Science.gov

Sample records for acquisition system capable

  1. Using Open Systems Architecture to Revolutionize Capability Acquisition

    DTIC Science & Technology

    2015-05-13

    Unlocking Potential 1 Using Open Systems Architecture to Revolutionize Capability Acquisition Nickolas Guertin, PE DASN RDT&E, Director for...REPORT DATE 13 MAY 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Using Open Systems Architecture to...in adaptability Integrate & Deliver • Manage Platform-unique elements • Reduce acquisition cost & risk • Spur innovation & enhance

  2. Medium and High Altitude Unmanned Aircraft System Acquisition: An Efficiency Study of Magnitude and Capability

    DTIC Science & Technology

    2009-06-12

    measures associated with a single entity acquisition authority for the selection of medium and high altitude UAS programs. Secondly, there will be no...MEDIUM AND HIGH ALTITUDE UNMANNED AIRCRAFT SYSTEM ACQUISITION : AN EFFICIENCY STUDY OF MAGNITUDE AND CAPABILITY A thesis...To) AUG 2009 – JUN 2009 4. TITLE AND SUBTITLE MEDIUM AND HIGH ALTITUDE UNMANNED AIRCRAFT SYSTEM (UAS) ACQUISITION : AN EFFICIENCY STUDY OF

  3. Analysis of Alternatives in System Capability Satisficing for Effective Acquisition

    DTIC Science & Technology

    2011-04-30

    based on a trade-off, see Figure 1(b), considered replacing a single technology (i.e., MVCS ) with another two technologies (i.e., DLS OB; DLS RMMV...http://www.SysDML.com 6 6 USV US3 BPAUV PC MVCS (USV) Combat Mgmt System MVCS (On-board)MPCE MP SRL MP SRL w/o Sea Frame MP 1 0.60 0.577 6 66 6 66...6 6 BPAUV 6 LEGEND 6 66 AN/AQS-20A AN/ASQ-235 MVCS (RMMV) 7 3 7 6 6 6 7 7 AN/WLD-1 (RMMV) 7 MP Technology Current Mission Package SRL Status Sea

  4. Data acquisition system with pulse height capability for the TOFED time-of-flight neutron spectrometer

    SciTech Connect

    Chen, Z. J.; Peng, X. Y.; Zhang, X.; Du, T. F.; Hu, Z. M.; Cui, Z. Q.; Ge, L. J.; Xie, X. F.; Yuan, X.; Li, X. Q.; Zhang, G. H.; Chen, J. X.; Fan, T. S.; Gorini, G.; Nocente, M.; Tardocchi, M.; Hu, L. Q.; Zhong, G. Q.; Lin, S. Y.; Wan, B. N.

    2014-11-15

    A new time-of-flight neutron spectrometer TOFED has been constructed for installation at Experimental Advanced Superconducting Tokamak. A data acquisition system combining measurements of flight time and energy from the interaction of neutrons with the TOFED scintillators has been developed. The data acquisition system can provide a digitizing resolution better than 1.5% (to be compared with the >10% resolution of the recoil particle energy in the plastic scintillators) and a time resolution <1 ns. At the same time, it is compatible with high count rate event recording, which is an essential feature to investigate phenomena occurring on time scales faster than the slowing down time (≈100 ms) of the beam ions in the plasma. Implications of these results on the TOFED capability to resolve fast ion signatures in the neutron spectrum from EAST plasmas are discussed.

  5. Data acquisition system with pulse height capability for the TOFED time-of-flight neutron spectrometer.

    PubMed

    Chen, Z J; Peng, X Y; Zhang, X; Du, T F; Hu, Z M; Cui, Z Q; Ge, L J; Xie, X F; Yuan, X; Gorini, G; Nocente, M; Tardocchi, M; Hu, L Q; Zhong, G Q; Lin, S Y; Wan, B N; Li, X Q; Zhang, G H; Chen, J X; Fan, T S

    2014-11-01

    A new time-of-flight neutron spectrometer TOFED has been constructed for installation at Experimental Advanced Superconducting Tokamak. A data acquisition system combining measurements of flight time and energy from the interaction of neutrons with the TOFED scintillators has been developed. The data acquisition system can provide a digitizing resolution better than 1.5% (to be compared with the >10% resolution of the recoil particle energy in the plastic scintillators) and a time resolution <1 ns. At the same time, it is compatible with high count rate event recording, which is an essential feature to investigate phenomena occurring on time scales faster than the slowing down time (≈100 ms) of the beam ions in the plasma. Implications of these results on the TOFED capability to resolve fast ion signatures in the neutron spectrum from EAST plasmas are discussed.

  6. Data Acquisition System Architecture and Capabilities at NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2014-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world's largest space environment test facilities located at the NASA Glenn Research Center's Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  7. Data Acquisition System Architecture and Capabilities At NASA GRC Plum Brook Station's Space Environment Test Facilities

    NASA Technical Reports Server (NTRS)

    Evans, Richard K.; Hill, Gerald M.

    2012-01-01

    Very large space environment test facilities present unique engineering challenges in the design of facility data systems. Data systems of this scale must be versatile enough to meet the wide range of data acquisition and measurement requirements from a diverse set of customers and test programs, but also must minimize design changes to maintain reliability and serviceability. This paper presents an overview of the common architecture and capabilities of the facility data acquisition systems available at two of the world?s largest space environment test facilities located at the NASA Glenn Research Center?s Plum Brook Station in Sandusky, Ohio; namely, the Space Propulsion Research Facility (commonly known as the B-2 facility) and the Space Power Facility (SPF). The common architecture of the data systems is presented along with details on system scalability and efficient measurement systems analysis and verification. The architecture highlights a modular design, which utilizes fully-remotely managed components, enabling the data systems to be highly configurable and support multiple test locations with a wide-range of measurement types and very large system channel counts.

  8. Data acquisition system time measurement capabilities using WorkBench[trademark] software

    SciTech Connect

    Coutts, D.A.

    1992-04-01

    There is an increasing interest in the ability to measure transient behavior in the Heat Transfer Laboratory (HTL). To accomplish this the timing system behavior for the Data Acquisition Systems (DAS) must be evaluated. This report discusses the evaluation of a DAS timing system using WorkBench[trademark] Software in a Macintosh II environment. It also describes a method which can be successfully used to calibrate the timing system associated with the DAS.

  9. Data acquisition system time measurement capabilities using WorkBench{trademark} software

    SciTech Connect

    Coutts, D.A.

    1992-04-01

    There is an increasing interest in the ability to measure transient behavior in the Heat Transfer Laboratory (HTL). To accomplish this the timing system behavior for the Data Acquisition Systems (DAS) must be evaluated. This report discusses the evaluation of a DAS timing system using WorkBench{trademark} Software in a Macintosh II environment. It also describes a method which can be successfully used to calibrate the timing system associated with the DAS.

  10. How the Navy Can Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy Can Yield Multiple Benefits

    DTIC Science & Technology

    2015-04-30

    ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= tÉÇåÉëÇ~ó=pÉëëáçåë= sçäìãÉ=f= = How the Navy Can Use Open Systems Architecture to Revolutionize Capability...Acquisition: The Naval OSA Strategy Can Yield Multiple Benefits Nickolas Guertin, DASN RDT&E Robert Sweeney, Naval Air Systems Command Douglas C...to 00-00-2015 4. TITLE AND SUBTITLE How the Navy Can Use Open Systems Architecture to Revolutionize Capability Acquisition: The Naval OSA Strategy

  11. Multi-Objective Optimization of System Capability Satisficing in Defense Acquisition

    DTIC Science & Technology

    2012-04-30

    MVCS (USV) MVCS (RMMV) TSCE MH-60 MPS...Combat Mgmt System MVCS (On-board) MPCE MP SRL MP SRL w/o Sea Frame MP 1 0.60 0.57 USV; MPCE; RMMV; MVCS (USV); BPAUV PC MH-60S 7 7 6...3 6 MH-60S; MH-60S MPS MVCS (OB) MVCS (RMMV) US3; BPAUV AQS-20 AMNS; ALMDS Trade Between Advanced Capability or Increased Maturity

  12. Armstrong Flight Research Center Flight Test Capabilities and Opportunities for the Applications of Wireless Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Hang, Richard

    2015-01-01

    The presentation will overview NASA Armstrong Flight Research Centers flight test capabilities, which can provide various means for flight testing of passive and active wireless sensor systems, also, it will address the needs of the wireless data acquisition solutions for the centers flight instrumentation issues such as additional weight caused by added instrumentation wire bundles, connectors, wire cables routing, moving components, etc., that the Passive Wireless Sensor Technology Workshop may help. The presentation shows the constraints and requirements that the wireless sensor systems will face in the flight test applications.

  13. Defense Acquisition Structures and Capabilities Review

    DTIC Science & Technology

    2007-06-01

    requirements, budget, industry, and organizations. See Defense Acquisition Transformation Report to Congress, John Warner National Defense Authorization Act...Shortage of Skills and Talent. 3 Defense Acquisition Transformation Report to Congress, John Warner National Defense Authorization Act, Fiscal Year...Capabilities, Final Report, January 2004. 28 Secretary of Defense, Defense Acquisition Transformation Report to Congress, John War- ner National Defense

  14. Improving the Agency's Software Acquisition Capability

    NASA Technical Reports Server (NTRS)

    Hankinson, Allen

    2003-01-01

    External development of software has oftc n led to unsatisfactory results and great frustration for the assurE 7ce community. Contracts frequently omit critical assuranc 4 processes or the right to oversee software development activitie: At a time when NASA depends more and more on software to in plement critical system functions, combination of three factors ex; cerbate this problem: I ) the ever-increasing trend to acquire rather than develop software in-house, 2) the trend toward performance based contracts, and 3) acquisition vehicles that only state softwar 2 requirements while leaving development standards and assur! ince methodologies up to the contractor. We propose to identify specific methods at d tools that NASA projects can use to mitigate the adverse el ects of the three problems. TWO broad classes of methoddt ols will be explored. The first will be those that provide NASA p ojects with insight and oversight into contractors' activities. The st cond will be those that help projects objectively assess, and thus i nprwe, their software acquisition capability. Of particular interest is the Software Engineering Institute's (SEI) Software Acqt isition Capability Maturity Model (SA-CMMO).

  15. ISS Efforts to Fully Utilize its Target Acquisition Capability Serves as an Analog for Future Laser Pointing Communications Systems

    NASA Technical Reports Server (NTRS)

    Jackson, Dan

    2017-01-01

    The ISS is an outstanding platform for developing, testing and refining laser communications systems for future exploration. A recent ISS project which improved ISS communications satellite acquisition performance proves the platform’s utility as a laser communications systems testbed.

  16. Missile Defense: Opportunities Exist to Reduce Acquisition Risk and Improve Reporting on System Capabilities

    DTIC Science & Technology

    2015-05-01

    cost and schedule risks for an individual system and the BMDS as a whole. In one instance, the Terminal High Altitude Area Defense element delivered...Defense Appendix VIII Targets and Countermeasures (Targets) 67 Appendix IX Terminal High Altitude Area Defense (THAAD) 73 Appendix X GAO...Countermeasures Program Facts 68 Table 14: Terminal High Altitude Area Defense (THAAD) Program Facts 74 Page iii GAO-15

  17. Acquisition Program Lead Systems Integration/Lead Capabilities Integration Decision Support Methodology and Tool

    DTIC Science & Technology

    2015-05-01

    provide PMs with a simulation tool to assist Program Offices in evaluating the relative merits and risks of utilizing NAWCAD and commercial OEMs for...solution space and foresight between Original Equipment Manufacturers ( OEMs ) and Government entities performing the Lead System Integrator (LSI...evaluating the relative risks of utilizing NAWCAD and commercial OEMs for various LSI roles and responsibilities • Interview Eleven NAVAIR Program

  18. A Description of the Development, Capabilities, and Operational Status of the Test SLATE Data Acquisition System at the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Cramer, Christopher J.; Wright, James D.; Simmons, Scott A.; Bobbitt, Lynn E.; DeMoss, Joshua A.

    2015-01-01

    The paper will present a brief background of the previous data acquisition system at the National Transonic Facility (NTF) and the reasoning and goals behind the upgrade to the current Test SLATE (Test Software Laboratory and Automated Testing Environments) data acquisition system. The components, performance characteristics, and layout of the Test SLATE system within the NTF control room will be discussed. The development, testing, and integration of Test SLATE within NTF operations will be detailed. The operational capabilities of the system will be outlined including: test setup, instrumentation calibration, automatic test sequencer setup, data recording, communication between data and facility control systems, real time display monitoring, and data reduction. The current operational status of the Test SLATE system and its performance during recent NTF testing will be highlighted including high-speed, frame-by-frame data acquisition with conditional sampling post-processing applied. The paper concludes with current development work on the system including the capability for real-time conditional sampling during data acquisition and further efficiency enhancements to the wind tunnel testing process.

  19. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Technology developed during a joint research program with Langley and Kinetic Systems Corporation led to Kinetic Systems' production of a high speed Computer Automated Measurement and Control (CAMAC) data acquisition system. The study, which involved the use of CAMAC equipment applied to flight simulation, significantly improved the company's technical capability and produced new applications. With Digital Equipment Corporation, Kinetic Systems is marketing the system to government and private companies for flight simulation, fusion research, turbine testing, steelmaking, etc.

  20. The Application of a Trade Study Methodology to Determine Which Capabilities to Implement in a Test Facility Data Acquisition System Upgrade

    NASA Technical Reports Server (NTRS)

    McDougal, Kristopher J.

    2008-01-01

    More and more test programs are requiring high frequency measurements. Marshall Space Flight Center s Cold Flow Test Facility has an interest in acquiring such data. The acquisition of this data requires special hardware and capabilities. This document provides a structured trade study approach for determining which additional capabilities of a VXI-based data acquisition system should be utilized to meet the test facility objectives. The paper is focused on the trade study approach detailing and demonstrating the methodology. A case is presented in which a trade study was initially performed to provide a recommendation for the data system capabilities. Implementation details of the recommended alternative are briefly provided as well as the system s performance during a subsequent test program. The paper then addresses revisiting the trade study with modified alternatives and attributes to address issues that arose during the subsequent test program. Although the model does not identify a single best alternative for all sensitivities, the trade study process does provide a much better understanding. This better understanding makes it possible to confidently recommend Alternative 3 as the preferred alternative.

  1. Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In the mid-1980s, Kinetic Systems and Langley Research Center determined that high speed CAMAC (Computer Automated Measurement and Control) data acquisition systems could significantly improve Langley's ARTS (Advanced Real Time Simulation) system. The ARTS system supports flight simulation R&D, and the CAMAC equipment allowed 32 high performance simulators to be controlled by centrally located host computers. This technology broadened Kinetic Systems' capabilities and led to several commercial applications. One of them is General Atomics' fusion research program. Kinetic Systems equipment allows tokamak data to be acquired four to 15 times more rapidly. Ford Motor company uses the same technology to control and monitor transmission testing facilities.

  2. Space storable propellant acquisition system

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Uney, P. E.; Anderson, J. E.; Fester, D. A.

    1972-01-01

    Surface tension propellant acquisition concepts for an advanced spacecraft propulsion system having a 10-year mission capability were investigated. Surface tension systems were specified because they were shown to be the best propellant acquisition technique for various interplanetery spacecraft in a prior study. A variety of surface tension concepts for accomplishing propellant acquisition were formulated for the baseline space storable propulsion module and Jupiter Orbiter mission. Analyses and evaluations were then conducted on each candidate concept to assess fabricability, performance capability, and spacecraft compatibility. A comparative evaluation of the results showed the Fruhof-class of low-g surface tension systems to be preferred for these interplanetary applications.

  3. Systems Engineering of Unmanned DoD Systems: Following the Joint Capabilities Integration and Development System/Defense Acquisition System Process to Develop an Unmanned Ground Vehicle System

    DTIC Science & Technology

    2015-12-01

    13 The system shall have the specified probability of completing 2 mission hours without a system abort T: 0.95 probability of completing a 2...hour mission without a system abort O: 0.99 probability of completing a 2 hour mission without a system abort APA 4 The system shall not...Error/exception cleared. Robot ready to continue mission 1 Actions cannot be taken to resolve exception Mission aborted 9 9 End State Mission

  4. Data acquisition system

    DOEpatents

    Phillips, David T.

    1979-01-01

    A data acquisition system capable of resolving transient pulses in the subnanosecond range. A pulse in an information carrying medium such as light is transmitted through means which disperse the pulse, such as a fiber optic light guide which time-stretches optical pulses by chromatic dispersion. This time-stretched pulse is used as a sampling pulse and is modulated by the signal to be recorded. The modulated pulse may be further time-stretched prior to being recorded. The recorded modulated pulse is unfolded to derive the transient signal by utilizing the relationship of the time-stretching that occurred in the original pulse.

  5. Laser tracking system with automatic reacquisition capability.

    PubMed

    Johnson, R E; Weiss, P F

    1968-06-01

    A laser based tracking system is described that has the capability of automatically performing an acquisition search to locate the target. This work is intended for precision launch phase tracking of the Saturn V launch vehicle. System tracking accuracies limited only by the atmosphere have been demonstrated, as has acquisition over a 1 degrees x 1 degrees field of view.

  6. Advanced Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    Current and future requirements of the aerospace sensors and transducers field make it necessary for the design and development of new data acquisition devices and instrumentation systems. New designs are sought to incorporate self-health, self-calibrating, self-repair capabilities, allowing greater measurement reliability and extended calibration cycles. With the addition of power management schemes, state-of-the-art data acquisition systems allow data to be processed and presented to the users with increased efficiency and accuracy. The design architecture presented in this paper displays an innovative approach to data acquisition systems. The design incorporates: electronic health self-check, device/system self-calibration, electronics and function self-repair, failure detection and prediction, and power management (reduced power consumption). These requirements are driven by the aerospace industry need to reduce operations and maintenance costs, to accelerate processing time and to provide reliable hardware with minimum costs. The project's design architecture incorporates some commercially available components identified during the market research investigation like: Field Programmable Gate Arrays (FPGA) Programmable Analog Integrated Circuits (PAC IC) and Field Programmable Analog Arrays (FPAA); Digital Signal Processing (DSP) electronic/system control and investigation of specific characteristics found in technologies like: Electronic Component Mean Time Between Failure (MTBF); and Radiation Hardened Component Availability. There are three main sections discussed in the design architecture presented in this document. They are the following: (a) Analog Signal Module Section, (b) Digital Signal/Control Module Section and (c) Power Management Module Section. These sections are discussed in detail in the following pages. This approach to data acquisition systems has resulted in the assignment of patent rights to Kennedy Space Center under U.S. patent # 6

  7. Data acquisition system

    DOEpatents

    Shapiro, Stephen L.; Mani, Sudhindra; Atlas, Eugene L.; Cords, Dieter H. W.; Holbrook, Britt

    1997-01-01

    A data acquisition circuit for a particle detection system that allows for time tagging of particles detected by the system. The particle detection system screens out background noise and discriminate between hits from scattered and unscattered particles. The detection system can also be adapted to detect a wide variety of particle types. The detection system utilizes a particle detection pixel array, each pixel containing a back-biased PIN diode, and a data acquisition pixel array. Each pixel in the particle detection pixel array is in electrical contact with a pixel in the data acquisition pixel array. In response to a particle hit, the affected PIN diodes generate a current, which is detected by the corresponding data acquisition pixels. This current is integrated to produce a voltage across a capacitor, the voltage being related to the amount of energy deposited in the pixel by the particle. The current is also used to trigger a read of the pixel hit by the particle.

  8. Mobile systems capability plan

    SciTech Connect

    1996-09-01

    This plan was prepared to initiate contracting for and deployment of these mobile system services. 102,000 cubic meters of retrievable, contact-handled TRU waste are stored at many sites around the country. Also, an estimated 38,000 cubic meters of TRU waste will be generated in the course of waste inventory workoff and continuing DOE operations. All the defense TRU waste is destined for disposal in WIPP near Carlsbad NM. To ship TRU waste there, sites must first certify that the waste meets WIPP waste acceptance criteria. The waste must be characterized, and if not acceptable, subjected to additional processing, including repackaging. Most sites plan to use existing fixed facilities or open new ones between FY1997-2006 to perform these functions; small-quantity sites lack this capability. An alternative to fixed facilities is the use of mobile systems mounted in trailers or skids, and transported to sites. Mobile systems will be used for all characterization and certification at small sites; large sites can also use them. The Carlsbad Area Office plans to pursue a strategy of privatization of mobile system services, since this offers a number of advantages. To indicate the possible magnitude of the costs of deploying mobile systems, preliminary estimates of equipment, maintenance, and operating costs over a 10-year period were prepared and options for purchase, lease, and privatization through fixed-price contracts considered.

  9. Ocean Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Johnson, B.; Cavanaugh, J.; Smith, J.; Esaias, W.

    1988-01-01

    The Ocean Data Acquisition System (ODAS) is a low cost instrument with potential commercial application. It is easily mounted on a small aircraft and flown over the coastal zone ocean to remotely measure sea surface temperature and three channels of ocean color information. From this data, chlorophyll levels can be derived for use by ocean scientists, fisheries, and environmental offices. Data can be transmitted to shipboard for real-time use with sea truth measurements, ocean productivity estimates and fishing fleet direction. The aircraft portion of the system has two primary instruments: an IR radiometer to measure sea surface temperature and a three channel visible spectro-radiometer for 460, 490, and 520 nm wavelength measurements from which chlorophyll concentration can be derived. The aircraft package contains a LORAN-C unit for aircraft location information, clock, on-board data processor and formatter, digital data storage, packet radio terminal controller, and radio transceiver for data transmission to a ship. The shipboard package contains a transceiver, packet terminal controller, data processing and storage capability, and printer. Both raw data and chlorophyll concentrations are available for real-time analysis.

  10. WRATS Integrated Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Piatak, David J.

    2008-01-01

    The Wing and Rotor Aeroelastic Test System (WRATS) data acquisition system (DAS) is a 64-channel data acquisition display and analysis system specifically designed for use with the WRATS 1/5-scale V-22 tiltrotor model of the Bell Osprey. It is the primary data acquisition system for experimental aeroelastic testing of the WRATS model for the purpose of characterizing the aeromechanical and aeroelastic stability of prototype tiltrotor configurations. The WRATS DAS was also used during aeroelastic testing of Bell Helicopter Textron s Quad-Tiltrotor (QTR) design concept, a test which received international attention. The LabVIEW-based design is portable and capable of powering and conditioning over 64 channels of dynamic data at sampling rates up to 1,000 Hz. The system includes a 60-second circular data archive, an integrated model swashplate excitation system, a moving block damping application for calculation of whirl flutter mode subcritical damping, a loads and safety monitor, a pilot-control console display, data analysis capabilities, and instrumentation calibration functions. Three networked computers running custom-designed LabVIEW software acquire data through National Instruments data acquisition hardware. The aeroelastic model (see figure) was tested with the DAS at two facilities at NASA Langley, the Transonic Dynamics Tunnel (TDT) and the Rotorcraft Hover Test Facility (RHTF). Because of the need for seamless transition between testing at these facilities, DAS is portable. The software is capable of harmonic analysis of periodic time history data, Fast Fourier Transform calculations, power spectral density calculations, and on-line calibration of test instrumentation. DAS has a circular buffer archive to ensure critical data is not lost in event of model failure/incident, as well as a sample-and-hold capability for phase-correct time history data.

  11. Thermal (Silicon Diode) Data Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Wright, Ernest; Kegley, Jeff

    2008-01-01

    Marshall Space Flight Center s X-ray Cryogenic Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  12. Thermal (Silicon Diode) Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Kegley, Jeffrey

    2008-01-01

    Marshall Space Flight Center's X-ray Calibration Facility (XRCF) has been performing cryogenic testing to 20 Kelvin since 1999. Two configurations for acquiring data from silicon diode temperature sensors have been implemented at the facility. The facility's environment is recorded via a data acquisition system capable of reading up to 60 silicon diodes. Test article temperature is recorded by a second data acquisition system capable of reading 150+ silicon diodes. The specifications and architecture of both systems will be presented.

  13. Aerial robotic data acquisition system

    SciTech Connect

    Hofstetter, K.J.; Hayes, D.W.; Pendergast, M.M.; Corban, J.E.

    1993-12-31

    A small, unmanned aerial vehicle (UAV), equipped with sensors for physical and chemical measurements of remote environments, is described. A miniature helicopter airframe is used as a platform for sensor testing and development. The sensor output is integrated with the flight control system for real-time, interactive, data acquisition and analysis. Pre-programmed flight missions will be flown with several sensors to demonstrate the cost-effective surveillance capabilities of this new technology.

  14. Acquisition Risks in a World of Joint Capabilities: A Study of Interdependency Complexity

    DTIC Science & Technology

    2014-04-30

    bäÉîÉåíÜ=^ååì~ä=^Åèìáëáíáçå= oÉëÉ~êÅÜ=póãéçëáìã= qÜìêëÇ~ó=pÉëëáçåë= sçäìãÉ=ff= = Acquisition Risks in a World of Joint Capabilities: A Study of...2014 4. TITLE AND SUBTITLE Acquisition Risks in a World of Joint Capabilities: A Study of Interdependency Complexity 5a. CONTRACT NUMBER 5b. GRANT...systems???that are capable of enabling joint operations in the battlefield. This research examines DoD acquisition from the context of a network of

  15. Transit satellite system timing capabilities

    NASA Technical Reports Server (NTRS)

    Finsod, T. D.

    1978-01-01

    Current time transfer capabilities of the Transit Satellite System are reviewed. Potential improvements in the changes in equipment and operational procedures using operational satellites are discussed.

  16. Using MBSE to Understand the Link between Capability Acquisition Projects and DSTO Technology Advice

    DTIC Science & Technology

    2012-11-01

    UNCLASSIFIED DSTO-GD-0734 6. Using MBSE to Understand the Link between Capability Acquisition Projects and DSTO Technology Advice – Simon...display a currently valid OMB control number. 1. REPORT DATE FEB 2013 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Using MBSE ...and how the DSTO Naval Architecture and Platform System Analysis Group and the Weapons Capability Analysis Group were able to embed MBSE into the

  17. Data-acquisition systems

    SciTech Connect

    Cyborski, D.R.; Teh, K.M.

    1995-08-01

    Up to now, DAPHNE, the data-acquisition system developed for ATLAS, was used routinely for experiments at ATLAS and the Dynamitron. More recently, the Division implemented 2 MSU/DAPHNE systems. The MSU/DAPHNE system is a hybrid data-acquisition system which combines the front-end of the Michigan State University (MSU) DA system with the traditional DAPHNE back-end. The MSU front-end is based on commercially available modules. This alleviates the problems encountered with the DAPHNE front-end which is based on custom designed electronics. The first MSU system was obtained for the APEX experiment and was used there successfully. A second MSU front-end, purchased as a backup for the APEX experiment, was installed as a fully-independent second MSU/DAPHNE system with the procurement of a DEC 3000 Alpha host computer, and was used successfully for data-taking in an experiment at ATLAS. Additional hardware for a third system was bought and will be installed. With the availability of 2 MSU/DAPHNE systems in addition to the existing APEX setup, it is planned that the existing DAPHNE front-end will be decommissioned.

  18. HYPERCP data acquisition system

    SciTech Connect

    Kaplan, D.M.; Luebke, W.R.; Chakravorty, A.

    1997-12-31

    For the HyperCP experiment at Fermilab, we have assembled a data acquisition system that records on up to 45 Exabyte 8505 tape drives in parallel at up to 17 MB/s. During the beam spill, data axe acquired from the front-end digitization systems at {approx} 60 MB/s via five parallel data paths. The front-end systems achieve typical readout deadtime of {approx} 1 {mu}s per event, allowing operation at 75-kHz trigger rate with {approx_lt}30% deadtime. Event building and tapewriting are handled by 15 Motorola MVME167 processors in 5 VME crates.

  19. Automatic carrier acquisition system

    NASA Technical Reports Server (NTRS)

    Bunce, R. C. (Inventor)

    1973-01-01

    An automatic carrier acquisition system for a phase locked loop (PLL) receiver is disclosed. It includes a local oscillator, which sweeps the receiver to tune across the carrier frequency uncertainty range until the carrier crosses the receiver IF reference. Such crossing is detected by an automatic acquisition detector. It receives the IF signal from the receiver as well as the IF reference. It includes a pair of multipliers which multiply the IF signal with the IF reference in phase and in quadrature. The outputs of the multipliers are filtered through bandpass filters and power detected. The output of the power detector has a signal dc component which is optimized with respect to the noise dc level by the selection of the time constants of the filters as a function of the sweep rate of the local oscillator.

  20. Department of the Navy Acquisition and Capabilities Guidebook

    DTIC Science & Technology

    2012-05-01

    described in the ISO - 9001 series supplemented by AS9100, International Aerospace Quality Standard, which provide a basic minimum quality system model...the use of best engineering, design, manufacturing and management practices that emphasize the prevention of defects. Quality should be designed... quality management process that meets required program support capabilities. The quality management system may be based on the fundamentals

  1. DoD Information Technology Acquisition: Delivering Information Technology Capabilities Expeditiously

    DTIC Science & Technology

    2013-09-01

    Defense for Networks & Information Integration ASI Acquisition Solutions Incorporated BCD Basic Capability Definition BCL Business Capability...2009, around the same time as the NRC’s study, Acquisition Solutions Incorporated ( ASI ) conducted its own assessment of the IT acquisition problem...within the DoD. ASI engaged with the Deputy Assistant Secretary of Defense for Command, Control, and Communications, Intelligence, Surveillance, and

  2. Coast Guard: Opportunities Exist to Further Improve Acquisition Management Capabilities

    DTIC Science & Technology

    2011-04-01

    Coast Guard’s significant acquisition challenges, including project challenges in its Deepwater program. GAO’s prior work on the Coast Guard...to defense readiness. We have reported extensively on the Coast Guard’s significant acquisition challenges, including its Deepwater program, which...prior work on the Deepwater acquisition program identified problems in costs, management, and oversight that have led to delivery delays and other

  3. INL Initial Input to the Mission Need for Advanced Post-Irradiation Examination Capability A Non-Major System Acquisition Project

    SciTech Connect

    Vince Tonc

    2010-04-01

    Consolidated and comprehensive post-irradiation examination (PIE) capabilities will enable the science and engineering understanding needed to develop the innovative nuclear fuels and materials that are critical to the success of the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) programs. Existing PIE capabilities at DOE Laboratories, universities, and in the private sector are widely distributed, largely antiquated, and insufficient to support the long-range mission needs. In addition, DOE’s aging nuclear infrastructure was not designed to accommodate modern, state-of-the-art equipment and instrumentation. Currently, the U.S. does not have the capability to make use of state-of-the-art technology in a remote, hot cell environment to characterize irradiated fuels and materials on the micro, nano, and atomic scale. This “advanced PIE capability” to make use of state-of-the-art scientific instruments in a consolidated nuclear operating environment will enable comprehensive characterization and investigation that is essential for effectively implementing the nuclear fuels and materials development programs in support of achieving the U.S. DOE-NE Mission.

  4. Measurement and Controls Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Hall, Rick; Daniel, Alice; Batts, Frank E., Sr.

    2006-01-01

    Measurement and Controls Data Acquisition System (MCDAS) is an application program that integrates the functions of two stand-alone programs: one for acquisition of data, the other for controls. MCDAS facilitates and improves testing of complex engineering systems by helping to perform calibration and setup of test systems and acquisition, dissemination, and processing of data. Features of MCDAS include an intuitive, user-friendly graphical user interface, a capability for acquiring data at rates greater than previously possible, cooperation between the data-acquisition software subsystem and alarm-checking and analytical components of the control software subsystem, and a capability for dissemination of data through fiber optics and virtual and wide-area networks, including networks that contain hand-held display units. The integration of the data acquisition and control software offers a safety advantage by making alarm information available to the control software in a more timely manner. By enabling the use of hand-held devices, MCDAS reduces the time spent by technicians asking for screen updates to determine effects of setup actions. Previously recorded data can be processed without interruption to current acquisition of data. Analysts can continue to view test parameters while test-data files are being generated.

  5. On Shaft Data Acquisition System (OSDAS)

    NASA Technical Reports Server (NTRS)

    Pedings, Marc; DeHart, Shawn; Formby, Jason; Naumann, Charles

    2012-01-01

    On Shaft Data Acquisition System (OSDAS) is a rugged, compact, multiple-channel data acquisition computer system that is designed to record data from instrumentation while operating under extreme rotational centrifugal or gravitational acceleration forces. This system, which was developed for the Heritage Fuel Air Turbine Test (HFATT) program, addresses the problem of recording multiple channels of high-sample-rate data on most any rotating test article by mounting the entire acquisition computer onboard with the turbine test article. With the limited availability of slip ring wires for power and communication, OSDAS utilizes its own resources to provide independent power and amplification for each instrument. Since OSDAS utilizes standard PC technology as well as shared code interfaces with the next-generation, real-time health monitoring system (SPARTAA Scalable Parallel Architecture for Real Time Analysis and Acquisition), this system could be expanded beyond its current capabilities, such as providing advanced health monitoring capabilities for the test article. High-conductor-count slip rings are expensive to purchase and maintain, yet only provide a limited number of conductors for routing instrumentation off the article and to a stationary data acquisition system. In addition to being limited to a small number of instruments, slip rings are prone to wear quickly, and introduce noise and other undesirable characteristics to the signal data. This led to the development of a system capable of recording high-density instrumentation, at high sample rates, on the test article itself, all while under extreme rotational stress. OSDAS is a fully functional PC-based system with 48 channels of 24-bit, high-sample-rate input channels, phase synchronized, with an onboard storage capacity of over 1/2-terabyte of solid-state storage. This recording system takes a novel approach to the problem of recording multiple channels of instrumentation, integrated with the test

  6. Data acquisition system for operational earth observation missions

    NASA Technical Reports Server (NTRS)

    Deerwester, J. M.; Alexander, D.; Arno, R. D.; Edsinger, L. E.; Norman, S. M.; Sinclair, K. F.; Tindle, E. L.; Wood, R. D.

    1972-01-01

    The data acquisition system capabilities expected to be available in the 1980 time period as part of operational Earth observation missions are identified. By data acquisition system is meant the sensor platform (spacecraft or aircraft), the sensors themselves and the communication system. Future capabilities and support requirements are projected for the following sensors: film camera, return beam vidicon, multispectral scanner, infrared scanner, infrared radiometer, microwave scanner, microwave radiometer, coherent side-looking radar, and scatterometer.

  7. A Framework to Support S&T Planning for Royal Australian Navy Capability Acquisition

    DTIC Science & Technology

    2012-03-01

    planning framework presents a strategy that is constrained in scope to identify critical technologies and performing a needs analysis in relation to...each potential acquisition strategy . 4.4.3 Capability Objectives Capability objectives will be established during analysis of the Defence White...material will affect the acquisition strategy schedule. 6. Sectoral Analysis Sectoral analysis consists of studies conducted by industry and the

  8. Defense Acquisition Workforce: Actions Needed to Guide Planning Efforts and Improve Workforce Capability

    DTIC Science & Technology

    2015-12-01

    DEFENSE ACQUISITION WORKFORCE Actions Needed to Guide Planning Efforts and Improve Workforce Capability Report... Planning Efforts and Improve Workforce Capability Why GAO Did This Study GAO and others have found that DOD needs to take steps to ensure DOD...develop an acquisition workforce plan every 2 years. DOD issued a plan in 2010, in which it called for the department to increase the size of the

  9. Data Acquisition and Control Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Holland, Randy; Jensen, Scott; Burrel, Terrence; Spooner, Richard

    2002-01-01

    The Data Acquisition and Control Systems (DACS) Laboratory is a facility at Stennis Space Center that provides an off test-stand capability to develop data-acquisition and control systems for rocket-engine test stands. It is also used to train new employees in state-of-the-art systems, and provides a controlled environment for troubleshooting existing systems, as well as the ability to evaluate the application of new technologies and process improvements. With the SSC propulsion testing schedules, without the DACS Laboratory, it would have been necessary to perform most of the development work on actual test systems, thereby subjecting both the rocket-engine testing and development programs to substantial interference in the form of delays, restrictions on modifications of equipment, and potentially compromising software configuration control. The DACS Laboratory contains a versatile assortment of computer hardware and software, digital and analog electronic control and data-acquisition equipment, and standard electronic bench test equipment and tools. Recently completed Control System development and software verification projects include support to the joint NASA/Air Force Integrated Powerhead Demonstration (IPD) LOX & LH2 PreBurner and Turbopump ground testing programs. In other recent activities, the DACS Laboratory equipment and expertise have supported the off-stand operation of high-pressure control valves to correct valve leak problems prior to installation on the test stand. Future plans include expanding the Laboratory's capabilities to provide cryogenic control valve characterization prior to installation, thereby reducing test stand activation time.

  10. Major system acquisitions process (A-109)

    NASA Technical Reports Server (NTRS)

    Saric, C.

    1991-01-01

    The Major System examined is a combination of elements (hardware, software, facilities, and services) that function together to produce capabilities required to fulfill a mission need. The system acquisition process is a sequence of activities beginning with documentation of mission need and ending with introduction of major system into operational use or otherwise successful achievement of program objectives. It is concluded that the A-109 process makes sense and provides a systematic, integrated management approach along with appropriate management level involvement and innovative and 'best ideas' from private sector in satisfying mission needs.

  11. Small parachute flight data acquisition system

    SciTech Connect

    Ryerson, D.E.; Hauser, G.C.

    1989-01-01

    Sandia National Laboratories does extensive parachute design and testing. In support of that work, Sandia's Telemetry Department has designed and fielded a small, inexpensive data acquisition system. The system has been used in over fifty parachute and water entry tests. It consists of a microprocessor controlled unit which digitizes up to eight channels of signal-conditioned analog data and stores the data in memory for readout after the test. The system is also capable of doing control functions such as releasing the parachute at a predetermined time after unit release. 4 refs., 7 figs.

  12. Soviet Weapon-System Acquisition

    DTIC Science & Technology

    1991-09-01

    available in theIWest, provides the central coordination and policy guidance for Soviet weapons acquisition and oversees all military-related research...Machine Building Nuclear weapons and high- (MISREDMASH), (MSM) energy lasers i Ministry of Ship Building Naval vessels and naval (MINSUDPROM), (MSP) weapons...MINRADPROM), (MRP) equipment, guidance -and- control systems, navigation 3 equipment, and military computers Ministry of Communications

  13. WORKSHOP 1: What is a Capability System Model ?

    DTIC Science & Technology

    2012-11-01

    overcome these shortcomings would be to use an MBSE approach to pass Capability System models across the contractual interface and integrate them to...the Materiel System models included in the tendered solutions. In an MBSE -supported system acquisition, however, the Materiel System is treated as a...often perceived as inefficient, with a high likelihood of errors. One way to overcome these shortcomings would be to use an MBSE approach to pass

  14. Acquisition: Acquisition of the EA-6B Improved Capability III Program

    DTIC Science & Technology

    2004-08-31

    indnt gwbtashim. ad kC.Ziod pesna a 45 ftqoitatmftw R=yiunueaUy LEM OQRqtatAnaty i ODRA). nd maies W•stie• M ,o y .ut aeal -- ldomadhlth thCA ...provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB...control number. 1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 31 AUG 2004 N/ A 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Acquisition: Acquisition of

  15. Centaur propellant acquisition system study

    NASA Technical Reports Server (NTRS)

    Blatt, M. H.; Walter, M. D.

    1975-01-01

    A study was performed to determine the desirability of replacing the hydrogen peroxide settling system on the Centaur D-1S with a capillary acquisition system. A comprehensive screening was performed to select the most promising capillary device fluid acquisition, thermal conditioning, and fabrication techniques. Refillable start baskets and bypass feed start tanks were selected for detailed design. Critical analysis areas were settling and refilling, start sequence development with an initially dry boost pump, and cooling the fluid delivered to the boost pump in order to provide necessary net position suction head (NPSH). Design drawings were prepared for the start basket and start tank concepts for both LO2 and LH2 tanks. System comparisons indicated that the start baskets using wicking for thermal conditioning, and thermal subcooling for boost pump NPSH, are the most desirable systems for future development.

  16. Enhanced Data-Acquisition System

    NASA Technical Reports Server (NTRS)

    Mustain, Roy W.

    1990-01-01

    Time-consuming, costly digitization of analog signals on magnetic tape eliminated. Proposed data-acquisition system provides nearly immediate access to data in incoming signals by digitizing and recording them both on magnetic tape and on optical disk. Tape and/or disk later played back to reconstruct signals in analog or digital form for analysis. Of interest in industrial and scientific applications in which necessary to digitize, store, and/or process large quantities of experimental data.

  17. Peruvian Weapon System Acquisition Process

    DTIC Science & Technology

    1990-12-01

    process for a major program. The United States DOD Directive 5000.1 defines four distinct phases of the acquisition process: concept exploration , demon...Unified or Specified Command. 1. Concept Exploration Phase The first phase for a major system is the concept exploration phase. During this phase... exploration phase proreses. Premature introduction of operating and support details may have a negative effect by dosing out promising alternatives [Ref

  18. DSP based data acquisition system

    NASA Astrophysics Data System (ADS)

    Prasad, Peeyush; Subrahmanya, C. R.

    A new DSP based data acquisition system based on commercial, off-the-shelf available hardware is presented. The board features friendly high speed input and output interfaces, a powerful DSP and hardware offloading of essing to an FPGA. For flexibility of development, a soft realtime linux based kernel popular among embedded developers (uClinux) has been ported on the board.The development environment is fully open source both for the target as well as for host software. The motivation behind creating the system, the development ess and the current status is described. Some results obtained with this system as used in typical applications are also presented.

  19. Data Acquisition for Modular Biometric Monitoring System

    NASA Technical Reports Server (NTRS)

    Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodsinsky, Carlos M. (Inventor)

    2014-01-01

    A modular system for acquiring biometric data includes a plurality of data acquisition modules configured to sample biometric data from at least one respective input channel at a data acquisition rate. A representation of the sampled biometric data is stored in memory of each of the plurality of data acquisition modules. A central control system is in communication with each of the plurality of data acquisition modules through a bus. The central control system is configured to collect data asynchronously, via the bus, from the memory of the plurality of data acquisition modules according to a relative fullness of the memory of the plurality of data acquisition modules.

  20. Mobile Munitions Assessment System Field Capabilities

    SciTech Connect

    A. M. Snyder; D. A. Verrill; K. D. Watts

    1999-05-27

    The US has developed, stored, tested, and conducted disposal operations on various forms of chemical munitions for several decades. The remnants of these activities have resulted in the presence of suspect CWM at more than 200 sites in the US, the District of Columbia, and the US Virgin Islands. An advanced Mobile Munitions Assessment System (Phase II MMAS) has been designed, fabricated, assembled, and tested by the Idaho National Engineering and Environmental Laboratory under contract to the US Army's Project Manager for Non-Stockpile Chemical Materiel for use in the assessment and characterization of ''non-stockpile'' chemical warfare materiel (CWM). The Phase II MMAS meets the immediate need to augment response equipment currently used by the US Army with a system that includes state-of-the-art assessment equipment and advanced sensors. The Phase II MMAS will be used for response to known storage and remediation sites. This system is designed to identify the munition type; evaluate the condition of the CWM; evaluate the environmental conditions in the vicinity of the CWM; determine if fuzes, bursters, or safety and arming devices are in place; identify the chemical fill; provide other data (e.g., meteorological data) necessary for assessing the risk associated with handling, transporting, and disposing of CWM; and record the data on a dedicated computer system. The Phase II MMAS is capable of over-the-road travel and air transport to any site for conducting rigorous assessments of suspect CWM. The Phase II MMAS utilizes a specially-designed commercial motor home to provide a means to transport an interactive network of non-intrusive characterization and assessment equipment. The assessment equipment includes radiography systems, a gamma densitometer system, a Portable Isotopic Neutron Spectroscopy (PINS) system, a Secondary Ion Mass Spectroscopy (SIMS) system, air monitoring equipment (i.e., M-90s and a field ion spectroscopy system), and a phase determination

  1. DEAP-3600 Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Lindner, Thomas

    2015-12-01

    DEAP-3600 is a dark matter experiment using liquid argon to detect Weakly Interacting Massive Particles (WIMPs). The DEAP-3600 Data Acquisition (DAQ) has been built using a combination of commercial and custom electronics, organized using the MIDAS framework. The DAQ system needs to suppress a high rate of background events from 39Ar beta decays. This suppression is implemented using a combination of online firmware and software-based event filtering. We will report on progress commissioning the DAQ system, as well as the development of the web-based user interface.

  2. Information management system breadboard data acquisition and control system.

    NASA Technical Reports Server (NTRS)

    Mallary, W. E.

    1972-01-01

    Description of a breadboard configuration of an advanced information management system based on requirements for high data rates and local and centralized computation for subsystems and experiments to be housed on a space station. The system is to contain a 10-megabit-per-second digital data bus, remote terminals with preprocessor capabilities, and a central multiprocessor. A concept definition is presented for the data acquisition and control system breadboard, and a detailed account is given of the operation of the bus control unit, the bus itself, and the remote acquisition and control unit. The data bus control unit is capable of operating under control of both its own test panel and the test processor. In either mode it is capable of both single- and multiple-message operation in that it can accept a block of data requests or update commands for transmission to the remote acquisition and control unit, which in turn is capable of three levels of data-handling complexity.

  3. Hyperspectral Systems Increase Imaging Capabilities

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In 1983, NASA started developing hyperspectral systems to image in the ultraviolet and infrared wavelengths. In 2001, the first on-orbit hyperspectral imager, Hyperion, was launched aboard the Earth Observing-1 spacecraft. Based on the hyperspectral imaging sensors used in Earth observation satellites, Stennis Space Center engineers and Institute for Technology Development researchers collaborated on a new design that was smaller and used an improved scanner. Featured in Spinoff 2007, the technology is now exclusively licensed by Themis Vision Systems LLC, of Richmond, Virginia, and is widely used in medical and life sciences, defense and security, forensics, and microscopy.

  4. The NIFFTE Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Qu, Hai; Niffte Collaboration

    2011-10-01

    The Neutron Induced Fission Fragment Tracking Experiment (NIFFTE) will employ a novel, high granularity, pressurized Time Projection Chamber to measure fission cross-sections of the major actinides to high precision over a wide incident neutron energy range. These results will improve nuclear data accuracy and benefit the fuel cycle in the future. The NIFFTE data acquisition system (DAQ) has been designed and implemented on the prototype TPC. Lessons learned from engineering runs have been incorporated into some design changes that are being implemented before the next run cycle. A fully instrumented sextant of EtherDAQ cards (16 sectors, 496 channels) will be used for the next run cycle. The Maximum Integrated Data Acquisition System (MIDAS) has been chosen and customized to configure and run the experiment. It also meets the requirement for remote control and monitoring of the system. The integration of the MIDAS online database with the persistent PostgreSQL database has been implemented for experiment usage. The detailed design and current status of the DAQ system will be presented.

