translate the data into other formats such as NetCDF, ASCII text files, KML (Google Earth) and raster images (JPEG, PNG, etc.). Several kinds of computations can be done within BRAT involving combinations of data fields that the user can save for posterior reuse or using the already embedded formulas that include the standard oceanographic altimetry formulas. The Radar Altimeter Tutorial, that contains a strong introduction to altimetry, shows its applications in different fields such as Oceanography, Cryosphere, Geodesy, Hydrology among others. Included are also "use cases", with step-by-step examples, on how to use the toolbox in the different contexts. The Sentinel-3 SAR Altimetry Toolbox shall benefit from the current BRAT version. While developing the toolbox we will revamp of the Graphical User Interface and provide, among other enhancements, support for reading the upcoming S3 datasets and

  9. Weather Radar Technology Development

    DTIC Science & Technology

    1990-08-15

    uelocitV WMs ) data processing systems such as NEXRAD to have a reliable technique for removing ambiguities due to velocity aliasing. Performance of many...intended for automated implementation on radar systems such as the NEXt generation weather RADar ( NEXRAD ) system. Several research areas were addressed...with Doppler radar will soon be realized with the deployment of the NEXRAD radar systems. Some of these large scale storms can have devastating wind

  10. Radar Location Equipment Development Program: Phase I

    SciTech Connect

    Sandness, G.A.; Davis, K.C.

    1985-06-01

    The work described in this report represents the first phase of a planned three-phase project designed to develop a radar system for monitoring waste canisters stored in a thick layer of bedded salt at the Waste Isolation Pilot Plant near Carlsbad, New Mexico. The canisters will be contained in holes drilled into the floor of the underground waste storage facility. It is hoped that these measurements can be made to accuracies of +-5 cm and +-2/sup 0/, respectively. The initial phase of this project was primarily a feasibility study. Its principal objective was to evaluate the potential effectiveness of the radar method in the planned canister monitoring application. Its scope included an investigation of the characteristics of radar signals backscattered from waste canisters, a test of preliminary data analysis methods, an assessment of the effects of salt and bentonite (a proposed backfill material) on the propagation of the radar signals, and a review of current ground-penetrating radar technology. A laboratory experiment was performed in which radar signals were backscattered from simulated waste canisters. The radar data were recorded by a digital data acquisition system and were subsequently analyzed by three different computer-based methods to extract estimates of canister location and tilt. Each of these methods yielded results that were accurate within a few centimeters in canister location and within 1/sup 0/ in canister tilt. Measurements were also made to determine the signal propagation velocities in salt and bentonite (actually a bentonite/sand mixture) and to estimate the signal attenuation rate in the bentonite. Finally, a product survey and a literature search were made to identify available ground-penetrating radar systems and alternative antenna designs that may be particularly suitable for this unique application. 10 refs., 21 figs., 4 tabs.

  11. Radar: Human Safety Net

    ERIC Educational Resources Information Center

    Ritz, John M.

    2016-01-01

    Radar is a technology that can be used to detect distant objects not visible to the human eye. A predecessor of radar, called the telemobiloscope, was first used to detect ships in the fog in 1904 off the German coast. Many scientists have worked on the development and refinement of radar (Hertz with electromagnetic waves; Popov with determining…

  12. Lunar radar backscatter studies

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.

    1979-01-01

    The lunar surface material in the Plato area is characterized using Earth based visual, infrared, and radar signatures. Radar scattering in the lunar regolith with an existing optical scattering computer program is modeled. Mapping with 1 to 2 km resolution of the Moon using a 70 cm Arecibo radar is presented.

  13. Airborne Differential Doppler Weather Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, R.; Bidwell, S.; Liao, L.; Rincon, R.; Heymsfield, G.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    The Precipitation Radar aboard the Tropical Rain Measuring Mission (TRMM) Satellite has shown the potential for spaceborne sensing of snow and rain by means of an incoherent pulsed radar operating at 13.8 GHz. The primary advantage of radar relative to passive instruments arises from the fact that the radar can image the 3-dimensional structure of storms. As a consequence, the radar data can be used to determine the vertical rain structure, rain type (convective/stratiform) effective storm height, and location of the melting layer. The radar, moreover, can be used to detect snow and improve the estimation of rain rate over land. To move toward spaceborne weather radars that can be deployed routinely as part of an instrument set consisting of passive and active sensors will require the development of less expensive, lighter-weight radars that consume less power. At the same time, the addition of a second frequency and an upgrade to Doppler capability are features that are needed to retrieve information on the characteristics of the drop size distribution, vertical air motion and storm dynamics. One approach to the problem is to use a single broad-band transmitter-receiver and antenna where two narrow-band frequencies are spaced apart by 5% to 10% of the center frequency. Use of Ka-band frequencies (26.5 GHz - 40 GHz) affords two advantages: adequate spatial resolution can be attained with a relatively small antenna and the differential reflectivity and mean Doppler signals are directly related to the median mass diameter of the snow and raindrop size distributions. The differential mean Doppler signal has the additional property that this quantity depends only on that part of the radial speed of the hydrometeors that is drop-size dependent. In principle, the mean and differential mean Doppler from a near-nadir viewing radar can be used to retrieve vertical air motion as well as the total mean radial velocity. In the paper, we present theoretical calculations for the

  14. Modern Radar Techniques for Geophysical Applications: Two Examples

    NASA Technical Reports Server (NTRS)

    Arokiasamy, B. J.; Bianchi, C.; Sciacca, U.; Tutone, G.; Zirizzotti, A.; Zuccheretti, E.

    2005-01-01

    The last decade of the evolution of radar was heavily influenced by the rapid increase in the information processing capabilities. Advances in solid state radio HF devices, digital technology, computing architectures and software offered the designers to develop very efficient radars. In designing modern radars the emphasis goes towards the simplification of the system hardware, reduction of overall power, which is compensated by coding and real time signal processing techniques. Radars are commonly employed in geophysical radio soundings like probing the ionosphere; stratosphere-mesosphere measurement, weather forecast, GPR and radio-glaciology etc. In the laboratorio di Geofisica Ambientale of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy, we developed two pulse compression radars. The first is a HF radar called AIS-INGV; Advanced Ionospheric Sounder designed both for the purpose of research and for routine service of the HF radio wave propagation forecast. The second is a VHF radar called GLACIORADAR, which will be substituting the high power envelope radar used by the Italian Glaciological group. This will be employed in studying the sub glacial structures of Antarctica, giving information about layering, the bed rock and sub glacial lakes if present. These are low power radars, which heavily rely on advanced hardware and powerful real time signal processing. Additional information is included in the original extended abstract.

  15. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1982-01-01

    The dual polarization CW radar system which permits simultaneous reception in the same rotational sense of circular polarization as transmitted (i.e., the "SC" sense) and in the opposite ("OC") sense, was used to observe five previously unobserved asteroids: 2 Pallas, 8 Flora, 22 Kalliope, 132 Aethra, and 471 Papagena. Echoes from Pallas and Flora were easily detected in the OC sense on each of several nights. Weighted mean echo power spectra also show marginally significant responses in the SC sense. An approximately 4.5 standard deviation signal was obtained for Aethra. The Doppler shift of the peak is about 10 Hz higher than that predicted from the a priori trial ephemeris. Calculations are performed to determine whether this frequency offset can be reconciled dynamically with optical positions reported for Aethra.

  16. Transmitter passband requirements for imaging radar.

    SciTech Connect

    Doerry, Armin Walter

    2012-12-01

    In high-power microwave power amplifiers for radar, distortion in both amplitude and phase should generally be expected. Phase distortions can be readily equalized. Some amplitude distortions are more problematic than others. In general, especially for SAR using LFM chirps, low frequency modulations such as gain slopes can be tolerated much better than multiple cycles of ripple across the passband of the waveform.

  17. CloudSat as a Global Radar Calibrator

    SciTech Connect

    Protat, Alain; Bouniol, Dominique; O'Connor, E. J.; Baltink, Henk K.; Verlinde, J.; Widener, Kevin B.

    2011-03-01

    The calibration of the CloudSat spaceborne cloud radar has been thoroughly assessed using very accurate internal link budgets before launch, comparisons with predicted ocean surface backscatter at 94 GHz, direct comparisons with airborne cloud radars, and statistical comparisons with ground-based cloud radars at different locations of the world. It is believed that the calibration of CloudSat is accurate to within 0.5 to 1 dB. In the present paper it is shown that an approach similar to that used for the statistical comparisons with ground-based radars can now be adopted the other way around to calibrate other ground-based or airborne radars against CloudSat and / or detect anomalies in long time series of ground-based radar measurements, provided that the calibration of CloudSat is followed up closely (which is the case). The power of using CloudSat as a Global Radar Calibrator is demonstrated using the Atmospheric Radiation Measurement cloud radar data taken at Barrow, Alaska, the cloud radar data from the Cabauw site, The Netherlands, and airborne Doppler cloud radar measurements taken along the CloudSat track in the Arctic by the RASTA (Radar SysTem Airborne) cloud radar installed in the French ATR-42 aircraft for the first time. It is found that the Barrow radar data in 2008 are calibrated too high by 9.8 dB, while the Cabauw radar data in 2008 are calibrated too low by 8.0 dB. The calibration of the RASTA airborne cloud radar using direct comparisons with CloudSat agrees well with the expected gains and losses due to the change in configuration which required verification of the RASTA calibration.

  18. Radar signatures of sediment availability-limited dune-fields and playas on Earth as a Titan analog.

    NASA Astrophysics Data System (ADS)

    Epps, J. C.; Ewing, R. C.

    2015-12-01

    Large areas within the dune fields that mantle the equatorial regions of Saturn's moon, Titan appear to be sand availability-limited. These areas occur at dune field margins and in the inferred lee-side of topographic obstacles within the dune fields. Viewed with Cassini radar, these areas are lighter-toned than radar dark dunes, which implies radar scattering off of a rough surface. Otherwise, these areas have no geomorphologic structure visible at the spatial resolution of the Cassini radar. Within dune environments rough, sediment-availability limited surfaces can occur as pebble or cobble lag, surface crusts, evaporite polygons, dessication cracks and dune-cross-stratification. This study aims to better understand radar-response to a range of sediment availability-limited surfaces in dune environments using terrestrial spaceborne synthetic aperture radar (SAR) acquisitions. We primarily target playas and interdune-areas in western North America, southern Africa and the Middle East. As a means for multi-temporal comparison between satellite platform acquisitions, the SAR backscatter coefficient, σ0, has been used as a measure of the radar return intensity (brightness) and the surface roughness. SAR systems measure the ratio between the power of the pulse transmitted and that of the echo received as projected into the slant-range geometry. Geometric and radiometric calibration of the backscatter values are necessary for inter-comparison of radar images acquired with different sensors, or even of images obtained by the same sensor if acquired in different modes and look geometries. In light of this, this investigation has considered and fused a number of SAR datasets from SRTM SIR-C/X-SAR, ERS-1/2, Envisat, and Radarsat as a means for spatial and temporal variation of σ0. Preliminary statistical analysis of the backscatter coefficient shows decadal and seasonal trends in the variation of surface roughness over the temporal range of the data sets. Further

  19. Shuttle Imaging Radar-A (SIR-A) experiment

    NASA Technical Reports Server (NTRS)

    Elachi, C. (Editor); Cimino, J. B. (Editor)

    1982-01-01

    The SIR-A experiment was conducted in order to acquire radar data over a variety of regions to further understanding of the radar signatures of various geologic features. The capability of the Shuttle as a scientific platform for observation of the Earth's resources was assessed. The SIR-A sensor operated nominally and the full data acquisition capacity of the optical recorder was used.

  20. Digital orthogonal receiver for wideband radar based on compressed sensing

    NASA Astrophysics Data System (ADS)

    Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying

    2014-10-01

    Digital orthogonal receiver is one of the key techniques in digital receiver of soft radar, and compressed sensing is attracting more and more attention in radar signal processing. In this paper, we propose a CS digital orthogonal receiver for wideband radar which utilizes compressed sampling in the acquisition of radar raw data. In order to reconstruct complex signal from sub-sampled raw data, a novel sparse dictionary is proposed to represent the real-valued radar raw signal sparsely. Using our dictionary and CS algorithm, we can reconstruct the complex-valued radar signal from sub-sampled echoes. Compared with conventional digital orthogonal radar receiver, the architecture of receiver in this paper is more simplified and the sampling frequency of ADC is reduced sharply. At the same time, the range profile can be obtained during the reconstruction, so the matched filtering can be eliminated in the receiver. Some experiments on ISAR imaging based on simulated data prove that the phase information of radar echoes is well reserved in our orthogonal receiver and the whole design is effective for wideband radar.

  1. Getting Defense Acquisition Right

    DTIC Science & Technology

    2017-01-01

    Buying Power 1.0 Figure 2. Better Buying Power 2.0 Figure 3. Better Buying Power 3.0 179 Figure 4. Contract Cost Growth on Highest Risk (Major...Crossing Critical Congressional Cost- Growth Thresholds iv Getting Defense Acquisition Right 67 96 97 184 Table 1. Root...Causes for Major Programs Crossing Critical Con­ gressional Cost- Growth Thresholds or Other Major Problems 185 Figure 8. Planned Length of Active

  2. KU-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Griffin, J. W.

    1980-01-01

    The preparation of a real time computer simulation model of the KU band rendezvous radar to be integrated into the shuttle mission simulator (SMS), the shuttle engineering simulator (SES), and the shuttle avionics integration laboratory (SAIL) simulator is described. To meet crew training requirements a radar tracking performance model, and a target modeling method were developed. The parent simulation/radar simulation interface requirements, and the method selected to model target scattering properties, including an application of this method to the SPAS spacecraft are described. The radar search and acquisition mode performance model and the radar track mode signal processor model are examined and analyzed. The angle, angle rate, range, and range rate tracking loops are also discussed.

  3. Radar stage uncertainty

    USGS Publications Warehouse

    Fulford, J.M.; Davies, W.J.

    2005-01-01

    The U.S. Geological Survey is investigating the performance of radars used for stage (or water-level) measurement. This paper presents a comparison of estimated uncertainties and data for radar water-level measurements with float, bubbler, and wire weight water-level measurements. The radar sensor was also temperature-tested in a laboratory. The uncertainty estimates indicate that radar measurements are more accurate than uncorrected pressure sensors at higher water stages, but are less accurate than pressure sensors at low stages. Field data at two sites indicate that radar sensors may have a small negative bias. Comparison of field radar measurements with wire weight measurements found that the radar tends to measure slightly lower values as stage increases. Copyright ASCE 2005.

  4. Ku-Band rendezvous radar performance computer simulation model

    NASA Technical Reports Server (NTRS)

    Magnusson, H. G.; Goff, M. F.

    1984-01-01

    All work performed on the Ku-band rendezvous radar performance computer simulation model program since the release of the preliminary final report is summarized. Developments on the program fall into three distinct categories: (1) modifications to the existing Ku-band radar tracking performance computer model; (2) the addition of a highly accurate, nonrealtime search and acquisition performance computer model to the total software package developed on this program; and (3) development of radar cross section (RCS) computation models for three additional satellites. All changes in the tracking model involved improvements in the automatic gain control (AGC) and the radar signal strength (RSS) computer models. Although the search and acquisition computer models were developed under the auspices of the Hughes Aircraft Company Ku-Band Integrated Radar and Communications Subsystem program office, they have been supplied to NASA as part of the Ku-band radar performance comuter model package. Their purpose is to predict Ku-band acquisition performance for specific satellite targets on specific missions. The RCS models were developed for three satellites: the Long Duration Exposure Facility (LDEF) spacecraft, the Solar Maximum Mission (SMM) spacecraft, and the Space Telescopes.

  5. Lunar Radar Cross Section at Low Frequency

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Kennedy, E. J.; Kossey, P.; McCarrick, M.; Kaiser, M. L.; Bougeret, J.-L.; Tokarev, Y. V.

    2002-01-01

    Recent bistatic measurements of the lunar radar cross-section have extended the spectrum to long radio wavelength. We have utilized the HF Active Auroral Research Program (HAARP) radar facility near Gakona, Alaska to transmit high power pulses at 8.075 MHz to the Moon; the echo pulses were received onboard the NASA/WIND spacecraft by the WAVES HF receiver. This lunar radar experiment follows our previous use of earth-based HF radar with satellites to conduct space experiments. The spacecraft was approaching the Moon for a scheduled orbit perturbation when our experiment of 13 September 2001 was conducted. During the two-hour experiment, the radial distance of the satellite from the Moon varied from 28 to 24 Rm, where Rm is in lunar radii.

  6. Artificial ionospheric mirrors for radar applications

    SciTech Connect

    Short, R.D.; Wallace, T.; Stewart, C.V.; Lallement, P.; Koert, P.

    1990-10-01

    Recognition of performance limitations associated with traditional skywave over-the-horizon (OTH) high frequency (HF) radars has led a number of investigators to propose the creation of an Artificial Ionospheric Mirror (AIM) in the upper atmosphere, in order to reflect ground-based radar signals for OTH surveillance. The AIM is produced by beaming sufficient electromagnetic Power to the lower ionosphere (around 70 km) to enhance the in situ ionization level to 107 108 electrons/cm3, thereby providing an ionized layer capable of reflecting radar frequencies of 5 - 90 MHz. This paper presents a baseline AIM system concept and an associated performance evaluation, based upon the relevant ionization and propagation physics and in the context of air surveillance for the cruise missile threat. Results of the subject study indicate that a system using this concept would both complement and enhance the performance of the existing skywave OTH radars.

  7. Phased-array radar for airborne systems

    NASA Astrophysics Data System (ADS)

    Tahim, Raghbir S.; Foshee, James J.; Chang, Kai

    2003-09-01

    Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.

  8. Review of Current Aided/Automatic Target Acquisition Technology for Military Target Acquisition Tasks

    DTIC Science & Technology

    2011-07-01

    TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 10 19a. NAME OF RESPONSIBLE PERSON a...radar [e.g., synthetic aperture radar ( SAR )]. EO/IR includes multi- and hyperspectral imaging. Signal processing of data from nonimaging sensors, such...sensor size, weight, and power constraints on the platform, whereas Navy and Air Force tend to emphasize high range resolution and SAR radars due to the

  9. 2. VIEW SOUTHWEST, prime search radar tower, height finder radar ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW SOUTHWEST, prime search radar tower, height finder radar towards, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  10. Radar image of Rio Sao Francisco, Brazil

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This radar image acquired by SRTM shows an area south of the Sao Francisco River in Brazil. The area is predominantly scrub forest. Areas such as these are difficult to map by traditional methods because of frequent cloud cover and local inaccessibility. Image brightness differences in this image are caused by differences in vegetation type and density. Tributaries of the Sao Francisco are visible in the upper right. The Sao Francisco River is a major source of water for irrigation and hydroelectric power. Mapping such regions will allow scientists to better understand the relationships between flooding cycles, forestation and human influences on ecosystems.

    This radar image was obtained by the Shuttle Radar Topography Mission as part of its mission to map the Earth's topography. The image was acquired by just one of SRTM's two antennas, and consequently does not show topographic data but only the strength of the radar signal reflected from the ground. This signal, known as radar backscatter, provides insight into the nature of the surface, including its roughness, vegetation cover, and urbanization.

    The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission is designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC.

  11. The Urbana coherent-scatter radar: Synthesis and first results

    NASA Technical Reports Server (NTRS)

    Gibbs, K. P.; Bowhill, S. A.

    1979-01-01

    A coherent scatter radar system was synthesized and several hundred hours of echo power and line of sight velocity data obtained. The coherent scatter radar utilizes a diode array and components from meteor radar. The receiving system permits a time resolution of one minute in the data. Echo power from the D region shows a high degree of variability from day to day. Examples of changes in power level at shorter time scales are observed. Velocity data show the existence of gravity waves and occasionally exhibit vertical standing wave characteristics.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the JPL Office of Telecommunications and Data Acquisition (TDA) are provided. Topics covered include: DSN advanced systems (tracking and ground-based navigation; communications, spacecraft-ground; and station control and system technology) and DSN systems implementation (capabilities for existing projects; capabilities for new projects; TDA program management and analysis; and Goldstone solar system radar).

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1989-01-01

    Developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. Activities of the Deep Space Network and its associated Ground Communications Facility in planning, in supporting research and technology, in implementation, and in operations are reported in space communications, radio navigation, radio science, and ground-based radio and radar astronomy.

  14. 3. VIEW NORTHWEST, height finder radar towers, and radar tower ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTHWEST, height finder radar towers, and radar tower (unknown function) - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  15. Asteroidal meteors detected by MU radar head-echo observations

    NASA Astrophysics Data System (ADS)

    Abe, S.; Kero, J.; Nakamura, T.; Fujiwara, Y.; Kastinen, D.; Watanabe, J.; Hashiguchi, H.

    2016-01-01

    The recent development of the technique carried out using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S), which is large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m2 aperture array antenna, has established very precise orbital determination from meteor head echoes. A tremendous number, more than 150000, of observed precise orbits of meteoroids by the MU radar meteor head-echo observation will shed light on new discoveries of meteoroids. Here we report some interesting features related with asteroids or distinct comets.

  16. Ground-based laser radar measurements of satellite vibrations.

    PubMed

    Schultz, K I; Fisher, S

    1992-12-20

    Vibration signatures from the low-power atmospheric compensation (LACE) satellite are obtained by using the MIT Lincoln Laboratory Firepond coherent CO(2) laser radar facility located in Westford, Mass. The LACE satellite is equipped with IR germanium retroreflectors on deployable/retractable booms to enhance ground-based IR laser radar measurements of on-orbit boom vibrations. Analysis of pulsed cw laser radar measurements of the satellite during and subsequent to boom retraction indicates the presence of a complex time-varying model structure. The observed vibration spectra include vibration modes not previously predicted. These data represent the first observations of satellite vibration modes from a ground-based laser radar.

  17. Small battery operated unattended radar sensor for security systems

    NASA Astrophysics Data System (ADS)

    Plummer, Thomas J.; Brady, Stephen; Raines, Robert

    2013-06-01

    McQ has developed, tested, and is supplying to Unattended Ground Sensor (UGS) customers a new radar sensor. This radar sensor is designed for short range target detection and classification. The design emphasis was to have low power consumption, totally automated operation, a very high probability of detection coupled with a very low false alarm rate, be able to locate and track targets, and have a price compatible with the UGS market. The radar sensor complements traditional UGS sensors by providing solutions for scenarios that are difficult for UGS. The design of this radar sensor and the testing are presented in this paper.

  18. Radar based autonomous sensor module

    NASA Astrophysics Data System (ADS)

    Styles, Tim

    2016-10-01

    Most surveillance systems combine camera sensors with other detection sensors that trigger an alert to a human operator when an object is detected. The detection sensors typically require careful installation and configuration for each application and there is a significant burden on the operator to react to each alert by viewing camera video feeds. A demonstration system known as Sensing for Asset Protection with Integrated Electronic Networked Technology (SAPIENT) has been developed to address these issues using Autonomous Sensor Modules (ASM) and a central High Level Decision Making Module (HLDMM) that can fuse the detections from multiple sensors. This paper describes the 24 GHz radar based ASM, which provides an all-weather, low power and license exempt solution to the problem of wide area surveillance. The radar module autonomously configures itself in response to tasks provided by the HLDMM, steering the transmit beam and setting range resolution and power levels for optimum performance. The results show the detection and classification performance for pedestrians and vehicles in an area of interest, which can be modified by the HLDMM without physical adjustment. The module uses range-Doppler processing for reliable detection of moving objects and combines Radar Cross Section and micro-Doppler characteristics for object classification. Objects are classified as pedestrian or vehicle, with vehicle sub classes based on size. Detections are reported only if the object is detected in a task coverage area and it is classified as an object of interest. The system was shown in a perimeter protection scenario using multiple radar ASMs, laser scanners, thermal cameras and visible band cameras. This combination of sensors enabled the HLDMM to generate reliable alerts with improved discrimination of objects and behaviours of interest.

  19. High-resolution laser radar: a powerful tool for 3D imaging with potential applications in artwork restoration and medical prosthesis

    NASA Astrophysics Data System (ADS)

    Fantoni, Roberta; Bordone, Andrea; Ferri De Collibus, Mario; Fornetti, Giorgio G.; Guarneri, Marianna; Poggi, Claudio; Ricci, Roberto

    2003-11-01

    A high-resolution laser radar has been developed for laboratory applications at an accurate 3D reconstruction of real objects. The laser scanner can be used to produce single cylindrical range image when the object is placed on a controlled rotating platform or, alternatively, 3 or more linear range images, in order to fully characterize the surface of the object as seen from different points of view. From the sample points, characterized by an uncertainty as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) with relevant applications in industrial machining, artwork classification and medical diagnostics. Significant examples of 3D reconstructions are shown and discussed in view of a specific utilization for reverse engineering applied to artwork restoration and medical prosthesis.

