Science.gov

Sample records for acre drainage basin

  1. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  2. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  3. Drainage basins in Duval County, Florida

    USGS Publications Warehouse

    Stone, Roy B.; Largen, Joseph B.

    1983-01-01

    The drainage basins and subbasins in Duval County, Florida, are delineated on this atlas map. The county 's 840 square-mile area is drained by three major river systems; the St. Johns, 668 square miles; Nassau, 113 square miles; and St. Marys, 59 square miles. The remainder of the county is drained by a network of small streams that flow into either the Intracoastal Waterway or directly into the Atlantic Ocean. The sub-basins range in size from less than one square mile to more than 50 square miles. (USGS)

  4. Thermokarst lakes, drainage, and drained basins

    USGS Publications Warehouse

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.

    2013-01-01

    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  5. The Denudation Rate In Fu-san Drainage Basin

    NASA Astrophysics Data System (ADS)

    Jen, C. H.; Lin, J. C.

    Fu-san garden is a typical example of a Taiwanese mid altitude forest drainage basin, mostly covered by forest. The main purpose of this study is to determine the denuda- tion rate of the forest drainage basin, including measurement of bed load, dissolved load and suspended load. The denudation rate is the total sediment volume divided by the area of the drainage basin. Results indicate that typhoons and storm rainfall do much impact to the drainage basin, because surface runoff erodes and transports much of the sediment. This is the main source of drainage basin out put. On the other hand, the river is normally at low levels, so the main out put is dissolved load and some suspended load. In the period between 1998 and 2000, the total load of drainage basin of weir No 1 was 734 tons. The denudation was about 1.0347 mm, averaging 0.3449 mm annually. The total load of drainage basin of weir No 2 was 3649 tons. The denudation was about 1.8938 mm, averaging 0.6313 mm annually. The average measured denudation rate in the drainage basin of weir No 2 was about 1.83 times higher than that of drainage basin of weir No 1.

  6. Drainage basins and channel incision on Mars

    PubMed Central

    Aharonson, Oded; Zuber, Maria T.; Rothman, Daniel H.; Schorghofer, Norbert; Whipple, Kelin X.

    2002-01-01

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents. PMID:16578863

  7. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1978-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered.

  8. Fluvial sediment study of Fishtrap and Dewey Lakes drainage basins, Kentucky - Virginia

    USGS Publications Warehouse

    Curtis, William F.; Flint, Russell F.; George, Frederick H.; Santos, John F.

    1978-01-01

    Fourteen drainage basins above Fishtrap and Dewey Lakes in the Levisa Fork and Johns Creek drainage basins of eastern Kentucky and southwestern Virginia were studied to determine sedimentation rates and origin of sediment entering the two lakes. The basins ranged in size from 1.68 to 297 square miles. Sediment yields ranged from 2,890 to 21,000 tons per square mile where surface-mining techniques predominated, and from 732 to 3 ,470 tons per square mile where underground mining methods predominated. Yields, in terms of tons per acre-foot of runoff, ranged from 2.2 to 15 for surface-mined areas, and from 0.5 to 2.7 for underground-mined areas. Water and sediment discharges from direct runoff during storms were compared for selected surface-mined and underground-mined areas. Data points of two extensively surface-mined areas, one from the current project and one from a previous project in Beaver Creek basin, McCreary County, Kentucky, grouped similarly in magnitude and by season. Disturbed areas from mining activities determined from aerial photographs reached 17 percent in one study area where extensive surface mining was being practiced. For most areas where underground mining was practiced, percentage disturbed area was almost negligible. Trap efficiency of Fishtrap Lake was 89 percent, and was 62 percent for Dewey Lake. Average annual deposition rates were 464 and 146 acre-feet for Fishtrap and Dewey Lakes, respectively. The chemical quality of water in the Levisa Fork basin has been altered by man 's activities. (Woodard-USGS)

  9. Basinsoft, a computer program to quantify drainage basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    2001-01-01

    In 1988, the USGS began developing a program called Basinsoft. The initial program quantified 16 selected drainage basin characteristics from three source-data layers that were manually digitized from topographic maps using the versions of ARC/INFO, Fortran programs, and prime system Command Programming Language (CPL) programs available in 1988 (Majure and Soenksen, 1991). By 1991, Basinsoft was enhanced to quantify 27 selected drainage-basin characteristics from three source-data layers automatically generated from digital elevation model (DEM) data using a set of Fortran programs (Majure and Eash, 1991: Jenson and Dominique, 1988). Due to edge-matching problems encountered in 1991 with the preprocessing

  10. Fluvial Drainage Basins and Valley Networks: Eastern Margaritifer Sinus, Mars

    NASA Technical Reports Server (NTRS)

    Boothroyd, J. C.; Grant, J. A.

    1985-01-01

    The fluvial drainage of the eastern Margaritifer Sinus (MC-19NE, SE) and northeastern Argyre (MC-26NE) Quadrangles is dominated by two major longitudinal valley networks, the Parana/Loire system on the east, and the Samara Himera system to the west. It is believed that both of these drainages are through-going to the northwest and debouch into Margaritifer Chaos (general location: 12S, 22.5W). The Parana/Loire drainage is bounded on the east in part by an ancient multi-ringed impact basin. The Parana multi-digitate network drains northwest into a depositional basin, and impact basin floor, characterized by positive relief chaos. It is believed that Loire Vallis heads in the basin; thus Parana and Loire Valles may be treated as one system. Samara Valles heads in the northeastern Argyre Quadrangle and extends as a major truck valley to the northwest. Samara Valles cuts through the hills forming one of the concentric rings of the Ladon impact basin and joins the Himera drainage to trend in a more northerly direction to Margaritifer Chaos. The downstream portion of Himera is considered to be part of the Samara

  11. Canyon drainage induced mixing over a large basin

    SciTech Connect

    Stalker, J.

    2000-05-01

    Complex terrain surrounding urbanized basins around the world has long been recognized to strongly affect the characteristics of vertical transport and mixing of pollutants. The Department of Energy's Vertical Transport and Mixing (VTMX) program will investigate mixing processes within night-time boundary layers over large urban basins. The program will launch several field experiments within the Salt Lake City basin in the coming years. This modeling study, like many other studies being undertaken by the participants of the VTMX programs, is intended to complement the proposed field experiments by numerically examining some of the flow interactions known to occur in large basins. Using idealized simulations, we particularly investigate drainage flows from deep canyons similar to those along the Wasatch Front into the Salt Lake City basin. Literature shows that under favorable conditions, drainage flows can generate bore waves that may propagate ahead of the density current (e.g., Simpson 1969; Simpson 1982; Crook and Miller 1985). Existence and frequency of such bore waves can profoundly influence the spatial and temporal variability of vertical transport and mixing within large basins. If bore waves do occur on a regular basis within the Salt Lake City basin (a task for the upcoming experiments to determine), then understanding the basin-scale conditions under which these waves are produced and how they may propagate and interact with the city's buildings will be of great importance in characterizing transport and mixing processes within the basin.

  12. Analysis of runoff from small drainage basins in Wyoming

    USGS Publications Warehouse

    Craig, Gordon S.; Rankl, James G.

    1977-01-01

    A flood-hydrograph study has defined the magnitude and frequency of flood volumes and flood peaks that can be expected from drainage basins smaller than 11 square miles in the plains and valley areas of Wyoming. Rainfall and runoff data, collected for 9 years on a seasonal basis (April through September), were used to calibrate a rainfall-runoff model on each of 22 small basins. Long-term records of runoff volume and peak discharge were synthesized for these 22 basins. Flood volumes and flood peaks of specific recurrence intervals (2, 5, 10, 25, 50, and 100 years) were then related to basin characteristics with a high degree of correlation. Flood volumes were related to drainage area, maximum relief, and basin slope. Flood peaks were related to drainage area, maximum relief, basin slope, and channel slope. An investigation of ponding behind a highway embankment, with available storage capacity and with a culvert to allow outflow, has shown that the single fast-rising peak is most important in culvert design. Consequently, a dimensionless hydrograph defines the characteristic shape of flood hydrographs to be expected from small drainage basins in Wyoming. For design purposes, a peak and volume can be estimated from basin characteristics and used with the dimensionless hydrograph to produce a synthetic single-peak hydrograph. Incremental discharges of the hydrograph can be routed along a channel, where a highway fill and culvert are to be placed, to help determine the most economical size of culvert if embankment storage is to be considered. (Woodard-USGS)

  13. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  14. Erosion in the juniata river drainage basin, Pennsylvania

    USGS Publications Warehouse

    Sevon, W.D.

    1989-01-01

    Previously calculated erosion rates througouth the Appalachians range from 1.2 to 203 m Myr-1. Calculation of erosion rates has been accomplished by: (1) evaluation of riverine solute and sediment load in either large or small drainage basins; (2) estimation from the volume of derived sediments; and (3) methods involving either 10Be or fission-track dating. Values of specific conductance and suspended sediment collected at the Juniata River gauging station at Newport, Pennsylvania are used, with corrections, along with a bedload estimate to determine the total amount eroded from the 8687 km2 drainage basin during the water years 1965-1986. The amount eroded is used to calculate a present erosion rate of 27 m Myr-1. ?? 1989.

  15. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  16. Critical Concavity of a Drainage Basin for Steady-State

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude

  17. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  18. Drainage areas in the Vermillion River basin in eastern South Dakota

    USGS Publications Warehouse

    Benson, Rick D.; Freese, M.D.; Amundson, Frank D.

    1988-01-01

    Above-normal precipitation in the northern portion of the Vermillion River basin from 1982 through 1987 caused substantial rises in lake levels in the Lake Thompson chain of lakes, resulting in discharge from Lake Thompson to the East Fork Vermillion River. Prior to 1986, the Lake Thompson chain of lakes was thought to be a noncontributing portion of the Vermillion River basin. To better understand surface drainage, the map delineates all named stream basins, and all unnamed basins larger than approximately 10 sq mi within the Vermillion River basin in South Dakota and lists by stream name the area of each basin. Stream drainage basins were delineated by visual interpretation of contour information of U.S. Geological Survey 7 1/2 minute topographic maps. Two tables list areas of drainage basins and reaches, as well as drainage areas above gaging stations. (USGS)

  19. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  20. A Geographic Information System procedure to quantify drainage-basin characteristics

    USGS Publications Warehouse

    Eash, David A.

    1993-01-01

    The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.

  1. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  2. Preliminary evaluation of nominal drainage basin volume as a potentially useful morphometric parameter for small mountain basins

    SciTech Connect

    Keaton, J.R.

    1985-01-01

    Morphometric basin parameters have been used in quantitative geomorphic assessments since Horton's Hydrophysical Approach in 1945. A relationship between basin form and dominant process in small mountain basins in the western United States would be valuable for use in differentiating basins which produce deep-seated landslides from those which produce debris flows from debris slides. Drainage basin volume seems like it should be a parameter directly related to the dominant process operating in a basin. Consequently, it may be a potentially useful morphometric parameter. Nominal drainage basin volume is herein defined as the volume creates by the basin topography and linear projection of topographic contours across the basin. Incremental volume is computed from area encompassed by topographic contours and projections and the contour interval using the formula for the volume of the frustrum of a cone. Seven basins in the Wasatch Range and five in the Wasatch Plateau of Utah show strong relationship of log Basin Area to log Basin Volume (r/sup 2/ = 0.97). The relationship between average Basin Slope and log Basin Volume was poorer (r/sup 2/ = 0.78) than between Basin Slope and log Basin Area (r/sup 2/ = 0.87). This suggests that basin area may be a more useful parameter than basin volume, especially since area is more easily measured.

  3. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  4. Feedbacks Between Topographic Stress and Drainage Basin Evolution

    NASA Astrophysics Data System (ADS)

    Perron, J.; Martel, S. J.; Singha, K.; Slim, M. I.

    2013-12-01

    Theoretical calculations imply that stresses produced by gravity acting on topography may be large enough in some scenarios to fracture rock. Predicted stress fields beneath ridges and valleys can differ dramatically, which has led several authors to hypothesize feedbacks between topographic stress, rock fracture and landscape evolution. However, there have been few attempts to explore these feedbacks. We use a coupled model to identify possible feedbacks between topographic stress and drainage basin evolution. The domain is a cross-section of a valley consisting of a bedrock channel and adjacent soil-mantled hillslopes. The bedrock surface evolves due to channel incision, soil production, and rock uplift, and soil thickness evolves due to soil production and transport. Plane stresses at and below the bedrock surface are calculated with a boundary element method that accounts for both ambient tectonic stress and topographic stress. We assume that the stress field experienced by rock as it is exhumed influences the likelihood that it will develop fractures, which make the rock more susceptible to weathering, disaggregation and erosion. A measure of susceptibility to shear fracture, the most likely failure mode under regional compression, serves as a proxy for rock damage. We couple the landscape evolution model to the stress model by assuming that rock damage accelerates the rates of soil production and channel incision, with two endmember cases: rates scale with the magnitude of the damage proxy at the bedrock surface, or with cumulative damage acquired during rock exhumation. The stress-induced variations in soil production and channel incision alter the soil thickness and topography, which in turn alter the stress field. Comparing model simulations with and without these feedbacks, we note several predicted consequences of topographic stress for drainage basin evolution. Rock damage is typically focused at or near the foot of hillslopes, which creates thicker

  5. GIS Analysis of Size Relationships between Drainage Basins and Alluvial Fans

    NASA Astrophysics Data System (ADS)

    Wright, S. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Imagery from the global database of modern sedimentary basins compiled by Weissman et al. (2010) allows us to test whether a size relationship between drainage basin area and distributive fluvial system (DFS) area exists. We are testing this hypothesis using a combination of SRTM-based digital elevation models and Landsat satellite imagery in ArcGIS. Sedimentary basins are delineated by preforming a Gaussian smoothing on the DEM, followed by optimal edge detection through application of a modified Canny edge detector. The pour points defining the link between contributing hydrologic basins and these sedimentary basins are then located by generating a stream network in ArcGIS and intersecting the stream network arcs with the sedimentary basin polygons. From these pour points we delineate the adjacent contributing drainage basin using the watershed tool in ArcGIS. We manually digitize the boundary and geometry of the DFS identified for each drainage basin, using the higher resolution imagery found on Google Earth for visual confirmation if the scale or resolution of the Landsat imagery requires it. We then extract drainage basins and DFS polygon parameters and calculate areal extents in order to evaluate whether such a size relationship exists within basins, regionally across several basins, or across different basin types (e.g., endorheic vs exhoreic). A limitation of this approach is that we cannot evaluate sediment volumes, only aerial coverage. Results from this study may provide a better understanding of extrabasinal processes that control DFS shape and size.

  6. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  7. HANDBOOK: RETROFITTING POTWS FOR PHOSPHORUS REMOVAL IN THE CHESAPEAKE BAY DRAINAGE BASIN

    EPA Science Inventory

    This document assesses the technology, economics, and efficiency of phosphorus removal processes for use in the Chesapeake Bay Drainage basin (CBDB). ince phosphorus removal requirements in the CBDB vary widely with geographic location, this document discusses the feasibility of ...

  8. Fuzzy delineation of drainage basins through probabilistic interpretation of diverging flow networks

    NASA Astrophysics Data System (ADS)

    Schwanghart, W.; Heckmann, T.

    2012-04-01

    The assessment of uncertainty is a major challenge in geomorphometry. Methods to quantify uncertainty in digital elevation models (DEM) are needed to assess and report derivatives such as drainage basins. While Monte-Carlo (MC) techniques have been developed and employed to assess the variability of second-order derivatives of DEMs, their application requires explicit error modelling and numerous simulations to reliably calculate error bounds. Here, we develop a network model to quantify and visualize uncertainty in drainage basin delineation in DEMs. The model is based on the assumption that multiple flow directions (MFD) represent a discrete probability distribution of non-diverging flow networks. The Shannon Index quantifies the uncertainty of each cell to drain into a specific drainage basin outlet. In addition, error bounds for drainage areas can be derived. An application of the model shows that it identifies areas in a DEM where drainage basin delineation is highly uncertain owing to flow dispersion on convex landforms such as alluvial fans. The model allows for a quantitative assessment of the magnitudes of expected drainage area variability and delivers constraints for observed volatile hydrological behavior in a palaeoenvironmental record of lake level change. Since the model cannot account for all uncertainties in drainage basin delineation we conclude that a joint application with MC techniques is promising for an efficient and comprehensive error assessment in the future.

  9. Pipe downchute stormwater drainage system

    SciTech Connect

    Gross, W.E.

    1995-12-31

    SCS Engineers (SCS) was provided with the challenge of developing a completely enclosed pipe downchute system for stormwater drainage at the Fresh Kills Landfill in New York City, the largest landfill in the world. With a total landfill drainage subshed totaling over 1000 acres, and an average yearly precipitation at the site of approximately 4.2 feet, the final constructed stormwater drainage system would capture and convey over 591 million gallons of stormwater runoff per year, and discharge it into 17 stormwater basins.This paper describes the drainage system.

  10. Discontinuous Drainage Systems of NE Hellas Basin, Mars

    NASA Astrophysics Data System (ADS)

    Hargitai, H. I.; Gulick, V. C.

    2015-12-01

    We mapped several valley and channel systems located on the plains NE of Hellas Basin, NW of Dao, Harmakhis, and Reull Valles, using CTX, THEMIS, HiRISE and HRSC data. The dissected terrain is comprised of early Hesperian lava flows. Drainage systems consist of deep, narrow valleys that we interpret as bedrock reaches and small outflow-like, flat-floored channels, that are approximately 1-2 km wide and contain depositional bedforms. In these systems, approximately 130 m deep narrow reaches alternate with wide, shallow sediment-dominated reaches. This morphologic pattern is probably the result downcutting and erosion of bedrock by stream flow and subsequent deposition of the eroded material in the wider reaches downstream in response to local topographic and lithologic changes. The floors of the wider channel reaches contain several stream-lined smooth-surfaced islands, which we interpret as possible bar deposits. In some of these non-terminal depositional reaches, the channels are completely filled by deposits but further downstream the boundaries of the channel walls become apparent again. We interpret these locations as possible sites where stream flow spreads out and infiltrates into the subsurface and then subsequently outflows again to surface where channel walls become more defined. Some channels seem to be associated with the pitted latitude dependent mantle, whereas elevated islands remain smooth and free of pits. In the upper reaches of one channel system, an assemblage of intra-channel features is repeated: knobs, sinuous ridges and elongate, channel-jamming deposits similar to the morphology resulting from glaciers or rock glaciers. One channel system begins with several theater-shaped heads, suggesting a possible formation by sapping. Channel heads are cut into a high-thermal-inertia unit, possibly basaltic bedrock. We propose that this setting is suggestive of terrestrial discontinuous ephemeral stream channel systems.

  11. Drainage areas for selected stream-sampling stations, Missouri River Basin

    USGS Publications Warehouse

    2006-01-01

    As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to document trends in surface-water quality, specifically for trends in nutrients and suspended sediment. Surface-water samples were collected from streams at specific sampling stations. Water-quality characteristics at each station are influenced by the natural and cultural characteristics of the drainage area upstream from the sampling station. Efficient quantification of the drainage area characteristics requires a digital map of the drainage area boundary that may be processed, together with other digital thematic maps (such as geology or land use), in a geographic information system (GIS). Digital drainage-area boundary data for one stream-sampling station in the Missouri River Basin (MRB4) study area is included in this data release. The drainage divides were identified chiefly using 1:24,000-scale hypsography.

  12. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  13. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  14. Prairie stream water quality in sub-basins characterized by differing degrees of wetland drainage

    NASA Astrophysics Data System (ADS)

    Brunet, N. N.; Westbrook, C. J.

    2010-12-01

    The prairie pothole region is dotted with millions of pothole wetlands. These wetlands provide important habitat for numerous wildlife species. Potholes are small, shallow marshes that typically lack surface water connections and have been shown to trap nutrients, ions, and bacteria from catchment runoff. Approximately 70% of the potholes located in the Canadian prairies have been drained since 1900 to increase agricultural production; recently there have been renewed efforts to drain potholes. Wetland drainage has been shown to increase stream discharge and is perceived to impact downstream water quality as previously isolated wetlands become connected to streams via drainage ditches. Our objective was to determine the extent to which stream water quality was influenced by wetland drainage. We compared time series of water quality for four sub-basins of Smith Creek watershed, southeastern Saskatchewan. The stream drains into the Assiniboine River and then Lake Winnipeg where excessive N and P loadings are causing eutrophication. Wetland distribution in the sub-basins was historically similar, but recently the sub-basins have been subject to differing degrees of drainage (extreme, high, moderately-high, and low). Stream water sampling and discharge measurement occurred daily during peak flow (spring runoff) and weekly during low flows in 2009 at the outlet of each sub-basin. Export coefficients for nutrients, DOC, salts and bacteria were compared among sub-basins. The sub-basin characterized by extreme drainage (81% wetland reduction) had the largest nutrient and DOC export coefficients while the low drainage sub-basin (23% wetland reduction) had the lowest. Concentrations of TP and ortho-P were greater in the moderately-high and high drainage sub-basins than in the low drainage sub-basin during the snowmelt period. TP concentrations exceeded the Saskatchewan Watershed Authority Lake Stewardship Program objective of 0.1 mg/L. N concentrations were greatest in the

  15. Age-Dating Drainage Basins in Sabae and Arabia Terrae, Mars

    NASA Astrophysics Data System (ADS)

    Bouley, S.; Craddock, R. A.

    2013-12-01

    The precise timing of drainage basins is critical to understanding the climate history on Mars. One of the obvious problems with age-dating valley networks is the fact that they are small, linear features that are easily destroyed by large impact craters, thus counting craters on valley networks themselves is difficult at best. We proposed a new global study dating 27 drainage basins and subbasins in Sabaea and Arabia Terrae with the basin age-dating technique. Valley networks are contained within drainage basins, which is defined as the area that contributes water to a particular channel or set of channels . For our study, we used THEMIS (Thermal Emission Imaging System) visible images with a spatial resolution of 100 m/pixel which allow us to count craters with diameter of 1 km and larger. A digital elevation model (DEM) using 1/128 gridded Mars Orbiter Laser Altimeter (MOLA) helped us to extract the 26 basins and sub-basins drainage divides From these measurements, our study shows: (1) that all the drainages basins of a large region seem to cease their main fluvial activity at the same time at the end of the Early Hesperian epoch (~3.54 Gyr); (2) that the basin technique is the most reliable technique to do global age-dating; and (3) that there is a possible correlation between the degradation rate and the elevation. Our conclusions suggest that the main fluvial activity ceased because of a global climate change. We suppose that most of valley networks on Mars we observed today formed during the Early Hesperian and post-dated the early and late Noachian topographic features.

  16. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  17. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.

  18. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation. PMID:20337688

  19. Geologic map of the Redwood Creek drainage basin, Humboldt County, California

    USGS Publications Warehouse

    Harden, Deborah Reid; Kelsey, H.M.; Morrison, S.D.; Stephens, T.A.

    1982-01-01

    A 1:62,500-scale geologic map with 14 rock stratigraphic units and an accompanying explanatory text are used to describe the geology of the Redwood Creek drainage basin of northwestern California. A large part of Redwood National Park is located in the downstream part of this actively eroding drainage basin. The bedrock consists primarily of Mesozoic sedimentary and metamorphic rocks. The structurally complex Franciscan assemblage of rocks underlies most of the basin, but rocks of the Klammath Mountain tectonic province occurs in a small eastern part of the basin. Most major boundaries between Mesozoic rock units are north-northwest trending faults parallel to the regional structural trend. Extensive areas of surficial coastal plain sediments, landslide deposits, stream terrace deposits and modern alluvium are also present; these areas help identify loci of vigorous recent erosion. (USGS)

  20. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  1. Compilation of references on geology and hydrology of the Snake River drainage basin above Weiser, Idaho

    USGS Publications Warehouse

    Bassick, M.D.