  5. Facilities and the Air Force Systems Acquisition Process.

    DTIC Science & Technology

    1985-05-01

    to provide es- senti-l fLcilitio-s by, system Initial Cperatlcnal Capability (’-0C) . And secondly, vince the systems ;acjui. tior proceso is event...funds exclusively for systems acquisition. This change will remove the current military construction calendar constraint and allow facilities to be

  6. System Safety in Aircraft Acquisition

    DTIC Science & Technology

    1984-01-01

    principal purpose is the prevention of accidents or deaths/ injuries related thereto. Until a recent meeting cosponsored by SOHP and OUSDRE, communication...results in preventing the loss of a single aircraft ML.214/9OV 83 ($15 million for the AH-64, $25 million for the F-18, $200 million for the B-1B). - An...acquisition program. There- fore, it is essential to have interest and support of system safety by "off-line" management at levels high enough to be effective

  7. Computational capabilities of physical systems.

    PubMed

    Wolpert, David H

    2002-01-01

    In this paper strong limits on the accuracy of real-world physical computation are established. To derive these results a non-Turing machine formulation of physical computation is used. First it is proven that there cannot be a physical computer C to which one can pose any and all computational tasks concerning the physical universe. Next it is proven that no physical computer C can correctly carry out every computational task in the subset of such tasks that could potentially be posed to C. This means in particular that there cannot be a physical computer that can be assured of correctly "processing information faster than the universe does." Because this result holds independent of how or if the computer is physically coupled to the rest of the universe, it also means that there cannot exist an infallible, general-purpose observation apparatus, nor an infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or nonclassical, and/or obey chaotic dynamics. They also hold even if one could use an infinitely fast, infinitely dense computer, with computational powers greater than that of a Turing machine (TM). After deriving these results analogs of the TM Halting theorem are derived for the novel kind of computer considered in this paper, as are results concerning the (im)possibility of certain kinds of error-correcting codes. In addition, an analog of algorithmic information complexity, "prediction complexity," is elaborated. A task-independent bound is derived on how much the prediction complexity of a computational task can differ for two different reference universal physical computers used to solve that task. This is analogous to the "encoding" bound governing how much the algorithm information complexity of a TM calculation can differ for two reference universal TMs. It is proven that either the Hamiltonian of our universe proscribes a certain type of computation, or prediction complexity is unique (unlike

  8. Systems test facilities existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Weaver, R.

    1981-01-01

    Systems test facilities (STFS) to test total photovoltaic systems and their interfaces are described. The systems development (SD) plan is compilation of existing and planned STFs, as well as subsystem and key component testing facilities. It is recommended that the existing capabilities compilation is annually updated to provide and assessment of the STF activity and to disseminate STF capabilities, status and availability to the photovoltaics program.

  9. Photovoltaic Systems Test Facilities: Existing capabilities compilation

    NASA Technical Reports Server (NTRS)

    Volkmer, K.

    1982-01-01

    A general description of photovoltaic systems test facilities (PV-STFs) operated under the U.S. Department of Energy's photovoltaics program is given. Descriptions of a number of privately operated facilities having test capabilities appropriate to photovoltaic hardware development are given. A summary of specific, representative test capabilities at the system and subsystem level is presented for each listed facility. The range of system and subsystem test capabilities available to serve the needs of both the photovoltaics program and the private sector photovoltaics industry is given.

  10. A data acquisition system for marine and ecological research.

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1971-01-01

    Description of a self-contained portable data acquisition system for use in marine and ecological research. The compact lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing. Currently undergoing component performance upgrading, the prototype system has been utilized in several environmental science investigations associated with air pollution investigations and weather modification and is currently being used for marine data acquisition.

  11. EBT data acquisition and analysis system

    SciTech Connect

    Burris, R.D.; Greenwood, D.E.; Stanton, J.S.; Geoffroy, K.A.

    1980-10-01

    This document describes the design and implementation of a data acquisition and analysis system for the EBT fusion experiment. The system includes data acquisition on five computers, automatic transmission of that data to a large, central data base, and a powerful data retrieval system. The system is flexible and easy to use, and it provides a fully documented record of the experiments.

  12. Acquisition Program Transition Workshops: An Element of the DSMC Program Manager Mission Assistance Capability

    DTIC Science & Technology

    2011-10-01

    Capability 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER...performing—i.e., coordination leading to an IBR, SFR , PDR, CDR, etc. The workshops are designed for all major acquisition milestones. Figure 1-1...accountable for performing— i.e., preparation for IBRs, and the SFR , PDR, CDR, etc. 2.4 Core Workshop Activities Core workshop activities include

  13. Core Technical Capability Laboratory Management System

    NASA Technical Reports Server (NTRS)

    Shaykhian, Linda; Dugger, Curtis; Griffin, Laurie

    2008-01-01

    The Core Technical Capability Lab - oratory Management System (CTCLMS) consists of dynamically generated Web pages used to access a database containing detailed CTC lab data with the software hosted on a server that allows users to have remote access.

  14. Defense Weather Satellites: DOD Faces Acquisition Challenges for Addressing Capability Needs

    DTIC Science & Technology

    2016-07-07

    as weather forecasting and climate research. As existing weather satellite systems age, DOD faces potential gaps in its space-based weather...planning, execution, and sustainment of U.S. military operations and for civilian uses, such as weather forecasting and climate research. As DOD’s...4GAO, Space Acquisitions: Challenges Facing DOD as it Changes Approaches to Space Acquisitions, GAO-16-471T (Washington, D.C.: Mar. 9, 2016); GAO

  15. Improved Three-Dimensional Resistivity Data Acquisition Capabilities at the Hanford Site

    SciTech Connect

    Glaser, Danney R.; Eberlein, Susan J.; McNeill, M.; Hildebrand, R. Doug; Levitt, M.; Crook, N.

    2013-11-07

    The recent 3D electrical resistivity characterization at 241-U Tank Farm represents the first full-farm true 3D environmental resistivity deployment in the world. Technological and manufacturing developments by the vendor resulted in a data acquisition system that far surpasses the ability of the previous off-the-shelf systems. The new data acquisition system allows for 180 channels, which enables the full-farm 3D acquisition without the inaccuracies associated with combining multiple datasets. This ultimately leads to a more accurate model of the subsurface and a better understanding of moisture and contaminant distribution within the vadose zone. Additionally, advancements in electrical noise filters and increased output power resulted in better quality data than previously acquired at the site, reducing the amount of poor quality data by more than half. Ultimately, the new, improved system increased the speed of data acquisition and quality of the final results. The system allowed a reduction in field labor and field work duration to half the field budget estimates, resulting in a 25% reduction in overall project costs. The new resistivity data acquisition system represents technological advancements resulting in a greater quantity of data with decreased project costs.

  16. Multiple channel data acquisition system

    SciTech Connect

    Crawley, H. Bert; Rosenberg, Eli I.; Meyer, W. Thomas; Gorbics, Mark S.; Thomas, William D.; McKay, Roy L.; Homer, Jr., John F.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler.

  17. Multiple channel data acquisition system

    SciTech Connect

    Crawley, H.B.; Rosenberg, E.I.; Meyer, W.T.; Gorbics, M.S.; Thomas, W.D.; McKay, R.L.; Homer, J.F. Jr.

    1990-05-22

    A multiple channel data acquisition system for the transfer of large amounts of data from a multiplicity of data channels has a plurality of modules which operate in parallel to convert analog signals to digital data and transfer that data to a communications host via a FASTBUS. Each module has a plurality of submodules which include a front end buffer (FEB) connected to input circuitry having an analog to digital converter with cache memory for each of a plurality of channels. The submodules are interfaced with the FASTBUS via a FASTBUS coupler which controls a module bus and a module memory. The system is triggered to effect rapid parallel data samplings which are stored to the cache memories. The cache memories are uploaded to the FEBs during which zero suppression occurs. The data in the FEBs is reformatted and compressed by a local processor during transfer to the module memory. The FASTBUS coupler is used by the communications host to upload the compressed and formatted data from the module memory. The local processor executes programs which are downloaded to the module memory through the FASTBUS coupler. 25 figs.

  18. Aviation System Analysis Capability Executive Assistant Analyses

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Kostiuk, Peter

    1999-01-01

    This document describes the analyses that may be incorporated into the Aviation System Analysis Capability Executive Assistant. The document will be used as a discussion tool to enable NASA and other integrated aviation system entities to evaluate, discuss, and prioritize analyses.

  19. Risk Management Programs for Defense Acquisition Systems

    DTIC Science & Technology

    2007-11-02

    The audit objective was to evaluate the effectiveness of risk management programs for Defense acquisition systems. Specifically, we determined whether DoD risk management policies and procedures for Defense acquisition systems were effectively implemented and what impact risk management programs bad on reducing program risks and costs. We also reviewed management controls as they applied to the audit objectives.

  20. The Making of a Government LSI: From Warfare Capability to Operational System (Briefing Charts)

    DTIC Science & Technology

    2015-05-01

    The Making of a Government LSI From Warfare Capability to Operational System Ron Carlson Paul Montgomery Naval Postgraduate School 1...the IWC mission- capability model to ensure that the POR meets mission needs. 14 Conclusions/Future Research ( Montgomery , Carlson 2012...Defense Acquisition: Use of Lead System Integrators (LSIs) – Background, Oversight Issues, and Options for Congress”. • Montgomery , P., Carlson, R

  1. Lick Observatory charge-coupled-device data acquisition system

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Stover, R. J.; Osborne, J.; Miller, J. S.; Vogt, S. S.

    1987-01-01

    The Lick Observatory CCD data acquisition system is described, with some observational results to illustrate the system capability. The electronics for the CCD are subdivided into those attached to the dewar, a 'smart' controller near the dewar, and a computer connected by serial link to the smart controller. Software for the controller is in assembler code, while the software for data acquisition and on-line analysis is written in C and uses the UNIX operating system. The computers and controllers are programmed to recognize and operate several different types of CCD. Three separate instruments that use the CCDs are described briefly, together with examples of the data they produce.

  2. Data acquisition system issues for large experiments

    NASA Astrophysics Data System (ADS)

    Siskind, E. J.

    2007-09-01

    This talk consists of personal observations on two classes of data acquisition ("DAQ") systems for Silicon trackers in large experiments with which the author has been concerned over the last three or more years. The first half is a classic "lessons learned" recital based on experience with the high-level debug and configuration of the DAQ system for the GLAST LAT detector. The second half is concerned with a discussion of the promises and pitfalls of using modern (and future) generations of "system-on-a-chip" ("SOC") or "platform" field-programmable gate arrays ("FPGAs") in future large DAQ systems. The DAQ system pipeline for the 864k channels of Si tracker in the GLAST LAT consists of five tiers of hardware buffers which ultimately feed into the main memory of the (two-active-node) level-3 trigger processor farm. The data formats and buffer volumes of these tiers are briefly described, as well as the flow control employed between successive tiers. Lessons learned regarding data formats, buffer volumes, and flow control/data discard policy are discussed. The continued development of platform FPGAs containing large amounts of configurable logic fabric, embedded PowerPC hard processor cores, digital signal processing components, large volumes of on-chip buffer memory, and multi-gigabit serial I/O capability permits DAQ system designers to vastly increase the amount of data preprocessing that can be performed in parallel within the DAQ pipeline for detector systems in large experiments. The capabilities of some currently available FPGA families are reviewed, along with the prospects for next-generation families of announced, but not yet available, platform FPGAs. Some experience with an actual implementation is presented, and reconciliation between advertised and achievable specifications is attempted. The prospects for applying these components to space-borne Si tracker detectors are briefly discussed.

  3. The new classic data acquisition system for NPOI

    NASA Astrophysics Data System (ADS)

    Sun, B.; Jorgensen, A. M.; Landavazo, M.; Hutter, D. J.; van Belle, G. T.; Mozurkewich, David; Armstrong, J. T.; Schmitt, H. R.; Baines, E. K.; Restaino, S. R.

    2014-07-01

    The New Classic data acquisition system is an important portion of a new project of stellar surface imaging with the NPOI, funded by the National Science Foundation, and enables the data acquisition necessary for the project. The NPOI can simultaneously deliver beams from 6 telescopes to the beam combining facility, and in the Classic beam combiner these are combined 4 at a time on 3 separate spectrographs with all 15 possible baselines observed. The Classic data acquisition system is limited to 16 of 32 wavelength channels on two spectrographs and limited to 30 s integrations followed by a pause to ush data. Classic also has some limitations in its fringe-tracking capability. These factors, and the fact that Classic incorporates 1990s technology which cannot be easily replaced are motivation for upgrading the data acquisition system. The New Classic data acquisition system is based around modern electronics, including a high-end Stratix FPGA, a 200 MB/s Direct Memory Access card, and a fast modern Linux computer. These allow for continuous recording of all 96 channels across three spectrographs, increasing the total amount of data recorded by a an estimated order of magnitude. The additional computing power on the data acquisition system also allows for the implementation of more sophisticated fringe-tracking algorithms which are needed for the Stellar Surface Imaging project. In this paper we describe the New Classic system design and implementation, describe the background and motivation for the system as well as show some initial results from using it.

  4. TFTR diagnostic control and data acquisition system

    SciTech Connect

    Sauthoff, N.R.; Daniels, R.E.; PPL Computer Division

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man--machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ''groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  5. TFTR diagnostic control and data acquisition system

    NASA Astrophysics Data System (ADS)

    Sauthoff, N. R.; Daniels, R. E.

    1985-05-01

    General computerized control and data-handling support for TFTR diagnostics is presented within the context of the Central Instrumentation, Control and Data Acquisition (CICADA) System. Procedures, hardware, the interactive man-machine interface, event-driven task scheduling, system-wide arming and data acquisition, and a hierarchical data base of raw data and results are described. Similarities in data structures involved in control, monitoring, and data acquisition afford a simplification of the system functions, based on ``groups'' of devices. Emphases and optimizations appropriate for fusion diagnostic system designs are provided. An off-line data reduction computer system is under development.

  6. 48 CFR 1401.7001-4 - Acquisition performance measurement systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Acquisition performance measurement systems. 1401.7001-4 Section 1401.7001-4 Federal Acquisition Regulations System DEPARTMENT OF THE... Acquisition performance measurement systems. (a) The acquisition performance measurement system is a...

  7. 48 CFR 1401.7001-4 - Acquisition performance measurement systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 5 2014-10-01 2014-10-01 false Acquisition performance measurement systems. 1401.7001-4 Section 1401.7001-4 Federal Acquisition Regulations System DEPARTMENT OF THE... Acquisition performance measurement systems. (a) The acquisition performance measurement system is a...

  8. 48 CFR 1401.7001-4 - Acquisition performance measurement systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 5 2011-10-01 2011-10-01 false Acquisition performance measurement systems. 1401.7001-4 Section 1401.7001-4 Federal Acquisition Regulations System DEPARTMENT OF THE... Acquisition performance measurement systems. (a) The acquisition performance measurement system is a...

  9. Aviation System Analysis Capability Executive Assistant Design

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Osman, Mohammed; Godso, David; King, Brent; Ricciardi, Michael

    1998-01-01

    In this technical document, we describe the design developed for the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC). We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models within the ASAC system, and describe the design process and the results of the ASAC EA POC system design. We also describe the evaluation process and results for applicable COTS software. The document has six chapters, a bibliography, three appendices and one attachment.

  10. Aviation System Analysis Capability Executive Assistant Development

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Anderson, Kevin; Book, Paul

    1999-01-01

    In this technical document, we describe the development of the Aviation System Analysis Capability (ASAC) Executive Assistant (EA) Proof of Concept (POC) and Beta version. We describe the genesis and role of the ASAC system, discuss the objectives of the ASAC system and provide an overview of components and models in the ASAC system, and describe the design process and the results of the ASAC EA POC and Beta system development. We also describe the evaluation process and results for applicable COTS software. The document has seven chapters, a bibliography, and two appendices.

  11. SSC/BCD data acquisition system proposal

    SciTech Connect

    Barsotti, E.; Bowden, M.; Swoboda, C.

    1989-04-01

    The proposed new data acquisition system architecture takes event fragments off a detector over fiber optics and to a parallel event building switch. The parallel event building switch concept, taken from the telephone communications industry, along with expected technology improvements in fiber-optic data transmission speeds over the next few years, should allow data acquisition system rates to increase dramatically and exceed those rates needed for the SSC. This report briefly describes the switch architecture and fiber optics for a SSC data acquisition system.

  12. 48 CFR 27.406-3 - Major system acquisition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Major system acquisition. (a) The clause at 52.227-21, Technical Data Declaration, Revision, and... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Major system acquisition. 27.406-3 Section 27.406-3 Federal Acquisition Regulations System FEDERAL ACQUISITION...

  13. 48 CFR 27.406-3 - Major system acquisition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Major system acquisition. (a) The clause at 52.227-21, Technical Data Declaration, Revision, and... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Major system acquisition. 27.406-3 Section 27.406-3 Federal Acquisition Regulations System FEDERAL ACQUISITION...

  14. 48 CFR 27.406-3 - Major system acquisition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Major system acquisition. (a) The clause at 52.227-21, Technical Data Declaration, Revision, and... 48 Federal Acquisition Regulations System 1 2013-10-01 2013-10-01 false Major system acquisition. 27.406-3 Section 27.406-3 Federal Acquisition Regulations System FEDERAL ACQUISITION...

  15. Systems Engineering for Space Exploration Medical Capabilities

    NASA Technical Reports Server (NTRS)

    Mindock, Jennifer; Reilly, Jeffrey; Urbina, Michelle; Hailey, Melinda; Rubin, David; Reyes, David; Hanson, Andrea; Burba, Tyler; McGuire, Kerry; Cerro, Jeffrey; Middour, Chris

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will present significant new challenges to crew health management during a mission compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This paper discusses the structured and integrative approach that is guiding the medical system technical development. Assumptions for the required levels of care on exploration missions, medical system guiding principles, and a Concept of Operations are early products that capture and clarify stakeholder expectations. Mobel-Based Systems Engineering techniques are then applied to define medical system behavior and architecture. Interfaces to other flight and ground systems, and within the medical system are identified and defined. Initial requirements and traceability are established, which sets the stage for identification of future technology development needs. An early approach for verification and validation, taking advantage of terrestrial and near-Earth exploration system analogs, is also defined to further guide system planning and development.

  16. A unique data acquisition system for electrical resistance tomography

    SciTech Connect

    Daily, W.; Ramirez, A.; Zonge, K.

    1996-01-04

    Unique capabilities are needed in instrumentation used for acquiring data to do electrical resistance tomography (ERT). A data acquisition system is described which has a good combination of the required capabilities and yet is field rugged and user friendly. The system is a multichannel detector for high data rates, can operate over a wide range of load conditions, will measure both in phase and quadrature resistance at frequencies between 0.0007 Hz and 8 kHz. The system has been used in both the field and laboratory to collect data with a typical accuracy between 1 and 10%.

  17. PTTI Capabilities of the Modernized LORAN System

    DTIC Science & Technology

    2008-12-01

    is steered to UTC by the LORAN signal (Figure 11). ANTENNA INTERFACE E -FIELD ANTENNA BIAS SELECT BANDPASS FILTER ATTENUATOR AMPLIFIER LOWPASS...A. Lombardi, T. Celano, and E . D. Powers, 2005, “The Potential Role of Enhanced LORAN -C in the National Timing Infrastructure,” in Proceedings of...40th Annual Precise Time and Time Interval (PTTI) Meeting 507 PTTI CAPABILITIES OF THE MODERNIZED LORAN SYSTEM Kirk Montgomery

  18. Rotor fatigue monitoring data acquisition system

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  19. The Lick Observatory CCD data acquisition system

    NASA Technical Reports Server (NTRS)

    Robinson, L. B.; Stover, R. J.

    1987-01-01

    An evolving system for CCD data acquisition is described. The electronics are subdivided into those attached to the dewar, a 'smart' controller near the dewar, and a computer connected by serial link to the smart controller. Software for the smart controller is in assembler code, while the data acquisition and on-line analysis software is written in 'C' and uses the UNIX operating system.

  20. An advanced data-acquisition system for wind energy projects

    SciTech Connect

    Simms, D.A. ); Cousineau, K.L. )

    1992-10-01

    NREL has subcontracted with Zond Systems, Inc. to develop an advanced data-acquisition system (ADAS) for wind energy projects. The ADAS can be used to simplify the process of making accurate measurements and analyzing. The system utilizes state-of-the-art electronics and telemetry to provide distributed multi-source, multi-channel data acquisition. Local stand-alone microprocessor-based data acquisition modules (DAMs) can be located near sources of measurement. These allow analog data values to be digitized close to the measurement source, thus eliminating the need for long data runs and slip rings. Signals from digital sensors and transducers can also be directly input to the local DAMS. A PC-based ground station is used to coordinate data transmission to and from all remote DAMS, display real-time values, archive data sets, and process and analyze results. The system is capable of acquiring synchronized time-series data from sensors and transducers under a variety of test configurations in an operational wind-park environment. Data acquisition needs of the wind industry differ significantly from those of most other technologies. Most conventional system designs do not handle data coming from multiple distributed sources, nor do they provide telemetry or the ability to mesh multiple incoming digital data streams. This paper describes the capabilities of the ADAS, and how its design and cost objectives are geared to meet anticipated US wind industry needs.

  1. Patient accounting systems: needs and capabilities.

    PubMed

    Kennedy, O G; Collignon, S

    1987-09-01

    In the first article of this series, it was stated that most finance executives are not very satisfied with the performance of their current patient accounting systems. What steps can a patient accounting system planner take to help ensure the system selected will garner high ratings from managers and users? Two primarily steps need to be taken. First, the planner needs to perform a thorough evaluation of both near- and long-term patient accounting requirements. He should determine which features and functions are most critical and ensure they are incorporated as selection criteria. The planner should also incorporate institutional planning into that process, such as planned expansion of facilities or services, to ensure that the system selected has the growth potential, interfacing capabilities, and flexibility to respond to the changing environment. Then, once system needs are fully charted, the planner should educate himself about the range of patient accounting system solutions available. The data show that most financial managers lack knowledge about most of the major patient accounting system vendors in the marketplace. Once vendors that offer systems that seemingly could meet needs are identified, the wise system planner will also want to obtain information from users about those vendors, to determine whether the systems perform as described and whether the vendor has been responsive to the needs of its customers. This step is a particularly important part of the planning process, because the data also show that users of some systems are significantly more satisfied than users of other patient accounting systems.

  2. Data acquisition at a residential photovoltaic system

    NASA Astrophysics Data System (ADS)

    McIntyre, J. M.; Miller, G. N.

    A description is presented of the techniques employed for data collection and analysis in the study of a small residential photovoltaic (PV) system. A model home of approximately 139 sq m incorporated a PV array on the south-facing roof. The PV system was designed to interface directly to the local utility system through an inverter which converted the direct current output of the array to 60 Hz alternating current. Electric power could flow either from the utility lines into the house or vice versa. The solar panel consisted of 120 modules installed in a 5 x 24 array. Attention is given to initial problems, the conduction of a systems analysis, the data collection method, the equipment used in the data acquisition system, aspects of data collection, the encountered problems, and the results of the data acquisition project. It was found that the data acquisition system employed was effective for computer-compatible data collection.

  3. Image acquisition system for traffic monitoring applications

    NASA Astrophysics Data System (ADS)

    Auty, Glen; Corke, Peter I.; Dunn, Paul; Jensen, Murray; Macintyre, Ian B.; Mills, Dennis C.; Nguyen, Hao; Simons, Ben

    1995-03-01

    An imaging system for monitoring traffic on multilane highways is discussed. The system, named Safe-T-Cam, is capable of operating 24 hours per day in all but extreme weather conditions and can capture still images of vehicles traveling up to 160 km/hr. Systems operating at different remote locations are networked to allow transmission of images and data to a control center. A remote site facility comprises a vehicle detection and classification module (VCDM), an image acquisition module (IAM) and a license plate recognition module (LPRM). The remote site is connected to the central site by an ISDN communications network. The remote site system is discussed in this paper. The VCDM consists of a video camera, a specialized exposure control unit to maintain consistent image characteristics, and a 'real-time' image processing system that processes 50 images per second. The VCDM can detect and classify vehicles (e.g. cars from trucks). The vehicle class is used to determine what data should be recorded. The VCDM uses a vehicle tracking technique to allow optimum triggering of the high resolution camera of the IAM. The IAM camera combines the features necessary to operate consistently in the harsh environment encountered when imaging a vehicle 'head-on' in both day and night conditions. The image clarity obtained is ideally suited for automatic location and recognition of the vehicle license plate. This paper discusses the camera geometry, sensor characteristics and the image processing methods which permit consistent vehicle segmentation from a cluttered background allowing object oriented pattern recognition to be used for vehicle classification. The image capture of high resolution images and the image characteristics required for the LPRMs automatic reading of vehicle license plates, is also discussed. The results of field tests presented demonstrate that the vision based Safe-T-Cam system, currently installed on open highways, is capable of producing automatic

  4. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non

  5. DAQMAN - A flexible configurable data acquisition system

    SciTech Connect

    Sivertz, Michael; Larry Hoff, Seth Nemesure

    2012-08-01

    DAQMAN is a flexible configurable interface that allows the user to build and operate a VME-based data acquisition system on a Linux workstation. It consists of two parts: a Java-based Graphical User Interface to configure the system, and a C-based utility that reads out the data and creates the output ASCII data file, with two levels of diagnostic tools. The data acquisition system requires a CAEN CONET-VME Bridge to communicate between the hardware in the VME crate and the Linux workstation. Data acquisition modules, such as ADCs, TDC, Scalers, can be loaded into the system, or removed easily. The GUI allows users to activate modules, and channels within modules by clicking on icons. Running configurations are stored; data are collected and can be viewed either as raw numbers, or by charts and histograms that update as the data are accumulated. Data files are written to disk in ASCII format, with a date and time stamp.

  6. Servicer system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    1987-01-01

    An orbital maneuvering vehicle (OMV) front end kit is defined which is capable of performing in-situ fluid resupply and modular maintenance of free flying spacecraft based on the integrated orbital servicing system (IOSS) concept. The compatibility of the IOSS to perform gas and fluid umbilical connect and disconnect functions utilizing connect systems currently available or in development is addressed. A series of tasks involving on-orbit servicing and the engineering test unit (ETU) of the on-orbit service were studied. The objective is the advancement of orbital servicing by expanding the Spacecraft Servicing Demonstration Plan (SSDP) to include detail demonstration planning using the Multimission Modular Spacecraft (MMS) and upgrading the ETU control.

  7. Microprocessor-Based Laboratory Data Acquisition Systems.

    ERIC Educational Resources Information Center

    Woodard, F. E.; And Others

    1981-01-01

    Focuses on attributes of microcomputer systems which affect their usefulness in a laboratory environment. In addition to presenting general concepts, comments are made regarding the implementation of these concepts using a microprocessor-based data acquisition system developed at the University of North Carolina. (CO)

  8. HP-NIM data acquisition system

    NASA Astrophysics Data System (ADS)

    Medina, José; Sequeiros, Juan; Henrion, Jean

    1987-06-01

    A Hewlett Packard desktop computer has been connected through a Data Ready Flag with NIM ADCs to produce a data acquisition system which can be used for cosmic ray telescope detector applications. The system has been tested with a two detector telescope irradiated with beams of 20Ne ions accelerated to 230 and 376 MeV.

  9. Description of the ACCESS data acquisition system

    SciTech Connect

    Treichel, B.A.; Koehl, E.R.

    1983-09-01

    The ACCESS data acquisition system is designed to acquire, process, and store samples of analog data produced by the Reversing Flow Test Apparatus. Data acquisition requires minimal interaction with the user, being governed primarily by trigger pulses generated in a shaft encoder coupled to a camshaft in the apparatus. A complete scan of 32 input data channels is made 18 times per camshaft revolution at speeds up to 30 revolutions per second. At higher speeds, up to the maximum apparatus speed of 50 revolutions per second, data channels are scanned 9 times per revolution. The programs for this data acquisition system are written for the Hewlett-Packard MCU 2250 measurement and control processor, operating in conjunction with an HP-1000 system computer.

  10. Complex System Governance for Acquisition

    DTIC Science & Technology

    2016-04-30

    engineering management and systems engineering at Old Dominion University (ODU) in Norfolk, VA. He holds the degrees of Professional Engineer and...received his PhD in the Department of Engineering Management and Systems Engineering at Old Dominion University (ODU) in Norfolk, VA. He holds an MEng in... Management , International Journal of System of Systems Engineering, and Journal of Requirements Engineering. [pkatina@odu.edu] Charles Keating—is a

  11. The data acquisition system for SLD

    SciTech Connect

    Sherden, D.J.

    1986-10-01

    This paper describes the data acquisition system planned for the SLD detector, which is being constructed for use with the SLAC Linear Collider (SLC). Analog electronics, heavily incorporating hybrid and custom VLSI circuitry, is mounted on the detector itself. Extensive use is made of multiplexing through optical fibers to a FASTBUS readout system. The low repetition rate of the SLC allows a relatively simple software-based trigger. Hardware and software processors within the acquisition modules are used to reduce the large volume of data per event and to calibrate the electronics. A farm of microprocessors is used for full reconstruction of a sample of events prior to transmission to the host.

  12. Draft Automatic Data Acquisition System Plan

    SciTech Connect

    Not Available

    1987-04-01

    This Automatic Data Acquisition System (ADAS) Plan has been prepared in support of the requirement for detailed site characterization of the Deaf Smith County candidate repository site in salt, and describes the data acquisition system which will be used for unattended data collection from the geotechnical instrumentation installed at the site. Section 1.1 discusses the programmatic background to the plan, Section 1.2 presents the scope and purpose of the plan, and the organization of the document is given in Section 1.3. 31 refs., 34 figs., 8 tabs.

  13. Simulation Based Acquisition for NASA's Office of Exploration Systems

    NASA Technical Reports Server (NTRS)

    Hale, Joe

    2004-01-01

    In January 2004, President George W. Bush unveiled his vision for NASA to advance U.S. scientific, security, and economic interests through a robust space exploration program. This vision includes the goal to extend human presence across the solar system, starting with a human return to the Moon no later than 2020, in preparation for human exploration of Mars and other destinations. In response to this vision, NASA has created the Office of Exploration Systems (OExS) to develop the innovative technologies, knowledge, and infrastructures to explore and support decisions about human exploration destinations, including the development of a new Crew Exploration Vehicle (CEV). Within the OExS organization, NASA is implementing Simulation Based Acquisition (SBA), a robust Modeling & Simulation (M&S) environment integrated across all acquisition phases and programs/teams, to make the realization of the President s vision more certain. Executed properly, SBA will foster better informed, timelier, and more defensible decisions throughout the acquisition life cycle. By doing so, SBA will improve the quality of NASA systems and speed their development, at less cost and risk than would otherwise be the case. SBA is a comprehensive, Enterprise-wide endeavor that necessitates an evolved culture, a revised spiral acquisition process, and an infrastructure of advanced Information Technology (IT) capabilities. SBA encompasses all project phases (from requirements analysis and concept formulation through design, manufacture, training, and operations), professional disciplines, and activities that can benefit from employing SBA capabilities. SBA capabilities include: developing and assessing system concepts and designs; planning manufacturing, assembly, transport, and launch; training crews, maintainers, launch personnel, and controllers; planning and monitoring missions; responding to emergencies by evaluating effects and exploring solutions; and communicating across the OEx

  14. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2005-01-01

    A measurement acquisition method that alleviates many shortcomings of traditional measurement systems is presented in this paper. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed.

  15. Overview of ASC Capability Computing System Governance Model

    SciTech Connect

    Doebling, Scott W.

    2012-07-11

    This document contains a description of the Advanced Simulation and Computing Program's Capability Computing System Governance Model. Objectives of the Governance Model are to ensure that the capability system resources are allocated on a priority-driven basis according to the Program requirements; and to utilize ASC Capability Systems for the large capability jobs for which they were designed and procured.

  16. Acquisition Management for System of Systems: Requirement Evolution and Acquisition Strategy Planning

    DTIC Science & Technology

    2013-01-29

    inefficiencies and warranted the pursuit of better systems engineering practices to encompass SoS principles. The recognition of the need for improved...important for providing acquisition groups with the means of performing acquisition, integration, and development decision-making in the mist of evolving

  17. Human Planetary Landing System (HPLS) Capability Roadmap NRC Progress Review

    NASA Technical Reports Server (NTRS)

    Manning, Rob; Schmitt, Harrison H.; Graves, Claude

    2005-01-01

    Capability Roadmap Team. Capability Description, Scope and Capability Breakdown Structure. Benefits of the HPLS. Roadmap Process and Approach. Current State-of-the-Art, Assumptions and Key Requirements. Top Level HPLS Roadmap. Capability Presentations by Leads. Mission Drivers Requirements. "AEDL" System Engineering. Communication & Navigation Systems. Hypersonic Systems. Super to Subsonic Decelerator Systems. Terminal Descent and Landing Systems. A Priori In-Situ Mars Observations. AEDL Analysis, Test and Validation Infrastructure. Capability Technical Challenges. Capability Connection Points to other Roadmaps/Crosswalks. Summary of Top Level Capability. Forward Work.

  18. Evolution of a Unique Systems Engineering Capability

    SciTech Connect

    Robert M. Caliva; James A. Murphy; Kyle B. Oswald

    2011-06-01

    The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INL’s Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INL’s Systems Engineering Department has chosen to focus on customer intimacy where the customer’s needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

  19. Advanced Self-Calibrating, Self-Repairing Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J. (Inventor); Eckhoff, Anthony J. (Inventor); Angel, Lucena R. (Inventor); Perotti, Jose M. (Inventor)

    2002-01-01

    An improved self-calibrating and self-repairing Data Acquisition System (DAS) for use in inaccessible areas, such as onboard spacecraft, and capable of autonomously performing required system health checks, failure detection. When required, self-repair is implemented utilizing a "spare parts/tool box" system. The available number of spare components primarily depends upon each component's predicted reliability which may be determined using Mean Time Between Failures (MTBF) analysis. Failing or degrading components are electronically removed and disabled to reduce power consumption, before being electronically replaced with spare components.

  20. Acquisition of a Spinning Disk Confocal Microscope to Enhance Research and Teaching Capabilities in the STEM Fields at Howard University

    DTIC Science & Technology

    2015-05-13

    Teaching Capabilities in the STEM Fields at Howard University The views, opinions and/or findings contained in this report are those of the author(s) and...Report: Acquisition of a Spinning Disk Confocal Microscope to Enhance Research and Teaching Capabilities in the STEM Fields at Howard University...ETR-1 have been implicated in myotonic muscular dystrophy when mutated. Recently, ETR- 1 was identified in a large -scale C. elegans RNAi suppressor

  1. NASA Data Acquisitions System (NDAS) Software Architecture

    NASA Technical Reports Server (NTRS)

    Davis, Dawn; Duncan, Michael; Franzl, Richard; Holladay, Wendy; Marshall, Peggi; Morris, Jon; Turowski, Mark

    2012-01-01

    The NDAS Software Project is for the development of common low speed data acquisition system software to support NASA's rocket propulsion testing facilities at John C. Stennis Space Center (SSC), White Sands Test Facility (WSTF), Plum Brook Station (PBS), and Marshall Space Flight Center (MSFC).

  2. Data-Acquisition System For Rotor Vibrations

    NASA Technical Reports Server (NTRS)

    Posta, Stephen J.; Brown, Gerald V.

    1988-01-01

    New system trades hardware for software to reduce cost. Composite train of interspersed blade-detection pulses produced by gates at four probe ports on data-acquisition board. Pulses latch count from high-speed wraparound clock counter and initiate writing of count onto current address of memory. Result: time corresponding to each blade passage stamped into memory.

  3. Data Acquisition System(DAS) Sustaining Engineering

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This paper presents general information describing the Data Acquisition System contract, a summary of objectives, tasks performed and completed. The hardware deliverables which are comprised of: 1) Two ground DAS units; 2) Two flight DAS units; 3) Logistic spares; and 4) Shipping containers are described. Also included are the data requirements and scope of the contract.

  4. Cardiopulmonary data-acquisition system

    NASA Technical Reports Server (NTRS)

    Crosier, W. G.; Reed, R. A.

    1981-01-01

    Computerized system controls and monitors bicycle and treadmill cardiovascular stress tests. It acquires and reduces stress data and displays heart rate, blood pressure, workload, respiratory rate, exhaled-gas composition, and other variables. Data are printed on hard-copy terminal every 30 seconds for quick operator response to patient. Ergometer workload is controlled in real time according to experimental protocol. Collected data are stored directly on tape in analog form and on floppy disks in digital form for later processing.

  5. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor,Bryant D.; Shams, Qamar A.; Fox, Robert L.

    2007-01-01

    This paper presents a measurement acquisition method that alleviates many shortcomings of traditional measurement systems. The shortcomings are a finite number of measurement channels, weight penalty associated with measurements, electrical arcing, wire degradations due to wear or chemical decay and the logistics needed to add new sensors. Wire degradation has resulted in aircraft fatalities and critical space launches being delayed. The key to this method is the use of sensors designed as passive inductor-capacitor circuits that produce magnetic field responses. The response attributes correspond to states of physical properties for which the sensors measure. Power is wirelessly provided to the sensing element by using Faraday induction. A radio frequency antenna produces a time-varying magnetic field used to power the sensor and receive the magnetic field response of the sensor. An interrogation system for discerning changes in the sensor response frequency, resistance and amplitude has been developed and is presented herein. Multiple sensors can be interrogated using this method. The method eliminates the need for a data acquisition channel dedicated to each sensor. The method does not require the sensors to be near the acquisition hardware. Methods of developing magnetic field response sensors and the influence of key parameters on measurement acquisition are discussed. Examples of magnetic field response sensors and the respective measurement characterizations are presented. Implementation of this method on an aerospace system is discussed.

  6. Image acquisition system for a hospital enterprise

    NASA Astrophysics Data System (ADS)

    Moore, Stephen M.; Beecher, David E.

    1998-07-01

    Hospital enterprises are being created through mergers and acquisitions of existing hospitals. One area of interest in the PACS literature has been the integration of information systems and imaging systems. Hospital enterprises with multiple information and imaging systems provide new challenges to the integration task. This paper describes the requirements at the BJC Health System and a testbed system that is designed to acquire images from a number of different modalities and hospitals. This testbed system is integrated with Project Spectrum at BJC which is designed to provide a centralized clinical repository and a single desktop application for physician review of the patient chart (text, lab values, images).

  7. Potential capabilities of aircraft laser landing systems.

    PubMed

    Kaloshin, G A; Matvienko, G G; Shishkin, S A; Anisimov, V I; Butuzov, V V; Zhukov, V V; Stolyarov, G V; Pasyuk, V P

    2016-10-20

    We present calculations of the efficiency of the laser landing system (LLS), based on determining the minimum required fluxes of scattered radiation from fixed extended landmarks (FELs), which are LLS indicators in the case of visual FEL detection under real operation conditions. It is shown that, when the meteorological visibility range Sm=800  m, for reliable detection of laser beams from the glissade slope group at ranges L∼1.0-1.6  km under nighttime conditions, the minimum required powers are Pmin=0.5  W for λ=0.52 and 0.64 μm, given deviations from the glissade path by the angle ϕ=0°-5°. The green and red rays are visible at distances L=1-1.2  km under twilight conditions. Our calculations corroborated the possibility of creating a new-generation laser-based LLS capable of ensuring aircraft landing under the conditions of International Civil Aviation Organization category 1 (decision height of 60 m at the minimum visibility equal 800 m).

  8. Acquisition systems for heat transfer measurement

    SciTech Connect

    De Witt, R.J.

    1983-01-01

    Practical heat transfer data acquisition systems are normally characterized by the need for high-resolution, low-drift, low-speed recording devices. Analog devices such as strip chart or circular recorders and FM analog magnetic tape have excellent resolution and work well when data will be presented in temperature versus time format only and need not be processed further. Digital systems are more complex and require an understanding of the following components: digitizing devices, interface bus types, processor requirements, and software design. This paper discusses all the above components of analog and digital data acquisition, as they are used in current practice. Additional information on thermocouple system analysis will aid the user in developing accurate heat transfer measuring systems.

  9. The CDMS II data acquisition system

    SciTech Connect

    Bauer, D.A.; Burke, S.; Cooley, J.; Crisler, M.; Cushman, P.; DeJongh, F.; Duong, L.; Ferril, R.; Golwala, S.R.; Hall, J.; Holmgren, D.; /Fermilab /Texas A-M

    2011-01-01

    The Data Acquisition System for the CDMS II dark matter experiment was designed and built when the experiment moved to its new underground installation at the Soudan Lab. The combination of remote operation and increased data load necessitated a completely new design. Elements of the original LabView system remained as stand-alone diagnostic programs, but the main data processing moved to a VME-based system with custom electronics for signal conditioning, trigger formation and buffering. The data rate was increased 100-fold and the automated cryogenic system was linked to the data acquisition. A modular server framework with associated user interfaces was implemented in Java to allow control and monitoring of the entire experiment remotely.

  10. Performance confirmation data acquisition system

    SciTech Connect

    McAffee, D.A.; Raczka, N.T.

    1997-12-31

    As part of the Viability Assessment (VA) work, this QAP-3-9 document presents and evaluates a comprehensive set of viable concepts for collecting Performance Confirmation (PC) related data. The concepts include: monitoring subsurface repository air temperatures, humidity levels and gaseous emissions via the subsurface ventilation systems, and monitoring the repository geo-technical parameters and rock mass from bore-holes located along the perimeter main drifts and throughout a series of human-rated Observation Drifts to be located in a plane 25 meters above the plane of the emplacement drifts. A key element of this document is the development and analysis of a purposed multi-purpose Remote Inspection Gantry that would provide direct, real-time visual, thermal, and radiological monitoring of conditions inside operational emplacement drifts and close-up observations of in-situ Waste Packages. Preliminary finite-element analyses are presented that indicate the technological feasibility of operating an inspection gantry inside the operational emplacement drifts for short inspection missions lasting 2--3 hours. Overall reliability, availability, and maintainability of the PC data collection concepts are discussed. Preliminary concepts for PC data collection network are also provided.

  11. Data Acquisition System for the NCDs at SNO

    NASA Astrophysics Data System (ADS)

    Cox, G. Adam

    2004-05-01

    The NCDs at SNO detect thermalized neutrons liberated by the NC interaction between solar neutrinos and SNO's heavy water. The NCD data acquisition system (NCDDAQ) is designed to maximize the identification of these neutron events from various types of backgrounds on an event-by-event basis. The NCDDAQ is capable acquiring data at rates much higher than the expected solar neutrino event rate. This allows the NCDs to monitor the time evolution of potential neutrino signals from galactic supernovae. The NCDDAQ consists of a mixture of commericially available electronics equipment and University of Washington custom--built electronics, and is controlled by our custom--built Online Realtime Control and Acquisition (ORCA) object--oriented software program. The NCDDAQ is fully integrated into SNO's PMT data acquisistion system to provide shared trigger information and a combined data stream. This work was supported by the U. S. Department of Energy Office of Nuclear Physics.

  12. Advanced Video Data-Acquisition System For Flight Research

    NASA Technical Reports Server (NTRS)

    Miller, Geoffrey; Richwine, David M.; Hass, Neal E.

    1996-01-01

    Advanced video data-acquisition system (AVDAS) developed to satisfy variety of requirements for in-flight video documentation. Requirements range from providing images for visualization of airflows around fighter airplanes at high angles of attack to obtaining safety-of-flight documentation. F/A-18 AVDAS takes advantage of very capable systems like NITE Hawk forward-looking infrared (FLIR) pod and recent video developments like miniature charge-couple-device (CCD) color video cameras and other flight-qualified video hardware.

  13. Acquisition system testing with superfluid helium. [cryopumping for space

    NASA Technical Reports Server (NTRS)

    Anderson, John E.; Fester, Dale A.; Dipirro, Michael J.

    1988-01-01

    Minus one-g outflow tests were conducted with superfluid helium in conjunction with a thermomechanical pump setup in order to study the use of capillary acquisition systems for NASA's Superfluid Helium On-Orbit Transfer (SHOOT) flight experiment. Results show that both fine mesh screen and porous sponge systems are capable of supplying superfluid helium to the thermomechanical pump inlet against a one-g head up to 4 cm, fulfilling the SHOOT requirements. Sponge results were found to be reproducible, while the screen results were not.

  14. Optoelectronic date acquisition system based on FPGA

    NASA Astrophysics Data System (ADS)

    Li, Xin; Liu, Chunyang; Song, De; Tong, Zhiguo; Liu, Xiangqing

    2015-11-01

    An optoelectronic date acquisition system is designed based on FPGA. FPGA chip that is EP1C3T144C8 of Cyclone devices from Altera corporation is used as the centre of logic control, XTP2046 chip is used as A/D converter, host computer that communicates with the date acquisition system through RS-232 serial communication interface are used as display device and photo resistance is used as photo sensor. We use Verilog HDL to write logic control code about FPGA. It is proved that timing sequence is correct through the simulation of ModelSim. Test results indicate that this system meets the design requirement, has fast response and stable operation by actual hardware circuit test.

  15. Isothermal thermogravimetric data acquisition analysis system

    NASA Technical Reports Server (NTRS)

    Cooper, Kenneth, Jr.

    1991-01-01

    The description of an Isothermal Thermogravimetric Analysis (TGA) Data Acquisition System is presented. The system consists of software and hardware to perform a wide variety of TGA experiments. The software is written in ANSI C using Borland's Turbo C++. The hardware consists of a 486/25 MHz machine with a Capital Equipment Corp. IEEE488 interface card. The interface is to a Hewlett Packard 3497A data acquisition system using two analog input cards and a digital actuator card. The system provides for 16 TGA rigs with weight and temperature measurements from each rig. Data collection is conducted in three phases. Acquisition is done at a rapid rate during initial startup, at a slower rate during extended data collection periods, and finally at a fast rate during shutdown. Parameters controlling the rate and duration of each phase are user programmable. Furnace control (raising and lowering) is also programmable. Provision is made for automatic restart in the event of power failure or other abnormal terminations. Initial trial runs were conducted to show system stability.