  20. Radar Range Sidelobe Reduction Using Adaptive Pulse Compression Technique

    NASA Technical Reports Server (NTRS)

    Li, Lihua; Coon, Michael; McLinden, Matthew

    2013-01-01

    Pulse compression has been widely used in radars so that low-power, long RF pulses can be transmitted, rather than a highpower short pulse. Pulse compression radars offer a number of advantages over high-power short pulsed radars, such as no need of high-power RF circuitry, no need of high-voltage electronics, compact size and light weight, better range resolution, and better reliability. However, range sidelobe associated with pulse compression has prevented the use of this technique on spaceborne radars since surface returns detected by range sidelobes may mask the returns from a nearby weak cloud or precipitation particles. Research on adaptive pulse compression was carried out utilizing a field-programmable gate array (FPGA) waveform generation board and a radar transceiver simulator. The results have shown significant improvements in pulse compression sidelobe performance. Microwave and millimeter-wave radars present many technological challenges for Earth and planetary science applications. The traditional tube-based radars use high-voltage power supply/modulators and high-power RF transmitters; therefore, these radars usually have large size, heavy weight, and reliability issues for space and airborne platforms. Pulse compression technology has provided a path toward meeting many of these radar challenges. Recent advances in digital waveform generation, digital receivers, and solid-state power amplifiers have opened a new era for applying pulse compression to the development of compact and high-performance airborne and spaceborne remote sensing radars. The primary objective of this innovative effort is to develop and test a new pulse compression technique to achieve ultrarange sidelobes so that this technique can be applied to spaceborne, airborne, and ground-based remote sensing radars to meet future science requirements. By using digital waveform generation, digital receiver, and solid-state power amplifier technologies, this improved pulse compression

  1. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography.

    PubMed

    Thiel, F; Kreiseler, D; Seifert, F

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  2. Non-contact detection of myocardium's mechanical activity by ultrawideband RF-radar and interpretation applying electrocardiography

    NASA Astrophysics Data System (ADS)

    Thiel, F.; Kreiseler, D.; Seifert, F.

    2009-11-01

    Electromagnetic waves can propagate through the body and are reflected at interfaces between materials with different dielectric properties. Therefore the reason for using ultrawideband (UWB) radar for probing the human body in the frequency range from 100 MHz up to 10 GHz is obvious and suggests an ability to monitor the motion of organs within the human body as well as obtaining images of internal structures. The specific advantages of UWB sensors are high temporal and spatial resolutions, penetration into object, low integral power, and compatibility with established narrowband systems. The sensitivity to ultralow power signals makes them suitable for human medical applications including mobile and continuous noncontact supervision of vital functions. Since no ionizing radiation is used, and due to the ultralow specific absorption rate applied, UWB techniques permit noninvasive sensing with no potential risks. This research aims at the synergetic use of UWB sounding combined with magnetic resonance imaging (MRI) to gain complementary information for improved functional diagnosis and imaging, especially to accelerate and enhance cardiac MRI by applying UWB radar as a noncontact navigator of myocardial contraction. To this end a sound understanding of how myocardial's mechanic is rendered by reflected and postprocessed UWB radar signals must be achieved. Therefore, we have executed the simultaneous acquisition and evaluation of radar signals with signals from a high-resolution electrocardiogram. The noncontact UWB illumination was done from several radiographic standard positions to monitor selected superficial myocardial areas during the cyclic physiological myocardial deformation in three different respiratory states. From our findings we could conclude that UWB radar can serve as a navigator technique for high and ultrahigh field magnetic resonance imaging and can be beneficial preserving the high resolution capability of this imaging modality. Furthermore it

  3. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P.; Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  4. Historical sketch: Radar geology

    NASA Technical Reports Server (NTRS)

    Macdonald, H.

    1980-01-01

    A chronological assessment is given of the broad spectra of technology associated with radar geology. Particular attention is given to the most recent developments made in the areas of microwave Earth resources applications and geologic remote sensing from aircraft and satellite. The significance of space derived radar in geologic investigations is discussed and the scientific basis for exploiting the sensitivity of radar signals to various aspects of geologic terrain is given.

  5. UAS-Based Radar Sounding of Ice

    NASA Astrophysics Data System (ADS)

    Hale, R. D.; Keshmiri, S.; Leuschen, C.; Ewing, M.; Yan, J. B.; Rodriguez-Morales, F.; Gogineni, S.

    2014-12-01

    The University of Kansas Center for Remote Sensing of Ice Sheets developed two Unmanned Aerial Systems (UASs) to support polar research. We developed a mid-range UAS, called the Meridian, for operating a radar depth sounder/imager at 195 MHz with an eight-element antenna array. The Meridian weighs 1,100 lbs, has a 26-foot wingspan, and a range of 950 nm at its full payload capacity of 120 lbs. Ice-penetrating radar performance drove the configuration design, though additional payloads and sensors were considered to ensure adaptation to multi-mission science payloads. We also developed a short range UAS called the G1X for operating a low-frequency radar sounder that operates at 14 and 35 MHz. The G1X weighs 85 lbs, has a 17-foot wingspan, and a range of about 60 nm per gallon of fuel. The dual-frequency HF/VHF radar depth sounder transmits at 100 W peak power at a pulse repetition frequency of 10 KHz and weighs approximately 4.5 lbs. We conducted flight tests of the G1X integrated with the radar at the Sub-glacial Lake Whillans ice stream and the WISSARD drill site. The tests included pilot-controlled and fully autonomous flights to collect data over closely-spaced lines to synthesize a 2-D aperture. We obtained clear bed echoes with a signal-to-noise (S/N) ratio of more than 50 dB at this location. These are the first-ever successful soundings of glacial ice with a UAS-based radar. Although ice attenuation losses in this location are low in comparison to more challenging targets, in-field performance improvements to the UAS and HF/VHF radar system enabled significant gains in the signal-to-noise ratio, such that the system can now be demonstrated on more challenging outlet glaciers. We are upgrading the G1X UAS and radar system for further tests and data collection in Greenland. We are reducing the weight and volume of the radar, which, when coupled with further reductions in airframe and avionics weight and a larger fuel bladder, will offer extended range. Finally

  6. Phong-like lighting for MMW radar simulation

    NASA Astrophysics Data System (ADS)

    Peinecke, Niklas; Doehler, Hans-Ullrich; Korn, Bernd R.

    2008-10-01

    Radar simulation involves the computation of a radar response based on the terrain's normalized radar cross section (RCS). In the past different models have been proposed for modeling the normalized RCS. While being accurate in most cases they lack intuitive handling. We present a novel approach for computing the mean normalized radar cross section for use in millimeter wave radar simulations based on Phong lighting. This allows us to model radar power return in an intuitive way using categories of diffuse and specular reflections. The model is computational more efficient than previous approaches while using only few parameters. Furthermore, we give example setups for different types of terrain. We show that our technique can accurately model data output from other approaches as well as real world data.

  7. Radar cross calibration investigation TAMU radar polarimeter calibration measurements

    NASA Technical Reports Server (NTRS)

    Blanchard, A. J.; Newton, R. W.; Bong, S.; Kronke, C.; Warren, G. L.; Carey, D.

    1982-01-01

    A short pulse, 20 MHz bandwidth, three frequency radar polarimeter system (RPS) operates at center frequencies of 10.003 GHz, 4.75 GHz, and 1.6 GHz and utilizes dual polarized transmit and receive antennas for each frequency. The basic lay-out of the RPS is different from other truck mounted systems in that it uses a pulse compression IF section common to all three RF heads. Separate transmit and receive antennas are used to improve the cross-polarization isolation at each particular frequency. The receive is a digitally controlled gain modulated subsystem and is interfaced directly with a microprocesser computer for control and data manipulation. Antenna focusing distance, focusing each antenna pair, rf head stability, and polarization characteristics of RPS antennas are discussed. Platform and data acquisition procedures are described.

  8. Alpine radar conversion for LAWR

    NASA Astrophysics Data System (ADS)

    Savina, M.; Burlando, P.

    2012-04-01

    The Local Area Weather Radar (LAWR) is a ship-born weather radar system operating in X-band developed by the DHI Group to detect precipitation in urban areas. To date more than thirty units are installed in different settings around the world. A LAWR was also deployed in the Alps, at 3883 m a.s.l. on the Kl. Matterhorn (Valais, Switzerland). This was the highest LAWR of the world and it led to the development of an Alpine LAWR system that, besides featuring important technological improvements needed to withstand the severe Alpine conditions, required the development of a new Alpine Radar COnversion Model (ARCOM), which is the main focus of this contribution. The LAWR system is equipped with the original FURUNO fan-beam slotted antenna and the original logarithmic receiver, which limits the radar observations to the video signal (L) withour providing the reflectivity (Z). The beam is 0.95 deg wide and 20 deg high. It can detect precipitation to a max range of 60 km. In order to account for the limited availability of raw signal and information and the specific mountain set-up, the conversion model had to be developed differently from the state-of-the-art radar conversion technique used for this class of radars. In particular, the ARCOM is based on a model used to simulate a spatial dependent factor, hereafter called ACF, which is in turn function of parameters that take in account climatological conditions, also used in other conversion methods, but additionally accounting for local radar beam features and for orographic forcings such as the effective sampling power (sP), which is modelled by means of antenna pattern, geometric ground clutter and their interaction. The result is a conversion factor formulated to account for a range correction that is based on the increase of the sampling volume, partial beam blocking and local climatological conditions. The importance of the latter in this study is double with respect to the standard conversion technique for this

  9. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems

    NASA Astrophysics Data System (ADS)

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-12-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  10. Low probability of intercept-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems.

    PubMed

    Shi, Chenguang; Salous, Sana; Wang, Fei; Zhou, Jianjiang

    2016-01-01

    In this paper, we investigate the problem of low probability of intercept (LPI)-based adaptive radar waveform optimization in signal-dependent clutter for joint radar and cellular communication systems, where the radar system optimizes the transmitted waveform such that the interference caused to the cellular communication systems is strictly controlled. Assuming that the precise knowledge of the target spectra, the power spectral densities (PSDs) of signal-dependent clutters, the propagation losses of corresponding channels and the communication signals is known by the radar, three different LPI based criteria for radar waveform optimization are proposed to minimize the total transmitted power of the radar system by optimizing the multicarrier radar waveform with a predefined signal-to-interference-plus-noise ratio (SINR) constraint and a minimum required capacity for the cellular communication systems. These criteria differ in the way the communication signals scattered off the target are considered in the radar waveform design: (1) as useful energy, (2) as interference or (3) ignored altogether. The resulting problems are solved analytically and their solutions represent the optimum power allocation for each subcarrier in the multicarrier radar waveform. We show with numerical results that the LPI performance of the radar system can be significantly improved by exploiting the scattered echoes off the target due to cellular communication signals received at the radar receiver.

  11. Observation and theory of the radar aurora

    SciTech Connect

    Sahr, J.D.

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new experiments to test new and existing theories.

  12. Observation and Theory of the Radar Aurora

    NASA Astrophysics Data System (ADS)

    Sahr, John David

    1990-01-01

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small radar, such a the Cornell University Portable Radar Interferometer (CUPRI), can easily detect this "radar aurora." Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. We present observations of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, we introduce a simple nonlinear fluid theory of electrojet ion-acoustic waves, and reduce it to a form of the "three-wave interaction" equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able account for "type 3" waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of our research we have generated a simple new radar transmitting mode and signal processing algorithm which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies when a single-pulse spectral mode is used. Several new radar data analysis routines have been developed, including principally the "cross-beam image" and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that "type 3" waves originate at ordinary electrojet altitudes, not in the upper E region, from which we conclude that the electrostatic ion-cyclotron mode does not generate "type 3" waves. The measured height of type 3 waves and other spectral analyses provide support for our pure ion -acoustic theory of type 3 waves. In closing, we offer suggestions for hardware improvements to the

  13. Observation and theory of the radar aurora

    NASA Astrophysics Data System (ADS)

    Sahr, John David

    Plasma density irregularities occurring near the Aurora Borealis cause scattering of HF, VHF, and UHF radio waves. The scattering is so strong that a small radar, such as the Cornell University Portable Radar Interferometer (CUPRI), can easily detect this radar aurora. Analysis of the resulting radar signal provides great detail about the spatial and temporal characteristics of these auroral E region irregularities. Observations are presented of the radar aurora from recent campaigns in northern Sweden. After reviewing the basic theory and observations of auroral electrojet irregularities, a simple nonlinear fluid theory of electrojet ion-acoustic waves is introduced, and reduced to a form of the three-wave interaction equations. This theory provides a simple mechanism for excitation of linearly stable waves at large aspect and flow angles, as well as a prediction of the power spectra that a coherent scatter radar should observe. In addition, this theory may be able to account for type 3 waves without resorting to ion gyro modes, such as the electrostatic ion-cyclotron wave. During the course of the research a simple new radar transmitting mode and signal processing algorithm was generated which very simply solves a frequency aliasing problem that often occurs in CUPRI auroral radar studies when a single-pulse spectral mode is used. Several new radar data analysis routines were developed, including the principally cross-beam image and scatter plots of the second versus first moments of the power spectrum of the irregularities. Analysis of vertical interferometer data shows that type 3 waves originate at ordinary electrojet altitudes, not in the upper E region, from which it is concluded that the electrostatic ion-cyclotron mode does not generate type 3 waves. The measured height of type 3 waves and other spectral analyses provide support for the pure ion-acoustic theory of type 3 waves. Suggestions are offered for hardware improvements to the CUPRI radar, new

  14. Doppler radar detection of vortex hazard indicators

    NASA Technical Reports Server (NTRS)

    Nespor, Jerald D.; Hudson, B.; Stegall, R. L.; Freedman, Jerome E.

    1994-01-01

    Wake vortex experiments were conducted at White Sands Missile Range, NM using the AN/MPS-39 Multiple Object Tracking Radar (MOTR). The purpose of these experiments was twofold. The first objective was to verify that radar returns from wake vortex are observed for some time after the passage of an aircraft. The second objective was to verify that other vortex hazard indicators such as ambient wind speed and direction could also be detected. The present study addresses the Doppler characteristics of wake vortex and clear air returns based upon measurements employing MOTR, a very sensitive C-Band phased array radar. In this regard, the experiment was conducted so that the spectral characteristics could be determined on a dwell to-dwell basis. Results are presented from measurements of the backscattered power (equivalent structure constant), radial velocity and spectral width when the aircraft flies transverse and axial to the radar beam. The statistics of the backscattered power and spectral width for each case are given. In addition, the scan strategy, experimental test procedure and radar parameters are presented.

  15. Radar illusion via metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Wei Xiang; Cui, Tie Jun

    2011-02-01

    An optical illusion is an image of a real target perceived by the eye that is deceptive or misleading due to a physiological illusion or a specific visual trick. The recently developed metamaterials provide efficient approaches to generate a perfect optical illusion. However, all existing research on metamaterial illusions has been limited to theory and numerical simulations. Here, we propose the concept of a radar illusion, which can make the electromagnetic (EM) image of a target gathered by radar look like a different target, and we realize a radar illusion device experimentally to change the radar image of a metallic target into a dielectric target with predesigned size and material parameters. It is well known that the radar signatures of metallic and dielectric objects are significantly different. However, when a metallic target is enclosed by the proposed illusion device, its EM scattering characteristics will be identical to that of a predesigned dielectric object under the illumination of radar waves. Such an illusion device will confuse the radar, and hence the real EM properties of the metallic target cannot be perceived. We designed and fabricated the radar illusion device using artificial metamaterials in the microwave frequency, and good illusion performances are observed in the experimental results.

  16. Metamaterial for Radar Frequencies

    DTIC Science & Technology

    2012-09-01

    Circuit Board RAM Radar Absorbing Material RCS Radar Cross Section SNR Signal-to-Noise Ratio SNG Single-Negative SRR Split Ring Resonator...although some can be single-negative ( SNG ). DNG refers to material with simultaneous negative real parts of the permittivity r  and permeability

  17. Synchronization in multistatic radar

    NASA Astrophysics Data System (ADS)

    Jubrink, H. G.

    1993-08-01

    This report gives a summary of multistatic radar principles and synchronization methods. Different methods are described using direct and indirect synchronization. The report also presents a general review of synchronization methods for the future. Two LORAN C receivers have been analyzed for use as local reference oscillators in multistatic radar.

  18. Noncooperative rendezvous radar system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A fire control radar system was developed, assembled, and modified. The baseline system and modified angle tracking system are described along with the performance characteristics of the baseline and modified systems. Proposed changes to provide additional techniques for radar evaluation are presented along with flight test data.

  19. Polarization Radar Processing Technology

    DTIC Science & Technology

    1989-10-01

    Oi"C FILE ( J qII RADC-TR-89-144 In-House Report October 1989 AD-A215 242 POLARIZATION RADAR PROCESSING TECHNOLOGY Kenneth C. Stiefvater, Russell D...NO. NO. NO. ACCESSION NO. 62702F 4506 11 58 11. TITLE (Include Security Classification) POLARIZATION RADAR PROCESSING TECHNOLOGY 12. PERSONAL AUTHOR(S

  20. Determination of radar MTF

    SciTech Connect

    Chambers, D.

    1994-11-15

    The ultimate goal of the Current Meter Array (CMA) is to be able to compare the current patterns detected with the array with radar images of the water surface. The internal wave current patterns modulate the waves on the water surface giving a detectable modulation of the radar cross-section (RCS). The function relating the RCS modulations to the current patterns is the Modulation Transfer Function (MTF). By comparing radar images directly with co-located CMA measurements the MTF can be determined. In this talk radar images and CMA measurements from a recent experiment at Loch Linnhe, Scotland, will be used to make the first direct determination of MTF for an X and S band radar at low grazing angles. The technical problems associated with comparing radar images to CMA data will be explained and the solution method discussed. The results suggest the both current and strain rate contribute equally to the radar modulation for X band. For S band, the strain rate contributes more than the current. The magnitude of the MTF and the RCS modulations are consistent with previous estimates when the wind is blowing perpendicular to the radar look direction.

  1. Java Radar Analysis Tool

    NASA Technical Reports Server (NTRS)

    Zaczek, Mariusz P.

    2005-01-01

    Java Radar Analysis Tool (JRAT) is a computer program for analyzing two-dimensional (2D) scatter plots derived from radar returns showing pieces of the disintegrating Space Shuttle Columbia. JRAT can also be applied to similar plots representing radar returns showing aviation accidents, and to scatter plots in general. The 2D scatter plots include overhead map views and side altitude views. The superposition of points in these views makes searching difficult. JRAT enables three-dimensional (3D) viewing: by use of a mouse and keyboard, the user can rotate to any desired viewing angle. The 3D view can include overlaid trajectories and search footprints to enhance situational awareness in searching for pieces. JRAT also enables playback: time-tagged radar-return data can be displayed in time order and an animated 3D model can be moved through the scene to show the locations of the Columbia (or other vehicle) at the times of the corresponding radar events. The combination of overlays and playback enables the user to correlate a radar return with a position of the vehicle to determine whether the return is valid. JRAT can optionally filter single radar returns, enabling the user to selectively hide or highlight a desired radar return.

  2. High-precision positioning of radar scatterers

    NASA Astrophysics Data System (ADS)

    Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.

    2016-05-01

    Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.

  3. Pulsed power

    NASA Astrophysics Data System (ADS)

    Stone, David H.

    Pulsed power systems are critical elements for such prospective weapons technologies as high-power microwaves, electrothermal and electromagnetic projectile launchers, neutral particle beams, space-based FELs, ground-based lasers, and charged particle beams. Pulsed power will also be essential for the development of nonweapon military systems such as lidars and ultrawideband radars, and could serve as the bases for nuclear weapon effect simulators. The pulsed power generation requirements for each of these systems is considered.

  4. 23. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL INTERFACE "RCL NO. 2" WITH COMPUTER CONTROL DISC DRIVE UNITS IN FOREGROUND. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  5. 22. SITE BUILDING 002 SCANNER BUILDING RADAR CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SITE BUILDING 002 - SCANNER BUILDING - RADAR CONTROL ROOM. RECEIVER EQUIPMENT ON RIGHT WITH RF RADIATION MONITOR CABINET. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  6. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  7. Micropower impulse radar imaging

    SciTech Connect

    Hall, M.S.

    1995-11-01

    From designs developed at the Lawrence Livermore National Laboratory (LLNL) in radar and imaging technologies, there exists the potential for a variety of applications in both public and private sectors. Presently tests are being conducted for the detection of buried mines and the analysis of civil structures. These new systems use a patented ultra-wide band (impulse) radar technology known as Micropower Impulse Radar (GPR) imaging systems. LLNL has also developed signal processing software capable of producing 2-D and 3-D images of objects embedded in materials such as soil, wood and concrete. My assignment while at LLNL has focused on the testing of different radar configurations and applications, as well as assisting in the creation of computer algorithms which enable the radar to scan target areas of different geometeries.

  8. Intelligent radar data processing

    NASA Astrophysics Data System (ADS)

    Holzbaur, Ulrich D.

    The application of artificial intelligence principles to the processing of radar signals is considered theoretically. The main capabilities required are learning and adaptation in a changing environment, processing and modeling information (especially dynamics and uncertainty), and decision-making based on all available information (taking its reliability into account). For the application to combat-aircraft radar systems, the tasks include the combination of data from different types of sensors, reacting to electronic counter-countermeasures, evaluation of how much data should be acquired (energy and radiation management), control of the radar, tracking, and identification. Also discussed are related uses such as monitoring the avionics systems, supporting pilot decisions with respect to the radar system, and general applications in radar-system R&D.

  9. Precise Orbit Determination of Meteors by HPLA Radar and the MU Radar Meteor Head Echo Database

    NASA Astrophysics Data System (ADS)

    Nakamura, Takuji; Yamamoto, Mamoru; Tanaka, Yoshi; Kero, Johan; Szasz, Csilla; Watanabe, Juniichi; Abe, Shinsuke; Kastinen, Daniel

    Mass influx from the space into the terrestrial atmosphere is mainly caused by meteors. Meteors delivers various elements into the atmosphere, but the meteoric dust particles are also of great importance in the terrestrial atmosphere, as they act as nucleus for condensation and clouds and affect various atmospheric phenomena both in physical and chemical aspects. Thus, to investigate the meteor flux, orbits and their interactions in the upper atmosphere is very important but at the same time the method of investigation is limited, especially for the precise measurements High power large aperture (HPLA) radar observation is a recent technique to provide useful information on meteor influx and orbits, as well as interactions with the atmosphere. The recent development of the technique carried out using the middle and upper atmosphere radar (MU radar) of Kyoto University at Shigaraki (34.9N, 136.1S), which is a large atmospheric VHF radar with 46.5 MHz frequency, 1 MW output transmission power and 8330 m2 aperture array antenna, has established very precise orbit observations from meteor head echoes. Since 2009, orbital data of about 120,000 meteors have been collected. An open database (MU radar meteor head echo database: MURMHED) for research and education is now being created. In this study, we present the physical quantities and precisions obtained from the MU radar meteor head echo observations and the details of the open database.

  10. SPEAR: Scalable Panels for Efficient, Affordable Radar

    DTIC Science & Technology

    2005-06-14

    folding Prime power and cooling becomes excessive 5 Example of Deployable Structure Transportation Mode Unfolded Aperture Air-Supported Radome for Wind...Deployable Structure Risks • Transportable, Lightweight, Deployable Structure • Alignment and Calibration of Deployed Structure • Wind Loading of Large...USASMDC / GTRI Array Implementation SPEAR Technical Director GTRI Industry Partners Radar System Technology (RST) Army, Navy, Air Force Missile Defense

  11. VHF radar measurements over Andoya (Northern Norway)

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Reid, I. M.; Ruester, R.; Schmidt, G.

    1989-01-01

    The Mobile SOUSY Radar was operated during the MAP/WINE, the MAC/SINE, and MAC/Epsilon campaigns at Andoya in Northern Norway. A comparison between summer and winter results is presented, in particular the generation and development of the scattering regions, the different power spectral densities and the aspect sensitivities which were derived from six different beam directions.

  12. View of the PAVE PAWS radar from approach along Spencer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from approach along Spencer Paul Road, looking northwest - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  13. View of the PAVE PAWS radar from main base, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from main base, looking east - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  14. View of the PAVE PAWS radar from main base, looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of the PAVE PAWS radar from main base, looking west - Beale Air Force Base, Perimeter Acquisition Vehicle Entry Phased-Array Warning System, End of Spencer Paul Road, north of Warren Shingle Road (14th Street), Marysville, Yuba County, CA

  15. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  16. 5. VIEW EAST, height finder radar towers, radar tower (unknown ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW EAST, height finder radar towers, radar tower (unknown function), prime search radar tower, operations building, and central heating plant - Fort Custer Military Reservation, P-67 Radar Station, .25 mile north of Dickman Road, east of Clark Road, Battle Creek, Calhoun County, MI

  17. Submillimeter-wavelength space-based imaging radar. Interim report

    SciTech Connect

    Manheimer, W.M.

    1988-05-31

    This report considers the use of a submillimeter wavelength space-based imaging radar. The main application envisioned is midcourse decoy discrimination for strategic defense, for which it would have the capability of producing a series of images, in real time, at strategic ranges, with less than meter-scale resolution and with modest power requirements. Undoubtedly, there are other applications. The requirements for a SAR and ISAR imaging radar at submillimeter wavelength are determined, and the prospect for the development of rf sources to power the radar is examined.

  18. Three-dimensional radar imaging techniques and systems for near-field applications

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, Anthony M.; Tedeschi, Jonathan R.

    2016-05-12

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar cross-section (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, through-barrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  19. Three-dimensional radar imaging techniques and systems for near-field applications

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Hall, Thomas E.; McMakin, Douglas L.; Jones, A. Mark; Tedeschi, Jonathan R.