    1986-01-01

    More than 1,100 references concerning geology and hydrology of the Snake River drainage basin above Weiser, Idaho, are compiled as part of the U.S. Geological Survey 's RASA (Regional Aquifer-System Analysis) study of the Snake River Plain. The list of references is intended as a primary source of information for investigators concerned with previous studies in the basin. Reference numbers correlate with a key-word index to help the user select and locate desired references. (USGS)

  2. Analyzing the drainage system anomaly of Zagros basins: Implications for active tectonics

    NASA Astrophysics Data System (ADS)

    Bahrami, Shahram

    2013-11-01

    Morphometric analysis of hierarchical arrangement of drainage networks allows to evaluate the effects of external controls especially tectonics on basin development. In this study, a quantitative method for calculation of stream's hierarchical anomaly number is introduced. Morphometric parameters such as hierarchal anomaly index (∆a), percent of asymmetry factor (PAF), basin Shape (Bs), basin length to mean width ratio (Bl/Bmw), stream's bifurcation ratio (Rb), bifurcation index (R), drainage density (Dd), drainage frequency (Df) and anticline's hinge spacing (Hs) of 15 basins in Zagros Mountains were examined. Results show that the strong correlations exist between pairs ∆a-PAF (r = 0.844), ∆a-Bs (r = 0.732), ∆a-Bl/Bmw (r = 0.775), ∆a-R (r = 0.517), PAF-Bl/Bmw (r = 0.519), Bs-R (r = 0.659), Bl/Bmw-R (r = 0.703), Hs-∆a (r = - 0.708), Hs-PAF (r = - 0.529) and Hs-Bs (r = - 0.516). The variations in trend of anticlines control the shape of basins so that where anticlines hinges become closer to each other in the downstream direction, basin become narrower downward and hence the ∆a increases. The more uplifted northeastern anticlines cause the trunk river of the basins to migrate toward the younger anticlines in southwest and hence ∆a increases because the trunk river receives a lot of first order streams. Data reveal that the rate of ∆a is higher in elongated synclinal basins. Due to the decrease in the intensity of deformation from northeast toward southwest of Zagros, the hinge spacing of anticlines increases southwestwards. Data reveal that the variation in hinge spacing of anticlines strongly controls the basin's shape and tilting as well as the hierarchical anomaly of drainage system. Since the elongation and tilting of basins are associated with the variations in rates of folding, uplift and hinge spacing of anticlines, it can be concluded that the hierarchical anomaly of drainages in studied basins is controlled by the intensity of Zagros

  3. Bedrock Geology of the Turkey Creek Drainage Basin, Jefferson County, Colorado

    USGS Publications Warehouse

    Char, Stephen J.

    2000-01-01

    This geospatial data set describes bedrock geology of the Turkey Creek drainage basin in Jefferson County, Colorado. It was digitized from maps of fault locations and geologic map units based on age and lithology. Created for use in the Jefferson County Mountain Ground-Water Resources Study, it is to be used at a scale no more detailed than 1:50,000.

  4. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively. PMID:23586301

  5. Occurrence and distribution of hexabromocyclododecane in sediments from seven major river drainage basins in China.

    PubMed

    Li, Honghua; Shang, Hongtao; Wang, Pu; Wang, Yawei; Zhang, Haidong; Zhang, Qinghua; Jiang, Guibin

    2013-01-01

    The concentrations and geographical distribution of hexabromocyclododecane (HBCD) were investigated in 37 composite surface sediments from seven major river drainage basins in China, including Yangtze River, Yellow River, Pearl River, Liaohe River, Haihe River, Tarim River and Ertix River. The detection frequency of HBCD was 54%, with the concentrations ranged from below limit of detection (LOD) to 206 ng/g dry weight. In general, the geographical distribution showed increasing trends from the upper reaches to the lower reaches of the rivers and from North China to Southeast China. Compared to other regions in the world, the average concentration of HBCD in sediments from Yangtze River drainage basin was at relatively high level, whereas those from other six river drainage basins were at lower or similar level. The highest HBCD concentration in sediment from Yangtze River Delta and the highest detection frequency of HBCD in Pearl River drainage basins suggested that the industrial and urban activities could evidently affect the HBCD distribution. HBCD diastereoisomer profiles showed that gamma-HBCD dominated in most of the sediment samples, followed by alpha- and beta-HBCD, which was consistent with those in the commercial HBCD mixtures. Further risk assessment reflected that the average inventories of HBCD were 18.3, 5.87, 3.92, 2.50, 1.77 ng/cm2 in sediments from Pearl River, Haihe River, Tarim River, Yellow River and Yangtze River, respectively.

  6. Teaching the Hydrologic and Geomorphic Significance of Drainage Basins and Discharge in Physical Geography.

    ERIC Educational Resources Information Center

    Sutherland, Ross

    1994-01-01

    States that drainage basins, stream discharge, and sediment discharge are fundamental concepts in physical geography and integral parts of other cognate disciplines. Presents two exercises about these concepts. Includes a set of field-based exercises and a set of exercises for students who are unable to conduct field monitoring. (CFR)

  7. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  8. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic

  9. Estimating Vadose Zone Drainage From a Capped Seepage Basin, F Area, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wan, J.; Tokunaga, T. K.; Denham, M.

    2011-12-01

    Large volumes of waste solutions were commonly discharged into unlined seepage basins at many different facilities in the past. Plutonium was extracted from depleted uranium from 1955 to 1988 at the F-Area within the Savannah River Site, with contaminated process waters disposed of in permeable seepage basins. The primarily acidic solutions contained radioactive components (including tritium, 129I, and multiple isotopes of U, Pu, Sr, and Cs), elevated nitrate, and some metals (Hg, Pb, Cd). Basin 3 was the largest F-Area seepage basin, covering 2.0 hectare, with the water table typically at about 20 m below the soil surface. The local groundwater flows at an average velocity of 200 m/y in the approximately 10 m thick shallow aquifer, and is underlain by the low permeability Tan Clay. We used nearly 20 years of groundwater quality data from a monitoring well immediately downstream of Basin 3 to estimate the post-closure drainage of waste solutions through its underlying vadose zone, into the shallow aquifer. The measurements of tritium, nitrate, and specific conductance, were used as plume tracers in our estimates of vadose zone drainage. These calculations indicate that early stages of post-closure waste drainage occurred with high fluxes (≈ 1 m/y), and quickly declined. However, even after 20 years, drainage continues at a low but significant rate of several cm/y. These estimated drainage fluxes can help constrain predictions on the waste plume behavior, especially with respect to its emerging trailing gradient and anticipated time scales suitable for monitored natural attenuation.

  10. Erosional landform map of the Redwood Creek drainage basin, Humboldt County, California, 1947-74

    USGS Publications Warehouse

    Nolan, K.M.; Harden, D.M.; Colman, Steven M.

    1976-01-01

    Landslides and actively eroding stream channels disrupt roads, damage valuable timberland, and increase stream sediment loads in northwestern California. This 1:62,500 photointerpretative map shows the distribution of ten common types of fluvial and mass-movement erosional landforms in the drainage basin of Redwood Creek in 1947 and 1974. The mapped landforms include slides, slumps, large compound earthflows, debris avalanches, unstable streambanks and adjacent hillslopes, small mass-movement features, questionable or inactive landslides, deeply incised amphitheater shaped drainage basins, small actively eroding water courses, and actively eroding main channel stream banks. The map legend describes these landforms and the techniques used in preparing the map. The amount and diversity of erosional activity increased greatly between 1947 and 1974. This increased activity apparently reflects major floods in 1953, 1955, 1964, and 1972, as well as the start of large scale, tractor-yarded clearcut timber harvest in the basin. (Woodard-USGS)

  11. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows

  12. Classification of worldwide drainage basins through the multivariate analysis of variables controlling their hydrosedimentary response

    NASA Astrophysics Data System (ADS)

    Raux, Julie; Copard, Yoann; Laignel, Benoît; Fournier, Matthieu; Masseï, Nicolas

    2011-04-01

    Quality and amount of waters and sediments conveyed within large drainage basins are crucial for human societies and biodiversity concerns. This work aims to determine the factors controlling the hydrosedimentary response (water discharge and sediment load) of 24 worldwide large drainage basins. In this respect, eleven geomorphologic and climatic variables routinely used in the literature were considered and others as fractal dimension, elongation and mean channel slope are novel for such an issue. In addition, two variables, land cover and lithology indexes, somewhat different from the literature in terms of calculation principles, were also included. All these variables were then subjected to multivariate statistical analyses (CA and PCA) and confronted in a matrix correlation. On the whole, our results display that water discharge is controlled by runoff, precipitation, basin area, elongation and fractal dimension while sediment load is governed by runoff, precipitation and maximum elevation. Mean channel slope and land-use have a minor role while other parameters (hypsometry, lithology, length, slope, mean elevation and temperature) do not play a significant role in the hydrosedimentary response. Such statistical analyses also bring out a classification of these drainage basins, comprising five to six main clusters which are ranged according to the main variables ruling their hydrosedimentary response. Two clusters are essentially governed by geomorphometric parameters (area, elongation, fractal dimension, mean elevation and hypsometry) while one cluster is rather controlled by transfer processes (runoff) and by active tectonic (maximum elevation). Hydrosedimentary response of arctic and continental rivers is controlled by low temperature while two drainage basins show any trend. A comparison of our results with other previous works dealing with this same issue points to some significant disagreements essentially based on the number of drainage basins

  13. Explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  14. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  15. Hydrologic data for the drainage basins of Chatfield and Cherry Creek Lakes, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, J.W.; Arnold, L.M.; Reed, R.L.

    1983-01-01

    Chatfield and Cherry Creek Lakes are flood control lakes constructed by the U.S. Army Corps of Engineers and leased to the Colorado Division of Parks and Recreation. Both lakes are in the Denver metropolitan area and provide a variety of recreational activities, including boating, camping, fishing, picnicking, and swimming. The projected increase of urban development in the drainage basins of Chatfield and Cherry Creek lakes could increase the constituent loads delivered to the lakes. Due to the eutrophic condition of Cherry Creek Lake and the potential eutrophic condition of Chatfield Lake, increased constituent loads could affect the suitability of the lakes for recreation. A monitoring program was started to determine the constituent loads of the drainage basins to both lakes. A network of monitoring stations was established to collect ambient water quality samples, storm runoff water quality samples, precipitation, and stream discharge. In the Cherry Creek basin 12 observation wells were established in the alluvium upgradient from Cherry Creek lake. Water levels and water quality data were collected to determine the quantity and quality of groundwater entering Cherry Creek lake. Data were collected from January through December 1982. The data may be used to evaluate the present and projected impact of urbanization in the drainage basins and the effect of increased constituent loads delivered to Chatfield and Cherry Creek lakes. (Author 's abstract)

  16. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  17. Strengthening Adaptation to Extreme Climate Events in Southwestern Amazonia: an Example from the Trinational Acre River Basin in the Madre de Dios/Peru - Acre/Brazil - Pando/Bolivia (MAP) Region.

    NASA Astrophysics Data System (ADS)

    Brown, I. F.

    2015-12-01

    Southwestern Amazonia, where Bolivia, Brazil and Peru meet, faces numerous challenges to the sustainable utilization of land and water resources as the region experiences rapid population and economic growth, expanding agriculture, transportation and energy sectors, along with frequent flooding and droughts. It is also predicted to be one of the most susceptible areas for climate change in the coming decade. The Acre River Basin, one of the few trinational basins in Amazonia, lies at the center of the Madre de Dios Region (Peru), Acre State (Brazil) and Pando Department (Bolivia) or MAP Region. It covers approximately 7,500 km2 and its inhabitants range from indigenous groups avoiding contact with industrial society to more than 60,000 dwellers of a binational urban center. The basin incorporates most the challenges facing the region and this paper discusses steps underway to address the basin's vulnerability to climate-related threats. A trinational group of professionals used GIS databases and local knowledge to classify these threats and possible societal responses. To prioritize threats and to propose responses, this group adapted a method proposed by the Queensland Climate Change Centre of Excellence of Australia to develop climate risk matrices for assessing impacts, adaptation, risk and vulnerability. The three priority climate variables were prolonged and more frequent droughts, more intense flooding, and more days with temperatures > 35oC. The final matrix proposed two areas of concentration - 1) Reduce the vulnerability of communities to hydro-meteorological extreme events and 2) Protect and restore ecosystems that maintain critical water-related resources with actions in public policy, capacity-building, and immediate activities. These results are being incorporated into the Amazon Project of the Global Environment Fund of the United Nations Environment Program, administered by the Amazon Cooperation Treaty Organization (ACTO).

  18. Flooding of Sinking Creek, Garretts Spring karst drainage basin, Jessamine and Woodford counties, Kentucky, USA

    USGS Publications Warehouse

    Currens, J.C.; Graham, C.D.R.

    1993-01-01

    Tashamingo Subdivision in Sinking Creek karst valley, a tributary of the Garretts Spring drainage basin in Jessamine and Woodford counties, Kentucky, was flooded in February 1989. To determine the cause of flooding, the groundwater basin boundary was mapped, discharge data were measured to determine intake capacity of swallets, and hydrologic modeling of the basin was conducted. Swallet capacity was determined to be limited by the hydraulic parameters of the conduit, rather than by obstruction by trash. Flooding from a precipitation event is more likely, and will be higher, when antecedent soil moisture conditions in the watershed are near saturation. Hydrologic modeling shows that suburban development of 20 percent of the southeast basin will cause a small increase in flood stage at Tashamingo Subdivision. ?? 1993 Springer-Verlag.

  19. Three new percid fishes (Percidae: Percina) from the Mobile Basin drainage of Alabama, Georgia, and Tennessee

    USGS Publications Warehouse

    Williams, J.D.; Neely, D.A.; Walsh, S.J.; Burkhead, N.M.

    2007-01-01

    Three new species of Percina are described from upland drainages of the Mobile Basin. Two of the three species are narrowly distributed: P. kusha, the Bridled Darter, is currently known only from the Conasauga River drainage in Georgia and Tennessee and Etowah River drainage in Georgia, both tributaries of the Coosa River, and P. sipsi, the Bankhead Darter, which is restricted to tributaries of Sipsey Fork of the Black Warrior River in northwestern Alabama. The third species, P. smithvanizi, the Muscadine Darter, occurs above the Fall Line in the Tallapoosa River drainage in eastern Alabama and western Georgia. In a molecular analysis using mitochondrial cytochrome b sequence data, P. kusha and P. smithvanizi were recovered as sister species, while Percina sipsi was recovered in a clade consisting of P. aurolineata (P. sciera + P. sipsi). Two of the three species, P. kusha and P. sipsi, are considered to be imperiled species and are in need of conservation actions to prevent their extinction. Description of these three darters increases the number of described species of Percina to 44. Sixteen are known to occur in the Mobile Basin, including nine that are endemic. Copyright ?? 2007 Magnolia Press.

  20. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  1. Drainage Basin Sensitivity to Climate Change in the Eastern Italian Alps

    NASA Astrophysics Data System (ADS)

    Rathburn, S. L.; Comiti, F.; Brardinoni, F.; Sparacino, M.; Schook, D. M.

    2015-12-01

    In the past decades, increases in summer air temperatures generate glacial-melt floods with higher than normal magnitudes, increase the frequency of high intensity rainfall events, and lead to permafrost degradation of steep rocky slopes prone to mass wasting. Continued climatic warming has the potential to drastically increase the sediment supply to the channel network. A US-Italy collaboration is characterizing response domains for drainage basins undergoing deglaciation in the Italian Alps to develop sensitivity indices of changes in flow and sediment dynamics. Six glaciated basins 85-160 km2 in size within the upper Adige River Valley are analyzed. Three study basins have multi-year data on either the spatial distribution of mass wasting and sediment production or hydrology and sediment transport over snow and glacial melt, or both. The other three basins are tested for applicability of the sensitivity indices where field data are lacking. Preliminary results indicate basin lithology and degree of sediment connectivity are the dominant controls on drainage basin response. Four broadly applicable response domains incorporate metamorphic, sedimentary, or mixed bedrock lithology with high to low connectivity. The sensitivity indices for fluvial response are controlled by valley confinement and channel morphologic changes. A historic topographic map from 1858 provides qualitative channel geometry information at the end of the Little Ice Age and glacial extent for all basins. Aerial photographs from 1945, 1954, 1971, and lidar and imagery from 2005 or 2011, along with field verification quantify valley confinement, braiding index and sediment connectivity. Key controls on sediment delivery to channels include glacially-inherited topography and the distribution of glacigenic surficial materials. Sediment cascade modeling will identify sediment sources, pathways and sinks and provide a first order understanding of basin-scale response to climate change.

  2. Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.

    2014-12-01

    The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.

  3. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  4. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms. PMID:26573308

  5. Benthic macroinvertebrate community in the Sinos river drainage basin, Rio Grande do Sul, Brazil.

    PubMed

    Barros, M P; Gayeski, L M; Tundisi, J G

    2016-06-27

    Aquatic macroinvertebrate fauna is a relevant component of limnic continental aquatic ecosystems, playing an important role in several processes with relevant biocomplexity. The present study characterized the benthic macroinvertebrate fauna found in three hydric bodies in the Sinos river drainage basin regarding community structure. Sample was collected from January to December 2013 in three locations in the basin: the city of Caraá (29 °45'45.5"S/50°19'37.3"W), the city of Rolante (29°38'34.4"S/50°32'33.2"W) and the city of Igrejinha (29°36'10.84"S/50°48'49.3"W). Abiotic components (pH, dissolved oxygen and temperature) were registered and collected samples were identified up to family type. Average annual pH, dissolved oxygen and temperature were similar in all locations. A total of 26,170 samples were collected. Class Insecta (Arthropods) represented 85.5% of total sample. Platyhelmintes, Mollusca and Annelida samples were also registered. A total of 57 families were identified for the drainage basin and estimators (Chao-1, Chao-2 and jackknife 2) estimated richness varying from 60 to 72 families. PMID:27355982

  6. Historical evolution of the drainage network at the basin scale using aerial orthophotography in Southern Spain

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Mora, Jose; Gómez, Jose Alfonso

    2013-04-01

    Soil management has major implications on the drainage systems in agricultural catchments. Management practices, such as ploughing the gully perimeter and gully filling, remove the vegetation and natural features associated with natural streams contributing to the landscape simplification and accelerating erosion processes. This study evaluated the temporal evolution of several key parameters of the drainage network at the Arroyo Galapagares basin over a period of six decades, from a set of existing orthophotographies, since the first available (1956) to the present (2011). The area of the catchment is 80 km2, being representative of the Campiña, a rolling landscape covered by field crops on mostly Vertisol soils, in Southern Spain. The complete drainage network of the basin was digitized, defining the thalweg and the perimeter of the channels. Since the distinction between the actual channel surface and surrounding weed-covered surface is not reliable by means of merely orthophotography inspection, the limits between the field crops and the drainage network surface provided a measure of the magnitude of non-cultivated areas. Using the digitization results, the temporal variation of three parameters were assessed: network length, channel sinuosity and non-cultivated surface. The results of this analysis showed that a significant reduction of sinuosity occurred during the study period, as well as temporary decreases in the network length as a consequence of land levelling and gully filling. Moreover, a sustained growth of non-cultivated areas was observed at the upstream gullies (low-level order streams) due to the intensification of gully erosion, especially during the last decade.

  7. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  8. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    PubMed

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  9. Radionuclide concentrations in bed sediment and fish tissue within the Rio Grande drainage basin

    SciTech Connect

    Booher, J.L.; Fresquez, P.R.; Carter, L.F.; Gallaher, B.M.; Mullen, M.A.

    1998-02-01

    In 1992-93, Los Alamos National Laboratory collaborated with the U.S. Geological Survey in an effort to characterize radionuclide concentrations in bed sediment and fish tissue within the Rio Grande drainage basin from Colorado to Texas. Bed sediment was sampled from 18 locations for cesium ({sup 137}Cs), tritium ({sup 3}H), strontium ({sup 90}Sr), plutonium ({sup 238}Pu and {sup 239}Pu), americium ({sup 241}Am), total uranium ({sup tot}U) and alpha, beta, and gamma activity. Fish tissue was sampled from 12 locations for {sup 137}Cs, {sup 90}Sr, {sup 238}Pu, {sup 239}Pu and {sup tot}U.

  10. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Ramadan Ali, R.; Faid, A.; El Osta, M.

    2013-04-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins) and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and seepage water can be

  11. Development of a regional hydrologic soil model and application to the Beerze--Reusel drainage basin.

    PubMed

    Kolditz, O; Du, Y; Bürger, C; Delfs, J; Kuntz, D; Beinhorn, M; Hess, M; Wang, W; van der Grift, B; te Stroet, C

    2007-08-01

    The soil compartment is an important interface between the atmosphere and the subsurface hydrosphere. In this paper a conceptual approach for regional hydrologic soil modelling (RHSM) is presented, which provides two important qualities for modelling. First, the soil compartment is directly coupled to the atmosphere via the land surface and to the aquifers. Second, extremely fine (5cm vertical) resolutions of the soil system can be realized at regional scales (several hundreds of km(2)). This high-resolution modelling could be achieved by parallel computation techniques. The RHSM approach is applied to the Beerze-Reusel drainage basin, which belongs to the Meuse River basin. Moisture transport in the soil system was calculated with extremely high vertical resolution at a regional scale based on rainfall-evaporation data for the year 2000. As a result, highly resolved regional groundwater recharge pattern addressing the heterogeneity of soil systems could be determined. PMID:17478020

  12. Field identification of groundwater flow systems and hydraulic traps in drainage basins using a geophysical method

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-Wei; Wan, Li; Wang, Jun-Zhi; Yin, Bin-Xi; Fu, Wen-Xiang; Lin, Chang-Hong

    2014-04-01

    Groundwater flow systems and stagnant zones in drainage basins are critical to a series of geologic processes. Unfortunately, the difficulty of mapping flow system boundaries and no field example of detected stagnant zones restrict the application of the concept of nested flow systems. By assuming the variation in bulk resistivity of an aquifer with uniform porosity is mainly caused by groundwater salinity, the magnetotelluric technique is used to obtain the apparent resistivity of a profile across a groundwater-fed river in the Ordos Plateau, China. Based on the variations in apparent resistivity of the Cretaceous sandstone aquifer, the basin-bottom hydraulic trap below the river has been detected for the first time, and its size is found to be large enough for possible deposition of large ore bodies. The boundaries between local and regional flows have also been identified, which would be useful for groundwater exploration and calibration of large-scale groundwater models.

  13. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  14. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  15. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources. PMID:26132013

  16. Elaboration of climatic maps using GIS. Case study: Olãnesti drainage basin, Romania.

    PubMed

    Tîrlã, Laura

    2012-04-01

    Creating precise climatic maps (temperature and precipitation map especially) on small areas such as drainage basins or landform units is always very useful for ecology of plants, distribution of vegetation and also different types of agricultural land. The geographic information system (GIS) analysis of several key-factors (aspect and slope of terrain, insolation degree, thermal gradient, geology and structure of landforms) offers the necessary tools to operate with in order to create an accurate climatic map. This method was applied in order to create a map showing the distribution of temperatures in the Olanesti drainages basin, a 235 km2 area located at middle latitude, in Romania. After creating the DEM, aspect and slope of the terrain, reclassifying categories and calculating the thermal gradient, a map showing the distribution of the annual mean temperature is obtained. Other climatic parameters could be calculated for small areas too, with precise results. These demonstrate that not only elevation and mathematical location of an area are important factors in the distribution of temperature, but also the aspect, the gradient, the insolation, the type of rock and the structure. PMID:23424850

  17. Distribution of bedrock and alluvial channels in forested mountain drainage basins

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Abbe, Tim B.; Buffington, John M.; Peterson, N. Phil; Schmidt, Kevin M.; Stock, Jonathan D.