  16. Wavelets for full reconfigurable ECG acquisition system

    NASA Astrophysics Data System (ADS)

    Morales, D. P.; García, A.; Castillo, E.; Meyer-Baese, U.; Palma, A. J.

    2011-06-01

    This paper presents the use of wavelet cores for a full reconfigurable electrocardiogram signal (ECG) acquisition system. The system is compound by two reconfigurable devices, a FPGA and a FPAA. The FPAA is in charge of the ECG signal acquisition, since this device is a versatile and reconfigurable analog front-end for biosignals. The FPGA is in charge of FPAA configuration, digital signal processing and information extraction such as heart beat rate and others. Wavelet analysis has become a powerful tool for ECG signal processing since it perfectly fits ECG signal shape. The use of these cores has been integrated in the LabVIEW FPGA module development tool that makes possible to employ VHDL cores within the usual LabVIEW graphical programming environment, thus freeing the designer from tedious and time consuming design of communication interfaces. This enables rapid test and graphical representation of results.

  17. Advances in Engine Test Capabilities at the NASA Glenn Research Center's Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter M.; Panek, Joseph W.; Dicki, Dennis J.; Piendl, Barry R.; Lizanich, Paul J.; Klann, Gary A.

    2006-01-01

    The Propulsion Systems Laboratory at the National Aeronautics and Space Administration (NASA) Glenn Research Center is one of the premier U.S. facilities for research on advanced aeropropulsion systems. The facility can simulate a wide range of altitude and Mach number conditions while supplying the aeropropulsion system with all the support services necessary to operate at those conditions. Test data are recorded on a combination of steady-state and highspeed data-acquisition systems. Recently a number of upgrades were made to the facility to meet demanding new requirements for the latest aeropropulsion concepts and to improve operational efficiency. Improvements were made to data-acquisition systems, facility and engine-control systems, test-condition simulation systems, video capture and display capabilities, and personnel training procedures. This paper discusses the facility s capabilities, recent upgrades, and planned future improvements.

  18. Handbook for Training Management during System Acquisition.

    DTIC Science & Technology

    1986-04-01

    separate training contracts would have to be renegoti- ated, orders amended, students returned home, hotel reserva- tions changed, etc. Although this issue...HQ USAF/ LEYE , 7 February 1980. 24. US Department of the Air Force: Headquarters US Air Force. AFR 800-12: Acquisition of Support Equipment. Washington...AFR 800-21: Interim Contractor Support for Systems and Equipment. Washington, DC: HQ USAF/ LEYE , 26 September 1978. 27. US Department of the Air Force

  19. A simulation of data acquisition system for SSC experiments

    SciTech Connect

    Watase, Y.; Ikeda, H.

    1989-04-01

    A simulation on some parts of the data acquisition system was performed using a general purpose simulation language GPSS. Several results of the simulation are discussed for the data acquisition system for the SSC experiment.

  20. Increasingly automated procedure acquisition in dynamic systems

    NASA Technical Reports Server (NTRS)

    Mathe, Nathalie; Kedar, Smadar

    1992-01-01

    Procedures are widely used by operators for controlling complex dynamic systems. Currently, most development of such procedures is done manually, consuming a large amount of paper, time, and manpower in the process. While automated knowledge acquisition is an active field of research, not much attention has been paid to the problem of computer-assisted acquisition and refinement of complex procedures for dynamic systems. The Procedure Acquisition for Reactive Control Assistant (PARC), which is designed to assist users in more systematically and automatically encoding and refining complex procedures. PARC is able to elicit knowledge interactively from the user during operation of the dynamic system. We categorize procedure refinement into two stages: diagnosis - diagnose the failure and choose a repair - and repair - plan and perform the repair. The basic approach taken in PARC is to assist the user in all steps of this process by providing increased levels of assistance with layered tools. We illustrate the operation of PARC in refining procedures for the control of a robot arm.

  1. The new data acquisition system at GSI

    SciTech Connect

    Essel, H.G.; Hoffmann, J.; Kurz, N.; Mayer, R.S.; Ott, W.; Schall, D.

    1996-02-01

    The new general purpose data acquisition system developed at GSI is currently installed at about 30 experiments at GSI and other sites. It is based on the LynxOS operating system. Several CPUs, i.e. GSI developed CAMAC computer boards, VME processor boards, and Aleph Event Builders, are connected by a memory mapped bus, i.e. a VSB or VME bus. It can be configured easily for various hardware setups and is highly optimized for fast trigger rates and data throughput. The first and successful experiment taking data with the system was the SHIP production run for elements 110 and 111.

  2. Amphibious Combat Vehicle: Some Acquisition Activities Demonstrate Best Practices; Attainment of Amphibious Capability to be Determined

    DTIC Science & Technology

    2015-10-01

    surface connector programs. GAO identified acquisition and analysis of alternatives best practices based on its prior body of work and DOD guidance...connector programs.4 We identified acquisition best practices based on our extensive body of work in that area and Department of Defense (DOD) guidance...2012. These previous AOAs and other supporting studies comprise a body of work that has informed the most recent ACV AOA update as well as the ACV 1.1

  3. Test data acquisition system for the ESTEC large solar simulator at ESA/ESTEC

    NASA Technical Reports Server (NTRS)

    Buroni, G.; Zucconi, L.

    1988-01-01

    A prototype data acquisition system is described. The device characteristics, its performance and the system aspects connected to the integration of the data acquisition system into the space simulator instrumentation and environment are discussed. The data acquisition system has a modular architecture and manifold configuration capability. The input characteristics feature high resolution and accuracy/stability for the measurement of low level (thermocouple originated) analog signals, even in the presence of high common mode and S/N figures. The output is serial digital, compatible with ESA data handling standards. The device is designed to be installed in particularly hostile environments, such as that of a solar simulator.

  4. Two Demonstrations with a New Data-Acquisition System

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2014-01-01

    Nowadays, the use of data-acquisition systems in undergraduate laboratories is routine. Many computer-assisted experiments became possible with the PASCO scientific data-acquisition system based on the 750 Interface and DataStudio software. A new data-acquisition system developed by PASCO includes the 850 Universal Interface and Capstone software.…

  5. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, Christopher L. (Inventor); Fox, Melanie L. (Inventor); Bryant, Robert G. (Inventor)

    2006-01-01

    Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor s response kequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  6. Magnetic Field Response Measurement Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2007-01-01

    Magnetic field response sensors designed as passive inductor- capacit or circuits produce magnetic field responses whose harmonic frequenci es correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induc tion. A radio frequency antenna produces the time varying magnetic fi eld used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for disce rning changes in sensor's response frequency, resistance and amplitud e is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminat ing the need to have a data acquisition channel dedicated to each se nsor. The method does not require the sensors to be in proximity to a ny form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

  7. Jefferson Lab Data Acquisition Run Control System

    SciTech Connect

    Vardan Gyurjyan; Carl Timmer; David Abbott; William Heyes; Edward Jastrzembski; David Lawrence; Elliott Wolin

    2004-10-01

    A general overview of the Jefferson Lab data acquisition run control system is presented. This run control system is designed to operate the configuration, control, and monitoring of all Jefferson Lab experiments. It controls data-taking activities by coordinating the operation of DAQ sub-systems, online software components and third-party software such as external slow control systems. The main, unique feature which sets this system apart from conventional systems is its incorporation of intelligent agent concepts. Intelligent agents are autonomous programs which interact with each other through certain protocols on a peer-to-peer level. In this case, the protocols and standards used come from the domain-independent Foundation for Intelligent Physical Agents (FIPA), and the implementation used is the Java Agent Development Framework (JADE). A lightweight, XML/RDF-based language was developed to standardize the description of the run control system for configuration purposes.

  8. Servicers system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.

    1985-01-01

    A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.

  9. Modeling of the DZero data acquisition system

    SciTech Connect

    Angstadt, R.; Johnson, M. Manning, I.L. ); Wightman, J.A. . Dept. of Physics)

    1992-08-01

    A queuing theory model was used in the initial design of the DZero data acquisition system. It was mainly used for the front end electronic systems. Since then the model has been extended to include the entire data path for the tracking system. The tracking system generates the most data so we expect this system to determine the overall transfer rate. The model was developed using both analytical and simulation methods for solving a series of single server queues. This paper describes the model and the methods used to develop it. The authors present results form the original models, updated calculations representing the system as built and comparisons with measurements made with the hardware in place for the cosmic ray test run.

  10. Modeling of the DZero data acquisition system

    SciTech Connect

    Angstadt, R.; Johnson, M.; Manning, I.L. ); Wightman, J.A. . Dept. of Physics Texas Accelerator Center, The Woodlands, TX )

    1991-12-01

    A queuing theory model was used in the initial design of the D0 data acquisition system. It was mainly used for the front end electronic systems. Since then the model has been extended to include the entire data path for the tracking system. The tracking system generates the most data so we expect this system to determine the overall transfer rate. The model was developed using both analytical and simulation methods for solving a series of single server queues. We describe the model and the methods used to develop it. We also present results from the original models, updated calculations representing the system as built and comparisons with measurements made with the hardware in place for the cosmic ray test run. 3 refs.

  11. Integrated System Health Management (ISHM): Systematic Capability Implementation

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Holland, Randy; Schmalzwel, John; Duncavage, Dan

    2006-01-01

    This paper provides a credible approach for implementation of ISHM capability in any system. The requirements and processes to implement ISHM capability are unique in that a credible capability is initially implemented at a low level, and it evolves to achieve higher levels by incremental augmentation. In contrast, typical capabilities, such as thrust of an engine, are implemented once at full Functional Capability Level (FCL), which is not designed to change during the life of the product. The approach will describe core ingredients (e.g. technologies, architectures, etc.) and when and how ISHM capabilities may be implemented. A specific architecture/taxonomy/ontology will be described, as well as a prototype software environment that supports development of ISHM capability. This paper will address implementation of system-wide ISHM as a core capability, and ISHM for specific subsystems as expansions and evolution, but always focusing on achieving an integrated capability.

  12. Accurate GPS Time-Linked data Acquisition System (ATLAS II) user's manual.

    SciTech Connect

    Jones, Perry L.; Zayas, Jose R.; Ortiz-Moyet, Juan

    2004-02-01

    The Accurate Time-Linked data Acquisition System (ATLAS II) is a small, lightweight, time-synchronized, robust data acquisition system that is capable of acquiring simultaneous long-term time-series data from both a wind turbine rotor and ground-based instrumentation. This document is a user's manual for the ATLAS II hardware and software. It describes the hardware and software components of ATLAS II, and explains how to install and execute the software.

  13. Acquisition Risks in a World of Joint Capabilities: Evaluating Complex Configurations

    DTIC Science & Technology

    2015-07-06

    contagion was apparent. Keywords: Major Defense Acquisition Programs, Networks, Network Configurations, Contagion, Exponential Random Graph Models...DAES – Defense Acquisition Executive Summary ERGMs – Exponential Random Graph Models GTD – Graph Theoretic Dimension K-S – Kologorov-Smirnov MCMC...Minimum Maximum Mean Std. Deviation Recovery Rate 26 1.00 5.00 2.08 1.09 PCT PAUC Growth FY 2012 48 -32.35 12.89 -1.17 6.31 PCT PAUC Growth FY 2011 46

  14. Monitoring and Acquisition Real-time System (MARS)

    NASA Technical Reports Server (NTRS)

    Holland, Corbin

    2013-01-01

    MARS is a graphical user interface (GUI) written in MATLAB and Java, allowing the user to configure and control the Scalable Parallel Architecture for Real-Time Acquisition and Analysis (SPARTAA) data acquisition system. SPARTAA not only acquires data, but also allows for complex algorithms to be applied to the acquired data in real time. The MARS client allows the user to set up and configure all settings regarding the data channels attached to the system, as well as have complete control over starting and stopping data acquisition. It provides a unique "Test" programming environment, allowing the user to create tests consisting of a series of alarms, each of which contains any number of data channels. Each alarm is configured with a particular algorithm, determining the type of processing that will be applied on each data channel and tested against a defined threshold. Tests can be uploaded to SPARTAA, thereby teaching it how to process the data. The uniqueness of MARS is in its capability to be adaptable easily to many test configurations. MARS sends and receives protocols via TCP/IP, which allows for quick integration into almost any test environment. The use of MATLAB and Java as the programming languages allows for developers to integrate the software across multiple operating platforms.

  15. Advanced data acquisition system for SEVAN

    NASA Astrophysics Data System (ADS)

    Chilingaryan, Suren; Chilingarian, Ashot; Danielyan, Varuzhan; Eppler, Wolfgang

    2009-02-01

    Huge magnetic clouds of plasma emitted by the Sun dominate intense geomagnetic storm occurrences and simultaneously they are correlated with variations of spectra of particles and nuclei in the interplanetary space, ranging from subtermal solar wind ions till GeV energy galactic cosmic rays. For a reliable and fast forecast of Space Weather world-wide networks of particle detectors are operated at different latitudes, longitudes, and altitudes. Based on a new type of hybrid particle detector developed in the context of the International Heliophysical Year (IHY 2007) at Aragats Space Environmental Center (ASEC) we start to prepare hardware and software for the first sites of Space Environmental Viewing and Analysis Network (SEVAN). In the paper the architecture of the newly developed data acquisition system for SEVAN is presented. We plan to run the SEVAN network under one-and-the-same data acquisition system, enabling fast integration of data for on-line analysis of Solar Flare Events. An Advanced Data Acquisition System (ADAS) is designed as a distributed network of uniform components connected by Web Services. Its main component is Unified Readout and Control Server (URCS) which controls the underlying electronics by means of detector specific drivers and makes a preliminary analysis of the on-line data. The lower level components of URCS are implemented in C and a fast binary representation is used for the data exchange with electronics. However, after preprocessing, the data are converted to a self-describing hybrid XML/Binary format. To achieve better reliability all URCS are running on embedded computers without disk and fans to avoid the limited lifetime of moving mechanical parts. The data storage is carried out by means of high performance servers working in parallel to provide data security. These servers are periodically inquiring the data from all URCS and storing it in a MySQL database. The implementation of the control interface is based on high level

  16. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  17. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  18. Miniature infrared data acquisition and telemetry system

    NASA Technical Reports Server (NTRS)

    Stokes, J. H.; Ward, S. M.

    1985-01-01

    The Miniature Infrared Data Acquisition and Telemetry (MIRDAT) Phase 1 study was performed to determine the technical and commercial feasibility of producing a miniaturized electro-optical telemetry system. This system acquires and transmits experimental data from aircraft scale models for realtime monitoring in wind tunnels. During the Phase 1 study, miniature prototype MIRDAT telemetry devices were constructed, successfully tested in the laboratory and delivered to the user for wind tunnel testing. A search was conducted for commercially available components and advanced hybrid techniques to further miniaturize the system during Phase 2 development. A design specification was generated from laboratory testing, user requirements and discussions with component manufacturers. Finally, a preliminary design of the proposed MIRDAT system was documented for Phase 2 development.

  19. LBL Magnetic-Measurements Data-Acquisition System

    SciTech Connect

    Green, M.I.; Nelson, D.H.

    1983-03-01

    The LBL Magnetic Measurements Engineering (MME) Group has developed a Real-Time Data Acquisition System (DAS) for magnetic measurements. The design objective was for a system that was versatile, portable, modular, expandable, quickly and easily reconfigurable both in hardware and software, and inexpensive. All objectives except the last were attained. An LSI 11/23 microcomputer is interfaced to a clock-calendar, printer, CRT control terminal, plotter with hard copy, floppy and hard disks, GPIB, and CAMAC buses. Off-the-shelf hardware and software have been used where possible. Operational capabilities include: (1) measurement of high permeability materials; (2) harmonic error analysis of (a) superconducting dipoles and (b) rare earth cobalt (REC) and conventional quadrupole magnets; and (3) 0.1% accuracy x-y mapping with Hall probes. Results are typically presented in both tabular and graphical form during measurements. Only minutes are required to switch from one measurement capability to another. Brief descriptions of the DAS capabilities, some of the special instrumentation developed to implement these capabilities, and planned developments are given below.

  20. Overview of NASA Langley's Systems Analysis Capabilities

    NASA Technical Reports Server (NTRS)

    Cavanaugh, Stephen; Kumar, Ajay; Brewer, Laura; Kimmel, Bill; Korte, John; Moul, Tom

    2006-01-01

    The Systems Analysis and Concepts Directorate (SACD) has been in the systems analysis business line supporting National Aeronautics and Space Administration (NASA) aeronautics, exploration, space operations and science since the 1960 s. Our current organization structure is shown in Figure 1. SACD mission can be summed up in the following statements: 1. We conduct advanced concepts for Agency decision makers and programs. 2. We provide aerospace systems analysis products such as mission architectures, advanced system concepts, system and technology trades, life cycle cost and risk analysis, system integration and pre-decisional sensitive information. 3. Our work enables informed technical, programmatic and budgetary decisions. SACD has a complement of 114 government employees and approximately 50 on-site contractors which is equally split between supporting aeronautics and exploration. SACD strives for technical excellence and creditability of the systems analysis products delivered to its customers. The Directorate office is continuously building market intelligence and working with other NASA centers and external partners to expand our business base. The Branches strive for technical excellence and credibility of our systems analysis products by seeking out existing and new partnerships that are critical for successful systems analysis. The Directorates long term goal is to grow the amount of science systems analysis business base.

  1. Bagless Transfer System Welder Data Acquisition Software

    SciTech Connect

    Collins, Susan L.

    2003-09-30

    The Bagless Transfer System Welder Data Acquisition Software (BTS DAS) was developed by SRTC to replace a strip chart recorder that has been in place since the design of the BTS. During the welding process, critical weld parameters such as weld current and voltage, can give valuable information about the weld. In the past, weld data from the TID welding process, has been monitored using strip chart recorders. The data from the weld process, recorded on the strip chart recorder traces, are reviewed to analyze the weld. The BTS DAS improves this technology by digitizing the weld data which allows for automation of the analysis process. Also, the data files are now stored digitally as well as a hard copy printout, so they can be reanalyzed if needed. The BTS DAS performs the necessary functions to perform the data acquisition functions during the BTS Welding Process. It is important to monitor the critical weld parameters, current and voltage, during a weld as they can be used to set acceptance criteria for weld acceptance. The software monitors and records the weld current, voltage, and RPM data. The welder DAS is a passive device and does not control the welder. The BTS control system interfaces directly with the welder and the BTS DAS. Digital handshaking is used between the BTS DAS and the BTS control system to ensure that the DAS is ready to weld prior to allowing the operator to initiate the welding process.

  2. The DISTO data acquisition system at SATURNE

    SciTech Connect

    Balestra, F. |; Bedfer, Y.; Bertini, R. ||

    1998-06-01

    The DISTO collaboration has built a large-acceptance magnetic spectrometer designed to provide broad kinematic coverage of multiparticle final states produced in pp scattering. The spectrometer has been installed in the polarized proton beam of the Saturne accelerator in Saclay to study polarization observables in the {rvec p}p {yields} pK{sup +}{rvec Y} (Y = {Lambda}, {Sigma}{sup 0} or Y{sup *}) reaction and vector meson production ({psi}, {omega} and {rho}) in pp collisions. The data acquisition system is based on a VME 68030 CPU running the OS/9 operating system, housed in a single VME crate together with the CAMAC interface, the triple port ECL memories, and four RISC R3000 CPU. The digitization of signals from the detectors is made by PCOS III and FERA front-end electronics. Data of several events belonging to a single Saturne extraction are stored in VME triple-port ECL memories using a hardwired fast sequencer. The buffer, optionally filtered by the RISC R3000 CPU, is recorded on a DLT cassette by DAQ CPU using the on-board SCSI interface during the acceleration cycle. Two UNIX workstations are connected to the VME CPUs through a fast parallel bus and the Local Area Network. They analyze a subset of events for on-line monitoring. The data acquisition system is able to read and record 3,500 ev/burst in the present configuration with a dead time of 15%.

  3. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1994-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology, and (2) developing general methods and tools for building similar explanation facilities in other domains.

  4. Improving the explanation capabilities of advisory systems

    NASA Technical Reports Server (NTRS)

    Porter, Bruce; Souther, Art

    1993-01-01

    A major limitation of current advisory systems (e.g., intelligent tutoring systems and expert systems) is their restricted ability to give explanations. The goal of our research is to develop and evaluate a flexible explanation facility, one that can dynamically generate responses to questions not anticipated by the system's designers and that can tailor these responses to individual users. To achieve this flexibility, we are developing a large knowledge base, a viewpoint construction facility, and a modeling facility. In the long term we plan to build and evaluate advisory systems with flexible explanation facilities for scientists in numerous domains. In the short term, we are focusing on a single complex domain in biological science, and we are working toward two important milestones: (1) building and evaluating an advisory system with a flexible explanation facility for freshman-level students studying biology; and (2) developing general methods and tools for building similar explanation facilities in other domains.

  5. New User Interface Capabilities for Control Systems

    SciTech Connect

    Kasemir, Kay

    2009-01-01

    Latest technologies promise new control system User Interface (UI) features and greater interoperability of applications. New developments using Java and Eclipse aim to unify diverse control systems and make communication between applications seamless. Web based user interfaces can improve portability and remote access. Modern programming tools improve efficiency, support testing and facilitate shared code. This paper will discuss new developments aimed at improving control system interfaces and their development environment.

  6. System-of-Systems Acquisition: Alignment and Collaboration

    DTIC Science & Technology

    2011-10-11

    production projects espoused in Ishak, Archimede , and Charbonnaud (2010). The kernel of this system is the SCEP (Supervisor, Customer, Environment...Producer) model ( Archimede & Coudert, 2001). Based on multi-agent systems (Ferber, 1999), the SCEP allows a distributed management of acquisition...Ishak et al., (2010). The kernel of this system is the SCEP (Supervisor, Customer, Environment, Producer) model ( Archimede & Coudert, 2001). It

  7. The TARDEC Advanced Systems Engineering Capability (ASEC)

    DTIC Science & Technology

    2012-08-01

    Systems Engineering ( MBSE ) information. The ASEC enables decision makers to make informed decisions with confidence based on a mix of qualitative and...to support Model Based Engineering (MBE) and Model Based Systems Engineering ( MBSE ) information. The ASEC enables decision makers to make informed

  8. A wireless data acquisition system for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. T.; Lynch, J. P.

    2013-01-01

    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  9. Instrumentation & Data Acquisition System (D AS) Engineer

    NASA Technical Reports Server (NTRS)

    Jackson, Markus Deon

    2015-01-01

    The primary job of an Instrumentation and Data Acquisition System (DAS) Engineer is to properly measure physical phenomenon of hardware using appropriate instrumentation and DAS equipment designed to record data during a specified test of the hardware. A DAS system includes a CPU or processor, a data storage device such as a hard drive, a data communication bus such as Universal Serial Bus, software to control the DAS system processes like calibrations, recording of data and processing of data. It also includes signal conditioning amplifiers, and certain sensors for specified measurements. My internship responsibilities have included testing and adjusting Pacific Instruments Model 9355 signal conditioning amplifiers, writing and performing checkout procedures, writing and performing calibration procedures while learning the basics of instrumentation.

  10. Shigella Iron Acquisition Systems and their Regulation.

    PubMed

    Wei, Yahan; Murphy, Erin R

    2016-01-01

    Survival of Shigella within the host is strictly dependent on the ability of the pathogen to acquire essential nutrients, such as iron. As an innate immune defense against invading pathogens, the level of bio-available iron within the human host is maintained at exceeding low levels, by sequestration of the element within heme and other host iron-binding compounds. In response to sequestration mediated iron limitation, Shigella produce multiple iron-uptake systems that each function to facilitate the utilization of a specific host-associated source of nutrient iron. As a mechanism to balance the essential need for iron and the toxicity of the element when in excess, the production of bacterial iron acquisition systems is tightly regulated by a variety of molecular mechanisms. This review summarizes the current state of knowledge on the iron-uptake systems produced by Shigella species, their distribution within the genus, and the molecular mechanisms that regulate their production.

  11. The NOvA Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Norman, A.

    2012-12-01

    The NOvA experiment is a long baseline neutrino experiment designed to make key measures to determine the neutrino mass hierarchy, neutrino mixing and CP violation in the neutrino sector. In order to make these measurements the NOvA collaboration has designed a highly distributed, synchronized, continuous digitization and readout system that is able to acquire and correlate data from the Fermilab accelerator complex, the NOvA near detector at Fermilab and the NOvA far detector which is located 810 km away at Ash River, MN. This system has unique properties that let it fully exploit the physics capabilities of the NOvA detector. This paper discusses the design of the NOvA DAQ system and its capabilities.

  12. Acquisition Risks in a World of Joint Capabilities: A Study of Interdependency Complexity

    DTIC Science & Technology

    2013-04-01

    Pervasive Role That Social Dilemmas Play in Undermining Acquisition Success Andrew P. Moore, William E. Novak, Julie B. Cohen, Jay D. Marchetti...1993). The origins of order: Self-organization and selection in evolution. New York, NY: Oxford University Press. Lawrence, P. R., & Lorsch , J. W...1967). Differentiation and integration in complex organizations. Administrative Science Quarterly, 12, 1–30. Lawrence, P. R., & Lorsch , J. W. (1967

  13. Predicting Schedule Duration for Defense Acquisition Programs: Program Initiation to Initial Operational Capability

    DTIC Science & Technology

    2016-03-24

    months for defense acquisition programs from program initiation, which is the start of Engineering and Manufacturing Development (EMD), to Initial...multiple regression model that provides an output value in months . For the purpose of this study, the output from the multiple regression analysis...encompasses overall time duration in months , starting at MS-B, through EMD, P&D, Low-Rate Initial Production (LRIP), and Initial Operational Test and

  14. Automatic document processing system with learning capability

    NASA Astrophysics Data System (ADS)

    Li, Xuhong; Ng, Peter A.

    2000-08-01

    This automatic document processing system proceeds from scanning a given paper-document into the system, automatic recognizing the document layout structure, classifying it as a particular document type, which is characterized in terms of attributes to form a frame template, and extracting the pertinent information from the document to form its corresponding frame instance, which is an effective digital form of the original document. The key attribute of the system is that it is a general-purpose system, which can be adapted easily to any application domains. A segmentation method based on the 'logical closeness' is proposed. A novel and natural representation of document layout structure -- Labeled Directed Weighted Graph (LDWG) and a methodology of transforming document segmentation into LDWG representation are described. To classify a given document, we compare its layout structure with the sample layout structures of various document types prestored in the knowledge base and then use logical structure to verify the initial matching from the first step. There is a weight associated with each component of the layout structure. During the learning stage, the system can adjust the weights automatically based on the human being's correction. Modified Perceptron Learning Algorithm (PLA) is applied.

  15. Aviation System Analysis Capability Quick Response System Report

    NASA Technical Reports Server (NTRS)

    Roberts, Eileen; Villani, James A.; Ritter, Paul

    1998-01-01

    The purpose of this document is to present the additions and modifications made to the Aviation System Analysis Capability (ASAC) Quick Response System (QRS) in FY 1997 in support of the ASAC ORS development effort. This document contains an overview of the project background and scope and defines the QRS. The document also presents an overview of the Logistics Management Institute (LMI) facility that supports the QRS, and it includes a summary of the planned additions to the QRS in FY 1998. The document has five appendices.

  16. Geometric Correction System Capabilities, Processing, and Application

    SciTech Connect

    Brewster, S.B.

    1999-06-30

    The U.S. Department of Energy's Remote Sensing Laboratory developed the geometric correction system (GCS) as a state-of-the-art solution for removing distortions from multispectral line scanner data caused by aircraft motion. The system operates on Daedalus AADS-1268 scanner data acquired from fixed-wing and helicopter platforms. The aircraft attitude, altitude, acceleration, and location are recorded and applied to the data, thereby determining the location of the earth with respect to a given datum and projection. The GCS has yielded a positional accuracy of 0.5 meters when used with a 1-meter digital elevation model. Data at this level of accuracy are invaluable in making precise areal estimates and as input into a geographic information system. The combination of high-spatial resolution and accurate geo-rectification makes the GCS a unique tool in identifying and locating environmental conditions, finding targets of interest, and detecting changes as they occur over time.

  17. USING SERVERS TO ENHANCE CONTROL SYSTEM CAPABILITY.

    SciTech Connect

    BICKLEY,M.; BOWLING,B.A.; BRYAN,D.A.; ZEIJTS,J.; WHITE,K.S.; WITHERSPOON,S.

    1999-03-29

    Many traditional control systems include a distributed collection of front end machines to control hardware. Back end tools are used to view, modify, and record the signals generated by these front end machines. Software servers, which are a middleware layer between the front and back ends, can improve a control system in several ways. Servers can enable on-line processing of raw data, and consolidation of functionality. In many cases data retrieved from the front end must be processed in order to convert the raw data into useful information. These calculations are often redundantly performed by different programs, frequently offline. Servers can monitor the raw data and rapidly perform calculations, producing new signals which can be treated like any other control system signal, and can be used by any back end application. Algorithms can be incorporated to actively modify signal values in the control system based upon changes of other signals, essentially producing feedback in a control system. Servers thus increase the flexibility of a control system. Lastly, servers running on inexpensive UNIX workstations can relay or cache frequently needed information, reducing the load on front end hardware by functioning as concentrators. Rather than many back end tools connecting directly to the front end machines, increasing the work load of these machines, they instead connect to the server. Servers like those discussed above have been used successfully at the Thomas Jefferson National Accelerator Facility to provide functionality such as beam steering, fault monitoring, storage of machine parameters, and on-line data processing. The authors discuss the potential uses of such, servers, and share the results of work performed to date.

  18. A Four Channel Beam Current Monitor Data Acquisition System Using Embedded Processors

    SciTech Connect

    Wheat, Jr., Robert Mitchell; Dalmas, Dale A.; Dale, Gregory E.

    2015-08-11

    Data acquisition from multiple beam current monitors is required for electron accelerator production of Mo-99. A two channel system capable of recording data from two beam current monitors has been developed, is currently in use, and is discussed below. The development of a cost-effective method of extending this system to more than two channels and integrating of these measurements into an accelerator control system is the main focus of this report. Data from these current monitors is digitized, processed, and stored by a digital data acquisition system. Limitations and drawbacks with the currently deployed digital data acquisition system have been identified as have been potential solutions, or at least improvements, to these problems. This report will discuss and document the efforts we've made in improving the flexibility and lowering the cost of the data acquisition system while maintaining the minimum requirements.

  19. Implementation of Integrated System Fault Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Fernando; Schmalzel, John; Morris, Jon; Smith, Harvey; Turowski, Mark

    2008-01-01

    Fault Management to support rocket engine test mission with highly reliable and accurate measurements; while improving availability and lifecycle costs. CORE ELEMENTS: Architecture, taxonomy, and ontology (ATO) for DIaK management. Intelligent Sensor Processes; Intelligent Element Processes; Intelligent Controllers; Intelligent Subsystem Processes; Intelligent System Processes; Intelligent Component Processes.

  20. Assessing the capabilities of patternshop measurement systems

    SciTech Connect

    Peters, F.E.; Voigt, R.C.

    1995-12-01

    Casting customers continue to demand tighter dimensional tolerances for casting features. The foundry then places demands on the patternshop to produce more accurate patterns. Control of all sources of dimensional variability, including measurement system variability in the foundry and patternshop, is important to insure casting accuracy. Sources of dimensional casting errors will be reviewed, focusing on the importance of accurate patterns. The foundry and patternshop together must work within the tolerance limits established by the customer. In light of contemporary pattern tolerances, the patternshop must review its current measurement methods. The measurement instrument must have sufficient resolution to detect part variability. In addition, the measurement equipment must be used consistently by all patternmakers to insure adequacy of the measurement system. Without these precautions, measurement error can significantly contribute to overall pattern variability. Simple robust methods to check the adequacy of pattern measurement systems are presented. These tests will determine the variability that is contributed by the measurement equipment and by the operators. Steps to control measurement variability once it has been identified are also provided. Measurement system errors for various types of measurement equipment are compared to the allowable pattern tolerances, that are established together by the foundry and patternshop.

  1. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  2. The research of data acquisition system for Raman spectrometer

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Guo, Pan; Zhang, Yinchao; Chen, Siying; Chen, He; Chen, Wenbo

    2011-11-01

    Raman spectrometer has been widely used as an identification tool for analyzing material structure and composition in many fields. However, Raman scattering echo signal is very weak, about dozens of photons at most in one laser plus signal. Therefore, it is a great challenge to design a Raman spectrum data acquisition system which could accurately receive the weak echo signal. The system designed in this paper receives optical signals with the principle of photon counter and could detect single photon. The whole system consists of a photoelectric conversion module H7421-40 and a photo counting card including a field programmable gate array (FPGA) chip and a PCI9054 chip. The module H7421-40 including a PMT, an amplifier and a discriminator has high sensitivity on wavelength from 300nm to 720nm. The Center Wavelength is 580nm which is close to the excitation wavelength (532nm), QE 40% at peak wavelength, Count Sensitivity is 7.8*105(S-1PW-1) and Count Linearity is 1.5MHZ. In FPGA chip, the functions are divided into three parts: parameter setting module, controlling module, data collection and storage module. All the commands, parameters and data are transmitted between FPGA and computer by PCI9054 chip through the PCI interface. The result of experiment shows that the Raman spectrum data acquisition system is reasonable and efficient. There are three primary advantages of the data acquisition system: the first one is the high sensitivity with single photon detection capability; the second one is the high integrated level which means all the operation could be done by the photo counting card; and the last one is the high expansion ability because of the smart reconfigurability of FPGA chip.

  3. MIRAGE: The data acquisition, analysis, and display system

    NASA Technical Reports Server (NTRS)

    Rosser, Robert S.; Rahman, Hasan H.

    1993-01-01

    Developed for the NASA Johnson Space Center and Life Sciences Directorate by GE Government Services, the Microcomputer Integrated Real-time Acquisition Ground Equipment (MIRAGE) system is a portable ground support system for Spacelab life sciences experiments. The MIRAGE system can acquire digital or analog data. Digital data may be NRZ-formatted telemetry packets of packets from a network interface. Analog signal are digitized and stored in experimental packet format. Data packets from any acquisition source are archived to a disk as they are received. Meta-parameters are generated from the data packet parameters by applying mathematical and logical operators. Parameters are displayed in text and graphical form or output to analog devices. Experiment data packets may be retransmitted through the network interface. Data stream definition, experiment parameter format, parameter displays, and other variables are configured using spreadsheet database. A database can be developed to support virtually any data packet format. The user interface provides menu- and icon-driven program control. The MIRAGE system can be integrated with other workstations to perform a variety of functions. The generic capabilities, adaptability and ease of use make the MIRAGE a cost-effective solution to many experimental data processing requirements.

  4. DDS-Suite - A Dynamic Data Acquisition, Processing, and Analysis System for Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Burnside, Jathan J.

    2012-01-01

    Wind Tunnels have optimized their steady-state data systems for acquisition and analysis and even implemented large dynamic-data acquisition systems, however development of near real-time processing and analysis tools for dynamic-data have lagged. DDS-Suite is a set of tools used to acquire, process, and analyze large amounts of dynamic data. Each phase of the testing process: acquisition, processing, and analysis are handled by separate components so that bottlenecks in one phase of the process do not affect the other, leading to a robust system. DDS-Suite is capable of acquiring 672 channels of dynamic data at rate of 275 MB / s. More than 300 channels of the system use 24-bit analog-to-digital cards and are capable of producing data with less than 0.01 of phase difference at 1 kHz. System architecture, design philosophy, and examples of use during NASA Constellation and Fundamental Aerodynamic tests are discussed.

  5. New Software Architecture Options for the TCL Data Acquisition System

    SciTech Connect

    Valenton, Emmanuel

    2014-09-01

    The Turbulent Combustion Laboratory (TCL) conducts research on combustion in turbulent flow environments. To conduct this research, the TCL utilizes several pulse lasers, a traversable wind tunnel, flow controllers, scientific grade CCD cameras, and numerous other components. Responsible for managing these different data-acquiring instruments and data processing components is the Data Acquisition (DAQ) software. However, the current system is constrained to running through VXI hardware—an instrument-computer interface—that is several years old, requiring the use of an outdated version of the visual programming language, LabVIEW. A new Acquisition System is being programmed which will borrow heavily from either a programming model known as the Current Value Table (CVT) System or another model known as the Server-Client System. The CVT System model is in essence, a giant spread sheet from which data or commands may be retrieved or written to, and the Server-Client System is based on network connections between a server and a client, very much like the Server-Client model of the Internet. Currently, the bare elements of a CVT DAQ Software have been implemented, consisting of client programs in addition to a server program that the CVT will run on. This system is being rigorously tested to evaluate the merits of pursuing the CVT System model and to uncover any potential flaws which may result in further implementation. If the CVT System is chosen, which is likely, then future work will consist of build up the system until enough client programs have been created to run the individual components of the lab. The advantages of such a System will be flexibility, portability, and polymorphism. Additionally, the new DAQ software will allow the Lab to replace the VXI with a newer instrument interface—the PXI—and take advantage of the capabilities of current and future versions of LabVIEW.

  6. Single transmission line data acquisition system

    DOEpatents

    Fasching, George E.

    1984-01-01

    A single transmission line interrogated multiple channel data acquisition system is provided in which a plurality of remote station/sensors monitor specific process variables and transmit measurement values over the single transmission line to a master station when addressed by the master station. Power for all remote stations (up to 980) is provided by driving the line with constant voltage supplied from the master station and automatically maintained independent of the number of remote stations directly connected to the line. The transmission line can be an RG-62 coaxial cable with lengths up to about 10,000 feet with branches up to 500 feet. The remote stations can be attached randomly along the line. The remote stations can be scanned at rates up to 980 channels/second.

  7. CODA: A sealable, distributed data acquisition system

    NASA Astrophysics Data System (ADS)

    Weston, W. A., III; Chen, J.; Heyes, G.; Jastrzembski, E.; Quarrie, D.

    1994-02-01

    A new data acquisition system has been designed for physics experiments scheduled to run at CEBAF starting in the summer of 1994. This system runs on Unix workstation connected via Ethernet, FDDI, or other network hardware to multiple intelligent front end crates -- VME, CAMAC or FASTBUS. CAMAC crates may either contain intelligent processors, or may be interfaced to VME. The system is modular and scalable, from a single front end crate and one workstation linked by Ethernet, to as many as 32 clusters of front end crates ultimately connected via a high speed network to a set of analysis workstation. The system included an extensible, device independent slow controls package with drivers for CEBAF accelerator controls. All distributed process are managed by standard remote procedure calls propagating change-of-state requests, or reading and writing program variables. Custom components may be easily integrated. The system is portable to any front end processor running the VxWorks real-time kernel, and to most workstation supplying a few standard facilities such as rsh and X-windows, and Motif and socket libraries. Sample implementation exist for 2 Unix workstation families connected via Ethernet or FDDI to VME (with interface to FASTBUS or CAMAC), and via Ethernet to FASTBUS or CAMAC.

  8. Pointing, acquisition, and tracking system with omnivision

    NASA Astrophysics Data System (ADS)

    Ho, Tzung-Hsien; Milner, Stuart D.; Davis, Christopher C.

    2005-08-01

    A free space optical (FSO) network consists of many reconfigurable, directional, high data-rate links. Its performance can be optimized by using topology control algorithms, which involve: (1) potential neighbor information collection, (2) an optimization algorithm with given constraints, and (3) a precise pointing procedure. In general, if a sensor at each node can observe a large field of view (FOV), then more potential link targets can be detected. With more possible link choices, the optimization algorithm will have greater degrees of freedom in determining the optimum topology. The intuitive way to acquire a wide spatial acquisition range is to use a camera with a wide FOV. However, for such a wide angle lens/mirror, there are inevitable large aberrations, which cause errors in a pointing procedure based on image analysis. To mitigate these aberrations, a possible solution is to build a correction procedure from the wide FOV lens imaging model to a pinhole imaging model. In this context, a mapping model is proposed, based on analyses of several wide angle lens sets using CodeV. The proposed model also compensates for the effect of deviations between the center lines of the lens and a CCD imaging array. To obtain the optimum parameters of the model, an off-line calibration procedure based on geometrical constraints is introduced. A sensor system consisting of a widely available fisheye converter (Nikon FC-E8) and a high-resolution CCD camera (1392x1040 pixels) has been built for evaluating the model's performance, as part of our pointing, acquisition and tracking (PAT) system.

  9. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the NASA Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  10. The NASA Dryden Flight Research Center Unmanned Aircraft System Service Capabilities

    NASA Technical Reports Server (NTRS)

    Bauer, Jeff

    2007-01-01

    Over 60 years of Unmanned Aircraft System (UAS) expertise at the National Aeronautics and Space Administration (NASA) Dryden Flight Research Center are being leveraged to provide capability and expertise to the international UAS community. The DFRC brings together technical experts, UAS, and an operational environment to provide government and industry a broad capability to conduct research, perform operations, and mature systems, sensors, and regulation. The cornerstone of this effort is the acquisition of both a Global Hawk (Northrop Grumman Corporation, Los Angeles, California) and Predator B (General Atomics Aeronautical Systems, Inc., San Diego, California) unmanned aircraft system (UAS). In addition, a test range for small UAS will allow developers to conduct research and development flights without the need to obtain approval from civil authorities. Finally, experts are available to government and industry to provide safety assessments in support of operations in civil airspace. These services will allow developers to utilize limited resources to their maximum capability in a highly competitive environment.

  11. Human Health and Support Systems Capability Roadmap Progress Review

    NASA Technical Reports Server (NTRS)

    Grounds, Dennis; Boehm, Al

    2005-01-01

    The Human Health and Support Systems Capability Roadmap focuses on research and technology development and demonstration required to ensure the health, habitation, safety, and effectiveness of crews in and beyond low Earth orbit. It contains three distinct sub-capabilities: Human Health and Performance. Life Support and Habitats. Extra-Vehicular Activity.

  12. An Emerging Methodology: The System Capabilities Analytic Process (SCAP)

    DTIC Science & Technology

    2010-12-01

    representing the FS mathematically are also discussed. 15. SUBJECT TERMS SCAP, capability, component, MMF , task, functional skeleton 16. SECURITY...24  Figure 18. MMF at index 1...25  Figure 19. Tank B system capabilities at index 1. ........................................................................25  Figure 20. MMF at

  13. Effect of Vibration on Retention Characteristics of Screen Acquisition Systems

    NASA Technical Reports Server (NTRS)

    Tegart, J. R.; Park, A. C.

    1977-01-01

    An analytical and experimental investigation of the effect of vibration on the retention characteristics of screen acquisition systems was performed. The functioning of surface tension devices using fine-mesh screens requires that the pressure differential acting on the screen be less than its pressure retention capability. When exceeded, screen breakdown will occur and gas-free expulsion of propellant will no longer be possible. An analytical approach to predicting the effect of vibration was developed. This approach considers the transmission of the vibration to the screens of the device and the coupling of the liquid and the screen in establishing the screen response. A method of evaluating the transient response of the gas/liquid interface within the screen was also developed.

  14. Systems Modeling to Implement Integrated System Health Management Capability

    NASA Technical Reports Server (NTRS)

    Figueroa, Jorge F.; Walker, Mark; Morris, Jonathan; Smith, Harvey; Schmalzel, John

    2007-01-01

    ISHM capability includes: detection of anomalies, diagnosis of causes of anomalies, prediction of future anomalies, and user interfaces that enable integrated awareness (past, present, and future) by users. This is achieved by focused management of data, information and knowledge (DIaK) that will likely be distributed across networks. Management of DIaK implies storage, sharing (timely availability), maintaining, evolving, and processing. Processing of DIaK encapsulates strategies, methodologies, algorithms, etc. focused on achieving high ISHM Functional Capability Level (FCL). High FCL means a high degree of success in detecting anomalies, diagnosing causes, predicting future anomalies, and enabling health integrated awareness by the user. A model that enables ISHM capability, and hence, DIaK management, is denominated the ISHM Model of the System (IMS). We describe aspects of the IMS that focus on processing of DIaK. Strategies, methodologies, and algorithms require proper context. We describe an approach to define and use contexts, implementation in an object-oriented software environment (G2), and validation using actual test data from a methane thruster test program at NASA SSC. Context is linked to existence of relationships among elements of a system. For example, the context to use a strategy to detect leak is to identify closed subsystems (e.g. bounded by closed valves and by tanks) that include pressure sensors, and check if the pressure is changing. We call these subsystems Pressurizable Subsystems. If pressure changes are detected, then all members of the closed subsystem become suspect of leakage. In this case, the context is defined by identifying a subsystem that is suitable for applying a strategy. Contexts are defined in many ways. Often, a context is defined by relationships of function (e.g. liquid flow, maintaining pressure, etc.), form (e.g. part of the same component, connected to other components, etc.), or space (e.g. physically close

  15. Adaptive data acquisition multiplexing system and method

    NASA Technical Reports Server (NTRS)

    Sinderson, Richard L. (Inventor); Salazar, George A. (Inventor); Haddick, Clyde M., Jr. (Inventor); Spahn, Caroll J. (Inventor); Venkatesh, Chikkabelarangala N. (Inventor)

    1990-01-01

    A reconfigurable telemetry multiplexer is described which includes a monitor-terminal and a plurality of remote terminals. The remote terminals each include signal conditioning for a plurality of sensors for measuring parameters which are converted by an analog to digital converter. CPU's in the remote terminals store instructions for prompting system configuration and reconfiguration commands. The measurements, instructions, and the terminal's present configuration and status data are transmitted to the monitor-terminal and displayed. In response to menu-driven prompts generated and displayed at the monitor-terminal, data generation request commands, status and health commands, and the like are input at the monitor-terminal and transmitted to the remote terminals. The CPU in each remote terminal receives the various commands, stores them in electrically alterable memory, and reacts in accordance with the commands to reconfigure a plurality of aspects of the system. The CPU in each terminal also generates parameter measurements, status and health signals, and transmits these signals of the respective terminals to the monitor-terminal for low data rate operator viewing and to higher rate external transmission/monitor equipment. Reconfiguration may be in real time during the general period of parameter measurement acquisition, and may include alteration of the gain, automatic gain rescaling, bias, and or sampling rates associated with one or more of the parameter measurements made by the remote terminals.

  16. Upgrade of U.S. EPA's Experimental Stream Facility Supervisory Control and Data Acquisition System

    EPA Science Inventory

    The Supervisory control and data acquisition (SCADA) system for the U.S. EPA’s Experimental Stream Facility (ESF) was upgraded using Camile hardware and software in 2015. The upgrade added additional hardwired connections, new wireless capabilities, and included a complete rewrit...