    2016-05-01

    The Pacific Northwest National Laboratory has developed three-dimensional holographic (synthetic aperture) radar imaging techniques and systems for a wide variety of near-field applications. These applications include radar crosssection (RCS) imaging, personnel screening, standoff concealed weapon detection, concealed threat detection, throughbarrier imaging, ground penetrating radar (GPR), and non-destructive evaluation (NDE). Sequentially-switched linear arrays are used for many of these systems to enable high-speed data acquisition and 3-D imaging. In this paper, the techniques and systems will be described along with imaging results that demonstrate the utility of near-field 3-D radar imaging for these compelling applications.

  20. Cognitive bio-radar: The natural evolution of bio-signals measurement.

    PubMed

    Malafaia, Daniel; Oliveira, Beatriz; Ferreira, Pedro; Varum, Tiago; Vieira, José; Tomé, Ana

    2016-10-01

    In this article we discuss a novel approach to Bio-Radar, contactless measurement of bio-signals, called Cognitive Bio-Radar. This new approach implements the Bio-Radar in a Software Defined Radio (SDR) platform in order to obtain awareness of the environment where it operates. Due to this, the Cognitive Bio-Radar can adapt to its surroundings in order to have an intelligent usage of the radio frequency spectrum to improve its performance. In order to study the feasibility of such implementation, a SDR based Bio-Radar testbench was developed and evaluated. The prototype is shown to be able to acquire the heartbeat activity and the respiratory effort. The acquired data is compared with the acquisitions from a Biopac research data acquisition system, showing coherent results for both heartbeat and breathing rate.

  1. Wuhan Atmospheric Radio Exploration (WARE) radar: implementation and initial results

    NASA Astrophysics Data System (ADS)

    Zhou, C.; Qing, H.; Chen, G.; Gu, X.; Ni, B.; Yang, G.; Zhang, Y.; Zhao, Z.

    2014-11-01

    The recently constructed Wuhan Atmospheric Radio Exploration (WARE) radar is the first mesosphere-stratosphere-troposphere (MST) radar in the mainland of China, located at Chongyang, Hubei Province (114°8'8'' E, 29°31'58'' N, ∼ 23° geomagnetic latitude). WARE radar has a capability of probing the structure and dynamics of the atmosphere at the altitudes from 3 to 100 km (excluding 25-60 km). With fine temporal and spatial resolution, WARE radar provides an outstanding opportunity for the first time to extensively and intensively investigate various atmospheric phenomena at the regions of mid-latitude China. In this paper, we present the main configuration and technical specifications of WARE radar system. For the first time, we also report some initial results obtained by the WARE radar: (1) wind field observations from 69 to 85 km and from 3.2 to 16.9 km together with their comparisons with the rawinsonde results, (2) tropopause heights determined by radar echo power and comparisons between radar tropopause and rawinsonde tropopause, (3) atmospheric gravity waves in the troposphere with the wave length and propagation direction analyzed using the hodograph method, (4) aspect sensitivity of echo power at six specified heights in the troposphere and stratosphere, and (5) diurnal and semi-diurnal tides at the tropospheric and low stratospheric heights analyzed by the Lomb-Scargle periodogram method.

  2. A dual-threshold radar detection system

    NASA Astrophysics Data System (ADS)

    Hammerle, K. J.

    It is known that the beam agility of a phased-array radar can be utilized to enhance target detection capability as compared to a radar which has the same power but which radiates its energy uniformly over the solid angle being surveilled. A dual-threshold approach for realizing this enhancement is examined. Quantitative results are presented parametrically for four signal fluctuation models. The study also identifies the optimum combination of dual-threshold design parameters for each target model under a wide range of imposed system constraints such as the allowed number of false alarms per beam position. It is shown that under certain imposed constraints, no enhancement is possible.

  3. Micropower radar systems for law enforcement technology

    SciTech Connect

    Azevedo, S.G.; Mast, J.; Brase, J.

    1994-11-15

    LLNL researchers have pioneered a unique compact low-power and inexpensive radar technology (microradar) that has enormous potential in various industries. Some licenses are currently in place for motion sensors and stud finders. The ultra-wideband characteristics of the microradar (4 to 10 GHz) make it difficult to detect, yet provide potential range resolution of 1 cm at ranges of greater than 20 meters. Real and synthetic apertures arrays of radar elements can address imaging applications behind walls at those distances. Personnel detection applications are currently being tested.

  4. Noise sources in laser radar systems.

    PubMed

    Letalick, D; Renhorn, I; Steinvall, O; Shapiro, J H

    1989-07-01

    To understand the fundamental limit of performance with a given laser radar system, the phase noise of a testbed laser radar has been investigated. Apart from the phase noise in the transmitter laser and the local oscillator laser, additional phase noise was introduced by vibrations caused by fans in power supplies and cooling systems. The stability of the mechanical structure of the platform was also found to be of great importance. Furthermore, a model for the signal variations from diffuse targets has been developed. This model takes into account the stray light, the speckle decorrelation, and Doppler shift due to moving targets.

  5. Millimeter Wave Radar Applications to Weapons Systems

    DTIC Science & Technology

    1976-06-01

    Georgia In3titute of Technology for the U.S. Army Signal Corps. TABLE III UNITED AIRCRAFT CO., NORDEN DIV., 70-GHz RADAR Power, SO0 watts peak, 0.25 watts... Georgia Institute of Technology, iI Atlanta, GA Cross Section Measurement Instrumentation Radar, RATSCAT Air Force Special Weapons Command, Holloman AFB...Branch Mr. R. Iliguera Box 15 Dr. .J. Battles • !FPO New York, NY 09510 Code b014 China Lake , CA 93555 .1 " ~123 Li . I" DISTRIBUI’ION LlbT A No. of No

  6. Radar remote sensing in biology

    USGS Publications Warehouse

    Moore, Richard K.; Simonett, David S.

    1967-01-01

    The present status of research on discrimination of natural and cultivated vegetation using radar imaging systems is sketched. The value of multiple polarization radar in improved discrimination of vegetation types over monoscopic radars is also documented. Possible future use of multi-frequency, multi-polarization radar systems for all weather agricultural survey is noted.

  7. Spaceborne meteorological radar studies

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1988-01-01

    Various radar designs and methods are studied for the estimation of rainfall parameters from space. An immediate goal is to support the development of the spaceborne radar that has been proposed for the Tropical Rain Measuring Mission (TRMM). The effort is divided into two activities: a cooperative airborne rain measuring experiment with the Radio Research Laboratory of Japan (RRL), and the modelling of spaceborne weather radars. An airborne rain measuring experiment was conducted at Wallops Flight Facility in 1985 to 1986 using the dual-wavelength radar/radiometer developed by RRL. The data are presently being used to test a number of methods that are relevant to spaceborne weather radars. An example is shown of path-averaged rain rates as estimated from three methods: the standard reflectivity rain rate method (Z-R), a dual-wavelength method, and a surface reference method. The results from the experiment shows for the first time the feasibility of using attenuation methods from space. The purposes of the modelling are twofold: to understand in a quantitative manner the relationships between a particular radar design and its capability for estimating precipitation parameters and to help devise and test new methods. The models are being used to study the impact of various TRMM radar designs on the accuracy of rain rate estimation as well as to test the performance of range-profiling algorithms, the mirror-image method, and some recently devised graphical methods for the estimation of the drop size distribution.

  8. Evaluation of radar imagery for geological and cartographic applications

    USGS Publications Warehouse

    Moore, Gerald K.; Sheehan, Cynthia A.

    1981-01-01

    The House/Senate conference report on H.R. 4930 (96th Congress), the Department of the Interior and Related Agencies Appropriations bill, 1980, stated that the U.S. Geological Survey should "begin the use of side-looking airborne radar imagery for topographic and geological mapping, and geological resource surveys in promising areas, particularly Alaska." In response to this mandate, the Survey acquired radar data and began scientific studies to analyze and interpret these data. About 70 percent of the project funding was used to acquire radar imagery and to evaluate Alaskan applications. Results of these studies indicate that radar images have a unique incremental value for certain geologic and cartographic applications but that the images are best suited for use as supplemental information sources or as primary data sources in areas of persistent cloud cover.The value of radar data is greatest for geologic mapping and resource surveys, particularly for mineral and petroleum exploration, where the objective is to locate any single feature or group of features that may control the occurrences of these resources. Radar images are considered by oil and gas companies to be worth the cost of data acquisition within a limited area of active exploration.Radar images also have incremental value for geologic site studies and hazard mapping. The need in these cases is TO inventory all geologic hazards to human life, property, resources, and the environment. For other geologic applications, radar images have a relatively small incremental value over a combination of Landsat images and aerial photographs.The value of radar images for cartographic applications is minimal, except when they are used as a substitute for aerial photographs and topographic maps in persistently cloud-covered areas. If conventional data sources are not available, radar images provide useful information on terrain relief, landforms, drainage patterns, and land cover. Screen less lithography is a low

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Data Acquisition (TDA) Office. In the Search for Extraterrestrial Intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA) with the Office of Space Operations for funding DSN operational support.

  10. A microprogrammable radar controller

    NASA Technical Reports Server (NTRS)

    Law, D. C.

    1986-01-01

    The Wave Propagation Lab. has completed the design and construction of a microprogrammable radar controller for atmospheric wind profiling. Unlike some radar controllers using state machines or hardwired logic for radar timing, this design is a high speed programmable sequencer with signal processing resources. A block diagram of the device is shown. The device is a single 8 1/2 inch by 10 1/2 inch printed circuit board and consists of three main subsections: (1) the host computer interface; (2) the microprogram sequencer; and (3) the signal processing circuitry. Each of these subsections are described in detail.

  11. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1981-01-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  12. Radar investigation of asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    The initial radar observations of the mainbelt asteroids 9 Metis, 27 Euterpe, and 60 Echo are examined. For each target, data are taken simultaneously in the same sense of circular polarization as transmitted as well as in the opposite (OC) sense. Estimates of the radar cross sections provide estimates of the circular polarization ratio, and the normalized OC radar cross section. The circular polarization ratio, is comparable to values measured for other large S type asteroids and for a few much smaller, Earth approaching objects, most of the echo is due to single reflection backscattering from smooth surface elements.

  13. Radar investigation of asteroids

    NASA Astrophysics Data System (ADS)

    Ostro, S. J.

    1981-11-01

    Software to support all stages of asteroid radar observation and data analysis is developed. First-order analysis of all data in hand is complete. Estimates of radar cross sections, circular polarization ratios, and limb-to-limb echo spectral bandwidths for asteroids 7 Iris, 16 Psyche, 97 Klotho, 1862 Apollo, and 1915 Quetzalcoatl are reported. Radar observations of two previously unobserved asteroids were conducted. An Aten asteroid, 2100 Ra-Shalom, with the smallest known semimajor axis (0.83) was detected. Preliminary data reduction indicates a circular polarization ratio comparable to those of Apollo, Quetzalcoatl, and Toro.

  14. Radar Remote Sensing

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2012-01-01

    This lecture was just a taste of radar remote sensing techniques and applications. Other important areas include Stereo radar grammetry. PolInSAR for volumetric structure mapping. Agricultural monitoring, soil moisture, ice-mapping, etc. The broad range of sensor types, frequencies of observation and availability of sensors have enabled radar sensors to make significant contributions in a wide area of earth and planetary remote sensing sciences. The range of applications, both qualitative and quantitative, continue to expand with each new generation of sensors.

  15. Studies on Radar Sensor Networks

    DTIC Science & Technology

    2007-08-08

    through-foliage target detection using UWB radar sensor network based on real-world data; 2. Foliage clutter modeling using UWB radars; 3. Outdoor UWB...channel modeling based on field data; 4. Multi-target detection using radar sensor networks (theoretical studies); 5. SVD-QR and graph theory for MIMO...Superimposed code based channel assignment in multi-radio multi-channel wireless mesh networks. 15. SUBJECT TERMS Radar Sensor Network, UWB Radar, Sense

  16. A transceiver module of the Mu radar

    NASA Technical Reports Server (NTRS)

    Kato, S.; Ogawa, T.; Tsuda, T.; Sato, T.; Kimura, I.; Fukao, S.

    1983-01-01

    The transceiver (TR) module of a middle and upper atmospheric radar is described. The TR module used in the radar is mainly composed of two units: a mixer (MIX unit) and a power amplifier (PA unit). The former generates the RF wave for transmission and converts the received echo to the IF signal. A 41.5-MHz local signal fed to mixers passes through a digitally controlled 8-bit phase shifter which can change its value up to 1,000 times in a second, so that the MU radar has the ability to steer its antenna direction quickly and flexibly. The MIX unit also contains a buffer amplifier and a gate for the transmitting signal and preamplifier for the received one whose noise figure is less than 5 dB. The PA unit amplifies the RF signal supplied from the MIX unit up to 63.7 dBm (2350 W), and feeds it to the crossed Yagi antenna.

  17. Stentor long range ground surveillance radar

    NASA Astrophysics Data System (ADS)

    Stoll, P.

    The Stentor radar is designed to detect, recognize, and locate moving targets such as infantry, ground vehicles, helicopters, low-flying aircraft, and boats. It can be transported without difficulty and operated by unskilled personnel. Stentor's longer range gives both an earlier warning time and a reinforced detection capability at shorter distances, even on very small targets. It is a pulsed radar that eliminates fixed echoes by coherent reception and Doppler filtering. The antenna unit incorporates all the parts necessary for the transmission, reception, and processing of the radar signal. It comprises six distinct subassemblies: a conventional antenna, an antenna-bearing mechanism, a transmitter-receiver unit, a signal-processing unit, a power supply module, and a tripod for mounting the antenna unit.

  18. Optimal radar waveform design for moving target

    NASA Astrophysics Data System (ADS)

    Zhu, Binqi; Gao, Yesheng; Wang, Kaizhi; Liu, Xingzhao

    2016-07-01

    An optimal radar waveform-design method is proposed to detect moving targets in the presence of clutter and noise. The clutter is split into moving and static parts. Radar-moving target/clutter models are introduced and combined with Neyman-Pearson criteria to design optimal waveforms. Results show that optimal waveform for a moving target is different with that for a static target. The combination of simple-frequency signals could produce maximum detectability based on different noise-power spectrum density situations. Simulations show that our algorithm greatly improves signal-to-clutter plus noise ratio of radar system. Therefore, this algorithm may be preferable for moving target detection when prior information on clutter and noise is available.

  19. The Telecommunications and Data Acquisition

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  20. Determining asteroid spin states using radar speckles

    NASA Astrophysics Data System (ADS)

    Busch, Michael W.; Kulkarni, Shrinivas R.; Brisken, Walter; Ostro, Steven J.; Benner, Lance A. M.; Giorgini, Jon D.; Nolan, Michael C.

    2010-10-01

    Knowing the shapes and spin states of near-Earth asteroids is essential to understanding their dynamical evolution because of the Yarkovsky and YORP effects. Delay-Doppler radar imaging is the most powerful ground-based technique for imaging near-Earth asteroids and can obtain spatial resolution of <10 m, but frequently produces ambiguous pole direction solutions. A radar echo from an asteroid consists of a pattern of speckles caused by the interference of reflections from different parts of the surface. It is possible to determine an asteroid's pole direction by tracking the motion of the radar speckle pattern. Speckle tracking can potentially measure the poles of at least several radar targets each year, rapidly increasing the available sample of NEA pole directions. We observed the near-Earth asteroid 2008 EV5 with the Arecibo planetary radar and the Very Long Baseline Array in December 2008. By tracking the speckles moving from the Pie Town to Los Alamos VLBA stations, we have shown that EV5 rotates retrograde. This is the first speckle detection of a near-Earth asteroid.

  1. Rendezvous radar for the orbital maneuvering vehicle

    NASA Technical Reports Server (NTRS)

    Locke, John W.; Olds, Keith; Parks, Howard

    1991-01-01

    This paper describes the development of the Rendezvous Radar Set (RRS) for the Orbital Maneuvering Vehicle (OMV) for the National Aeronautics and Space Administration (NASA). The RRS was to be used to locate, and then provide vectoring information to, target satellites (or Shuttle or Space Station) to aid the OMV in making a minimum-fuel-consumption approach and rendezvous. The RRS design is that of an X-Band, all solid-state, monopulse tracking, frequency hopping, pulse-Doppler radar system. The development of the radar was terminated when the OMV prime contract to TRW was terminated by NASA. At the time of the termination, the development was in the circuit design stage. The system design was virtually completed, the PDR had been held. The RRS design was based on Motorola's experiences, both in the design and production of radar systems for the US Army and in the design and production of hi-rel communications systems for NASA space programs. Experience in these fields was combined with the latest digital signal processor and micro-processor technology to design a light-weight, low-power, spaceborne radar. The antenna and antenna positioner (gimbals) technology developed for the RRS is now being used in the satellite-to-satellite communication link design for Motorola's Iridium telecommunications system.

  2. Modelling a C-Band Space Surveillance Radar using Systems Tool Kit

    DTIC Science & Technology

    2013-02-01

    Orbit LOS Line of Sight PRF Pulse Repetition Frequency PSD Power Spectral Density RCS Radar Cross Section RF Radio Frequency SAR Synthetic...Simulation of both monostatic and bistatic radar systems.  Modelling of system characteristics (e.g. transmitter power, frequency, antenna size) and...system definition, search/track modes, refraction and constraints. Synthetic aperture radar ( SAR ) and jammers can be modelled but are not applicable in

  3. Laser Radar Animation

    NASA Video Gallery

    Laser and radar instruments aboard NASA aircraft provide measurements of the snow and ice surface and down to the bedrock under the ice. Lasers, with a shorter wavelength, measure the surface eleva...

  4. Multispectral imaging radar

    NASA Technical Reports Server (NTRS)

    Porcello, L. J.; Rendleman, R. A.

    1972-01-01

    A side-looking radar, installed in a C-46 aircraft, was modified to provide it with an initial multispectral imaging capability. The radar is capable of radiating at either of two wavelengths, these being approximately 3 cm and 30 cm, with either horizontal or vertical polarization on each wavelength. Both the horizontally- and vertically-polarized components of the reflected signal can be observed for each wavelength/polarization transmitter configuration. At present, two-wavelength observation of a terrain region can be accomplished within the same day, but not with truly simultaneous observation on both wavelengths. A multiplex circuit to permit this simultaneous observation has been designed. A brief description of the modified radar system and its operating parameters is presented. Emphasis is then placed on initial flight test data and preliminary interpretation. Some considerations pertinent to the calibration of such radars are presented in passing.

  5. Radar Cross Section Measurements

    DTIC Science & Technology

    1986-09-30

    Radar 54 17. Measured Range Sidelobe Performance of Chirp Radar 56 18. Range and Cross Range Image of Target Dror.’ŕ Vehicle 57 19. Incoherent rms...the measured range resolution, 4.9 in, closely agrees with the theoretical performance for this weighting. The measured range sidelobe performance...Interval 4.89in. 2% kHz 300 kHz 310 kHz (b) Expanded Scale + 5 ft from Target Figure 17. Measured Range Sidelobe Performance of

  6. Airborne MIMO GMTI Radar

    DTIC Science & Technology

    2011-03-31

    applications [1], [2], [3], [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. Conventional phased array radars form a single coherent transmit beam and...intentionally left blank. 1. INTRODUCTION Conventional phased - array radars form a single coherent transmit beam and measure the backscattered response... steering vector for a SI MO array with nr"/? receiver phase centers located at positions xm + y„. This is how the MIMO virtual array arises. The waveforms

  7. 95-GHz millimeter wave radar

    NASA Astrophysics Data System (ADS)

    McHarg, J. C.; Abouzahra, Mohamed D.; Lucey, R. F.

    1996-12-01

    Recent advances in MMW solid-state technology, combined with state-of-the-art quasi-optical feed elements, have made possible upgrades to an instrumentation radar in the W-band. Mixer diodes capable of cryogenic operation have led to a reduction in the receiver noise figure, and a Gunn-effect diode amplifier has boosted transmit power. Application of Gaussian beam optics has provided a reduction in transmit and receive losses, while increasing transmit/receive isolation and power handling capability. In all, an improvement of almost two orders of magnitude is ought, yielding the capability to provide metric tracking and range-Doppler imaging on a variety of important targets.

  8. Radar Reconnaissance of Near-Earth Objects at the Dawn of the Next Millenium

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1996-01-01

    From Intro.: Radar, the most powerful groundbased technique for post-discovery investigation of NEOs, can contribute a great deal to their exploration as well as to identification and mitigation of hazardous objects. My intentions in this article are to review the current state of NEO radar reconnaissance, examine the imminent prospects for this work as upgraded instrumentation becomes available, and propose construction of a next-generation radar telescope that, unlike any existing radar instrument, would be optimized for, and dedicated to, NEO radar.

  9. 48 CFR 250.104 - Residual powers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Residual powers. 250.104 Section 250.104 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractual Actions 250.104 Residual powers....

  10. 48 CFR 250.104 - Residual powers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 3 2011-10-01 2011-10-01 false Residual powers. 250.104 Section 250.104 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractual Actions 250.104 Residual powers....

  11. 48 CFR 250.104 - Residual powers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 3 2014-10-01 2014-10-01 false Residual powers. 250.104 Section 250.104 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractual Actions 250.104 Residual powers....

  12. 48 CFR 250.104 - Residual powers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 3 2013-10-01 2013-10-01 false Residual powers. 250.104 Section 250.104 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractual Actions 250.104 Residual powers....

  13. 48 CFR 250.104 - Residual powers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Residual powers. 250.104 Section 250.104 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT... Contractual Actions 250.104 Residual powers....

  14. Effective GPR Data Acquisition and Imaging

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    We have demonstrated that dense GPR data acquisition typically antenna step increment less than 1/10 wave length can provide clear 3-dimeantiona subsurface images, and we created 3DGPR images. Now we are interested in developing GPR survey methodologies which required less data acquisition time. In order to speed up the data acquisition, we are studying efficient antenna positioning for GPR survey and 3-D imaging algorithm. For example, we have developed a dual sensor "ALIS", which combines GPR with metal detector (Electromagnetic Induction sensor) for humanitarian demining, which acquires GPR data by hand scanning. ALIS is a pulse radar system, which has a frequency range 0.5-3GHz.The sensor position tracking system has accuracy about a few cm, and the data spacing is typically more than a few cm, but it can visualize the mines, which has a diameter about 8cm. 2 systems of ALIS have been deployed by Cambodian Mine Action Center (CMAC) in mine fields in Cambodia since 2009 and have detected more than 80 buried land mines. We are now developing signal processing for an array type GPR "Yakumo". Yakumo is a SFCW radar system which is a multi-static radar, consisted of 8 transmitter antennas and 8 receiver antennas. We have demonstrated that the multi-static data acquisition is not only effective in data acquisition, but at the same time, it can increase the quality of GPR images. Archaeological survey by Yakumo in large areas, which are more than 100m by 100m have been conducted, for promoting recovery from Tsunami attacked East Japan in March 2011. With a conventional GPR system, we are developing an interpolation method of radar signals, and demonstrated that it can increase the quality of the radar images, without increasing the data acquisition points. When we acquire one dimensional GPR profile along a survey line, we can acquire relatively high density data sets. However, when we need to relocate the data sets along a "virtual" survey line, for example a

  15. Automatic carrier acquisition system

    NASA Technical Reports Server (NTRS)

    Bunce, R. C. (Inventor)

    1973-01-01

    An automatic carrier acquisition system for a phase locked loop (PLL) receiver is disclosed. It includes a local oscillator, which sweeps the receiver to tune across the carrier frequency uncertainty range until the carrier crosses the receiver IF reference. Such crossing is detected by an automatic acquisition detector. It receives the IF signal from the receiver as well as the IF reference. It includes a pair of multipliers which multiply the IF signal with the IF reference in phase and in quadrature. The outputs of the multipliers are filtered through bandpass filters and power detected. The output of the power detector has a signal dc component which is optimized with respect to the noise dc level by the selection of the time constants of the filters as a function of the sweep rate of the local oscillator.

  16. Can Compressed Sensing Be Applied To Dual-Polarimetric Weather Radars?

    NASA Astrophysics Data System (ADS)

    Mishra, K.; Kruger, A.; Krajewski, W. F.

    2013-12-01

    The recovery of sparsely-sampled signals has long attracted considerable research interest in various fields such as reflection seismology, microscopy, and astronomy. Recently, such recovery techniques have been formalized as a sampling method called compressed sensing (CS) which uses few linear and non-adaptive measurements to reconstruct a signal that is sparse in a known domain. Many radar and remote sensing applications require efficient and rapid data acquisition. CS techniques have, therefore, enormous potential in dramatically changing the way the radar samples and processes data. A number of recent studies have investigated CS for radar applications with emphasis on point target radars, and synthetic aperture radar (SAR) imaging. CS radar holds the promise of compressing-while-sampling, and may yield simpler receiver hardware which uses low-rate ADCs and eliminates pulse compression/matched filter. The need of fewer measurements also implies that a CS radar may need smaller dwell times without significant loss of information. Finally, CS radar data could be used for improving the quality of low-resolution radar observations. In this study, we explore the feasibility of using CS for dual-polarimetric weather radars. In order to recover a signal in CS framework, two conditions must be satisfied: sparsity and incoherence. The sparsity of weather radar measurements can be modeled in several domains such as time, frequency, joint time-frequency domain, or polarimetric measurement domains. The condition of incoherence relates to the measurement process which, in a radar scenario, would imply designing an incoherent transmit waveform or an equivalent scanning strategy with an existing waveform. In this study, we formulate a sparse signal model for precipitation targets as observed by a polarimetric weather radar. The applicability of CS for such a signal model is then examined through simulations of incoherent measurements along with real weather data obtained

  17. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  18. Mergers + acquisitions.