    1996-06-01

    MOUNTAIN river networks often consist of both bedrock and alluvial channels1-5, the spatial distribution of which controls several fundamental geomorphological and ecological processes6,7. The nature of river channels can influence the rates of river incision and landscape evolution1,2, as well as the stream habitat characteristics affecting species abundance and aquatic ecosystem structure8-11. Studies of the factors controlling the distribution of bedrock and alluvial channels have hitherto been limited to anthropogenic badlands12. Here we investigate the distribution of channel types in forested mountain drainage basins, and show that the occurrence of bedrock and alluvial channels can be described by a threshold model relating local sediment transport capacity to sediment supply. In addition, we find that valley-spanning log jams create alluvial channels- hospitable to aquatic life-in what would otherwise be bedrock reaches. The formation of such jams depends critically on the stabilizing presence of logs derived from the largest trees in the riverside forests, suggesting that management strategies that allow harvesting of such trees can have a devastating influence on alluvial habitats in mountain drainage basins.

  18. Map showing major drainage basins and stream-gaging stations in Massachusetts

    USGS Publications Warehouse

    Rader, J.C.

    1994-01-01

    This map report shows the 27 major drainage basins, locations of the 71 permanent stream- gaging stations, and the primary rivers, lakes, and reservoirs of Massachusetts. These features are presented at a scale of 1:400,000 (map size about 36 by 24 inches). The map also lists uses of streamflow data. The map was produced from a digital data base using a Geographic Information System (GIS). It shows information about the stream-gaging stations that can be accessed from the digital data base--stream-gaging station number and name, telemetry code, and cooperating agency. By use of GIS and the major basin divides from the data base, additional data bases could be grouped to produce other hydrologic planning maps. The drainage divides were digitized from paper maps into the GIS at a scale of 1:24,000. The map was compiled from original maps that was produced by the USGS in cooperation with the Massachusetts Department of Environment Management.

  19. Preliminary study of the hydrologic response of an urban drainage basin at two different scales

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Ferreira, António; Coelho, Celeste; de Lima João, Pedroso

    2010-05-01

    Predicted changes in climate and urban sprawl areas are expected to cause significant modification in rainfall pattern and hydrological regimes. Urbanization can alter the hydrologic response by increasing streamflow, reducing time of concentration, altering soil moisture levels and increasing overland flow, thereby increasing the size, frequency and speed of peak flow responses. However, despite the profusion of works, effective methodologies to investigate the impacts of potential land-use change on how spatial variability of soil moisture and precipitation affect runoff production at a range of scales and on different land uses remain largely undeveloped. This has important implications for flood prediction accuracy. The main aim of this work is to assess the hydrological response and to understand the influence of different land uses. The study is based on a small urban drainage basin (7 Km2), undergoing rapid urbanization, located in central Portugal: Ribeira dos Covões. It considers a combined approach of field survey and data acquisition to access spatiotemporal dynamics and land uses contributions to surface hydrology, based on drainage basins and small plot scales. At drainage basin scale, the study is based on three years rainfall and stream flow data analysis (collected through an automatic water level recorder and rain gauges). Rainfall-runoff relationship was assessed over the time and isolated events were studied. To understand land uses on the hydrology, rainfall simulations were conducted at the small plot scale (0.25 m2) during a dry period, in forested and deforested areas, agricultural areas, including tilled and abandoned areas, as well as built-up areas (21 experiments with 1 hour duration, with a rain intensity of 43±3 mm h-1). During the experiments hydrophobicity was monitored (Molarity of an Ethanol Droplet technique), soil moisture content was assessed every minute, and runoff volume was measured every 5 minutes. This work has shown the

  20. Characterization of a small-scale drainage basin in Central Portugal - a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Correia, Carla G.; Azevedo, José Manuel; Rodrigues, Nelson V.; Figueiredo, Fernando P. O.

    2015-04-01

    This study presents a multidisciplinary characterization of a small-scale watershed encompassing its topography, geology, local and regional tectonics, morphometry of the drainage system, soil type, land use and climatology. All this parameters are important controllers of the groundwater circulation and storage, as well as the localization of the recharge areas. It also identifies the piezometric changes, the upper (or phreatic) aquifer flow and the major recharge areas. Simultaneously, it includes the hydrochemical classification and the active hydrogeochemical processes occurring on the local aquifers. The combined analysis of these data is necessary for interpreting the hydrodynamics of the local aquifer units. The research focused on the surrounding domains of Olhos da Fervença spring, particularly in the Fervença watershed, a small-scale drainage basin close to Cantanhede city (Coimbra District, Portugal). This watershed is located on a rural area within the Vouga hydrographic basin. The methodology included: (1) delimitation of the watershed; (2) geometric (or physiographic) characterization of the basin; (3) analysis of the digital elevation model to quantify the slopes and to detect structural alignments that influence the surface and groundwater flow; (4) geologic characterization of the basin; (5) description of the soil type and the land use; (6) classification of the regional climatic conditions; (7) inventory and regular hydrogeologic characterization of wells (diameter, depth, wellhead and piezometry); (8) elaboration of piezometric maps in order to identify the groundwater flow; (9) groundwater sampling and in situ measurement of physico-chemical parameters (pH, groundwater temperature, specific electrical conductivity, Eh, dissolved oxygen, HCO3); (10) conducting laboratorial hydrochemical analyzes (Cl, NO3, SO4, PO4, Ca, Na, Mg, K, Fe, Mn, Al); (11) groundwater classification, hydrochemical interpretation and identification of the water

  1. Phylogeographic Analysis of Blastomyces dermatitidis and Blastomyces gilchristii Reveals an Association with North American Freshwater Drainage Basins

    PubMed Central

    McTaggart, Lisa R.; Brown, Elizabeth M.; Richardson, Susan E.

    2016-01-01

    Blastomyces dermatitidis and Blastomyces gilchristii are dimorphic fungal pathogens that cause serious pulmonary and systemic infections in humans. Although their natural habitat is in the environment, little is known about their specific ecologic niche(s). Here, we analyzed 25 microsatellite loci from 169 strains collected from various regions throughout their known endemic range in North America, representing the largest and most geographically diverse collection of isolates studied to date. Genetic analysis of multilocus microsatellite data divided the strains into four populations of B. dermatitidis and four populations of B. gilchristii. B. dermatitidis isolates were recovered from areas throughout North America, while the B. gilchristii strains were restricted to Canada and some northern US states. Furthermore, the populations of both species were associated with major freshwater drainage basins. The four B. dermatitidis populations were partitioned among (1) the Nelson River drainage basin, (2) the St. Lawrence River and northeast Atlantic Ocean Seaboard drainage basins, (3) the Mississippi River System drainage basin, and (4) the Gulf of Mexico Seaboard and southeast Atlantic Ocean Seaboard drainage basins. A similar partitioning of the B. gilchristii populations was observed among the more northerly drainage basins only. These associations suggest that the ecologic niche where the sexual reproduction, growth, and dispersal of B. dermatitidis and B. gilchristii occur is intimately linked to freshwater systems. For most populations, sexual reproduction was rare enough to produce significant linkage disequilibrium among loci but frequent enough that mating-type idiomorphic ratios were not skewed from 1:1. Furthermore, the evolutionary divergence of B. dermatitidis and B. gilchristii was estimated at 1.9 MYA during the Pleistocene epoch. We suggest that repeated glaciations during the Pleistocene period and resulting biotic refugia may have provided the

  2. Phylogeographic Analysis of Blastomyces dermatitidis and Blastomyces gilchristii Reveals an Association with North American Freshwater Drainage Basins.

    PubMed

    McTaggart, Lisa R; Brown, Elizabeth M; Richardson, Susan E

    2016-01-01

    Blastomyces dermatitidis and Blastomyces gilchristii are dimorphic fungal pathogens that cause serious pulmonary and systemic infections in humans. Although their natural habitat is in the environment, little is known about their specific ecologic niche(s). Here, we analyzed 25 microsatellite loci from 169 strains collected from various regions throughout their known endemic range in North America, representing the largest and most geographically diverse collection of isolates studied to date. Genetic analysis of multilocus microsatellite data divided the strains into four populations of B. dermatitidis and four populations of B. gilchristii. B. dermatitidis isolates were recovered from areas throughout North America, while the B. gilchristii strains were restricted to Canada and some northern US states. Furthermore, the populations of both species were associated with major freshwater drainage basins. The four B. dermatitidis populations were partitioned among (1) the Nelson River drainage basin, (2) the St. Lawrence River and northeast Atlantic Ocean Seaboard drainage basins, (3) the Mississippi River System drainage basin, and (4) the Gulf of Mexico Seaboard and southeast Atlantic Ocean Seaboard drainage basins. A similar partitioning of the B. gilchristii populations was observed among the more northerly drainage basins only. These associations suggest that the ecologic niche where the sexual reproduction, growth, and dispersal of B. dermatitidis and B. gilchristii occur is intimately linked to freshwater systems. For most populations, sexual reproduction was rare enough to produce significant linkage disequilibrium among loci but frequent enough that mating-type idiomorphic ratios were not skewed from 1:1. Furthermore, the evolutionary divergence of B. dermatitidis and B. gilchristii was estimated at 1.9 MYA during the Pleistocene epoch. We suggest that repeated glaciations during the Pleistocene period and resulting biotic refugia may have provided the

  3. Geology and ground-water resources of the lower Lodgepole Creek drainage basin, Nebraska, with a section on chemical quality of the water

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Jochens, Eugene R.

    1957-01-01

    the alluvium have a yield ranging from 130 to 1,200 gpm, averaging about 770 gpm. In the Lodgepole Creek valley below Sidney the depth to water generally is less than 20 feet and, in many places, less than 10. In much of this part of the area the water table extends to the land surface or to the root zone of the vegetation, and discharge by evapotranspiration is high. In the valley of Lodgepole Creek between Sidney and the Wyoming State line, the depth to water generally ranges from less than 10 feet near the stream to more than 100 along the edge of the valley. In the upland the depth to water ranges from about 80 to about 300 feet. Recharge to the ground-water reservoir is derived chiefly from precipitation; other sources are seepage from irrigation systems and streams, and subsurface inflow of ground water. Water that infiltrates to the water table generally moves toward Lodgepole Creek in a downstream direction and is discharged into the stream through springs and seeps. However, within an area of at least 400 square miles in the northern part of the lower Lodgepole Creek drainage basin, ground water moves toward the valley of the North Platte River. Water is discharged from the ground-water reservoir into streams, by evapotranspiration, through wells, and by subsurface outflow. During the 1951-52 water year about 13,000 acre-feet of ground water left the area as streamflow. An estimated 20,000 acre-feet of water annually is discharged by the transpiration of grasses and trees growing along the creek bottom, and about 1,000 acre-feet of water leaves as subsurface outflow. During the period 1950-51 about 68,000 acre-feet of water was pumped from wells in the area for all uses. Of this amount; about 35,000 acre-feet in 1950 and 23,300 acre-feet in 1951 were used to irrigate about 15,560 and 15,790 acres. Nearly one-fourth of this water percolated back to the ground-water reservoir. These acreages, however, included about 2,100 acres irrigated in p

  4. Examining the Colonization and Survival of E. coli from Varying Host Sources in Drainage Basin Sediments and Stormwater.

    PubMed

    Curtis, Kyle; Michael Trapp, J

    2016-08-01

    It is widely understood that stormwater drainage has a significant impact on the health of tidal creek systems via regular inputs of runoff from the surrounding watershed. Due to this hydrologic connection, contamination of the upstream drainage basin will have a direct effect on estuaries and tidal creeks that often act as receiving waters. This study focuses on the importance of drainage basin sediments as they enhance the persistence and transport of the fecal indicator bacteria E. coli within a watershed. Experiments presented use microcosm environments with drainage basin sediments and stormwater to investigate E. coli colonization of stagnant waters and to examine the importance of host sources to bacterial survival. A novel method for establishing microcosms using environmental sediments with in situ bacterial populations and sterile overlying waters is used to examine E. coli colonization of the water column in the absence of flow. Colonization of sterile sediment environments also is examined using two common host sources (human and avian). Each experiment uses sediments of varying grain size and organic content to examine the influence of physical characteristics on bacterial prevalence. Results suggest host source of bacteria may be more important to initial bacterial colonization while physical characteristics of drainage basin sediments better explains extended E. coli persistence. Findings also suggest an indirect control of water column bacterial concentration by sediment type and erodibility. PMID:27282707

  5. Examining the Colonization and Survival of E. coli from Varying Host Sources in Drainage Basin Sediments and Stormwater.

    PubMed

    Curtis, Kyle; Michael Trapp, J

    2016-08-01

    It is widely understood that stormwater drainage has a significant impact on the health of tidal creek systems via regular inputs of runoff from the surrounding watershed. Due to this hydrologic connection, contamination of the upstream drainage basin will have a direct effect on estuaries and tidal creeks that often act as receiving waters. This study focuses on the importance of drainage basin sediments as they enhance the persistence and transport of the fecal indicator bacteria E. coli within a watershed. Experiments presented use microcosm environments with drainage basin sediments and stormwater to investigate E. coli colonization of stagnant waters and to examine the importance of host sources to bacterial survival. A novel method for establishing microcosms using environmental sediments with in situ bacterial populations and sterile overlying waters is used to examine E. coli colonization of the water column in the absence of flow. Colonization of sterile sediment environments also is examined using two common host sources (human and avian). Each experiment uses sediments of varying grain size and organic content to examine the influence of physical characteristics on bacterial prevalence. Results suggest host source of bacteria may be more important to initial bacterial colonization while physical characteristics of drainage basin sediments better explains extended E. coli persistence. Findings also suggest an indirect control of water column bacterial concentration by sediment type and erodibility.

  6. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  7. Pesticides in streams in the Tar-Pamlico drainage basin, North Carolina, 1992-94

    USGS Publications Warehouse

    Woodside, Michael D.; Ruhl, Kelly E.

    2001-01-01

    From 1992 to 1994, 147 water samples were collected at 5 sites in the Tar-Pamlico drainage basin in North Carolina and analyzed for 46 herbicides, insecticides, and pesticide metabolites as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Based on a common adjusted detection limit of 0.01 microgram per liter, the most frequently detected herbicides were metolachlor (84 percent), atrazine (78 percent), alachlor (72 percent), and prometon (57 percent). The insecticides detected most frequently were carbaryl (12 percent), carbofuran (7 percent), and diazinon (4 percent). Although the pesticides with the highest estimated uses generally were the compounds detected most frequently, there was not a strong correlation between estimated use and detection frequency. The development of statistical correlations between pesticide use and detection frequency was limited by the lack of information on pesticides commonly applied in urban and agricultural areas, such as prometon, chlorpyrifos, and diazinon, and the small number of basins included in this study. For example, prometon had the fourth highest detection frequency, but use information was not available. Nevertheless, the high detection frequency of prometon indicates that nonagricultural uses also contribute to pesticide levels in streams in the Tar-Pamlico drainage basin. Concentrations of the herbicides atrazine, alachlor, and trifluralin varied seasonally, with elevated concentrations generally occurring in the spring, during and immediately following application periods, and in the summer. Seasonal concentration patterns were less evident for prometon, diazinon, and chlorpyrifos. Alachlor is the only pesticide detected in concentrations that exceeded current (2000) drinking-water standards.

  8. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    PubMed

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun

    2016-04-01

    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.

  9. Drainage architecture and sediment routing in erosive catchments within the Ebro Eiver sedimentary basin (NE Iberian Peninsula)

    NASA Astrophysics Data System (ADS)

    Castelltort, Xavier; Colombo, Ferran; Carles Balasch Solanes, Josep

    2016-04-01

    The Ebro Basin (EB) is the result of filling a foreland basin located between active mountain ranges during the Paleogene compressive phases, and later affected by phases of distension in the Neogene. The arrangement of filler material is monocline in the eastern margin and in the contact with the Catalan Coastal Range (CCR). This has repercussions on the model of emptying the erosive basins and in the drainage that took place in the margins of the original sedimentary basin. One can speak of a drainage architecture and sediment routing associated to a monocline erosive basin model. The monocline topography in the original margin of EB encouraged the formation of a string of erosive basins around the contact with CCR, which are the result of headward erosion towards the center of the EB of the rivers draining the CCR towards the Valencia Trough. At the time, the transition from the EB in its initial condition of endorheic to exorheic was through one of these monocline erosive basins. The erosive basins emptied by means of two vectors. On the one hand, growth in surface of the basin by deepening anaclinal streams through resistant beds of monocline stratigraphic succession that empty and link small depressions that increase laterally on the less resistant lithologic member. Moreover, the new drainage system entrenches as the exit point of the basin does, thanks to gradients created by distensional movements of the Neogene Valencia Trough. Growth and entrenchment model of river basins, as well as, sedimentary deposits and landforms generated by these processes are described and analyzed.

  10. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  11. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  12. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors

    USGS Publications Warehouse

    Van Nest, J.; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective. ?? 1990.

  13. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  14. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan. PMID:15195438

  15. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  16. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    USGS Publications Warehouse

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of .southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, ,adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  17. Nitrate-nitrogen export: magnitude and patterns from drainage districts to downstream river basins.

    PubMed

    Ikenberry, Charles D; Soupir, Michelle L; Schilling, Keith E; Jones, Christopher S; Seeman, Anthony

    2014-11-01

    Alteration of the prairie pothole ecosystem through installation of subsurface tile drains has enabled the U.S. Corn Belt to become one of the most agriculturally productive areas in the world but has also led to increased nitrogen losses to surface water. The literature contains numerous field plot studies but few in-depth studies of nitrate exports from small, tile-drained catchments representative of agricultural drainage districts. The objectives of this study were to quantify hydrology and nitrate-nitrogen (NO-N) export patterns from three tile-drained catchments and the downstream river over a 5-yr period, compare results to prior plot-, field-, and watershed-scale studies, and discuss implications for water quality improvement in these landscapes. The tile-drained catchments had an annual average water yield of 247 mm yr, a flow-weighted NO-N concentration of 17.1 mg L, and an average NO-N loss of nearly 40 kg ha yr. Overall, water yields were consistent with prior tile drainage studies in Iowa and the upper Midwest, but associated NO-N concentrations and losses were among the highest reported for plot studies and higher than those found in small watersheds. More than 97% of the nitrate export occurs during the highest 50% of flows, at both the small catchment and river basin scale. Findings solidified the importance of working at the drainage district scale to achieve nitrate reductions necessary to meet water quality goals. They also point to the need for implementing strategies that address both hydrology and nitrogen supply in tile-drained landscapes.

  18. Automated reconstruction of drainage basins and water discharge to the sea through glacial cycles

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew

    2015-04-01

    Over glacial cycles, ice masses and their geophysical impacts on surface topography dramatically changed drainage patterns and river discharges. These changes impacted meltwater discharge to the ocean, geomorphology, and climate. As the river systems'the threads that tied the ice sheets to the sea'were stretched, severed, and rearranged during deglaciation, they also shrank and swelled with the pulse of meltwater inputs and proglacial lake dynamics. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges. I automate these calculations within GRASS GIS to take advantage of rapid solution techniques for drainage networks in an open-source and compute-cluster-ready environment. I combine modern topography and bathymetry with ice sheet reconstructions from the last glacial cycle and a global glacial isostatic adjustment model to build digital elevation models of the past Earth surface. I then sum ice sheet mass balance with computed precipitation and evapotranspiration from a paleoclimate general circulation model to produce grids of water input. I combine these topographic and hydrologic inputs to compute past river networks and discharges through time. These paleodrainage reconstructions connect ice sheets, sea level, and climate models to fluvial systems, which in turn generate measurable terrace and sedimentary records as they carry physical, compositional, and isotopic signatures of ice sheet melt and landscape change through their channels and to the sea. Therefore, this work provides a self-consistent paleogeographic framework within which models and geologic records may be quantitatively compared to build new insights into past glacial systems.

  19. Geomorphometry of Drainage Basin for Natural Resources Management Using High Resolution Satellite Data an Indian Example

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, P.; Reddy, M. A.; Prasad, A. T.

    2003-12-01

    Application of Remote Sensing and Geographic Information System for the development of land and water resources action plan at micro level for appropriate management of land/water resources of a watershed in rain fed region of Prakasam District in Andhra Pradesh, India forms the focal theme of this paper. The quantitative description of drainage basin geometry can be effectively determined using Remote Sensing and GIS techniques. Each of the sixty-two sub-watersheds of the study area have been studied in terms of the Morphometric parameters - Stream length, Bifurcation ratio, Length ratio, Drainage density, Stream frequency, Texture ratio, Form factor, Area Perimeters, Circularity ratio and Elongation ratio and prioritized all the sub-watersheds under study. The prioritization of sub sheds based on morphometry is compared with sediment yield prioritization and found nearly same for the study area. The information obtained from the thematic maps are integrated and action plans are suggested for land and water resources development on a sustainable basis. Landuse/Landcover, Hydrogeomorphology and Soil thematic maps were generated. In addition slope and Drainage maps were prepared from Survey of India toposheets. Based on the computerized database created using ARC/INFO software, information derived in terms of natural resources and their spatial distribution was then integrated with the socio economic data to formulate an action plan, which includes suggestion of alternative Landuse/Landcover practices. Such a plan is useful for natural resources management and for improving the socio-economic status of rural population on a sustainable basis. Keywords: Natural Resources, Remote Sensing, Morphometry sustainable development.

  20. National Water-Quality Assessment Program - Western Lake Michigan Drainage Basin

    USGS Publications Warehouse

    Setmire, J.O.

    1991-01-01

    A major component of the program is study-unit investigations, which comprise the princ ipal bui lding blocks of the program on which national-level asses ment activities a re based . The 60 study-unit in vestigations that make up the program are hydrologic systems that include parts of most major river bas ins and a qui fer systems. These study units cover areas of I ,200 to more than 65 ,000 square mi les and incorporate about 60 to 70 percent of the Nation's water use and popul ation e rved by public water supply. In 1991 , the Western Lake Michigan drainage basin was among the fir st 20 NA WQA study unit selected for study under the full -scale implementation plan.

  1. Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Strouhal, Luděk; Landa, Martin; Neuman, Martin; Kožant, Petr; Muller, Miloslav

    2016-04-01

    The aim of this contribution is to introduce the recently started three year's project named "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Its main goal is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The outcomes of the project will especially be helpful in modelling hydrological or soil erosion problems when designing common measures for promoting water retention or landscape drainage systems in or out of the scope of Landscape consolidation projects. The precipitation scenarios will be derived from 10 years of observed data from point gauging stations and radar data. The analysis is focused on events' return period, rainfall total amount, internal intensity distribution and spatial distribution over the area of Czech Republic. The methodology will account for the choice of the simulation model. Several representatives of practically oriented models will be tested for the output sensitivity to selected precipitation scenario comparing to variability connected with other inputs uncertainty. The variability of the outputs will also be assessed in the context of economic impacts in design of landscape water structures or mitigation measures. The research was supported by the grant QJ1520265 of the Czech Ministry of Agriculture, using data provided by the Czech Hydrometeorological Institute.