  17. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    NASA Technical Reports Server (NTRS)

    West, Tristram O.; Brown, Molly E.; Duren, Riley M.; Ogle, Stephen M.; Moss, Richard H.

    2013-01-01

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify capabilities of a carbon monitoring system and the system components needed to develop the capabilities. Capabilities that enable the effective application of a carbon monitoring system for monitoring and management purposes may include: reconciling carbon stocks and fluxes, developing consistency across spatial and temporal scales, tracking horizontal movement of carbon, attribution of emissions to originating sources, cross-sectoral accounting, uncertainty quantification, redundancy and policy relevance. Focused research is needed to integrate these capabilities for sustained estimates of carbon stocks and fluxes. Additionally, if monitoring is intended to inform management decisions, management priorities should be considered prior to development of a monitoring system.

  18. Acquisition Management for System-of-Systems: Requirement Evolution and Acquisition Strategy Planning

    DTIC Science & Technology

    2012-04-30

    development of systems 2 and 4. This implies that information from one system development process affects the development of dependent systems. For...Evolutions Conclusion The development process of an SoS capability is often affected by risks from interdependencies between constituent systems and...20 Two factors affecting resilience patterns • Architecture type: the fundamental organization of an SoS embodied by its

  19. Identifying Acquisition Patterns of Failure Using Systems Archetypes

    DTIC Science & Technology

    2008-04-02

    Carnegie Mellon University What is Systems Thinking ? Systems Thinking is a method for analyzing complex systems Developed by Jay W. Forrester at MIT...results (and when) Systems Thinking teaches us that: • System behavior is greater than the sum of component behaviors • “Quick fix” solutions usually...Improving Acquisition Practice and Avoiding Patterns of Failure” will introduce the systems thinking approach, apply it to acquisition, present classic

  20. Energy Management and Control System: Desired Capabilities and Functionality

    SciTech Connect

    Hatley, Darrel D.; Meador, Richard J.; Katipamula, Srinivas; Brambley, Michael R.; Wouden, Carl

    2005-04-29

    This document discusses functions and capabilities of a typical building/facility energy management and control systems (EMCS). The overall intent is to provide a building operator, manager or engineer with basic background information and recommended functions, capabilities, and good/best practices that will enable the control systems to be fully utilized/optimized, resulting in improved building occupant quality of life and more reliable, energy efficient facilities.

  1. Sociocultural Systems: The Next Step in Army Cultural Capability

    DTIC Science & Technology

    2013-09-01

    Research Product 2013-02 Sociocultural Systems: The Next Step in Army Cultural Capability Editors Beret E . Strong...NUMBER 622785 6. AUTHOR(S) Editors: Beret E . Strong; LisaRe Brooks Babin & Michelle Ramsden Zbylut; Linda Roan 5c. PROJECT NUMBER A790...Sociocultural Systems: The Next Step in Army Cultural Capability Editors Beret E . Strong eCrossCulture Corporation LisaRe Brooks Babin

  2. Digital acquisition system for high-speed 3-D imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji

    1997-11-01

    High-speed digital three-dimensional (3-D) imagery is possible using multiple independent charge-coupled device (CCD) cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras, providing versatility in configuration and image acquisition. By aligning the cameras in nearly coincident lines-of-sight, a sixteen frame two-dimensional (2-D) sequence can be captured. The delays can be individually adjusted lo yield a greater number of acquired frames during the more rapid segments of the event. Additionally, individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. An alternative alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images may be captured. In the first alignment scheme the camera lines-of-sight cannot be made precisely coincident. Thus representation of the data as a monocular sequence introduces the issue of independent camera coordinate registration with the real scene. This issue arises more significantly using the stereo pair method to reconstruct quantitative 3-D spatial information of the event as a function of time. The principal development here will be the derivation and evaluation of a solution transform and its inverse for the digital data which will yield a 3-D spatial mapping as a function of time.

  3. Mandatory Procedures for Major Defense Acquisition Programs (MDAPS) and Major Automated Information System (MAIS) Acquisition Programs

    DTIC Science & Technology

    2002-04-05

    ACQUISITION STRATEGY 32 C2.8. SUPPORT STRATEGY 34 DoD 5000.2-R, April 5, 2002 TABLE OF CONTENTS 5 C2.9. BUSINESS STRATEGY 40 C3. CHAPTER 3 TEST AND...AL1.1.110. PA&E Program Analysis and Evaluation AL1.1.111. PAUC Program Acquisition Unit Cost AL1.1.112. PBBE Performance-Based Business Environment...Simulation-Based Acquisition AL1.1.132. SBIR Small Business Innovation Research AL1.1.133. SEI Software Engineering Institute AL1.1.134. SSAA System

  4. Integrated delivery systems: mergers and acquisitions.

    PubMed

    Pinkerton, S

    1999-01-01

    Mergers and acquisitions are usually the way an IDS is built. The CNO and/or CNOs/DONs have an integral role in the resolution of the M/A process. During this time of significant change, during which there may even be chaos, the CNOs work to maintain stability so there is as little impact as possible on patient outcomes, a core responsibility of the CNOs. The CNOs should focus on identifying and working with the highly skilled individuals in the organization to get to the recovery stage of the M/A process, at which time a high-performing organization is achieved. To build this new organization or IDS, the old organizations of the M/A must be changed (Moss Kanter, 1994). The successful CNOs will manage the trade-offs and will become experts in collaboration. The CNO's goals are to maximize the quality of patient care, the professional satisfaction of the nurse, and the goals of achieving cost effectiveness for the system (Clifford, 1998), and keeping this focus through the M/A process will yield success.

  5. Defense Acquisitions. Missile Defense Agency Fields Initial Capability but Falls Short of Original Goals

    DTIC Science & Technology

    2006-03-01

    nodes have been upgraded with high -availability system —nodes have been tested and are operating as designed. Integration of new Block 2004 interfaces...been unable to verify actual system performance because of flight test delays. Block 2004 Goals, as of February 2003, Compared with Fielded Assets...complete design activities, and produce and field assets before end-to-end testing of the system —all at the expense of cost, quantity, and performance

  6. Tailoring Systems Engineering for Rapid Acquisition

    DTIC Science & Technology

    2014-03-27

    Questions With the inconsistent implementation of tailored acquisition and SE in mind , this thesis focuses on understanding which acquisition and SE...Now mind you, this might be [all during] day one. [Starting of the design process] might be day five, and we deliver at day 30. That’s how fast it...familiarity with interviewing allowed the respondents to wander off track from the questions and also to control the information flow. This limitation could

  7. An Analysis of SE and MBSE Concepts to Support Defence Capability Acquisition

    DTIC Science & Technology

    2014-09-01

    underlying IT infrastructure to support evolving business processes (Cantor 2003a). UNCLASSIFIED DSTO-TR-3039 149 UNCLASSIFIED...a process , where exponents engage expansively in systems thinking. These challenges foretold by Mar have come to bear; but underlying challenges...fundamental constraint in the application of the SE process within Defence. This problem-centric mindset belies the underlying need for system

  8. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. The evolved configurations of SLS, including both the 105 t Block 1B and the 130 t Block 2, offer opportunities for launching co-manifested payloads and a new class of secondary payloads with the Orion crew vehicle, and also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle, delivering unmatched mass-lift capability, payload volume, and C3.

  9. System Definition-Enabled Acquisition (SDEA) - A Concept for Defining Requirements for Applying Model-Based Systems Engineering (MBSE) to the Acquisition of DoD Complex Systems

    DTIC Science & Technology

    2012-04-30

    Acquisition (SDEA)—A Concept for Defining Requirements for Applying Model-Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems...Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...Defining Requirements for Applying Model-Based Systems Engineering ( MBSE ) to the Acquisition of DoD Complex Systems Paul Montgomery, Ron Carlson

  10. A methodology for capability-based technology evaluation for systems-of-systems

    NASA Astrophysics Data System (ADS)

    Biltgen, Patrick Thomas

    2007-12-01

    Post-Cold War military conflicts have highlighted the need for a flexible, agile joint force responsive to emerging crises around the globe. The 2005 Joint Capabilities Integration and Development System (JCIDS) acquisition policy document mandates a shift away from stove-piped threat-based acquisition to a capability-based model focused on the multiple ways and means of achieving an effect. This shift requires a greater emphasis on scenarios, tactics, and operational concepts during the conceptual phase of design and structured processes for technology evaluation to support this transition are lacking. In this work, a methodology for quantitative technology evaluation for systems-of-systems is defined. Physics-based models of an aircraft system are exercised within a hierarchical, object-oriented constructive simulation to quantify technology potential in the context of a relevant scenario. A major technical challenge to this approach is the lack of resources to support real-time human-in-the-loop tactical decision making and technology analysis. An approach that uses intelligent agents to create a "Meta-General" capable of forecasting strategic and tactical decisions based on technology inputs is used. To demonstrate the synergy between new technologies and tactics, surrogate models are utilized to provide intelligence to individual agents within the framework and develop a set of tactics that appropriately exploit new technologies. To address the long run-times associated with constructive military simulations, neural network surrogate models are implemented around the forecasting environment to enable rapid trade studies. Probabilistic techniques are used to quantify uncertainty and richly populate the design space with technology-infused alternatives. Since a large amount of data is produced in the analysis of systems-of-systems, dynamic, interactive visualization techniques are used to enable "what-if" games on assumptions, systems, technologies, tactics, and

  11. Architecting Joint Command and Control System of System Capability Certifications

    DTIC Science & Technology

    2007-09-01

    CRA Consolidated Requirements Assessment CST COP Synchronization Tools CTM Capability Test Methodology CTSF Central Technical Support Facility DISA...MCTSSA analyzed the Capabilities Package and produced a Consolidated Requirements Assessment ( CRA ). The CRA was an agreement between the...test dates were. Once the CRA was approved, MCTSSA produced a Technical Proposal. The Technical Proposal defined the technical solution the IPT

  12. A Web-Remote/Robotic/Scheduled Astronomical Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Denny, Robert

    2011-03-01

    Traditionally, remote/robotic observatory operating systems have been custom made for each observatory. While data reduction pipelines need to be tailored for each investigation, the data acquisition process (especially for stare-mode optical images) is often quite similar across investigations. Since 1999, DC-3 Dreams has focused on providing and supporting a remote/robotic observatory operating system which can be adapted to a wide variety of physical hardware and optics while achieving the highest practical observing efficiency and safe/secure web browser user controls. ACP Expert consists of three main subsystems: (1) a robotic list-driven data acquisition engine which controls all aspects of the observatory, (2) a constraint-driven dispatch scheduler with a long-term database of requests, and (3) a built-in "zero admin" web server and dynamic web pages which provide a remote capability for immediate execution and monitoring as well as entry and monitoring of dispatch-scheduled observing requests. No remote desktop login is necessary for observing, thus keeping the system safe and consistent. All routine operation is via the web browser. A wide variety of telescope mounts, CCD imagers, guiding sensors, filter selectors, focusers, instrument-package rotators, weather sensors, and dome control systems are supported via the ASCOM standardized device driver architecture. The system is most commonly employed on commercial 1-meter and smaller observatories used by universities and advanced amateurs for both science and art. One current project, the AAVSO Photometric All-Sky Survey (APASS), uses ACP Expert to acquire large volumes of data in dispatch-scheduled mode. In its first 18 months of operation (North then South), 40,307 sky images were acquired in 117 photometric nights, resulting in 12,107,135 stars detected two or more times. These stars had measures in 5 filters. The northern station covered 754 fields (6446 square degrees) at least twice, the southern

  13. Multi-tier approach for data acquisition programming in the TJ-II remote participation system

    NASA Astrophysics Data System (ADS)

    Vega, J.; Sánchez, E.; Portas, A.; Ruiz, M.; Barrera, E.; López, S.

    2004-10-01

    Programming software to setup acquisition channels during device operation has been developed for the TJ-II remote participation system. The software follows a three-tier model. A first tier (client tier) groups client software containing only user interface code. A second tier (middle tier) includes code for authorization, authentication, and query processing. A third tier (data tier) consists of a relational database server for managing configurations. Multi-platform characteristics are provided by web browsers (client tier) and web servers (middle tier). This architecture avoids that data acquisition system controllers provide access control, database support, or graphic user interface resources. Therefore, computation capabilities of these systems can mainly be devoted to data handling. LabView (from National Instruments) has been used as programming language in the acquisition systems. This design allows a very transparent management of signals, independently on hardware modules and systems.

  14. Improvements and modifications to the NASA microwave signature acquisition system

    NASA Technical Reports Server (NTRS)

    Jean, B. R.; Newton, R. W.; Warren, G. L.; Clark, B. V.; Zajicek, J. L.

    1978-01-01

    A user oriented description of the modified and upgraded Microwave Signature Acquisition System is provided. The present configuration of the sensor system and its operating characteristics are documented and a step-by-step operating procedure provides instruction for mounting the antenna truss assembly, readying the system for data acquisition, and for controlling the system during the data collection sequence. The resulting data products are also identified.

  15. Business Systems Branch Abilities, Capabilities, and Services Web Page

    NASA Technical Reports Server (NTRS)

    Cortes-Pena, Aida Yoguely

    2009-01-01

    During the INSPIRE summer internship I acted as the Business Systems Branch Capability Owner for the Kennedy Web-based Initiative for Communicating Capabilities System (KWICC), with the responsibility of creating a portal that describes the services provided by this Branch. This project will help others achieve a clear view ofthe services that the Business System Branch provides to NASA and the Kennedy Space Center. After collecting the data through the interviews with subject matter experts and the literature in Business World and other web sites I identified discrepancies, made the necessary corrections to the sites and placed the information from the report into the KWICC web page.

  16. 29. Perimeter acquisition radar building room #318, data processing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    29. Perimeter acquisition radar building room #318, data processing system area; data processor maintenance and operations center, showing data processing consoles - Stanley R. Mickelsen Safeguard Complex, Perimeter Acquisition Radar Building, Limited Access Area, between Limited Access Patrol Road & Service Road A, Nekoma, Cavalier County, ND

  17. Data Acquisition System for Instructional Spectroscopes

    NASA Astrophysics Data System (ADS)

    Almeida, C. B. S. B.; Hetem, A.

    2014-10-01

    This article aims to present the software for data acquisition developed in scientific initiation program - IC, for use in the design of a spectrometer built by students. The program was built in C++, a language in wide use today. The origin of spectra used is a simplified model of rustic spectroscope. This equipment basically consists of a box that does not allow light to enter, except through a slit made in the side of it, a diffraction media and a camera for data acquisition. After the image acquisition, one executes the data processing, followed by the usual steps of reduction and analysis of this type of tool. We have implemented a method for calibrating the spectroscope, through which one can compare the incidence of the photons with characteristic of each monochromatic wave. The final result is a one-dimensional spectrum that can be subsequently analyzed.

  18. DDP Development Facility Capabilities for Effective Acquisition of DDP Software and Hardware,

    DTIC Science & Technology

    1980-06-01

    Development Support Machine 152 8.3.3. - MSEF 153 8.3.4. - CSDP 153 8.3.5. - Integrated Software Support System 155 8.3.6. - MUST 155 8.3.7. - MONSTR 156...such as how a machine works, does help a designer make the correct decisions at the higher levels. It would eliminate some iterations. In practice...implementation on the machine . In the same way that successive decomposition of a complex problem into abstract functions simplifies the problem, the

  19. Readiness of the ATLAS Trigger and Data Acquisition system for the first LHC beams

    NASA Astrophysics Data System (ADS)

    Vandelli, W.; Atlas Tdaq Collaboration

    2009-12-01

    The ATLAS Trigger and Data Acquisition (TDAQ) system is based on O(2k) processing nodes, interconnected by a multi-layer Gigabit network, and consists of a combination of custom electronics and commercial products. In its final configuration, O(20k) applications will provide the needed capabilities in terms of event selection, data flow, local storage and data monitoring. In preparation for the first LHC beams, many TDAQ sub-systems already reached the final configuration and roughly one third of the final processing power has been deployed. Therefore, the current system allows for a sensible evaluation of the performance and scaling properties. In this paper we introduce the ATLAS TDAQ system requirements and architecture and we discuss the status of software and hardware component. We moreover present the results of performance measurements validating the system design and providing a figure for the ATLAS data acquisition capabilities in the initial data taking period.

  20. A prototype fully digital data acquisition system upgrade for the TOFOR neutron spectrometer at JET

    NASA Astrophysics Data System (ADS)

    Skiba, Mateusz; Ericsson, Göran; Hjalmarsson, Anders; Hellesen, Carl; Conroy, Sean; Andersson-Sundén, Erik; Eriksson, Jacob; JET Contributors

    2016-10-01

    A prototype of a fully digital data acquisition system upgrade for the TOFOR time-of-flight fusion neutron spectrometer at JET has been implemented and evaluated. The core of the system is composed of five fast PXIe waveform digitisers (1 GSPS, 12 bits) with large internal fast memory (1 GB). Due to the complexity and high requirements on timing precision of the spectrometer, the design and implementation of such a system poses numerous technical challenges, in particular regarding time alignment and synchronisation of signal paths and digitiser modules. These issues and their solutions, as pertaining to the TOFOR spectrometer, are presented in detail in the present paper. As a final assessment of the ability of the new data acquisition system to reproduce the capabilities of the original TOFOR system, a thorough comparison of results produced using both systems is presented. The comparison with TOFOR has been performed with satisfying results. Two immediate advantages of the new data acquisition system are significantly improved triggering dead time (from about 70 ns to 10 ns) and the ability to adjust the triggering thresholds as needed during the analysis step. The enhanced spectroscopic capabilities of the new data acquisition system will be reported on in future publications.

  1. System of Systems (SoS) Architecture Centric Acquisition

    DTIC Science & Technology

    2016-06-07

    spectrum management Functionality and capability are important, but the architecture must be driven by the quality attributes. Identifying and...evaluation is integrated into the system engineering management plan in relation to the program milestones, (2) how the system’s quality attribute...addressing quality attributes between system and software architectures. This is further exacerbated in an SoS. Example quality attributes

  2. Exploration Medical Capability System Engineering Introduction and Vision

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Reilly, J.

    2017-01-01

    Human exploration missions to beyond low Earth orbit destinations such as Mars will require more autonomous capability compared to current low Earth orbit operations. For the medical system, lack of consumable resupply, evacuation opportunities, and real-time ground support are key drivers toward greater autonomy. Recognition of the limited mission and vehicle resources available to carry out exploration missions motivates the Exploration Medical Capability (ExMC) Element's approach to enabling the necessary autonomy. The Element's work must integrate with the overall exploration mission and vehicle design efforts to successfully provide exploration medical capabilities. ExMC is applying systems engineering principles and practices to accomplish its integrative goals. This talk will briefly introduce the discipline of systems engineering and key points in its application to exploration medical capability development. It will elucidate technical medical system needs to be met by the systems engineering work, and the structured and integrative science and engineering approach to satisfying those needs, including the development of shared mental and qualitative models within and external to the human health and performance community. These efforts are underway to ensure relevancy to exploration system maturation and to establish medical system development that is collaborative with vehicle and mission design and engineering efforts.

  3. Generic data acquisition system for robotic waste characterization

    SciTech Connect

    Feddema, J.T.; Spletzer, B.L.

    1993-07-01

    This paper describes a generic data acquisition system for robotic characterization of DOE production facilities and waste sites. While the specific suite of characterization sensors on the end of a robotic arm or vehicle will depend on site needs, many of the data acquisition, display, archival and interpretation requirements of the sites are common. Therefore, the objective is to create a generic, reusable computing and data acquisition system which can accept a multitude of sensors. This paper discusses the progress to date and future plans for the system.

  4. A Data Acquisition System (DAS) for marine and ecological research from aerospace technology

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.

    1972-01-01

    The efforts of researchers at Mississippi State University to utilize space-age technology in the development of a self-contained, portable data acquisition system for use in marine and ecological research are presented. The compact, lightweight data acquisition system is capable of recording 14 variables in its present configuration and is suitable for use in either a boat, pickup truck, or light aircraft. This system will provide the acquisition of reliable data on the structure of the environment and the effect of man-made and natural activities on the observed phenomenon. Utilizing both self-contained analog recording and a telemetry transmitter for real-time digital readout and recording, the prototype system has undergone extensive testing.

  5. DoD Weapon System Acquisition Reform Product Support Assessment

    DTIC Science & Technology

    2009-11-01

    from retail through wholesale; from the Warfighter to the supplier’s supplier. This architecture supports JSCA management via an open system ...1. REPORT DATE 19 NOV 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE DoD Weapon System Acquisition Reform...98) Prescribed by ANSI Std Z39-18 2 3 Foreword As DoD moves forward with weapon system acquisition reform, attention to product

  6. Spectral Dynamics Inc., ships hybrid, 316-channel data acquisition system to Sandia Labs.

    SciTech Connect

    Schwartz, Douglas

    2003-09-01

    Spectral Dynamics announced the shipment of a 316-channel data acquisition system. The system was custom designed for the Light Initiated High Explosive (LIHE) facility at Sandia Labs in Albuquerque, New Mexico by Spectral Dynamics Advanced Research Products Group. This Spectral Dynamics data acquisition system was tailored to meet the unique LIHE environmental and testing requirements utilizing Spectral Dynamics commercial off the shelf (COTS) Jaguar and VIDAS products supplemented by SD Alliance partner's (COTS) products. 'This system is just the beginning of our cutting edge merged technology solutions,' stated Mark Remelman, Manager for the Spectral Dynamics Advanced Research Products Group. 'This Hybrid system has 316-channels of data acquisition capability, comprised of 102.4kHz direct to disk acquisition and 2.5MHz, 200Mhz & 500Mhz RAM based capabilities. In addition it incorporates the advanced bridge conditioning and dynamic configuration capabilities offered by Spectral Dynamics new Smart Interface Panel System (SIPS{trademark}).' After acceptance testing, Tony King, the Instrumentation Engineer facilitating the project for the Sandia LIHE group commented; 'The LIHE staff was very impressed with the design, construction, attention to detail and overall performance of the instrumentation system'. This system combines VIDAS, a leading edge fourth generation SD-VXI hardware and field-proven software system from SD's Advanced Research Products Group with SD's Jaguar, a multiple Acquisition Control Peripheral (ACP) system that allows expansion to hundreds of channels without sacrificing signal processing performance. Jaguar incorporates dedicated throughput disks for each ACP providing time streaming to disk at up to the maximum sample rate. Spectral Dynamics, Inc. is a leading worldwide supplier of systems and software for advanced computer-automated data acquisition, vibration testing, structural dynamics, explosive shock, high-speed transient capture

  7. Expert Systems and Command, Control, and Communication System Acquisition

    DTIC Science & Technology

    1989-03-01

    Systems and Command, Control, and Communicaton System Acquisition 12 Personal Author(s) James E. Minnema 13a Type of Report 13b Time Covered 14 Date...no]. ttcr-9: msg-ques2-tt =[’’,nl]. ttcr-3: question(ques3-tt)=’Is the transition plan only required in the contract and is not viewed as a corporate ...Transition plan may be limited in scope. ESCAPES: Review and approve transition plan at corporate level. BENEFITS: Corporate resources will be available to

  8. NASA's Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, scheduled for first launch in 2017, will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created

  9. NASA Space Launch System: A Cornerstone Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2014-01-01

    Under construction today, the National Aeronautics and Space Administration's (NASA) Space Launch System (SLS), managed at the Marshall Space Flight Center, will provide a robust new capability for human and robotic exploration beyond Earth orbit. The vehicle's initial configuration, sched will enable human missions into lunar space and beyond, as well as provide game-changing benefits for space science missions, including offering substantially reduced transit times for conventionally designed spacecraft. From there, the vehicle will undergo a series of block upgrades via an evolutionary development process designed to expedite mission capture as capability increases. The Space Launch System offers multiple benefits for a variety of utilization areas. From a mass-lift perspective, the initial configuration of the vehicle, capable of delivering 70 metric tons (t) to low Earth orbit (LEO), will be the world's most powerful launch vehicle. Optimized for missions beyond Earth orbit, it will also be the world's only exploration-class launch vehicle capable of delivering 25 t to lunar orbit. The evolved configuration, with a capability of 130 t to LEO, will be the most powerful launch vehicle ever flown. From a volume perspective, SLS will be compatible with the payload envelopes of contemporary launch vehicles, but will also offer options for larger fairings with unprecedented volume-lift capability. The vehicle's mass-lift capability also means that it offers extremely high characteristic energy for missions into deep space. This paper will discuss the impacts that these factors - mass-lift, volume, and characteristic energy - have on a variety of mission classes, particularly human exploration and space science. It will address the vehicle's capability to enable existing architectures for deep-space exploration, such as those documented in the Global Exploration Roadmap, a capabilities-driven outline for future deep-space voyages created by the International Space

  10. NASA'S Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA’s Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA’s future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency’s Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle’s potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle’s evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to

  11. NASA's Space Launch System Mission Capabilities for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventual landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Developed with the goals of safety, affordability and sustainability in mind, SLS is a foundational capability for NASA's future plans for exploration, along with the Orion crew vehicle and upgraded ground systems at the agency's Kennedy Space Center. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO), greater mass-to-orbit capability than any contemporary launch vehicle. The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO, greater even than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. This presentation will discuss the potential opportunities this vehicle poses for the planetary sciences community, relating the vehicle's evolution to practical implications for mission capture. As this paper will explain, SLS will be a global launch infrastructure asset, employing sustainable solutions and technological innovations to deliver capabilities for space exploration to power human and robotic systems beyond our Moon and in to deep space.

  12. Hardware and Software Developments for the Accurate Time-Linked Data Acquisition System

    SciTech Connect

    BERG,DALE E.; RUMSEY,MARK A.; ZAYAS,JOSE R.

    1999-11-09

    Wind-energy researchers at Sandia National Laboratories have developed a new, light-weight, modular data acquisition system capable of acquiring long-term, continuous, multi-channel time-series data from operating wind-turbines. New hardware features have been added to this system to make it more flexible and permit programming via telemetry. User-friendly Windows-based software has been developed for programming the hardware and acquiring, storing, analyzing, and archiving the data. This paper briefly reviews the major components of the system, summarizes the recent hardware enhancements and operating experiences, and discusses the features and capabilities of the software programs that have been developed.

  13. UAS-Systems Integration, Validation, and Diagnostics Simulation Capability

    NASA Technical Reports Server (NTRS)

    Buttrill, Catherine W.; Verstynen, Harry A.

    2014-01-01

    As part of the Phase 1 efforts of NASA's UAS-in-the-NAS Project a task was initiated to explore the merits of developing a system simulation capability for UAS to address airworthiness certification requirements. The core of the capability would be a software representation of an unmanned vehicle, including all of the relevant avionics and flight control system components. The specific system elements could be replaced with hardware representations to provide Hardware-in-the-Loop (HWITL) test and evaluation capability. The UAS Systems Integration and Validation Laboratory (UAS-SIVL) was created to provide a UAS-systems integration, validation, and diagnostics hardware-in-the-loop simulation capability. This paper discusses how SIVL provides a robust and flexible simulation framework that permits the study of failure modes, effects, propagation paths, criticality, and mitigation strategies to help develop safety, reliability, and design data that can assist with the development of certification standards, means of compliance, and design best practices for civil UAS.

  14. Integrated Component-based Data Acquisition Systems for Aerospace Test Facilities

    NASA Technical Reports Server (NTRS)

    Ross, Richard W.

    2001-01-01

    The Multi-Instrument Integrated Data Acquisition System (MIIDAS), developed by the NASA Langley Research Center, uses commercial off the shelf (COTS) products, integrated with custom software, to provide a broad range of capabilities at a low cost throughout the system s entire life cycle. MIIDAS combines data acquisition capabilities with online and post-test data reduction computations. COTS products lower purchase and maintenance costs by reducing the level of effort required to meet system requirements. Object-oriented methods are used to enhance modularity, encourage reusability, and to promote adaptability, reducing software development costs. Using only COTS products and custom software supported on multiple platforms reduces the cost of porting the system to other platforms. The post-test data reduction capabilities of MIIDAS have been installed at four aerospace testing facilities at NASA Langley Research Center. The systems installed at these facilities provide a common user interface, reducing the training time required for personnel that work across multiple facilities. The techniques employed by MIIDAS enable NASA to build a system with a lower initial purchase price and reduced sustaining maintenance costs. With MIIDAS, NASA has built a highly flexible next generation data acquisition and reduction system for aerospace test facilities that meets customer expectations.

  15. PC-based Data Acquisition System for X-ray Crystal Spectrometer

    NASA Astrophysics Data System (ADS)

    Nam, U. W.; Kong, K. N.; Park, Y. S.; Kim, Y. J.; Lee, S. G.; Bak, J. G.; Bitter, M.; Hill, K.; Moon, M. K.; Cheon, J. K.; Lee, C. H.

    2003-10-01

    A PC-based data acquisition system for an X-ray crystal spectrometer has been developed in order to measure the ion and electron temperature profile measurements on tokamak plasmas. The system can detect a 2D image of the plasma from a gas-filled delay line readout position-sensitive 2D detector and spherically-bent crystal in connection with N110 time to digital converter developed in European Synchrotron Radiation Facility. The N110 interface module with TMS320VC33 digital signal processor, and 16 Mbytes static memory and its supporting Windows OS image software are used for the PC-based data acquisition system. An USB (Universal Serial Bus) interface of the PC was used to get image data from the system with higher than 10 Mbytes/s throughput rate because of its simplicity and high-speed communication capability. The system has two acquisition modes - a static and dynamic modes - which can build 256 x 256, 512 x 512, 1024 x 1024 and 2048 x2048 image frames. The dynamic mode is designed to obtain and store the position and time information of each photon events simultaneously with the maximum count-rate capability up to 500 kHz. An overview and demonstration of the PC-based data acquisition system will be presented.

  16. Software Acquisition Program Dynamics

    DTIC Science & Technology

    2011-10-24

    acquisition and development of software-reliant systems . Novak has more than 25 years of experience with real-time embedded software product development...Problem Poor acquisition program performance inhibits military performance by depriving the warfighter of critical systems to achieve mission...objectives • Delayed systems withhold needed capabilities • Wasted resources drain funding needed for new systems Acquisitions fail for both technical

  17. NASA Automated Fiber Placement Capabilities: Similar Systems, Complementary Purposes

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Jackson, Justin R.; Pelham, Larry I.; Stewart, Brian K.

    2015-01-01

    New automated fiber placement systems at the NASA Langley Research Center and NASA Marshall Space Flight Center provide state-of-art composites capabilities to these organizations. These systems support basic and applied research at Langley, complementing large-scale manufacturing and technology development at Marshall. These systems each consist of a multi-degree of freedom mobility platform including a commercial robot, a commercial tool changer mechanism, a bespoke automated fiber placement end effector, a linear track, and a rotational tool support structure. In addition, new end effectors with advanced capabilities may be either bought or developed with partners in industry and academia to extend the functionality of these systems. These systems will be used to build large and small composite parts in support of the ongoing NASA Composites for Exploration Upper Stage Project later this year.

  18. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS will propel the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  19. Equipment acquisition plans for the SSCL magnet excitation power system

    SciTech Connect

    Winje, R.

    1993-05-01

    This report gives a brief description of the major electrical technical equipment used in the Superconducting Super Collider accelerators systems and the present laboratory plans for the acquisition of the equipment.

  20. Web-LCCA: decision support system for military display acquisition

    NASA Astrophysics Data System (ADS)

    Binder, Michael L.; Calvo, Alberto B.; Gibson, Gregory J.

    2000-08-01

    This paper describes a Decision Support System for military display acquisition being developed under U.S. Display Consortium (USDC) sponsorship. The core of the system is a standard Life-Cycle Cost model. The system will use World Wide Web technology to make it widely accessible to Industry and Government Program Offices for use in the Display Acquisition Decision Process. Web-LCCA (Life-Cycle Cost Analyzer), a derivative of TASC's LCCATM, has been designed to aid in the evaluation of different Display System acquisition options. The target users of Web-LCCA are display vendors (Industry) and buyers (Government Program Offices). Web-LCCA will be USDC's standard tool for supporting cost tradeoffs and acquisition decisions among current operational displays and new flat panel display products.

  1. Design for a Rapid Automatic Sync Acquisition System

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.; Gallo, A. J.

    1969-01-01

    System provides rapid command sync acquisition between widely separated transmitter-receivers. It is based on a rapid, automatic range-adjustment approach rather than the time-consuming cycle slipping or stepping techniques of conventional phase-locked loops.

  2. A novel time stamping technique for distributed data acquisition systems.

    PubMed

    Subramaniam, E T

    2012-12-01

    In this paper, we discuss the design and implementation of a synchronizing technique for data acquisition systems, which can effectively use the normal, standard local area network cables to provide a time stamp, with a range up to 32 days, resolution of 10 ns, and synchronization within ± 5 ns. This system may be used to synchronize data being collected by independent heterogeneous data acquisition modules, that acquire events independently. Such distributed systems are generally designed with a tree-like structure or independent self-triggered acquisition boxes. These leaf edges are connected through branches to the root node, via non-bus based inter-connecting links. The present system has been tested with a set of self-triggered digital signal processing based data acquisition engines, having a 100 MHz analog to digital converter front end.

  3. Archiving Software Systems: Approaches to Preserve Computational Capabilities

    NASA Astrophysics Data System (ADS)

    King, T. A.

    2014-12-01

    A great deal of effort is made to preserve scientific data. Not only because data is knowledge, but it is often costly to acquire and is sometimes collected under unique circumstances. Another part of the science enterprise is the development of software to process and analyze the data. Developed software is also a large investment and worthy of preservation. However, the long term preservation of software presents some challenges. Software often requires a specific technology stack to operate. This can include software, operating systems and hardware dependencies. One past approach to preserve computational capabilities is to maintain ancient hardware long past its typical viability. On an archive horizon of 100 years, this is not feasible. Another approach to preserve computational capabilities is to archive source code. While this can preserve details of the implementation and algorithms, it may not be possible to reproduce the technology stack needed to compile and run the resulting applications. This future forward dilemma has a solution. Technology used to create clouds and process big data can also be used to archive and preserve computational capabilities. We explore how basic hardware, virtual machines, containers and appropriate metadata can be used to preserve computational capabilities and to archive functional software systems. In conjunction with data archives, this provides scientist with both the data and capability to reproduce the processing and analysis used to generate past scientific results.

  4. Global Positioning System: Challenges in Sustaining and Upgrading Capabilities Persist

    DTIC Science & Technology

    2010-09-01

    leverage GPS satellite capabilities; (3) the GPS interagency requirements process; and (4) coordination of GPS efforts with the international PNT...Lacks Detailed Guidance 30 Coordination of GPS Activities with the International Community Continues, and Some Challenges Have Been Addressed 37...Global Positioning System Abbreviations CAM Control Account Manager CWBS Contractor Work Breakdown Structure DASS Distress

  5. A fully implantable 96-channel neural data acquisition system.

    PubMed

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  6. A fully implantable 96-channel neural data acquisition system

    NASA Astrophysics Data System (ADS)

    Rizk, Michael; Bossetti, Chad A.; Jochum, Thomas A.; Callender, Stephen H.; Nicolelis, Miguel A. L.; Turner, Dennis A.; Wolf, Patrick D.

    2009-04-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively coupled coils. The system was implanted acutely in sheep and successfully recorded, processed and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface.

  7. A Fully Implantable 96-channel Neural Data Acquisition System

    PubMed Central

    Rizk, Michael; Bossetti, Chad A; Jochum, Thomas A; Callender, Stephen H; Nicolelis, Miguel A L; Turner, Dennis A; Wolf, Patrick D

    2009-01-01

    A fully implantable neural data acquisition system is a key component of a clinically viable brain-machine interface. This type of system must communicate with the outside world and obtain power without the use of wires that cross through the skin. We present a 96-channel fully implantable neural data acquisition system. This system performs spike detection and extraction within the body and wirelessly transmits data to an external unit. Power is supplied wirelessly through the use of inductively-coupled coils. The system was implanted acutely in sheep and successfully recorded, processed, and transmitted neural data. Bidirectional communication between the implanted system and an external unit was successful over a range of 2 m. The system is also shown to integrate well into a brain-machine interface. This demonstration of a high channel-count fully implanted neural data acquisition system is a critical step in the development of a clinically viable brain-machine interface. PMID:19255459

  8. Helicopter precision approach capability using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kaufmann, David N.

    1992-01-01

    The period between 1 July and 31 December, 1992, was spent developing a research plan as well as a navigation system document and flight test plan to investigate helicopter precision approach capability using the Global Positioning System (GPS). In addition, all hardware and software required for the research was acquired, developed, installed, and verified on both the test aircraft and the ground-based reference station.

  9. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  10. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    SciTech Connect

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  11. Reducing acquisition risk through integrated systems of systems engineering

    NASA Astrophysics Data System (ADS)

    Gross, Andrew; Hobson, Brian; Bouwens, Christina

    2016-05-01

    In the fall of 2015, the Joint Staff J7 (JS J7) sponsored the Bold Quest (BQ) 15.2 event and conducted planning and coordination to combine this event into a joint event with the Army Warfighting Assessment (AWA) 16.1 sponsored by the U.S. Army. This multipurpose event combined a Joint/Coalition exercise (JS J7) with components of testing, training, and experimentation required by the Army. In support of Assistant Secretary of the Army for Acquisition, Logistics, and Technology (ASA(ALT)) System of Systems Engineering and Integration (SoSE&I), Always On-On Demand (AO-OD) used a system of systems (SoS) engineering approach to develop a live, virtual, constructive distributed environment (LVC-DE) to support risk mitigation utilizing this complex and challenging exercise environment for a system preparing to enter limited user test (LUT). AO-OD executed a requirements-based SoS engineering process starting with user needs and objectives from Army Integrated Air and Missile Defense (AIAMD), Patriot units, Coalition Intelligence, Surveillance and Reconnaissance (CISR), Focused End State 4 (FES4) Mission Command (MC) Interoperability with Unified Action Partners (UAP), and Mission Partner Environment (MPE) Integration and Training, Tactics and Procedures (TTP) assessment. The SoS engineering process decomposed the common operational, analytical, and technical requirements, while utilizing the Institute of Electrical and Electronics Engineers (IEEE) Distributed Simulation Engineering and Execution Process (DSEEP) to provide structured accountability for the integration and execution of the AO-OD LVC-DE. As a result of this process implementation, AO-OD successfully planned for, prepared, and executed a distributed simulation support environment that responsively satisfied user needs and objectives, demonstrating the viability of an LVC-DE environment to support multiple user objectives and support risk mitigation activities for systems in the acquisition process.

  12. The Data Acquisition and Control Systems of the Jet Noise Laboratory at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Jansen, B. J., Jr.

    1998-01-01

    The features of the data acquisition and control systems of the NASA Langley Research Center's Jet Noise Laboratory are presented. The Jet Noise Laboratory is a facility that simulates realistic mixed flow turbofan jet engine nozzle exhaust systems in simulated flight. The system is capable of acquiring data for a complete take-off assessment of noise and nozzle performance. This paper describes the development of an integrated system to control and measure the behavior of model jet nozzles featuring dual independent high pressure combusting air streams with wind tunnel flow. The acquisition and control system is capable of simultaneous measurement of forces, moments, static and dynamic model pressures and temperatures, and jet noise. The design concepts for the coordination of the control computers and multiple data acquisition computers and instruments are discussed. The control system design and implementation are explained, describing the features, equipment, and the experiences of using a primarily Personal Computer based system. Areas for future development are examined.

  13. CCD data acquisition systems at Lick and Keck Observatories

    NASA Technical Reports Server (NTRS)

    Kibrick, R. I.; Stover, R. J.; Conrad, A. R.

    1992-01-01

    This paper will describe and compare two distinct but related CCD data acquisition systems (DAS) currently under development at Lick and Keck Observatories. Although these two systems have a number of major architectural differences, they share a considerable amount of common hardware and software. Both of these new systems build on a large body of proven software that is the foundation of the existing CCD DAS currently in use at Lick Observatory. Both will provide support for reading up to four on-chip amplifiers per CCD and/or reading out mosaics of CCD chips. In addition, they will provide the capability for interactive, real-time adjustment of CCD waveforms for engineering purposes. Each of these two systems is composed of three major subsystems: (1) an instrument computer and its software; (2) a data capture computer and its software; and (3) a CCD/dewar controller and its software. The instrument computer is a Unix workstation, and the functions it provides include user interfaces, the interactive real-time display of CCD images, and the recording of image and FITS header data to disk and/or tape. The data capture computer is responsible for the packaging and high-speed transfer of the CCD pixel data stream into a bulk RAM, and the subsequent transfer of this data to the instrument computer. The CCD/dewar controller generates the waveforms for clocking the CCD, digitizes the pixel data, and transmits it via high-speed link to the data capture computer. It is also responsible for monitoring and controlling the dewar temperature and cryogen levels. Given the number of different types of processors and high-speed data links employed in both systems, a major emphasis of this paper will be on the various forms of interprocessor communications utilized for data transfer and distributed process synchronization.

  14. Monte Carlo capabilities of the SCALE code system

    DOE PAGES

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; ...

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport asmore » well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.« less

  15. Monte Carlo capabilities of the SCALE code system

    SciTech Connect

    Rearden, Bradley T.; Petrie, Jr., Lester M.; Peplow, Douglas E.; Bekar, Kursat B.; Wiarda, Dorothea; Celik, Cihangir; Perfetti, Christopher M.; Ibrahim, Ahmad M.; Hart, S. W. D.; Dunn, Michael E.; Marshall, William J.

    2014-09-12

    SCALE is a broadly used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a “plug-and-play” framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE’s graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2 will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. Finally, an overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.

  16. Monte Carlo Capabilities of the SCALE Code System

    NASA Astrophysics Data System (ADS)

    Rearden, B. T.; Petrie, L. M.; Peplow, D. E.; Bekar, K. B.; Wiarda, D.; Celik, C.; Perfetti, C. M.; Ibrahim, A. M.; Hart, S. W. D.; Dunn, M. E.

    2014-06-01

    SCALE is a widely used suite of tools for nuclear systems modeling and simulation that provides comprehensive, verified and validated, user-friendly capabilities for criticality safety, reactor physics, radiation shielding, and sensitivity and uncertainty analysis. For more than 30 years, regulators, licensees, and research institutions around the world have used SCALE for nuclear safety analysis and design. SCALE provides a "plug-and-play" framework that includes three deterministic and three Monte Carlo radiation transport solvers that can be selected based on the desired solution, including hybrid deterministic/Monte Carlo simulations. SCALE includes the latest nuclear data libraries for continuous-energy and multigroup radiation transport as well as activation, depletion, and decay calculations. SCALE's graphical user interfaces assist with accurate system modeling, visualization, and convenient access to desired results. SCALE 6.2, to be released in 2014, will provide several new capabilities and significant improvements in many existing features, especially with expanded continuous-energy Monte Carlo capabilities for criticality safety, shielding, depletion, and sensitivity and uncertainty analysis. An overview of the Monte Carlo capabilities of SCALE is provided here, with emphasis on new features for SCALE 6.2.

  17. NASA's Space Launch System: Building a New Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Robinson, Kimberly F.

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). The vehicle will then be evolved into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. The initial configuration will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As this paper will explain, SLS is making measurable progress toward becoming a global infrastructure asset for robotic and human scouts of all nations by providing the robust space launch capability to deliver sustainable solutions for exploration.

  18. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the "proving ground" of lunar-vicinity space to enabling high-energy transits through the outer solar system. Substantial progress has been made toward the first launch of the initial configuration of SLS, which will be able to deliver more than 70 metric tons of payload into low Earth orbit (LEO). Preparations are also underway to evolve the vehicle into more powerful configurations, culminating with the capability to deliver more than 130 metric tons to LEO. Even the initial configuration of SLS will be able to deliver greater mass to orbit than any contemporary launch vehicle, and the evolved configuration will have greater performance than the Saturn V rocket that enabled human landings on the moon. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads. Because of its substantial mass-lift capability, SLS will also offer unrivaled departure energy, enabling mission profiles currently not possible. The basic capabilities of SLS have been driven by studies on the requirements of human deep-space exploration missions, and continue to be validated by maturing analysis of Mars mission options, including the Global Exploration Roadmap. Early collaboration with science teams planning future decadal-class missions have contributed to a greater understanding of the vehicle's potential range of utilization. As SLS draws closer to its first launch, the Program is maturing concepts for future capability upgrades, which could begin being available within a decade. These upgrades, from multiple unique payload accommodations to an upper stage providing more power for inspace propulsion, have ramifications for a variety of

  19. Cryogenic Liquid Sample Acquisition System for Remote Space Applications

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul; Trainer, Melissa; Wegel, Don; Hawk, Douglas; Melek, Tony; Johnson, Christopher; Amato, Michael; Galloway, John

    2013-01-01

    There is a need to acquire autonomously cryogenic hydrocarbon liquid sample from remote planetary locations such as the lakes of Titan for instruments such as mass spectrometers. There are several problems that had to be solved relative to collecting the right amount of cryogenic liquid sample into a warmer spacecraft, such as not allowing the sample to boil off or fractionate too early; controlling the intermediate and final pressures within carefully designed volumes; designing for various particulates and viscosities; designing to thermal, mass, and power-limited spacecraft interfaces; and reducing risk. Prior art inlets for similar instruments in spaceflight were designed primarily for atmospheric gas sampling and are not useful for this front-end application. These cryogenic liquid sample acquisition system designs for remote space applications allow for remote, autonomous, controlled sample collections of a range of challenging cryogenic sample types. The design can control the size of the sample, prevent fractionation, control pressures at various stages, and allow for various liquid sample levels. It is capable of collecting repeated samples autonomously in difficult lowtemperature conditions often found in planetary missions. It is capable of collecting samples for use by instruments from difficult sample types such as cryogenic hydrocarbon (methane, ethane, and propane) mixtures with solid particulates such as found on Titan. The design with a warm actuated valve is compatible with various spacecraft thermal and structural interfaces. The design uses controlled volumes, heaters, inlet and vent tubes, a cryogenic valve seat, inlet screens, temperature and cryogenic liquid sensors, seals, and vents to accomplish its task.