    PubMed

    Hoppszallern, Suzanna

    2002-05-01

    The hospital sector in 2001 led the health care field in mergers and acquisitions. Most deals involved a network augmenting its presence within a specific region or in a market adjacent to its primary service area. Analysts expect M&A activity to increase in 2002.

  19. Acquisition strategies

    SciTech Connect

    Zimmer, M.J.; Lynch, P.W. )

    1993-11-01

    Acquiring projects takes careful planning, research and consideration. Picking the right opportunities and avoiding the pitfalls will lead to a more valuable portfolio. This article describes the steps to take in evaluating an acquisition and what items need to be considered in an evaluation.

  20. Design And Development Of An Autonomous Radar Receiver For The Detection Of Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Kunwar, Samridha

    The detection of ultra-high energy cosmic rays is constrained by their flux, requiring detectors with apertures of hundreds or even thousands of square kilometers and close to one hundred percent duty cycle. The sheer scale that would be required of conventional detectors, to acquire sufficient statistics for energy, composition or anisotropy studies, means that new techniques that reduce manpower and financial resources are continually being sought. In this dissertation, the development of a remote sensing technique based observatory known as bistatic radar, which aims to achieve extensive coverage of the Earth's surface, cf. Telescope Array's 700 km2 surface detector, is discussed. Construction of the radar projects transmitter station was completed in the summer of 2013, and remote receiver stations were deployed in June and November of 2014. These stations accomplish radar echo detection using an analog signal chain. Subject to less radio interference, the remote stations add stereoscopic measurement capabilities that theoretically allow unique determination of cosmic ray geometry and core location. An FPGA is used as a distributed data processing node within the project. The FPGA provides triggering logic for data sampled at 200 MSa/s, detecting Cosmic Ray shower echoes chirping at -1 to -10 Megahertz/microsecond (depending on the geometry) for several microseconds. The data acquisition system with low power consumption at a cost that is also comparatively inexpensive is described herein.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN). Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), 'The TDA Progress Report' reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publiction provides archival reports on developments in programs managed by JPL Telecommunications and Mission Operations Directorate (TMOD), which now includes the former communications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The Orbital Debris Radar Program, funded by the Office of Space Systems Development, makes use of the planetary radar capability when the antennas are configured at science instruments making direct observations of planets, their satellites, and asteroids of our solar system.

  3. Doppler micro sense and avoid radar

    NASA Astrophysics Data System (ADS)

    Gorwara, Ashok; Molchanov, Pavlo; Asmolova, Olga

    2015-10-01

    There is a need for small Sense and Avoid (SAA) systems for small and micro Unmanned Aerial Systems (UAS) to avoid collisions with obstacles and other aircraft. The proposed SAA systems will give drones the ability to "see" close up and give them the agility to maneuver through tight areas. Doppler radar is proposed for use in this sense and avoid system because in contrast to optical or infrared (IR) systems Doppler can work in more harsh conditions such as at dusk, and in rain and snow. And in contrast to ultrasound based systems, Doppler can better sense small sized obstacles such as wires and it can provide a sensing range from a few inches to several miles. An SAA systems comprised of Doppler radar modules and an array of directional antennas that are distributed around the perimeter of the drone can cover the entire sky. These modules are designed so that they can provide the direction to the obstacle and simultaneously generate an alarm signal if the obstacle enters within the SAA system's adjustable "Protection Border". The alarm signal alerts the drone's autopilot to automatically initiate an avoidance maneuver. A series of Doppler radar modules with different ranges, angles of view and transmitting power have been designed for drones of different sizes and applications. The proposed Doppler radar micro SAA system has simple circuitry, works from a 5 volt source and has low power consumption. It is light weight, inexpensive and it can be used for a variety of small unmanned aircraft.

  4. User guide to the Magellan synthetic aperture radar images

    NASA Technical Reports Server (NTRS)

    Wall, Stephen D.; Mcconnell, Shannon L.; Leff, Craig E.; Austin, Richard S.; Beratan, Kathi K.; Rokey, Mark J.

    1995-01-01

    The Magellan radar-mapping mission collected a large amount of science and engineering data. Now available to the general scientific community, this data set can be overwhelming to someone who is unfamiliar with the mission. This user guide outlines the mission operations and data set so that someone working with the data can understand the mapping and data-processing techniques used in the mission. Radar-mapping parameters as well as data acquisition issues are discussed. In addition, this user guide provides information on how the data set is organized and where specific elements of the set can be located.

  5. Multi-variable X-band radar observation and tracking of ash plume from Mt. Etna volcano on November 23, 2013 event

    NASA Astrophysics Data System (ADS)

    Montopoli, Mario; Vulpiani, Gianfranco; Riccci, Matteo; Corradini, Stefano; Merucci, Luca; Marzano, Frank S.

    2015-04-01

    Ground based weather radar observations of volcanic ash clouds are gaining momentum after recent works which demonstrated their potential use either as stand alone tool or in combination with satellite retrievals. From an operational standpoint, radar data have been mainly exploited to derive the height of ash plume and its temporal-spatial development, taking into account the radar limitation of detecting coarse ash particles (from approximately 20 microns to 10 millimeters and above in terms of particle's radius). More sophisticated radar retrievals can include airborne ash concentration, ash fall rate and out-flux rate. Marzano et al. developed several volcanic ash radar retrieval (VARR) schemes, even though their practical use is still subject to a robust validation activity. The latter is made particularly difficult due to the lack of field campaigns with multiple observations and the scarce repetition of volcanic events. The radar variable, often used to infer the physical features of actual ash clouds, is the radar reflectivity named ZHH. It is related to ash particle size distribution and it shows a nice power law relationship with ash concentration. This makes ZHH largely used in radar-volcanology studies. However, weather radars are often able to detect Doppler frequency shifts and, more and more, they have a polarization-diversity capability. The former means that wind speed spectrum of the ash cloud is potentially inferable, whereas the latter implies that variables other than ZHH are available. Theoretically, these additional radar variables are linked to the degree of eccentricity of ash particles, their orientation and density as well as the presence of strong turbulence effects. Thus, the opportunity to refine the ash radar estimates so far developed can benefit from the thorough analysis of radar Doppler and polarization diversity. In this work we show a detailed analysis of Doppler shifts and polarization variables measured by the X band radar

  6. 66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. VIEW SHOWING HOLD FOR RADAR CABLES AT RADAR SITE, LOOKING NORTH Everett Weinreb, photographer, March 1988 - Mount Gleason Nike Missile Site, Angeles National Forest, South of Soledad Canyon, Sylmar, Los Angeles County, CA

  7. Compact networked radars for Army unattended ground sensors

    NASA Astrophysics Data System (ADS)

    Wikner, David A.; Viveiros, Edward A.; Wellman, Ronald; Clark, John; Kurtz, Jim; Pulskamp, Jeff; Proie, Robert; Ivanov, Tony; Polcawich, Ronald G.; Adler, Eric D.

    2010-04-01

    The Army Research Laboratory is in partnership with the University of Florida - Electronics Communications Laboratory to develop compact radar technology and demonstrate that it is scalable to a variety of ultra-lightweight platforms (<10 lbs.) to meet Army mission needs in persistent surveillance, unattended ground sensor (UGS), unmanned systems, and man-portable sensor applications. The advantage of this compact radar is its steerable beam technology and relatively long-range capability compared to other small, battery-powered radar concepts. This paper will review the ongoing development of the sensor and presents a sample of the collected data thus far.

  8. System aspects of the Indian MST radar facility

    NASA Technical Reports Server (NTRS)

    Viswanathan, G.

    1986-01-01

    One of the major objectives of the Indian Middle Atmosphere Program is to investigate the motions of the middle atmosphere on temporal and spatial scales and the interaction between the three height regions of the middle atmosphere. Realizing the fact that radar technique has proven to be a very powerful tool for the study of Earth atmosphere, the Indian Middle Atmosphere Program has recommended establishing a mesosphere-stratosphere-troposphere (MST) radar as a national facility for atmospheric research. The major landmarks in this attempt to setup the MST radar as a national facility are described.

  9. Informational Analysis for Compressive Sampling in Radar Imaging

    PubMed Central

    Zhang, Jingxiong; Yang, Ke

    2015-01-01

    Compressive sampling or compressed sensing (CS) works on the assumption of the sparsity or compressibility of the underlying signal, relies on the trans-informational capability of the measurement matrix employed and the resultant measurements, operates with optimization-based algorithms for signal reconstruction and is thus able to complete data compression, while acquiring data, leading to sub-Nyquist sampling strategies that promote efficiency in data acquisition, while ensuring certain accuracy criteria. Information theory provides a framework complementary to classic CS theory for analyzing information mechanisms and for determining the necessary number of measurements in a CS environment, such as CS-radar, a radar sensor conceptualized or designed with CS principles and techniques. Despite increasing awareness of information-theoretic perspectives on CS-radar, reported research has been rare. This paper seeks to bridge the gap in the interdisciplinary area of CS, radar and information theory by analyzing information flows in CS-radar from sparse scenes to measurements and determining sub-Nyquist sampling rates necessary for scene reconstruction within certain distortion thresholds, given differing scene sparsity and average per-sample signal-to-noise ratios (SNRs). Simulated studies were performed to complement and validate the information-theoretic analysis. The combined strategy proposed in this paper is valuable for information-theoretic orientated CS-radar system analysis and performance evaluation. PMID:25811226

  10. Dual-Band Deramp Radar Design for Ocean Current Measurements

    NASA Technical Reports Server (NTRS)

    Haynes, Mark S.

    2005-01-01

    A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.

  11. Applications of radar imagery to arctic and subarctic problems

    NASA Technical Reports Server (NTRS)

    Cannon, P. J.

    1980-01-01

    Radar imagery provides year around data acquisition of areas in the Arctic and the Subarctic. The foremost factor influencing the choice of radar imagery as the major data source was the demand for neotric data. The weather is so adverse in parts of Alaska that radar imagery was the only remote sensing technique which could meet the demand. The major map products derived from radar imagery are landform maps and lineament maps. These maps are used to make environmental assessments of areas and to reconstruct the geomorphic history of certain regions or features. Since radar imagery provides information about geologic structure and geomorphic features, it can be used to determine the relationship which exists between geologic structure and geomorphology. Important geologic information related to surface roughness can be obtained through a dry snow cover. Radar imagery is the only remote sensing technique which can provide information needed about sea ice through a cloud cover and dry snow, during strong wind conditions, and throughout the Arctic night.

  12. UHF and VHF radar observations of thunderstorms

    NASA Technical Reports Server (NTRS)

    Holden, D. N.; Ulbrich, C. W.; Larsen, M. F.; Rottger, J.; Ierkic, H. M.; Swartz, W.

    1986-01-01

    A study of thunderstorms was made in the Summer of 1985 with the 430-MHz and 50-MHz radars at the Arecibo Observatory in Puerto Rico. Both radars use the 300-meter dish, which gives a beam width of less than 2 degrees even at these long wavelengths. Though the radars are steerable, only vertical beams were used in this experiment. The height resolution was 300 and 150 meters for the UHF and VHF, respectively. Lightning echoes, as well as returns from precipitation and clear-air turbulence were detected with both wavelengths. Large increases in the returned power were found to be coincident with increasing downward vertical velocities at UHF, whereas at VHF the total power returned was relatively constant during the life of a storm. This was attributed to the fact that the VHF is more sensitive to scattering from the turbulence-induced inhomogeneities in the refractive index and less sensitive to scatter from precipitation particles. On occasion, the shape of the Doppler spectra was observed to change with the occurrence of a lightning discharge in the pulse volume. Though the total power and mean reflectivity weighted Doppler velocity changed little during these events, the power is Doppler frequency bins near that corresponding to the updraft did increase substantially within a fraction of a second after a discharge was detected in the beam. This suggests some interaction between precipitation and lightning.

  13. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    2007-10-01

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  14. Radar Imaging of Mercury

    NASA Astrophysics Data System (ADS)

    Harmon, John K.

    Earth-based radar has been one of the few, and one of the most important, sources of new information about Mercury during the three decades since the Mariner 10 encounters. The emphasis during the past 15 years has been on full-disk, dual-polarization imaging of the planet, an effort that has been facilitated by the development of novel radar techniques and by improvements in radar systems. Probably the most important result of the imaging work has been the discovery and mapping of radar-bright features at the poles. The radar scattering properties of these features, and their confinement to permanently shaded crater floors, is consistent with volume backscatter from a low-loss volatile such as clean water ice. Questions remain, however, regarding the source and long-term stability of the putative ice, which underscores the need for independent confirmation by other observational methods. Radar images of the non-polar regions have also revealed a plethora of bright features, most of which are associated with fresh craters and their ejecta. Several very large impact features, with rays and other bright ejecta spreading over distances of 1,000 km or more, have been traced to source craters with diameters of 80-125 km. Among these large rayed features are some whose relative faintness suggests that they are being observed in an intermediate stage of degradation. Less extended ray/ejecta features have been found for some of the freshest medium-size craters such as Kuiper and Degas. Much more common are smaller (<40 km diameter) fresh craters showing bright rim-rings but little or no ray structure. These smaller radar-bright craters are particularly common over the H-7 quadrangle. Diffuse areas of enhanced depolarized brightness have been found in the smooth plains, including the circum-Caloris planitiae and Tolstoj Basin. This is an interesting finding, as it is the reverse of the albedo contrast seen between the radar-dark maria and the radar-bright cratered highlands

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  16. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    Reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) are provided. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other agencies through NASA.

  17. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA.

  18. Radar fall detectors: a comparison

    NASA Astrophysics Data System (ADS)

    Erol, Baris; Amin, Moeness; Ahmad, Fauzia; Boashash, Boualem

    2016-05-01

    Falls are a major cause of accidents in elderly people. Even simple falls can lead to severe injuries, and sometimes result in death. Doppler fall detection has drawn much attention in recent years. Micro-Doppler signatures play an important role for the Doppler-based radar systems. Numerous studies have demonstrated the offerings of micro-Doppler characteristics for fall detection. In this respect, a plethora of micro-Doppler signature features have been proposed, including those stemming from speech recognition and wavelet decomposition. In this work, we consider four different sets of features for fall detection. These can be categorized as spectrogram based features, wavelet based features, mel-frequency cepstrum coefficients, and power burst curve features. Support vector machine is employed as the classifier. Performance of the respective fall detectors is investigated using real data obtained with the same radar operating resources and under identical sensing conditions. For the considered data, the spectrogram based feature set is shown to provide superior fall detection performance.

  19. Multiple arrested synthetic aperture radar

    NASA Astrophysics Data System (ADS)

    Shuster, J. S.

    1981-05-01

    This report contains the formulation and analysis of an airborne synthetic aperture rate scheme which employs a multiplicity of antennas with the displaced phase center antenna technique to detect slowly moving targets embedded in a severe clutter environment. The radar is evaluated using the target to clutter power ratio as the measure of performance. Noise is ignored in the analysis. An optimization scheme which maximizes this ratio is employed to obtain the optimum processor weighting. The performance of the MASAR processor with optimum weights is compared against that using target weights (composed of the target signal) and that using binomial weights (which, effectively, form an n-pulse canceller). Both the target and the clutter are modeled with the electric field backscattering coefficient. The target is modeled simply as a deterministically moving point scatterer with the same albedo as a point of clutter. The clutter is modeled as a homogeneous, isotropic, two dimensional, spatiotemporal random field for which only the correlation properties are required. The analysis shows that this radar, with its optimum weighting scheme, is a promising synthetic aperture concept for the detection of slowly moving targets immersed in strong clutter environments.

  20. Coordinated Radar Resource Management for Networked Phased Array Radars

    DTIC Science & Technology

    2014-12-01

    Research and Development Canada Ottawa, Canada K1A 0Z4 Email: Peter.Moo@drdc-rddc.gc.ca Abstract A phased array radar has the ability to rapidly and...search and Development Canada (DRDC) Ottawa to analyse the performance of radar resource management techniques for naval radars operating in a littoral

  1. A Potential Integrated Multiwavelength Radar System at the Medicina Radiotelescopes

    NASA Astrophysics Data System (ADS)

    Montebugnoli, S.; Salerno, E.; Pupillo, G.; Pluchino, S.

    2009-03-01

    Ground-based radars provide a powerful tool for detection, tracking and identification of the space debris fragments orbiting around Earth at different altitudes. The Medicina Radioastronomical Station is an Italian radio observation facility that is here proposed as receiving part of a bistatic radar system for detecting and tracking space debris at different orbital regions (from Low Earth Orbits up to Geostationary Earth Orbits).

  2. The Southern Argentina Agile Meteor Radar (SAAMER): Platform for comprehensive meteor radar observations and studies

    NASA Astrophysics Data System (ADS)

    Janches, D.; Hormaechea, J.; Pifko, S.; Hocking, W.; Fritts, D.; Brunini, C.; Close, S.; Michell, R.; Samara, M.

    2014-07-01

    The Southern Argentina Agile Meteor Radar (SAAMER) is a new generation system deployed in Rio Grande, Tierra del Fuego, Argentina (53^oS) in May 2008 (Janches et al., 2013,2014). SAAMER transmits 10 times more power than regular meteor radars, and uses a newly developed transmitting array, which focuses power upward instead of the traditional single-antenna-all-sky configuration. The system is configured such that the transmitter array can also be utilized as a receiver. The new design greatly increases the sensitivity of the radar enabling the detection of large numbers of particles at low zenith angles. The more concentrated transmitted power enables additional meteor studies besides those typical of these systems based on the detection of specular reflections, such as routine detections of head echoes and non-specular trails, previously only possible with High Power and Large Aperture radars (Janches et al., 2014). In August 2010, SAAMER was upgraded to a system capable to determine meteoroid orbital parameters. This was achieved by adding two remote receiving stations approximately 10 km away from the main site in near perpendicular directions (Pifko et al., 2014). The upgrade significantly expands the science that is achieved with this new radar enabling us to study the orbital properties of the interplanetary dust environment. Because of the unique geographical location, the SAAMER allows for additional inter-hemispheric comparison with measurements from Canadian Meteor Orbit Radar, which is geographically conjugate. Initial surveys show, for example, that SAAMER observes a very strong contribution of the South Toroidal Sporadic meteor source (Pifko et al., 2014), of which limited observational data is available. In addition, SAAMER offers similar unique capabilities for meteor showers and streams studies given the range of ecliptic latitudes that the system enables to survey (Janches et al., 2013). It can effectively observe radiants from the ecliptic south

  3. Investigation of Advanced Radar Techniques for Atmospheric Hazard Detection with Airborne Weather Radar

    NASA Technical Reports Server (NTRS)

    Pazmany, Andrew L.

    2014-01-01

    In 2013 ProSensing Inc. conducted a study to investigate the hazard detection potential of aircraft weather radars with new measurement capabilities, such as multi-frequency, polarimetric and radiometric modes. Various radar designs and features were evaluated for sensitivity, measurement range and for detecting and quantifying atmospheric hazards in wide range of weather conditions. Projected size, weight, power consumption and cost of the various designs were also considered. Various cloud and precipitation conditions were modeled and used to conduct an analytic evaluation of the design options. This report provides an overview of the study and summarizes the conclusions and recommendations.

  4. Phase modulating the Urbana radar

    NASA Technical Reports Server (NTRS)

    Herrington, L. J., Jr.; Bowhill, S. A.

    1983-01-01

    The design and operation of a switched phase modulation system for the Urbana Radar System are discussed. The system is implemented and demonstrated using a simple procedure. The radar system and circuits are described and analyzed.

  5. Millstone Hill radar: Capabilities for S/T observations

    NASA Technical Reports Server (NTRS)

    Loriot, G. B.

    1984-01-01

    During the past several years, the 440-MHz radar at Millstone Hill has been modified to detect coherent echoes from clear-air turbulence in the stratosphere/troposphere (S/T) over the altitude range 4-25 km. Two distinct modes of data acquisition have been developed, and data reduction programs have been completed for one of these modes. This mode (I-mode) transmits a 10 microsec (1.5 km) pulse on the fully steerable antenna. Typically, the antenna is set at a low elevation angle (e.g., 15 deg.) to reduce the altitude resolution to approximately 1 km., and power spectra are collected at some 40 range gates. The antenna may be scanned in azimuth to obtain the total wind vector, held fixed to monitor wave motion, or scanned in elevation to monitor the horizontal extent of the turbulent activity. This steerability gives Millstone a flexible system to focus on localized events, such as lee waves or convective storms. An additional advantage at low elevations is the relatively large Doppler shift of the signal, since the LOS velocity contains a large component of the horizontal velocity. This shift separates the turbulence signal sufficiently far from the ground clutter to allow the spectral moments to be readily inferred. Some 500 hours of S/T I-mode data have been reduced to geophysical parameters, and reside on a data base at Millstone Hill.

  6. Acquisition of Dutch as a Second Language: The Explanative Power of Cognate and Genetic Linguistic Distance Measures for 11 West European First Languages

    ERIC Educational Resources Information Center

    Van der Slik, Frans W. P.

    2010-01-01

    This study reports on the impact of 11 West European first languages on the acquisition of Dutch. Using data from nearly 6,000 second-language learners, it was found that the mother tongue had a rather large impact on two language skills--namely, oral and written proficiency--as measured by the scores received by these learners on the State…

  7. Coherent IR radar technology

    NASA Astrophysics Data System (ADS)

    Gschwendtner, A. B.; Harney, R. C.; Hull, R. J.

    Recent progress in the development of coherent IR radar equipment is reviewed, focusing on the Firepond laser radar installation and the more compact systems derived for it. The design and capabilities of Firepond as a long-range satellite-tracking device are outlined. The technological improvements necessary to make laser radar mobile are discussed: a lightweight, stable 5-10-W transmitter laser for both CW and pulsed operation, a 12-element HgCdTe detector array, an eccentric-pupil Ritchey-Chretien telescope, and a combination of near-field phase modification and anamorphic expansion to produce a fan beam of relatively uniform intensity. Sample images obtained with a prototype system are shown, and the applicability of the mobile system to range-resolved coherent DIAL measurement is found to be similar to that of a baseline DIAL system.

  8. The MST Radar Technique

    NASA Technical Reports Server (NTRS)

    Balsley, B. B.

    1985-01-01

    The past ten year have witnessed the development of a new radar technique to examine the structure and dynamics of the atmosphere between roughly 1 to 100 km on a continuous basis. The technique is known as the MST (for Mesosphere-Stratosphere-Troposphere) technique and is usable in all weather conditions, being unaffected by precipitation or cloud cover. MST radars make use of scattering from small scale structure in the atmospheric refractive index, with scales of the order of one-half the radar wavelength. Pertinent scale sizes for middle atmospheric studies typically range between a fraction of a meter and a few meters. The structure itself arises primarily from atmospheric turbulence. The technique is briefly described along with the meteorological parameters it measures.

  9. Radar data smoothing filter study

    NASA Technical Reports Server (NTRS)

    White, J. V.

    1984-01-01

    The accuracy of the current Wallops Flight Facility (WFF) data smoothing techniques for a variety of radars and payloads is examined. Alternative data reduction techniques are given and recommendations are made for improving radar data processing at WFF. A data adaptive algorithm, based on Kalman filtering and smoothing techniques, is also developed for estimating payload trajectories above the atmosphere from noisy time varying radar data. This algorithm is tested and verified using radar tracking data from WFF.

  10. Radiation hazard assessment of pulsed microwave radars.

    PubMed

    Puranen, L; Jokela, K

    1996-01-01

    Observed biological effects of pulsed microwave radiation are reviewed and the exposure standards for microwave radiation are summarized. The review indicates that the microwave auditory effect is the only well-established specific effect in realistic exposure situations. The threshold for the effect depends on the energy density per pulse and may be as low as 20 mJ/m2 for people with low hearing threshold. Energy density limits have been included in the most recent exposure standards. A new battery-operated, hand-held meter developed for measurements of pulse power densities around scanning radar antennas is described, and a simple new model for the calculation of power density in the main beam of radar antennas is presented. In the near field measured values differed from the calculated values by 2-3 dB.

  11. Systems and Methods for Radar Data Communication

    NASA Technical Reports Server (NTRS)

    Bunch, Brian (Inventor); Szeto, Roland (Inventor); Miller, Brad (Inventor)

    2013-01-01

    A radar information processing system is operable to process high bandwidth radar information received from a radar system into low bandwidth radar information that may be communicated to a low bandwidth connection coupled to an electronic flight bag (EFB). An exemplary embodiment receives radar information from a radar system, the radar information communicated from the radar system at a first bandwidth; processes the received radar information into processed radar information, the processed radar information configured for communication over a connection operable at a second bandwidth, the second bandwidth lower than the first bandwidth; and communicates the radar information from a radar system, the radar information communicated from the radar system at a first bandwidth.

  12. Capabilities and limitations of the Jicamarca radar as an MST radar

    NASA Technical Reports Server (NTRS)

    Woodman, R. F.; Farley, D. T.