  2. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  3. Aerogeophysical evidence for complex subglacial geology below the Rutford drainage basin,WestAntarctica

    NASA Astrophysics Data System (ADS)

    Jones, P.; Ferraccioli, F.; Corr, H.; Smith, A. M.; King, E.; Vaughan, D.

    2003-12-01

    A significant part of the West Antarctic Ice Sheet appears to be imposed upon a complex and still largely unknown continental rift system, perhaps featuring sedimentary basins, thin crust and high heat flow. Subglacial geology has been postulated to strongly modulate the dynamics and stability of the ice sheet itself. Specifically, recent aerogeophysics collected over central West Antarctica at edge of the Whitmore Mountains crustal block show that narrow subglacial rift basins with thick sedimentary infill may control the onsets and lateral margins of ice streams. The British Antarctic Survey flew an aerogeophysical survey during the 2001-02 field season: the main aim was to investigate what factors control the location and dynamics of the onset region of the Rutford Ice stream. Airborne radar, aerogravity and aeromagnetic data were simultaneously collected over the drainage basin of the Rutford Ice Stream. The new bedrock elevation grid for the area shows that the Rutford Ice Stream is constrained by a deep bedrock trough with a N-S to NE-SW trend. The onset region appears however to lie within an E-W bedrock trough at the edge of the Ellsworth Mountains crustal block. Bouguer gravity maps do not reveal typical signatures for a coincident deep rift basin at this location. However, a sharp NE-SW trending gradient, likely separating crustal blocks with contrasting crustal thickness is revealed. Aeromagnetic data image NE-SW trends north of the Rutford Ice Stream. In the onset region, these trends appear to be truncated by a NNW-SSE trend, lying on strike with the Ellsworth Mountains. Hence, the new aerogeophysical data suggests greater complexity in the subglacial geology and structure of an onset region of an ice stream compared to previous investigations.

  4. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  5. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  6. Water-quality data from Taylor Creek drainage basin, El Dorado County, California, July 1975 through October 1976

    USGS Publications Warehouse

    Templin, William E.; Green, D. Brady; Ferreira, Rodger F.

    1980-01-01

    Data were collected from July 1975 through October 1976 to establish benchmark water-quality conditions in the Taylor Creek drainage basin in California. The Taylor Creek drainage basin is a high-altitude system of lakes and streams which forms one of the tributaries to Lake Tahoe in the Sierra Nevada of California and Nevada. Sampling sites were distributed between the upper and lower reaches of the basin. Streamflow and water-quality data were collected at 13 stream sites. Water-quality data and depth profiles were collected at six lake sites. The reconnaissance included measurement and evaluation of the following selected characteristics: major chemicals, nutrients, fecal coliform bacteria, phytoplankton, periphytic algae, benthic macroinvertebrates, primary productivity, and stream community diversity. (USGS)

  7. Drainage areas of New York streams, by river basins; a stream gazetteer; Part 1, Data compiled as of October 1980

    USGS Publications Warehouse

    Wagner, L.A.

    1982-01-01

    Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)

  8. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  9. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    USGS Publications Warehouse

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  10. Integration of the Gila River drainage system through the Basin and Range province of southern Arizona and southwestern New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Dickinson, William R.

    2015-05-01

    The Gila River and its tributaries in southern Arizona and adjoining states incorporate several dozen individual extensional basins of the central Basin and Range province into a single integrated drainage network. Forty basins in the Gila domain contain more than 1000 m (maximum ~ 3500 m) of post-12 Ma basin fill. Subsurface evaporites in many basins document internal drainages terminating in isolated playa lakes during early phases of basin history. The nature of intrabasinal and interbasinal divides and of eroded or sedimented stream passages through mountain ranges intervening between the basins reveal the geomorphic mechanisms that achieved drainage integration over late Miocene to early Pleistocene time. Drainage integration accompanied by headward erosion eastward toward Gila headwaters was a response to Miocene opening of the Gulf of California, into which the Gila River debouched directly before the Pliocene (< 5 Ma) lower course of the Colorado River was established. Residual basins of internal drainage where headward erosion has not yet penetrated into basin fill are most common in the easternmost Gila domain but also persist locally farther west. Most basin fill was dissected during drainage integration within the upstream Gila domain but continued accumulation of undissected basin fill by sediment aggradation is dominant in the downstream Gila domain. Basin dissection was initiated by Pliocene time in the central Gila domain but was delayed until Pleistocene time farther east. In the westernmost Gila domain, interaction with erosional and depositional episodes along the Colorado River influenced the development of Quaternary landscapes along the tributary Gila River. The sedimentary history of the Gila drainage network illustrates the means by which trunk rivers can establish courses across corrugated topography produced by the extensional rupture of continental blocks.

  11. Generalized estimates from streamflow data of annual and seasonal ground-water-recharge rates for drainage basins in New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Tasker, Gary D.

    2004-01-01

    This report presents regression equations to estimate generalized annual and seasonal ground-water-recharge rates in drainage basins in New Hampshire. The ultimate source of water for a ground-water withdrawal is aquifer recharge from a combination of precipitation on the aquifer, ground-water flow from upland basin areas, and infiltration from streambeds to the aquifer. An assessment of ground-water availability in a basin requires that recharge rates be estimated under `normal' conditions and under assumed drought conditions. Recharge equations were developed by analyzing streamflow, basin characteristics, and precipitation at 55 unregulated continuous record stream-gaging stations in New Hampshire and in adjacent states. In the initial step, streamflow records were analyzed to estimate a series of annual and seasonal ground-water-recharge components of streamflow in each drainage basin evaluated in this study. Regression equations were then developed relating the series of annual and seasonal ground-water-recharge values to the corresponding series of annual and seasonal precipitation values as determined at the centroid of each drainage basin. This resulted in one equation for each of the 55 basins for each of the four seasonal periods and the annual period, or a total of 275 regression equations. Average annual and seasonal precipitation data for 1961-90 were then used to compute a set of normalized ground-water-recharge values that reflected the long-term average annual and seasonal variations (normalized) and mean recharge characteristics of each drainage basin. Ordinary-least-squares regression was applied in the process of selecting 10 out of 93 possible basin and climatic characteristics for further testing in the development of the equations for computing the generalized estimate of annual and seasonal ground-water recharge based on the set of normalized recharge values. Generalized-least-squares regression was used for the final parameter estimation and

  12. The Potomac River Basin and Western Shore Chesapeake Bay Drainage as a Proposed CUAHSI Hydrologic Observatory

    NASA Astrophysics Data System (ADS)

    Miller, A. J.; Smith, J. A.; Welty, C.; Eshleman, K. N.; Piasecki, M.; Prestegaard, K. L.; Brubaker, K. L.; Palmer, M. A.; Imhoff, P. T.; Wilcock, P. R.; Scanlon, T. M.; Fisher, G. T.; Shedlock, R. J.; Gellis, A. C.; Groffman, P. M.; Belt, K.; Toran, L.; Traver, R.; Jordan, T.

    2004-12-01

    A long-term hydrologic observatory is proposed for an area encompassing the Potomac River Basin and the basins that form the western shore of the Chesapeake Bay from the Gunpowder River on the north to the Rappahannock River on the south. The area is approximately 52,000 sq km and spans five physiographic provinces, with total relief of about 1200 m, and includes parts of MD, VA, PA, WV, and DC. The Potomac and adjacent mid-Atlantic drainage are characterized by a high frequency of floods and droughts, with attendant concerns about flood hazards and about the reliability of water supply. As of 2000, the population of the proposed study area was 8.26 million, with the highest density in the Baltimore-Washington metropolitan region. Land use is 45 percent forested, 32 percent agriculture, 5.7 percent developed, and 4.8 percent open water. Heterogeneous natural landscape patterns have been influenced by the legacy of four centuries of human disturbance, including a wave of deforestation, agricultural land use, and land abandonment leading to reforestation contemporaneous with some of the most rapidly expanding urban areas in the U.S. A wealth of existing instrumented field sites forms a network of resources that will be woven together as part of this effort, including: the USGS NAWQA study in the Potomac River Basin; the NSF-funded Baltimore LTER; USDA-ARS sites in Beltsville, MD; the Interstate Commission on the Potomac River Basin's work in overseeing management of the Potomac River; the Smithsonian Environmental Research Center's field sites, and active field sites of major research universities located in the region. This effort represents a significant partnership with local district offices of the U.S. Geological Survey. This poster presents study area attributes, preliminary study design, and a proposed core data program. The program is designed to attract researchers in the following areas of scientific inquiry: (1) orographic precipitation mechanisms, runoff

  13. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    NASA Astrophysics Data System (ADS)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  14. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  15. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  16. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A.

    NASA Astrophysics Data System (ADS)

    Griffiths, Peter G.; Hereford, Richard; Webb, Robert H.

    2006-03-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km 2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km - 2 yr - 1 ) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage.

  17. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  18. Habitat-Specific Morphological Variation among Threespine Sticklebacks (Gasterosteus aculeatus) within a Drainage Basin

    PubMed Central

    Webster, Mike M.; Atton, Nicola; Hart, Paul J. B.; Ward, Ashley J. W.

    2011-01-01

    Habitat-specific morphological variation, often corresponding to resource specialization, is well documented in freshwater fishes. In this study we used landmark based morphometric analyses to investigate morphological variation among threespine sticklebacks (Gasterosteus aculeatus L.) from four interconnected habitat types within a single lowland drainage basin in eastern England. These included the upper and lower reaches of the river, the estuary, a connected ditch network and a coastal salt marsh. We found significant habitat-specific differences in morphology, with three axes of variation describing differences in orbit diameter, body depth, caudal peduncle shape and pectoral fin positioning as well as variation in relative dorsal and pelvic spine size. Interestingly, the ditch system, an artificial and heavily managed habitat, is populated by sticklebacks with a characteristic morphology, suggesting that human management of habitats can in some circumstances lead to morphological variation among the animals that inhabit them. We discuss the mechanisms that conceivably underlie the observed morphological variation and the further work necessary to identify them. Finally, we consider the implications of habitat-specific body shape variation for the behavioural ecology of this ecologically generalist species. PMID:21698269

  19. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  20. Geologic control of rivers in the perimeter of Somes River Drainage Basin, Romania

    NASA Astrophysics Data System (ADS)

    Perşoiu, I.; Rǎdoane, N.; Rusu, S.

    2012-04-01

    The present study highlights the role of geology (structure and neotectonics) on channel typology in the median and inferior parts of Someş River Drainage Basin (15.470 kmp, 124mc/s), NV Romania, based on channel morphology back in 1860 AD, channel planform dynamics between 1860 and 1977, and geological maps of the area. The geological heterogeneity of the area is responsible for abrupt alternation of different channel types, resulting in a mixture of alluvial and mixed sinuous - meandering - sinuous anabranched - meandering anabranched reaches. Additionally, along some tributaries with reduced flow discharges, lakes are reported behind natural dams imposed by resistant rocks occurred in the river's bed. This behavior is complicated by general slopes of graded profiles, superimposed on local structural and tectonic controls, which enforce the rivers to function on different energy levels. Based on channel typology and planform dynamic prior to large scale hydrotechnical intervention, river position in the floodplain perimeter, the type of rivers (main rivers vs. tributaries with less discharge), a general model of channel adjustment to lithology and neotectonic movements in the NV part of Romania is proposed.

  1. Geographic Information Systems Methods for Determining Drainage-Basin Areas, Stream-Buffered Areas, Stream Length, and Land Uses for the Neosho and Spring Rivers in Northeastern Oklahoma

    USGS Publications Warehouse

    Masoner, Jason R.; March, Ferrella

    2006-01-01

    Geographic Information Systems have many uses, one of which includes the reproducible computation of environmental characteristics that can be used to categorize hydrologic features. The Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality are investigating Geographic Information Systems techniques to determine partial drainage-basin areas, stream-buffer areas, stream length, and land uses (drainage basin and stream characteristics) in northeastern Oklahoma. The U.S Geological Survey, in cooperation with Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality, documented the methods used to determine drainage-basin and stream characteristics for the Neosho and Spring Rivers above Grand Lake Of the Cherokees in northeastern Oklahoma and calculated the characteristics. The drainage basin and stream characteristics can be used by the Oklahoma Department of Wildlife Conservation and the Oklahoma Department of Environmental Quality to aid in natural-resource assessments.

  2. Chemical evolution of groundwater in a drainage basin of Holocene age, east-central Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Wallick, E. I.

    1981-12-01

    Chemical evolution of groundwater in a small drainage basin of glacial origin (10,250 yr. B.P., based on radiocarbon age dating of gyttja from a closed saline lake in the basin) was studied in order to understand the generation of salts in surface-mined areas on the interior plains of Alberta. The basin was considered to be a natural analogue of a surface-disturbed area because of the large volumes of rock that had been redistributed by glaciers with the resulting change in topography and drainage. The distributions of hydraulic head, total dissolved solids (TDS), and environmental isotopes essentially reflect the superimposition of groundwater flow systems associated with the post-glacial topography upon a regional bedrock flow system of older but undertermined age. In the glacial drift aquifers and aquitards (sands and till), the groundwater composition was typically Ca-Mg-bicarbonate type at depths less than 30 m, but at depths of 30-100 m, the composition was Na-bicarbonate-sulfate type. In the deeper bedrock aquifers (> 100 m), Nabicarbonate-sulfate and Na-bicarbonate-chloride types were present. TDS was as low as 400 mg/l in the shallow drift aquifer, generally constant at ˜1000 mg/l in the deep drift and shallow bedrock aquifer, and over 1700 mg/l in the deep bedrock aquifer system. Chemical evolution of groundwater in the area appears to be dominated by two depth zones having different types of water-rock interaction. In the shallow drift zone, the dissolution of soil CO 2 in infiltrating groundwater, oxidation of organic carbon, sulfur and pyrite result in the formation of carbonic and sulfuric acids that attack carbonate and silicate minerals. On the basis of X-ray diffraction analysis, these minerals were calcite, dolomite, plagioclase feldspar, and smectite clays. However, in the deep regional bedrock aquifer, conditions are reducing (presence of methane), groundwater is alkaline (pH 8.6-10.3), and the Na-bicarbonate-chloride composition of groundwater

  3. Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Reilly, Pamela A.; Watson, Kara M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain underlain by the Kirkwood-Cohansey aquifer system. The demand for ground water from this aquifer system is increasing as local development increases. To assess the effects of ground-water withdrawals on Pinelands stream and wetland water levels, three drainage basins were selected for detailed hydrologic assessments, including the Albertson Brook, McDonalds Branch and the Morses Mill Stream basins. Study areas were defined surrounding the three drainage basins to provide sub-regional hydrogeologic data for the ground-water flow modeling phase of this study. In the first phase of the hydrologic assessments, a database of hydrogeologic information and a hydrogeologic framework model for each of the three study areas were produced. These framework models, which illustrate typical hydrogeologic variations among different geographic subregions of the Pinelands, are the structural foundation for predictive ground-water flow models to be used in assessing the hydrologic effects of increased ground-water withdrawals. During 2004-05, a hydrogeologic database was compiled using existing and new geophysical and lithologic data including suites of geophysical logs collected at 7 locations during the drilling of 21 wells and one deep boring within the three study areas. In addition, 27 miles of ground-penetrating radar (GPR) surface geophysical data were collected and analyzed to determine the depth and extent of shallow clays in the general vicinity of the streams. On the basis of these data, the Kirkwood-Cohansey aquifer system was divided into 7 layers to construct a hydrogeologic framework model for each study area. These

  4. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  5. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components

  6. Net mass balance calculations for the Shirase Drainage Basin, east Antarctica, using the mass budget method

    NASA Astrophysics Data System (ADS)

    Nakamura, Kazuki; Yamanokuchi, Tsutomu; Doi, Koichiro; Shibuya, Kazuo

    2016-06-01

    We quantify the mass budget of the Shirase drainage basin (SHI), Antarctica, by separately estimating snow accumulation (surface mass balance; SMB) and glacier ice mass discharge (IMD). We estimated the SMB in the SHI, using a regional atmospheric climate model (RACMO2.1). The SMB of the mainstream A flow region was 12.1 ± 1.5 Gt a-1 for an area of 1.985 × 105 km2. Obvious overestimation of the model round the coast, ∼0.5 Gt a-1, was corrected for. For calculating the IMD, we employed a 15-m resolution Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with a digital elevation model (DEM) to determine the heights at the grounding line (GL), after comparison with the interpolated Bamber DEM grid heights; the results of this are referred to as the measured heights. Ice thickness data at the GL were inferred by using a free-board relationship between the measured height and the ice thickness, and considering the measured firn depth correction (4.2 m with the reference ice density of 910 kg m-3) for the nearby blue-ice area. The total IMD was estimated to be 14.0 ± 1.8 Gt a-1. Semi-empirical firn densification model gives the estimate within 0.1-0.2 Gt a-1 difference. The estimated net mass balance, -1.9 Gt a-1, has a two-σ uncertainty of ±3.3 Gt a-1, and probable melt water discharge strongly suggests negative NMB, although the associated uncertainty is large.

  7. Effects of land use changes on badland erosion in clayey drainage basins, Radicofani, Central Italy

    NASA Astrophysics Data System (ADS)

    Castaldi, Fabio; Chiocchini, Ugo

    2012-10-01

    Hillslopes of the Radicofani area, in the upper valley of the Orcia River (southern Tuscany region, Italy), consist mainly of early Pliocene clayey sediments and are widely affected by frequent badland erosion. Reforestation with frugal conifers has been carried out in the area over the last 50 years. The goal of the present study is to evaluate the impact of reforestation and land use change on erosion rates in nine small drainage basins through a multidisciplinary approach. Geological, geomorphological, hydrological and land use characteristics were analyzed by a diachronic confrontation between pre-reforestation (1954) and post-reforestation (2007) situations. Aerial-photo interpretation and processing in GIS allowed us to quantify changes in areas affected by badland erosion, land use and variations in erosion rates. Moreover, dendrometric data were gathered from 18 circular sample plots in forest stands of 40 years old. This allowed us to evaluate both the adaptability of different forest species to the clayey substrate and reforestation fragmentation. The differences between the pre- and post-reforestation situations led to increases in arable land and forest areas and considerable decreases in erosion rates and badland areas. However, no significant correlation between the erosion rates and the forest area emerged, due to the excessive fragmentation of reforestation cores and relatively small reforested surfaces. Land reclamation seems to have played a more important role in reducing erosion in the clayey substrate. The integrated method presented here is an important tool useful to understand the morphological dynamics of badlands in relation to forest vegetation, and for land planning and management.

  8. Water quality in the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1992-95

    USGS Publications Warehouse

    Spruill, Timothy B.; Harned, Douglas A.; Ruhl, Peter M.; Eimers, Jo Leslie; McMahon, Gerard; Smith, Kelly E.; Galeone, David R.; Woodside, Michael D.

    1998-01-01

    The NAWQA Program is assessing the water-quality conditions of more than 50 of the Nation's largest river basins and aquifers, known as Study Units. Collectively, these Study Units cover about one-half of the United States and include sources of drinking water used by about 70 percent of the U.S. population. Comprehensive assessments of about one-third of the Study Units are ongoing at a given time. Each Study Unit is scheduled to be revisited every decade to evaluate changes in water-quality conditions. NAWQA assessments rely heavily on existing information collected by the USGS and many other agencies as well as the use of nationally consistent study designs and methods of sampling and analysis. Such consistency simultaneously provides information about the status and trends in water-quality conditions in a particular stream or aquifer and, more importantly, provides the basis to make comparisons among watersheds and improve our understanding of the factors that affect water-quality conditions regionally and nationally. This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Albemarle-Pamlico Drainage Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Indeed, this report addresses many of the concerns raised by regulators, water-utility managers, industry representatives, and other scientists, engineers, public officials, and members of stakeholder groups who provided advice and input to the USGS during this NAWQA Study-Unit investigation. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  9. Hydrology of the Prairie Dog Creek drainage basin, Rosebud and Big Horn Counties, Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1982-01-01

    The Prairie Dog Creek drainage basin in southeastern Montana was investigated during 1978-79 to establish a basic understanding of its surface-water and ground-water resources and the quality of water in an area having coal-mining potential. The principal minable coal is the 40-to 60-foot-thick Wall and lower Wall coal beds near the middle part of the Tongue River Member of the Fort Union Formation (Paleocene age). Prairie Dog Creek, which originates from springs and seeps from coal and sandstone layers , maintained perennial flow in its upstream and middle reaches then lost flow until the channel near its mouth had only standing water or was dry. The dissolved-solids concentration of streamwater during periods of high flow (1 cubic foot per second) ranged from 700 to about 1,000 milligrams per liter and during periods of lesser flow (0.5 cubic foot per second) ranged from about 1,300 to 1,600 milligrams per liter. Relatively clean sandstone aquifers had transmissivities of about 15 feet squared per day and water of the magnesium sulfate or sodium sulfate type, with dissolved-solids concentrations ranging from about 2 ,200 to 3,000 milligrams per liter; the water was of a sodium sulfate type and ranged from 1,820 to 4,190 milligrams per liter. The Brewster-Arnold coal aquifer had transmissivities similar to the Wall coal but its water was of a different type, sodium bicarbonate; it also contained large concentration of fluoride (more than 10 milligrams per liter) and had a very high sodium-adsorption ratio (more than 60). (USGS)

  10. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE - STORMWATER MANAGEMENT INC., CATCH BASIN STORMFILTER®

    EPA Science Inventory

    Verification testing of the Stormwater Management CatchBasin StormFilter® (CBSF) was conducted on a 0.16 acre drainage basin at the City of St. Clair Shores, Michigan Department of Public Works facility. The four-cartridge CBSF consists of a storm grate and filter chamber inlet b...

  11. The relationship between conductivity and major ions within the Davis Spring drainage basin as a method to determine the source of spring discharge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Davis Spring drainage basin is a 190 km2 karst basin in Greenbrier County, West Virginia underlain by the 300+ m sequence of the Mississippian Greenbrier Limestone Group which rests on top of the Maccrady Shale. Davis Spring is the largest karst spring in West Virginia with average flows of 10 ...

  12. Potential hazards from floodflows within the John Muir House National Historic Site, Franklin Creek drainage basin, California

    USGS Publications Warehouse

    Meyer, R.W.

    1994-01-01

    The drainage-area-ratio method, adjusted by multiple regression coefficients, was used to determine flood magnitudes of specific recurrence intervals in the Franklin Creek drainage basin, John Muir House National Historic Site in California. Water-surface elevations and inundation areas were determined using hydraulic equations that assume uniform flow and stable channel geometry as surveyed in the 1984 water year. Franklin Creek is expected to overflow its banks during all floods greater than the 25-year flood. Maximum flood discharges within the historic site boundaries are limited by the large culvert that conveys floodwaters into the site. The historically significant structures were constructed above the flood elevation of the 100-year flood; therefore, with the exception of the carriage house, there is little or no danger to the irreplaceable structures at the site. The carriage house could be inundated several feet during the 100-year flood.

  13. Drainage development of the Green River Basin in southwestern Wyoming and its bearing on fish biogeography, neotectonics, and paleoclimates.

    USGS Publications Warehouse

    Hansen, W.R.

    1985-01-01

    The Upper Green River flows southward out of the Green River Basin through a series of deep canyons across the Uinta Mountains in a course that post-dates the deposition of the Bishop Conglomerate (Oligocene). After the Eocene lakes disappeared, drainage was generally eastward across the present Continental Divide, until the Green River was captured near Green River, Wyo. by south-flowing drainage in middle Pleistocene time, ca., 600 kyr ago. Capture of the Upper Green River as recently as middle Pleistocene time, if a valid hypothesis, must take into account the marked differences between the endemic and indigenous fish fauna of the Green River and that of the North Platte. -from Author

  14. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  15. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    SciTech Connect

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables. (ACR)

  16. Geochemistry of Groundwater in the Beaver and Camas Creek Drainage Basins, Idaho

    NASA Astrophysics Data System (ADS)

    Rattray, G.