  20. Solar powered wrist worn acquisition system for continuous photoplethysmogram monitoring.

    PubMed

    Dieffenderfer, James P; Beppler, Eric; Novak, Tristan; Whitmire, Eric; Jayakumar, Rochana; Randall, Clive; Qu, Weiguo; Rajagopalan, Ramakrishnan; Bozkurt, Alper

    2014-01-01

    We present a solar-powered, wireless, wrist-worn platform for continuous monitoring of physiological and environmental parameters during the activities of daily life. In this study, we demonstrate the capability to produce photoplethysmogram (PPG) signals using this platform. To adhere to a low power budget for solar-powering, a 574 nm green light source is used where the PPG from the radial artery would be obtained with minimal signal conditioning. The system incorporates two monocrystalline solar cells to charge the onboard 20 mAh lithium polymer battery. Bluetooth Low Energy (BLE) is used to tether the device to a smartphone that makes the phone an access point to a dedicated server for long term continuous storage of data. Two power management schemes have been proposed depending on the availability of solar energy. In low light situations, if the battery is low, the device obtains a 5-second PPG waveform every minute to consume an average power of 0.57 mW. In scenarios where the battery is at a sustainable voltage, the device is set to enter its normal 30 Hz acquisition mode, consuming around 13.7 mW. We also present our efforts towards improving the charge storage capacity of our on-board super-capacitor.

  1. Novel Aspects of the DESI Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Beaufore, Lucas; Honscheid, Klaus; Elliott, Ann; Dark Energy Spectroscopic Instrument Collaboration

    2015-04-01

    The Dark Energy Spectroscopic Instrument (DESI) will measure the effect of dark energy on the expansion of the universe. It will obtain optical spectra for tens of millions of galaxies and quasars, constructing a 3-dimensional map spanning the nearby universe to 10 billion light years. The survey will be conducted on the Mayall 4-meter telescope at Kitt Peak National Observatory starting in 2018. In order to achieve these scientific goals the DESI collaboration is building a high throughput spectrograph capable of observing thousands of spectra simultaneously. In this presentation we discuss the DESI instrument control and data acquisition system that is currently being developed to operate the 5,000 fiber positioners in the focal plane, the 10 spectrographs each with three CDD cameras and every other aspect of the instrument. Special emphasis will be given to novel aspects of the design including the use of inexpensive Linux-based microcontrollers such as the Raspberry PI to control a number of DESI hardware components.

  2. Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System

    SciTech Connect

    West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

    2013-08-08

    Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

  3. Confidence range estimate of extended source imagery acquisition algorithms via computer simulations. [in optical communication systems

    NASA Technical Reports Server (NTRS)

    Chen, CHIEN-C.; Hui, Elliot; Okamoto, Garret

    1992-01-01

    Spatial acquisition using the sun-lit Earth as a beacon source provides several advantages over active beacon-based systems for deep-space optical communication systems. However, since the angular extend of the Earth image is large compared to the laser beam divergence, the acquisition subsystem must be capable of resolving the image to derive the proper pointing orientation. The algorithms used must be capable of deducing the receiver location given the blurring introduced by the imaging optics and the large Earth albedo fluctuation. Furthermore, because of the complexity of modelling the Earth and the tracking algorithms, an accurate estimate of the algorithm accuracy can only be made via simulation using realistic Earth images. An image simulator was constructed for this purpose, and the results of the simulation runs are reported.

  4. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Hefner, Keith; Hitt, David

    2015-01-01

    Designed to enable human space exploration missions, including eventually landings on Mars, NASA's Space Launch System (SLS) represents a unique launch capability with a wide range of utilization opportunities, from delivering habitation systems into the lunar vicinity to high-energy transits through the outer solar system. The vehicle will be able to deliver greater mass to orbit than any contemporary launch vehicle. SLS will also be able to carry larger payload fairings than any contemporary launch vehicle, and will offer opportunities for co-manifested and secondary payloads.

  5. A high speed data acquisition and analysis system for transonic velocity, density, and total temperature fluctuations

    NASA Technical Reports Server (NTRS)

    Clukey, Steven J.

    1988-01-01

    The high speed Dynamic Data Acquisition System (DDAS) is described which provides the capability for the simultaneous measurement of velocity, density, and total temperature fluctuations. The system of hardware and software is described in context of the wind tunnel environment. The DDAS replaces both a recording mechanism and a separate data processing system. The data acquisition and data reduction process has been combined within DDAS. DDAS receives input from hot wires and anemometers, amplifies and filters the signals with computer controlled modules, and converts the analog signals to digital with real-time simultaneous digitization followed by digital recording on disk or tape. Automatic acquisition (either from a computer link to an existing wind tunnel acquisition system, or from data acquisition facilities within DDAS) collects necessary calibration and environment data. The generation of hot wire sensitivities is done in DDAS, as is the application of sensitivities to the hot wire data to generate turbulence quantities. The presentation of the raw and processed data, in terms of root mean square values of velocity, density and temperature, and the processing of the spectral data is accomplished on demand in near-real-time- with DDAS. A comprehensive description of the interface to the DDAS and of the internal mechanisms will be prosented. A summary of operations relevant to the use of the DDAS will be provided.

  6. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach†

    PubMed Central

    Naivar, Mark A.; Wilder, Mark E.; Habbersett, Robert C.; Woods, Travis A.; Sebba, David S.; Nolan, John P.; Graves, Steven W.

    2014-01-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers. PMID:19852060

  7. Development of small and inexpensive digital data acquisition systems using a microcontroller-based approach.

    PubMed

    Naivar, Mark A; Wilder, Mark E; Habbersett, Robert C; Woods, Travis A; Sebba, David S; Nolan, John P; Graves, Steven W

    2009-12-01

    Fully digital data acquisition systems for use in flow cytometry provide excellent flexibility and precision. Here, we demonstrate the development of a low cost, small, and low power digital flow cytometry data acquisition system using a single microcontroller chip with an integrated analog to digital converter (ADC). Our demonstration system uses a commercially available evaluation board making the system simple to integrate into a flow cytometer. We have evaluated this system using calibration microspheres analyzed on commercial, slow-flow, and CCD-based flow cytometers. In our evaluations, our demonstration data system clearly resolves all eight peaks of a Rainbow microsphere set on both a slow-flow flow cytometer and a retrofitted BD FACScalibur, which indicates it has the sensitivity and resolution required for most flow cytometry applications. It is also capable of millisecond time resolution, full waveform collection, and selective triggering of data collection from a CCD camera. The capability of our demonstration system suggests that the use of microcontrollers for flow cytometry digital data-acquisition will be increasingly valuable for extending the life of older cytometers and provides a compelling data-system design approach for low-cost, portable flow cytometers.

  8. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    SciTech Connect

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.; Zubarev, P.V.; Kvashnin, A.N.; Puryga, E.A.; Ivanova, A.A.; Kotelnikov, A.I.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used to form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)

  9. TDAS: The Thermal Expert System (TEXSYS) data acquisition system

    NASA Technical Reports Server (NTRS)

    Hack, Edmund C.; Healey, Kathleen J.

    1987-01-01

    As part of the NASA Systems Autonomy Demonstration Project, a thermal expert system (TEXSYS) is being developed. TEXSYS combines a fast real time control system, a sophisticated human interface for the user and several distinct artificial intelligence techniques in one system. TEXSYS is to provide real time control, operations advice and fault detection, isolation and recovery capabilities for the space station Thermal Test Bed (TTB). TEXSYS will be integrated with the TTB and act as an intelligent assistant to thermal engineers conducting TTB tests and experiments. The results are presented from connecting the real time controller to the knowledge based system thereby creating an integrated system. Special attention will be paid to the problem of filtering and interpreting the raw, real time data and placing the important values into the knowledge base of the expert system.

  10. Review of Supervisory Control and Data Acquisition (SCADA) Systems

    SciTech Connect

    Reva Nickelson; Briam Johnson; Ken Barnes

    2004-01-01

    A review using open source information was performed to obtain data related to Supervisory Control and Data Acquisition (SCADA) systems used to supervise and control domestic electric power generation, transmission, and distribution. This report provides the technical details for the types of systems used, system disposal, cyber and physical security measures, network connections, and a gap analysis of SCADA security holes.

  11. Review of digital fingerprint acquisition systems and wavelet compression

    NASA Astrophysics Data System (ADS)

    Hopper, Thomas

    2003-04-01

    Over the last decade many criminal justice agencies have replaced their fingerprint card based systems with electronic processing. We examine these new systems and find that image acquisition to support the identification application is consistently a challenge. Image capture and compression are widely dispersed and relatively new technologies within criminal justice information systems. Image quality assurance programs are just beginning to mature.

  12. An intelligent data acquisition system for fluid mechanics research

    NASA Technical Reports Server (NTRS)

    Cantwell, E. R.; Zilliac, G.; Fukunishi, Y.

    1989-01-01

    This paper describes a novel data acquisition system for use with wind-tunnel probe-based measurements, which incorporates a degree of specific fluid dynamics knowledge into a simple expert system-like control program. The concept was developed with a rudimentary expert system coupled to a probe positioning mechanism operating in a small-scale research wind tunnel. The software consisted of two basic elements, a general-purpose data acquisition system and the rulebased control element to take and analyze data and supplying decisions as to where to measure, how many data points to take, and when to stop. The system was validated in an experiment involving a vortical flow field, showing that it was possible to increase the resolution of the experiment or, alternatively, reduce the total number of data points required, to achieve parity with the results of most conventional data acquisition approaches.

  13. Engine Icing Capability Enhancements for the Propulsion Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Griffin, Tom

    2010-01-01

    The AC9C is holding their biannual committee meeting in Ottawa, Ontario on 18-20 October 2010. I have been asked to provide a short presentation of the status of the icing project upgrade to the PSL test facility. I will highlight the progress made during construction the past 6 months, our approach for checkout of the facility, and an overview of the system design and its capabilities. A copy of the presentation is attached.

  14. A flexible computerized system for environmental data acquisition and transmission

    NASA Astrophysics Data System (ADS)

    Zappalà, G.

    2009-04-01

    and is remotely reprogrammable; new releases of the software and of the sequences are uploadable to the station without suspending its normal activity. The macro-commands enable to manage the data acquisition and transmission, the mission programming, the station hardware and the measuring instruments. In the "launcher" version the program also controls real time and position acquisition, comparison against set points-times, launch, data acquisition and transmission, ancillary functions. The whole system can be connected to another computer (local laptop or remote desktop) using a terminal software; however, to fully and easily use its capabilities, a remote control program has been written in Microsoft Visual Basic, running in Windows environment. This program enables to transfer files to and from the measuring system, set up all its functionalities, and, if needed, take control of all the system operations. Thanks to the PC-like hardware architecture, it is easy to upgrade the system to more powerful processors without the need to modify the software, which, in turn, can be easily programmed using standard development packages.

  15. Quantifying the tracking capability of space-based AIS systems

    NASA Astrophysics Data System (ADS)

    Skauen, Andreas Nordmo

    2016-01-01

    The Norwegian Defence Research Establishment (FFI) has operated three Automatic Identification System (AIS) receivers in space. Two are on dedicated nano-satellites, AISSat-1 and AISSat-2. The third, the NORAIS Receiver, was installed on the International Space Station. A general method for calculating the upper bound on the tracking capability of a space-based AIS system has been developed and the results from the algorithm applied to AISSat-1 and the NORAIS Receiver individually. In addition, a constellation of AISSat-1 and AISSat-2 is presented. The tracking capability is defined as the probability of re-detecting ships as they move around the globe and is explained to represent and upper bound on a space-based AIS system performance. AISSat-1 and AISSat-2 operates on the nominal AIS1 and AIS2 channels, while the NORAIS Receiver data used are from operations on the dedicated space AIS channels, AIS3 and AIS4. The improved tracking capability of operations on the space AIS channels is presented.

  16. ISO 9000 and/or Systems Engineering Capability Maturity Model?

    NASA Technical Reports Server (NTRS)

    Gholston, Sampson E.

    2002-01-01

    For businesses and organizations to remain competitive today they must have processes and systems in place that will allow them to first identify customer needs and then develop products/processes that will meet or exceed the customers needs and expectations. Customer needs, once identified, are normally stated as requirements. Designers can then develop products/processes that will meet these requirements. Several functions, such as quality management and systems engineering management are used to assist product development teams in the development process. Both functions exist in all organizations and both have a similar objective, which is to ensure that developed processes will meet customer requirements. Are efforts in these organizations being duplicated? Are both functions needed by organizations? What are the similarities and differences between the functions listed above? ISO 9000 is an international standard of goods and services. It sets broad requirements for the assurance of quality and for management's involvement. It requires organizations to document the processes and to follow these documented processes. ISO 9000 gives customers assurance that the suppliers have control of the process for product development. Systems engineering can broadly be defined as a discipline that seeks to ensure that all requirements for a system are satisfied throughout the life of the system by preserving their interrelationship. The key activities of systems engineering include requirements analysis, functional analysis/allocation, design synthesis and verification, and system analysis and control. The systems engineering process, when followed properly, will lead to higher quality products, lower cost products, and shorter development cycles. The System Engineering Capability Maturity Model (SE-CMM) will allow companies to measure their system engineering capability and continuously improve those capabilities. ISO 9000 and SE-CMM seem to have a similar objective, which

  17. NEXT Ion Propulsion System Development Status and Capabilities

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Benson, Scott W.

    2008-01-01

    NASA s Evolutionary Xenon Thruster (NEXT) project is developing next generation ion propulsion technologies to provide future NASA science missions with enhanced mission performance benefit at a low total development cost. The objective of the NEXT project is to advance next generation ion propulsion technology by producing engineering model system components, validating these through qualification-level and integrated system testing, and ensuring preparedness for transitioning to flight system development. As NASA s Evolutionary Xenon Thruster technology program completes advanced development activities, it is advantageous to review the existing technology capabilities of the system under development. This paper describes the NEXT ion propulsion system development status, characteristics and performance. A review of mission analyses results conducted to date using the NEXT system is also provided.

  18. Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    NASA Technical Reports Server (NTRS)

    Zornetzer, Steve; Gage, Douglas

    2005-01-01

    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion.

  19. Assessing Weapon System Acquisition Cycle Times: Setting Program Schedules

    DTIC Science & Technology

    2015-06-01

    insights for the CIRCM program. This program is developing a lightweight laser countermeasure system for smaller helicopters. The device will use a laser ...beam to confuse infrared (IR)-guided missile seekers. The existing protection for such helicopters is the Common Missile Warning System (CMWS...Missile Warning System CDD Capabilities Development Document CIRCM Common Infrared Countermeasures CM Cruise Missile CPD Capabilities Production

  20. NASA's Space Launch System: An Evolving Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Crumbly, Christopher M.; Creech, Stephen D.; Robinson,Kimberly F.

    2016-01-01

    Designed to meet the stringent requirements of human exploration missions into deep space and to Mars, NASA's Space Launch System (SLS) vehicle represents a unique new launch capability opening new opportunities for mission design. While SLS's super-heavy launch vehicle predecessor, the Saturn V, was used for only two types of missions - launching Apollo spacecraft to the moon and lofting the Skylab space station into Earth orbit - NASA is working to identify new ways to use SLS to enable new missions or mission profiles. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of not only propelling the Orion crew vehicle into cislunar space, but also delivering small satellites to deep space destinations. With a 5-meter (m) fairing consistent with contemporary Evolved Expendable Launch Vehicles (EELVs), the Block 1 configuration can also deliver science payloads to high-characteristic-energy (C3) trajectories to the outer solar system. With the addition of an upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a new class of secondary payloads, larger than today's cubesats. The evolved configurations of SLS, including both Block 1B and the 130 t Block 2, also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk and operational costs associated with shorter transit time to destination and reduced risk and complexity associated with launching large systems either monolithically or in fewer components. As this paper will

  1. Gadanki Ionospheric Radar Interferometer (GIRI): System Description, Capabilities and Observations

    NASA Astrophysics Data System (ADS)

    Durga rao, Meka; Jayaraman, Achuthan; Patra, Amit; Kamaraj, Pandian; Jayaraj, Katta; Raghavendra, J.; Yasodha, Polisetti

    2016-07-01

    A 30-MHz radar has been developed at National Atmospheric Research Laboratory for dedicated probing of ionosphere and to study the low latitude ionospheric plasma irregularities. The radar has the beam steering capability to scan a larger part of the sky up to ±45o in East-West direction, which will overcome the limitation of slit camera picture obtained by the fixed beam of the Gadanki MST radar on the ionospheric plasma irregularity/structures. The system is also configured for pulse-to-pulse beam steering, employs multi-channel receiving system to carryout Interferometry/Imaging experiments. The radar system employs 20x8 phased antenna array, Direct Digital Synthesizers to generate pulse coded excitation signals, high power solid-state Transmit-Receive modules to generate a peak power of 150 kW, low loss coaxial beam forming and feeder network and multi-channel direct IF digital receiver. Round-the-clock observations are being made with uninterrupted operations and high quality E-and F-Region Range-Time-Intensity and conical maps are obtained with the system. In this paper we present, the system design philosophy, realization, initial observations and also the capability of the system to augment for Meteor observations.

  2. Content Analysis in Systems Engineering Acquisition Activities

    DTIC Science & Technology

    2016-04-30

    shape requirements definitions for system upgrade or modification contracts and new baseline contracts. Finally, content analysis training and skill...back to the system designers, this information can then be used to shape requirements definition for system upgrade or modification contracts and new...Activity System Requirements Definition Ensuring the system requirements adequately reflect the stakeholder requirements Negotiating modifications to

  3. High speed image acquisition system of absolute encoder

    NASA Astrophysics Data System (ADS)

    Liao, Jianxiang; Chen, Xin; Chen, Xindu; Zhang, Fangjian; Wang, Han

    2017-01-01

    Absolute optical encoder as a product of optical, mechanical and electronic integration has been widely used in displacement measuring fields. However, how to improve the measurement velocity and reduce the manufacturing cost of absolute optical encoder is the key problem to be solved. To improve the measurement speed, a novel absolute optical encoder image acquisition system is proposed. The proposed acquisition system includes a linear CCD sensor is applied for capturing coding pattern images, an optical magnifying system is used for enlarging the grating stripes, an analog-digital conversion(ADC) module is used for processing the CCD analogy signal, a field programmable gate array(FPGA) device and other peripherals perform driving task. An absolute position measurement experiment was set up to verify and evaluate the proposed image acquisition system. The experimental result indicates that the proposed absolute optical encoder image acquisition system has the image acquisition speed of more than 9500fp/s with well reliability and lower manufacture cost.

  4. NASA's Space Launch System: An Enabling Capability for International Exploration

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; May, Todd A.; Robinson, Kimberly F.

    2014-01-01

    As the program moves out of the formulation phase and into implementation, work is well underway on NASA's new Space Launch System, the world's most powerful launch vehicle, which will enable a new era of human exploration of deep space. As assembly and testing of the rocket is taking place at numerous sites around the United States, mission planners within NASA and at the agency's international partners continue to evaluate utilization opportunities for this ground-breaking capability. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. NASA is developing this new capability in an austere economic climate, a fact which has inspired the SLS team to find innovative solutions to the challenges of designing, developing, fielding, and operating the largest rocket in history, via a path that will deliver an initial 70 metric ton (t) capability in December 2017 and then continuing through an incremental evolutionary strategy to reach a full capability greater than 130 t. SLS will be enabling for the first missions of human exploration beyond low Earth in almost half a century, and from its first crewed flight will be able to carry humans farther into space than they have ever voyaged before. In planning for the future of exploration, the International Space Exploration Coordination Group, representing 12 of the world's space agencies, has created the Global Exploration Roadmap, which outlines paths toward a human landing on Mars, beginning with capability-demonstrating missions to the Moon or an asteroid. The Roadmap and corresponding NASA research outline the requirements for reference missions for these destinations. SLS will offer a robust way to transport international crews and the air, water, food, and equipment they would need for such missions.

  5. Driver performance data acquisition system for ergonomics research

    SciTech Connect

    Carter, R.J.; Goodman, M.J.

    1994-12-31

    A portable ergonomics data acquisition system consisting of state-of-the-art hardware being designed is described here. It will be employed to record driver, vehicle, and environment parameter data from a wide range of vehicles and trucks. The system will be unobtrusive to the driver and inconspicuous to the outside world. It will have three modes of data gathering and provide for extended periods of data collection. Modularity, flexibility, and cost will be key drivers in the development effort. The ergonomics data acquisition system project is being conducted in two phases--a feasibility study and a development, construction, and validation phase.

  6. Computer Systems Acquisition Metrics Handbook. Volume II. Quality Factor Modules.

    DTIC Science & Technology

    1982-05-01

    AD- A120 376 SYSTEMS ARCH4ITECTS INC RtANDOLPH MASS F/ O 9/2CCOM4PUTER SYSTEMS ACQUISITION METRICS MAN09M@. VOLUME It. QUALI -ETC iuMAT 82 FIft2 8-C...components of the "COMPUTER SYSTEMS ACQUISITION METRICS HANDBOOK". le Cj co-i " z/%a 4 • \\ // INTRODUCTION AND INSTRUCTIONS FOR CORRECTNESS MODULE...rr LE ~M M 1inT DRS4I- UALTG i MSIGNUT M0 JI PJM.DGIWn MaN TU IE ESD PIRMJCrS, FOR TEST AND INTEGRATION PHASE Apply the Preliminary Design Worksheets

  7. The UCR gamma ray telescope data acquisition system

    NASA Technical Reports Server (NTRS)

    O'Neill, T. J.; Sweeney, W. E.; Tumer, O. T.; Zych, A. D.; White, R. S.

    1988-01-01

    A description is given of an electronics system based on the DEC Falcon SBC-11/23+, which has been designed and built to support a balloon-borne double Compton gamma-ray telescope. The system provides support for commands, data acquisition, data routing and compression, and photomultiplier tube gain control. The software consists of a number of interrupt-driven routines of differing priorities to handle each system task. This includes two circular buffers for onboard processing and bit encoding before transmission of the information to the ground computer. Acquisition of gamma-ray events at rates above the 200-Hz telemetry constraint is easily achieved.

  8. Design Concept for a Rapid Automatic Sync Acquisition System

    NASA Technical Reports Server (NTRS)

    Anderson, T. O.; Gallo, A. J.

    1968-01-01

    A design has been conceived for a system intended to provide rapid command sync acquisition between widely separated transmitter-receivers, such as between a spacecraft telemetry transmitter, and a ground-based receiver. Use of the system in commercial satellite communications would facilitate rapid sync acquisition between stations and regaining of data lock after interruption or equipment failure. The system is based on a rapid, automatic range-adjustment approach rather than the time-consuming cycle slipping or stepping techniques of conventional phase-locked loops.

  9. Nascom System Development Plan: System Description, Capabilities and Plans

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The NASA Communications (Nascom) System Development Plan (NSDP), reissued annually, describes the organization of Nascom, how it obtains communication services, its current systems, its relationship with other NASA centers and International Partner Agencies, some major spaceflight projects which generate significant operational communication support requirements, and major Nascom projects in various stages of development or implementation.

  10. Exploiting the Capabilities of NASA's Giovanni System for Oceanographic Education

    NASA Technical Reports Server (NTRS)

    Acker, James G.; Petrucio, Emil; Leptoukh, Gregory; Shen, Suhung

    2007-01-01

    The NASA Goddard Earth Science Data and Information Services Center (GES DISC) Giovanni system [GES DISC Interactive Online Visualization ANd aNalysis Infrastructure] has significant capabilities for oceanographic education and independent research utilizing ocean color radiometry data products. Giovanni allows Web-based data discovery and basic analyses, and can be used both for guided illustration of a variety of marine processes and phenomena, and for independent research investigations. Giovanni's capabilities are particularly suited for advanced secondary school science and undergraduate (college) education. This presentation will describe a variety of ways that Giovanni can be used for oceanographic education. Auxiliary information resources that can be utilized will also be described. Several testimonies of Giovanni usage for instruction will be provided, and a recent case history of Giovanni utilization for instruction and research at the undergraduate level is highlighted.

  11. NASA's Space Launch System (SLS): A New National Capability

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2012-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) will contribute a new national capability for human space flight and scientific missions to low- Earth orbit (LEO) and beyond. Exploration beyond Earth orbit will be an enduring legacy to future generations, confirming America s desire to explore, learn, and progress. The SLS Program, managed at NASA s Marshall Space Fight Center, will develop the heavy lift vehicle that will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and science experiments for missions beyond Earth s orbit. This paper gives an overview of the SLS design and management approach against a backdrop of the missions it will empower. It will detail the plan to move from the computerized drawing board to the launch pad in the near term, as well as summarize the innovative approaches the SLS team is applying to deliver a safe, affordable, and sustainable long-range national capability.

  12. The Physics of transmutation systems : system capabilities and performances.

    SciTech Connect

    Finck, P. J.

    2002-08-21

    This document is complementary to a document produced by Prof. Salvatores on ''The Physics of Transmutation in Critical or Subcritical Reactors and the Impact on the Fuel Cycle''. In that document, Salvatores describes the fundamental of transmutation, through basic physics properties and general parametric studies. In the present document we try to go one step further towards practical implementation (while recognizing that the practical issues such as technology development and demonstration, and economics, can only be mentioned in a very superficial manner). Section 1 briefly overviews the possible objectives of transmutation systems, and links these different objectives to possible technological paths. It also describes the overall constraints which have to be considered when developing and implementing transmutation systems. In section 2 we briefly overview the technological constraints which need to be accounted for when designing transmutation systems. In section 3 we attempt to provide a simplified classification of transmutation systems in order to clarify later comparisons. It compares heterogeneous and homogeneous recycle strategies, and single and multi-tier systems. Section 4 presents case analyses for assessing the transmutation performance of various individual systems, starting with LWR's (1. generic results; 2. multirecycle of plutonium; 3. an alternative: transmutation based on a Thorium fuel cycle), followed by Gas-Cooled Reactors (with an emphasis on the ''deep burn'' approach), and followed by Fast Reactors and Accelerator Driven systems (1. generic results; 2. homogeneous recycle of transuranics; 3. practical limit between Fast Reactors and Accelerator Driven Systems) Section 5 summarizes recent results on integrated system performances. It focuses first on interface effects between the two elements of a dual tier system, and then summarizes the major lessons learned from recent global physics studies.

  13. An integrated data acquisition and analysis system at GSI

    SciTech Connect

    Essel, H.G.; Hoffmann, J.; Richter, M.; Sohlbach, H.; Spreng )

    1989-10-01

    GOOSY, the GSI data acquisition and analysis system has been extended to handle experimental set-ups and data from heavy-ion experiments at high energies. A new front-end system has been designed and built. It is a VME based multi-processor system connected to CAMAC and FASTBUS via standard VSB. This system allows pre-analysis and filtering of the raw data. The architecture of the system is presented and a status report is given in this paper.

  14. A data acquisition system for water heating and cooling experiments

    NASA Astrophysics Data System (ADS)

    Perea Martins, J. E. M.

    2017-01-01

    This work presents a simple analogue waterproof temperature probe design and its electronic interfacing with a computer to compose a data acquisition system for water temperature measurement. It also demonstrates the system usage through an experiment to verify the water heating period with an electric heater and another to verify the Newton’s law of cooling

  15. Migrating Legacy Systems in the Global Merger & Acquisition Environment

    ERIC Educational Resources Information Center

    Katerattanakul, Pairin; Kam, Hwee-Joo; Lee, James J.; Hong, Soongoo

    2009-01-01

    The MetaFrame system migration project at WorldPharma, while driven by merger and acquisition, had faced complexities caused by both technical challenges and organizational issues in the climate of uncertainties. However, WorldPharma still insisted on instigating this post-merger system migration project. This project served to (1) consolidate the…

  16. Data-Acquisition System With Remotely Adjustable Amplifiers

    NASA Technical Reports Server (NTRS)

    Nurge, Mark A.; Larson, William E.; Hallberg, Carl G.; Thayer, Steven W.; Ake, Jeffrey C.; Gleman, Stuart M.; Thompson, David L.; Medelius, Pedro J.; Crawford, Wayne A.; Vangilder, Richard M.; Kerce, Johnny L.; Fairbanks, Joey S.

    1994-01-01

    Improved data-acquisition system has both centralized and decentralized characteristics developed. Provides infrastructure for automation and standardization of operation, maintenance, calibration, and adjustment of many transducers. Increases efficiency by reducing need for diminishing work force of highly trained technicians to perform routine tasks. Large industrial and academic laboratory facilities benefit from systems like this one.

  17. College Bibliocentre Acquisition and Accounting System Description Manual.

    ERIC Educational Resources Information Center

    College Bibliocentre, Don Mills (Ontario).

    The Acquisition and Accounting System is a complex designed to perform all functions in the following areas: (1) ordering; (2) receipt, shipment and cancellation; (3) accounts payable, (4) invoicing, (5) order status, (6) inventory, (7) college budgeting and (8) management information reports. Some of the benefits that accrue from the system are:…

  18. Data acquisition system developed for the resonance absorption project

    SciTech Connect

    Arnone, G.J.; Hollas, C.L.

    1993-12-01

    Minimizing signal errors and losses in high-rate gamma-ray imaging systems places demands on the signal-processing and data acquisition electronics. We will describe the data acquisition system developed for the resonance absorption project and techniques used to minimize dead-time and data losses. The data acquisition system acquires pulse-height spectra from an array of gamma-ray detectors and is made available to multiple processors by using the VMEbus standard to provide concurrent data analysis. A SUN workstation is used to develop the application software and also provides the user interface. We have developed a pulse-height-analysis board that has been optimized for low dead time. By incorporating an independent, high-speed signal channel for each detector, we are able to improve performance over multiplexed techniques.

  19. The USB-based portable data acquisition system for AR

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Yan, Dayuan; Dong, Taian; Zhang, Hao; Liu, Guangting; Zheng, Chunliang

    2011-11-01

    Rotary position sensors are widely used in many applications that require precise shaft unlimited rotation: including control systems, robotics and AR (Augmented Reality) systems. However, traditional data acquisition system is often a PC-based (Personal Computer-based) one with complex structures and complicated electrical connections, which means that the system has limited application for its size as well as its poor portability. That is a main drawback, especially for AR system in which the user is supposed to walk freely. In this paper, a novel portable data acquisition system (PDAS) based on USB interface technology with a succinct hardware structure is proposed. Implemented on an 8051-based microcontroller AT89C5131, the proposed system can receive signal from optical encoder, decode the signal and transfer the data to the computer through USB interface. The experimental results show that this system can provide the possibility to realize portable and improve performance of AR, which demonstrate the efficiency of the proposed system.

  20. Capabilities and limitations of atmospheric transmission field measurement systems

    NASA Astrophysics Data System (ADS)

    Zweibaum, F. M.; Lucia, L. V.; Lamontagne, J. J.; Kozlowski, A. T.

    1981-01-01

    The major subject of the paper is advancing atmospheric transmission field measurement systems in response to new requirements. From the viewpoint of a complete field system installation, attention is given to the nature of the measurement and the capabilities and limitations in sensitivity, stability, and the time required for individual measurements. From the same system viewpoint calibration is reviewed with regard to concept, techniques, uncertainties and assumptions. Examples are given of system advances and these include making real-time measurements with automatic high-speed scanning, high sensitivity, wide spectral range and remote control. Special measurement conditions that are described include those encountered on the battlefield, in fog and precipitation, and in the presence of countermeasures.

  1. Actionable Capability for Social and Economic Systems (ACSES)

    SciTech Connect

    Fernandez, Steven J; Brecke, Peter K; Carmichael, Theodore D; Eichelberger, Christopher N; Ganguly, Auroop R; Hadzikadic, Mirsad; Jiao, Yu; Khouja, Moutaz J; McLean, Angus L; Middleton, Erin J; Omitaomu, Olufemi A; Saric, Amar; Sun, Min; Whitmeyer, Joseph M; Gilman, Paul; O'Maonaigh, Heather C

    2008-05-01

    The foundation of the Actionable Capability for Social and Economic Systems (ACSES) project is a useful regional-scale social-simulation system. This report is organized into five chapters that describe insights that were gained concerning the five key feasibility questions pertaining to such a system: (1) Should such a simulation system exist, would the current state of data sets or collectible data sets be adequate to support such a system? (2) By comparing different agent-based simulation systems, is it feasible to compare simulation systems and select one appropriate for a given application with agents behaving according to modern social theory rather than ad hoc rule sets? (3) Provided that a selected simulation system for a region of interest could be constructed, can the simulation system be updated with new and changing conditions so that the universe of potential outcomes are constrained by events on the ground as they evolve? (4) As these results are constrained by evolving events on the ground, is it feasible to still generate surprise and emerging behavior to suggest outcomes from novel courses of action? (5) As these systems may for the first time require large numbers (hundreds of millions) of agents operating with complexities demanded of modern social theories, can results still be generated within actionable decision cycles?

  2. System design package for solar heating and cooling site data acquisition subsystem

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Site Data Acquisition Subsystem (SDAS) designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system is described. It takes the data obtained from sensors located on the solar system, processes the data into suitable format, stores the data for a period of time, and provides the capability for either telephone retrieval by the central data processing system or manual retrieval of the data for transfer to a central site. The SDAS is also designed so that it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  3. Subsystem design package for Mod 2 site data acquisition system: Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Mod II Site Data Acquisition Subsystem (SDAS) is designed to collect data from sensors located on residential or commercial buildings using a solar heating and/or cooling system. The SDAS takes the data obtained from sensors located on the solar heating and/or cooling system, processes the data into a suitable format, stores the data for a period of time, and provides the capability for both telephone retrieval by the Central Data Processing System (CDPS) and manual retrieval of the data for transfer to the central site. The unit is designed so it will not degrade the operation of the solar heating/cooling system which it is monitoring.

  4. Data acquisition and control system with a programmable logic controller (PLC) for a pulsed chemical oxygen-iodine laser

    NASA Astrophysics Data System (ADS)

    Yu, Haijun; Li, Guofu; Duo, Liping; Jin, Yuqi; Wang, Jian; Sang, Fengting; Kang, Yuanfu; Li, Liucheng; Wang, Yuanhu; Tang, Shukai; Yu, Hongliang

    2015-02-01

    A user-friendly data acquisition and control system (DACS) for a pulsed chemical oxygen -iodine laser (PCOIL) has been developed. It is implemented by an industrial control computer,a PLC, and a distributed input/output (I/O) module, as well as the valve and transmitter. The system is capable of handling 200 analogue/digital channels for performing various operations such as on-line acquisition, display, safety measures and control of various valves. These operations are controlled either by control switches configured on a PC while not running or by a pre-determined sequence or timings during the run. The system is capable of real-time acquisition and on-line estimation of important diagnostic parameters for optimization of a PCOIL. The DACS system has been programmed using software programmable logic controller (PLC). Using this DACS, more than 200 runs were given performed successfully.

  5. An Overview of Advanced Data Acquisition System (ADAS)

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Steinrock, T. (Technical Monitor)

    2001-01-01

    The paper discusses the following: 1. Historical background. 2. What is ADAS? 3. R and D status. 4. Reliability/cost examples (1, 2, and 3). 5. What's new? 6. Technical advantages. 7. NASA relevance. 8. NASA plans/options. 9. Remaining R and D. 10. Applications. 11. Product benefits. 11. Commercial advantages. 12. intellectual property. Aerospace industry requires highly reliable data acquisition systems. Traditional Acquisition systems employ end-to-end hardware and software redundancy. Typically, redundancy adds weight, cost, power consumption, and complexity.

  6. Data acquisition system for the Baikal-GVD neutrino telescope

    NASA Astrophysics Data System (ADS)

    Avrorin, A. V.; Avrorin, A. D.; Aynutdinov, V. M.; Bannasch, R.; Belolaptikov, I. A.; Bogorodsky, D. Yu.; Brudanin, V. B.; Budnev, N. M.; Danilchenko, I. A.; Dzhilkibaev, Zh.-A. M.; Domogatsky, G. V.; Doroshenko, A. A.; Dyachok, A. N.; Fialkovsky, S. V.; Gafarov, A. R.; Gaponenko, O. N.; Golubkov, K. V.; Gress, T. I.; Hons, Z.; Kebkal, K. G.; Kebkal, O. G.; Konischev, K. V.; Korobchenko, A. V.; Koshechkin, A. P.; Koshel, F. K.; Kozhin, V. A.; Kulepov, V. F.; Kuleshov, D. A.; Lyashuk, V. I.; Milenin, M. B.; Mirgazov, R. R.; Osipova, E. A.; Panfilov, A. I.; Pan'kov, L. V.; Pliskovsky, E. N.; Rozanov, M. I.; Ryabov, E. V.; Shaibonov, B. A.; Sheifler, A. A.; Skurikhin, A. V.; Smagina, A. A.; Suvorova, O. V.; Tabolenko, V. A.; Tarashchansky, B. A.; Yakovlev, S. A.; Zagorodnikov, A. V.; Zhukov, V. A.; Zurbanov, V. L.

    2016-11-01

    The objective of the Baikal-GVD project is the construction of a km3-scale neutrino telescope in Lake Baikal. The Gigaton Volume Detector consists of a large three-dimensional array of photo-multiplier tubes. The first GVD-cluster has been deployed and commissioned in April 2015. The data acquisition system (DAQ) of the detector takes care of the digitization of the photo-multiplier tube signals, data transmission, filtering and storage. The design and the implementation of the data acquisition system are described.

  7. An immersive surgery training system with live streaming capability.

    PubMed

    Yang, Yang; Guo, Xinqing; Yu, Zhan; Steiner, Karl V; Barner, Kenneth E; Bauer, Thomas L; Yu, Jingyi

    2014-01-01

    Providing real-time, interactive immersive surgical training has been a key research area in telemedicine. Earlier approaches have mainly adopted videotaped training that can only show imagery from a fixed view point. Recent advances on commodity 3D imaging have enabled a new paradigm for immersive surgical training by acquiring nearly complete 3D reconstructions of actual surgical procedures. However, unlike 2D videotaping that can easily stream data in real-time, by far 3D imaging based solutions require pre-capturing and processing the data; surgical trainings using the data have to be conducted offline after the acquisition. In this paper, we present a new real-time immersive 3D surgical training system. Our solution builds upon the recent multi-Kinect based surgical training system [1] that can acquire and display high delity 3D surgical procedures using only a small number of Microsoft Kinect sensors. We build on top of the system a client-server model for real-time streaming. On the server front, we efficiently fuse multiple Kinect data acquired from different viewpoints and compress and then stream the data to the client. On the client front, we build an interactive space-time navigator to allow remote users (e.g., trainees) to witness the surgical procedure in real-time as if they were present in the room.

  8. Extension of GTC Capability for Simulating Non-Axisymmetric Systems

    NASA Astrophysics Data System (ADS)

    Holod, Ihor; Spong, Donald

    2014-10-01

    Effects of magnetic field non-axisymmetry are important for all magnetic confinement systems, including tokamaks, stellarators, and reversed field pinches. In this work we present recent upgrade of GTC global gyrokinetic model to use general 3D toroidal equilibria and to study the associated phenomena. We have initially applied new capability to simulate electrostatic ITG, and fast ion driven electromagnetic TAE modes in the LHD stellarator. This work is supported by the US Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and under the US DOE SciDAC GSEP Center.

  9. Waste retrieval sluicing system data acquisition system acceptance test report

    SciTech Connect

    Bevins, R.R.

    1998-07-31

    This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have to be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.

  10. Device capable small arms ammunition for unmanned systems

    NASA Astrophysics Data System (ADS)

    Bergeron, Noah P.; Sweeney, John W.; Wilson, Chester G.

    2010-04-01

    The design of current small arms ammunition requires the use of radial and lateral accelerations to permit the inclusion of current Micro Electro Mechanical Systems (MEMS). Research at Louisiana Tech's Institute for Micromanufacturing into equipping small arms with MEMS technology has led to the development of a new type of small arms system. This ammunition is able to accelerate outside of its barrel, thereby decreasing the required acceleration for a specified maximum velocity. Additionally, the design of this ammunition eliminates the lateral accelerations typically required to stabilize current small arms ammunition, and permits the inclusion of non-metallic barrels and other components. A review of the current design and performance standards of this ammunition is presented, along with the current MEMS technology being tested for inclusion into this ammunition. A review of new armament systems, capabilities, and applications as a result of these advances is also presented.

  11. Distributed data acquisition system for Pachmarhi array of Cverenkov telescopes

    NASA Astrophysics Data System (ADS)

    Upadhya, S. S.; Acharya, B. S.; Bhat, P. N.; Chitnis, V. R.; D'Souza, A. I.; Francis, P. J.; Gothe, K. S.; Joshi, S. R.; Majumdar, P.; Manogaran, M.; Nagesh, B. K.; Pose, M. S.; Purohit, P. N.; Rahman, M. A.; Rao, K. K.; Rao, S. K.; Sharma, S. K.; Singh, B. B.; Stanislaus, A. J.; Sudersanan, P. V.; Venkatesh Murthy, B. L.; Vishwanath, P. R.

    2002-03-01

    Pachmarhi Array of Cverenkov Telescopes consists of 25 Telescopes distributed within an area of 8000m2. The array was designed to detect and process faint Cverenkov light flashes that lasts for a few nanoseconds, produced in the atmosphere by celestial VHE ?-rays or cosmic rays. In this experiment, the arrival time and amplitude of fast tiny pulses have to be measured and recorded from each of 175 photo-tubes in a shortest possible time. In view of the complexity of the system, the entire array is divided into 4 sectors. A Distributed Data Acquisition System developed for the purpose consists of independent Sector Data Acquisition Systems and a Master Data Acquisition System. The distributed data acquisition and monitoring system are built using PC's which are networked through LAN. The entire software for DDAS was developed in-house in C language under LINUX environment. Also, most of the hardware barring a few fast digitization modules were designed and fabricated in-house. The design features, implementation strategy as well as the performance of the whole system are discussed.

  12. Implementation of High Speed Distributed Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Raju, Anju P.; Sekhar, Ambika

    2012-09-01

    This paper introduces a high speed distributed data acquisition system based on a field programmable gate array (FPGA). The aim is to develop a "distributed" data acquisition interface. The development of instruments such as personal computers and engineering workstations based on "standard" platforms is the motivation behind this effort. Using standard platforms as the controlling unit allows independence in hardware from a particular vendor and hardware platform. The distributed approach also has advantages from a functional point of view: acquisition resources become available to multiple instruments; the acquisition front-end can be physically remote from the rest of the instrument. High speed data acquisition system transmits data faster to a remote computer system through Ethernet interface. The data is acquired through 16 analog input channels. The input data commands are multiplexed and digitized and then the data is stored in 1K buffer for each input channel. The main control unit in this design is the 16 bit processor implemented in the FPGA. This 16 bit processor is used to set up and initialize the data source and the Ethernet controller, as well as control the flow of data from the memory element to the NIC. Using this processor we can initialize and control the different configuration registers in the Ethernet controller in a easy manner. Then these data packets are sending to the remote PC through the Ethernet interface. The main advantages of the using FPGA as standard platform are its flexibility, low power consumption, short design duration, fast time to market, programmability and high density. The main advantages of using Ethernet controller AX88796 over others are its non PCI interface, the presence of embedded SRAM where transmit and reception buffers are located and high-performance SRAM-like interface. The paper introduces the implementation of the distributed data acquisition using FPGA by VHDL. The main advantages of this system are high

  13. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 t to LEO or comanifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 t to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6U smallsat payloads, representing multiple

  14. NASA's Space Launch System: A Transformative Capability for Exploration

    NASA Technical Reports Server (NTRS)

    Robinson, Kimberly F.; Cook, Jerry; Hitt, David

    2016-01-01

    Currently making rapid progress toward first launch in 2018, NASA's exploration-class Space Launch System (SLS) represents a game-changing new spaceflight capability, enabling mission profiles that are currently impossible. Designed to launch human deep-space missions farther into space than ever before, the initial configuration of SLS will be able to deliver more than 70 metric tons of payload to low Earth orbit (LEO), and will send NASA's new Orion crew vehicle into lunar orbit. Plans call for the rocket to evolve on its second flight, via a new upper stage, to a more powerful configuration capable of lofting 105 tons to LEO or co-manifesting additional systems with Orion on launches to the lunar vicinity. Ultimately, SLS will evolve to a configuration capable of delivering more than 130 tons to LEO. SLS is a foundational asset for NASA's Journey to Mars, and has been recognized by the International Space Exploration Coordination Group as a key element for cooperative missions beyond LEO. In order to enable human deep-space exploration, SLS provides unrivaled mass, volume, and departure energy for payloads, offering numerous benefits for a variety of other missions. For robotic science probes to the outer solar system, for example, SLS can cut transit times to less than half that of currently available vehicles, producing earlier data return, enhancing iterative exploration, and reducing mission cost and risk. In the field of astrophysics, SLS' high payload volume, in the form of payload fairings with a diameter of up to 10 meters, creates the opportunity for launch of large-aperture telescopes providing an unprecedented look at our universe, and offers the ability to conduct crewed servicing missions to observatories stationed at locations beyond low Earth orbit. At the other end of the spectrum, SLS opens access to deep space for low-cost missions in the form of smallsats. The first launch of SLS will deliver beyond LEO 13 6-unit smallsat payloads

  15. RADIOISOTOPE POWER SYSTEM CAPABILITIES AT THE IDAHO NATIONAL LABORATORY (INL)

    SciTech Connect

    Kelly Lively; Stephen Johnson; Eric Clarke

    2014-07-01

    --Idaho National Laboratory’s, Space Nuclear Systems and Technology Division established the resources, equipment and facilities required to provide nuclear-fueled, Radioisotope Power Systems (RPS) to Department of Energy (DOE) Customers. RPSs are designed to convert the heat generated by decay of iridium clad, 238PuO2 fuel pellets into electricity that is used to power missions in remote, harsh environments. Utilization of nuclear fuel requires adherence to governing regulations and the INL provides unique capabilities to safely fuel, test, store, transport and integrate RPSs to supply power—supporting mission needs. Nuclear capabilities encompass RPS fueling, testing, handling, storing, transporting RPS nationally, and space vehicle integration. Activities are performed at the INL and in remote locations such as John F. Kennedy Space Center and Cape Canaveral Air Station to support space missions. This paper will focus on the facility and equipment capabilities primarily offered at the INL, Material and Fuel Complex located in a security-protected, federally owned, industrial area on the remote desert site west of Idaho Falls, ID. Nuclear and non-nuclear facilities house equipment needed to perform required activities such as general purpose heat source (GPHS) module pre-assembly and module assembly using nuclear fuel; RPS receipt and baseline electrical testing, fueling, vibration testing to simulate the launch environment, mass properties testing to measure the mass and compute the moment of inertia, electro-magnetic characterizing to determine potential consequences to the operation of vehicle or scientific instrumentation, and thermal vacuum testing to verify RPS power performance in the vacuum and cold temperatures of space.

  16. An overview of the National Earthquake Information Center acquisition software system, Edge/Continuous Waveform Buffer

    USGS Publications Warehouse

    Patton, John M.; Ketchum, David C.; Guy, Michelle R.