    1983-01-01

    The Jicamarca radar (Long. 76.52W, Lat. 11.56S), located at 20 km from Lima at approximately 500 meters over sea level, is surrounded by mountains which provide a good shield from man-made interference. The radio horizon goes from a few hundred meters, across the dry valley where it is located, to 15 km, along the valley in the direction of the continental divide. This limits the clutter to 15 km, except for one high peak at 21 km. It is the most equatorial of all existing MST radars. Its proximity to the Andes, makes its location unique for the study of lee waves and orographic-induced turbulence. Vertical as well as horizontal projections of MST velocities are obtained by simultaneously pointing with different sections of the antenna into three or four different directions. The transmitters, receivers, and systems for data acquisition, processing, and control are included.

  13. FPGA Sequencer for Radar Altimeter Applications

    NASA Technical Reports Server (NTRS)

    Berkun, Andrew C.; Pollard, Brian D.; Chen, Curtis W.

    2011-01-01

    A sequencer for a radar altimeter provides accurate attitude information for a reliable soft landing of the Mars Science Laboratory (MSL). This is a field-programmable- gate-array (FPGA)-only implementation. A table loaded externally into the FPGA controls timing, processing, and decision structures. Radar is memory-less and does not use previous acquisitions to assist in the current acquisition. All cycles complete in exactly 50 milliseconds, regardless of range or whether a target was found. A RAM (random access memory) within the FPGA holds instructions for up to 15 sets. For each set, timing is run, echoes are processed, and a comparison is made. If a target is seen, more detailed processing is run on that set. If no target is seen, the next set is tried. When all sets have been run, the FPGA terminates and waits for the next 50-millisecond event. This setup simplifies testing and improves reliability. A single vertex chip does the work of an entire assembly. Output products require minor processing to become range and velocity. This technology is the heart of the Terminal Descent Sensor, which is an integral part of the Entry Decent and Landing system for MSL. In addition, it is a strong candidate for manned landings on Mars or the Moon.

  14. Spaceborne Imaging Radar Symposium

    NASA Technical Reports Server (NTRS)

    Elachi, C.

    1983-01-01

    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT.

  15. Microwave radar oceanographic investigations

    NASA Technical Reports Server (NTRS)

    Jackson, F. C.

    1988-01-01

    The Radar Ocean Wave Spectrometer (ROWS) technique was developed and demonstrated for measuring ocean wave directional spectra from air and space platforms. The measurement technique was well demonstrated with data collected in a number of flight experiments involving wave spectral comparisons with wave buoys and the Surface Contour Radar (SCR). Recent missions include the SIR-B underflight experiment (1984), FASINEX (1986), and LEWEX (1987). ROWS related activity is presently concentrating on using the aircraft instrument for wave-processes investigations and obtaining the necessary support (consensus) for a satellite instrument development program. Prospective platforms include EOS and the Canadian RADARSAT.

  16. Radar Investigations of Asteroids

    NASA Technical Reports Server (NTRS)

    Ostro, S. J.

    1984-01-01

    Radar investigations of asteroids, including observations during 1984 to 1985 of at least 8 potential targets and continued analyses of radar data obtained during 1980 to 1984 for 30 other asteroids is proposed. The primary scientific objectives include estimation of echo strength, polarization, spectral shape, spectral bandwidth, and Doppler shift. These measurements yield estimates of target size, shape, and spin vector; place constraints on topography, morphology, density, and composition of the planetary surface; yield refined estimates of target orbital parameters; and reveals the presence of asteroidal satellites.

  17. SEASAT Synthetic Aperture Radar Data

    NASA Technical Reports Server (NTRS)

    Henderson, F. M.

    1981-01-01

    The potential of radar imagery from space altitudes is discussed and the advantages of radar over passive sensor systems are outlined. Specific reference is made to the SEASAT synthetic aperture radar. Possible applications include oil spill monitoring, snow and ice reconnaissance, mineral exploration, and monitoring phenomena in the urban environment.

  18. Side looking radar calibration study

    NASA Technical Reports Server (NTRS)

    Edwards, W. D.

    1975-01-01

    Calibration of an airborne sidelooking radar is accomplished by the use of a model that relates the radar parameters to the physical mapping situation. Topics discussed include: characteristics of the transmitters; the antennas; target absorption and reradiation; the receiver and map making or radar data processing; and the calibration process.

  19. Radar evidence for liquid surfaces on Titan.

    PubMed

    Campbell, Donald B; Black, Gregory J; Carter, Lynn M; Ostro, Steven J

    2003-10-17

    Arecibo radar observations of Titan at 13-centimeter wavelength indicate that most of the echo power is in a diffusely scattered component but that a small specular component is present for about 75% of the subearth locations observed. These specular echoes have properties consistent with those expected for areas of liquid hydrocarbons. Knowledge of the areal extent and depth of any deposits of liquid hydrocarbons could strongly constrain the history of Titan's atmosphere and surface.

  20. Multi-Aspect Radar Algorithms (MARA) Study

    DTIC Science & Technology

    2009-11-30

    39 5.0 Unanticipated Technical Issues 40 6.0 Plans for Next Reporting Period 40 7.0 Funding Summary and Status 42...Coverage Tuning Resolution Settling Time µsec Output Power dBm Packaging Size VIDA Products VPLNS VPBBS Hammerhead 8 to 12 GHz 6...The clock multiplier supports all required frequency plans for the radar sensor. As an example, a global-positioning system-disciplined

  1. Radar Technology Development at NASA/JPL

    NASA Technical Reports Server (NTRS)

    Rosen, Paul A.

    2011-01-01

    Radar at JPL and worldwide is enjoying a period of unprecedented development. JPL's science-driven program focuses on exploiting commercially available components to build new technologies to meet NASA's science goals. Investments in onboard-processing, advanced digital systems, and efficient high-power devices, point to a new generation of high-performance scientific SAR systems in the US. Partnerships are a key strategy for US missions in the coming decade

  2. Space Radar Image of Chernobyl

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an image of the Chernobyl nuclear power plant and its surroundings, centered at 51.17 north latitude and 30.15 west longitude. The image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar aboard the space shuttle Endeavour on its 16th orbit on October 1, 1994. The area is located on the northern border of the Ukraine Republic and was produced by using the L-band (horizontally transmitted and received) polarization. The differences in the intensity are due to differences in vegetation cover, with brighter areas being indicative of more vegetation. These data were acquired as part of a collaboration between NASA and the National Space Agency of Ukraine in Remote Sensing and Earth Sciences. NASA has included several sites provided by the Ukrainian space agency as targets of opportunity during the second flight of SIR-C/X-SAR. The Ukrainian space agency also plans to conduct airborne surveys of these sites during the mission. The Chernobyl nuclear power plant is located toward the top of the image near the Pripyat River. The 12-kilometer (7.44-mile)-long cooling pond is easily distinguishable as an elongated dark shape in the center near the top of the image. The reactor complex is visible as the bright area to the extreme left of the cooling pond and the city of Chernobyl is the bright area just below the cooling pond next to the Pripyat River. The large dark area in the bottom right of the image is the Kiev Reservoir just north of Kiev. Also visible is the Dnieper River, which feeds into the Kiev Reservoir from the top of the image. The Soviet government evacuated 116,000 people within 30 kilometers (18.6 miles) of the Chernobyl reactor after the explosion and fire on April 26, 1986. Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) is part of NASA's Mission to Planet Earth. The radars illuminate Earth with microwaves, allowing detailed observations at any time, regardless of weather or sunlight

  3. Multiple target tracking and target attitude determination with a scanning laser radar

    NASA Technical Reports Server (NTRS)

    Flom, T.; Coombes, D.

    1974-01-01

    A scanning laser radar that can acquire and track single or multiple targets has recently been developed. Scan patterns have been designed for acquisition and tracking of one or more targets using a narrow laser beam. A synchronously scanned transmitter-receiver is used to acquire and track targets anywhere in a 376 x 376 element raster covering a 30 x 30 deg field. All scan patterns are electronically programmed, and the system automatically acquires and tracks the target or targets without the aid of an operator. The maximum tracking rate is 1.0 deg/sec (10.0 deg/sec) when used with a 1 kHz (10 kHz) scan rate. The estimated free space range against passive cooperative targets (corner cube reflectors) is 30 nautical miles. The laser radar has an accuracy of 10 cm (range) and 0.05 deg (angle). The developmental system is relatively small (1.5 cu ft), lightweight (60 lbs) and low-power-consuming (60 W).

  4. Underwater probing with laser radar

    NASA Technical Reports Server (NTRS)

    Carswell, A. I.; Sizgoric, S.

    1975-01-01

    Recent advances in laser and electro optics technology have greatly enhanced the feasibility of active optical probing techniques aimed at the remote sensing of water parameters. This paper describes a LIDAR (laser radar) that has been designed and constructed for underwater probing. The influence of the optical properties of water on the general design parameters of a LIDAR system is considered. Discussion of the specific details in the choice of the constructed LIDAR is given. This system utilizes a cavity dumped argon ion laser transmitter capable of 50 watt peak powers, 10 nanosecond pulses and megahertz pulse repetition rates at 10 different wavelengths in the blue green region of the spectrum. The performance of the system, in proving various types of water, is demonstrated by summarizing the results of initial laboratory and field experiments.

  5. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  6. Temperate Ice Depth-Sounding Radar

    NASA Astrophysics Data System (ADS)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    Glaciers in several parts of the world are reported to be retreating and thinning rapidly over the last decade. Radar instruments can be used to provide a wealth of information regarding the internal and basal conditions of large and small ice masses. These instruments typically operate in the VHF and UHF regions of the electromagnetic spectrum. For temperate-ice sounding, however, the high water content produces scattering and attenuation in propagating radar waves at VHF and UHF frequencies, which significantly reduce the penetration depths. Radars operating in the HF band are better suited for systematic surveys of the thickness and sub-glacial topography of temperate-ice regions. We are developing a dual-frequency Temperate-Ice-Depth Sounding Radar (TIDSoR) that can penetrate through water pockets, thus providing more accurate measurements of temperate ice properties such as thickness and basal conditions. The radar is a light-weight, low power consumption portable system for surface-based observations in mountainous terrain or aerial surveys. TIDSoR operates at two different center frequencies: 7.7 MHz and 14 MHz, with a maximum output peak power of 20 W. The transmit waveform is a digitally generated linear frequency-modulated chirp with 1 MHz bandwidth. The radar can be installed on aircrafts such as the CReSIS UAV [1], DCH-6 (Twin Otter), or P-3 Orion for aerial surveys, where it could be supported by the airplane power system. For surface based experiments, TIDSoR can operate in a backpack configuration powered by a compact battery system. The system can also be installed on a sled towed by a motorized vehicle, in which case the power supply can be replaced by a diesel generator. The radar consists of three functional blocks: the digital section, the radio-frequency (RF) section, and the antenna, and is designed to weigh less than 2 kg, excluding the power supply. The digital section generates the transmit waveforms as well as timing and control signals

  7. Radar investigation of asteroids and planetary satellites

    NASA Technical Reports Server (NTRS)

    Ostro, Steven J.

    1988-01-01

    The aim is to make radar reconnaissance of near-Earth asteroids, mainbelt ateroids, the Galilean satellites, the Martian satellites, and the largest Saturnian satellites, using the Arecibo 13-cm and the Goldstone 3.5-cm systems. Measurements of echo strength, polarization, and delay/Doppler distribution of echo power provide information about dimensions, spin vector, large-scale topography, cm-to-m-scale morphology, and surface bulk density. The observations also yield refined estimates of target orbital elements. Radar signatures were measured for 31 mainbelt asteroids and 16 near-Earth asteroids since this task began eight years ago. The dispersion in asteroid radar albedoes and circular polarization ratios is extreme, revealing huge differences in surface morphologies, bulk densities, and metal concentration. For the most part, correction between radar signature and VIS/IR class is not high. Many near-Earth asteroids have extremely irregular, nonconvex shapes, but some have polar silhouettes that appear only slightly noncircular. The signatures of 1627 Ivar, 1986 DA, and the approximately 180-km mainbelt asteroid 216 Kleopatra suggest bifurcated shapes. Observational milestones during 1987 and 1988 are noted.

  8. 17 CFR 250.14 - Exemption of acquisitions of securities of power supply companies from section 9(a)(2) of the Act.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of securities of power supply companies from section 9(a)(2) of the Act. (a) An electric utility... securities, and any obligation by such electric utility company to provide funds to the power supply company... securities of the power supply company are owned by one or more electric utility companies to which the...

  9. Interception of LPI Radar Signals

    DTIC Science & Technology

    1991-11-01

    AD-A246 315!I! I!! II I’ IIi INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee DEFENCE RESEARCH ESTABLISHMENT OTTAWA TECHNICAL NOTE 91-23 Canadd...November 1991Ottawa 92-041269’ 2 2 18 II.2t1111111I 111111! !_ 1+1 efrc nadonds INTERCEPTION OF LPI RADAR SIGNALS (U) by Jim P.Y. Lee Radar E"Sect&ion... radar may employ against current EW receivers. The general conclusion is that it is possible to design a LPI radar which is effective against current

  10. Synthetic Aperture Radar Interferometry

    NASA Technical Reports Server (NTRS)

    Rosen, P. A.; Hensley, S.; Joughin, I. R.; Li, F.; Madsen, S. N.; Rodriguez, E.; Goldstein, R. M.

    1998-01-01

    Synthetic aperture radar interferometry is an imaging technique for measuring the topography of a surface, its changes over time, and other changes in the detailed characteristics of the surface. This paper reviews the techniques of interferometry, systems and limitations, and applications in a rapidly growing area of science and engineering.

  11. Netted LPI RADARs

    DTIC Science & Technology

    2011-09-01

    Characteristics ALQ-172 B-52G/H Self- protection Track/search radar jamming, steerable jam beams , software programmable, phased array antenna ...bore sight: knowing the pattern of the antenna’s gain, two or more intercepts within the antenna main beam are sufficient to determine the...14 a. Low Level Antenna Sidelobes .............14 b. Antenna Scan Patterns ...................18 4. Carrier Frequency Selection

  12. Frequency Diverse Array Radar

    DTIC Science & Technology

    2010-09-01

    the methods for electronic scanning of antenna systems. Techniques that have been studied in this connection include frequency variation, phase shift...an array antenna instantaneously into a desired direction where no mechanical mechanism is involved in the scanning process. Electronic scanning... methods including phase scanning, time delay scanning, and frequency scanning have been used in various radar applications; however new and cheaper

  13. Passive MIMO Radar Detection

    DTIC Science & Technology

    2013-09-01

    Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.3.3 Dependence on SNR...71 4.3.3 Dependence on SNR and DNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.4 Interpretations...described as a passive radar network. The topology of such networks is described as bistatic, multistatic, or multiple-input multiple-output, depending on

  14. Passive bistatic radar analysis

    NASA Astrophysics Data System (ADS)

    O'Hagan, Daniel W.; Kuschel, H.; Schiller, Joachim

    2009-06-01

    Passive Bistatic Radar (PBR) research is at its zenith with several notable PBR systems currently operational, or available for deployment. Such PBRs include the Manastash Ridge Radar (MRR) developed for and by academia; Silent Sentry developed as a commercial concern by Lockheed Martin; and Homeland Alerter (HA100) also a commercial system developed by Thales. However at present, despite the existence of numerous PBR prototypes, take up of commercial passive radar technology remains slow. This is due in part to technology immaturity, in part to politics, and particularly due to the fact that monostatic radars perform so well. If PBRs are to enjoy longevity as a viable technology then it is imperative that they address certain niche application areas, with the aforementioned MRR being one prime example of this. The focus of this paper will be an analysis of a PBR system that utilised FM radio signals of opportunity to detect aircraft targets with an RCS generally not lower than 20 m2. The paper will demonstrate the theoretical detection coverage of an FM based PBR operating in a severe interference environment.

  15. Impulse radar studfinder

    DOEpatents

    McEwan, T.E.

    1995-10-10

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes. 9 figs.

  16. Impulse radar studfinder

    DOEpatents

    McEwan, Thomas E.

    1995-01-01

    An impulse radar studfinder propagates electromagnetic pulses and detects reflected pulses from a fixed range. Unmodulated pulses, about 200 ps wide, are emitted. A large number of reflected pulses are sampled and averaged. Background reflections are subtracted. Reflections from wall studs or other hidden objects are detected and displayed using light emitting diodes.

  17. Sniper bullet detection by millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Bernstein, Uri; Lefevre, Russell J.; Mann, John; Avent, Randy K.; Deo, Naresh

    1999-01-01

    Law enforcement and military operations would clearly benefit from a capability to locate snipers by backtracking the sniper's bullet trajectory. Achieving sufficient backtracking accuracy for bullets is a demanding radar design, requiring good measurement accuracy, high update rate, and detection of very low cross-section objects. In addition, reasonable cost is a driving requirement for law enforcement use. These divergent design requirements are addressed in an experimental millimeter-wave focal plane array radar that uses integrated millimeter-wave receiver technology. The radar is being built for DARPA by Technology Service Corporation, with assistance from M.I.T. Lincoln Laboratory and QuinStar Technology. The key element in the radar is a 35-GHz focal plane array receiver. The receiving antenna lens focuses radar signals from a wide field of view onto an array of receivers, each receiver processing a separate element of the field of view. Receiver detections are then combined in a tracking processor. An FM-CW waveform is used to provide high average power, good range resolution, and stationary clutter rejection. TSC will be testing the sniper detection radar, using radar environment simulator technology developed at Lincoln Laboratory. The simulator will retransmit the received signal with the range delay, Doppler shift, and ERP for various simulated bullet trajectories.

  18. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, M.; Vermillion, C.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. This paper discusses how synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agriculture land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems discussed.

  19. The role of space borne imaging radars in environmental monitoring: Some shuttle imaging radar results in Asia

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Vermillion, C. H.

    1986-01-01

    The synoptic view afforded by orbiting Earth sensors can be extremely valuable for resource evaluation, environmental monitoring and development planning. For many regions of the world, however, cloud cover has prevented the acquisition of remotely sensed data during the most environmentally stressful periods of the year. How synthetic aperture imaging radar can be used to provide valuable data about the condition of the Earth's surface during periods of bad weather is discussed. Examples are given of applications using data from the Shuttle Imaging Radars (SIR) A and B for agricultural land use and crop condition assessment, monsoon flood boundary and flood damage assessment, water resource monitoring and terrain modeling, coastal forest mapping and vegetation penetration, and coastal development monitoring. Recent SIR-B results in Bangladesh are emphasized, radar system basics are reviewed and future SAR systems are discussed.

  20. Ground-penetrating radar for buried mine detection

    SciTech Connect

    Sargis, P.D.; Lee, F.D.; Fulkerson, E.S.; McKinley, B.J.; Aimonetti, W.D.

    1994-04-01

    Lawrence Livermore National Laboratory (LLNL) is developing an ultra-wideband, side-looking, ground-penetrating impulse radar system that can be mounted on an airborne platform for the purpose of locating buried mines. The radar system is presently mounted on an 18-meter boom. The authors have successfully imaged a minefield located at the Nevada Test Site. The minefield consists of real and surrogate mines of various materials and sizes placed in natural vegetation. Some areas have been cleared for non-cluttered studies. A technical description of the system is presented, describing the wideband antennas, the video pulser, the receiver hardware, and the data acquisition system. The receiver and data acquisition hardware are off-the-shelf components. The data was processed using LLNL-developed image reconstruction software, and has been registered against the ground truth data. Images showing clearly visible mines, surface reference markers, and ground clutter are presented.

  1. Earth resources shuttle imaging radar. [systems analysis and design analysis of pulse radar for earth resources information system

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A report is presented on a preliminary design of a Synthetic Array Radar (SAR) intended for experimental use with the space shuttle program. The radar is called Earth Resources Shuttle Imaging Radar (ERSIR). Its primary purpose is to determine the usefulness of SAR in monitoring and managing earth resources. The design of the ERSIR, along with tradeoffs made during its evolution is discussed. The ERSIR consists of a flight sensor for collecting the raw radar data and a ground sensor used both for reducing these radar data to images and for extracting earth resources information from the data. The flight sensor consists of two high powered coherent, pulse radars, one that operates at L and the other at X-band. Radar data, recorded on tape can be either transmitted via a digital data link to a ground terminal or the tape can be delivered to the ground station after the shuttle lands. A description of data processing equipment and display devices is given.

  2. Solid-State Cloud Radar System (CRS) Upgrade and Deployment

    NASA Technical Reports Server (NTRS)

    McLinden, Matt; Heymsfield, Gerald; Li, Lihua; Racette, Paul; Coon, Michael; Venkatesh, Vijay

    2015-01-01

    The recent decade has brought rapid development in solid-state power amplifier (SSPA) technology. This has enabled the use of solid-state precipitation radar in place of high-power and high-voltage systems such as those that use Klystron or Magnetron transmitters. The NASA Goddard Space Flight Center has recently completed a comprehensive redesign of the 94 gigahertz Cloud Radar System (CRS) to incorporate a solid-state transmitter. It is the first cloud radar to achieve sensitivity comparable to that of a high-voltage transmitter using solid-state. The NASA Goddard Space Flight Center's Cloud Radar System (CRS) is a 94 gigahertz Doppler radar that flies on the NASA ER-2 high-altitude aircraft. The upgraded CRS system utilizes a state-of-the-art solid-state 94 gigahertz power amplifier with a peak transmit power of 30 watts. The modernized CRS system is detailed here with data results from its deployment during the 2014 Integrated Precipitation and Hydrology Experiment (IPHEX).

  3. An effective method for incoherent scattering radar's detecting ability evaluation

    NASA Astrophysics Data System (ADS)

    Lu, Ziqing; Yao, Ming; Deng, Xiaohua

    2016-06-01

    Ionospheric incoherent scatter radar (ISR), which is used to detect ionospheric electrons and ions, generally, has megawatt class transmission power and hundred meter level antenna aperture. The crucial purpose of this detecting technology is to get ionospheric parameters by acquiring the autocorrelation function and power spectrum of the target ionospheric plasma echoes. Whereas the ISR's echoes are very weak because of the small radar cross section of its target, estimating detecting ability will be significantly instructive and meaningful for ISR system design. In this paper, we evaluate the detecting ability through signal-to-noise ratio (SNR). The soft-target radar equation is deduced to be applicable to ISR, through which we use data from International Reference Ionosphere model to simulate signal-to-noise ratio (SNR) of echoes, and then comparing the measured SNR from European Incoherent Scatter Scientific Association and Advanced Modular Incoherent Scatter Radar with the simulation. The simulation results show good consistency with the measured SNR. For ISR, the topic of this paper is the first comparison between the calculated SNR and radar measurements; the detecting ability can be improved through increasing SNR. The effective method for ISR's detecting ability evaluation provides basis for design of radar system.

  4. Comparison between S. T. radar and in situ balloon measurements

    NASA Technical Reports Server (NTRS)

    Dalaudier, F.; Barat, J.; Bertin, F.; Brun, E.; Crochet, M.; Cuq, F.

    1986-01-01

    A campaign for simultaneous in situ and remote observation of both troposphere and stratosphere took place near Aire-sur-l'Adour (in southeastern France) on May 4, 1984. The aim of this campaign was a better understanding of the physics of radar echoes. The backscattered signal obtained with a stratosphere-troposphere radar both at the vertical and 15 deg. off vertical is compared with the velocity and temperature measurements made in the same region (about 10 km north of the radar site) by balloon-borne ionic anenometers and temperature sensors. In situ measurements clearly indicate that the temperature fluctuations are not always consistent with the standard turbulent theory. Nevertheless, the assumptions generally made (isotropy and turbulent field in k) and the classical formulation so derived for radar reflectivity are able to reproduce the shape of the radar return power profiles in oblique directions. Another significant result is the confirmation of the role played by the atmospheric stratification in the vertical echo power. It is important to develop these simultaneous in situ and remote experiments for a better description of the dynamical and thermal structure of the atmosphere and for a better understanding of the mechanisms governing clear-air radar reflectivity.

  5. An Analysis of the Defense Acquisition Strategy for Unmanned Systems

    DTIC Science & Technology

    2014-03-01

    VHSIC Development .........................................................................34 3. RFID Development...product service code RAA Rapid Acquisition Authority RCS radar cross section REF Rapid Equipping Force RFID radio frequency identification RDT... RFID technology. 28 1. The Semiconductor Industry This section divides the early semiconductor industry history into three periods based on the

  6. Design and Performance of a Miniature Radar L-Band Transceiver

    NASA Technical Reports Server (NTRS)

    McWatters, D.; Price, D.; Edelstein, W.

    2004-01-01

    Radar electronics developed for past JPL space missions historically had been custom designed and as such, given budgetary, time, and risk constraints, had not been optimized for maximum flexibility or miniaturization. To help reduce cost and risk of future radar missions, a generic radar module was conceived. The module includes a 1.25-GHz (L-band) transceiver and incorporates miniature high-density packaging of integrated circuits in die/chip form. The technology challenges include overcoming the effect of miniaturization and high packaging density to achieve the performance, reliability, and environmental ruggedness required for space missions. The module was chosen to have representative (generic) functionality most likely required from an L-band radar. For very large aperture phased-array spaceborne radar missions, the large dimensions of the array suggest the benefit of distributing the radar electronics into the antenna array. For such applications, this technology is essential in order to bring down the cost, mass, and power of the radar electronics module replicated in each panel of the array. For smaller sized arrays, a single module can be combined with the central radar controller and still provide the bene.ts of configuration .exibility, low power, and low mass. We present the design approach for the radar electronics module and the test results for its radio frequency (RF) portion: a miniature, low-power, radiation-hard L-band transceiver.