    2013-12-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from two sediment and three rock samples and water-quality analyses from four surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. The groundwater geochemistry was influenced by reactions with rocks of the geologic terranes--carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway15 were a source of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of

  17. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  18. Probability of drought occurrence in the Rhine drainage basin during the 21st century

    NASA Astrophysics Data System (ADS)

    Bülow, K.; Jacob, D.

    2010-09-01

    Germany was struck by a recent hot spell and drought in 2003, which had a devastating effect on the environment and the society. Substantial interest has emerged in the probability of the occurrence of extreme events. Therefore the results of different regional climate models are analysed, which describe today's and future climate and the occurrence of extreme events. To determine the size of uncertainty within regional climate model simulations, temperature and precipitation results of eight regional climate models from 1961 till 2000, with a horizontal resolution of 25 km are examined (RCM model data from the EU-Project ENSEMBLES). Their area means of three subregions in the Rhine drainage basin are compared to observation data sets. In order to describe future climate changes in the Rhine catchment area, numerous regional climate projections for the 21st century will be studied. These different regional climate projections were calculated with a large number of regional climate models embedded in information from various global models. The range of the regional climate projections will be evaluated using a value catalogue which has been specially designed for low water situations of the Rhine. Furthermore a generalized time series decomposition technique was applied, which shows that the temperature time series can be described by a realization of the Gauss distributed random variable with time dependent mean and variance. The precipitation is represented by a Gumbel distributed random variable with time dependent location and scale parameters. The two parameters, which describe the distribution, are each linear combinations of several orthogonal functions: a constant, four trend functions, three functions describing the annual cycle and three functions describing the seasonal cycle. Besides fixed annual and seasonal cycle, changes in amplitude and phase are allowed. For the amplitude linear and quadratic time dependencies are considered. The superposition of

  19. Hydrologic landscapes on the Delmarva Peninsula Part 1: Drainage basin type and base-flow chemistry

    USGS Publications Warehouse

    Phillips, P.J.; Bachman, L.J.

    1996-01-01

    The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base- flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well- drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.

  20. Hydrologic and chemical-quality data from four rural basins in Guilford County, North Carolina, 1985-88

    USGS Publications Warehouse

    Hill, C.L.

    1989-01-01

    An investigation was begun in 1984 in Guilford County, North Carolina, to monitor water quality and soil erosion in basins with various land-management practices. Hydrologic and chemical-quality data were collected from four rural drainage basins, including two agricultural basins (7.4 and 4.8 acres) cultivated in tobacco and small grains, a mixed rural land-use basin (665 acres) currently under standard land-management practices, and a forested control basin (44 acres) characterizing background conditions. Mean concentrations of total nitrite plus nitrate were 1.0 milligrams per liter from the agricultural basin under standard land-management practices. This was nearly 10 times greater than concentrations from the forested basin. Records of streamflow discharge, chemical quality, ground-water levels, precipitation, and farming activities collected from October 1984 through September 1988 at one or more of the basins are also presented in this report.

  1. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    USGS Publications Warehouse

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  2. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Grimaud, Jean-Louis; Rouby, Delphine; Beauvais, Anicet; Christophoul, Frédéric

    2016-03-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction of two physiographic configurations of West Africa in the Paleogene. Those reconstructions show that the geometry of the drainage is stabilized by the late early Oligocene (29 Ma) and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland morphoclimatic record to offshore sedimentation since that time, particularly in the case of the Niger catchment—delta system. Mid-Eocene paleogeography reveals the antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a marginal upwarp forming a continental divide preexisted early Oligocene connection of the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage rearrangement was primarily enhanced by the topographic growth of the Hoggar hot spot swell and caused a stratigraphic turnover along the Equatorial margin of West Africa.

  3. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  4. Examination of event magnitude, contributing drainage basin area, channel gradient, and rainfall influences on channel yield rates of post-fire debris flows

    NASA Astrophysics Data System (ADS)

    Gartner, J. E.; Cannon, S. H.; Santi, P.

    2011-12-01

    Development of methods for estimating volumes of post-fire debris-flow material along drainage networks requires a better understanding of the factors that control channel erosion and deposition within recently-burned drainage basins. The amount of material eroded and deposited by debris flows at locations along a channel can be quantified using the channel yield rate; the change in debris-flow volume per unit length of channel caused by passage of a debris flow. Here, we use channel yield rates measured in basins recently burned the 2009 Station fire in the San Gabriel Mountains of southern California to examine relationships between these rates and event magnitude, contributing drainage basin area, channel gradient, and rainfall characteristics. Following the Station fire and prior to any significant rainstorms, two to nine cross section surveys were established along the entire lengths of the main channels of three steep, rugged drainage basins. Surveys of the channel cross sections were made both before and after two distinct debris-flow triggering storms. These data were used to calculate post-fire debris-flow channel yield rates at 40 locations. Tipping-bucket rain gages installed near the surveyed channels provide rainfall amounts and intensities. Measurements of the amount of material removed from debris-retention basins located at the drainage basin outlets provide information on debris-flow volumes deposited at drainage basin outlets. High-resolution LiDAR data (1 meter) provide accurate elevation data for defining contributing drainage basin areas and channel gradients. The measured channel yield rates varied from 1 to 19 m3/m, with a mean of 4 m3/m and standard deviation of 5 m3/m. The greatest yield rates coincide with locations immediately downstream of field-mapped bedrock steps or channel junctions. The coincidence with bedrock steps suggests that in-channel "fire-hose" entrainment is a major contributor to debris-flow volume. High channel yield

  5. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Müller, T.; Johnson, E. A.; Martin, Y. E.

    2013-12-01

    is generally argued that Pleistocene glaciation results in increased sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial erosion is the geomorphic decoupling of cirque basins from main river systems. This study provides a quantitative link between glacier-induced basin morphology, postglacial erosion, and sediment delivery for mountain headwaters (with basin area <10 km2). We analyze the morphology of 57 headwater basins in the Canadian Rockies and establish postglacial sediment budgets for select basins. Notable differences in headwater morphology suggest different degrees of erosion by cirque glaciers, which we classify into headwater basins with either cirque or noncirque morphology. Despite steeper slope gradients in cirque basins, higher-mean postglacial erosion rates in basins with noncirque morphology (0.43-0.6 mm a-1) compared to those in cirques (0.19-0.39 mm a-1) suggest a more complex relationship between hillslope erosion and slope gradient in calcareous mountain environments than implied by the threshold hillslope concept. Higher values of channel profile concavity and lower channel gradients in cirques imply lower transport capacities and, thus, lower sediment delivery ratios (SDR). These results are supported by (i) postglacial SDR values for cirques and noncirque basins of <15% and >28%, respectively, and (ii) larger fan sizes at outlets of noncirque basins compared to cirques. Although small headwater basins represent the steepest part of mountain environments and erode significant postglacial sediment, the majority of sediment remains in storage under interglacial climatic conditions and does not affect large-scale mountain river systems.

  6. Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota

    SciTech Connect

    Strobel, M.L. Univ. of North Dakota, Grand Forks, ND )

    1992-01-01

    Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

  7. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors*1

    NASA Astrophysics Data System (ADS)

    Van Nest, Julieann; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective.

  8. A new species of Cottus from the Onega River drainage, White Sea basin (Actinopterygii: Scorpaeniformes: Cottidae).

    PubMed

    Sideleva, Valentina G; Naseka, Alexander M; Zhidkov, Zakhar V

    2015-01-01

    Cottus gratzianowi, a new cottid species, is described from material collected in the Ukhtomitsa River in the Onega River drainage, White Sea basin. It differs from its congeners in Europe east of the Meuse except C. koshewnikowi by having no transverse dark bands on the pelvic fin, a single chin canal pore, an incomplete lateral line not reaching behind the anal-fin insertion, and the position of the lateral line which is located considerably above the mid-line of the flank. From C. koshewnikowi distributed in the Volga (Caspian basin), Pechora, and Northern Dvina rivers (Arctic basin), C. gratzianowi sp. nov. can be distinguished by a combination of character states, the most differentiating are as follows: a larger eye (horizontal diameter 23-28% HL, equal to or exceeding snout length vs. 16-25% HL, less than snout length), a rounded caudal fin (vs. commonly truncated), frequent presence of one to three branched rays in median part of the pectoral fin (vs. usual absence), an interrupted supratemporal canal commissure with 4 pores (vs. non-interrupted, with 3 pores), abdominal vertebrae commonly 10 (vs. 11), and contrasting black blotches on all fins including pelvic and anal fins (vs. no blotches on pelvic and anal fins).

  9. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  10. Hydrology of Johnson Creek Basin, a Mixed-Use Drainage Basin in the Portland, Oregon, Metropolitan Area

    USGS Publications Warehouse

    Williams, John S.; Lee, Karl K.; Snyder, Daniel T.

    2010-01-01

    Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the Portland, Oregon, metropolitan area and through rural and agricultural land in unincorporated Multnomah and Clackamas Counties. Johnson Creek has had a history of persistent flooding and water-quality problems. The U.S. Geological Survey (USGS) has conducted streamflow monitoring and other hydrologic studies in the basin since 1941.

  11. Long-term development of phosphorus and nitrogen loads through the subsurface and surface water systems of drainage basins

    NASA Astrophysics Data System (ADS)

    Darracq, AméLie; Lindgren, Georg; Destouni, Georgia

    2008-09-01

    We analyze and compare simulations and controlling processes of the past 60 years and possible future short- and long-term development of phosphorus and nitrogen loading from the Swedish Norrström drainage basin to the Baltic Sea under different inland source management scenarios. Results indicate that both point and agricultural source inputs may need to be decreased by at least 40% in order to reach a long-term sustainable 30% reduction of anthropogenic coastal nitrogen loading, as required by national environmental goals. A corresponding 20% anthropogenic phosphorus load reduction goal may be reached in the short term by analogous combined 40% source input reduction, but appears impossible to maintain as a long-term achievement by inland source abatement only. In general, realistic quantification of the slow subsurface nutrient transport and accumulation-release dynamics may be essential for accurately predicting and managing nutrient loading to surface and coastal waters.

  12. Hawaii StreamStats; a web application for defining drainage-basin characteristics and estimating peak-streamflow statistics

    USGS Publications Warehouse

    Rosa, Sarah N.; Oki, Delwyn S.

    2010-01-01

    Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.

  13. The dissipation of carbofuran in two soils with different pesticide application histories within Nzoia River Drainage Basin, Kenya.

    PubMed

    Jemutai-Kimosop, Selly; Orata, Francis O; K'Owino, Isaac O; Getenga, Zachary M

    2014-05-01

    The dissipation of carbofuran from soils within the Nzoia River Drainage Basin in Kenya was studied under real field conditions for 112 days. Results showed significantly enhanced dissipation of carbofuran with half life (DT50) values of 8 days (p = 0.038) in soils with prior exposure to carbofuran compared to 19 days in soils with no application history. At the end of the experiment, residues of 2.57% and 9.36% of the initial carbofuran applied were recorded in the two types of soil, respectively. Carbofuran metabolites identified in the study were 3-keto carbofuran and carbofuran phenol with 5.84% and 15.0% remaining in soils with prior exposure, respectively. Soils with no application history recorded 16.05% and 12.82% of 3-keto carbofuran and carbofuran phenol metabolites, respectively.

  14. Hydrologic data of the coastal drainage basins of southeastern Massachusetts, Weir River, Hingham, to Jonas River, Kingston

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.; Tasker, Gary D.

    1975-01-01

    This report presents, in tabular form, selected records of wells, test wells, borings, and springs; measurements of stream discharge, specific conductance, and temperature at partial-record stations; chemical analyses of ground water and surface water; and a summary of municipal water sources and additional sources available. The data were collected during a study of the drainage basins from 1969 to 1971 in cooperation with the Massachusetts Water Resources Commission. The report is released in order to make available to the public and to local, state, and federal agencies basic hydrologic information that may aid in planning water-resources development. Basic records contained in this report and streamflow data published elsewhere (U.S. Geol. Survey, 1960 et seq.) complement an interpretive report (Williams and Tasker, 1974).

  15. Ecological data collected in the Santee River basin and coastal drainages, North and South Carolina, 1996-98

    USGS Publications Warehouse

    Abrahamsen, Thomas A.

    2001-01-01

    As part of the National Water-Quality Assessment Program, ecological investigations were conducted in 23 reaches of 16 streams in the Santee River Basin and Coastal Drainages study unit in North and South Carolina during 1996-98. Habitat characteristics, such as stream width and depth, bank composition, bank vegetative cover, stream shading by overhanging vegetation, and streambed composition were recorded. Algal and benthic invertebrate communities were sampled using quantitative and qualitative techniques. These data will provide information needed to: (1) support findings of the effects of human landuse activities on water quality by augmenting or enhancing physical and chemical water-quality data, (2) provide a basic overview of aquatic community structure in selected stream reaches in the study unit, and (3) provide a means for comparing aquatic communities in subsequent years of the assessment program.

  16. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  17. Morphotectonic control of the Białka drainage basin (Central Carpathians): Insights from DEM and morphometric analysis.

    NASA Astrophysics Data System (ADS)

    Wołosiewicz, Bartosz

    2016-06-01

    The Białka river valley is directly related to a deep NNW-SSE oriented fault zone. According to the results of previous morphometric analyses, the Białka drainage basin is one of the most tectonically active zones in the Central Carpathians. It is also located within an area of high seismic activity. In this study Digital Elevation Model (DEM) based, morphometric analyses were used to investigate the morphotectonic conditions of the watershed. The results reveal the relationships between the main tectonic feature and the landforms within the research area. The lineaments, as obtained from the classified aspect map, seem to coincide with the orientation of the main structures as well as the trends revealed by the theoretical Riedel-Skempton shear model. Base-level and isolong maps support the conclusion that the Białka and Biały Dunajec fault zones exert a strong influence on the morphology of the adjacent area.

  18. The Vigil Network: a means of observing landscape change in drainage basins

    USGS Publications Warehouse

    Osterkamp, W.R.; Emmett, W.W.; Leopold, L.B.

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed changes to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations. -from Authors

  19. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  20. Isotopic and Geochemical signatures of different aged drained thaw lake basins (DTLBs) and drainage channels in Arctic Alaska

    NASA Astrophysics Data System (ADS)

    Throckmorton, H.; Perkins, G.; Rearick, M.; Altmann, G. L.; Cohen, L. R.; Hudak, M.; Gard, M.; Newman, B. D.; Heikoop, J. M.; Wilson, C. J.

    2013-12-01

    The Arctic tundra contains a vast amount of C stored in permafrost soils, which are highly susceptible to thawing with climate change. Permafrost degradation has implications for land-atmosphere feedbacks through the release of stored C as greenhouse gases (CO2, methane), and runoff of dissolved C. Coastal Arctic topography and geomorphology in particular is highly complex, consisting of irregular polygonal ground features, drainage channel networks, and different aged drained thaw lake basins (DTLBs). Such substantial spatial variability complicates predictions of permafrost degradation with regard to land-atmosphere feedbacks affecting climate and regional ecosystem responses. The DOE Office of Science Biological and Environmental Research Program has funded the Next Generation Ecosystem Experiment (NGEE) Arctic project to assess the release of greenhouse gases from melting Arctic permafrost, with emphasis on regional geomorphology; and to establish a coordinated effort among several research institutions to link field observations with process-based Land models. Results will focus on geochemical and isotopic signatures of waters collected at different depths (surface; from the shallow organic layer; and from the deeper frost table) in Barrow, Alaska in July and September of 2013. Sampling sites were stationed across distinct microtopographic features, including polygonal terrain, different aged DTLBs, and larger drainage channels. The aims of these field campaigns were to assess geochemical and biogeochemical trends and isotopic variability in waters across unique micro-topographic features and with depth, and infer vertical and lateral flows of water and C by collecting field data to validate large-scale regional models. Preliminary results showed some differences with depth and across unique micro-topographic features. Redox indicators (Fe2+ and dissolved oxygen) showed greater reducing conditions with depth, as was expected. In particular, subsurface waters

  1. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    USGS Publications Warehouse

    Brigham, Mark E.

    1994-01-01

    Pesticide data have been collected in the Red River Basin by various Federal, State, and local agencies. Tornes and Brigham (1994) recently summarized many of these historical data. This paper summarizes selected data collected as part of the NAWQA program during 1992-93, and briefly compares these data to historical data and to pesticide usage.

  2. Synthesis of nutrient and sediment data for watersheds within the Chesapaeake Bay drainage basin

    USGS Publications Warehouse

    Langland, M.J.; Lietman, P.L.; Hoffman, S.A.

    1995-01-01

    Nutrient and sediment data collected by Federal and state agencies from 1972 through 1992 at 1,058 surface-water sites in nontidal parts of the Chesapeake Bay Basin were compiled into a large database. Adequate nutrient, sediment, and streamflow data were not available to compute annual loads for all sites because water-quality monitoring at many of the sites was either short term or noncontinuous or because stream-flow was not measured. Annual nutrient and sediment loads were calculated at a total of 127 sites. Annual loads of dissolved nitrate were calculated for 108 sites, but total nitrogen loads could be calculated for only 48 of these sites because ammonia plus organic nitrogen data were not available for many of these 108 sites. Annual loads of total phosphorus were calculated for 99 sites, and annual loads of suspended sediment were calculated for 33 sites. Loads could be calculated for only a very few sites in the Juniata River Basin (a tributary to the Susquehanna River), the York River Basin, the middle and lower reaches of the James River, and the nontidal parts of the eastern shore of the Bay. Geographic Information System (GIS) spatial data sets of land use, physiographic province, rock type, and watershed delineation were compiled for the entire Chesapeake Bay Basin (approximately 64,000 square miles). The nutrient- and sediment-yield were evaluated with respect to land use, physiographic province, rock type, and hydrologic characteristics. During years that the mean streamflow was about equal to the long-term mean streamflow, the Susquehanna River contributed about 50 percent of the freshwater, 66 percent of the total nitrogen, and 40 percent of the total phosphorus transported by tributaries to the Bay. Nutrient and sediment data were available for less than 18 percent of the predominantly agricultural areas underlain by siliciclastic rock and for less than 35 percent of the predominantly agricultural areas underlain by either carbonate rock or

  3. Modern alluvial history of the Paria Rver drainage basin, southern Utah

    USGS Publications Warehouse

    Hereford, R.

    1986-01-01

    Stream channels in the Paria River basin were eroded and partially refilled between 1883 and 1980. Basin-wide erosion began in 1883; channels were fully entrenched and widened by 1890. This erosion occurred during the well-documented period of arroyo cutting in the Southwest. Photographs of the Paria River channel taken between 1918 and 1940 show that the channel did not have a floodplain and remained wide and deep until the early 1940s. A thin bar (<50 cm), now reworked and locally preserved, was deposited at that time. Basin-wide aggradation, which began in the early 1940s, developed floodplains by vertical accretion. The floodplain alluvium, 1.3-3 m thick. consists of two units recognizable throughout the studied area. An older unit was deposited during a time of low flow and sediment yield whereas the younger unit was deposited during times of high flow, sediment yield, and precipitation. Tree-ring dating suggests that the older unit was deposited between the early 1940s and 1956, and the younger between 1956 and 1980. The units are not time transgressive, suggesting that deposition by knickpoint recession was not an important process. High peak-flood discharges were associated with crosion and low flood discharges with aggradation. The erosional or aggradational mode of the streams was determined principally by peak-flood discharge, which in turn was controlled by precipitation. ?? 1986.

  4. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wörman, Anders; Wang, Heng; Wang, Xu-Sheng; Li, Hailong

    2015-10-01

    Although it has been reported that flowing artesian wells could be topographically controlled, there is no quantitative research on artesian flow conditions in unconfined aquifers. In this study, the water table, which has a lower amplitude than the land surface, is damped from the topography and used as the boundary condition to obtain the analytical solution of hydraulic head of a unit basin with a single flow system. The term artesian head is defined to characterize the condition of flowing artesian wells. The zone with positive artesian head is called artesian zone while with negative artesian head is nonartesian zone. The maximum artesian head and the size of artesian zones are found to increase with the damping factor and the anisotropy ratio, and decrease with the ratio of basin width to depth and the depth-decay exponent of hydraulic conductivity. Moreover, the artesian head increases with depth nearby the valley and decreases with depth near by the divide, and the variation rates are influenced by the decay exponent and the anisotropy ratio. Finally, the distribution of flowing artesian wells and the artesian head measurements in different depths of a borehole in a small catchment in the Ordos Plateau, Northwestern China is used to illustrate the theoretical findings. The change in artesian head with depth was used to estimate the anisotropy ratio and the decay exponent. This study opens up a new door to analyze basin-scale groundwater flow.

  5. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  6. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  7. An Open Source approach to automated hydrological analysis of ungauged drainage basins in Serbia using R and SAGA

    NASA Astrophysics Data System (ADS)

    Zlatanovic, Nikola; Milovanovic, Irina; Cotric, Jelena

    2014-05-01

    Drainage basins are for the most part ungauged or poorly gauged not only in Serbia but in most parts of the world, usually due to insufficient funds, but also the decommission of river gauges in upland catchments to focus on downstream areas which are more populated. Very often, design discharges are needed for these streams or rivers where no streamflow data is available, for various applications. Examples include river training works for flood protection measures or erosion control, design of culverts, water supply facilities, small hydropower plants etc. The estimation of discharges in ungauged basins is most often performed using rainfall-runoff models, whose parameters heavily rely on geomorphometric attributes of the basin (e.g. catchment area, elevation, slopes of channels and hillslopes etc.). The calculation of these, as well as other paramaters, is most often done in GIS (Geographic Information System) software environments. This study deals with the application of freely available and open source software and datasets for automating rainfall-runoff analysis of ungauged basins using methodologies currently in use hydrological practice. The R programming language was used for scripting and automating the hydrological calculations, coupled with SAGA GIS (System for Automated Geoscientivic Analysis) for geocomputing functions and terrain analysis. Datasets used in the analyses include the freely available SRTM (Shuttle Radar Topography Mission) terrain data, CORINE (Coordination of Information on the Environment) Land Cover data, as well as soil maps and rainfall data. The choice of free and open source software and datasets makes the project ideal for academic and research purposes and cross-platform projects. The geomorphometric module was tested on more than 100 catchments throughout Serbia and compared to manually calculated values (using topographic maps). The discharge estimation module was tested on 21 catchments where data were available and compared

  8. Using U-Pb Detrital Zircon to Identify Evolution of Sediment Drainage in the South Central Pyrenean Foreland Basin, Spain

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.

    2014-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  9. Potential hazards from flood in part of the Chalone Creek and Bear Valley drainage basins, Pinnacles National Monument, California

    USGS Publications Warehouse

    Meyer, Robert W.