    2015-11-02

    This document provides an overview of the capabilities, design, and use cases of the data acquisition and archiving subsystem at the U.S. Geological Survey National Earthquake Information Center. The Edge and Continuous Waveform Buffer software supports the National Earthquake Information Center’s worldwide earthquake monitoring mission in direct station data acquisition, data import, short- and long-term data archiving, data distribution, query services, and playback, among other capabilities. The software design and architecture can be configured to support acquisition and (or) archiving use cases. The software continues to be developed in order to expand the acquisition, storage, and distribution capabilities.

  17. Human Systems Integration (HSI) in Acquisition

    DTIC Science & Technology

    2009-08-01

    Cost/Risk Drivers The numbers in the Activities boxes correspond to the numbers In the Inputs and Outputs boxes. Tools: ● CATIA ● HSI Requirements...Technology Development Phase (Inputs) Human Systems Integration Tools: ● IMPRINT ● CATIA ● IPME References: ● DODI 5000.02 & DODD 5000.01 ● DAG ● CJCSI...Human Systems Integration Tools: ● IMPRINT ● CATIA ● IPME Activities for Each Output: 1.0 Incorporate domain considerations into baseline

  18. Operation of the Defense Acquisition System

    DTIC Science & Technology

    2008-12-08

    20069 (av) American National Standards Institute (ANSI)/Electronic Industries Alliance ( EIA ) 748 -A- 1998 (R2002), August 28, 2002 (aw) National...year dollars. 3. ANSI/ EIA - 748 = American National Standards Institute/Electronic Industries Alliance Standard 748 , Earned Value Management Systems...Contracts1 ≥ $50 Million2 Part 7 of Reference (c) This Instruction • Compliance with EVM system guidelines in ANSI/ EIA -7483 At contract award

  19. New generation of data acquisition and data storage systems of the IBR-2 reactor spectrometers complex

    NASA Astrophysics Data System (ADS)

    Kulikov, S. A.; Prikhodko, V. I.

    2016-07-01

    The paper presents an overview of works on the creation of data acquisition and data storage systems, which have been carried out in the Department of the IBR-2 spectrometers complex (DCS) of the Frank Laboratory of Neutron Physics (FLNP) over the past 15 years (before, during, and after the modernization of the IBR-2 reactor). These systems represent a unified set of identical (from the viewpoint of hardware) modules limited in type but functionally complete, wherein distinctions in parameters, functional capabilities, encoding, correction and preliminary data processing procedures specific to each spectrometer are realized on the level of microprograms, electronic tables, and integrated software control system.

  20. Implementation of a versatile research data acquisition system using a commercially available medical ultrasound scanner.

    PubMed

    Hemmsen, Martin Christian; Nikolov, Svetoslav Ivanov; Pedersen, Mads Møller; Pihl, Michael Johannes; Enevoldsen, Marie Sand; Hansen, Jens Munk; Jensen, Jørgen Arendt

    2012-07-01

    This paper describes the design and implementation of a versatile, open-architecture research data acquisition system using a commercially available medical ultrasound scanner. The open architecture will allow researchers and clinicians to rapidly develop applications and move them relatively easy to the clinic. The system consists of a standard PC equipped with a camera link and an ultrasound scanner equipped with a research interface. The ultrasound scanner is an easy-to-use imaging device that is capable of generating high-quality images. In addition to supporting the acquisition of multiple data types, such as B-mode, M-mode, pulsed Doppler, and color flow imaging, the machine provides users with full control over imaging parameters such as transmit level, excitation waveform, beam angle, and focal depth. Beamformed RF data can be acquired from regions of interest throughout the image plane and stored to a file with a simple button press. For clinical trials and investigational purposes, when an identical image plane is desired for both an experimental and a reference data set, interleaved data can be captured. This form of data acquisition allows switching between multiple setups while maintaining identical transducer, scanner, region of interest, and recording time. Data acquisition is controlled through a graphical user interface running on the PC. This program implements an interface for third-party software to interact with the application. A software development toolkit is developed to give researchers and clinicians the ability to utilize third-party software for data analysis and flexible manipulation of control parameters. Because of the advantages of speed of acquisition and clinical benefit, research projects have successfully used the system to test and implement their customized solutions for different applications. Three examples of system use are presented in this paper: evaluation of synthetic aperture sequential beamformation, transverse

  1. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability....

  2. 48 CFR 206.302-3 - Industrial mobilization; or engineering, development, or research capability.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 3 2012-10-01 2012-10-01 false Industrial mobilization; or engineering, development, or research capability. 206.302-3 Section 206.302-3 Federal Acquisition... engineering, development, or research capability....

  3. Multiple-CCD stereo acquisition system for high-speed imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji S.; Sass, David T.; Dereniak, Eustace L.; Hoffman, Steven; Gonzalez, Rene; Gonzalez, Martin; Rettke, Douglas

    1998-10-01

    A high-speed 3D imaging system has been developed using multiple independent CCD cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras. A stereo alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images is captured. The delays can be individually adjusted to yield a greater number of acquired frames during more rapid segments of the vent, and the individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. Representation of the data as a 3D sequence introduces the issue of independent camera coordinate registration with the real scene. A discussion of the forward and inverse transform operator for the digital data is provided along with a description of the acquisition system.

  4. ADC's Insertion Devices and Magnetic Measurement Systems Capabilities

    NASA Astrophysics Data System (ADS)

    Deyhim, A.; Kulesza, J.

    2013-03-01

    In this paper Advance Design Consulting USA, Inc. (ADC) will discuss ADC's major improved capabilities for building Wiggler Insertion Devices, Undulator Planar Devices, Elliptical Polarizing Undulators (EPU), In-Vacuum Undulators (IVU), Cryogenically Cooled in-vacuum Undulators (CPMU), Super Conductive Undulator, and Insertion Device Magnetic Measurement Systems. ADC has designed, built and delivered Insertion Devices and Magnetic Measurement Systems to such facilities as MAX-lab (two EPUs, a Planar, and Measurement System), ALBA and ASP (Wigglers), BNL (CPMU), SSRF (two IVUs and a Measurement System), PAL (one IVU and Measurement System), NSRRC (one 4m EPU), and SRC (Planar and EPU). ADC's magnetic field measurement system is a sophisticated and sensitive machine for the measurement of magnetic fields in undulators (Planar and EPU), wigglers and in-vacuum ID units. The magnetic fields are measured using 3 axis hall-effect probes, mounted orthogonally, to a thin wand. The wand is mounted to a carriage that rides on vacuum air bearings. The base is granite. A flip coil is provided on two vertical towers with X, Y and Theta axes. Special software is provided to assist in homing, movement, and data collection and analysis.

  5. Self contained data acquisition apparatus and system

    SciTech Connect

    Kupersmit, C.A.

    1987-06-09

    This patent describes an improved monitoring and control system for use with an industrial system where a process is carried out within a production environmental zone with the utilization of switching monitors and actuators with energizable loads coupled by a multiplicity of field wires to a control station, comprising: an environmentally secure housing positionable within the zone; switching input process interface means substantially positioned within the housing, including switch interface means connectable by field wiring with the switching monitors for deriving data signals and for evaluating the performance of the switching monitors and associated the field wiring to derive switching input status signals.

  6. 76 FR 40280 - Major System Acquisition; Earned Value Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-08

    ... From the Federal Register Online via the Government Publishing Office NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 48 CFR Parts 1834 RIN 2700-AD29 Major System Acquisition; Earned Value Management AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Final rule. SUMMARY: NASA...

  7. Application Features of Language Acquisition Assessment System in Kazakhstan: KAZTEST

    ERIC Educational Resources Information Center

    Dinayeva, Bekzat B.; Sapina, Sabira M.; Utanova, Aizada K.; Aitova, Nurlykhan N.

    2016-01-01

    The article deals with the analysis of peculiarities of language acquisition assessment system in Kazakhstan--KAZTEST. The author pays attention to the role of control as a way of assessment students' skills, habits and knowledge. In addition, author determined the place and functions of tests as a form of control. The author explores the…

  8. 76 FR 7526 - Major System Acquisition; Earned Value Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... contained in this Part and in NASA Procedures and Guidelines (NPR) 7120.5, ``NASA Space Flight Program and... SPACE ADMINISTRATION 48 CFR Part 1834 RIN 2700-AD29 Major System Acquisition; Earned Value Management AGENCY: National Aeronautics and Space Administration. ACTION: Proposed rule with request for...

  9. Privacy Impact Assessment for the EPA Acquisition System

    EPA Pesticide Factsheets

    The EPA Acquisition System collects data on the business process of acquiring goods in support of the Agency's mission. Learn how this data is collected, how it will be used, access to the data, the purpose of data collection, and record retention policies

  10. Bell Laboratories Book Acquisition, Accounting and Cataloging System (BELLTIP).

    ERIC Educational Resources Information Center

    Sipfle, William K.

    BELLTIP is an on-line library processing system concerned with book acquisitions, cataloging, and financial accounting for a newwork of 26 technical libraries. At its center is an interactively updated and queried set of files concerned with all items currently in process. Principal products include all purchase orders, claims, and cancellations;…

  11. Auto-Routable, Configurable, Daisy Chainable Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Shuler, Robert L. (Inventor)

    2005-01-01

    A method and apparatus for an acquisition system includes a plurality of sensor input signal lines. At least one of the plurality of sensor input signal lines operatively connects to at least one of a plurality of amplifier circuits. At least one of the plurality of amplifier circuits operatively connects to at least one of a plurality of filter circuits.

  12. From Marginal Adjustments to Meaningful Change: Rethinking Weapon System Acquisition

    DTIC Science & Technology

    2010-01-01

    Management in Expeditionary Operations, 2007. GAO—See U.S. Government Accountability Offi ce. Garcia , A., H. Keyner, T. Robillard, and M. Van Mullekom... Marquez , R. B. Magnaye, and W. Tan, System Maturity Indices for Decision Support in the Defense Acquisition Process, proceedings of the 5th Annual

  13. Automated data acquisition and reduction system for torsional braid analyzer

    NASA Technical Reports Server (NTRS)

    Carl, G. L.; Inge, A. T.; Johnston, N. J.; Dalal, S. K.

    1975-01-01

    Automated Data Acquisition and Reduction System (ADAR) evaluates damping coefficient and relative rigidity by storing four successive peaks of waveform and time period between two successive peaks. Damping coefficient and relative rigidity are then calculated and plotted against temperature or time in real time.

  14. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Sound data acquisition system. 205.54... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound... established as equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance...

  15. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Sound data acquisition system. 205.54-2... PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound data... equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance with...

  16. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Sound data acquisition system. 205.54... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound... established as equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance...

  17. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Sound data acquisition system. 205.54... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound... established as equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance...

  18. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sound data acquisition system. 205.54... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound... established as equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance...

  19. Data acquisition system used in radiation induced electrical degradation experiments

    SciTech Connect

    White, D.P.

    1995-04-01

    Radiation induced electrical degradation (RIED) of ceramic materials has recently been reported and is the topic of much research at the present time. The object of this report is to describe the data acquisition system for an experiment designed to study RIED at the High Flux Beam Reactor (HFBR) at Brookhaven National Laboratory.

  20. Portable High-Frequency Data-Acquisition System

    NASA Technical Reports Server (NTRS)

    Mustain, Roy W.

    1990-01-01

    Compact unit made of readily available solid-state components. Proposed system for acquisition of rapidly changing data self-contained and portable. Conceived for monitoring such aerodynamic effects as flutter, vibration, shock, sound, and pressure. Offers precise and fast acquisition of data and large data-storage capacity: has maximum sampling rate of 125 kHz, access time of 15 ns, and 1-million-bit memory. Measures time with "smart" (microprocessor-controlled) watch that maintains calendar time for more than 10 years without external power. Provides standby power from "smart" battery furnishing up to 1 ampere-hour of charge if power from main batteries lost.

  1. Current position on software for the automatic data acquisition system

    SciTech Connect

    Not Available

    1988-01-01

    This report describes the current concepts for software to control the operation of the Automatic Data Acquisition System (ADAS) proposed for the Deaf Smith County, Texas, Exploratory Shaft Facility (ESF). The purpose of this report is to provide conceptual details of how the ADAS software will execute the data acquisition function, and how the software will make collected information available to the test personnel, the Data Management Group (DMG), and other authorized users. It is not intended that this report describe all of the ADAS functions in exact detail, but the concepts included herein will form the basis for the formal ADAS functional requirements definition document. 5 refs., 14 figs.

  2. Quantitative knowledge acquisition for expert systems

    NASA Technical Reports Server (NTRS)

    Belkin, Brenda L.; Stengel, Robert F.

    1991-01-01

    A common problem in the design of expert systems is the definition of rules from data obtained in system operation or simulation. While it is relatively easy to collect data and to log the comments of human operators engaged in experiments, generalizing such information to a set of rules has not previously been a direct task. A statistical method is presented for generating rule bases from numerical data, motivated by an example based on aircraft navigation with multiple sensors. The specific objective is to design an expert system that selects a satisfactory suite of measurements from a dissimilar, redundant set, given an arbitrary navigation geometry and possible sensor failures. The systematic development is described of a Navigation Sensor Management (NSM) Expert System from Kalman Filter convariance data. The method invokes two statistical techniques: Analysis of Variance (ANOVA) and the ID3 Algorithm. The ANOVA technique indicates whether variations of problem parameters give statistically different covariance results, and the ID3 algorithms identifies the relationships between the problem parameters using probabilistic knowledge extracted from a simulation example set. Both are detailed.

  3. Language Sound Systems and Second Language Acquisition.

    ERIC Educational Resources Information Center

    Skaer, Peter M.

    A language typology based on common errors made in pronunciation of English by speakers of other languages is presented and discussed. The classification system was developed from the concept of interlanguage, the intermediate step between a language learner's native and target languages, and the notion that interference in learning a new language…

  4. Context-specific comparison of sleep acquisition systems in Drosophila

    PubMed Central

    Garbe, David S.; Bollinger, Wesley L.; Vigderman, Abigail; Masek, Pavel; Gertowski, Jill; Sehgal, Amita; Keene, Alex C.

    2015-01-01

    ABSTRACT Sleep is conserved across phyla and can be measured through electrophysiological or behavioral characteristics. The fruit fly, Drosophila melanogaster, provides an excellent model for investigating the genetic and neural mechanisms that regulate sleep. Multiple systems exist for measuring fly activity, including video analysis and single-beam (SB) or multi-beam (MB) infrared (IR)-based monitoring. In this study, we compare multiple sleep parameters of individual flies using a custom-built video-based acquisition system, and commercially available SB- or MB-IR acquisition systems. We report that all three monitoring systems appear sufficiently sensitive to detect changes in sleep duration associated with diet, age, and mating status. Our data also demonstrate that MB-IR detection appeared more sensitive than the SB-IR for detecting baseline nuances in sleep architecture, while architectural changes associated with varying life-history and environment were generally detected across all acquisition types. Finally, video recording of flies in an arena allowed us to measure the effect of ambient environment on sleep. These experiments demonstrate a robust effect of arena shape and size as well as light levels on sleep duration and architecture, and highlighting the versatility of tracking-based sleep acquisition. These findings provide insight into the context-specific basis for choosing between Drosophila sleep acquisition systems, describe a novel cost-effective system for video tracking, and characterize sleep analysis using the MB-IR sleep analysis. Further, we describe a modified dark-place preference sleep assay using video tracking, confirming that flies prefer to sleep in dark locations. PMID:26519516

  5. L-C Measurement Acquisition Method for Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  6. Status Reporting on Weapon System Acquisition Programs,

    DTIC Science & Technology

    1985-04-01

    Systems Division ( ASSD ) and the reschedulinq of vehicle acceptance testing milestones caused by thnse !e*e box deliveries. Impact to program: Contract...is primarily due to the late delivery of the ASSD boxes (approximately 10 months late). Impact to program: None. 2 S...integration for which BCWP has been taken. The cumulative cost variance of ($22.5M) is primarily due to the late box deliveries from ASSD and the

  7. Program Acquisition Costs by Weapon System

    DTIC Science & Technology

    2009-05-01

    aircraft segment consisting of aircraft with an array of sensors to include day/night Full Motion Video , Signals Intelligence (SIGINT), and Synthetic...include a full motion video (FMV) sensor as well as signals intelligence payloads. The aircraft will have a four-person crew — two pilots and two...in real time using line of sight datalinks to One System Remote Video Terminals, Rover video terminals, as well as Video Scout hand held receivers

  8. Beacon data acquisition and display system

    DOEpatents

    Skogmo, D.G.; Black, B.D.

    1991-12-17

    A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed. 6 figures.

  9. Beacon data acquisition and display system

    DOEpatents

    Skogmo, David G.; Black, Billy D.

    1991-01-01

    A system for transmitting aircraft beacon information received by a secondary surveillance radar through telephone lines to a remote display includes a digitizer connected to the radar for preparing a serial file of data records containing position and identification information of the beacons detected by each sweep of the radar. This information is transmitted through the telephone lines to a remote computer where it is displayed.

  10. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the Martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. Four locations identified in the Mars Exploration Program Analysis Group (MEPAG)'s Human Exploration of Mars Science Analysis Group (HEM-SAG) report are used in this paper as representative of candidate EZs that will emerge from the selection process that NASA has initiated. A field

  11. Mars Surface Systems Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Toups, Larry; Hoffman, Stephen J.; Watts, Kevin

    2016-01-01

    This paper describes the current status of common systems and operations as they are applied to actual locations on Mars that are representative of Exploration Zones (EZ) - NASA's term for candidate locations where humans could land, live and work on the martian surface. Given NASA's current concepts for human missions to Mars, an EZ is a collection of Regions of Interest (ROIs) located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. An EZ also contains a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. The Evolvable Mars Campaign (EMC), a description of NASA's current approach to these human Mars missions, assumes that a single EZ will be identified within which NASA will establish a substantial and durable surface infrastructure that will be used by multiple human crews. The process of identifying and eventually selecting this single EZ will likely take many years to finalized. Because of this extended EZ selection process it becomes important to evaluate the current suite of surface systems and operations being evaluated for the EMC as they are likely to perform at a variety of proposed EZ locations and for the types of operations - both scientific and development - that are proposed for these candidate EZs. It is also important to evaluate proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC.

  12. War-gaming application for future space systems acquisition

    NASA Astrophysics Data System (ADS)

    Nguyen, Tien M.; Guillen, Andy T.

    2016-05-01

    Recently the U.S. Department of Defense (DOD) released the Defense Innovation Initiative (DII) [1] to focus DOD on five key aspects; Aspect #1: Recruit talented and innovative people, Aspect #2: Reinvigorate war-gaming, Aspect #3: Initiate long-range research and development programs, Aspect #4: Make DOD practices more innovative, and Aspect #5: Advance technology and new operational concepts. Per DII instruction, this paper concentrates on Aspect #2 and Aspect #4 by reinvigorating the war-gaming effort with a focus on an innovative approach for developing the optimum Program and Technical Baselines (PTBs) and their corresponding optimum acquisition strategies for acquiring future space systems. The paper describes a unified approach for applying the war-gaming concept for future DOD acquisition of space systems. The proposed approach includes a Unified Game-based Acquisition Framework (UGAF) and an Advanced Game-Based Mathematical Framework (AGMF) using Bayesian war-gaming engines to optimize PTB solutions and select the corresponding optimum acquisition strategies for acquiring a space system. The framework defines the action space for all players with a complete description of the elements associated with the games, including Department of Defense Acquisition Authority (DAA), stakeholders, warfighters, and potential contractors, War-Gaming Engines (WGEs) played by DAA, WGEs played by Contractor (KTR), and the players' Payoff and Cost functions (PCFs). The AGMF presented here addresses both complete and incomplete information cases. The proposed framework provides a recipe for the DAA and USAF-Space and Missile Systems Center (SMC) to acquire future space systems optimally.

  13. Command & Control (C2) Systems Acquisition Study

    DTIC Science & Technology

    1982-09-01

    addresses the operational theatre or ’ mission-related military functions and tasks. (e.g., detection, fusion, allocation) which a commander and his staff us...might be by geographical area (e.g., based on the needs of different theatres ) or by differences in operational missions (e.g., the system as it is to...be used in Washington, D.C., vs. its use in theatres ). 111-69 APS 0 Multiple sourcing of the beginning of a program (e.g., "core" definition

  14. Capability for Integrated Systems Risk-Reduction Analysis

    NASA Technical Reports Server (NTRS)

    Mindock, J.; Lumpkins, S.; Shelhamer, M.

    2016-01-01

    NASA's Human Research Program (HRP) is working to increase the likelihoods of human health and performance success during long-duration missions, and subsequent crew long-term health. To achieve these goals, there is a need to develop an integrated understanding of how the complex human physiological-socio-technical mission system behaves in spaceflight. This understanding will allow HRP to provide cross-disciplinary spaceflight countermeasures while minimizing resources such as mass, power, and volume. This understanding will also allow development of tools to assess the state of and enhance the resilience of individual crewmembers, teams, and the integrated mission system. We will discuss a set of risk-reduction questions that has been identified to guide the systems approach necessary to meet these needs. In addition, a framework of factors influencing human health and performance in space, called the Contributing Factor Map (CFM), is being applied as the backbone for incorporating information addressing these questions from sources throughout HRP. Using the common language of the CFM, information from sources such as the Human System Risk Board summaries, Integrated Research Plan, and HRP-funded publications has been combined and visualized in ways that allow insight into cross-disciplinary interconnections in a systematic, standardized fashion. We will show examples of these visualizations. We will also discuss applications of the resulting analysis capability that can inform science portfolio decisions, such as areas in which cross-disciplinary solicitations or countermeasure development will potentially be fruitful.

  15. Acquisition: Implementation of Interoperability and Information Assurance Policies for Acquisition of Air Force Systems

    DTIC Science & Technology

    2007-11-02

    Interoperability and IA Policies for Acquisition of AF Systems (D2002AE-0188) raio tn Xr& 4t. c o - Page 4 SPtrmnf To yoda-o.apo to-co DaD Pby S t #chkdpw...10Iýacqfftia $ictW bbm d b, pda"ct W hwsdc IrWS iW)•t w ad• •c i Spp.- Pl- r Im. IaT INotms C-tidxi A- tard W ue Sf•lo x ~ 5 1-20 Alitaowd- UbmofwnpsG. AGI y

  16. Autonomous system for initializing synthetic aperture radar seeker acquisition

    SciTech Connect

    Hamilton, P.C.

    1993-08-03

    A method is described of guiding a missile having an active seeker including a synthetic aperture radar operating in a squint mode to a target aircraft having a search radar therein the maximum range of active seeker acquisition being within said missile's maneuver capability to intercept, and the maximum range of active seeker acquisition not exceeding the capability of the active seeker, said method comprising the steps of: launching said missile in response to detection of the search radar; implementing a passive seeker mode of operation to passively guide said missile towards said target aircraft in a manner to avoid detection of said missile by said target aircraft; transferring from said passive seeker mode to an active seeker mode in response to detected shutdown of said search radar; maneuvering said missile to execute a turn angle away from said target aircraft such that the search field of said synthetic aperture radar sweeps through an entire target uncertainty volume, said turn angle being within a first preselected limit and a second preselected limit such that said target aircraft does not cross over said missile's terminal flight path; and intercepting said target aircraft within a lethal range of said missile.

  17. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAF3 from The Mathworks. This paper will describe the design and development of the new data acquisition and analysis system.

  18. A distributed data acquisition system for aeronautics test facilities

    NASA Technical Reports Server (NTRS)

    Fronek, Dennis L.; Setter, Robert N.; Blumenthal, Philip Z.; Smalley, Robert R.

    1987-01-01

    The NASA Lewis Research Center is in the process of installing a new data acquisition and display system. This new system will provide small and medium sized aeronautics test facilities with a state-of-the-art real-time data acquisition and display system. The new data system will provide for the acquisition of signals from a variety of instrumentation sources. They include analog measurements of temperatures, pressures, and other steady state voltage inputs; frequency inputs to measure speed and flow; discrete I/O for significant events, and modular instrument systems such as multiplexed pressure modules or electronic instrumentation with a IEEE 488 interface. The data system is designed to acquire data, convert it to engineering units, compute test dependent performance calculations, limit check selected channels or calculations, and display the information in alphanumeric or graphical form with a cycle time of one second for the alphanumeric data. This paper describes the system configuration, its salient features, and the expected impact on testing.

  19. Goddard Space Flight Center's Structural Dynamics Data Acquisition System

    NASA Technical Reports Server (NTRS)

    McLeod, Christopher

    2004-01-01

    Turnkey Commercial Off The Shelf (COTS) data acquisition systems typically perform well and meet most of the objectives of the manufacturer. The problem is that they seldom meet most of the objectives of the end user. The analysis software, if any, is unlikely to be tailored to the end users specific application; and there is seldom the chance of incorporating preferred algorithms to solve unique problems. Purchasing a customized system allows the end user to get a system tailored to the actual application, but the cost can be prohibitive. Once the system has been accepted, future changes come with a cost and response time that's often not workable. When it came time to replace the primary digital data acquisition system used in the Goddard Space Flight Center's Structural Dynamics Test Section, the decision was made to use a combination of COTS hardware and in-house developed software. The COTS hardware used is the DataMAX II Instrumentation Recorder built by R.C. Electronics Inc. and a desktop Pentium 4 computer system. The in-house software was developed using MATLAB from The MathWorks. This paper will describe the design and development of the new data acquisition and analysis system.

  20. An integrated, multi-vendor distributed data acquisition system

    SciTech Connect

    Butner, D.N.; Drlik, M.; Meyer, W.H.; Moller, J.M.; Preckshot, G.G.

    1988-03-03

    A distributed data acquisition system that uses various computer hardware and software is being developed to support magnetic fusion experiments at Lawrence Livermore National Laboratory (LLNL). The experimental sequence of operations is controlled by a supervisory program, which coordinates software running on Digital Equipment Corporation (DEC) VAX computers, Hewlett-Packard (HP) UNIX-based workstations, and HP BASIC desktop computers. An interprocess communication system (IPCS) allows programs to communicate with one another in a standard manner regardless of program location in the network or of operating system and hardware differences. We discuss the design and implementation of this data acquisition system with particular emphasis on the coordination model and the IPCS. 5 refs., 3 figs.

  1. Software development for a switch-based data acquisition system

    SciTech Connect

    Booth, A.; Black, D.; Walsh, D.

    1991-12-01

    We report on the software aspects of the development of a switch-based data acquisition system at Fermilab. This paper describes how, with the goal of providing an ``integrated systems engineering`` environment, several powerful software tools were put in place to facilitate extensive exploration of all aspects of the design. These tools include a simulation package, graphics package and an Expert System shell which have been integrated to provide an environment which encourages the close interaction of hardware and software engineers. This paper includes a description of the simulation, user interface, embedded software, remote procedure calls, and diagnostic software which together have enabled us to provide real-time control and monitoring of a working prototype switch-based data acquisition (DAQ) system.

  2. Software development for a switch-based data acquisition system

    SciTech Connect

    Booth, A. ); Black, D.; Walsh, D. )

    1991-12-01

    We report on the software aspects of the development of a switch-based data acquisition system at Fermilab. This paper describes how, with the goal of providing an integrated systems engineering'' environment, several powerful software tools were put in place to facilitate extensive exploration of all aspects of the design. These tools include a simulation package, graphics package and an Expert System shell which have been integrated to provide an environment which encourages the close interaction of hardware and software engineers. This paper includes a description of the simulation, user interface, embedded software, remote procedure calls, and diagnostic software which together have enabled us to provide real-time control and monitoring of a working prototype switch-based data acquisition (DAQ) system.

  3. NGNP Data Management and Analysis System Modeling Capabilities

    SciTech Connect

    Cynthia D. Gentillon

    2009-09-01

    Projects for the very-high-temperature reactor (VHTR) program provide data in support of Nuclear Regulatory Commission licensing of the VHTR. Fuel and materials to be used in the reactor are tested and characterized to quantify performance in high temperature and high fluence environments. In addition, thermal-hydraulic experiments are conducted to validate codes used to assess reactor safety. The VHTR Program has established the NGNP Data Management and Analysis System (NDMAS) to ensure that VHTR data are (1) qualified for use, (2) stored in a readily accessible electronic form, and (3) analyzed to extract useful results. This document focuses on the third NDMAS objective. It describes capabilities for displaying the data in meaningful ways and identifying relationships among the measured quantities that contribute to their understanding.

  4. The Aviation System Analysis Capability Airport Capacity and Delay Models

    NASA Technical Reports Server (NTRS)

    Lee, David A.; Nelson, Caroline; Shapiro, Gerald

    1998-01-01

    The ASAC Airport Capacity Model and the ASAC Airport Delay Model support analyses of technologies addressing airport capacity. NASA's Aviation System Analysis Capability (ASAC) Airport Capacity Model estimates the capacity of an airport as a function of weather, Federal Aviation Administration (FAA) procedures, traffic characteristics, and the level of technology available. Airport capacity is presented as a Pareto frontier of arrivals per hour versus departures per hour. The ASAC Airport Delay Model allows the user to estimate the minutes of arrival delay for an airport, given its (weather dependent) capacity. Historical weather observations and demand patterns are provided by ASAC as inputs to the delay model. The ASAC economic models can translate a reduction in delay minutes into benefit dollars.

  5. Development of an analysis capability for the National Transportation System

    SciTech Connect

    Anson, D.; Nelson, R.

    1997-10-24

    The purpose of this report is to examine the Department of Transportation`s (DOT) National Transportation System (NTS) initiative, to document what has been learned, and to outline a National Transportation Network Analysis Capability (NTNAC) based on a ``TRANSIMS-like`` approach. This study was conducted over a two month period at the end of FY1997. The scope of the effort was carefully defined to accommodate the short time horizon and to provide focus to a very large analytical problem. The objectives were to: (1) define the NTS and the NTS problem; (2) identify problem characteristics; (3) describe an analytical solution based on the TRANSIMS approach; (4) identify data requirements and availability; (5) develop criteria for a scenario to be used in a prototype demonstration; and (6) select a scenario for the prototype demonstration.

  6. A Historical Systems Study of Liquid Rocket Engine Throttling Capabilities

    NASA Technical Reports Server (NTRS)

    Betts, Erin M.; Frederick, Robert A., Jr.

    2010-01-01

    This is a comprehensive systems study to examine and evaluate throttling capabilities of liquid rocket engines. The focus of this study is on engine components, and how the interactions of these components are considered for throttling applications. First, an assessment of space mission requirements is performed to determine what applications require engine throttling. A background on liquid rocket engine throttling is provided, along with the basic equations that are used to predict performance. Three engines are discussed that have successfully demonstrated throttling. Next, the engine system is broken down into components to discuss special considerations that need to be made for engine throttling. This study focuses on liquid rocket engines that have demonstrated operational capability on American space launch vehicles, starting with the Apollo vehicle engines and ending with current technology demonstrations. Both deep throttling and shallow throttling engines are discussed. Boost and sustainer engines have demonstrated throttling from 17% to 100% thrust, while upper stage and lunar lander engines have demonstrated throttling in excess of 10% to 100% thrust. The key difficulty in throttling liquid rocket engines is maintaining an adequate pressure drop across the injector, which is necessary to provide propellant atomization and mixing. For the combustion chamber, cooling can be an issue at low thrust levels. For turbomachinery, the primary considerations are to avoid cavitation, stall, surge, and to consider bearing leakage flows, rotordynamics, and structural dynamics. For valves, it is necessary to design valves and actuators that can achieve accurate flow control at all thrust levels. It is also important to assess the amount of nozzle flow separation that can be tolerated at low thrust levels for ground testing.

  7. Computer system requirements specification for 101-SY hydrogen mitigation test project data acquisition and control system (DACS-1)

    SciTech Connect

    McNeece, S.G.; Truitt, R.W.

    1994-10-12

    The system requirements specification for SY-101 hydrogen mitigation test project (HMTP) data acquisition and control system (DACS-1) documents the system requirements for the DACS-1 project. The purpose of the DACS is to provide data acquisition and control capabilities for the hydrogen mitigation testing of Tank SY-101. Mitigation testing uses a pump immersed in the waste, directed at varying angles and operated at different speeds and time durations. Tank and supporting instrumentation is brought into the DACS to monitor the status of the tank and to provide information on the effectiveness of the mitigation test. Instrumentation is also provided for closed loop control of the pump operation. DACS is also capable for being expanded to control and monitor other mitigation testing. The intended audience for the computer system requirements specification includes the SY-101 hydrogen mitigation test data acquisition and control system designers: analysts, programmers, instrument engineers, operators, maintainers. It is intended for the data users: tank farm operations, mitigation test engineers, the Test Review Group (TRG), data management support staff, data analysis, Hanford data stewards, and external reviewers.

  8. Data acquisition system for phase-2 KGF proton decay experiment

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Sreekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    Phase-2 of KGF proton decay experiment using 4000 proportional counters will start operating from middle of 1985. The detection systems, in addition to measuring the time information to an accuracy of 200 n see, also records ionization in the hit counters. It also monitors different characteristics of the counters like pulse height spectrum, pulse width spectrum and counting rate. The acquisition system is discussed.

  9. Manpower, Personnel, and Training in System Acquisition: A Bibliography.

    DTIC Science & Technology

    1986-07-01

    Nauele, T., A Risser , 0. (1964. February). Estimating manpower, personnel. and training requrmits early In the weapon system acquisition process...82-S03, AD-AI27 536). Wright-Patterson AFB, OH: Aeronautical systems Division* Risser , 0., A lerger. P. (1964, Septeer). Arm NARDNAN: Its origin...8217Vaskingtmn. DC: Logistics Mamagamnt Institute. Ziinrman, V., Butler, Re., Gray, V.. Rosenberg, LU. & Risser , 0. (1164, August). Evaluation of the 033MN

  10. The Effect of Price Competition on Weapon System Acquisition costs

    DTIC Science & Technology

    1979-09-01

    projected savings, the break- even point, and simultaneously, the pay-back period for the initial front - end expenditures. S ch a summation is an i’,ccm...expected savings in system price against the front end costs. When there is unolanned expansion of the sole-source production quantities over time...simply for lack of front - end funds. Required expenditures vary considerably from system to sys- tem. They typically begin with the acquisition of the

  11. Internal Versus External Acquisition for Small Weapons Systems

    DTIC Science & Technology

    2007-03-01

    early 1800s. Other examples of repeating history include Lowering the Cost of Federal System Acquisition ( Kasser , 1996), Spare Parts Horror Stories...Spare Parts”, 1997), and Back to Basics (Dornheim, 2006). Kasser recommends moving system testing and inspection to an earlier phase of the...Katobe, M. “Hollowing –Out of US Multinationals and Their Global Competitiveness,” Journal of International Business Studies. 1989, Vol 19:1-15. Kasser

  12. Data Acquisition (DAQ) system dedicated for remote sensing applications on Unmanned Aerial Vehicles (UAV)

    NASA Astrophysics Data System (ADS)

    Keleshis, C.; Ioannou, S.; Vrekoussis, M.; Levin, Z.; Lange, M. A.

    2014-08-01

    Continuous advances in unmanned aerial vehicles (UAV) and the increased complexity of their applications raise the demand for improved data acquisition systems (DAQ). These improvements may comprise low power consumption, low volume and weight, robustness, modularity and capability to interface with various sensors and peripherals while maintaining the high sampling rates and processing speeds. Such a system has been designed and developed and is currently integrated on the Autonomous Flying Platforms for Atmospheric and Earth Surface Observations (APAESO/NEA-YΠOΔOMH/NEKΠ/0308/09) however, it can be easily adapted to any UAV or any other mobile vehicle. The system consists of a single-board computer with a dual-core processor, rugged surface-mount memory and storage device, analog and digital input-output ports and many other peripherals that enhance its connectivity with various sensors, imagers and on-board devices. The system is powered by a high efficiency power supply board. Additional boards such as frame-grabbers, differential global positioning system (DGPS) satellite receivers, general packet radio service (3G-4G-GPRS) modems for communication redundancy have been interfaced to the core system and are used whenever there is a mission need. The onboard DAQ system can be preprogrammed for automatic data acquisition or it can be remotely operated during the flight from the ground control station (GCS) using a graphical user interface (GUI) which has been developed and will also be presented in this paper. The unique design of the GUI and the DAQ system enables the synchronized acquisition of a variety of scientific and UAV flight data in a single core location. The new DAQ system and the GUI have been successfully utilized in several scientific UAV missions. In conclusion, the novel DAQ system provides the UAV and the remote-sensing community with a new tool capable of reliably acquiring, processing, storing and transmitting data from any sensor integrated

  13. A New High Channel-Count, High Scan-Rate, Data Acquisition System for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G.; Sekula, Martin K.; Piatak, David J.; Simmons, Scott A.; Babel, Walter C.; Collins, Jesse G.; Ramey, James M.; Heald, Dean M.

    2016-01-01

    A data acquisition system upgrade project, known as AB-DAS, is underway at the NASA Langley Transonic Dynamics Tunnel. AB-DAS will soon serve as the primary data system and will substantially increase the scan-rate capabilities and analog channel count while maintaining other unique aeroelastic and dynamic test capabilities required of the facility. AB-DAS is configurable, adaptable, and enables buffet and aeroacoustic tests by synchronously scanning all analog channels and recording the high scan-rate time history values for each data quantity. AB-DAS is currently available for use as a stand-alone data system with limited capabilities while development continues. This paper describes AB-DAS, the design methodology, and the current features and capabilities. It also outlines the future work and projected capabilities following completion of the data system upgrade project.

  14. Spectroscopic and imaging capabilities of a pixellated photon counting system

    NASA Astrophysics Data System (ADS)

    Amendolia, S. R.; Bisogni, M. G.; Bottigli, U.; Delogu, P.; Dipasquale, G.; Fantacci, M. E.; Marchi, A.; Marzulli, V. M.; Oliva, P.; Palmiero, R.; Rosso, V.; Stefanini, A.; Stumbo, S.; Zucca, S.

    2001-06-01

    We are studying the performance of various thickness GaAs pixel detectors bump-bonded to a dedicated photon counting chip (PCC) for medical imaging applications in different energy ranges. In this work we present the experimental results obtained with a 600 μm thick pixel matrix (64×64 square pixels, 170 μm side) in the 60-140 keV energy range to evaluate the possible use of such a system in the nuclear medicine field. In particular, we have measured the spectroscopic properties of the detector (charge collection efficiency, energy resolution and detection efficiency) and evaluated the discrimination capability of the electronics. Then we have measured the imaging properties of the whole system in terms of Point Spread Function and using a home made thyroid phantom. We present also a comparison with a traditional gamma camera and an evaluation, made by both experimental measurements and software simulations, of the imaging characteristics related to the use of a collimation system.

  15. Systemic IL-12 Administration Alters Hepatic Dendritic Cell Stimulation Capabilities

    PubMed Central

    Chan, Tim; Back, Timothy C.; Subleski, Jeffrey J.; Weiss, Jonathan M.; Ortaldo, John R.; Wiltrout, Robert H.

    2012-01-01

    The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2–3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver. Following IL-12 administration, hepatic DC became more phenotypically and functionally mature, resembling the function of splenic DC, but differed as compared to their splenic counterparts in the production of IL-12 following co-stimulation with toll-like receptor (TLR) agonists. Hepatic DCs from IL-12 treated mice acquired enhanced T cell proliferative capabilities similar to levels observed using splenic DCs. Furthermore, IL-12 administration preferentially increased hepatic T cell activation and IFNγ expression in the RENCA mouse model of renal cell carcinoma. Collectively, the data shows systemic IL-12 administration enables hepatic DCs to overcome at least some aspects of the inherently suppressive milieu of the hepatic environment that could have important implications for the design of IL-12-based immunotherapeutic strategies targeting hepatic malignancies and infections. PMID:22428016

  16. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J. A.; Hammel, H. B.; Lunine, J. I.

    2014-01-01

    The James Webb Space Telescope (JWST) will provide important new capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. Integral-field spectroscopy is performed with apertures 3 to 7 arcsec square (spatial slices of 0.1 to 0.6 arcsec). JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This tracking capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST will observe in the solar elongation range of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During an observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using data from JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly fixed orientation relative to the ecliptic. This results from the fact that the Observatory's sunshield and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example

  17. Solar System Observing Capabilities With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Sonneborn, George; Milam, S. N.; Hines, D. C.; Stansberry, J.; Hammel, H. B.; Lunine, J. I.

    2013-10-01

    The James Webb Space Telescope (JWST) will provide breakthrough capabilities to study our Solar System. JWST is a large aperture, cryogenic, infrared-optimized space observatory under construction by NASA, ESA, and CSA for launch in 2018 into a L2 orbit. Imaging, spectroscopy, and coronography covers 0.6-29 microns. JWST is designed to observe Solar System objects having apparent rates of motion up to 0.030 arcseconds/second. This capability includes the planets, satellites, asteroids, Trans-Neptunian Objects, and comets beyond Earth’s orbit. JWST can observe solar elongation of 85 to 135 degrees, and a roll range of +/-5 degrees about the telescope’s optical axis. During the observation of a moving target, the science target is held fixed in the desired science aperture by controlling the guide star to follow the inverse of the target’s trajectory. The pointing control software uses polynomial ephemerides for the target generated using JPL’s HORIZON system. The JWST guider field of view (2.2x2.2 arcmin) is located in the telescope focal plane several arcmin from the science apertures. The instrument apertures are fixed with respect to the telescope focal plane. For targets near the ecliptic, those apertures also have a nearly-fixed orientation relative to the ecliptic. This resultsfrom the fact that the Observatory's sun-shade and solar panels must always be between the telescope and the Sun. On-board scripts autonomously control the execution of the JWST science timeline. The event-driven scripts respond to actual slew and on-board command execution, making operations more efficient. Visits are scheduled with overlapping windows to provide execution flexibility and to avoid lost time. An observing plan covering about ten days will be uplinked weekly. Updates could be more frequent if necessary (for example, to accommodate a Target of Opportunity - TOO). The event-driven operations system supports time-critical observations and TOOs. The minimum response

  18. High resolution x-ray medical sequential image acquisition and processing system based on PCI interface

    NASA Astrophysics Data System (ADS)

    Lu, Dongming; Chen, Qian; Gu, Guohua

    2003-11-01

    In the field of medical application, it is of great importance to adopt digital image processing technique. Based on the characteristics of medical image, we introduced the digital image processing method to the X-ray imaging system, and developed a high resolution x-ray medical sequential image acquisition and processing system that employs image enhancer and CCD. This system consists of three basic modules, namely sequential image acquisition, data transfer and system control, and image processing. Under the control of FPGA (Field Programmable Gate Array), images acquired by the front-end circuit are transmitted to a PC through high speed PCI bus, and then optimized by the image processing program. The software kits, which include PCI Device Driver and Image Processing Package, are developed with Visual C++ Language based on Windows OS. In this paper, we present a general introduction to the principle and the operating procedure of X-ray Sequential Image Acquisition and Processing System, with special emphasis on the key issues of the hardware design. In addition, the context, principle, status quo and the digitizing trend of X-ray Imaging are explained succinctly. Finally, the preliminary experimental results are shown to demonstrate that the system is capable of achieving high quality X-ray sequential images.

  19. The Requirements and Design of the Rapid Prototyping Capabilities System

    NASA Astrophysics Data System (ADS)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the

  20. Data acquisition system for intermediate energy nuclear experiments

    SciTech Connect

    D'Isep, F.; Maggiora, A.; Minetti, B.; Maron, G.; Morando, M.; Balestra, F.; Masoni, A.

    1989-02-01

    The data acquisition system for the OBELIX experiment at the LEAR antiproton beam is presented. The experimental setup is composed by 5 detectors with different read-out systems. The data acquisition is designed to allow the 5 detectors running all together as well as in stand alone mode., the introduction of some steps of data reduction, global hardware control and statistically significant event control. These goals are reached through a tree of VME crates controlled by a medium range computer and four workstations; the main flux of data flows on a combination of VME and VSB busses, while the system is completely controlled via the Ethernet bus. This design allows a high modularity either in the hardware or in the software.

  1. Mars Surface System Common Capabilities and Challenges for Human Missions

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Toups, Larry

    2016-01-01

    NASA has begun a process to identify and evaluate candidate locations where humans could land, live and work on the martian surface. These locations are referred to as Exploration Zones (EZs). Given current mission concepts, an EZ is a collection of Regions of Interest (ROIs) that are located within approximately 100 kilometers of a centralized landing site. ROIs are areas that are relevant for scientific investigation and/or development/maturation of capabilities and resources necessary for a sustainable human presence. The EZ also contains a landing site and a habitation site that will be used by multiple human crews during missions to explore and utilize the ROIs within the EZ. In parallel with this process, NASA continues to make progress on the Evolvable Mars Campaign examining alternatives that can pioneer an extended human presence on Mars that is Earth independent. This involves ongoing assessments of surface systems and operations to enable a permanent, sustainable human presence. Because of the difficulty in getting equipment and supplies to the surface of Mars, part of these assessments involve identifying those systems and processes that can perform in multiple, sometimes completely unrelated, situations. These assessments have been performed in a very generic surface mission carried out at a very generic surface location. As specific candidate EZs are identified it becomes important to evaluate the current suite of surface systems and operations as they are likely to perform for the specific locations and for the types of operations - both scientific and development - that are proposed for these EZs. It is also important to evaluate the proposed EZs for their suitability to be explored or developed given the range of capabilities and constraints for the types of surface systems and operations being considered within the EMC. This means looking at setting up and operating a field station at a central location within the EZ as well as traversing to and

  2. Foreign DNA acquisition by the I-F CRISPR–Cas system requires all components of the interference machinery

    PubMed Central

    Vorontsova, Daria; Datsenko, Kirill A.; Medvedeva, Sofia; Bondy-Denomy, Joseph; Savitskaya, Ekaterina E.; Pougach, Ksenia; Logacheva, Maria; Wiedenheft, Blake; Davidson, Alan R.; Severinov, Konstantin; Semenova, Ekaterina

    2015-01-01

    CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR–Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR–Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR–Cas systems. PMID:26586803

  3. Foreign DNA acquisition by the I-F CRISPR-Cas system requires all components of the interference machinery.

    PubMed

    Vorontsova, Daria; Datsenko, Kirill A; Medvedeva, Sofia; Bondy-Denomy, Joseph; Savitskaya, Ekaterina E; Pougach, Ksenia; Logacheva, Maria; Wiedenheft, Blake; Davidson, Alan R; Severinov, Konstantin; Semenova, Ekaterina

    2015-12-15

    CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR-Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR-Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR-Cas systems.