  7. Gesture recognition for smart home applications using portable radar sensors.

    PubMed

    Wan, Qian; Li, Yiran; Li, Changzhi; Pal, Ranadip

    2014-01-01

    In this article, we consider the design of a human gesture recognition system based on pattern recognition of signatures from a portable smart radar sensor. Powered by AAA batteries, the smart radar sensor operates in the 2.4 GHz industrial, scientific and medical (ISM) band. We analyzed the feature space using principle components and application-specific time and frequency domain features extracted from radar signals for two different sets of gestures. We illustrate that a nearest neighbor based classifier can achieve greater than 95% accuracy for multi class classification using 10 fold cross validation when features are extracted based on magnitude differences and Doppler shifts as compared to features extracted through orthogonal transformations. The reported results illustrate the potential of intelligent radars integrated with a pattern recognition system for high accuracy smart home and health monitoring purposes.

  8. High-resolution three-dimensional imaging radar

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B. (Inventor); Chattopadhyay, Goutam (Inventor); Siegel, Peter H. (Inventor); Dengler, Robert J. (Inventor); Schlecht, Erich T. (Inventor); Mehdi, Imran (Inventor); Skalare, Anders J. (Inventor)

    2010-01-01

    A three-dimensional imaging radar operating at high frequency e.g., 670 GHz, is disclosed. The active target illumination inherent in radar solves the problem of low signal power and narrow-band detection by using submillimeter heterodyne mixer receivers. A submillimeter imaging radar may use low phase-noise synthesizers and a fast chirper to generate a frequency-modulated continuous-wave (FMCW) waveform. Three-dimensional images are generated through range information derived for each pixel scanned over a target. A peak finding algorithm may be used in processing for each pixel to differentiate material layers of the target. Improved focusing is achieved through a compensation signal sampled from a point source calibration target and applied to received signals from active targets prior to FFT-based range compression to extract and display high-resolution target images. Such an imaging radar has particular application in detecting concealed weapons or contraband.

  9. A 449 MHz modular wind profiler radar system

    NASA Astrophysics Data System (ADS)

    Lindseth, Bradley James

    This thesis presents the design of a 449 MHz radar for wind profiling, with a focus on modularity, antenna sidelobe reduction, and solid-state transmitter design. It is one of the first wind profiler radars to use low-cost LDMOS power amplifiers combined with spaced antennas. The system is portable and designed for 2-3 month deployments. The transmitter power amplifier consists of multiple 1-kW peak power modules which feed 54 antenna elements arranged in a hexagonal array, scalable directly to 126 elements. The power amplifier is operated in pulsed mode with a 10% duty cycle at 63% drain efficiency. The antenna array is designed to have low sidelobes, confirmed by measurements. The radar was operated in Boulder, Colorado and Salt Lake City, Utah. Atmospheric wind vertical and horizontal components at altitudes between 200m and 4km were calculated from the collected atmospheric return signals. Sidelobe reduction of the antenna array pattern is explored to reduce the effects of ground or sea clutter. Simulations are performed for various shapes of compact clutter fences for the 915-MHz beam-steering Doppler radar and the 449-MHz spaced antenna interferometric radar. It is shown that minimal low-cost hardware modifications to existing compact ground planes of 915-MHz beam-steering radar allow for reduction of sidelobes of up to 5dB. The results obtained on a single beam-steering array are extended to the 449 MHz triple hexagonal array spaced antenna interferometric radar. Cross-correlation, transmit beamwidth, and sidelobe levels are evaluated for various clutter fence configurations and array spacings. The resulting sidelobes are as much as 10 dB below those without a clutter fence and can be incorporated into existing and future 915 and 449 MHz wind profiler systems with minimal hardware modifications.

  10. A New Method for Radar Rainfall Estimation Using Merged Radar and Gauge Derived Fields

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Sharma, A.; Johnson, F.; Mariethoz, G.; Seed, A.

    2014-12-01

    Accurate estimation of rainfall is critical for any hydrological analysis. The advantage of radar rainfall measurements is their ability to cover large areas. However, the uncertainties in the parameters of the power law, that links reflectivity to rainfall intensity, have to date precluded the widespread use of radars for quantitative rainfall estimates for hydrological studies. There is therefore considerable interest in methods that can combine the strengths of radar and gauge measurements by merging the two data sources. In this work, we propose two new developments to advance this area of research. The first contribution is a non-parametric radar rainfall estimation method (NPZR) which is based on kernel density estimation. Instead of using a traditional Z-R relationship, the NPZR accounts for the uncertainty in the relationship between reflectivity and rainfall intensity. More importantly, this uncertainty can vary for different values of reflectivity. The NPZR method reduces the Mean Square Error (MSE) of the estimated rainfall by 16 % compared to a traditionally fitted Z-R relation. Rainfall estimates are improved at 90% of the gauge locations when the method is applied to the densely gauged Sydney Terrey Hills radar region. A copula based spatial interpolation method (SIR) is used to estimate rainfall from gauge observations at the radar pixel locations. The gauge-based SIR estimates have low uncertainty in areas with good gauge density, whilst the NPZR method provides more reliable rainfall estimates than the SIR method, particularly in the areas of low gauge density. The second contribution of the work is to merge the radar rainfall field with spatially interpolated gauge rainfall estimates. The two rainfall fields are combined using a temporally and spatially varying weighting scheme that can account for the strengths of each method. The weight for each time period at each location is calculated based on the expected estimation error of each method

  11. Micropower impulse radar technology and applications

    SciTech Connect

    Mast, J., LLNL

    1998-04-15

    The LLNL-developed Micropower Impulse Radar (MIR) technology has quickly gone from laboratory concept to embedded circuitry in numerous government and commercial systems in the last few years[l]. The main ideas behind MIR, invented by T. McEwan in the Laser Program, are the generation and detection systems for extremely low- power ultra-wideband pulses in the gigaHertz regime using low-cost components. These ideas, coupled with new antenna systems, timing and radio-frequency (RF) circuitry, computer interfaces, and signal processing, have provided the catalyst for a new generation of compact radar systems. Over the past several years we have concentrated on a number of applications of MIR which address a number of remote-sensing applications relevant to emerging programs in defense, transportation, medical, and environmental research. Some of the past commercial successes have been widely publicized [2] and are only now starting to become available for market. Over 30 patents have been filed and over 15 licenses have been signed on various aspects of the MIR technology. In addition, higher performance systems are under development for specific laboratory programs and government reimbursables. The MIR is an ultra- wideband, range-gated radar system that provides the enabling hardware technology used in the research areas mentioned above. It has numerous performance parameters that can be Selected by careful design to fit the requirements. We have improved the baseline, short- range, MIR system to demonstrate its effectiveness. The radar operates over the hand from approximately I to 4 GHz with pulse repetition frequencies up to 10 MHz. It provides a potential range resolution of I cm at ranges of greater than 20 m. We have developed a suite of algorithms for using MIR for image formation. These algorithms currently support Synthetic aperture and multistate array geometries. This baseline MIR radar imaging system has been used for several programmatic applications.

  12. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  13. Analysis of ALTAIR 1998 Meteor Radar Data

    NASA Technical Reports Server (NTRS)

    Zinn, J.; Close, S.; Colestock, P. L.; MacDonell, A.; Loveland, R.

    2011-01-01

    We describe a new analysis of a set of 32 UHF meteor radar traces recorded with the 422 MHz ALTAIR radar facility in November 1998. Emphasis is on the velocity measurements, and on inferences that can be drawn from them regarding the meteor masses and mass densities. We find that the velocity vs altitude data can be fitted as quadratic functions of the path integrals of the atmospheric densities vs distance, and deceleration rates derived from those fits all show the expected behavior of increasing with decreasing altitude. We also describe a computer model of the coupled processes of collisional heating, radiative cooling, evaporative cooling and ablation, and deceleration - for meteors composed of defined mixtures of mineral constituents. For each of the cases in the data set we ran the model starting with the measured initial velocity and trajectory inclination, and with various trial values of the quantity mPs 2 (the initial mass times the mass density squared), and then compared the computed deceleration vs altitude curves vs the measured ones. In this way we arrived at the best-fit values of the mPs 2 for each of the measured meteor traces. Then further, assuming various trial values of the density Ps, we compared the computed mass vs altitude curves with similar curves for the same set of meteors determined previously from the measured radar cross sections and an electrostatic scattering model. In this way we arrived at estimates of the best-fit mass densities Ps for each of the cases. Keywords meteor ALTAIR radar analysis 1 Introduction This paper describes a new analysis of a set of 422 MHz meteor scatter radar data recorded with the ALTAIR High-Power-Large-Aperture radar facility at Kwajalein Atoll on 18 November 1998. The exceptional accuracy/precision of the ALTAIR tracking data allow us to determine quite accurate meteor trajectories, velocities and deceleration rates. The measurements and velocity/deceleration data analysis are described in Sections

  14. Optical signal processing of phased array radar

    NASA Astrophysics Data System (ADS)

    Weverka, Robert T.

    This thesis develops optical processors that scale to very high processing speed. Optical signal processing is often promoted on the basis of smaller size, lower weight and lower power consumption as well as higher signal processing speed. While each of these requirements has applications, it is the ones that require processing speed beyond that available in electronics that are most compelling. Thirty years ago, optical processing was the only method fast enough to process Synthetic Aperture Radar (SAR), one of the more demanding signal processing tasks at this time. Since that time electronic processing speed has improved sufficiently to tackle that problem. We have sought out the problems that require significantly higher processing speed and developed optical processors that tackle these more difficult problems. The components that contribute to high signal processing speed are high input signal bandwidth, a large number of parallel input channels each with this high bandwidth, and a large number of parallel operations required on each input channel. Adaptive signal processing for phased array radar has all of these factors. The processors developed for this task scale well in three dimensions, which allows them to maximize parallelism for high speed. This thesis explores an example of a negative feedback adaptive phased array processor and an example of a positive feedback phased array processor. The negative feedback processor uses and array of inputs in up to two dimensions together with the time history of the signal in the third dimension to adapt the array pattern to null out incoming jammer signals. The positive feedback processor uses the incoming signals and assumptions about the radar scene to correct for position errors in a phased array. Discovery and analysis of these new processors are facilitated by an original volume holographic analysis technique developed in the thesis. The thesis includes a new acoustooptic Bragg cell geometry developed with

  15. Scanning ARM Cloud Radars Part I. Operational Sampling Strategies

    SciTech Connect

    Kollias, Pavlos; Bharadwaj, Nitin; Widener, Kevin B.; Jo, Ieng; Johnson, Karen

    2013-12-03

    Probing clouds in three-dimensions has never been done with scanning millimeter-wavelength (cloud) radars in a continuous operating environment. The acquisition of scanning cloud radars by the Atmospheric Radiation Measurement (ARM) program and research institutions around the world generate the need for developing operational scan strategies for cloud radars. Here, the first generation of sampling strategies for the Scanning ARM Cloud Radars (SACRs) is discussed. These scan strategies are designed to address the scientific objectives of the ARM program, however, they introduce an initial framework for operational scanning cloud radars. While the weather community uses scan strategies that are based on a sequence of scans at constant elevations, the SACRs scan strategies are based on a sequence of scans at constant azimuth. This is attributed to the cloud properties that are vastly different for rain and snow shafts that are the primary target of precipitation radars. A “cloud surveillance” scan strategy is introduced (HS-RHI) based on a sequence of horizon-to-horizon Range Height Indicator (RHI) scans that sample the hemispherical sky (HS). The HS-RHI scan strategy is repeated every 30 min to provide a static view of the cloud conditions around the SACR location. Between HS-RHI scan strategies other scan strategies are introduced depending on the cloud conditions. The SACRs are pointing vertically in the case of measurable precipitation at the ground. The radar reflectivities are corrected for water vapor attenuation and non-meteorological detection are removed. A hydrometeor detection mask is introduced based on the difference of cloud and noise statistics is discussed.

  16. Common Modular Multimode Radar (CMMR) Software Acquisition Study.

    DTIC Science & Technology

    1981-03-01

    Software Mgmt . Subgroup SDDL Clark Walker ATLAS Designated Control Agent (AF) SDDS Maj. Phil Merkley Configuration Management SDNA Capt. George Radic CMMR...Facility AEG Oscar Sepp ATLAS Language Control Agent AWZ Charles Marshall Configuration Mgmt . of Computer Resources ACCX Capt. Bob Gaffney ASD Cost...Agent LOWW Ray Armstrong CMMR Direction NAVMAT 042 Richard Berry Joint Configuration Mgmt . Reg. 08Y Owen McOmber Navy HOL Control Agent 08Y Rick

  17. Radar Target Recognition Using Bispectrum Correlation

    DTIC Science & Technology

    2007-06-01

    21 2. Inverse Synthetic Aperture Radar ...................................................22 3. Range Profiles...characteristics need to be stored. 2. Inverse Synthetic Aperture Radar We often identify things based on pictures and Synthetic Aperture Radar (SAR) is an...By taking multiple discrete measurements while translating the radar , a larger effective aperture can be created. Inverse Synthetic Aperture Radar

  18. 51. View of upper radar scanner switch in radar scanner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. View of upper radar scanner switch in radar scanner building 105 from upper catwalk level showing emanating waveguides from upper switch (upper one-fourth of photograph) and emanating waveguides from lower radar scanner switch in vertical runs. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  19. Radar cross-sectional study using noise radar

    NASA Astrophysics Data System (ADS)

    Freundorfer, A. P.; Siddiqui, J. Y.; Antar, Y. M. M.

    2015-05-01

    A noise radar system is proposed with capabilities to measure and acquire the radar cross-section (RCS) of targets. The proposed system can cover a noise bandwidth of near DC to 50 GHz. The noise radar RCS measurements were conducted for selective targets like spheres and carpenter squares with and without dielectric bodies for a noise band of 400MHz-5000MHz. The bandwidth of operation was limited by the multiplier and the antennae used.

  20. The Telescope Array RADAR (TARA) Project and the Search for the Radar Signature of Cosmic Ray Induced Extensive Air Showers

    NASA Astrophysics Data System (ADS)

    Prohira, Steven; TARA Collaboration; Telescope Array Collaboration

    2016-03-01

    The TARA (Telescope Array Radar) cosmic ray detector has been in operation since May 2013. It is the most ambitious effort to date to test an idea that originated in the 1940's: that ionization produced by cosmic ray extensive air showers should reflect electromagnetic radiation. The observation of this effect would open the possibility that remote-sensing radar technology could be used to detect and reconstruct extensive air showers, thus increasing the aperture available for the study of the highest-energy cosmic rays. TARA employs a bi-static radar configuration, consisting of a 25 kW, 5 MW ERP transmitter at 54.1 MHz broadcasting across the Telescope Array surface detector. 40 km distant, a set of log-periodic receiver antennas are read out by two independent data acquisition systems employing different techniques to select signals of the form expected for radar targets moving at close to the speed of light. In this talk, we describe the TARA detector and present the first quantitative limits on the radar cross-section of extensive air showers.

  1. RAWS: The spaceborne radar wind sounder

    NASA Technical Reports Server (NTRS)

    Moore, Richard K.

    1991-01-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  2. RAWS: The spaceborne radar wind sounder

    NASA Astrophysics Data System (ADS)

    Moore, Richard K.

    1991-09-01

    The concept of the Radar Wind Sounder (RAWS) is discussed. The goals of the RAWS is to estimate the following three qualities: the echo power, to determine rain rate and surface wind velocity; the mean Doppler frequency, to determine the wind velocity in hydrometers; and the spread of the Doppler frequency, to determine the turbulent spread of the wind velocity. Researchers made significant progress during the first year. The feasibility of the concept seems certain. Studies indicate that a reasonably sized system can measure in the presence of ice clouds and dense water clouds. No sensitivity problems exist in rainy environments. More research is needed on the application of the radar to the measurement of rain rates and winds at the sea surface.

  3. Kuiper Belt Mapping Radar

    NASA Technical Reports Server (NTRS)

    Freeman, A.; Nilsen, E.

    2001-01-01

    Since their initial discovery in 1992, to date only a relatively small number of Kuiper Belt Objects (KBO's) have been discovered. Current detection techniques rely on frame-to-frame comparisons of images collected by optical telescopes such as Hubble, to detect KBO's as they move against the background stellar field. Another technique involving studies of KBO's through occultation of known stars has been proposed. Such techniques are serendipitous, not systematic, and may lead to an inadequate understanding of the size, range, and distribution of KBO's. In this paper, a future Kuiper Belt Mapping Radar is proposed as a solution to the problem of mapping the size distribution, extent, and range of KBO's. This approach can also be used to recover radar albedo and object rotation rates. Additional information is contained in the original extended abstract.

  4. RADAR Reveals Titan Topography

    NASA Technical Reports Server (NTRS)

    Kirk, R. L.; Callahan, P.; Seu, R.; Lorenz, R. D.; Paganelli, F.; Lopes, R.; Elachi, C.

    2005-01-01

    The Cassini Titan RADAR Mapper is a K(sub u)-band (13.78 GHz, lambda = 2.17 cm) linear polarized RADAR instrument capable of operating in synthetic aperture (SAR), scatterometer, altimeter and radiometer modes. During the first targeted flyby of Titan on 26 October, 2004 (referred to as Ta) observations were made in all modes. Evidence for topographic relief based on the Ta altimetry and SAR data are presented here. Additional SAR and altimetry observations are planned for the T3 encounter on 15 February, 2005, but have not been carried out at this writing. Results from the T3 encounter relevant to topography will be included in our presentation. Data obtained in the Ta encounter include a SAR image swath

  5. Floor-plan radar

    NASA Astrophysics Data System (ADS)

    Falconer, David G.; Ueberschaer, Ronald M.

    2000-07-01

    Urban-warfare specialists, law-enforcement officers, counter-drug agents, and counter-terrorism experts encounter operational situations where they must assault a target building and capture or rescue its occupants. To minimize potential casualties, the assault team needs a picture of the building's interior and a copy of its floor plan. With this need in mind, we constructed a scale model of a single- story house and imaged its interior using synthetic-aperture techniques. The interior and exterior walls nearest the radar set were imaged with good fidelity, but the distal ones appear poorly defined and surrounded by ghosts and artifacts. The latter defects are traceable to beam attenuation, wavefront distortion, multiple scattering, traveling waves, resonance phenomena, and other effects not accounted for in the traditional (noninteracting, isotropic point scatterer) model for radar imaging.

  6. Radar Detectability Studies of Slow and Small Zodiacal Dust Cloud Particles: II. A Study of Three Radars with Different Sensitivity

    NASA Astrophysics Data System (ADS)

    Janches, D.; Swarnalingam, N.; Plane, J. M. C.; Nesvorný, D.; Feng, W.; Vokrouhlický, D.; Nicolls, M. J.

    2015-07-01

    The sensitivity of radar systems to detect different velocity populations of the incoming micrometeoroid flux is often the first argument considered to explain disagreements between models of the Near-Earth dust environment and observations. Recently, this was argued by Nesvorný et al. to support the main conclusions of a Zodiacal Dust Cloud (ZDC) model which predicts a flux of meteoric material into the Earth’s upper atmosphere mostly composed of small and very slow particles. In this paper, we expand on a new methodology developed by Janches et al. to test the ability of powerful radars to detect the meteoroid populations in question. In our previous work, we focused on Arecibo 430 MHz observations since it is the most sensitive radar that has been used for this type of observation to date. In this paper, we apply our methodology to two other systems, the 440 MHz Poker Flat Incoherent Scatter Radar and the 46.5 Middle and Upper Atmosphere radar. We show that even with the less sensitive radars, the current ZDC model over-predicts radar observations. We discuss our results in light of new measurements by the Planck satellite which suggest that the ZDC particle population may be characterized by smaller sizes than previously believed. We conclude that the solution to finding agreement between the ZDC model and sensitive high power and large aperture meteor observations must be a combination of a re-examination not only of our knowledge of radar detection biases, but also the physical assumptions of the ZDC model itself.

  7. (abstract) High-Resolution Satellite Microwave Radar Observation of Climate-Related Sea-Ice Anomalies

    NASA Technical Reports Server (NTRS)

    Drinkwater, Mark R.

    1996-01-01

    Since 1991 a suite of international satellites have collected large amounts of high-resolution microwave radar images over Arctic and Antarctic sea ice. Together with complementary synthetic aperture radar (SAR) 100 m resolution microwave imaging, these data provide a powerful tool for addressing the characteristics of sea ice which directly influence the polar oceans and climate.

  8. Spaceborne Radar Study

    DTIC Science & Technology

    1974-06-28

    If comm beam contact is lost, the instrumentation data are sent via the omnichannel transmitter on command of the ground station. There are six ways...comm’beam) at all times except when comm beam contact is lost. A two-way omnidirectional (backup) command link is provided for initial stabilization...via either the oomm beam or the omnichannel . Satellite instrumentation data are sent to the ground station following every radar signal transmission

  9. Shuttle imaging radar experiment

    USGS Publications Warehouse

    Elachi, C.; Brown, W.E.; Cimino, J.B.; Dixon, T.; Evans, D.L.; Ford, J.P.; Saunders, R.S.; Breed, C.; Masursky, H.; McCauley, J.F.; Schaber, G.; Dellwig, L.; England, A.; MacDonald, H.; Martin-Kaye, P.; Sabins, F.

    1982-01-01

    The shuttle imaging radar (SIR-A) acquired images of a variety of the earth's geologic areas covering about 10 million square kilometers. Structural and geomorphic features such as faults, folds, outcrops, and dunes are clearly visible in both tropical and arid regions. The combination of SIR-A and Seasat images provides additional information about the surface physical properties: topography and roughness. Ocean features were also observed, including large internal waves in the Andaman Sea. Copyright ?? 1982 AAAS.

  10. Weather Radar Studies.

    DTIC Science & Technology

    2014-09-26

    and Doppler weather radar data from the National Center for Atmospheric Research JAWS program and the National .Severe Storms Laboratory, are being...Atmospheric Research JAWS program and the National Severe Storms Laboratory, are being analyzed to develop low-altitude wind-shear detection algorithms...pictures, and dusted for fingerprints. The wind sensors, rain gauge, and antenna were destroyed but the DCP, solar panel, and other site components

  11. The Radar Roadmap

    DTIC Science & Technology

    2013-01-01

    LIMITATION OF ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c...ABSTRACT Same as Report ( SAR ) 18. NUMBER OF PAGES 25 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE...object bistatic radars. The former allows high resolution without the use of pulse compression techniques and the latter promises cheaper systems by

  12. Imaging synthetic aperture radar

    DOEpatents

    Burns, Bryan L.; Cordaro, J. Thomas

    1997-01-01

    A linear-FM SAR imaging radar method and apparatus to produce a real-time image by first arranging the returned signals into a plurality of subaperture arrays, the columns of each subaperture array having samples of dechirped baseband pulses, and further including a processing of each subaperture array to obtain coarse-resolution in azimuth, then fine-resolution in range, and lastly, to combine the processed subapertures to obtain the final fine-resolution in azimuth. Greater efficiency is achieved because both the transmitted signal and a local oscillator signal mixed with the returned signal can be varied on a pulse-to-pulse basis as a function of radar motion. Moreover, a novel circuit can adjust the sampling location and the A/D sample rate of the combined dechirped baseband signal which greatly reduces processing time and hardware. The processing steps include implementing a window function, stabilizing either a central reference point and/or all other points of a subaperture with respect to doppler frequency and/or range as a function of radar motion, sorting and compressing the signals using a standard fourier transforms. The stabilization of each processing part is accomplished with vector multiplication using waveforms generated as a function of radar motion wherein these waveforms may be synthesized in integrated circuits. Stabilization of range migration as a function of doppler frequency by simple vector multiplication is a particularly useful feature of the invention; as is stabilization of azimuth migration by correcting for spatially varying phase errors prior to the application of an autofocus process.

  13. Goldstone solar system radar

    NASA Technical Reports Server (NTRS)

    Jurgens, Raymond F.

    1991-01-01

    Caltech/Jet Propulsion Laboratory (JPL) radar astronomers made use of the Very Large Array (VLA) at Socorro, NM, during February 1990, to receive radio echoes from the planet Venus. The transmitter was the 70 meter antenna at the Goldstone complex northwest of Barstow, CA. These observations contain new information about the roughness of Venus at cm to decimeter scales and are complementary to information being obtained by the Magellan spacecraft. Asteroid observations are also discussed.