    1995-01-01

    Areas of Chalone Creek and Bear Valley drainage basins in Pinnacles National Monument, California, are subject to frontal storms that can cause major flooding from November to April in areas designated for public use. To enhance visitor safety and to protect cultural and natural resources, the U.S. Geological Survey in cooperation with the National Park Service studied flood-hazard potentials within the boundaries of the Pinnacles National Monument. This study area extends from about a quarter of a mile north of Chalone Creek Campground to the mouth of Bear Valley and from the east monument entrance to Chalone Creek. Historical data of precipitation and floodflow within the monument area are sparse to nonexistent, therefore, U.S. Soil Conservation Service unit-hydrograph procedures were used to determine the magnitude of a 100-year flood. Because of a lack of specific storm-rainfall data, a simulated storm was applied to the basins using a digital-computer model developed by the Soil Conservation Service. A graphical relation was used to define the regionally based maximum flood for Chalone Creek and Bear Valley. Water-surface elevations and inundation areas were determined using a conventional step-backwater program. Flood-zone boundaries were derived from the computed water-surface elevations. The 100-year flood plain for both streams would be inundated at all points by the regional maximum flood. Most of the buildings and proposed building sites in the monument area are above the elevation of the 100-year flood, except the proposed building sites near the horse corral and the east monument entrance. The 100-year flood may cause reverse flow through a 12-inch culvert embedded in the embankment of Old Pinnacles Campground Road in the center of Chalone Creek Campground. The likelihood of this occurring is dependant upon the amount of aggradation that occurs upstream; therefore, the campground area also is considered to be within the 100-year flood zone.

  10. Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Hagg, Wilfried; Wagner, Stephan

    2010-05-01

    Central Asia is well known as an area of substantial water problems mainly caused by climate change and careless consumption of water resources. As in other parts of the globe where high mountains are surrounded by arid and semi-arid zones, snow and glacier melt are major contributors to runoff and important resources for agriculture in the lowlands. The FAO-UNESCO has started a "Climate Impact Study on Streamflow" to estimate future discharge in the catchments of the rivers Vakhsh (39,100 km2) and Panj(114,000 km2), the two tributaries of Amu Darya river. According to the World Glacier Inventory (WGI) prepared in the mid 20th century, the Panj and Vakhsh catchments have glacier covers of 3,913 km2 and 3,675 km2, respectively. A new inventory was conducted in 2003 within the frame of the GLIMS project. We used a simple parametrization scheme based on steady state conditions to infer the ice volumes for the two different time periods in the past and to extrapolate future changes. The resulting volumes for the WGI are 170-200 km3 for the Panj catchment and 200-240 km3 for the Vakhsh catchment. From the mid of the 20th century to 2003, an area (volume) decrease of 8.2% (10.5%) for the Panj and 7.5% (4.1%) for the Vakhsh catchment was determined. A comparison of two digital elevation models (SRTM of 2001 and Aster 2008) show for the glacier areas a mean mass change of -0.61 m a-1 for the Vakhsh and -0.81 m a-1 for the Panj. Regional climate simulations project a warming of 1.8°C-2.9°C until 2050, while it remains unclear if and in what direction precipitation will change. Assuming a temperature increase of 2°C until 2050 and no change in precipitation, the ice reserves in the two catchments will decline at an accelerated rate in comparison to the past with total volume reduction of 75.5% for the Panj basin and of 53% for the Vakhsh basin. To simulate present-day and future runoff, the HBV-ETH hydrological model was set up in the two sub-basins of Abramov (56 km

  11. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  12. Pleistocene-Recent Drainage Evolution in the Western Himalayan Foreland Basin

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Macklin, M.; Carter, A.; Tabrez, A. R.

    2011-12-01

    The rivers of the upper Indus flood plains support large populations in an area where rainfall is relatively weak. Nonetheless, the region has been one in which early civilizations flourished and then dispersed, most notably the Indus Valley or Harappan Culture. We investigated potential links between human settlement and drainage evolution by drilling abandoned and filled river channels on the northern edge of the Thar Desert to see how they have evolved. Pb isotope data from single K-feldspar grains from Holocene and Pleistocene sands showed that the channels were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ~4.5 ka when flow in the Ghaggar-Hakra ceased entirely. U-Pb dating of single zircon sand grains confirms this general pattern. Grain ages <300 Ma are typical of the Thar Desert and become more common around 6-8 ka as the river flux decreased and desert began to encroach. Zircons ages at ~1900 Ma can be linked to a westward flow of the Yamuna River into the Indus but this flow may have finished as early as 49 ka, so that this capture does not affect the Harappan Culture. After this time the Sutlej and Beas River flowed through the region until they were both captured away to the north prior to 6-8 ka. The Harappan centers on the north of the Thar Desert likely dispersed because of unpredictable water supply as the monsoon weakened and because the flow of major rivers had ceased well before 4 ka.

  13. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  14. A rainfall-runoff modeling procedure for improving estimates of T-year (annual) floods for small drainage basins

    USGS Publications Warehouse

    Lichty, Robert W.; Liscum, Fred

    1978-01-01

    Maps depicting the influence of a climatic factor, C, on the magnitude of synthetic T-year (annual) floods were prepared for a large portion of the eastern United States. The climatic factors were developed by regression analysis of flood data using a parametric rainfall-runoff model and long-term rainfall records. Map estimates of C values and calibrated values of rainfall-runoff model parameters were used as variables in a synthetic T-year flood relation to compute ' map-model ' flood estimates for 98 small drainage basins in a six-state study area. Improved estimates of T-year floods were computed as a weighted average of the map-model estimate and an observed estimate, with the weights proportional to the relative accuracies of the two estimates. The accuracy of the map-model estimates was appraised by decomposing components of variance into average time-sampling error associated with the observed estimates and average map-model error. Map-model estimates have an accuracy, in terms of equivalent length of observed record, that ranges from 6 years for the 1.25-year flood up to 30 years for the 50- and 100-year flood. (Woodard-USGS)

  15. Prey capture behavior of native vs. nonnative fishes: a case study from the Colorado River drainage basin (USA).

    PubMed

    Arena, Anthony; Ferry, Lara A; Gibb, Alice C

    2012-02-01

    The Colorado River drainage basin is home to a diverse but imperiled fish fauna; one putative challenge facing natives is competition with nonnatives. We examined fishes from Colorado River tributaries to address the following questions: Do natives and nonnatives from the same trophic guild consume the same prey items? Will a given species alter its behavior when presented with different prey types? Do different species procure the same prey types via similar feeding behaviors? Roundtail chub (Gila robusta) and smallmouth bass (Micropterus dolomieu), midwater predators, and Sonora sucker (Catostomus insignis) and common carp (Cyprinus carpio), benthic omnivores, were offered six ecologically relevant prey types in more than 600 laboratory trials. Native species consumed a broader array of prey than nonnatives, and species from a given trophic guild demonstrated functional convergence in key aspects of feeding behavior. For example, roundtail chub and smallmouth bass consume prey attached to the substrate by biting, then ripping the prey from its point of attachment; in contrast, Sonora sucker remove attached prey via scraping. When presented with different prey types, common carp, roundtail chub, and smallmouth bass altered their prey capture behavior by modifying strike distance, gape, and angle of attack. Gape varied among the species examined here, with smallmouth bass demonstrating the largest functional and anatomical gape at a given body size. Because fish predators are gape-limited, smallmouth bass will be able to consume a variety of large prey items in the wild, including large, invasive crayfish and young roundtail chub-their presumptive trophic competitors.

  16. Establishing the geometry and nature of sediments trapped in either natural or artificial dam lakes in contrasted drainage basins from Western Europe (French Massif Central and Pyrenees)

    NASA Astrophysics Data System (ADS)

    Chapron, Emmanuel; Chassiot, Léo; Zouzou, Claude; Simonneau, Anaelle; Galop, Didier; Di Giovanni, Christian

    2016-04-01

    Lacustrine sedimentary archives from artificial dam lakes are poorly documented both in terms of basin fill geometries and dominating sedimentary processes. In order to better understand their sensitivities to regional environmental changes, we performed a similar multidisciplinary study of French natural and artificial dam lakes in contrasted drainage basins from the volcanic Massif Central (lakes Aydat and Crégut) and two granitic sectors of the northern Pyrenees (lakes Fourcat and Orédon). Our approach combined high-resolution sub bottom profiling (14 kHz and 4 kHz chirp) and a detailed study of sediment cores based on qualitative and quantitative analysis (radiographies, sediment physical and chemical properties) together with radionuclide and radiocarbon dates. In all cases either changes in land uses within the drainage basin or the flooding of natural lakes by dams and the production of hydroelectricity induced changes in sedimentation rates and modes. Human activities affecting either the catchment or the lake itself favored enhanced clastic sediment supply in the lake basins and/or higher and fluctuating lake levels. Subaquatic slopes failures are also identified in Lake Aydat formed by a lava flow 8.5 kYrs ago and in glacial lakes Crégut (Massif Central) and Orédon (Pyrenees) now used to produce hydroelectricity and suggest that lake level changes and ground accelerations during earthquakes can remobilize distinct sectors of the basin fills and not only deltaic environments.

  17. Evaluation of Catrosat 1PAN Stereo and Resourcesat Liss 4 MSS Merged Data for Morphometric Analysis, Delineation of Drainage Basins and Codification in Tamil Nadu, India and Australia

    NASA Astrophysics Data System (ADS)

    Mohamed, G. S.; Srinivasan, S.; Pandian, R.; Gummidipoondi, R. J.; Venkatchalam, R. V.; Swaminathan. S, S.

    2012-07-01

    The Topographic maps and Aerial Photographs are used for morphometric analysis of drainage basins and mapping contours with drainage. The stereo pairs of 2.5 m resolution Cartosat 1, Indian satellite 2 and merged data with 5.5 m resolution P6 Resourcesat 1 LISS 4 Indian satellite of 2001 is used to map, rills, gullies, and streams of first order to evaluate part of drainage basin of Cooum and Poondi Reservoir in Thiruvallur taluk of Tamil Nadu state. The Geo Eye latest 2011data is also used with Catrosat 1Stereo data to study present morphology of tiny micro watersheds to study the use of High resolution data for delineation and codification of watersheds. This study area is in an inter fluvial drainage basin of Cooum and Kusasthalai rivers. Kusasthalai river drains in Poondi reservoir which is about 50 km from Chennai. The excess water from Kosasthalai is also diverted through Kesawaram weir to Cooum river which passes through Thiruvallur and Chennai city before it's confluence with Bay of Benegal in the east. As Cooum basin is at higher elevation, water for irrigation is again diverted through chain of tanks to Kusasthalai river basin to drain in Poondi reservoir. Delineation of water sheds in this fluvial basin is difficult by manual survey as man made irrigation channels, natural drainage streams etc., have to be clearly identified. The streams of various orders are identified based on Strahler stream order hierarchy of tributaries, slops and contours using large scale satellite data. The micro water sheds are delinated identifying the ridges from Catrosat data for this interfluves basin which has mild slop. To illustrate this research, parts of two micro watersheds which were delineated using 1:50000 data for Tamil Nadu watershed Atlas up to 7th order streams are taken up for a detailed study using high resolution data. 19 Micro watersheds with streams up to 10th order are mapped. The capability of high resolution satellite data for digital as well as visual

  18. Morphological evolution of the Pyrenees and Ebro drainage basin: effect of a capture on the erosion of a mountain chain

    NASA Astrophysics Data System (ADS)

    Babault, J.; van den Driessche, J.; Bonnet, S.; Crave, A.

    2003-04-01

    In the Pyrenees, the existence of summit flat erosional surfaces is well known for a long time. This smoothed topography meets around 2000 m above sea level in the Axial Zone. The current relief is characterized by the deeply dissection of this surfaces by rivers of the Ebro drainage basin. These observations lead Boissevin (1934) and De Sitter (1952) to argue for a 2000 m post-orogenic uplift of the Pyrenean chain. However Molnar and England (1990) argue that climatic changes can also be responsible for the acceleration of erosional processes and the isostatic uplift of summit flat of the Pyrenees. The southern Pyrenees foreland fold thrust belt undergone a syn-tectonic and pos-tectonic burial allowing the development of the smoothed topography in the Axial Zone (Coney, 1996). Then it has been re-excavated to its present relief. It is assumed that the opening of the Valencia Trough and the Messinian desiccation crisis favoured the growth of a proto-Ebro river along the Catalan coastal range and the subsequent capture and re-excavation of the Pyrenees. In order to test the assumption of a burial of the Pyrenees and Ebro basin we reconstructed the paleo-topography of the Pyrenees and Ebro basin before the capture and we compare it to the present-day relief. The paleotopographic reconstruction is based on the field recognition of end-burial, post-tectonic sedimentary deposits and flat surfaces of the Axial Zone. We use elevations of the summit flat and crests plus elevations of the top of post-tectonic deposits to build a DEM of the Pyrenean paleotopography. From reconstruction, the volume of eroded material we calculate since capture (2.8 1013 m^3) is on the same order than the volume of sediments deposited within the Ebro margin calculated by Nelson (1990). The architecture of the sedimentary bodies on the Ebro margin shows an increase in sedimentary flux during the Pleistocene by 3 times superior than the flux of sediments during Pliocene and the amount of

  19. Morphotectonics of Kid drainage basin, Southeastern Sinai: A landscape evolution coeval to Gulf of Aqaba - Dead Sea rifting

    NASA Astrophysics Data System (ADS)

    Shalaby, Ahmed; Shawky, Mohamed

    2014-12-01

    The Pleistocene fluvio-tectonic conditions have shaped the landscapes of Sinai Peninsula through development of small sedimentary traps following preexisting lineaments. In the Gulf of Aqaba region, orientation of these lineaments with respect to the Pleistocene stress field develops strike-slip simple and dip-slip pure extensional shear models that induced rifting of the Gulf of Aqaba - Dead Sea fault system. The Beida and Nabq grabens are two major rift-related depressions at the southwestern coast of the Gulf of Aqaba region. Both grabens are landscapes that received alluvial sediments of the Kid drainage basin (KDB), which is one of the largest drainage systems in the western region of the Gulf of Aqaba fault-scarp. The Beida graben is formed at a horse tail structure next to Abiad and Kid faults, while the Nabq graben is a pull-apart structure formed as onshore continuation of the Dakar deep. The geometry and origin of these landscapes are the intrinsic themes of this study to investigate the morphotectonic evolution of the KDB terrain within the tectonic framework of the Gulf of Aqaba - Dead Sea rift. The hanging terraces and canyons being at higher elevations on the Gulf of Aqaba fault-scarp; and the accumulation of younger alluvial fans, talus cones and bajada on its footslope indicate that the KDB landscape is basically shaped; and evolutionary modified by hinterland uplifting of the Gulf of Aqaba region. Hence, two morphotectonic evolution periods of the KDB terrain coincide with the early NE- and late NNE-trending extensional Pleistocene axes. The early period started with deposition of the older alluvial fan sediments that emerged at the outlet of KDB, and partially buried the Gulf of Aqaba fault-scarp. Subsequent hinterland uplifting revived the Gulf of Aqaba fault-scarp with development of hanging alluvial and bed-rock terraces; and the older alluvial fan sediments are uplifted on the footwall of southward-dipping normal faults whose hanging

  20. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  1. Acid drainage response to surface limestone layers

    SciTech Connect

    Geidel, G.; Caruccio, F.T.

    1982-12-01

    A 150 acre drainage basin in an unreclaimed coal strip mine in east-central Ohio was studied and extensively monitored to determine the effect of a surface application of limestone on the ground water quality. Prior to the limestone treatment the ground and surface water of the basin was acidic due to pyrite oxidation in the spoil. In order to assess the effect of the limestone application the basin was divided into seven sub-basins, five of which were treated and two which served as controls. The seeps from the treated sub-basins with low acid concentrations became alkaline due to neutralization but after a long dry period, they returned to their acid condition. The moderately and highly acidic seeps showed a decline in the acid concentrations which could be attributed to a combination of neutralization and a decrease in the rate of pyrite oxidation. The results of this field study and simultaneous laboratory experiments showed that under natural conditions, with no limestone application, the acidity generated by pyrite oxidation in a backfill decreased. A surface application of limestone slightly enhanced the decrease in acidity by both neutralization and decreasing the rate of pyrite oxidation. However, the limestone application did not provide sufficient alkalinity to produce either neutral or alkaline discharges from the abandoned coal strip mine site.

  2. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  3. Seepage investigation and selected hydrologic data for the Escalante River drainage basin, Garfield and Kane Counties, Utah, 1909-2002

    USGS Publications Warehouse

    Wilberg, Dale E.; Stolp, Bernard J.

    2005-01-01

    This report contains the results of an October 2001 seepage investigation conducted along a reach of the Escalante River in Utah extending from the U.S. Geological Survey streamflow-gaging station near Escalante to the mouth of Stevens Canyon. Discharge was measured at 16 individual sites along 15 consecutive reaches. Total reach length was about 86 miles. A reconnaissance-level sampling of water for tritium and chlorofluorcarbons was also done. In addition, hydrologic and water-quality data previously collected and published by the U.S. Geological Survey for the 2,020-square-mile Escalante River drainage basin was compiled and is presented in 12 tables. These data were collected from 64 surface-water sites and 28 springs from 1909 to 2002. None of the 15 consecutive reaches along the Escalante River had a measured loss or gain that exceeded the measurement error. All discharge measurements taken during the seepage investigation were assigned a qualitative rating of accuracy that ranged from 5 percent to greater than 8 percent of the actual flow. Summing the potential error for each measurement and dividing by the maximum of either the upstream discharge and any tributary inflow, or the downstream discharge, determined the normalized error for a reach. This was compared to the computed loss or gain that also was normalized to the maximum discharge. A loss or gain for a specified reach is considered significant when the loss or gain (normalized percentage difference) is greater than the measurement error (normalized percentage error). The percentage difference and percentage error were normalized to allow comparison between reaches with different amounts of discharge. The plate that accompanies the report is 36' by 40' and can be printed in 16 tiles, 8.5 by 11 inches. An index for the tiles is located on the lower left-hand side of the plate. Using Adobe Acrobat, the plate can be viewed independent of the report; all Acrobat functions are available.

  4. Modeling Active Layer Depth Over Permafrost for the Arctic Drainage Basin and the Comparison to Measurements at CALM Field Sites

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2002-12-01

    A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25~km~x~25~km resolution NSIDC EASE-Grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. In addition, we parameterize a spatially and vertically variable peat layer and modify soil bulk density and thermal conductivity accordingly. Climatological soil moisture content is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3~layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54~model nodes ranging from a thickness of 10~cm near the surface to 1~m at 15~m depth. Initial temperatures are chosen according to the grid cell's IPA permafrost classification on EASE grid. Active layer depths, simulated for the summers of 1999 and 2000, compare well to maximal thaw depths measured at about 60 Circumarctic Active Layer Monitoring Network (CALM) field sites. A remaining RMS-error between modeled and measured values is attributed mainly to scale discrepancies (100~m~x~100~m vs. 25~km~x~25~km) based on differences in the fields of air temperature, snow height, and soil bulk density. For the whole pan-Arctic land mass and the time period 1980 through 2001, this study shows the regionally highly variable active layer depth, frozen ground depth, lengths of freezing and thawing periods, and the day of year when the maxima are reached.

  5. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  6. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael E.; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  7. Hydrogeology and ground-water flow, fractured Mesozoic structural-basin rocks, Stony Brook, Beden Brook, and Jacobs Creek drainage basins, west-central New Jersey

    USGS Publications Warehouse

    Lewis, Jean C.; Jacobsen, Eric

    1995-01-01

    This study was undertaken to characterize ground- water flow in the Stony Brook, Beden Brook, and Jacobs Creek drainage basins in west-central New Jersey. The 89-square-mile study area is underlain by dipping beds of fractured siltstone, shale, and sandstone and by massive diabase sills. In all of the rocks, the density of interconnected fractures decreases with depth. A major fault extends through the study area, and rocks on both sides of the fault are extensively fractured. The average annual rates of precipitation and ground-water recharge in the study area are 45.07 inches and 8.58 inches, respectively. The rate of recharge to diabase rocks is about one-half the rate of recharge to other rocks. Part of the surface runoff from diabase rocks enters the ground-water system where it encounters more permeable rocks. Most ground water in the study area follows short, shallow flow paths. A three- dimensional finite-difference model of ground-water flow was developed to test hypotheses concerning geologic features that control ground-water flow in the study area. The decrease in the density of interconnected fractures with depth was represented by dividing the model into two layers with different hydraulic conductivity. The pinching out of water- bearing beds in the dip direction at land surface and at depth was simulated as a lower hydraulic conductivity in the dip direction than in the strike direction. This model can be used to analyze ground-water flow if the area of interest is more than about 0.5 square mile.

  8. The geomorphology of Patagonian ice dammed lake basins: Insights from remote sensing of a modern lake and reconstruction of a Late Quaternary lake drainage event

    NASA Astrophysics Data System (ADS)

    Thorndycraft, Varyl

    2016-04-01

    The geomorphology of ice dammed lake basins can be complex due to geomorphic responses to multiple base level changes from repeated filling and emptying, as well as the potential for catastrophic drainage events. Refining landscape models of Quaternary ice dammed palaeolake systems has the potential to improve our understanding of glacier and meltwater dynamics during deglaciation phases. In this poster two case studies are presented to shed light on the range of geomorphic processes exhibited within ice dammed lake basins. Using Google Earth Pro and repeat LANDSAT imagery the geomorphology resulting from multiple base level changes of an ice dammed lake of the Viedma Glacier (Southern Patagonia Icefield) is presented. The LANDSAT imagery shows transgressive lake phases inundating already formed delta and terrace surfaces, whilst the high resolution Google Earth Pro images reveal a complex suite of incised terrace levels developed on the valley floor following lake drainage events. Secondly, the impact of catastrophic drainage of the Late Pleistocene Palaeolake Cochrane (Northern Patagonia Icefield) is investigated through geomorphological mapping. Here an outburst flood and rapid lowering of the lake has led to large scale eddy scouring of glacio-lacustrine sediments, with scarp slopes of ca. 30-40 m in height, and the formation of boulder bars during the final stages of lake fall. The implications of the mapping for interpretations of Late Quaternary palaeolake sediment-landform assemblages and rates of landscape change are discussed.

  9. Verification of LANDSAT imagery for morphametric and topological studies of drainage basins in a section of the western plateau of Sao Paulo State: Tiete-Aguapei watershed. M.S. Thesis; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camargo, J. C. G.

    1982-01-01

    The potential of using LANDSAT MSS imagery for morphometric and topological studies of drainage basins was verified. Using Tiete and Aguapei watershed (Western Plateau) as the test site because of its homogeneous landscape. Morphometric variables collected for ten drainage basins include: circularity index; river density; drainage density; topographic texture; areal and index length; basin parameter; and main river length 1st order and 2nd order channel length. The topographical variables determined were: order; magnitude; bifuraction ratio; weighted bifuraction ratio; number of segments; number of linking; trajectory length; and topological diameter. Data were collected on topographical maps at the scale of 1:250,000 and 1:59,000 and on LANDSAT imagery at the scale of 1:250,000. The results which were summarized on tables for further analysis, show that LANDSAT imagery can supply the lack of topographic charts for drainage studies.

  10. Praise Acres Project

    ERIC Educational Resources Information Center

    Hayes, Carolyn

    2004-01-01

    In this article, the author presents the "Praise Acres Project," which was initiated from a letter written by a local resident. The resident wrote about an idea to develop a wetlands and outdoor lab facility on his property for students. Thus, a plan was conceived that would not only benefit the owner, but also enhance high school science…

  11. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  12. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor

  13. Use of a precipitation-runoff model for simulating effects of forest management on streamflow in 11 small drainage basins, Oregon Coast Range

    USGS Publications Warehouse

    Risley, J.C.