  4. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Ege, Russell; Burn, Melissa; Carey, Jeffrey; Bradley, Kevin

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on community noise impact and air carrier operating efficiency at any of 16 large- and medium-sized U.S. airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, or 10 decibels. NIM computes the resultant noise impact and estimates any airline operations improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the.contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternate routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  5. Real-Time Mapping alert system; characteristics and capabilities

    USGS Publications Warehouse

    Torres, L.A.; Lambert, S.C.; Liebermann, T.D.

    1995-01-01

    The U.S. Geological Survey has an extensive hydrologic network that records and transmits precipitation, stage, discharge, and other water-related data on a real-time basis to an automated data processing system. Data values are recorded on electronic data collection platforms at field sampling sites. These values are transmitted by means of orbiting satellites to receiving ground stations, and by way of telecommunication lines to a U.S. Geological Survey office where they are processed on a computer system. Data that exceed predefined thresholds are identified as alert values. The current alert status at monitoring sites within a state or region is of critical importance during floods, hurricanes, and other extreme hydrologic events. This report describes the characteristics and capabilities of a series of computer programs for real-time mapping of hydrologic data. The software provides interactive graphics display and query of hydrologic information from the network in a real-time, map-based, menu-driven environment.

  6. Space Launch System Trans Lunar Payload Delivery Capability

    NASA Technical Reports Server (NTRS)

    Jackman, A. L.; Smith, D. A.

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has successfully completed the Critical Design Review (CDR) of the heavy lift Space Launch System (SLS) and is working towards first flight of the vehicle in 2018. SLS will begin flying crewed missions with an Orion to a lunar vicinity every year after the first 2 flights starting in the early 2020's. So as early as 2021 these Orion flights will deliver ancillary payload, termed "Co-Manifested Payload", with a mass of at least 5.5 metric tons and volume up to 280 cubic meters to a cis-lunar destination. Later SLS flights have a goal of delivering as much as 10 metric tons to a cis-lunar destination. This presentation will describe the ground and flight accommodations, interfaces, and resources planned to be made available to Co-Manifested Payload providers as part of the SLS system. An additional intention is to promote a two-way dialogue between vehicle developers and potential payload users in order to most efficiently evolve required SLS capabilities to meet diverse payload requirements.

  7. The Aviation System Analysis Capability Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Ege, Russell A.; Brown, Jerome; Bradley, Kevin; Grandi, Fabio

    1999-01-01

    To meet its objective of assisting the US aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Noise Impact Model (NIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operation might have on community noise impact and air carrier operating efficiency at any of 16 large and medium size US airports. The analyst chooses an airport and case year for study, selects a runway use configuration and set of flight tracks for the scenario, and has the option of reducing the noise of the aircraft that operate at the airport by 3, 6, and 10 decibels, NIM computes the resultant noise impact and estimates any airline operational improvements. Community noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to a less circuitous alternated routing. For a more efficient runway use configuration, the increase in capacity and reduction in delay are shown.

  8. A personal computer-based, multitasking data acquisition system

    NASA Technical Reports Server (NTRS)

    Bailey, Steven A.

    1990-01-01

    A multitasking, data acquisition system was written to simultaneously collect meteorological radar and telemetry data from two sources. This system is based on the personal computer architecture. Data is collected via two asynchronous serial ports and is deposited to disk. The system is written in both the C programming language and assembler. It consists of three parts: a multitasking kernel for data collection, a shell with pull down windows as user interface, and a graphics processor for editing data and creating coded messages. An explanation of both system principles and program structure is presented.

  9. Data acquisition system for small to medium size experiments

    NASA Astrophysics Data System (ADS)

    Delaat, C. Th. A. M.; Kuijer, P. G.

    1994-02-01

    A flexible distributed data acquisition system, for use in various small to medium scale experiments has been developed. The system can use a variety of standard host computers, among them common workstation UNIX-flavor and VAX-VMS systems, and commercial real time kernels VAXELN, VxWorks, and DECElx. The software system includes modules for analysis, run control and list directed read-out function. Communication between the various process are done via TCP/IP sockets and/or DECNET. In this contribution the structure of the host and front-end software is explained.

  10. A research of a high precision multichannel data acquisition system

    NASA Astrophysics Data System (ADS)

    Zhong, Ling-na; Tang, Xiao-ping; Yan, Wei

    2013-08-01

    The output signals of the focusing system in lithography are analog. To convert the analog signals into digital ones which are more flexible and stable to process, a desirable data acquisition system is required. The resolution of data acquisition, to some extent, affects the accuracy of focusing. In this article, we first compared performance between the various kinds of analog-to-digital converters (ADC) available on the market at the moment. Combined with the specific requirements (sampling frequency, converting accuracy, numbers of channels etc) and the characteristics (polarization, amplitude range etc) of the analog signals, the model of the ADC to be used as the core chip in our hardware design was determined. On this basis, we chose other chips needed in the hardware circuit that would well match with ADC, then the overall hardware design was obtained. Validation of our data acquisition system was verified through experiments and it can be demonstrated that the system can effectively realize the high resolution conversion of the multi-channel analog signals and give the accurate focusing information in lithography.

  11. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Technical Reports Server (NTRS)

    Azzolini, John D.; Mcglew, David E.

    1990-01-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  12. Two Axis Pointing System (TAPS) attitude acquisition, determination, and control

    NASA Astrophysics Data System (ADS)

    Azzolini, John D.; McGlew, David E.

    1990-12-01

    The Two Axis Pointing System (TAPS) is a 2 axis gimbal system designed to provide fine pointing of Space Transportation System (STS) borne instruments. It features center-of-mass instrument mounting and will accommodate instruments of up to 1134 kg (2500 pounds) which fit within a 1.0 by 1.0 by 4.2 meter (40 by 40 by 166 inch) envelope. The TAPS system is controlled by a microcomputer based Control Electronics Assembly (CEA), a Power Distribution Unit (PDU), and a Servo Control Unit (SCU). A DRIRU-II inertial reference unit is used to provide incremental angles for attitude propagation. A Ball Brothers STRAP star tracker is used for attitude acquisition and update. The theory of the TAPS attitude determination and error computation for the Broad Band X-ray Telescope (BBXRT) are described. The attitude acquisition is based upon a 2 star geometric solution. The acquisition theory and quaternion algebra are presented. The attitude control combines classical position, integral and derivative (PID) control with techniques to compensate for coulomb friction (bias torque) and the cable harness crossing the gimbals (spring torque). Also presented is a technique for an adaptive bias torque compensation which adjusts to an ever changing frictional torque environment. The control stability margins are detailed, with the predicted pointing performance, based upon simulation studies. The TAPS user interface, which provides high level operations commands to facilitate science observations, is outlined.

  13. Portable cost-effective EEG data acquisition system.

    PubMed

    Agarwal, N; Nagananda, M S; Rahman, S M K; Sengupta, A; Santhosh, J; Anand, S

    2011-01-01

    Neuro-cognitive dysfunctions are common clinical abnormalities found in society. They require objective analysis by various instruments; an important technique involves monitoring electroencephalogram (EEG) signals. To date, EEG machines have been robust, costly and require patients to come to a hospital for test. Therefore, we have constructed a simple, cheap and portable EEG instrument for wider patient use. It consists of two active digital EEG probes with two channels each, making it a four-channel portable acquisition system. It is further connected through a two-wire serial bus to the acquisition unit, which comprises an analogue to digital converter (ADC) and an ARM board processor with 2 GB memory and USB interface. The whole system is placed in a small box making it highly portable for wider use in clinical settings.

  14. Multi-channel data acquisition system with absolute time synchronization

    NASA Astrophysics Data System (ADS)

    Włodarczyk, Przemysław; Pustelny, Szymon; Budker, Dmitry; Lipiński, Marcin

    2014-11-01

    We present a low-cost, stand-alone global-time-synchronized data acquisition system. Our prototype allows recording up to four analog signals with a 16-bit resolution in variable ranges and a maximum sampling rate of 1000 S/s. The system simultaneously acquires readouts of external sensors e.g. magnetometer or thermometer. A complete data set, including a header containing timestamp, is stored on a Secure Digital (SD) card or transmitted to a computer using Universal Serial Bus (USB). The estimated time accuracy of the data acquisition is better than ±200 ns. The device is intended for use in a global network of optical magnetometers (the Global Network of Optical Magnetometers for Exotic physics - GNOME), which aims to search for signals heralding physics beyond the Standard Model, that can be generated by ordinary spin coupling to exotic particles or anomalous spin interactions.

  15. Precise time synchronization data acquisition with remote systems

    SciTech Connect

    Berg, D.E.; Robertson, P.J.

    1998-08-01

    Researchers at the National Wind Technology Center have identified a need to acquire data on the rotor of an operating wind turbine at precisely the same time as other data is acquired on the ground or on a non-rotating part of the wind turbine. The researchers will analyze that combined data with statistical and correlation techniques to clearly establish phase information and loading paths and insights into the structural loading of wind turbines. A data acquisition unit has been developed to acquire the data from the rotating system at precise universal times specified by the user. The unit utilizes commercial data acquisition hardware, spread-spectrum radio modems, and a Global Positioning Satellite receiver as well as a custom-built programmable logic device. A prototype of the system is now operational, and initial field deployment is anticipated this summer.

  16. High-Temperature Tribometer And Data-Acquisition System

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Dellacorte, Christopher

    1992-01-01

    New tribometer tests friction and wear properties of ceramic and metal materials at temperatures up to 1,200 degrees C in controlled atmospheres. Connected to data-acquisition system using computer programs to enhance productivity and convenience of testing facility. Friction and wear properties of new materials and lubricants ascertained accurately and conveniently. Information needed in development of materials for advanced aerospace and terrestrial applications.

  17. HFE (Human Factors Engineering) Technology for Navy Weapon System Acquisition.

    DTIC Science & Technology

    1979-07-01

    niSnec jia Svnbaols make repor E c.~~a .coiclo nnv 0 )o~ratt~nvet ria raosm-ecc a , L , £.cZ1o S soun * Seat~~~cneor~~ Veattn t tVY Vcoun FIUR 17 fr...equipment, software, construction, ir other improvements or real property . Major system acquisition programs are those programs that (!) are

  18. Proposal to upgrade the MIPP data acquisition system

    SciTech Connect

    Baker, W.; Carey, D.; Johnstone, C.; Kostin, M.; Meyer, H.; Raja, R.; /Fermilab

    2005-03-01

    The MIPP TPC is the largest contributor to the MIPP event size by far. Its readout system and electronics were designed in the 1990's and limit it to a readout rate of 60 Hz in simple events and {approx} 20 Hz in complicated events. With the readout chips designed for the ALICE collaboration at the LHC, we propose a low cost effective scheme of upgrading the MIPP data acquisition speed to 3000 Hz.

  19. Strategic Planning and Management in Defense Systems Acquisition

    DTIC Science & Technology

    2013-10-01

    usefulness reports, included scenario planning, Balanced Scorecard , use of process consultants, and use of industry experts/futurists. Respondents also...rated, but which fell somewhere in the middle on the usefulness reports, included scenario planning, Balanced Scorecard , use of process consultants, and... scorecard • Stakeholder interviews Strategic Planning and Management in Defense System Acquisition 280Defense ARJ, October 2013, Vol. 20 No. 3 : 261–282

  20. Development of an Integrated Master Schedule for Weapon System Acquisition

    DTIC Science & Technology

    1977-05-01

    SPOs usually involves a Memorandum of Agreement (MOA) or a personal contact. More will be said on this later. Defense Systems Acquisition Review...theoretical concepts, and policy positions do little to help the person in the program office who is charged with the task of developing an integrated...schedule, performance) has bee.1 de-emphasized. This was followed by the presentation of several "horror stories" which I have personally observed occur

  1. Performance of the Defense Acquisition System, 2015 Annual report

    DTIC Science & Technology

    2015-09-16

    we have more work to do in this area. Cost growth on our major programs is generally at or better than historical levels, but outliers remain a...to cost performance and indirectly (because time is money) to schedule performance. In this report, we examine some measures of government costs of...found that it is difficult to compare these costs to iv Performance of the Defense Acquisition System, 2015 commercial industry measures since

  2. Data acquisition in a wireless diabetic and cardiac monitoring system.

    PubMed

    Harvey, Paul; Woodward, Bryan; Datta, Sekharjit; Mulvaney, David

    2011-01-01

    A telemedicine system is described for monitoring the vital signs and general health indicators of patients with cardiac and diabetic conditions. Telemetry from wireless sensors and readings from other instruments are combined into a comprehensive patient health dataset. The data can be stored, accessed and displayed using mobile Internet communications with a server. The paper concentrates on the data acquisition process, using an alternative sensor network protocol to Bluetooth and manual data entry into a smartphone application and HTML5 web browser.

  3. SPARTACUS - A new system of data acquisition and processing for ultrasonic examination

    NASA Astrophysics Data System (ADS)

    Benoist, Ph.; Cartier, F.; Chapius, N.; Pincemaille, G.

    SPARTACUS, a novel data acquisition and processing system for ultrasonic examination, was developed in order to overcome the problem in which all the techniques of characterization, sizing, or of improving the SNR making use of information processing cannot be employed because the complete form of the HF signal and hence its frequency content are not accessible. In acquisition mode, SPARTACUS helps to record all the waveforms continuously in numerical form, and at a rate compatible with industrial requirements. In processing mode, SPARTACUS offers vast processing and imaging possibilities, which makes it possible to set up the analytical method adapted to a specific problem, so that the industrial operator has a tool capable of diagnostic automation in complex testing situations.

  4. A middle man approach to knowledge acquisition in expert systems

    NASA Technical Reports Server (NTRS)

    Jordan, Janice A.; Lin, Min-Jin; Mayer, Richard J.; Sterle, Mark E.

    1990-01-01

    The Weed Control Advisor (WCA) is a robust expert system that has been successfully implemented on an IBM AT class microcomputer in CLIPS. The goal of the WCA was to demonstrate the feasibility of providing an economical, efficient, user friendly system through which Texas rice producers could obtain expert level knowledge regarding herbicide application for weed control. During the development phase of the WCA, an improved knowledge acquisition method which we call the Middle Man Approach (MMA) was applied to facilitate the communication process between the domain experts and the knowledge engineer. The MMA served to circumvent the problems associated with the more traditional forms of knowledge acquisition by placing the Middle Man, a semi-expert in the problem domain with some computer expertise, at the site of system development. The middle man was able to contribute to system development in two major ways. First, the Middle Man had experience working in rice production and could assume many of the responsibilities normally performed by the domain experts such as explaining the background of the problem domain and determining the important relations. Second, the Middle Man was familiar with computers and worked closely with the system developers to update the rules after the domain experts reviewed the prototype, contribute to the help menus and explanation portions of the expert system, conduct the testing that is required to insure that the expert system gives the expected results answer questions in a timely way, help the knowledge engineer structure the domain knowledge into a useable form, and provide insight into the end user's profile which helped in the development of the simple user friendly interface. The final results were not only that both time expended and costs were greatly reduced by using the MMA, but the quality of the system was improved. This papa will introduce the WCA system and then discuss traditional knowledge acquisition along with

  5. On designing a SWIR multi-wavelength facial-based acquisition system

    NASA Astrophysics Data System (ADS)

    Bourlai, Thirimachos; Narang, Neeru; Cukic, Bojan; Hornak, Lawrence

    2012-06-01

    In harsh environmental conditions characterized by unfavorable lighting and pronounced shadows, human recognition based on Short-Wave Infrared (0.9-1.7 microns) images may be advantageous. SWIR imagery (i) is more tolerant to low levels of obscurants like fog and smoke; (ii) the active illumination source can be eye-safe and (iii) the active illumination source is invisible to the human eye making it suitable for surveillance applications. The key drawback of current SWIR-based acquisition systems is that they lack the capability of real-time simultaneous acquisition of multiple SWIR wavelengths. The contributions of our work are four-fold. First, we constructed a SWIR multi-wavelength acquisition system (MWAS) that can capture face images at 5 different wavelengths (1150, 1250, 1350, 1450, 1550 nm) in rapid succession using a 5-filter rotating filter wheel. Each filter has a band pass of 100 nm and all 5 images are acquired within 260 milliseconds. The acquisition system utilizes a reflective optical sensor to generate a timing signal corresponding to the filter wheel position that is used to trigger each camera image acquisition when the appropriate filter is in front of the camera. The timing signal from the reflective sensor transmits to a display panel to confirm the synchronization of the camera with the wheel. Second, we performed an empirical optimization on the adjustment of the exposure time of the camera and speed of the wheel when different light sources (fluorescent, tungsten, both) were used. This improved the quality of the images acquired. Third, a SWIR spectrometer was used to measure the response from the different light sources and was used to evaluate which one provides better images as a function of wavelength. Finally, the selection of the band pass filter, to focus the camera to acquire the good quality SWIR images was done by using a number of image quality and distortion metrics (e.g. universal quality index and Structural index method).

  6. A triggerless digital data acquisition system for nuclear decay experiments

    SciTech Connect

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E.

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  7. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    NASA Technical Reports Server (NTRS)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  8. A microcomputer based data acquisition system and experiment controller

    NASA Technical Reports Server (NTRS)

    Ganz, M. W.

    1981-01-01

    A data acquisition system is described. The system monitors and records the signal strength of a radio beacon sent to Earth from a geosynchronous satellite. It acquires data from several devices such as a radar, a radiometer, and a rain gauge which monitor the meteorological conditions along the Earth space propagation path. The acquired data are stored in digital format on magnetic tape for analysis at the computer center. A detailed description of the design and operation of the system's various hardware components is given. Schematic diagrams, the theory of operation, and normal operating procedures are presented.

  9. Issues With Access to Acquisition Data and Information in the Department of Defense: Doing Data Right in Weapon System Acquisition

    DTIC Science & Technology

    2016-04-30

    PDF files, e-mail messages, blogs, Web pages and social sites” (“Structured Data,” n.d.-b). 3 According to the PC Magazine Online Encyclopedia, a...have found that balancing security and access needs is difficult. Background and Findings on Deep Dives of Acquisition Information Systems As part...of this effort to understand acquisition data opportunities,4 we conducted “ deep dives” on a set of information systems. In this section, we summarize

  10. Design of a Second Generation Firewire Based Data Acquisition System for Small Animal PET Scanners.

    PubMed

    Lewellen, T K; Miyaoka, R S; Macdonald, L R; Haselman, M; Dewitt, D; Hunter, William; Hauck, S

    2008-10-19

    The University of Washington developed a Firewire based data acquisition system for the MiCES small animal PET scanner. Development work has continued on new imaging scanners that require more data channels and need to be able to operate within a MRI imaging system. To support these scanners, we have designed a new version of our data acquisition system that leverages the capabilities of modern field programmable gate arrays (FPGA). The new design preserves the basic approach of the original system, but puts almost all functions into the FPGA, including the Firewire elements, the embedded processor, and pulse timing and pulse integration. The design has been extended to support implementation of the position estimation and DOl algorithms developed for the cMiCE detector module. The design is centered around an acquisition node board (ANB) that includes 65 ADC channels, Firewire 1394b support, the FPGA, a serial command bus and signal lines to support a rough coincidence window implementation to reject singles events from being sent on the Firewire bus. Adapter boards convert detector signals into differential paired signals to connect to the ANB.

  11. Analyzing the Structure of Air Force Space Acquisitions

    DTIC Science & Technology

    2006-12-01

    51 viii III. CASE STUDY APPLICATION ...............................................................................53 A. CHAPTER...discussed throughout this research paper . Acquisition Arm is defined as the entity in charge of the acquisition of space assets and systems. Air...phase Evolutionary Acquisition or Single Step to Full Capability FRP Decision Review FOC LRIP/ IOT &E Design Readiness Review Pre-Systems Acquisition

  12. System design description for mini-dacs data acquisition and control system

    SciTech Connect

    Vargo, F.G. Jr.; Trujillo, L.T.; Smith, S.O.

    1994-09-30

    This document describes the hardware computer system, for the mini data acquisition and control system (DACS) that was fabricated by Los Alamos National Laboratory (LANL), to support the testing of the spare mixer pump for SY-101.

  13. Software for Digital Acquisition System and Application to Environmental Monitoring

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.

    1975-01-01

    Criteria for selection of a minicomputer for use as a core resident acquisition system were developed for the ODU Mobile Air Pollution Laboratory. A comprehensive data acquisition program named MONARCH was instituted in a DEC-8/E-8K 12-bit computer. Up to 32 analog voltage inputs are scanned sequentially, converted to BCD, and then to actual numbers. As many as 16 external devices (valves or any other two-state device) are controlled independently. MONARCH is written as a foreground-background program, controlled by an external clock which interrupts once per minute. Transducer voltages are averaged over user specified time intervals and, upon completion of any desired time sequence, outputted are: day, hour, minute, second; state of external valves; average value of each analogue voltage (E Format); as well as standard deviations of these values. Output is compatible with any serially addressed media.

  14. Data acquisition system for segmented reactor antineutrino detector

    NASA Astrophysics Data System (ADS)

    Hons, Z.; Vlášek, J.

    2017-01-01

    This paper describes the data acquisition system used for data readout from the PMT channels of a segmented detector of reactor antineutrinos with active shielding. Theoretical approach to the data acquisition is described and two possible solutions using QDCs and digitizers are discussed. Also described are the results of the DAQ performance during routine data taking operation of DANSS. DANSS (Detector of the reactor AntiNeutrino based on Solid Scintillator) is a project aiming to measure a spectrum of reactor antineutrinos using inverse beta decay (IBD) in a plastic scintillator. The detector is located close to an industrial nuclear reactor core and is covered by passive and active shielding. It is expected to have about 15000 IBD interactions per day. Light from the detector is sensed by PMT and SiPM.

  15. Concepts for fast acquisition in optical communications systems

    NASA Astrophysics Data System (ADS)

    Wilkerson, Brandon L.; Giggenbach, Dirk; Epple, Bernhard

    2006-09-01

    As free-space laser communications systems proliferate due to improved technology and transmission techniques, optical communication networks comprised of ground stations, aircraft, high altitude platforms, and satellites become an attainable goal. An important consideration for optical networks is the ability of optical communication terminals (OCT) to quickly locate one another and align their laser beams to initiate the acquisition sequence. This paper investigates promising low-cost technologies and novel approaches that will facilitate the targeting and acquisition tasks between counter terminals. Specifically, two critical technology areas are investigated: position determination (which includes location and attitude determination) and inter-terminal communications. A feasibility study identified multiple-antenna global navigation satellite system (GNSS) systems and GNSS-aided inertial systems as possible position determination solutions. Personal satellite communication systems (e.g. Iridium or Inmarsat), third generation cellular technology (IMT-2000/UMTS), and a relatively new air traffic surveillance technology called Autonomous Dependent Surveillance-Broadcast (ADS-B) were identified as possible inter-terminal communication solutions. A GNSS-aided inertial system and an ADS-B system were integrated into an OCT to demonstrate their utility in a typical optical communication scenario. Testing showed that these technologies have high potential in future OCTs, although improvements can be made to both to increase tracking accuracy.

  16. Improving the Defense Acquisition System and Reducing System Costs

    DTIC Science & Technology

    1981-03-30

    Reliability Bendix Corporation Mr. Arnold Pazomik Assistant Vice President and Director of Contracts ARINC Research Corporation Mr. Harvey Kishner...Acquisition Executive 4 8 E. DSARC Review Criteria 49 F. DSARC-PPBS Interface 50 G. Program Manager Control 52 H. Improving Reliability and Support 54... Reliability and Support X X USDRE X X 17. Reduce DSARC Briefing and Data Requirements X X USDRE X XX XX 18. Budgeting for Inflation X X ASD(C

  17. User Instructions for the Systems Assessment Capability, Rev. 1, Computer Codes Volume 3: Utility Codes

    SciTech Connect

    Eslinger, Paul W.; Aaberg, Rosanne L.; Lopresti, Charles A.; Miley, Terri B.; Nichols, William E.; Strenge, Dennis L.

    2004-09-14

    This document contains detailed user instructions for a suite of utility codes developed for Rev. 1 of the Systems Assessment Capability. The suite of computer codes for Rev. 1 of Systems Assessment Capability performs many functions.

  18. NASA Data Acquisition System Software Development for Rocket Propulsion Test Facilities

    NASA Technical Reports Server (NTRS)

    Herbert, Phillip W., Sr.; Elliot, Alex C.; Graves, Andrew R.

    2015-01-01

    Current NASA propulsion test facilities include Stennis Space Center in Mississippi, Marshall Space Flight Center in Alabama, Plum Brook Station in Ohio, and White Sands Test Facility in New Mexico. Within and across these centers, a diverse set of data acquisition systems exist with different hardware and software platforms. The NASA Data Acquisition System (NDAS) is a software suite designed to operate and control many critical aspects of rocket engine testing. The software suite combines real-time data visualization, data recording to a variety formats, short-term and long-term acquisition system calibration capabilities, test stand configuration control, and a variety of data post-processing capabilities. Additionally, data stream conversion functions exist to translate test facility data streams to and from downstream systems, including engine customer systems. The primary design goals for NDAS are flexibility, extensibility, and modularity. Providing a common user interface for a variety of hardware platforms helps drive consistency and error reduction during testing. In addition, with an understanding that test facilities have different requirements and setups, the software is designed to be modular. One engine program may require real-time displays and data recording; others may require more complex data stream conversion, measurement filtering, or test stand configuration management. The NDAS suite allows test facilities to choose which components to use based on their specific needs. The NDAS code is primarily written in LabVIEW, a graphical, data-flow driven language. Although LabVIEW is a general-purpose programming language; large-scale software development in the language is relatively rare compared to more commonly used languages. The NDAS software suite also makes extensive use of a new, advanced development framework called the Actor Framework. The Actor Framework provides a level of code reuse and extensibility that has previously been difficult

  19. Evolution of the Design of a Second Generation FireWire Based Data Acquisition System.

    PubMed

    Lewellen, T K; Miyaoka, R S; Macdonald, L R; Haselman, M; Dewitt, D; Hauck, S

    2010-10-30

    Our laboratory has previously reported on the basic design concepts of an updated FireWire based data acquisition system for depth-of-interaction detector systems designed at the University of Washington. The new version of our data acquisition system leverages the capabilities of modern field programmable gate arrays (FPGA) and puts almost all functions into the FPGA, including the FireWire elements, the embedded processor, and pulse timing and integration. The design is centered around an acquisition node board (ANB) that includes 64 serial ADC channels, one high speed parallel ADC, FireWire 1394b support, the FPGA, a serial command bus and signal lines to support a rough coincidence window implementation to reject singles events from being sent on the FireWire bus. Adapter boards convert detector signals into differential paired signals to connect to the ANB. In this paper we discuss many of the design details, including steps taken to minimize the number of layers in the printed circuit board and to avoid skewing of parallel signals and unwanted bandwidth limitations.

  20. The solar-image acquisition system at Tor Vergata University.

    NASA Astrophysics Data System (ADS)

    Berrilli, F.; Cantarano, S.; Egidi, A.

    1995-06-01

    Describes an image acquisition system realized as a part of an apparatus built in collaboration with the Arcetri Astrophysical Observatory in Florence designed to record high-spectral-resolution solar images in the visible part of the spectrum. The system is based on a 512×512 Thomson CCD type THX31159 and on a 486 CPU personal computer running under MS-DOS. The electronics for driving the sensor and for the amplification and conditioning of the video signal has been designed and built in the laboratory while the signal A/D conversion and image presentation is performed using commercial boards.

  1. Wearable System for Acquisition and Monitoring of Biological Signals

    NASA Astrophysics Data System (ADS)

    Piccinini, D. J.; Andino, N. B.; Ponce, S. D.; Roberti, MA; López, y. N.

    2016-04-01

    This paper presents a modular, wearable system for acquisition and wireless transmission of biological signals. Configurable slaves for different signals (such as ECG, EMG, inertial sensors, and temperature) based in the ADS1294 Medical Analog Front End are connected to a Master, based in the CC3200 microcontroller, both from Texas Instruments. The slaves are configurable according to the specific application, providing versatility to the wearable system. The battery consumption is reduced, through a couple of Li-ion batteries and the circuit has also a battery charger. A custom made box was designed and fabricated in a 3D printer, preserving the requirements of low cost, low weight and safety recommendations.

  2. Data acquisition system for the CALICE AHCAL calorimeter

    NASA Astrophysics Data System (ADS)

    Kvasnicka, J.

    2017-03-01

    The data acquisition system (DAQ) for a highly granular analogue hadron calorimeter (AHCAL) for the future International Linear Collider is presented. The developed DAQ chain has several stages of aggregation and scales up to 8 million channels foreseen for the AHCAL detector design. The largest aggregation device, Link Data Aggregator, has 96 HDMI connectors, four Kintex7 FPGAs and a central Zynq System-On-Chip. Architecture and performance results are shown in detail. Experience from DESY testbeams with a small detector prototype consisting of 15 detector layers are shown.

  3. Low-power triggered data acquisition system and method

    NASA Technical Reports Server (NTRS)

    Champaigne, Kevin (Inventor); Sumners, Jonathan (Inventor)

    2012-01-01

    A low-power triggered data acquisition system and method utilizes low-powered circuitry, comparators, and digital logic incorporated into a miniaturized device interfaced with self-generating transducer sensor inputs to detect, identify and assess impact and damage to surfaces and structures wherein, upon the occurrence of a triggering event that produces a signal greater than a set threshold changes the comparator output and causes the system to acquire and store digital data representative of the incoming waveform on at least one triggered channel. The sensors may be disposed in an array to provide triangulation and location of the impact.

  4. Event triggering in the IceCube data acquisition system

    SciTech Connect

    Kelley, J. L.; Collaboration: IceCube Collaboration

    2014-11-18

    In order to detect cosmic ray air showers and neutrinos, the software data acquisition (DAQ) system of the IceCube Neutrino Observatory forms triggers on patterns of Cherenkov light deposition in the detector based on temporal and/or spatial coincidences. Here we describe the algorithms used for triggering, as well as the fast merging algorithm used to combine the time-ordered hit streams from the optical modules. We also present recently implemented and planned modifications of the DAQ that take advantage of our newly upgraded multi-core computer systems at the South Pole.

  5. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae.

    PubMed

    Peng, Eric D; Wyckoff, Elizabeth E; Mey, Alexandra R; Fisher, Carolyn R; Payne, Shelley M

    2015-12-07

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine.

  6. Digital vision system for three-dimensional model acquisition

    NASA Astrophysics Data System (ADS)

    Yuan, Ta; Lin, Huei-Yung; Qin, Xiangdong; Subbarao, Murali

    2000-10-01

    A digital vision system and the computational algorithms used by the system for three-dimensional (3D) model acquisition are described. The system is named Stonybrook VIsion System (SVIS). The system can acquire the 3D model (which includes the 3D shape and the corresponding image texture) of a simple object within a 300 mm X 300 mm X 300 mm volume placed about 600 mm from the system. SVIS integrates Image Focus Analysis (IFA) and Stereo Image Analysis (SIA) techniques for 3D shape and image texture recovery. First, 4 to 8 partial 3D models of the object are obtained from 4 to 8 views of the object. The partial models are then integrated to obtain a complete model of the object. The complete model is displayed using a 3D graphics rendering software (Apple's QuickDraw). Experimental results on several objects are presented.

  7. Signal distortion from microelectrodes in clinical EEG acquisition systems

    NASA Astrophysics Data System (ADS)

    Stacey, William C.; Kellis, Spencer; Patel, Paras R.; Greger, Bradley; Butson, Christopher R.

    2012-10-01

    Many centers are now using high-density microelectrodes during traditional intracranial electroencephalography (iEEG) both for research and clinical purposes. These microelectrodes are FDA-approved and integrate into clinical EEG acquisition systems. However, the electrical characteristics of these electrodes are poorly described and clinical systems were not designed to use them; thus, it is possible that this shift into clinical practice could have unintended consequences. In this study, we characterized the impedance of over 100 commercial macro- and microelectrodes using electrochemical impedance spectroscopy (EIS) to determine how electrode properties could affect signal acquisition and interpretation. The EIS data were combined with the published specifications of several commercial EEG systems to design digital filters that mimic the behavior of the electrodes and amplifiers. These filters were used to analyze simulated brain signals that contain a mixture of characteristic features commonly observed in iEEG. Each output was then processed with several common quantitative EEG measurements. Our results show that traditional macroelectrodes had low impedances and produced negligible distortion of the original signal. Brain tissue and electrical wiring also had negligible filtering effects. However, microelectrode impedances were much higher and more variable than the macroelectrodes. When connected to clinical amplifiers, higher impedance electrodes produced considerable distortion of the signal at low frequencies (<60 Hz), which caused significant changes in amplitude, phase, variance and spectral band power. In contrast, there were only minimal changes to the signal content for frequencies above 100 Hz. In order to minimize distortion with microelectrodes, we determined that an acquisition system should have an input impedance of at least 1 GΩ, which is much higher than most clinical systems. These results show that it is critical to account for variations

  8. Development and operation of a real-time data acquisition system for the NASA, Langley Research Center Differential Absorption Lidar

    NASA Technical Reports Server (NTRS)

    Butler, C.; Kindle, E. C.

    1984-01-01

    The capabilities of the DIAL data acquisition system (DAS) for the remote measurement of atmospheric trace gas concentrations from ground and aircraft platforms were extended through the purchase and integration of other hardware and the implementation of improved software. An operational manual for the current system is presented. Hardware and peripheral device registers are outlined only as an aid in debugging any DAS problems which may arise.

  9. Wireless Data-Acquisition System for Testing Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, Chujen; Lonske, Ben; Hou, Yalin; Xu, Yingjiu; Gang, Mei

    2007-01-01

    A prototype wireless data-acquisition system has been developed as a potential replacement for a wired data-acquisition system heretofore used in testing rocket engines. The traditional use of wires to connect sensors, signal-conditioning circuits, and data acquisition circuitry is time-consuming and prone to error, especially when, as is often the case, many sensors are used in a test. The system includes one master and multiple slave nodes. The master node communicates with a computer via an Ethernet connection. The slave nodes are powered by rechargeable batteries and are packaged in weatherproof enclosures. The master unit and each of the slave units are equipped with a time-modulated ultra-wide-band (TMUWB) radio transceiver, which spreads its RF energy over several gigahertz by transmitting extremely low-power and super-narrow pulses. In this prototype system, each slave node can be connected to as many as six sensors: two sensors can be connected directly to analog-to-digital converters (ADCs) in the slave node and four sensors can be connected indirectly to the ADCs via signal conditioners. The maximum sampling rate for streaming data from any given sensor is about 5 kHz. The bandwidth of one channel of the TM-UWB radio communication system is sufficient to accommodate streaming of data from five slave nodes when they are fully loaded with data collected through all possible sensor connections. TM-UWB radios have a much higher spatial capacity than traditional sinusoidal wave-based radios. Hence, this TM-UWB wireless data-acquisition can be scaled to cover denser sensor setups for rocket engine test stands. Another advantage of TM-UWB radios is that it will not interfere with existing wireless transmission. The maximum radio-communication range between the master node and a slave node for this prototype system is about 50 ft (15 m) when the master and slave transceivers are equipped with small dipole antennas. The range can be increased by changing to

  10. Distributed real time data processing architecture for the TJ-II data acquisition system

    SciTech Connect

    Ruiz, M.; Barrera, E.; Lopez, S.; Machon, D.; Vega, J.; Sanchez, E.

    2004-10-01

    This article describes the performance of a new model of architecture that has been developed for the TJ-II data acquisition system in order to increase its real time data processing capabilities. The current model consists of several compact PCI extension for instrumentation (PXI) standard chassis, each one with various digitizers. In this architecture, the data processing capability is restricted to the PXI controller's own performance. The controller must share its CPU resources between the data processing and the data acquisition tasks. In the new model, distributed data processing architecture has been developed. The solution adds one or more processing cards to each PXI chassis. This way it is possible to plan how to distribute the data processing of all acquired signals among the processing cards and the available resources of the PXI controller. This model allows scalability of the system. More or less processing cards can be added based on the requirements of the system. The processing algorithms are implemented in LabVIEW (from National Instruments), providing efficiency and time-saving application development when compared with other efficient solutions.

  11. Description of the SSF PMAD DC testbed control system data acquisition function

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Mackin, Michael; Wright, Theodore

    1992-01-01

    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data

  12. Colorized linear CCD data acquisition system with automatic exposure control

    NASA Astrophysics Data System (ADS)

    Li, Xiaofan; Sui, Xiubao

    2014-11-01

    Colorized linear cameras deliver superb color fidelity at the fastest line rates in the industrial inspection. It's RGB trilinear sensor eliminates image artifacts by placing a separate row of pixels for each color on a single sensor. It's advanced design minimizes distance between rows to minimize image artifacts due to synchronization. In this paper, the high-speed colorized linear CCD data acquisition system was designed take advantages of the linear CCD sensor μpd3728. The hardware and software design of the system based on FPGA is introduced and the design of the functional modules is performed. The all system is composed of CCD driver module, data buffering module, data processing module and computer interface module. The image data was transferred to computer by Camera link interface. The system which automatically adjusts the exposure time of linear CCD, is realized with a new method. The integral time of CCD can be controlled by the program. The method can automatically adjust the integration time for different illumination intensity under controlling of FPGA, and respond quickly to brightness changes. The data acquisition system is also offering programmable gains and offsets for each color. The quality of image can be improved after calibration in FPGA. The design has high expansibility and application value. It can be used in many application situations.

  13. The LUX experiment - trigger and data acquisition systems

    NASA Astrophysics Data System (ADS)

    Druszkiewicz, Eryk

    2013-04-01

    The Large Underground Xenon (LUX) detector is a two-phase xenon time projection chamber designed to detect interactions of dark matter particles with the xenon nuclei. Signals from the detector PMTs are processed by custom-built analog electronics which provide properly shaped signals for the trigger and data acquisition (DAQ) systems. During calibrations, both systems must be able to handle high rates and have large dynamic ranges; during dark matter searches, maximum sensitivity requires low thresholds. The trigger system uses eight-channel 64-MHz digitizers (DDC-8) connected to a Trigger Builder (TB). The FPGA cores on the digitizers perform real-time pulse identification (discriminating between S1 and S2-like signals) and event localization. The TB uses hit patterns, hit maps, and maximum response detection to make trigger decisions, which are reached within few microseconds after the occurrence of an event of interest. The DAQ system is comprised of commercial digitizers with customized firmware. Its real-time baseline suppression allows for a maximum event acquisition rate in excess of 1.5 kHz, which results in virtually no deadtime. The performance of the trigger and DAQ systems during the commissioning runs of LUX will be discussed.

  14. Magnetic-Field-Response Measurement-Acquisition System

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Shams, Qamar A.; Fox, Robert L.; Taylor, Bryant D.

    2006-01-01

    A measurement-acquisition system uses magnetic fields to power sensors and to acquire measurements from sensors. The system alleviates many shortcomings of traditional measurement-acquisition systems, which include a finite number of measurement channels, weight penalty associated with wires, use limited to a single type of measurement, wire degradation due to wear or chemical decay, and the logistics needed to add new sensors. Eliminating wiring for acquiring measurements can alleviate potential hazards associated with wires, such as damaged wires becoming ignition sources due to arcing. The sensors are designed as electrically passive inductive-capacitive or passive inductive-capacitive-resistive circuits that produce magnetic-field-responses. One or more electrical parameters (inductance, capacitance, and resistance) of each sensor can be variable and corresponds to a measured physical state of interest. The magnetic-field- response attributes (frequency, amplitude, and bandwidth) of the inductor correspond to the states of physical properties for which each sensor measures. For each sensor, the measurement-acquisition system produces a series of increasing magnetic-field harmonics within a frequency range dedicated to that sensor. For each harmonic, an antenna electrically coupled to an oscillating current (the frequency of which is that of the harmonic) produces an oscillating magnetic field. Faraday induction via the harmonic magnetic fields produces an electromotive force and therefore a current in the sensor. Once electrically active, the sensor produces its own harmonic magnetic field as the inductor stores and releases magnetic energy. The antenna of the measurement- acquisition system is switched from a transmitting to a receiving mode to acquire the magnetic-field response of the sensor. The rectified amplitude of the received response is compared to previous responses to prior transmitted harmonics, to ascertain if the measurement system has detected a

  15. Data Acquisition System for Electron Energy Loss Coincident Spectrometers

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Yu, Xiaoqi; Yang, Tao

    2005-12-01

    A Data Acquisition System (DAQ) for electron energy loss coincident spectrometers (EELCS) has been developed. The system is composed of a Multiplex Time-Digital Converter (TDC) that measures the flying time of positive and negative ions and a one-dimension position-sensitive detector that records the energy loss of scattering electrons. The experimental data are buffered in a first-in-first-out (FIFO) memory module, then transferred from the FIFO memory to PC by the USB interface. The DAQ system can record the flying time of several ions in one collision, and allows of different data collection modes. The system has been demonstrated at the Electron Energy Loss Coincident Spectrometers at the Laboratory of Atomic and Molecular Physics, USTC. A detail description of the whole system is given and experimental results shown.

  16. Control and data acquisition systems for high field superconducting wigglers

    NASA Astrophysics Data System (ADS)

    Batrakov, A.; Ilyin, I.; Karpov, G.; Kozak, V.; Kuzin, M.; Kuper, E.; Mamkin, V.; Mezentsev, N.; Repkov, V.; Selivanov, A.; Shkaruba, V.

    2001-07-01

    This paper describes the control and DAQ system of superconducting wigglers with magnetic field range up to 10.3 T. The first version of the system controls a 7 T superconducting wiggler prepared for installation at Bessy-II (Germany). The second one controls a 10 T wiggler which is under testing now at the SPring-8 site (Japan). Both systems are based on VME apparatus. The set of specialized VME modules is elaborated to arrange wiggler power supply control, full time wiggler monitoring, and magnetic field high accuracy measurement and field stabilization. The software for the control of the wigglers is written in C language for VxWorks operation system for a Motorola-162 VME controller. The task initialization, stops and acquisition of the data can be done from the nearest personal computer (FTP host for VME), or from the remote system as well.

  17. VETA x ray data acquisition and control system

    NASA Technical Reports Server (NTRS)

    Brissenden, Roger J. V.; Jones, Mark T.; Ljungberg, Malin; Nguyen, Dan T.; Roll, John B., Jr.

    1992-01-01

    We describe the X-ray Data Acquisition and Control System (XDACS) used together with the X-ray Detection System (XDS) to characterize the X-ray image during testing of the AXAF P1/H1 mirror pair at the MSFC X-ray Calibration Facility. A variety of X-ray data were acquired, analyzed and archived during the testing including: mirror alignment, encircled energy, effective area, point spread function, system housekeeping and proportional counter window uniformity data. The system architecture is presented with emphasis placed on key features that include a layered UNIX tool approach, dedicated subsystem controllers, real-time X-window displays, flexibility in combining tools, network connectivity and system extensibility. The VETA test data archive is also described.

  18. Value-informed space systems design and acquisition

    NASA Astrophysics Data System (ADS)

    Brathwaite, Joy

    Investments in space systems are substantial, indivisible, and irreversible, characteristics that make them high-risk, especially when coupled with an uncertain demand environment. Traditional approaches to system design and acquisition, derived from a performance- or cost-centric mindset, incorporate little information about the spacecraft in relation to its environment and its value to its stakeholders. These traditional approaches, while appropriate in stable environments, are ill-suited for the current, distinctly uncertain, and rapidly changing technical and economic conditions; as such, they have to be revisited and adapted to the present context. This thesis proposes that in uncertain environments, decision-making with respect to space system design and acquisition should be value-based, or at a minimum value-informed. This research advances the value-centric paradigm by providing the theoretical basis, foundational frameworks, and supporting analytical tools for value assessment of priced and unpriced space systems. For priced systems, stochastic models of the market environment and financial models of stakeholder preferences are developed and integrated with a spacecraft-sizing tool to assess the system's net present value. The analytical framework is applied to a case study of a communications satellite, with market, financial, and technical data obtained from the satellite operator, Intelsat. The case study investigates the implications of the value-centric versus the cost-centric design and acquisition choices. Results identify the ways in which value-optimal spacecraft design choices are contingent on both technical and market conditions, and that larger spacecraft for example, which reap economies of scale benefits, as reflected by their decreasing cost-per-transponder, are not always the best (most valuable) choices. Market conditions and technical constraints for which convergence occurs between design choices under a cost-centric and a value

  19. Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices

    DTIC Science & Technology

    2016-02-22

    SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web and Mobile Devices 22...ACQUISITION RESEARCH PROGRAM SPONSORED REPORT SERIES Achieving Better Buying Power through Acquisition of Open Architecture Software Systems for Web ...Policy Naval Postgraduate School Executive Summary Many people within large enterprises rely on up to four Web -based or mobile devices for their

  20. Aviation System Analysis Capability Quick Response System Report for Fiscal Year 1998

    NASA Technical Reports Server (NTRS)

    Ege, Russell; Villani, James; Ritter, Paul

    1999-01-01

    This document presents the additions and modifications made to the Quick Response System (QRS) in FY 1998 in support of the ASAC QRS development effort. this Document builds upon the Aviation System Analysis Capability Quick Responses System Report for Fiscal Year 1997.

  1. Floating data acquisition system for microwave calorimeter measurements on MTX

    SciTech Connect

    Sewall, N.R.; Meassick, S. )

    1989-09-13

    A microwave calorimeter has been designed for making 140-GHz absorption measurements on the MTX. Measurement of the intensity and spatial distribution of the FEL-generated microwave beam on the inner wall will indicate the absorption characteristics of the plasma when heated with a 140 GHz FEL pulse. The calorimeter works by monitoring changes of temperature in silicon carbide tiles located on the inner wall of the tokamak. Thermistors are used to measure the temperature of each tile. The tiles are located inside the tokamak about 1 cm outside of the limiter radius at machine potential. The success of this measurement depends on our ability to float the data acquisition system near machine potential and isolate it from the rest of the vault ground system. Our data acquisition system has 48 channels of thermistor signal conditioning, a multiplexer and digitizer section, a serial data formatter, and a fiber-optic transmitter to send the data out. Additionally, we bring timing signals to the interface through optical fibers to tell it when to begin measurement, while maintaining isolation. The receiver is an HP 200 series computer with a serial data interface; the computer provides storage and local display for the shot temperature profile. Additionally, the computer provides temporary storage of the data until it can be passed to a shared resource management system for archiving. 2 refs., 6 figs.