  14. Cognitive Nonlinear Radar

    DTIC Science & Technology

    2013-01-01

    Devices and Method for Detecting Emplacement of Improvised Explosive Devices, U. S. Patent 7,680,599, Mar. 16, 2010. 11. Steele, D.; Rotondo, F.; Houck...Patent 7,987,068, Jul. 26, 2011. 9 14. Keller, W. Active Improvised Explosive Device (IED) Electronic Signature Detection , U. S. Patent...operate without interfering with each other. The CNR uses a narrowband, nonlinear radar target detection methodology. This methodology has the advantage

  15. Weather Radar Studies.

    DTIC Science & Technology

    1985-03-31

    National Center for Atmospheric Research JAWS program and the National Severe Storms Laboratory are being analyzed to develop low-altitude wind shear...public through low-altitude wind shear aviation weather products the National Technical Information Service, NEXR I turbulence., Springfield, VA 22161. 19...were analyzed preliminarily to determine wind shear characteristics in the Memphis area. Doppler weather radar data from the National Center for

  16. An Acquisition Guide for Executives

    EPA Pesticide Factsheets

    This guide covers the following subjects; What is Acquisition?, Purpose and Primary Functions of the Agency’s Acquisition System, Key Organizations in Acquisitions, Legal Framework, Key Players in Acquisitions, Acquisition Process, Acquisition Thresholds

  17. Polarimetric radars and polarimetric SAR data in tasks of detection and identification of marine oil pollution

    NASA Astrophysics Data System (ADS)

    Sineva, A. A.; Ivanov, A. Yu.

    2016-12-01

    Detecting and distinguishing different kinds of oil pollution, including spills of crude oil on the sea surface, is one important problem of modern remote sensing. The wide use of imaging radars is not always effective. In this review paper, the main principles and methods of polarization radar imaging and radar data processing are discussed based on present theoretical and experimental approaches and ideas. The efficiency of polarimetric methods for oil-spill detection and accurate identification on the sea surface is demonstrated as well. As is shown, modern methods of multipolarimetric radar-signal processing is a powerful means for improving oil-pollution detection and discrimination algorithms.

  18. Radar clutter classification

    NASA Astrophysics Data System (ADS)

    Stehwien, Wolfgang

    1989-11-01

    The problem of classifying radar clutter as found on air traffic control radar systems is studied. An algorithm based on Bayes decision theory and the parametric maximum a posteriori probability classifier is developed to perform this classification automatically. This classifier employs a quadratic discriminant function and is optimum for feature vectors that are distributed according to the multivariate normal density. Separable clutter classes are most likely to arise from the analysis of the Doppler spectrum. Specifically, a feature set based on the complex reflection coefficients of the lattice prediction error filter is proposed. The classifier is tested using data recorded from L-band air traffic control radars. The Doppler spectra of these data are examined; the properties of the feature set computed using these data are studied in terms of both the marginal and multivariate statistics. Several strategies involving different numbers of features, class assignments, and data set pretesting according to Doppler frequency and signal to noise ratio were evaluated before settling on a workable algorithm. Final results are presented in terms of experimental misclassification rates and simulated and classified plane position indicator displays.

  19. Radar gun hazards

    SciTech Connect

    Not Available

    1991-12-20

    Radar guns - hand-held units used by the law to nail speeders - have been in use since the early '60s. Now they've been accused of causing cancer. Police officers in several states have so far filed eight suits against the manufacturer, claiming that they have contracted rare forms of cancer, such as of the eyelid and the testicle, from frequent proximity to the devices. Spurred by concerns expressed by police groups, researchers at the Rochester Institute of Technology are conducting what they believe to be the first research of its kind in the nation. Last month psychologist John Violanti, an expert in policy psychology and health, sent out a one-page survey to 6,000 active and retired police officers in New York State, asking them about their health and their use of radar guns. Violanti says melanoma, leukemia, and lymph node cancer may be linked to these as well as other electromagnetic devices. The Food and Drug Administration earlier this year issued a warning about radar guns, telling users not to operate them closer than 6 inches from the body. But this may not be a sufficient safeguard since the instruments can give off crisscrossing wave emissions within a police vehicle. The survey will be used to help determine if it would be safer to mount the guns, which are currently either hand-held or mounted on dashboards, outside troopers' cars.

  20. Nordic Snow Radar Experiment

    NASA Astrophysics Data System (ADS)

    Lemmetyinen, Juha; Kontu, Anna; Pulliainen, Jouni; Vehviläinen, Juho; Rautiainen, Kimmo; Wiesmann, Andreas; Mätzler, Christian; Werner, Charles; Rott, Helmut; Nagler, Thomas; Schneebeli, Martin; Proksch, Martin; Schüttemeyer, Dirk; Kern, Michael; Davidson, Malcolm W. J.

    2016-09-01

    The objective of the Nordic Snow Radar Experiment (NoSREx) campaign was to provide a continuous time series of active and passive microwave observations of snow cover at a representative location of the Arctic boreal forest area, covering a whole winter season. The activity was a part of Phase A studies for the ESA Earth Explorer 7 candidate mission CoReH2O (Cold Regions Hydrology High-resolution Observatory). The NoSREx campaign, conducted at the Finnish Meteorological Institute Arctic Research Centre (FMI-ARC) in Sodankylä, Finland, hosted a frequency scanning scatterometer operating at frequencies from X- to Ku-band. The radar observations were complemented by a microwave dual-polarization radiometer system operating from X- to W-bands. In situ measurements consisted of manual snow pit measurements at the main test site as well as extensive automated measurements on snow, ground and meteorological parameters. This study provides a summary of the obtained data, detailing measurement protocols for each microwave instrument and in situ reference data. A first analysis of the microwave signatures against snow parameters is given, also comparing observed radar backscattering and microwave emission to predictions of an active/passive forward model. All data, including the raw data observations, are available for research purposes through the European Space Agency and the Finnish Meteorological Institute. A consolidated dataset of observations, comprising the key microwave and in situ observations, is provided through the ESA campaign data portal to enable easy access to the data.

  1. Applications of compressed sensing to coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zhu, Qian

    Although meteoroids fragmentation has been observed and studied in the optical meteor community since the 1950s, no definitive fragmentation mechanisms for the relatively small meteoroids (mass .10.4 kg) have been proposed. This is in part due to the lack of observations to constrain physical mechanisms of the fragmentation process. While it is challenging to record fragmentation in faint optical meteors, observing meteors using HPLA (High-Power, Large- Aperture) radars can yield considerable information especially when employing coherent radar imaging (CRI). CRI can potentially resolve the fragmentation process in three spatial dimensions by monitoring the evolution of the plasma in the meteor head-echo, flare-echo, and trail-echo regions. On the other hand, the emerging field of compressed sensing (CS) provides a novel paradigm for signal acquisition and processing. Furthermore, it has been, and continues to be, applied with great success in radar systems, offering various benefits such as better resolution compared to traditional techniques, reduced resource requirements, and so forth. In this dissertation, we examine how CS can be incorporated to improve the performance of CRI using HPLA radars. We propose a single CS-based formalism that enables the threedimensions (3D).the range, Doppler frequency, and cross range (represented by the direction cosines) domain.coherent imaging. We show that the CS-based CRI can not only reduce the system costs and decrease the needed number of baselines by spatial sparse sampling, which can be much less than the number required by Nyquist-Shannon sampling criterion, but also achieve high resolution for target detection. We implement the CS-based CRI for meteor studies with observations conducted at the Jicamarca Radio Observatory (JRO) in Peru. We present the unprecedented resolved details of meteoroids fragmentation, including both along and transverse to the trajectory spreading of the developing plasma, apparently caused by

  2. Space Radar Image of Altona, Manitoba, Canada

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This is an X-band seasonal image of the Altona test site in Manitoba, Canada, about 80 kilometers (50 miles) south of Winnipeg. The image is centered at approximately 49 degrees north latitude and 97.5 degrees west longitude. This image was acquired by the Spaceborne Imaging Radar-C and X-band Synthetic Aperture Radar (SIR-C/X-SAR) aboard the space shuttle Endeavour on April 11, 1994, during the first flight of the radar system, and on October 2, 1994, during the second flight of SIR-C/X-SAR. The image channels have the following color assignments: red represents data acquired on April 11, 1994; green represents data acquired on October 2, 1994; blue represents the ratio of the two data sets. The test site is located in the Red River Basin and is characterized by rich farmland where a variety of crops are grown, including wheat, barley, canola, corn, sunflowers and sugar beets. This SIR-C/X-SAR research site is applying radar remote sensing to study the characteristics of vegetation and soil moisture. The seasonal comparison between the April and October 1994 data show the dramatic differences between surface conditions on the two dates. At the time of the April acquisition, almost all agricultural fields were bare and soil moisture levels were high. In October, however, soils were drier and while most crops had been harvested, some standing vegetation was still present. The areas which are cyan in color are dark in April and bright in October. These represent fields of standing biomass (amount of vegetation in a specified area) and the differences in brightness within these cyan fields represent differences in vegetation type. The very bright fields in October represent standing broadleaf crops such as corn, which had not yet been harvested. Other standing vegetation which has less biomass, such as hay and grain fields, are less bright. The magenta indicates bare soil surfaces which were wetter (brighter) in April than in October. The variations in brightness of

  3. Input and Intake in Language Acquisition

    ERIC Educational Resources Information Center

    Gagliardi, Ann C.

    2012-01-01

    This dissertation presents an approach for a productive way forward in the study of language acquisition, sealing the rift between claims of an innate linguistic hypothesis space and powerful domain general statistical inference. This approach breaks language acquisition into its component parts, distinguishing the input in the environment from…

  4. EBT data acquisition and analysis system

    SciTech Connect

    Burris, R.D.; Greenwood, D.E.; Stanton, J.S.; Geoffroy, K.A.

    1980-10-01

    This document describes the design and implementation of a data acquisition and analysis system for the EBT fusion experiment. The system includes data acquisition on five computers, automatic transmission of that data to a large, central data base, and a powerful data retrieval system. The system is flexible and easy to use, and it provides a fully documented record of the experiments.

  5. Close-range radar rainfall estimation and error analysis

    NASA Astrophysics Data System (ADS)

    van de Beek, C. Z.; Leijnse, H.; Hazenberg, P.; Uijlenhoet, R.

    2016-08-01

    Quantitative precipitation estimation (QPE) using ground-based weather radar is affected by many sources of error. The most important of these are (1) radar calibration, (2) ground clutter, (3) wet-radome attenuation, (4) rain-induced attenuation, (5) vertical variability in rain drop size distribution (DSD), (6) non-uniform beam filling and (7) variations in DSD. This study presents an attempt to separate and quantify these sources of error in flat terrain very close to the radar (1-2 km), where (4), (5) and (6) only play a minor role. Other important errors exist, like beam blockage, WLAN interferences and hail contamination and are briefly mentioned, but not considered in the analysis. A 3-day rainfall event (25-27 August 2010) that produced more than 50 mm of precipitation in De Bilt, the Netherlands, is analyzed using radar, rain gauge and disdrometer data. Without any correction, it is found that the radar severely underestimates the total rain amount (by more than 50 %). The calibration of the radar receiver is operationally monitored by analyzing the received power from the sun. This turns out to cause a 1 dB underestimation. The operational clutter filter applied by KNMI is found to incorrectly identify precipitation as clutter, especially at near-zero Doppler velocities. An alternative simple clutter removal scheme using a clear sky clutter map improves the rainfall estimation slightly. To investigate the effect of wet-radome attenuation, stable returns from buildings close to the radar are analyzed. It is shown that this may have caused an underestimation of up to 4 dB. Finally, a disdrometer is used to derive event and intra-event specific Z-R relations due to variations in the observed DSDs. Such variations may result in errors when applying the operational Marshall-Palmer Z-R relation. Correcting for all of these effects has a large positive impact on the radar-derived precipitation estimates and yields a good match between radar QPE and gauge

  6. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dydbal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1987-03-01

    An instrumentation radar that uses a chirp waveform to achieve high-range resolution is described. High-range-resolution instrumentation radars evaluate the target response to operational waveforms used in high-performance radars and/or obtain a display of the individual target scattering mechanisms to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in-range resolution. A key feature of the radar is the combination of amplitude weighting with a high degree of waveform fidelity to achieve a very good range sidelobe performance. This range sidelobe performance is important to avoid masking lower level target returns in the range sidelobes of higher target returns.

  7. Radar-aeolian roughness project

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Dobrovolskis, A.; Gaddis, L.; Iversen, J. D.; Lancaster, N.; Leach, Rodman N.; Rasnussen, K.; Saunders, S.; Vanzyl, J.; Wall, S.

    1991-01-01

    The objective is to establish an empirical relationship between measurements of radar, aeolian, and surface roughness on a variety of natural surfaces and to understand the underlying physical causes. This relationship will form the basis for developing a predictive equation to derive aeolian roughness from radar backscatter. Results are given from investigations carried out in 1989 on the principal elements of the project, with separate sections on field studies, radar data analysis, laboratory simulations, and development of theory for planetary applications.

  8. Radar studies of bird migration

    NASA Technical Reports Server (NTRS)

    Williams, T. C.; Williams, J. M.

    1974-01-01

    Observations of bird migration with NASA radars were made at Wallops Island, Va. Simultaneous observations were made at a number of radar sites in the North Atlantic Ocean in an effort to discover what happened to those birds that were observed leaving the coast of North America headed toward Bermuda, the Caribbean and South America. Transatlantic migration, utilizing observations from a large number of radars is discussed. Detailed studies of bird movements at Wallops Island are presented.

  9. Radar Studies of Aviation Hazards

    DTIC Science & Technology

    1994-05-31

    4. TITLE AND SURTITLE S. FUNDING NUMBERS RADAR STUDIES OF AVIATION HAZARDS F1 9628-93- C -0054 _____________ __PE63707F 6. AUTHOR(S) PR278 1...foilowing processing steps have been adopted: a. acquire single scan radar data, b. distinguish individual storms, c . eliminate spurious data for...occurred only with radar reflectivities above 40 dBZ at the -10° C level and cloud tops above the -200C level. Lightning occurred only when tops extended

  10. Radar Image, Hokkaido, Japan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The southeast part of the island of Hokkaido, Japan, is an area dominated by volcanoes and volcanic caldera. The active Usu Volcano is at the lower right edge of the circular Lake Toya-Ko and near the center of the image. The prominent cone above and to the left of the lake is Yotei Volcano with its summit crater. The city of Sapporo lies at the base of the mountains at the top of the image and the town of Yoichi -- the hometown of SRTM astronaut Mamoru Mohri -- is at the upper left edge. The bay of Uchiura-Wan takes up the lower center of the image. In this image, color represents elevation, from blue at the lowest elevations to white at the highest. The radar image has been overlaid to provide more details of the terrain. Due to a processing problem, an island in the center of this crater lake is missing and will be properly placed when further SRTM swaths are processed. The horizontal banding in this image is a processing artifact that will be removed when the navigation information collected by SRTM is fully calibrated. This image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11, 2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense (DoD), and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, DC. Size: 100 by 150 kilometers

  11. Python-ARM Radar Toolkit

    SciTech Connect

    Jonathan Helmus, Scott Collis

    2013-03-17

    The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.

  12. A Novel Method for Speech Acquisition and Enhancement by 94 GHz Millimeter-Wave Sensor

    PubMed Central

    Chen, Fuming; Li, Sheng; Li, Chuantao; Liu, Miao; Li, Zhao; Xue, Huijun; Jing, Xijing; Wang, Jianqi

    2015-01-01

    In order to improve the speech acquisition ability of a non-contact method, a 94 GHz millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact speech acquisition method was shown to have high directional sensitivity, and to be immune to strong acoustical disturbance. However, MMW radar speech is often degraded by combined sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper, an algorithm combining empirical mode decomposition (EMD) and mutual information entropy (MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive components, and then an adaptive threshold was employed to remove the noise from the radar speech. The experimental results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech is greatly suppressed and the speech sounds become more pleasant to human listeners after being enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement method will provide a promising alternative for various applications associated with speech detection. PMID:26729126

  13. A Novel Method for Speech Acquisition and Enhancement by 94 GHz Millimeter-Wave Sensor.

    PubMed

    Chen, Fuming; Li, Sheng; Li, Chuantao; Liu, Miao; Li, Zhao; Xue, Huijun; Jing, Xijing; Wang, Jianqi

    2015-12-31

    In order to improve the speech acquisition ability of a non-contact method, a 94 GHz millimeter wave (MMW) radar sensor was employed to detect speech signals. This novel non-contact speech acquisition method was shown to have high directional sensitivity, and to be immune to strong acoustical disturbance. However, MMW radar speech is often degraded by combined sources of noise, which mainly include harmonic, electrical circuit and channel noise. In this paper, an algorithm combining empirical mode decomposition (EMD) and mutual information entropy (MIE) was proposed for enhancing the perceptibility and intelligibility of radar speech. Firstly, the radar speech signal was adaptively decomposed into oscillatory components called intrinsic mode functions (IMFs) by EMD. Secondly, MIE was used to determine the number of reconstructive components, and then an adaptive threshold was employed to remove the noise from the radar speech. The experimental results show that human speech can be effectively acquired by a 94 GHz MMW radar sensor when the detection distance is 20 m. Moreover, the noise of the radar speech is greatly suppressed and the speech sounds become more pleasant to human listeners after being enhanced by the proposed algorithm, suggesting that this novel speech acquisition and enhancement method will provide a promising alternative for various applications associated with speech detection.

  14. Prediction and archival tools for asteroid radar observations

    NASA Astrophysics Data System (ADS)

    Margot, J.

    2014-07-01

    The Earth-based radar facilities at Arecibo and Goldstone have provided very powerful tools for characterizing the trajectories and physical properties of asteroids. This is especially important for near-Earth asteroids (NEAs) which are key in the contexts of hazard mitigation, spacecraft exploration, and resource utilization. Over 10,000 NEAs have been identified and over 430 have been detected with radar (http://radarastronomy.org). Both of these numbers are growing rapidly, necessitating efficient tools for data archival and observation planning. The asteroid radar database hosted at radarastronomy.org keeps track of all radar detections, documents NEA physical properties, and provides NEA observability conditions. With the help of UCLA students, we are integrating a number of tools with the database to facilitate recordkeeping and observation planning. For instance, a geometry-finder tool allows us to identify the optimal times to observe specific NEAs and to compute rise-transit-set windows. Signal-to-noise (SNR) tools allow us to compute SNR values for both Arecibo and Goldstone observations. Python-based graphical tools help visualize the history of asteroid detections and plan future observations. A collaborative research environment (wiki) facilitates interactions among radar observers. These tools and others in preparation enable a more coordinated and efficient process for asteroid radar observations.

  15. Study on the shipboard radar reconnaissance equipment azimuth benchmark method

    NASA Astrophysics Data System (ADS)

    Liu, Zhenxing; Jiang, Ning; Ma, Qian; Liu, Songtao; Wang, Longtao

    2015-10-01

    The future naval battle will take place in a complex electromagnetic environment. Therefore, seizing the electromagnetic superiority has become the major actions of the navy. Radar reconnaissance equipment is an important part of the system to obtain and master battlefield electromagnetic radiation source information. Azimuth measurement function is one of the main function radar reconnaissance equipments. Whether the accuracy of direction finding meets the requirements, determines the vessels successful or not active jamming, passive jamming, guided missile attack and other combat missions, having a direct bearing on the vessels combat capabilities . How to test the performance of radar reconnaissance equipment, while affecting the task as little as possible is a problem. This paper, based on radar signal simulator and GPS positioning equipment, researches and experiments on one new method, which povides the azimuth benchmark required by the direction-finding precision test anytime anywhere, for the ships at jetty to test radar reconnaissance equipment performance in direction-finding. It provides a powerful means for the naval radar reconnaissance equipments daily maintenance and repair work[1].

  16. THz impulse radar for biomedical sensing: nonlinear system behavior

    NASA Astrophysics Data System (ADS)

    Brown, E. R.; Sung, Shijun; Grundfest, W. S.; Taylor, Z. D.

    2014-03-01

    The THz impulse radar is an "RF-inspired" sensor system that has performed remarkably well since its initial development nearly six years ago. It was developed for ex vivo skin-burn imaging, and has since shown great promise in the sensitive detection of hydration levels in soft tissues of several types, such as in vivo corneal and burn samples. An intriguing aspect of the impulse radar is its hybrid architecture which combines the high-peak-power of photoconductive switches with the high-responsivity and -bandwidth (RF and video) of Schottky-diode rectifiers. The result is a very sensitive sensor system in which the post-detection signal-to-noise ratio depends super-linearly on average signal power up to a point where the diode is "turned on" in the forward direction, and then behaves quasi-linearly beyond that point. This paper reports the first nonlinear systems analysis done on the impulse radar using MATLAB.

  17. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  18. Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD-A&T(Q&A)823-438 Space Fence Ground-Based Radar System Increment 1 (Space Fence Inc 1) As of FY 2017...Officer PM - Program Manager POE - Program Office Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP... Selective Availability Anti-spoofing Module SIMCERT - Simulator Certification SOC - Space Operations Center SORTS - Status of Resources and Training System

  19. Removing interfering clutter associated with radar pulses that an airborne radar receives from a radar transponder

    DOEpatents

    Ormesher, Richard C.; Axline, Robert M.

    2008-12-02

    Interfering clutter in radar pulses received by an airborne radar system from a radar transponder can be suppressed by developing a representation of the incoming echo-voltage time-series that permits the clutter associated with predetermined parts of the time-series to be estimated. These estimates can be used to estimate and suppress the clutter associated with other parts of the time-series.

  20. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA) are published in the TDA Progress Report. In the search for extraterrestrial intelligence (SETI), the TDA Progress Report reports on implementation and operations for searching the microwave spectrum. In solar system radar, it reports on the uses of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets. In radio astronomy, the areas of support include spectroscopy, very long baseline interferometry, and astrometry. These three programs are performed for NASA's Office of Space Science and Applications (OSSA), with the Office of Space Operations funding DSN operational support.

  1. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports are given on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA), including space communications, radio navigation, radio science, ground-based radio and radar astronomy, and the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations. Also included is TDA-funded activity at JPL on data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations for searching the microwave spectrum are reported. Use of the Goldstone Solar System Radar for scientific exploration of the planets, their rings and satellites, asteroids, and comets are discussed.

  2. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA) in the following areas: space communications, radio navigation, radio science, and ground-based radio and radar astronomy. This document also reports on the activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). The TDA Office also performs work funded by another NASA program office through and with the cooperation of OSC. This is the Orbital Debris Radar Program with the Office of Space Systems Development.

  3. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1992-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Operations (OSO). The TDA Office also performs work funded by two other NASA program offices through and with the cooperation of the OSO. These are the Orbital Debris Radar Program and 21st Century Communication Studies.

  4. Planetary radar studies. [radar mapping of the Moon and radar signatures of lunar and Venus craters

    NASA Technical Reports Server (NTRS)

    Thompson, T. W.; Cutts, J. A.

    1981-01-01

    Progress made in studying the evolution of Venusian craters and the evolution of infrared and radar signatures of lunar crater interiors is reported. Comparison of radar images of craters on Venus and the Moon present evidence for a steady state Venus crater population. Successful observations at the Arecibo Observatory yielded good data on five nights when data for a mix of inner and limb areas were acquired. Lunar craters with radar bright ejects are discussed. An overview of infrared radar crater catalogs in the data base is included.

  5. Noise and range considerations for close-range radar sensing of life signs underwater.

    PubMed

    Hafner, Noah; Lubecke, Victor

    2011-01-01

    Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.

  6. Interferometric radar measurements

    NASA Astrophysics Data System (ADS)

    Smith, Ronald A.; Shipman, Mark; Holder, E. J.; Williams, James K.

    2002-08-01

    The United States Army Space and Missile Defense Command (USASMDC) has interest in a technology demonstration that capitalizes on investment in fire control and smart interceptor technologies that have matured beyond basic research. The concept SWORD (Short range missile defense With Optimized Radar Distribution) consists of a novel approach utilizing a missile interceptor and interferometric fire control radar. A hit-to-kill, closed-loop, command guidance scheme is planned that takes advantage of extremely accurate target and interceptor state vectors derived via the fire control radar. The fire control system has the capability to detect, track, and classify multiple threats in a tactical regime as well as simultaneously provide command guidance updates to multiple missile interceptors. The missile interceptor offers a cost reduction potential as well as an enhancement to the kinematics range and lethality over existing SHORAD systems. Additionally, the Radio Frequency (RF) guidance scheme offers increased battlefield weather performance. The Air Defense (AD) community, responding to current threat capabilities and trends, has identified an urgent need to have a capability to counter proliferated, low cost threats with a low cost-per-kill weapon system. The SWORD system will offer a solution that meets this need. The SWORD critical technologies will be identified including a detailed description of each. Validated test results and basic principles of operation will be presented to prove the merit of past investments. The Deputy Assistant Secretary of the Army for Research and Technology (DAS(R&T) has a three- year Science and Technology Program to evaluate the errors and proposed mitigation techniques associated with target spectral dispersion and range gate straddle. Preliminary bench-top experiment results will be presented in this paper.

  7. Venus - First Radar Test

    NASA Technical Reports Server (NTRS)

    1990-01-01

    After traveling more than 1.5 billion kilometers (948 million miles), the Magellan spacecraft was inserted into orbit around Venus on Aug. 10, 1990. This mosaic consists of adjacent pieces of two Magellan image strips obtained on Aug. 16 in the first radar test. The radar test was part of a planned In Orbit Checkout sequence designed to prepare the Magellan spacecraft and radar to begin mapping after Aug. 31. The strip on the left was returned to the Goldstone Deep Space Network station in California; the strip to the right was received at the DSN in Canberra, Australia. A third station that will be receiving Magellan data is located near Madrid, Spain. Each image strip is 20 km (12 miles) wide and 16,000 km (10,000 miles) long. This mosaic is a small portion 80 km (50 miles) long. This image is centered at 21 degrees north latitude and 286.8 degrees east longitude, southeast of a volcanic highland region called Beta Regio. The resolution of the image is about 120 meters (400 feet), 10 times better than previous images of the same area of Venus, revealing many new geologic features. The bright line trending northwest southeast across the center of the image is a fracture or fault zone cutting the volcanic plains. In the upper left corner of the image, a multiple ring circular feature of probable volcanic origin can be seen, approximately 4.27 km (2.65 miles) across. The bright and dark variations seen in the plains surrounding these features correspond to volcanic lava flows of varying ages. The volcanic lava flows in the southern half of the image have been cut by north south trending faults. This area is similar geologically to volcanic deposits seen on Earth at Hawaii and the Snake River Plains in Idaho.