    1994-01-01

    The Precipitation-Runoff Modeling System (PRMS) model of the U.S. Geological Survey was used to simulate the hydrologic effects of timber management in 11 small, upland drainage basins of the Coast Range in Oregon. The coefficients of determination for observed and simulated daily flow during the calibration periods ranged from 0.92 for the Flynn Creek Basin to 0.68 for the Priorli Creek Basin; percent error ranged from -0.25 for the Deer Creek Basin to -4.49 for the Nestucca River Basin. The coefficients of determination during the validation periods ranged from 0.90 for the Flynn Creek Basin to 0.66 for the Wind River Basin; percent error during the validation periods ranged from -0.91 for the Flynn Creek Basin to 22.3 for the Priorli Creek Basin. In addition to daily simulations, 42 storms were selected from the time-series periods in which the 11 basins were studied and used in hourly storm-mode simulations. Sources of simulation error included the quality of the input data, deficiencies in the PRMS model-algorithms, and the quality of parameter estimation. Times-series data from the Flynn Creek and Needle Branch Basins, collected during an earlier U.S. Geological Survey paired-watershed study, were used to evaluate the PRMS as a tool for predicting the hydrologic effects of timber-management practices. The Flynn Creek Basin remained forested and undisturbed during the data-collection period, while the Needle Branch Basin had been clearcut 82 percent at a midpoint during the period of data collection. Using the PRMS, streamflow at the Needle Branch Basin was simulated during the postlogging period using prelogging parameter values. Comparison of postlogging observed streamflow with the simulated data showed an increase in annual discharge volume of approximately 8 percent and a small increase in peak flows of from 1 to 2 percent. The simulated flows from the basins studied were generally insensitive to the number of hydrologic-response units used to replicate

  14. Role of Pb mining in Contamination of Groundwater and Surface water, Case study: Bastam drainage basin, Northeastern Iran

    NASA Astrophysics Data System (ADS)

    Jafarian, Abdolreza

    2015-04-01

    Groundwater will normally look clear and clean because the ground naturally filters out particulate matter. But, natural and human-induced chemicals can be found in groundwater. As groundwater flows through the ground, metals such as Lead and Cd are dissolved and may later be found in high concentrations in the water. Because water is "Universal Solvent" it can contain lots of dissolved chemicals. And since groundwater moves through rocks and subsurface soil, it has a lot of opportunity to dissolve substances as it moves. For that reason, groundwater will often have more dissolved substances than surface water will. Bastam watershed with ca 1250 km2 area and ca 600 km stream networks, contains around 100 spring, ca 300 irrigation wells, and ca 100 Qanat ( one of a series of well-like vertical shafts, connected by gently sloping tunnels). This watershed is one of the largest drainage basins in northeastern Iran and also it provides drinking water for 3 town and several villages. An abandoned Pb mine located at northwest of this watershed. To determine contamination of these metals in groundwater and surface water, 8 water samples around this mine, from wells, springs and streams were collected and analyzed for heavy metal (Pb, Cd, and Zn) by AAs method. Pb, Cd, and Zn concentration in these samples are range of 0.11 to 0.18 mg/L, 0.010 to 0.021 mg/L, and 0.0079 to 0.0485 mg/L respectively. Comparison between these results and regulation guidelines of WHO, and United State EPA, reveal high level concentration of Pb and Cd in groundwater and surface water in this water resources. Based on regulation guidelines of WHO maximum contaminant level (MCL) for lead, and Cadmium are 0.015 mg/L, and 0.005 mg/L respectively. As a result, these water resource are affected by high level contaminate of Pb (ca 10 fold of WHO regulation guideline) and Cd (ca 3 fold of WHO regulation guidelines) maybe derived from Galena and other Pb rock minerals from this mining area. To reduce

  15. Climatic controls on drainage basin topography - a synopsis of the western Andean flanks between 15.5 S and 41.5 S lat

    NASA Astrophysics Data System (ADS)

    Rehak, K.; Strecker, M. R.; Echtler, H. P.; Bookhagen, B.

    2007-12-01

    Topography in tectonically active mountain ranges is determined by the interplay between tectonics and climate. Due to the complexity of natural systems it is difficult to evaluate tectonic versus climatic contributions to the long- term landscape evolution. Previous studies suggest that rainfall and its variability strongly influence the morphology of river profiles and mountain ranges. However, it is still controversially discussed how drainage basins reflect tectonic and climatic processes. The Andean Cordillera provides a unique natural setting for studying the relationship between climate, tectonics, and topography. The Andes host various climatic zones with pronounced differences in rainfall regimes. In the central to southern western Andes, climate ranges from hyperarid in the Atacama Desert, 22 to 23°S lat, with a mean annual rainfall of ~ 5 mm/yr to year-round humid conditions south of Valdivia, ~ 40°S lat, with more than 2500 mm/yr. This zonation is controlled by hemisphere-scale atmospheric circulation patterns. With the exception of a northward shift of the Southern Hemisphere Westerlies during glacials the overall precipitation pattern has remained stable on the west coast of South America. The shelf width is reasonably constant along the margin. Uplift rate and lithology vary non-systematically and do not correlate with climatic parameters. Here, we present an analysis of 120 drainage basins along the watershed of the western Andean flank between 15.5 S and 41.5 S lat, using SRTMV3-90m data and a high-resolution rainfall dataset (TRMM 5x5 km). The basins comprise drainage areas of 1 to ~ 30 x 103 km2 and were split into subsets according to position and size. For each basin, we extracted 21 geometry, relief, and climate parameters in order to unravel the determinants of drainage-basin morphology. Our data shows that river-profile concavity and slope, hypsometric integral, basin maximum and mean elevation decrease with increasing rainfall and

  16. ACR process for ethylene

    SciTech Connect

    Baldwin, R.L.; Kamm, G.R.

    1983-01-01

    Describes how the advanced cracking reactor process, which is ready for a logical commercial application, offers total liquids feedstock flexibility from light naphthenes through vacuum gas oils in the same production unit. Several processes are presently being developed which are aimed at maintaining olefin selectivity when cracking the heaviest feeds. Addresses the problems posed by such heavy feedstocks. The following trends favor the ACR process in the 1980s: natural gas price decontrol; limited natural gas reserves; few new domestic LPG-based ethylene plants will be built; an economic recovery will create the need for more ethylene capacity; modest increases in ''real'' crude oil prices; plentiful supplies of vacuum gas oil at prices making it an attractive ethylene feedstock; and increasing supplies of light naphtha at prices making it an attractive ethylene feedstock as well. Predicts that these factors will swing the preferred feedstocks for ethylene manufacture back to crude oil distillates before the end of the decade. Argues that in this environment, the ACR process can deliver the lowest cost ethylene in the industry. ACR has full-range feedstock flexibility, high selectivity to ethylene, and less sensitivity to feedstock costs and co-product credits.

  17. Drainage density, slope angle, and relative basin position in Japanese bare lands from high-resolution DEMs

    NASA Astrophysics Data System (ADS)

    Lin, Zhou; Oguchi, Takashi

    2004-12-01

    Relationships between drainage density and slope angle for three bare lands in Japan were analyzed with special attention to channels at early erosion stages and channels in a badland-type terrain. Two of the bare lands were caused by volcanic eruptions 1 or 30-40 years ago, and the other one is a landslide scar formed more than 100 years ago. Raster digital elevation models (DEMs) with a 1-m resolution and ortho aerial photos were generated using digital photogrammetry to enable detailed stream-net extraction and topographic analyses. Data for drainage density, slope angle, and relative height for 88 subwatersheds were obtained from the DEMs and derived stream-nets. The relationship between drainage density and slope angle for each subwatershed can be divided into two types: downward sloping and convex upward. Although previous studies suggested that drainage density positively correlates with slope angle if overland flow is dominant, this correlation seldom occurs in the study areas. The two types of drainage density-slope angle relationships correspond to differing channelization stages that reflect the extension and integration of existing channels, as well as the formation of new low-order streams in response to base-level lowering. The location of subwatersheds within each study area seems to play a major role in determining the stages of channel development and, in turn, the types of drainage density-slope angle relationships.

  18. Hydrologic data for Mountain Creek, Trinity River basin, Texas, 1976

    USGS Publications Warehouse

    Buckner, H.D.

    1978-01-01

    The total drainage area of Mountain Creek, Texas, is 304 sq mi. The stream-gaging stations on Mountain Creek near Cedar Hill and Walnut Creek near Mansfield provide hydrologic data to define runoff characteristics from small drainage basins. They also serve as index stations for inflow into the reservoir and provide operational data for the reservoir. In addition, the station Walnut Creek near Mansfield is equipped with a recording rain gage. The stage station near Duncanville provides data pertinent to operation of the gates in the Mountain Creek Lake Dam. The reservoir-content station at the dam provides records of reservoir state and contents. The stream-gaging station Mountain Creek at Grand Prairie provides records of outflow from Mountain Creek Lake and the basin. Basin outflow for the 1976 water year was 78,660 acre-feet which is only 1,140 acre-feet above the 16-year (1960-76) average of 77,520 acre-feet. Storage in Mountain Creek Lake showed a net gain of 760 acre-feet during the water year. Rainfall over the study area for the 1976 water year was about 32 inches, which is about 2 inches below the long-term mean rainfall (1960-75) for the area. (Woodard-USGS)

  19. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    USGS Publications Warehouse

    Baker, Ronald J.; Esralew, Rachel A.

    2010-01-01

    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  20. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    USGS Publications Warehouse

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  1. Application of a watershed model (HSPF) for evaluating sources and transport of pathogen indicators in the Chino Basin drainage area, San Bernardino County, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Lorraine E.; Church, Clinton D.; Mendez, Gregory O.

    2011-01-01

    A watershed model using Hydrologic Simulation Program-FORTRAN (HSPF) was developed for the urbanized Chino Basin in southern California to simulate the transport of pathogen indicator bacteria, evaluate the flow-component and land-use contributions to bacteria contamination and water-quality degradation throughout the basin, and develop a better understanding of the potential effects of climate and land-use change on water quality. The calibration of the model for indicator bacteria was supported by historical data collected before this study and by samples collected by the U.S. Geological Survey from targeted land-use areas during storms in water-year 2004. The model was successfully calibrated for streamflow at 5 gage locations representing the Chino Creek and Mill Creek drainages. Although representing pathogens as dissolved constituents limits the model's ability to simulate the transport of pathogen indicator bacteria, the bacteria concentrations measured over the period 1998-2004 were well represented by the simulated concentrations for most locations. Hourly concentrations were more difficult to predict because of high variability in measured bacteria concentrations. In general, model simulations indicated that the residential and commercial land uses were the dominant sources for most of the pathogen indicator bacteria during low streamflows. However, simulations indicated that land used for intensive livestock (dairies and feedlots) and mixed agriculture contributed the most bacteria during storms. The calibrated model was used to evaluate how various land use, air temperature, and precipitation scenarios would affect flow and transport of bacteria. Results indicated that snow pack formation and melt were sensitive to changes in air temperature in the northern, mountainous part of the Chino Basin, causing the timing and magnitude of streamflow to shift in the natural drainages and impact the urbanized areas of the central Chino Basin. The relation between

  2. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  3. Flow origin, drainage area, and hydrologic characteristics for headwater streams in the mountaintop coal-mining region of Southern West Virginia, 2000-01

    USGS Publications Warehouse

    Paybins, Katherine S.

    2003-01-01

    Characteristics of perennial and intermittent headwater streams were documented in the mountaintop removal coal-mining region of southern West Virginia in 2000?01. The perennial-flow origin points were identified in autumn during low base-flow conditions. The intermittent-flow origin points were identified in late winter and early spring during high base-flow conditions. Results of this investigation indicate that the median drainage area upstream of the origin of intermittent flow was 14.5 acres, and varied by an absolute median of 3.4 acres between the late winter measurements of 2000 and early spring measurements of 2001. Median drainage area in the northeastern part of the study unit was generally larger (20.4 acres), with a lower median basin slope (322 feet per mile) than the southwestern part of the study unit (12.9 acres and 465 feet per mile, respectively). Both of the seasons preceding the annual intermittent flow visits were much drier than normal. The West Virginia Department of Environmental Protection reports that the median size of permitted valley fills in southern West Virginia is 12.0 acres, which is comparable to the median drainage area upstream of the ephemeralintermittent flow point (14.5 acres). The maximum size of permitted fills (480 acres), however, is more than 10 times the observed maximum drainage area upstream of the ephemeral-intermittent flow point (45.3 acres), although a single valley fill may cover more than one drainage area. The median drainage area upstream of the origin of perennial flow was 40.8 acres, and varied by an absolute median of 18.0 acres between two annual autumn measurements. Only basins underlain with mostly sandstone bedrock produced perennial flow. Perennial points in the northeast part of the study unit had a larger median drainage area (70.0 acres) and a smaller median basin slope (416 feet per mile) than perennial points in the southwest part of the study unit (35.5 acres and 567 feet per mile, respectively

  4. Availability and chemical quality of ground water in the Crystal River and Cattle Creek Drainage Basins near Glenwood Springs, west-central Colorado

    USGS Publications Warehouse

    Brogden, Robert E.; Giles, T.F.

    1976-01-01

    Parts of the Crystal River and cattle Creek drainage basins near Glenwood Springs, Colo., have undergone rapid population growth in recent years. This growth has resulted in an increased demand for information for additional domestic, industrial, and municipal water supplies. A knowledge of the occurrence of ground water will permit a more efficient allocation of the resource. Aquifers in the two drainage basins include: alluvium, basalts, the Mesa Verde Formation, Mancos Shale, Dakota Sandstone, Morrison Formation, Entrada Sandstone, Maroon Formation, Eagle Valley Evaporite, and undifferentiated formations. Except for aquifers in the alluvium, and basalt, well yields are generally low and are less than 25 gallons per minute. Well yields form aquifers in the alluvium and basalt can be as much as several hundred gallons per minute. Water quality is dependent of rock type. Calcium bicarbonate is the predominant type of water in the study area. However, calcium sulfate type water may be found in aquifers in the Eagle Valley Evaporite and in the alluvium where the alluvial material has been derived from the Eagle Valley Evaporite. Concentrations of selenium in excess of U.S. Public Health Service standards for drinking water can be found locally in aquifers in the Eagle Valley Evaporite. (Woodard-USGS)

  5. Using 10Be and 26Al to determine sediment generation rates and identify sediment source areas in an arid region drainage basin

    NASA Astrophysics Data System (ADS)

    Clapp, Erik M.; Bierman, Paul R.; Caffee, Marc

    2002-06-01

    We measured 10Be and 26Al in 64 sediment and bedrock samples collected throughout the arid, 187 km 2 Yuma Wash drainage basin, southwestern Arizona. From the measurements, we determine long-term, time-integrated rates of upland sediment generation (81±5 g m -2 year -1) and bedrock equivalent lowering (30±2 m Ma -1) consistent with other estimates for regions of similar climate, lithology, and topography. In a small (˜8 km 2), upland sub-basin, differences in nuclide concentrations between bedrock outcrops and hillslope colluvium suggest weathering of bedrock beneath a colluvial cover is a more significant source of sediment (40×10 4 kg year -1) than weathering of exposed bedrock surfaces (10×10 4 kg year -1). Mixing models constructed from nuclide concentrations of sediment reservoirs identify important sediment source areas. Hillslope colluvium is the dominant sediment source to the upper reaches of the sub-basin channel; channel cutting of alluvial terraces is the dominant source in the lower reaches. Similarities in nuclide concentrations of various sediment reservoirs indicate short sediment storage times (<10 3 years). Nuclide concentrations, measured in channel sediment from tributaries of Yuma Wash and in samples collected along the length of the Wash, were used to construct mixing models and determine sediment sources to the main stem channel. We find an exponential decrease in the channel nuclide concentrations with distance downstream, suggesting that as much as 40% of sediment discharged from Yuma Wash has been recycled from storage within basin fill alluvium. Sediment generation and denudation rates determined from the main stem are greater (25%) than rates determined from upland sub-basins suggesting that, currently, sediment may be exported from the basin more quickly than it is being generated in the uplands. Independence of nuclide concentration and sediment grain size indicates that channels transport sediment in discrete pulses before rapidly

  6. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  7. Adequacy of Nasqan data to describe areal and temporal variability of water quality of the San Juan River Drainage basin upstream from Shiprock New Mexico

    USGS Publications Warehouse

    Goetz, C.L.; Abeyta, Cynthia G.

    1987-01-01

    Analyses indicate that water quality in the San Juan River drainage basin upstream from Shiprock, New Mexico, is quite variable from station to station. Analyses are based on water quality data from the U.S. Geological Survey WATSTORE files and the New Mexico Environmental Improvement Division 's files. In the northeastern part of the basin, most streams are calcium-bicarbonate waters. In the northwestern and southern part of the basin, the streams are calcium-sulfate and sodium-sulfate waters. Geology, climate, and land use and water use affect the water quality. Statistical analysis shows that streamflow, suspended-sediment, dissolved-iron, dissolved-orthophosphate-phosphorus, dissolved-sodium, dissolved-sulfate, and dissolved-manganese concentrations, specific conductance, and pH are highly variable among most stations. Dissolved-radium-226 concentration is the least variable among stations. A trend in one or more water quality constituents for the time period, October 1, 1973, through September 30, 1981, was detected at 15 out of 36 stations tested. The NASQAN stations Animas River at Farmington and San Juan River at Shiprock, New Mexico, record large volumes of flow that represent an integration of the flow from many upstream tributaries. The data collected do not represent what is occurring at specific points upstream in the basin, but do provide accurate information on how water quality is changing over time at the station location. A water quality, streamflow model would be necessary to predict accurately what is occurring simultaneously in the entire basin. (USGS)

  8. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment

  9. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  10. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  11. Water resources of Rockland Basin, southeastern Idaho

    USGS Publications Warehouse

    Williams, Rhea P.; Young, H.W.

    1982-01-01

    Rockland basin comprises about 320 sq mi of the Snake River drainage in southeastern Idaho. Mountain ranges bordering the basin are composed predominantly of limestone and are complexly faulted. Major aquifers include Holocene alluvium, Quaternary-Tertiary volcanic rocks, and Tertiary sedimentary rocks. Groundwater occurs under water table conditions except where it is locally confined. Groundwater discharges to springs in the Deep Creek Mountains and maintains perennial streamflow. Near the mouth of Rock Creek, groundwater movement is northward toward the Snake River. Underflow is estimated to be 51,000 acre-ft/yr. Total water yield available to Rockland basin is estimated to be 5.0 in. (85,000 acre-ft) of the estimated 17.3 in. of annual precipitation. Evapotranspiration ranges from 9.9 to 17 in./yr, depending, in part, on altitude of the land surface. An estimated 12,000 acre-ft of surface water and 3,500 acre-ft of groundwater are used annually for irrigation. Less than 100 acre-ft of water is used for public supply, domestic, and stock supplies. East Fork Rock Creek supplies the most surface water for irrigation of agricultural lands. At the present (1980) state of groundwater development in Rockland basin, streams and aquifers are hydraulically connected. Pumping of groundwater in increased quantities from wells near streams will affect groundwater movement and may diminish streamflow. There are no long-term regional water table declines at present. Continued water level monitoring of selected wells may aid in documenting effects of future management practices on the groundwater system. (Author 's abstract)

  12. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  13. Post-Eruption Changes in Channel Geometry of Streams in the Toutle River Drainage Basin, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Meyer, D.F.; Nolan, K. Michael; Dodge, J.E.

    1985-01-01

    The May 18, 1980, eruption of Mount St. Helens, Washington, generated a debris avalanche, lateral blast, lahars, and tephra deposits that altered mainstem and tributary channels within the Toutle River drainage basin. Channel cross sections were monumented and surveyed on North Fork Toutle River and its tributaries, on South Fork Toutle River, on Green River, and on Toutle River in 1980 and 1981. These streams drain the north and west flanks of the volcano. The network of channel cross sections was surveyed more frequently following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. These data can be used to determine erosion rates, and to identify sources and storage sites of sediment in sediment budget computations. This report presents channel cross-section profiles constructed from the survey data collected during water years 1980 through 1982.

  14. Estimating debris-flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, U.S.A

    USGS Publications Warehouse

    Coe, J.A.; Godt, J.W.; Parise, M.; Moscariello, A.

    2003-01-01

    We have used stratigraphic and historic records of debris-flows to estimate mean recurrence intervals of past debris-flow events on 19 fans along the Interstate 70 highway corridor in the Front Range of Colorado. Estimated mean recurrence intervals were used in the Poisson probability model to estimate the probability of future debris-flow events on the fans. Mean recurrence intervals range from 7 to about 2900 years. Annual probabilities range from less than 0.1% to about 13%. A regression analysis of mean recurrence interval data and drainage-basin morphometry yields a regression model that may be suitable to estimate mean recurrence intervals on fans with no stratigraphic or historic records. Additional work is needed to verify this model. ?? 2003 Millpress.

  15. Effect of environmental setting on sediment, nitrogen, and phosphorus concentrations in Albemarle-Pamlico drainage basin, North Carolina and Virginia, USA

    USGS Publications Warehouse

    McMahon, G.; Harned, D.A.

    1998-01-01

    Environmental settings were defined, through an overlay process, as areas of coincidence between categories of three mapped variables - land use, surficial geology, and soil drainage characteristics. Expert judgment was used in selecting factors thought to influence sediment and nutrient concentrations in the Albemarle-Pamlico drainage area. This study's findings support the hypothesis that environmental settings defined using these three variables can explain variations in the concentration of certain sediment and nutrient constituents. This finding underscores the importance of developing watershed management plans that account for differences associated with the mosaic of natural and anthropogenic factors that define a basin's environmental setting. At least in the case of sediment and nutrients in the Albemarle-Pamlico region, a watershed management plan that focuses only on anthropogenic factors, such as point-source discharges, and does not account for natural characteristics of a watershed and the influences of these characteristics on water quality, may lead to water-quality goals that are over- or underprotective of key environmental features and to a misallocation of the resources available for environmental protection.

  16. Garra mondica, a new species from the Mond River drainage with remarks on the genus Garra from the Persian Gulf basin in Iran (Teleostei: Cyprinidae).

    PubMed

    Sayyadzadeh, Golnaz; Esmaeili, Hamid Reza; Freyhof, Jörg

    2015-01-01

    Garra mondica, new species, from the Mond River drainage in Iran is distinguished from its congeners by having 7½ branched dorsal-fin rays; the breast, belly and back in front of the dorsal-fin origin naked and 9+8 branched caudal-fin rays. Garra mondica is also distinguished from all other congeners in the Persian Gulf basin, except an unidentified species from the Kol River, by having two fixed, diagnostic nucleotide substitutions in the mtDNA COI barcode region. The identity of G. gymnothorax, a nominal species from the Karun River drainage, and G. crenulata, a nominal species from Central Iran, are discussed. Garra populations examined from the Karun have a unique mtDNA COI barcode sequence, but their diagnostic characters are not consistent with the description and syntypes of G. gymnothorax. G. crenulata is considered as a synonym of G. rufa. Two populations of Garra from the Kol River have a sequence of the COI barcode region very similar to G. mondica, but cannot be identified as G. mondica and their identity cannot be resolved here.

  17. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in

  18. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  19. Water resources of the Satus Creek Basin, Yakima Indian Reservation, Washington

    USGS Publications Warehouse

    Mundorff, Maurice John; MacNish, Robert D.; Cline, Denzel R.