  2. Analysis of System Training Impact for Major Defense Acquisition Programs (MDAPs): Training Systems Acquisition

    DTIC Science & Technology

    2012-07-01

    Background The Patriot system began because of the need to replace an aging and limited air defense system in the 1970s, the Nike -Hercules, and...The Patriot is employed in the field through a battalion echelon organizational structure, which includes a headquarters battery; a maintenance company ...System Development and Demonstration). In August 2004, the lead systems integrator awarded 21 companies contracts to develop FCS vehicles, platforms

  3. Increasing the information acquisition volume in iris recognition systems.

    PubMed

    Barwick, D Shane

    2008-09-10

    A significant hurdle for the widespread adoption of iris recognition in security applications is that the typically small imaging volume for eye placement results in systems that are not user friendly. Separable cubic phase plates at the lens pupil have been shown to ameliorate this disadvantage by increasing the depth of field. However, these phase masks have limitations on how efficiently they can capture the information-bearing spatial frequencies in iris images. The performance gains in information acquisition that can be achieved by more general, nonseparable phase masks is demonstrated. A detailed design method is presented, and simulations using representative designs allow for performance comparisons.

  4. Multiparameter data acquisition systems for studies of circadian rhythms

    SciTech Connect

    Groh, K.R.; Ehret, C.F.; Eisler, W.J. Jr.; LeBuis, D.A.

    1985-01-01

    Long-term, simultaneous monitoring of multiple metabolic circadian cycles such as energy metabolism, animal activity, and body temperature together have revealed ultradian fine-structure rhythms which are dependent on circadian phase and the perturbations of environmental influences. Because of the variation between individual animals, these experiments need to have large sample sizes for each experimental condition. To this end we have designed, constructed and used four microcomputer controlled data acquisition systems to collect circadian data from individually housed rats and mice. 11 refs., 6 figs.

  5. Iron acquisition and regulation systems in Streptococcus species.

    PubMed

    Ge, Ruiguang; Sun, Xuesong

    2014-05-01

    Gram-positive Streptococcus species are responsible for millions of cases of meningitis, bacterial pneumonia, endocarditis, erysipelas and necrotizing fasciitis. Iron is essential for the growth and survival of Streptococcus in the host environment. Streptococcus species have developed various mechanisms to uptake iron from an environment with limited available iron. Streptococcus can directly extract iron from host iron-containing proteins such as ferritin, transferrin, lactoferrin and hemoproteins, or indirectly by relying on the employment of specialized secreted hemophores (heme chelators) and small siderophore molecules (high affinity ferric chelators). This review presents the most recent discoveries in the iron acquisition system of Streptococcus species - the transporters as well as the regulators.

  6. Systolic time interval data acquisition system. Specialized cardiovascular studies

    NASA Technical Reports Server (NTRS)

    Baker, J. T.

    1976-01-01

    The development of a data acquisition system for noninvasive measurement of systolic time intervals is described. R-R interval from the ECG determines instantaneous heart rate prior to the beat to be measured. Total electromechanical systole (Q-S2) is measured from the onset of the ECG Q-wave to the onset of the second heart sound (S2). Ejection time (ET or LVET) is measured from the onset of carotid upstroke to the incisure. Pre-ejection period (PEP) is computed by subtracting ET from Q-S2. PEP/ET ratio is computed directly.

  7. Active sample acquisition system for micro-penetrators

    NASA Astrophysics Data System (ADS)

    Voorhees, Chris; Potsaid, Benjamin

    1998-05-01

    This paper summarizes the design and development of a sub-surface sample acquisition system for use in micro-penetrators. The system was developed for flight use under NASA's New Millennium Program, Deep Space 2 project. The system goal is to acquire approximately 100 mg of Martian sub-surface soil and return it to the inside of the micro-penetrator for analysis to determine the presence of water. Various passive and active sampling techniques that were tested during the development cycle are described. After significant testing, a side bore drill mechanism was chosen to be developed for use in the flight penetrators. The design, development, and testing of mechanism element are outlined, with particular emphasis placed on actuator development, drill stem design, impact testing, and mechanism testing in various soil types. The other system elements, a pyrotechnically actuated door mechanism to seal the sample and an impact restraint mechanism, are also described.

  8. WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM

    SciTech Connect

    Mcintosh, J.

    2012-01-03

    The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

  9. FPGA-based data acquisition system for a Compton camera

    NASA Astrophysics Data System (ADS)

    Nurdan, K.; Çonka-Nurdan, T.; Besch, H. J.; Freisleben, B.; Pavel, N. A.; Walenta, A. H.

    2003-09-01

    A data acquisition (DAQ) system with custom back-plane and custom readout boards has been developed for a Compton camera prototype. The DAQ system consists of two layers. The first layer has units for parallel high-speed analog-to-digital conversion and online data pre-processing. The second layer has a central board to form a general event trigger and to build the data structure for the event. This modularity and the use of field programmable gate arrays make the whole DAQ system highly flexible and adaptable to modified experimental setups. The design specifications, the general architecture of the Trigger and DAQ system and the implemented readout protocols are presented in this paper.

  10. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1985-01-01

    A laser doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows is described. All the mean velocities, Reynolds stresses, and higher-order products can be evaluated. The approach followed is to split one of the two colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. The laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and ASSEMBLY languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  11. A 3-component laser-Doppler velocimeter data acquisition and reduction system

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Bell, J. H.; Mehta, R. D.

    1986-01-01

    This report describes a laser Doppler velocimeter capable of measuring all three components of velocity simultaneously in low-speed flows. All the mean velocities, Reynolds stresses, and higher-order products can then be evaluated. The approach followed is to split one of the colors used in a 2-D system, thus creating a third set of beams which is then focused in the flow from an off-axis direction. The third velocity component is computed from the known geometry of the system. In this report, the laser optical hardware and the data acquisition electronics are described in detail. In addition, full operating procedures and listings of the software (written in BASIC and assembly languages) are also included. Some typical measurements obtained with this system in a vortex/mixing layer interaction are presented and compared directly to those obtained with a cross-wire system.

  12. Real-Time Protein Crystallization Image Acquisition and Classification System.

    PubMed

    Sigdel, Madhav; Pusey, Marc L; Aygun, Ramazan S

    2013-07-03

    In this paper, we describe the design and implementation of a stand-alone real-time system for protein crystallization image acquisition and classification with a goal to assist crystallographers in scoring crystallization trials. In-house assembled fluorescence microscopy system is built for image acquisition. The images are classified into three categories as non-crystals, likely leads, and crystals. Image classification consists of two main steps - image feature extraction and application of classification based on multilayer perceptron (MLP) neural networks. Our feature extraction involves applying multiple thresholding techniques, identifying high intensity regions (blobs), and generating intensity and blob features to obtain a 45-dimensional feature vector per image. To reduce the risk of missing crystals, we introduce a max-class ensemble classifier which applies multiple classifiers and chooses the highest score (or class). We performed our experiments on 2250 images consisting 67% non-crystal, 18% likely leads, and 15% clear crystal images and tested our results using 10-fold cross validation. Our results demonstrate that the method is very efficient (< 3 seconds to process and classify an image) and has comparatively high accuracy. Our system only misses 1.2% of the crystals (classified as non-crystals) most likely due to low illumination or out of focus image capture and has an overall accuracy of 88%.

  13. Data acquisition instrument for EEG based on embedded system

    NASA Astrophysics Data System (ADS)

    Toresano, La Ode Husein Z.; Wijaya, Sastra Kusuma; Prawito, Sudarmaji, Arief; Syakura, Abdan; Badri, Cholid

    2017-02-01

    An electroencephalogram (EEG) is a device for measuring and recording the electrical activity of brain. The EEG data of signal can be used as a source of analysis for human brain function. The purpose of this study was to design a portable multichannel EEG based on embedded system and ADS1299. The ADS1299 is an analog front-end to be used as an Analog to Digital Converter (ADC) to convert analog signal of electrical activity of brain, a filter of electrical signal to reduce the noise on low-frequency band and a data communication to the microcontroller. The system has been tested to capture brain signal within a range of 1-20 Hz using the NETECH EEG simulator 330. The developed system was relatively high accuracy of more than 82.5%. The EEG Instrument has been successfully implemented to acquire the brain signal activity using a PC (Personal Computer) connection for displaying the recorded data. The final result of data acquisition has been processed using OpenBCI GUI (Graphical User Interface) based through real-time process for 8-channel signal acquisition, brain-mapping and power spectral decomposition signal using the standard FFT (Fast Fourier Transform) algorithm.

  14. Assessment of the integration capability of system architectures from a complex and distributed software systems perspective

    NASA Astrophysics Data System (ADS)

    Leuchter, S.; Reinert, F.; Müller, W.

    2014-06-01

    Procurement and design of system architectures capable of network centric operations demand for an assessment scheme in order to compare different alternative realizations. In this contribution an assessment method for system architectures targeted at the C4ISR domain is presented. The method addresses the integration capability of software systems from a complex and distributed software system perspective focusing communication, interfaces and software. The aim is to evaluate the capability to integrate a system or its functions within a system-of-systems network. This method uses approaches from software architecture quality assessment and applies them on the system architecture level. It features a specific goal tree of several dimensions that are relevant for enterprise integration. These dimensions have to be weighed against each other and totalized using methods from the normative decision theory in order to reflect the intention of the particular enterprise integration effort. The indicators and measurements for many of the considered quality features rely on a model based view on systems, networks, and the enterprise. That means it is applicable to System-of-System specifications based on enterprise architectural frameworks relying on defined meta-models or domain ontologies for defining views and viewpoints. In the defense context we use the NATO Architecture Framework (NAF) to ground respective system models. The proposed assessment method allows evaluating and comparing competing system designs regarding their future integration potential. It is a contribution to the system-of-systems engineering methodology.

  15. Computer system design description for the spare pump mini-dacs data acquisition and control system

    SciTech Connect

    Vargo, G.F. Jr.

    1994-09-29

    The attached document outlines the computer software design for the mini data acquisition and control system (DACS), that supports the testing of the spare pump for Tank 241-SY-101, at the maintenance and storage facility (MASF).

  16. NASA Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    SLS provides capability for human exploration missions. 70 t configuration enables EM-1 and EM-2 flight tests. Evolved configurations enable missions including humans to Mars. u? SLS offers unrivaled benefits for a variety of missions. 70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle ever. With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle. center dot Initial ICPS configuration and future evolution will offer high C3 for beyond- Earth missions. SLS is currently on schedule for first launch in December 2017. Preliminary design completed in July 2013; SLS is now in implementation. Manufacture and testing are currently underway. Hardware now exists representing all SLS elements.

  17. A Systems Engineering Capability Maturity Model, Version 1.1,

    DTIC Science & Technology

    1995-11-01

    Ongoing Skills and Knowledge 4-113 PA 18: Coordinate with Suppliers 4-120 Part 3: Appendices Appendix A Appendix B Appendix C Appendix D...Ward-Callan, C. Wasson, A. Wilbur, A.M. Wilhite, R. Williams, H. Wilson, D. Zaugg, and C. Zumba . continued on next page SM CMM and Capability...Model (SE-CMM) was developed as a response to industry requests for assistance in coordinating and publishing a model that would foster improvement

  18. Data acquisition system for Doppler radar vital-sign monitor.

    PubMed

    Vergara, Alexander M; Lubecke, Victor M

    2007-01-01

    Automatic gain control (AGC) units increase the dynamic range of a system to compensate for the limited dynamic range of analog to digital converters. This problem is compounded in wireless systems in which large changes in signal strength are effects of a changing environment. These issues are evident in the direct-conversion Doppler radar vital-sign monitor. Utilizing microwave radar signals reflecting off a human subject, a two-channel quadrature receiver can detect periodic movement resulting from cardio-pulmonary activity. The quadrature signal is analyzed using an arctangent demodulation that extracts vital phase information. A data acquisition (DAQ) system is proposed to deal with issues inherent in arctangent demodulation of a quadrature radar signal.

  19. System and method for acquisition management of subject position information

    DOEpatents

    Carrender, Curt

    2005-12-13

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  20. System and method for acquisition management of subject position information

    DOEpatents

    Carrender, Curt

    2007-01-23

    A system and method for acquisition management of subject position information that utilizes radio frequency identification (RF ID) to store position information in position tags. Tag programmers receive position information from external positioning systems, such as the Global Positioning System (GPS), from manual inputs, such as keypads, or other tag programmers. The tag programmers program each position tag with the received position information. Both the tag programmers and the position tags can be portable or fixed. Implementations include portable tag programmers and fixed position tags for subject position guidance, and portable tag programmers for collection sample labeling. Other implementations include fixed tag programmers and portable position tags for subject route recordation. Position tags can contain other associated information such as destination address of an affixed subject for subject routing.

  1. Data Acquisition System for Russian Arctic Magnetometer Network

    NASA Astrophysics Data System (ADS)

    Janzhura, A.; Troshichev, O. A.; Takahashi, K.

    2010-12-01

    Monitoring of magnetic activity in the auroral zone is very essential for space weather problem. The big part of northern auroral zone lies in the Russian sector of Arctica. The Russian auroral zone stations are located far from the proper infrastructure and communications, and getting the data from the stations is complicated and nontrivial task. To resolve this problem a new acquisition system for magnetometers was implemented and developed in last few years, with the magnetic data transmission in real time that is important for many forecasting purpose. The system, based on microprocessor modules, is very reliable in hush climatic conditions. The information from the magnetic sensors transmits to AARI data center by satellite communication system and is presented at AARI web pages. This equipment upgrading of Russian polar magnetometer network is supported by the international RapidMag program.

  2. Data acquisition systems for the Sloan Digital Sky Survey

    SciTech Connect

    Petravick, D.; Berman, E.; MacKinnon, B.; Nicinski, T.; Pordes, R.; Sergey, G.; Rechenmacher, R.; Annis, J.; Kent, S.; McKay, T.; Stoughton, C.; Husby, D.

    1994-03-01

    The Sloan Digital Sky Survey (SDSS) will image {Pi} steradians about the north galactic cap in five filters, and acquire one million spectra using a dedicated 2.5 meter telescope at the Apache Point Observatory in New Mexico. The authors describe the data acquisition system for the survey`s three main detectors: an imaging camera, mounting 54 Tektronix charge-coupled devices (CCD); a pair of spectrographs, each mounting a pair of CCDs; and a smaller monitor telescope camera. The authors describe the system`s hardware and software architecture, and relate it to the survey`s special requirements for high reliability and need to understand its instrumentation in order to produce a consistent survey over a five year period.

  3. Upgrades of the Data Acquisition System for the KOTO Experiment

    NASA Astrophysics Data System (ADS)

    Su, Stephanie; Ameel, Jon; Beaufore, Lucas; Beckford, Brian; Beechert, Jacqueline; Bogdan, Mircea; Bryant, Khalil; Campbell, Myron; Hutcheson, Melissa; Lee, Roman; McNeal, Noah; Micallef, Jessica; Robinson, Joshua; Rymph, Christopher; Schamis, Hanna; Sugiyama, Yasuyuki; Tajima, Yasuhisa; Taylor, Molly; Tecchio, Monica; Wah, Yau

    2017-01-01

    The KOTO data acquisition system (DAQ) collects detector PMT waveform signals and saves digitized events to permanent storage using frontend ADC modules, two levels of hardware triggers, and a computing farm. The KOTO DAQ system ran stably in 2013 with 24 kW beam power. To maintain high DAQ livetime with increasing beam power, we implemented lossless data compression inside the ADC modules and developed a new L3 computing farm. The upgraded KOTO DAQ system was able to maintain livetime above 80% with 42 kW beam power during the 2015 and 2016 runs. To sustain high DAQ livetime for data taking with beam power of 50 kW and above, an upgrade of our hardware trigger is proposed.

  4. Latency in Distributed Acquisition and Rendering for Telepresence Systems.

    PubMed

    Ohl, Stephan; Willert, Malte; Staadt, Oliver

    2015-12-01

    Telepresence systems use 3D techniques to create a more natural human-centered communication over long distances. This work concentrates on the analysis of latency in telepresence systems where acquisition and rendering are distributed. Keeping latency low is important to immerse users in the virtual environment. To better understand latency problems and to identify the source of such latency, we focus on the decomposition of system latency into sub-latencies. We contribute a model of latency and show how it can be used to estimate latencies in a complex telepresence dataflow network. To compare the estimates with real latencies in our prototype, we modify two common latency measurement methods. This presented methodology enables the developer to optimize the design, find implementation issues and gain deeper knowledge about specific sources of latency.

  5. Research on the design of surface acquisition system of active lap based on FPGA and FX2LP

    NASA Astrophysics Data System (ADS)

    Zhao, Hongshen; Li, Xiaojin; Fan, Bin; Zeng, Zhige

    2014-08-01

    In order to research the dynamic surface shape changes of active lap during the processing, this paper introduces a dynamic surface shape acquisition system of active lap using FPGA and USB communication. This system consists of high-precision micro-displacement sensor array, acquisition board, PC computer composition, and acquisition circuit board includes six sub-boards based on FPGA, a hub-board based on FPGA and USB communication. A sub-board is responsible for a number of independent channel sensors' data acquisition; hub-board is responsible for creating encoder simulation tools to active lap deformation control system with location information, sending synchronization information to latch the sensor data in all of the sub-boards for a time, while addressing the sub-boards to gather the sensor data in each sub-board one by one and transmitting all the sensor data together with location information via the USB chip FX2LP to the host computer. Experimental results show that the system is capable of fixing the location and speed of active lap, meanwhile the control of surface transforming and dynamic surface data acquisition at a certain location in the processing is implemented.

  6. The NOνA Far Detector Data Acquisition System

    NASA Astrophysics Data System (ADS)

    Zálešák, Jaroslav; Biery, Kurt; Guglielmo, Gerald; Habig, Alec; Illingworth, Robert; Kasahara, Susan; Kwarciany, Rick; Lu, Qiming; Lukhanin, Gennadiy; Magill, Stephen; Mathis, Mark; Meyer, Holger; Moren, Adam; Mualem, Leon; Muether, Mathew; Norman, Andrew; Paley, Jonathan; Perevalov, Denis; Piccoli, Luciano; Rechenmacher, Ronald; Shanahan, Peter; Suter, Louise; Waldron, Abigail

    2014-06-01

    The NOνA experiment is a long-baseline neutrino experiment designed to make measurements to determine the neutrino mass hierarchy, neutrino mixing parameters and CP violation in the neutrino sector. In order to make these measurements the NOνA collaboration has designed a highly distributed, synchronized, continuous digitization and readout system that is able to acquire and correlate data from the Fermilab accelerator complex (NuMI), the NOνA near detector at the Fermilab site and the NOνA far detector which is located 810 km away at Ash River, MN. This system has unique properties that let it fully exploit the physics capabilities of the NOνA detector. The design of the NOνA DAQ system and its capabilities are discussed in this paper.

  7. The Wireless Data Acquisition System for the Vibration Table

    NASA Astrophysics Data System (ADS)

    Teng, Y. T.; Hu, X.

    2014-12-01

    The vibration table is a large-scaled tool used for inspecting the performance of seismometers. The output from a seismometer on the table can be directly monitored when the vibration table moves in certain pattern. Compared with other inspection methods, inspecting seismometers' performance indicators (frequency response, degree of linearity, sensitivity, lateral inhibition and dynamic range etc). using vibration tables is more intuitive. Therefore, the vibration tables are an essential testing part in developing new seismometers and seismometer quality control. Whereas, in practice, a cable is needed to connect the seismometer to the ground equipments for its signal outputs and power supply, that means adding a time-varying nonlinear spring between the vibration table and ground. The cable adds nonlinear feature to the table, distorts the table-board movement and bring extra errors to the inspecting work and affected the testing accuracy and precision. In face of this problem, we developed a wireless acquiring system for the vibration table. The system is consisted of a three-channel analog-to-digital conversion, an acquisition control part, local data storage, network interface, wireless router and power management, etc. The analog-to-digital conversion part uses a 24-digit high-precision converter, which has a programmable amplifier at the front end of its artificial circuit, with the function of matching outputs with different amplifier from the vibration table. The acquisition control part uses a 32 bit ARM processor, with low-power dissipation, minute extension and high performance. The application software platform is written in Linux to make the system convenient for multitasking work. Large volume local digital storage is achieved by a 32G SD card, which is used for saving real time acquired data. Data transmission is achieved by network interface and wireless router, which can simplify the application software by the supported TCP/IP protocol. Besides

  8. Acquisition/expulsion system for earth orbital propulsion system study. Volume 5: Earth storable design

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A comprehensive analysis and parametric design effort was conducted under the earth-storable phase of the program. Passive Acquisition/expulsion system concepts were evaluated for a reusable Orbital Maneuvering System (OMS) application. The passive surface tension technique for providing gas free liquid on demand was superior to other propellant acquisition methods. Systems using fine mesh screens can provide the requisite stability and satisfy OMS mission requirements. Both fine mesh screen liner and trap systems were given detailed consideration in the parametric design, and trap systems were selected for this particular application. These systems are compatible with the 100- to 500-manned mission reuse requirements.

  9. Acquisition of cell-adhesion capability of the surface of crosslinked albumin films irradiated with atmospheric-pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Shirafuji, Tatsuru; Iwamura, Mami; Taga, Ryosuke; Kashiwagi, Yukiyasu; Nakajima, Kota; Ogata, Yuji; Tanaka, Kenji; Tachibana, Akira; Tanabe, Toshizumi

    2016-07-01

    Crosslinked albumin films, to which L929 cells do not attach by nature, acquire the L929-cell-adhesion capability by irradiation of an atmospheric-pressure plasma jet (APPJ) of He gas. The number of attached cells was 2.6 × 104 cells/cm2 after the APPJ irradiation for 180 s, while conventional UV photolithography, which was performed in our previous work, required 2 h to obtain the same order of magnitude of the number of attached cells. The contact angle of samples decreased steeply from 105 to 38° in the first 10 s irradiation, but decreased quite gradually from 38 to 32° with increasing irradiation time from 10 to 180 s. In contrast to the nonlinear variation in the contact angles, the number of attached cells almost linearly increased from 4.5 × 103 to 2.6 × 104 cells/cm2 with increasing treatment time. X-ray photoelectron spectroscopy of the samples indicated that hydrophilic functional groups of C-C=O gradually formed with increasing APPJ irradiation time up to 180 s. These results suggest that the cell-adhesion capability of the crosslinked albumin films is not simply explained by the decrease in contact angle but also by the formation of oxidized functional groups on the surface. The effects of UV and vacuum UV light from APPJ were negligible, which indicates that the formation of oxidized functional groups on the surface is not caused by photon-assisted surface reactions but by reactions involving chemically active species supplied from APPJ.

  10. Short pulse acquisition by low sampling rate with phase-coded sequence in lidar system

    NASA Astrophysics Data System (ADS)

    Wu, Long; Xu, Jiajia; Lv, Wentao; Yang, Xiaocheng

    2016-11-01

    The requirement of high range resolution results in impractical collection of every returned laser pulse due to the limited response speed of imaging detectors. This paper proposes a phase coded sequence acquisition method for signal preprocessing. The system employs an m-sequence with N bits for demonstration with the detector controlled to accumulate N+1 bits of the echo signals to deduce one single returned laser pulse. An indoor experiment achieved 2 μs resolution with the sampling period of 28 μs by employing a 15-bit m-sequence. This method shows the potential to improve the detection capabilities of narrow laser pulses with the detectors at a low frame rate, especially for the imaging lidar systems. Meanwhile, the lidar system is able to improve the range resolution with available detectors of restricted performance.

  11. A distributed microcomputer-controlled system for data acquisition and power spectral analysis of EEG.

    PubMed

    Vo, T D; Dwyer, G; Szeto, H H

    1986-04-01

    A relatively powerful and inexpensive microcomputer-based system for the spectral analysis of the EEG is presented. High resolution and speed is achieved with the use of recently available large-scale integrated circuit technology with enhanced functionality (INTEL Math co-processors 8087) which can perform transcendental functions rapidly. The versatility of the system is achieved with a hardware organization that has distributed data acquisition capability performed by the use of a microprocessor-based analog to digital converter with large resident memory (Cyborg ISAAC-2000). Compiled BASIC programs and assembly language subroutines perform on-line or off-line the fast Fourier transform and spectral analysis of the EEG which is stored as soft as well as hard copy. Some results obtained from test application of the entire system in animal studies are presented.

  12. A multiband radiometer and data acquisition system for remote sensing field research

    NASA Technical Reports Server (NTRS)

    Bauer, M. E. (Principal Investigator); Robinson, B. F.; Dewitt, D. P.; Silva, L. F.; Vanderbilt, V. C.

    1981-01-01

    Specifications are described for a recently developed prototype multispectral data acquisition system which consists of multiband radiometer with 8 bands between 0.4 and 12.5 micrometers and a data recording module to record data from the radometer and ancillary sources. The systems is adaptable to helicopter, truck, or tripod platforms, as well as hand-held operation. The general characteristics are: (1) comparatively inexpensive to acquire, maintain and operate; (2) simple to operate and calibrate; (3) complete with data hardware and software; and (4) well documented for use by researchers. The instrument system is to be commercially available and can be utilized by many researchers to obtain large numbers of accurate, calibrated spectral measurements. It can be a key element in improving and advancing the capability for field research in remote sensing.

  13. A computer-controlled, on-board data acquisition system for wind-tunnel testing

    NASA Technical Reports Server (NTRS)

    Finger, H. J.; Cambra, J. M.

    1974-01-01

    A computer-controlled data acquisition system has been developed for the 40x80-foot wind tunnel at Ames Research Center. The system, consisting of several small onboard units installed in the model and a data-managing, data-displaying ground station, is capable of sampling up to 256 channels of raw data at a total sample rate of 128,000 samples/sec. Complete signal conditioning is contained within the on-board units. The sampling sequence and channel gain selection is completely random and under total control of the ground station. Outputs include a bar-graph display, digital-to-analog converters, and digital interface to the tunnel's central computer, an SEL 840MP. The system can be run stand-alone or under the control of the SEL 840MP.

  14. Incorporation of the Data Acquisition System with a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Nolan, Stephen; James, R. W.; Page, E. L.; Zuniga, J.; Schlank, C.; Lopez, M.; Sherman, J.; Stutzman, B. S.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], in high temperature and density diagnostic development for future laboratory investigations. With first plasmas at hand, HPX is constructing triple and mach particle probes, magnetic probes, and a single point Thompson Scattering system for HPX plasma property investigations. A 32-channel National Instruments Data Acquisition (DAQ) Board capable of sampling at 12 bits of precision at 2 MS/s and running multiple simultaneous experiments is currently under construction. This DAQ System with integrated storage and GUI's will gather and digitize plasma data from the associated diagnostics for further analysis. Progress on the current implementation of the DAQ system will be reported.

  15. Knowledge Acquisition for an Expert System in the Air Force Civil Engineering Operations Branch

    DTIC Science & Technology

    1988-09-01

    Knowledge Acquisition................. 35 Initial Interview........................ 35 Initial Knowledge Translation ..... 37 Second Knowledge...Acquisition.................. 37 Second Interview.......................... 37 Second Knowledge Translation ............. 38 Automation...Initial Knowledge Translation . The literature expressed that knowledge acquisition was the most difficult portion of building an expert system. But

  16. The Macro Dynamics of Weapon System Acquisition: Shaping Early Decisions to Get Better Outcomes

    DTIC Science & Technology

    2012-05-17

    Budget is Headed • Declining Acquisition Budget – Reduced capacity, capability, intellectual capital – Programs already in development continue with...capability, and intellectual capital not increased to meet new demand Both scenarios lead to a mismatch between capacity and demand leading to

  17. Lattice physics capabilities of the SCALE code system using TRITON

    SciTech Connect

    DeHart, M. D.

    2006-07-01

    This paper describes ongoing calculations used to validate the TRITON depletion module in SCALE for light water reactor (LWR) fuel lattices. TRITON has been developed to provide improved resolution for lattice physics mixed-oxide fuel assemblies as programs to burn such fuel in the United States begin to come online. Results are provided for coupled TRITON/PARCS analyses of an LWR core in which TRITON was employed for generation of appropriately weighted few-group nodal cross-sectional sets for use in core-level calculations using PARCS. Additional results are provided for code-to-code comparisons for TRITON and a suite of other depletion packages in the modeling of a conceptual next-generation boiling water reactor fuel assembly design. Results indicate that the set of SCALE functional modules used within TRITON provide an accurate means for lattice physics calculations. Because the transport solution within TRITON provides a generalized-geometry capability, this capability is extensible to a wide variety of non-traditional and advanced fuel assembly designs. (authors)

  18. Communication system features dual mode range acquisition plus time delay measurement

    NASA Technical Reports Server (NTRS)

    Atwood, S. W.; Kline, A. W., Jr.; Welter, N. E.

    1968-01-01

    Communication system combines range acquisition system and time measurement system for tracking high velocity aircraft and spacecraft. The range acquisition system uses a pseudonoise code to determine range and the time measurement system reduces uncontrolled phase variations in the demodulated signal.

  19. ARC-VM: An architecture real options complexity-based valuation methodology for military systems-of-systems acquisitions

    NASA Astrophysics Data System (ADS)

    Domercant, Jean Charles

    The combination of today's national security environment and mandated acquisition policies makes it necessary for military systems to interoperate with each other to greater degrees. This growing interdependency results in complex Systems-of-Systems (SoS) that only continue to grow in complexity to meet evolving capability needs. Thus, timely and affordable acquisition becomes more difficult, especially in the face of mounting budgetary pressures. To counter this, architecting principles must be applied to SoS design. The research objective is to develop an Architecture Real Options Complexity-Based Valuation Methodology (ARC-VM) suitable for acquisition-level decision making, where there is a stated desire for more informed tradeoffs between cost, schedule, and performance during the early phases of design. First, a framework is introduced to measure architecture complexity as it directly relates to military SoS. Development of the framework draws upon a diverse set of disciplines, including Complexity Science, software architecting, measurement theory, and utility theory. Next, a Real Options based valuation strategy is developed using techniques established for financial stock options that have recently been adapted for use in business and engineering decisions. The derived complexity measure provides architects with an objective measure of complexity that focuses on relevant complex system attributes. These attributes are related to the organization and distribution of SoS functionality and the sharing and processing of resources. The use of Real Options provides the necessary conceptual and visual framework to quantifiably and traceably combine measured architecture complexity, time-valued performance levels, as well as programmatic risks and uncertainties. An example suppression of enemy air defenses (SEAD) capability demonstrates the development and usefulness of the resulting architecture complexity & Real Options based valuation methodology. Different

  20. A direct-to-drive neural data acquisition system.

    PubMed

    Kinney, Justin P; Bernstein, Jacob G; Meyer, Andrew J; Barber, Jessica B; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T; Kopell, Nancy J; Boyden, Edward S

    2015-01-01

    Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future.

  1. A direct-to-drive neural data acquisition system

    PubMed Central

    Kinney, Justin P.; Bernstein, Jacob G.; Meyer, Andrew J.; Barber, Jessica B.; Bolivar, Marti; Newbold, Bryan; Scholvin, Jorg; Moore-Kochlacs, Caroline; Wentz, Christian T.; Kopell, Nancy J.; Boyden, Edward S.

    2015-01-01

    Driven by the increasing channel count of neural probes, there is much effort being directed to creating increasingly scalable electrophysiology data acquisition (DAQ) systems. However, all such systems still rely on personal computers for data storage, and thus are limited by the bandwidth and cost of the computers, especially as the scale of recording increases. Here we present a novel architecture in which a digital processor receives data from an analog-to-digital converter, and writes that data directly to hard drives, without the need for a personal computer to serve as an intermediary in the DAQ process. This minimalist architecture may support exceptionally high data throughput, without incurring costs to support unnecessary hardware and overhead associated with personal computers, thus facilitating scaling of electrophysiological recording in the future. PMID:26388740

  2. System of acquisition and processing of images of dynamic speckle

    NASA Astrophysics Data System (ADS)

    Vega, F.; >C Torres,

    2015-01-01

    In this paper we show the design and implementation of a system to capture and analysis of dynamic speckle. The device consists of a USB camera, an isolated system lights for imaging, a laser pointer 633 nm 10 mw as coherent light source, a diffuser and a laptop for processing video. The equipment enables the acquisition and storage of video, also calculated of different descriptors of statistical analysis (vector global accumulation of activity, activity matrix accumulation, cross-correlation vector, autocorrelation coefficient, matrix Fujji etc.). The equipment is designed so that it can be taken directly to the site where the sample for biological study and is currently being used in research projects within the group.

  3. An automated data acquisition system for isolated tissue studies.

    PubMed

    Gross, D M; Weitz, D

    1982-09-01

    The automation of an isolated atria assay is described. Data acquisition, operation of the strip chart recorder, data reduction and manipulation and generation of notebook pages showing final EC50's, dose-ratios and local pA2's has been completely automated. The data are acquired via a SYM-1 (6502 CPU) 8-bit single board computer running an assembly language program stored on an EPROM chip. The data from a physiological recorder system are stored by the SYM-1 and, at the conclusion of the experiment, transmitted to a DEC MINC-11 microminicomputer running a sequence of programs in BASIC for the mathematical manipulation of the data and the automatic generation of lab notebook pages. The automated system totally eliminates hand transcription of data, manual plotting of curves and mathematical errors.

  4. On-line acquisition, analysis and presentation of neurophysiological data based on a personal microcomputer system.

    PubMed

    Stromquist, B R; Pavlides, C; Zelano, J A

    1990-12-01

    A microcomputer based system is described for the acquisition, averaging, displaying, analysis and storage of electrophysiological (EPSP and post-stimulus histogram) data. The system consists of commercially available hardware (IBM-PC AT compatible, 80286 or 80386 based microcomputer, Burr-Brown analog-to-digital (A/D) converter), a custom built interface module, and a combination of commercially available and custom built software packages. The software operates within a Microsoft Windows environment and is comprised of custom built data acquisition and review modules which are linked to Microsoft's Excel program. The system is capable of four channel A/D conversion of EPSP's at a sampling frequency of up to 10 KHz (50 KHz single channel), the averaging of data including the addition and subtraction of various channels, the graphical display of data, the extraction of various data parameters, and the transfer of data to an Excel spreadsheet. The spreadsheet allows for the development of mathematical formulas for statistical analysis of data and presentation of the results in graphical form. Finally, data can easily be output to a laser printer or plotter. A sample experiment, illustrating system operation, is presented.

  5. A design of camera simulator for photoelectric image acquisition system

    NASA Astrophysics Data System (ADS)

    Cai, Guanghui; Liu, Wen; Zhang, Xin

    2015-02-01

    In the process of developing the photoelectric image acquisition equipment, it needs to verify the function and performance. In order to make the photoelectric device recall the image data formerly in the process of debugging and testing, a design scheme of the camera simulator is presented. In this system, with FPGA as the control core, the image data is saved in NAND flash trough USB2.0 bus. Due to the access rate of the NAND, flash is too slow to meet the requirement of the sytsem, to fix the problem, the pipeline technique and the High-Band-Buses technique are applied in the design to improve the storage rate. It reads image data out from flash in the control logic of FPGA and output separately from three different interface of Camera Link, LVDS and PAL, which can provide image data for photoelectric image acquisition equipment's debugging and algorithm validation. However, because the standard of PAL image resolution is 720*576, the resolution is different between PAL image and input image, so the image can be output after the resolution conversion. The experimental results demonstrate that the camera simulator outputs three format image sequence correctly, which can be captured and displayed by frame gather. And the three-format image data can meet test requirements of the most equipment, shorten debugging time and improve the test efficiency.

  6. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha.

    PubMed

    Lo, Jing-Chi; Tsednee, Munkhtsetseg; Lo, Ying-Chu; Yang, Shun-Chung; Hu, Jer-Ming; Ishizaki, Kimitsune; Kohchi, Takayuki; Lee, Der-Chuen; Yeh, Kuo-Chen

    2016-07-01

    To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.

  7. F/A-18 FAST Offers Advanced System Test Capability

    NASA Video Gallery

    NASA's Dryden Flight Research Center has modified an F/A-18A Hornet aircraft with additional research flight control computer systems for use as a Full-scale Advanced Systems Test Bed. Previously f...

  8. A new data acquisition system for Schottky signals in atomic physics experiments at GSI's and FAIR's storage rings

    NASA Astrophysics Data System (ADS)

    Trageser, C.; Brandau, C.; Kozhuharov, C.; Litvinov, Yu A.; Müller, A.; Nolden, F.; Sanjari, S.; Stöhlker, T.

    2015-11-01

    A new continuous and broadband data acquisition system for measurements of Schottky-signals of ions revolving in a storage ring has been implemented. This set-up is capable of recording the radio frequency (RF) signal of the ions that circulate in the storage ring with a sustained acquisition rate of more than 3.5× {10}7 IQ-samples per second. This allows several harmonics of the full momentum acceptance of a storage ring to be measured at the same time. The RF signal analyzer modules are complemented by further electronic modules such as counters, precision clocks and synchronization modules that facilitate a seamless integration with main experimental data acquisitions for atomic and nuclear physics. In this contribution, the setup and first results from a test run at the experimental storage ring at GSI, Darmstadt, Germany, are presented.

  9. Supportability in Aircraft Systems through Technology and Acquisition Strategy Applications.

    DTIC Science & Technology

    1987-09-01

    A 7D-Aif 465 SUPPOTABILITY IN AIRCRAFT SYSTEMS THROUGH TECHNOLOGYi / All) ACGUISITION STE .(U) AIR FORCE INST OF TECH HEIGHT-PATTERSOU AFD ON SCHOOL...the area of R&M: 1. Increase warfighting capability. 2. Increase survivability of the combat support structure. 3. Decrease mobility requirements per...cost manpower; operations from large, fixed industrialized main operating base.3; and importance of massed force over force mobility . 4P- Those things

  10. A Microprocessor Based CAI System with Graphic Capabilities.

    ERIC Educational Resources Information Center

    Mabry, Frank J.; And Others

    This paper describes a system which operates on an independent basis as well as connected to communications network, e.g., PLATO and ASCII based communication systems. The system also has facilities for local production and use of PILOT lessons, for support of a generalized programming language (NSBASIC), and for development of graphic sequences.…

  11. Rapid architecture alternative modeling (RAAM): A framework for capability-based analysis of system of systems architectures

    NASA Astrophysics Data System (ADS)

    Iacobucci, Joseph V.

    The research objective for this manuscript is to develop a Rapid Architecture Alternative Modeling (RAAM) methodology to enable traceable Pre-Milestone A decision making during the conceptual phase of design of a system of systems. Rather than following current trends that place an emphasis on adding more analysis which tends to increase the complexity of the decision making problem, RAAM improves on current methods by reducing both runtime and model creation complexity. RAAM draws upon principles from computer science, system architecting, and domain specific languages to enable the automatic generation and evaluation of architecture alternatives. For example, both mission dependent and mission independent metrics are considered. Mission dependent metrics are determined by the performance of systems accomplishing a task, such as Probability of Success. In contrast, mission independent metrics, such as acquisition cost, are solely determined and influenced by the other systems in the portfolio. RAAM also leverages advances in parallel computing to significantly reduce runtime by defining executable models that are readily amendable to parallelization. This allows the use of cloud computing infrastructures such as Amazon's Elastic Compute Cloud and the PASTEC cluster operated by the Georgia Institute of Technology Research Institute (GTRI). Also, the amount of data that can be generated when fully exploring the design space can quickly exceed the typical capacity of computational resources at the analyst's disposal. To counter this, specific algorithms and techniques are employed. Streaming algorithms and recursive architecture alternative evaluation algorithms are used that reduce computer memory requirements. Lastly, a domain specific language is created to provide a reduction in the computational time of executing the system of systems models. A domain specific language is a small, usually declarative language that offers expressive power focused on a particular

  12. Acquisition Management for Systems-of-Systems: Analysis of Alternatives via Computational Exploratory Model

    DTIC Science & Technology

    2012-02-03

    SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT Same as Report (SAR) 18. NUMBER OF PAGES 63 19a. NAME OF RESPONSIBLE...to provide insights into the acquisition process. The research efforts during the one year study period have focused on the development and...in our project is based on the 16 technical management and technical system- engineering processes outlined in the Defense Acquisition Guidebook (DAG

  13. Infrared spectrometry studies: Spectral digital data acquisition system (1971 version)

    NASA Technical Reports Server (NTRS)

    Lu, L.; Lyon, R. J. P.

    1971-01-01

    The construction of the Stanford Spectral Digital Data Acquisition System is described. The objective of the system is to record both the spectral distribution of incoming radiation from the rock samples measured by the spectroradiometer (Exotech Model 10-34 Circular Variable Filter Infrared Spectroradiometer) together with other weather information. This system is designed for both laboratory and field measurement programs. The multichannel inputs (8 channels) of the system are as follows: Ch 1 the Spectro-radiometer, Ch 2 the radiometer (PRT-5), and Ch 3 to Ch 8 for the weather information. The system records data from channel 1 and channel 2 alternately for 48 times, before a fast sweep across the six weather channels, to form a single scan in the scan counter. The operation is illustrated in a block diagram, and the theory of operation is described. The outputs are written on a 7-track magnetic tape with IBM compatible form. The format of the tape and the playback computer programs are included. The micro-pac digital modules and a CIPHER model 70 tape recorder (Cipher Data Products) are used. One of the major characteristics of this system is that it is externally clocked by the spectroradiometer instead of taking data at intervals of various wavelengths by using internal-clocking.

  14. LOLA; Library On-Line Acquisitions Sub-System, Washington State University.

    ERIC Educational Resources Information Center

    Burgess, T.; Ames, L.

    The Acquisitions System is just one segment of an overall system design that was made for the entire Technical Services System of the Washington State University Library. After an overall study of the Technical Services System was conducted, a detailed study was made of work in the Acquisitions Department, and the Telecommunications Control…

  15. A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment.

    PubMed

    Kim, Young Jin; Kunkler, Brandon; Liu, Chen-Yu; Visser, Gerard

    2012-01-01

    We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the electric dipole moment of the electron. The DAQ system consists of two main components: a master board for DAQ control and eight individual analog-to-digital converter (ADC) boards for signal processing. This custom DAQ system provides galvanic isolation of the ADC boards from each other and the master board using fiber optic communication to reduce the possibility of ground loop pickup and attain ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  16. A high dynamic range data acquisition system for a solid-state electron electric dipole moment experiment

    SciTech Connect

    Kim, Young Jin; Kunkler, Brandon; Liu, Chen-Yu; Visser, Gerard

    2012-01-15

    We have built a high precision (24-bit) data acquisition (DAQ) system capable of simultaneously sampling eight input channels for the measurement of the electric dipole moment of the electron. The DAQ system consists of two main components: a master board for DAQ control and eight individual analog-to-digital converter (ADC) boards for signal processing. This custom DAQ system provides galvanic isolation of the ADC boards from each other and the master board using fiber optic communication to reduce the possibility of ground loop pickup and attain ultimate low levels of channel cross-talk. In this paper, we describe the implementation of the DAQ system and scrutinize its performance.

  17. A sophisticated, multi-channel data acquisition and processing system for high frequency noise research

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Bridges, James

    1992-01-01

    A sophisticated, multi-channel computerized data acquisition and processing system was developed at the NASA LeRC for use in noise experiments. This technology, which is available for transfer to industry, provides a convenient, cost-effective alternative to analog tape recording for high frequency acoustic measurements. This system provides 32-channel acquisition of microphone signals with an analysis bandwidth up to 100 kHz per channel. Cost was minimized through the use of off-the-shelf components. Requirements to allow for future expansion were met by choosing equipment which adheres to established industry standards for hardware and software. Data processing capabilities include narrow band and 1/3 octave spectral analysis, compensation for microphone frequency response/directivity, and correction of acoustic data to standard day conditions. The system was used successfully in a major wind tunnel test program at NASA LeRC to acquire and analyze jet noise data in support of the High Speed Civil Transport (HSCT) program.

  18. Enhanced Position Location Reporting System (EPLRS) Positioning Capability

    DTIC Science & Technology

    2007-06-01

    source of position data depending on the environment and system requirements. This option could allow navigation of the UAV in a GPS - denied environment...the source of position data depending on the environment and system requirements. This option could allow the UAV to be navigated in a GPS denied environment

  19. An Inexpensive Recirculating Aquaculture System with Multiple Use Capabilities.

    ERIC Educational Resources Information Center

    Scurlock, Gerald Don, Jr.; Cook, S. Bradford; Scurlock, Carrie Ann

    1999-01-01

    Describes the construction of an inexpensive recirculating aquaculture system that can hold up to 46 pounds of fish, invertebrates, and mussels for classroom use. The system is versatile, requires little maintenance, and can be used for both teaching and research purposes. (WRM)

  20. S3DACS - SPACE SIMULATOR SYSTEM DATA ACQUISITION AND CONTROL

    NASA Technical Reports Server (NTRS)

    De, Freitas Bart F.

    1994-01-01

    The S3 Data Acquisition and Control System, S3DACS, was developed for the Environmental Test Laboratory and Space Simulator at NASA's Jet Propulsion Laboratory. The program is used for monitoring, controlling, and recording information acquired during tests and presenting this information in various formats for easy access by a large number of users. All testing is initiated by a setup procedure that defines what will be tested, limits to be checked, formulas to use, etc. Test results (e.g. temperature, resistance) are then automatically stored in a database for real time display and for future reference. Measurements obtained may be used in various computations defined for the test and selectively presented in tabular, graphical, or electronic representation. Reports may show current or historical events. The S3DACS network software is written in FoxPro/LAN 1.02 and 80386 Assembler for IBM PC and compatibles running MS-DOS 3.31 or higher. Machine requirements include: an 80386 33MHz machine with 10Mb RAM set up as a file server; an 80386 33MHz machine with 4Mb RAM connected to a FLUKE 2240B or 2280 data acquisition device; and an 80386 20MHz machine with 5Mb RAM used as a workstation. Also needed is a National Instruments General Purpose Interface Bus-compatible (GP-IB) Board to enable S3DACS to communicate with IEEE-488 control instruments. Software requirements include: Novell Netware 386 for network management; FoxPro/LAN 1.02 for database management; QEMM 386 version 5.0 for memory management; and DGE version 4, Saywhat, Viewlib, and DBSHOW for graphics and screen displays. The previous list of hardware is the minimum configuration which will allow installation of S3DACS. The addition of workstations and data acquisition devices can occur transparently. S3DACS is distributed on one 5.25 inch 1.2Mb MS-DOS format diskette. The extensive documentation includes a Quick Reference Guide, a Software User's Manual, a Computer Systems Operator's Manual, and a Software