  8. Counter-sniper 3D laser radar

    NASA Astrophysics Data System (ADS)

    Shepherd, Orr; LePage, Andrew J.; Wijntjes, Geert J.; Zehnpfennig, Theodore F.; Sackos, John T.; Nellums, Robert O.

    1999-01-01

    Visidyne, Inc., teaming with Sandia National Laboratories, has developed the preliminary design for an innovative scannerless 3-D laser radar capable of acquiring, tracking, and determining the coordinates of small caliber projectiles in flight with sufficient precision, so their origin can be established by back projecting their tracks to their source. The design takes advantage of the relatively large effective cross-section of a bullet at optical wavelengths. Kay to its implementation is the use of efficient, high- power laser diode arrays for illuminators and an imaging laser receiver using a unique CCD imager design, that acquires the information to establish x, y (angle-angle) and range coordinates for each bullet at very high frame rates. The detection process achieves a high degree of discrimination by using the optical signature of the bullet, solar background mitigation, and track detection. Field measurements and computer simulations have been used to provide the basis for a preliminary design of a robust bullet tracker, the Counter Sniper 3-D Laser Radar. Experimental data showing 3-D test imagery acquired by a lidar with architecture similar to that of the proposed Counter Sniper 3-D Lidar are presented. A proposed Phase II development would yield an innovative, compact, and highly efficient bullet-tracking laser radar. Such a device would meet the needs of not only the military, but also federal, state, and local law enforcement organizations.

  9. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1996-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC). TMOD also performs work funded by other NASA program offices through and with the cooperation of OSC. The first of these is the Orbital Debris Radar Program funded by the Office of Space Systems Development. It exists at Goldstone only and makes use of the planetary radar capability when the antennas are configured as science instruments making direct observations of the planets, their satellites, and asteroids of our solar system. The Office of Space Sciences funds the data reduction and science analyses of data obtained by the Goldstone Solar System Radar. The antennas at all three complexes are also configured for radio astronomy research and, as such, conduct experiments funded by the National Science Foundation in the U.S. and other agencies at the overseas complexes. These experiments are either in microwave spectroscopy or very long baseline interferometry. Finally, tasks funded under the JPL Director's Discretionary Fund and the Caltech President's Fund that involve TMOD are included. This and each succeeding issue of 'The Telecommunications and Data Acquisition Progress Report' will present material in some, but not necessarily all, of the aforementioned programs.

  10. Doppler radar flowmeter

    DOEpatents

    Petlevich, Walter J.; Sverdrup, Edward F.

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  11. Weather Radar Studies

    DTIC Science & Technology

    1988-03-31

    Reflectivity Core Recognition 68 IV-10 Middle-Level Precursor Recognition 69 IV-l I Early Microburst Hazard Declaration 70 IV-12 Example of Results from...Denver Test Bed 106 V-I Selected Product Types 14 V-2 Encoded Map Size (in ELMs ) for Terminal Map Data Set 119 V-3 Encoded Map Size (in ELMs ) for En...Route Data Sets 119 V-4 Encoded Map Size (in ELMs ) for Terminal Map Data Set 125 xiii WEATHER RADAR STUDIES 1. INTRODUCTION The principal areas of

  12. Radar measurement of ionospheric scintillation in the polar region

    NASA Astrophysics Data System (ADS)

    Knepp, Dennis L.

    2015-10-01

    This paper considers several estimators that use radar data to measure the S4 scintillation index that characterizes the severity of amplitude scintillation that may occur during RF propagation through ionospheric irregularities. S4 is defined to be the standard deviation of the fluctuations in received power normalized by division by the mean power. Estimates of S4 are based on radar returns obtained during track of targets which may themselves have intrinsic radar cross-section fluctuations. Key to this work is the consideration of thresholding, which is used in many radars to remove (from further processing) signals whose SNR is considered too low. We consider several estimators here. The "direct" estimator attempts to estimate S4 through the direct calculation of the mean and standard deviation of the SNR from a number of radar returns. The maximum likelihood (ML) estimator uses multiple hypothesis testing and the assumption of Nakagami-m statistics to estimate the scintillation index that best fits the radar returns from some number of pulses. The ML estimator has perfect knowledge of the number of radar returns that are below the threshold. The direct estimator is accurate for the case where there is no threshold and there are many returns or samples from which to estimate S4. However, the direct estimator is flawed (especially for strong scintillation) if deep fades that fall below the radar threshold are ignored. The modified ML estimator here is based on the ML technique but is useful if the count of missed returns is unavailable. We apply the modified ML estimator to several years of radar tracks of large calibration satellites to obtain the statistics of UHF scintillation as viewed from the early warning radar at Thule, Greenland. One-way S4 was measured from 5000 low Earth orbit tracks during the 3 year period after solar maximum in May 2000. The data are analyzed to quantify the exceedance or the level of scintillation experienced at various

  13. Syntax acquisition.

    PubMed

    Crain, Stephen; Thornton, Rosalind

    2012-03-01

    Every normal child acquires a language in just a few years. By 3- or 4-years-old, children have effectively become adults in their abilities to produce and understand endlessly many sentences in a variety of conversational contexts. There are two alternative accounts of the course of children's language development. These different perspectives can be traced back to the nature versus nurture debate about how knowledge is acquired in any cognitive domain. One perspective dates back to Plato's dialog 'The Meno'. In this dialog, the protagonist, Socrates, demonstrates to Meno, an aristocrat in Ancient Greece, that a young slave knows more about geometry than he could have learned from experience. By extension, Plato's Problem refers to any gap between experience and knowledge. How children fill in the gap in the case of language continues to be the subject of much controversy in cognitive science. Any model of language acquisition must address three factors, inter alia: 1. The knowledge children accrue; 2. The input children receive (often called the primary linguistic data); 3. The nonlinguistic capacities of children to form and test generalizations based on the input. According to the famous linguist Noam Chomsky, the main task of linguistics is to explain how children bridge the gap-Chomsky calls it a 'chasm'-between what they come to know about language, and what they could have learned from experience, even given optimistic assumptions about their cognitive abilities. Proponents of the alternative 'nurture' approach accuse nativists like Chomsky of overestimating the complexity of what children learn, underestimating the data children have to work with, and manifesting undue pessimism about children's abilities to extract information based on the input. The modern 'nurture' approach is often referred to as the usage-based account. We discuss the usage-based account first, and then the nativist account. After that, we report and discuss the findings of several

  14. Radar Imaging and Feature Extraction

    DTIC Science & Technology

    2007-11-02

    aperture radar (ISAR) autofocus and imaging, synthetic aperture radar (SAR) autofocus and motion compensation, superresolution SAR image formation... superresolution image formation, and two parametric methods, MCRELAX (Motion Compensation RELAX) and MCCLEAN (Motion Compensation CLEAN), for simultaneous target...Direction Estimation) together with WRELAX) algorithm is proposed for the superresolution time delay estimation.

  15. Radar Control Optimal Resource Allocation

    DTIC Science & Technology

    2015-07-13

    Dartmouth, Nova Scotia, Canada by the McMaster University Intelligent PIXel (IPIX) X-band Polarimetric Coherent Radar during the OHGR - Dartmouth...Distribution is unlimited Wind Direction N Figure 7: Radar data collection site at OHGR, Nova Scotia. Source:[15] to having a significant wave height of 0.7 m

  16. 7. CLOSEUP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. CLOSE-UP FRONT VIEW OF RADAR SYSTEM EMITTER/ANTENNA (TYPICAL DEVICE PHOTOGRAPH). - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  17. High-resolution instrumentation radar

    NASA Astrophysics Data System (ADS)

    Dybdal, Robert B.; Hurlbut, Keith H.; Mori, Tsutomu T.

    1986-09-01

    The development of an instrumentation radar that uses a chirp waveform to achieve high range resolution is described. Such range resolution capability is required for two reasons: (1) to evaluate the response of targets to the operational waveforms used in high-performance radars; and (2) to obtain a means of separating the individual mechanisms that comprise the target scattering response to better understand the scattering process. This particular radar was efficiently constructed from a combination of commercially available components and in-house-fabricated circuitry. This instrumentation radar operates at X-band and achieves a 4.9-in. range resolution. A key feature of the radar is its ability to combine amplitude weighting with a high degree of waveform fidelity, with the result being very good range sidelobe performance.

  18. A radar image time series

    NASA Technical Reports Server (NTRS)

    Leberl, F.; Fuchs, H.; Ford, J. P.

    1981-01-01

    A set of ten side-looking radar images of a mining area in Arizona that were aquired over a period of 14 yr are studied to demonstrate the photogrammetric differential-rectification technique applied to radar images and to examine changes that occurred in the area over time. Five of the images are rectified by using ground control points and a digital height model taken from a map. Residual coordinate errors in ground control are reduced from several hundred meters in all cases to + or - 19 to 70 m. The contents of the radar images are compared with a Landsat image and with aerial photographs. Effects of radar system parameters on radar images are briefly reviewed.

  19. Shuttle Imaging Radar - Geologic applications

    NASA Technical Reports Server (NTRS)

    Macdonald, H.; Bridges, L.; Waite, W.; Kaupp, V.

    1982-01-01

    The Space Shuttle, on its second flight (November 12, 1981), carried the first science and applications payload which provided an early demonstration of Shuttle's research capabilities. One of the experiments, the Shuttle Imaging Radar-A (SIR-A), had as a prime objective to evaluate the capability of spaceborne imaging radars as a tool for geologic exploration. The results of the experiment will help determine the value of using the combination of space radar and Landsat imagery for improved geologic analysis and mapping. Preliminary analysis of the Shuttle radar imagery with Seasat and Landsat imagery from similar areas provides evidence that spaceborne radars can significantly complement Landsat interpretation, and vastly improve geologic reconnaissance mapping in those areas of the world that are relatively unmapped because of perpetual cloud cover.

  20. Low-brightness quantum radar

    NASA Astrophysics Data System (ADS)

    Lanzagorta, Marco

    2015-05-01

    One of the major scientific thrusts from recent years has been to try to harness quantum phenomena to dramatically increase the performance of a wide variety of classical information processing devices. These advances in quantum information science have had a considerable impact on the development of standoff sensors such as quantum radar. In this paper we analyze the theoretical performance of low-brightness quantum radar that uses entangled photon states. We use the detection error probability as a measure of sensing performance and the interception error probability as a measure of stealthiness. We compare the performance of quantum radar against a coherent light sensor (such as lidar) and classical radar. In particular, we restrict our analysis to the performance of low-brightness standoff sensors operating in a noisy environment. We show that, compared to the two classical standoff sensing devices, quantum radar is stealthier, more resilient to jamming, and more accurate for the detection of low reflectivity targets.

  1. Radar SLAM using visual features

    NASA Astrophysics Data System (ADS)

    Callmer, Jonas; Törnqvist, David; Gustafsson, Fredrik; Svensson, Henrik; Carlbom, Pelle

    2011-12-01

    A vessel navigating in a critical environment such as an archipelago requires very accurate movement estimates. Intentional or unintentional jamming makes GPS unreliable as the only source of information and an additional independent supporting navigation system should be used. In this paper, we suggest estimating the vessel movements using a sequence of radar images from the preexisting body-fixed radar. Island landmarks in the radar scans are tracked between multiple scans using visual features. This provides information not only about the position of the vessel but also of its course and velocity. We present here a navigation framework that requires no additional hardware than the already existing naval radar sensor. Experiments show that visual radar features can be used to accurately estimate the vessel trajectory over an extensive data set.

  2. Definition of The Consert / Rosetta Radar Performances

    NASA Astrophysics Data System (ADS)

    Herique, A.; Kofman, W.

    The ROSETTA/ESA probe will rendezvous Comet Wirtanen in 2011 and launch a Lander at the nucleus surface. The CONSERT instrument will perform the sounding of the comet nucleus by measuring a 90 MHz electromagnetic wave propagation from the Lander to the orbiter throughout the nucleus. The goal of this sounding is to de- termine the internal structures of the comet nucleus at different scales and to deduce information on its composition (density, type and abundance of the refractor). The flight model of both Lander and Orbiter parts of the instrument are in integration and calibration phases. The CONSERT instrument is an original concept of spaceborne radar based on the propagation throughout the nucleus while the classical radars are based on the reflec- tion. This radar consists in three functions: - A chronometer to measure the propaga- tion delay (main function) - An imager to separate the multipath propagation - A ra- diometer to estimate the wave attenuation (secondary function) The ground calibration of the instrument has to characterize these three functions but due to the novelty of the instrument concept we have no classical set of parameters to quantify the instrument performances and we do not know the relevant performances from a data-inversion point of view. In this paper, we present the mission and its objectives and so we develop the method used to define a relevant set of instrument performances using the data of prototypes of the instrument and we compare our radar characterization with the SAR instru- ment performances. In particular, we study the accuracy and the stability of the delay measurement and of the power measurement. In a second time we propose a ground calibration plan. The instrument design and the absence of calibration channel due to mass and power constraints show technical limitation and require specific signal pro- cessing and calibration protocol. To end we show preliminary results of the instrument ground calibration. - Herique

  3. Tools and data acquisition of borehole geophysical logging for the Florida Power and Light Company Turkey Point Power Plant in support of a groundwater, surface-water, and ecological monitoring plan, Miami-Dade County, Florida

    USGS Publications Warehouse

    Wacker, Michael A.

    2010-01-01

    Borehole geophysical logs were obtained from selected exploratory coreholes in the vicinity of the Florida Power and Light Company Turkey Point Power Plant. The geophysical logging tools used and logging sequences performed during this project are summarized herein to include borehole logging methods, descriptions of the properties measured, types of data obtained, and calibration information.

  4. Statistical characteristics of MST radar echoes and its interpretation

    NASA Technical Reports Server (NTRS)

    Woodman, Ronald F.

    1989-01-01

    Two concepts of fundamental importance are reviewed: the autocorrelation function and the frequency power spectrum. In addition, some turbulence concepts, the relationship between radar signals and atmospheric medium statistics, partial reflection, and the characteristics of noise and clutter interference are discussed.

  5. RJARS: RAND’s Version of the Jamming Aircraft and Radar Simulation

    DTIC Science & Technology

    1991-01-01

    29 C. UPDTR--Over-Terrain Visibility........................ 32 D. UPDRS --Update Search Radars........................... 36 1...179 A.5. Update Searchers ( UPDRS ) Flow Chart ....................... 180 A.6. Update Optical Search and Acquisition Flow Chart...RJARS contains 11 updating modules: 1. UPDCK System clock 2. UPDAC Aircraft positions and maneuvers 3. UPDTR Over-terrain visibility 4. UPDRS Search

  6. Defense Acquisition Workforce Modernization

    DTIC Science & Technology

    2010-07-01

    Acquisition , Technology & Logistics, 2000). PBSA “involves acquisition strategies, methods, and techniques that describe and communicate measurable ... Acquisition Workforce Distribution of DoD Workforce and Attrition Rates Seperation Rates Distribution of Workforce by Years of Service 38 A final issue... measurement . 14 Provisions within the IMPROVE Act demand greater accountability from the acquisition workforce, improve financial management, expand

  7. Investigating Second Language Acquisition.

    ERIC Educational Resources Information Center

    Jordens, Peter, Ed.; Lalleman, Josine, Ed.

    Essays in second language acquisition include: "The State of the Art in Second Language Acquisition Research" (Josine Lalleman); "Crosslinguistic Influence with Special Reference to the Acquisition of Grammar" (Michael Sharwood Smith); "Second Language Acquisition by Adult Immigrants: A Multiple Case Study of Turkish and…

  8. Packet radar spectrum recovery for physiological signals.

    PubMed

    Yavari, Ehsan; Padasdao, Bryson; Lubecke, Victor; Boric-Lubecke, Olga

    2013-01-01

    Packet Doppler radar is investigated for extracting physiological signals. System on Chip is employed as a signal source in packet mode, and it transmits signals intermittently at 2.405 GHz to save power. Reflected signals are demodulated directly by spectral analysis of received pulses in the baseband. Spectral subtraction, using data from an empty room, is applied to extract the periodic movement. It was experimentally demonstrated that frequency of the periodic motion can be accurately extracted using this technique. Proposed approach reduces the computation complexity of the signal processing part effectively.

  9. Wind Farms and Radar

    DTIC Science & Technology

    2008-01-01

    capabilities. The challenge is to evolve the current system, and to design future sytems to effectively distinguish and mitigate a source of clutter...not transponding) but also might also come close to solving the interference problem for transponding aircraft. 12 DISTRIBUTION LIST Assistant ...Secretary of the Navy (Research, Development & Acquisition) 1000 Navy Pentagon Washington, DC 20350-1000 Assistant Deputy Administrator for

  10. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, E. C. (Editor)

    1990-01-01

    Archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL) Office of Telecommunications and Data Acquisition (TDA) are given. Space communications, radio navigation, radio science, and ground-based radio and radar astronomy, activities of the Deep Space Network (DSN) and its associated Ground Communications Facility (GCF) in planning, supporting research and technology, implementation, and operations are reported. Also included is TDA-funded activity at JPL on data and information systems and reimbursable Deep Space Network (DSN) work performed for other space agencies through NASA.

  11. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1993-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The papers included in this document cover satellite tracking and ground-based navigation, spacecraft-ground communications, and optical communication systems for the Deep Space Network.

  12. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    A compilation is presented of articles on developments in programs managed by JPL's Office of Telecommunications and Data Acquisition. In space communications, radio navigation, radio science, and ground based radio and radar astronomy, activities of the Deep Space Network are reported in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. In the search for extraterrestrial intelligence (SETI), implementation and operations are reported for searching the microwave spectrum.

  13. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1994-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DS) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  14. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Posner, Edward C. (Editor)

    1991-01-01

    This quarterly publication provides archival reports on developments in programs managed by the Jet Propulsion Laboratory's (JPL's) Office of Telecommunications and Data Acquisition (TDA). In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on the activities of the Deep Space Network (DSN) in planning, in supporting research and technology, in implementation, and in operations. Also included is standards activity at JPL for space data, information systems, and reimbursable DSN work performed for other space agencies through NASA.

  15. The Telecommunications and Data Acquisition Report

    NASA Technical Reports Server (NTRS)

    Yuen, Joseph H. (Editor)

    1995-01-01

    This quarterly publication provides archival reports on developments in programs managed by JPL's Telecommunications and Mission Operations Directorate (TMOD), which now includes the former Telecommunications and Data Acquisition (TDA) Office. In space communications, radio navigation, radio science, and ground-based radio and radar astronomy, it reports on activities of the Deep Space Network (DSN) in planning, supporting research and technology, implementation, and operations. Also included are standards activity at JPL for space data and information systems and reimbursable DSN work performed for other space agencies through NASA. The preceding work is all performed for NASA's Office of Space Communications (OSC).

  16. A Noncontact FMCW Radar Sensor for Displacement Measurement in Structural Health Monitoring

    PubMed Central

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-01-01

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy. PMID:25822139

  17. A noncontact FMCW radar sensor for displacement measurement in structural health monitoring.

    PubMed

    Li, Cunlong; Chen, Weimin; Liu, Gang; Yan, Rong; Xu, Hengyi; Qi, Yi

    2015-03-26

    This paper investigates the Frequency Modulation Continuous Wave (FMCW) radar sensor for multi-target displacement measurement in Structural Health Monitoring (SHM). The principle of three-dimensional (3-D) displacement measurement of civil infrastructures is analyzed. The requirements of high-accuracy displacement and multi-target identification for the measuring sensors are discussed. The fundamental measuring principle of FMCW radar is presented with rigorous mathematical formulas, and further the multiple-target displacement measurement is analyzed and simulated. In addition, a FMCW radar prototype is designed and fabricated based on an off-the-shelf radar frontend and data acquisition (DAQ) card, and the displacement error induced by phase asynchronism is analyzed. The conducted outdoor experiments verify the feasibility of this sensing method applied to multi-target displacement measurement, and experimental results show that three targets located at different distances can be distinguished simultaneously with millimeter level accuracy.

  18. Mars Radar Observations with the Goldstone Solar System Radar

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Jurgens, R. F.; Larsen, K. W.; Arvidson, R. E.; Slade, M. A.

    2002-01-01

    The Goldstone Solar System Radar (GSSR) has successfully collected radar echo data from Mars over the past 30 years. As such, the GSSR has played a role as a specific mission element within Mars exploration. The older data provided local elevation information for Mars, along with radar scattering information with global resolution. Since the upgrade to the 70-m Deep Space Network (DSN) antenna at Goldstone completed in 1986, Mars data has been collected during all but the 1997 Mars opposition. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. The spatial resolution of these experiments is typically some 20 km in longitude by some 150 km in latitude. The interpretation of these parameters while limited by the complexities of electromagnetic scattering, do provide information directly relevant to geophysical and geomorphic analyses of Mars. The usefulness of radar data for Mars exploration has been demonstrated in the past. Radar data were critical in assessing the Viking Lander 1 site as well as, more recently, the Pathfinder landing site. In general, radar data have not been available to the Mars exploration community at large. A project funded initially by the Mars Exploration Directorate Science Office at the Jet Propulsion Laboratory (JPL), and later funded by NASA's Mars Data Analysis Program has reprocessed to a common format a decade's worth of raw GSSR Mars delay-Doppler data in aid of landing site characterization for the Mars Program. These data will soon be submitted to the Planetary Data System (PDS). The radar data used were obtained between 1988 and 1995 by the GSSR, and comprise some 63 delay-Doppler radar tracks. Of these, 15 have yet to be recovered from old 9-track tapes, and some of the data may be permanently lost.

  19. Classification and correction of the radar bright band with polarimetric radar

    NASA Astrophysics Data System (ADS)

    Hall, Will; Rico-Ramirez, Miguel; Kramer, Stefan

    2015-04-01

    The annular region of enhanced radar reflectivity, known as the Bright Band (BB), occurs when the radar beam intersects a layer of melting hydrometeors. Radar reflectivity is related to rainfall through a power law equation and so this enhanced region can lead to overestimations of rainfall by a factor of up to 5, so it is important to correct for this. The BB region can be identified by using several techniques including hydrometeor classification and freezing level forecasts from mesoscale meteorological models. Advances in dual-polarisation radar measurements and continued research in the field has led to increased accuracy in the ability to identify the melting snow region. A method proposed by Kitchen et al (1994), a form of which is currently used operationally in the UK, utilises idealised Vertical Profiles of Reflectivity (VPR) to correct for the BB enhancement. A simpler and more computationally efficient method involves the formation of an average VPR from multiple elevations for correction that can still cause a significant decrease in error (Vignal 2000). The purpose of this research is to evaluate a method that relies only on analysis of measurements from an operational C-band polarimetric radar without the need for computationally expensive models. Initial results show that LDR is a strong classifier of melting snow with a high Critical Success Index of 97% when compared to the other variables. An algorithm based on idealised VPRs resulted in the largest decrease in error when BB corrected scans are compared to rain gauges and to lower level scans with a reduction in RMSE of 61% for rain-rate measurements. References Kitchen, M., R. Brown, and A. G. Davies, 1994: Real-time correction of weather radar data for the effects of bright band, range and orographic growth in widespread precipitation. Q.J.R. Meteorol. Soc., 120, 1231-1254. Vignal, B. et al, 2000: Three methods to determine profiles of reflectivity from volumetric radar data to correct

  20. Simultaneous optical and radar observations of meteor head-echoes utilizing SAAMER

    NASA Astrophysics Data System (ADS)

    Michell, R. G.; Janches, D.; Samara, M.; Hormaechea, J. L.; Brunini, C.; Bibbo, I.

    2015-12-01

    We present simultaneous optical and radar observations of meteors observed with the Southern Argentine Agile MEteor Radar (SAAMER). Although such observations were performed in the past using High Power and Large Aperture radars, the focus here is on meteors that produced head echoes that can be detected by a significantly less sensitive but more accessible radar system. An observational campaign was conducted in August of 2011, where an optical imager was operated near the radar site in Rio Grande, Tierra del Fuego, Argentina. Six head echo events out of 150 total detections were identified where simultaneous optical meteors could also be clearly seen within the main radar beam. The location of the meteors derived from the radar interferometry agreed very well with the optical location, verifying the accuracy of the radar interferometry technique. The meteor speeds and origin directions calculated from the radar data were accurate-compared with the optics-for the 2 meteors that had radar signal-to-noise ratios above 2.5. The optical meteors that produced the head echoes had horizontal velocities in the range of 29-91 km/s. These comparisons with optical observations improve the accuracy of the radar detection and analysis techniques, such that, when applied over longer periods of time, will improve the statistics of southern hemisphere meteor observations. Mass estimates were derived using both the optical and radar data and the resulting masses agreed well with each other. All were within an order of magnitude and in most cases, the agreement was within a factor of two.