    1976-01-01

    The Satus Creek basin lies on the east flank of the Cascade Range in south-central Washington. The basin is entirely within the Yakima Indian Reservation and is bordered and drained on the east by the Yakima River. Average annual precipitation ranges from about 35 inches in the western upland to less than 10 inches in the eastern lowland. This amounts to a yearly total of about 562,000 acre-feet, most of which falls in the upland. Much of the precipitation falls as snow, and the streamflow from the upland reflects this fact, having a high sustained runoff during the snowmelt months of April, May, and June. In 1973 about 176 ,000 acre-feet of water was carried by canals for irrigation of about 19,000 acres in the lowland; of this quantity, about 173 ,000 acre-feet was imported from the adjoining Toppenish Creek basin. This high application rate of about 9.25 acre-feet of water per acre is largely responsible for severe waterlogging problems in many parts of the lowland. Relieving artesian heads by pumping, combined with reduced application and improved drainage, could alleviate the waterlogging, and free water for use in the irrigation of presently nonirrigated parts of the basin. Young volcanic rocks (basalt) in the southwestern, upland part of the basin receive nearly 70,000 acre-feet a year in recharge from precipitation and, although much of this water is what sustains the high base flows of the streams draining the rocks, the remaining water offers potential for development as a high-altitude source for irrigation water. (Woodard-USGS)

  20. Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer

    SciTech Connect

    Singleton, Michael J.; Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Dresel, P. EVAN

    2006-04-30

    Strontium isotope compositions measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. This article describes the evaluation of strontium geochemistry of a major aquifer.

  1. Hydrologic, sediment, and biological data associated with irrigation drainage in the middle Green River basin, Utah and Colorado, water years 1991-2000

    USGS Publications Warehouse

    Rowland, Ryan C.; Allen, David V.; Stephens, Doyle W.; Yahnke, James W.; Darnall, Nathan L.; Waddell, Bruce

    2002-01-01

    Hydrologic, sediment, and biological data were collected in the middle Green River basin in eastern Utah from 1991 to 2000 in an effort to monitor the effects of irrigation drainage on wetland areas and streams, aid in the development of remediation plans, and evaluate the effectiveness of selenium remediation efforts at Stewart Lake Waterfowl Management Area (WMA). Data consist primarily of selenium concentrations in surface water, ground water, bottom sediment, and biological samples. Supporting hydrologic data include field measurements of temperature, pH, specific conductance, water levels in wells, and discharge at surface-water sites. Selected water samples also were analyzed for major ions, trace elements, nutrients, and gross alpha and beta radiation. The concentration of selected selenium species is reported for several bottom-sediment samples from Stewart Lake WMA and the concentration of total selenium in suspended-sediment samples from the area are included. Well logs for six wells installed at Stewart Lake WMA are presented along with trace-element data for several biological samples collected at selected sites throughout the middle Green River basin.

  2. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  3. Sediment transport by irrigation return flows in four small drains within the DID-18 drainage of the Sulphur Creek Basin, Yakima County, Washington, April 1979 to October 1981

    SciTech Connect

    Boucher, P.R.

    1984-01-01

    Suspended sediment, water discharges, and water temperatures were monitored in four small drains in the DID-18 subbasin tributary to Sulphur Creek and to the Yakima River. The purpose was to provide a basis for evaluating the effectiveness of Best Management Practices in reducing sediment discharge from irrigated areas. Sediment discharges could not be correlated with changes in Best Management Practices because Imhoff Cone readings taken in the interior of the basins showed no statistical differences between irrigation seasons. However, Drain 61.0, which acted as a sink for sediment, contained more sprinkler-irrigated land and had a smaller proportion of row crops than the other three drains, even though soils and slopes were similar. Sediment yield usually related best to acres of row crops. The only major storm (February 16-21, 1980) produced 11 to 51% of the sediment discharged during the study. A sediment pond in Drain 60.7 had an average trap efficiency of 70% for the three irrigation seasons. 19 refs., 8 figs., 14 tabs.

  4. Estimates of monthly streamflow characteristics at selected sites, Wind River and part of Bighorn River drainage basins, Wyoming

    USGS Publications Warehouse

    Rankl, J.G.; Montague, Ellen; Lenz, B.N.

    1994-01-01

    Monthly streamflow records from gaging stations with more than 5 years of record were extended to a 50-year base period, 1941-90, using a mixed- station, record-extension model. Monthly streamflow characteristics were computed from the extended record. Four statistical methods--basin characteristics, active-channel width, concurrent measurement, and weighted average were used to estimate monthly streamflow characteristics at ungaged sites and at streamflow-gaging stations with fewer than 5 years of record. Linear- regression models were used with the basin characteristic and active-channel-width methods to define the relations between the monthly streamflow characteristics and physical basin, climatic, and channel characteristics. The concurrent-measurement method used a Maintenance of Variance Extension, Type 1 curve-fitting technique to correlate discharge at active streamflow-gaging stations, which had computed streamflow characteristics, with discharge measured at ungaged sites. The weighted-average method is a weighted combination of estimates from any two or all three of the other methods. For the basin-characteristics method, the standard errors of estimate ranged from 37 to 83 percent and for the active-channel-width method, 34 to 100 percent. Standard errors for the concurrent- measurement method ranged from 27 to 151 percent. The standard error for the weighted-average method, ranged from 18 to 82 percent, which was lower than any individual method. Application of the equations for estimating monthly streamflow characteristics is limited to perennial streams with physical-basin, climatic, and active channel- width characteristics that are within the range of values used in the study. The equations are not applicable to estimate flow for ephemeral streams.

  5. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  6. Metal Distribution and Contamination Assessment in Drainage Ditch Water in the Main Rice/Vegetable Area of Sichuan Hilly Basin.

    PubMed

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Wang, Tao; Yuan, Zhao; Muyembe, Diana Kavidia

    2016-02-01

    In order to assess the impact of four land use changes on metal concentrations in the hilly Sichuan Basin of China, 71 surface water samples were collected in July and November 2014. Samples from residential ditch water were found to have higher metal concentrations than those in other types of ditches, while the lowest occurred in barren land ditch water. However, the selected metals were below the Chinese surface water quality standards and WHO (2011). The pollution index of four determined land use types was also below the critical pollution index, suggesting there were low levels of pollution in Sichuan Basin. Arsenic was the most important pollutant of concern. Results indicate steps should be taken to control and reduce the risk of metals released from residential ditch water. PMID:26662271

  7. Drainage-area data for Wisconsin streams

    USGS Publications Warehouse

    Henrich, E.W.; Daniel, D.N.

    1983-01-01

    Drainage areas were delineated on U.S. Geological Survey topographic maps. Drainage areas are shown in tabular form under six headings : station number; stream name, rank, and location; township, range, and section ; county; type of site; and drainage area. Eleven major-river-basin maps show the location and station number of key sites .

  8. Advanced Component Research Facility (ACRES)

    SciTech Connect

    Bohn, M.

    1980-07-01

    A detailed description of the SERI Advanced Component Research Facility (ACRES) is given. Background information explicates the facility's history, developed around the two Omnium-G parabolic dish concentrators. The Omnium-G concentrators and electrical power plant are described. The purpose and a detailed descripttion of ACRES is also given. Included is a description of the measurement capabilities, the controls, and each component of the facility.

  9. Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California: a progress report

    USGS Publications Warehouse

    Harden, Deborah Reid; Janda, Richard J.; Nolan, K. Michael

    1978-01-01

    Numerous active landslides are clearly significant contributors to high sediment loads in the Redwood Creek basin. Field and aerial-photograph inspections indicate that large mass-movement features, such as earthflows and massive streamside debris slides, occur primarily in terrain underlain by unmetamorphosed or slightly metamorphosed sedimentary rocks. These features cannot account for stream sediment derived from schist. Observed lithologic heterogeneity of stream sediment therefore suggests that large-scale mass movement is only one part of a complex suite of processes supplying sediment to streams in this basin. Other significant sediment contributors include various forms of fluvial erosion and small-scale discrete mass failures, particularly on oversteepened hillslopes adjacent to perennial streams. Photo-interpretive studies of landslide and timber-harvest history adjacent to Redwood Creek, together with analysis of regional precipitation and runoff records for six flood-producing storms between 1953 and 1975, indicate that loci and times of significant streamside landsliding are influenced by both local storm intensity and streamside logging. Analysis of rainfall records and historic accounts indicates that the individual storms comprising a late-19th-century series of storms in northwestern California were similar in magnitude and spacing to those of the past 25 years. The recent storms apparently initiated more streamside landslides than comparable earlier storms, which occurred prior to extensive road construction and timber harvest. Field observations and repeated surveys of stake arrays at 10 sites in the basin indicate that earthflows are especially active during prolonged periods of moderate rainfall; but that during brief intense storms, fluvial processes are the dominant erosion mechanism. Stake movement occurs mostly during wet winter months. Spring and summer movement was detected at some moist streamside sites. Surveys of stake arrays in two

  10. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  11. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  12. Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river's drainage basin.

    PubMed

    Santschi, Peter H; Oktay, Sarah D; Cifuentes, Luis

    2007-04-01

    Sedimentary material from coastal and nearshore areas in the Mississippi Delta region are comprised of different organic carbon sources with diverse ages that require isotopic and elemental records for resolving the various sources of plant residues. Carbon isotopic ((13)C, (14)C) values were used to differentiate contributions from plants using the C3, C4, and/or CAM (crassulacean acid metabolism) carbon fixation pathways., and iodine concentrations indicated that wetland plant residues are a significant source of organic carbon in a sediment core from the Mississippi River delta region collected at a 60 m water depth. This sediment core had been extensively described in Oktay et al. [Oktay, S.D., Santschi, P.H., Moran, J.E., Sharma, P., 2000. The (129)Iodine Bomb Pulse Recorded in Mississippi River delta Sediments: Results from Isotopes of I, Pu, Cs, Pb, and C. Geochim. Cosmochim. Acta 64 (6), 989-996.] and significantly, includes unique features that had not previously been seen in the marine environment. These special features include a plutonium isotopic close-in fallout record that indicates a purely terrestrial source for these sediment particles and the elements associated with it, and a distinct iodine isotopic peak (as well as peaks for plutonium and cesium isotopes) that indicate little bioturbation in this core. Our carbon isotopic and iodine data can thus be compared to published records of changes in drainage basin land use, river hydrology, and hydrodynamic sorting of suspended particles to elucidate if these changes are reflected in nearshore sediments. This comparison suggests a significant contribution for organic carbon (OC) from C4 plants to these sediments during the 1950's to early 1960's. Relative older carbon isotopes, and episodically high iodine concentrations (up to 34 ppm) were observed during this time period that (1) indicate sediment deposition that is coincident with the times of major hydrological changes induced from dam and levee

  13. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin.

    PubMed

    Kiedrzyńska, Edyta; Jóźwik, Adam; Kiedrzyński, Marcin; Zalewski, Maciej

    2014-11-15

    The aim of the paper was to evaluate 23 catchment factors that determine total phosphorus and total nitrogen load to the Baltic Sea. Standard correlation analysis and clustering were used. Both phosphorus and nitrogen loads were found to be positively related to the number of pigs and the human population associated with wastewater treatment plants (WWTPs) per km(2), while the number of cattle and agricultural area were found to influence nitrogen rather than phosphorus load, and the area of forests is negatively related to loads of both nutrients. Clustering indicates an overall north-south pattern in the spatial co-occurrence of socio-ecological factors, with some exceptions discussed in the paper. Positive steps in the Baltic Sea region have already been taken, but much remains to be done. The development of coherent response policies to reduce eutrophication in the Baltic Sea should be based on a comprehensive knowledge base, an appropriate information strategy and learning alliance platform in each drainage river catchments.

  14. Cretaceous( )-Paleocene uplift, drainage, and depositional basins along the southwestern margin of the Colorado Plateau, NW Arizona

    SciTech Connect

    Young, R.A. . Dept. of Geological Sciences)

    1993-04-01

    The SW margin of the Colorado Plateau has over 1,200 m of paleorelief partially buried by arkosic sediments with intercalated fossiliferous limestones of middle Eocene or greater age, indicating a Laramide origin for nearly 1.5 km of uplift by late Cretaceous or Paleocene time. The arkosic sediments contain 30-cm clasts currently 100 to 150 km from potential source areas bordering the plateau margin. Clast studies of stratigraphic sequences 150+ m thick and at elevations from 975 to 2,010 m (3,200 to 6,600 ft) demonstrate an initial unroofing of upper Paleozoic rocks from source terranes to the south and west, followed by an increase in the percentages of Precambrian quartzites and older crystalline basement clasts. These basal gravels give way to an influx of exotic volcanic debris (exceeding 50% of total clasts) with measured ages in the 63 to 80 Ma range. The upward change to predominantly exotic volcanic clasts in some sections is interpreted to record Laramide tectonism, erosion, and syntectonic sedimentation along the Plateau margin, accompanying late Cretaceous volcanism. Erosional unroofing of plausible Laramide source terranes beginning after volcanism could not have produced the observed vertical distribution of clasts. Clast lithologies also demonstrate a convergence of several distinct drainages toward the Hurricane fault structural zone, paralleling the northward trends of other Laramide monoclines. Stratigraphic and paleogeographic field relations at three sites suggest some monoclinal deformation accompanied sedimentation and paleocanyon incision. Thus a strong case exists for syntectonic Laramide sedimentation following Cretaceous uplift.

  15. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  16. Effect of erosion-control structures on sediment and nutrient transport, Edgewood Creek drainage, Lake Tahoe basin, Nevada, 1981-83

    USGS Publications Warehouse

    Garcia, K.T.

    1988-01-01

    Three sites in the Edgewood Creek basin with a combined drainage area of about 1.2 sq mi were selected to assess the effect of erosion-control structures along Nevada State Highway 207, on sediment and nutrient transport. The flow at site one is thought to have been largely unaffected by urban development, and was completely unaffected by erosion control structures. The flow at site two was from a basin affected by urban development and erosion control structures. Site three was downstream from the confluence of streams measured at sites one and two. Most data on streamflow and water quality were collected between June 1981 and May 1983 to assess the hydrologic characteristics of the three sites. As a result of the erosion control structures, mean annual concentrations of total sediment were reduced from about 24,000 to about 410 mg/l at site two and from about 1,900 to about 190 ml/l at site three. Sediment loads were reduced from about 240 to about 10 tons/year at site two and from about 550 to about 110 tons/year at site three. At site one, in contrast, mean concentrations and loads remained low throughout the study period. At site two, sediment particle size changed from predominately coarse prior to construction, to predominately fine thereafter; at site three, it changed from about half coarse sediments to predominately fine. Mean concentration and loads of total iron also were significantly reduced after construction at sites two and three, whereas mean concentrations of nitrogen and phosphorus species did not change appreciably. (Author 's abstract)

  17. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  18. Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.

    2001-01-01

    strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph

  19. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    USGS Publications Warehouse

    Cravotta, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  20. 14C as a tool for evaluating riverine POC sources and erosion of the Zhujiang (Pearl River) drainage basin, South China

    NASA Astrophysics Data System (ADS)

    Wei, Xiuguo; Yi, Weixi; Shen, Chengde; Yechieli, Yoseph; Li, Ningli; Ding, Ping; Wang, Ning; Liu, Kexin

    2010-04-01

    Radiocarbon can serve as a powerful tool for identifying sources of organic carbon and evaluating the erosion intensity in river drainage basins. In this paper we present 14C-AMS measurements of particulate organic carbon (POC) collected from the three major tributaries of the Zhujiang (Pearl River) system: the Xijiang (Western River), Beijiang (Northern River) and Dongjiang (Eastern River) rivers. Furthermore, we discuss the distribution of POC 14C apparent ages and the related watersheds erosion of these rivers. Results yield Δ 14C values of -425‰ to -65‰ which indicate that the 14C apparent ages of suspended POC in the entire area are in the range of 540-4445 years. The POC apparent ages from Xijiang are mostly between 2000 and 4000 years, while in Dongjiang they mostly range from 540 to 1010 years. These 14C apparent ages indicate that the watershed erosion of the Xijiang is more severe than that of the Dongjiang. This is in agreement with other data showing deeper erosion in Xijiang due to human activities.

  1. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    USGS Publications Warehouse

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  2. Monitoring the lateral channel movements on the alluvial fan of Wadi Feiran drainage basin, South Sinai, Egypt using multi-temporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Hermas, E. A.; Abou El-Magd, I. H.; Saleh, A. S.

    2010-08-01

    Human activities triggered various lateral channel movements over the alluvial fan of Wadi Feiran drainage basin, south Sinai, Egypt. Landsat TM images dated 1986, 1996, and 2001, along with a SPOT 4 XS image dated 2006 were acquired to monitor the lateral channel movement on the alluvial fan of Wadi Feiran through the last two decades. The lateral channel movements have been initiated by the channel avulsion of the incised channel of the alluvial fan as a result of obstructing the flow by developing a man-made barrier from the accumulated flood debris in the early years of 1990(s). The man-made barrier had evolved into an elevated concrete road of 3.75 m height with two culverts underneath directly south the fan apex by March 2007. These human activities enforced the incised channel to avulse in a new location leaving the original path and the active depositional lobe of the fan abandoned. Under the influence of successive flash flood events through the last twenty years, channel aggradations occurred resulting in channel braiding and channel widening processes in the reaches of the new formed distributary channels. The channel widening processes occurred on the expense of the inactive fan lobes located within and south the reaches of the new distributary channels. Observing the southward lateral growth of the reaches of the new formed distributary channels implies the possibility of forming a new active depositional lobe that could be merged with the abandoned depositional lobe of the fan.

  3. Physical, chemical, and biological data for detailed study of irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    MacCoy, D.E.

    1994-01-01

    Physical, chemical, and biological data were collected between 1990 and 1992 as part of a detailed study by the U.S. Department of Interior of the effects of irrigation drainage on aquatic resources in the Klamath Basin of California and Oregon. Most of the sites for data collection were in and around the upper and lower sump of Tule Lake, in the Tule Lake National Wildlife Refuge, and along major drains in Lower Klamath National Wildlife Refuge. The physical and chemical data consist of particle-size determinations and concentrations of carbon, mercury, arsenic, chlorophenoxy acid, and organochlorine, organophosphate, and carbamate pesticides in bottom sediment; and concentrations of organophosphate, carbamate, and pyrethroid pesticides, major and trace inorganic constituents, nitrogen, phosphorus, and organic carbon in water. Continuous dissolved oxygen, pH, specific conduc- tance, and temperature data from selected sites in 1991 and 1992 are presented in graphical form to summarize the diel water-quality conditions. The biological data consists of concentrations of inorganic constituents and organochlorine pesticides in tissue, invertebrate and fish population surveys, fish health surveys, frog call surveys, egg shell thickness of avian eggs, and in situ and static toxicity bioassay data collected in 1991 and 1992 using aquatic bacteria, plants, invertebrates, fish, and bird species as test organisms.

  4. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the Columbia Basin Project, Washington, 1991-92

    USGS Publications Warehouse

    Embrey, S.S.; Block, E.K.

    1995-01-01

    The reconnaissance investigation results indicated that irrigation drainage generally has not adversely affected biota in the Columbia Basin Project. Hazards to biota from large concentrations of certain trace elements in water and bottom sediment, and caused by high evaporation rates in irrigated arid lands, are reduced by imported, dilute Columbia River water. However, boron concentrations in aquatic plants might affect waterfowl feeding on these plants and arsenic concentrations in juvenile coots were similar to those in mallard ducklings who exhibited abnormalities after being fed an arsenic-supplemented diet. During irrigation season, concentrations of boron, nitrate, and dissolved solids in water were increased in the southern wasteways because of water reuse. During non-irrigation season, constituent concentrations were large when stream flows are sustained by return water from tile drains and ground water. However, concentrations of dissolved constituents typically did not exceed standards or criteria for humans, freshwater life, or beneficial uses of the water. In water, the herbicide 2,4-D was detected more than any other pesticide and in concentrations from 0.01 to 1.0 microgram per liter. In bottom sediment, organochlorine insecticides were detected in samples from 19 of 21 sites. In fish collected from some wasteways, chlordane, DDT, and dieldrin concentrations occasionally exceeded freshwater protection criteria.

  5. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2001 to June 30, 2002

    USGS Publications Warehouse

    Presley, Todd K.

    2002-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall data were collected at two sites, and streamflow data were collected at 3 sites for the year July 1, 2001 to June 30, 2002. Water-quality data were collected at five sites, which include the three streamflow sites. Six storms were sampled during the year July 1, 2001 to June 30, 2002, for a total of 44 samples. For each storm event, grab samples were collected nearly simultaneously at all five sites, and flow-weighted, time-composite samples were collected at the three sites equipped with automatic samplers. Samples were analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids. Quality assurance samples were also collected to verify analytical procedures and insure proper cleaning of equipment.

  6. Irrigation and streamflow depletion in Columbia River basin above The Dalles, Oregon

    USGS Publications Warehouse

    Simons, Wilbur Douglas

    1953-01-01

    The Columbia River is the largest stream in western United States. Above The Dalles, Oregon, it drains an area of 237,000 square miles, of which 39,000 square miles is in Canada. This area is largely mountainous and lies between the Rocky Mountains and the Cascade Range. The Kootenai, Pend Oreille, and Snake Rivers are the principal tributaries. Precipitation varies from 7 inches near Kennewick, Wash. to over 100 inches in some of the mountainous regions. Most of the runoff occurs in the spring and summer months as a result of melting snow. Precipitation is generally light during the summer months, and irrigation is necessary for sustained crop production. Historical data indicate that irrigation in the Columbia River basin began prior to 1840 at the site of missions established near Walla Walla, Wash. and Lewiston, Idaho. During the next half century the increase in irrigated area was slow and by 1890 included only 506,000 acres. The period 1890 to 1910 was marked by phenomenal increase to a total of 2,276,000 acres in 1910. Since that time there has been more gradual addition to a total of 4,004,S00 acres of irrigated land in 1946 in the Columbia River basin above The Dalles, Oreg. Of this total 918,000 acres were located in the Columbia Basin above the mouth of the Snake River; 2,830,000 acres in the Snake River basin, and the balance, 256,000 acres below the mouth of the Snake River. Values of net consumptive use were determined or estimated for various tributary basins of the Columbia River basin and compared to available experimental data. These values were then used to compute the average depletion which could be directly attributed to irrigation. The yield of a drainage basin was considered to be the rum of the ob- served runoff and the estimated depletion. For purposes of comparison, the depletion was expressed both in terms of acre-feet and as a percentage of the yield of the basin. This percentage depletion varied from less than 1 percent for many

  7. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; environmental setting and water-quality issues

    USGS Publications Warehouse

    McMahon, Gerard; Lloyd, Orville B.

    1995-01-01

    The Albemarle-Pamlico drainage study unit is one of 60 units of the U.S. Geological Survey's National Water-Quality Assessment Program, and includes the large river basins which drain into the Albemarle and Pamlico Sounds-the Chowan, Roanoke, Tar-Pamlico, and Neuse River Basins. The study unit includes about 28,000 square miles and has an interrelated set of environmental characteristics which strongly influence water quality. The chemical and physical nature of these characteristics are the dominant controls on baseline water quality in the study area. About 50 percent of the study area is forested, slightly more than 30 percent is agricultural, about 15 percent is wetlands, and less than 5 percent is developed. Three million people live in the study area, and activities related to agriculture and development have caused increased concentrations of constituents such as nutrients, pesticides, and suspended sediment. About two-thirds of the 36 to 52 inches of precipitation in the area reenters the atmosphere by evapotranspiration. About one-third of the remaining precipitation reaches streams by overland runoff; the remainder recharges the water table aquifer, where much of the water eventually discharges to streams as ground water. Thus, ground-water quality has a substantial influence on surface-water quality, particularly during dry weather. In 1990, about 152,900 tons of elemental nitrogen and 10,500 tons of elemental phosphorus either were applied to crops as fertilizer or fixed by biological processes, and in 1987, about 43,500 tons of nitrogen and 12,200 tons of phosphorus were produced as animal wastes. In addition, about 1,300 tons of selected herbicides and 400 tons of selected insecticides were applied to crops in 1990. Some 249 permitted point sources discharged 410 million gallons per day, containing an annual load of 5,800 tons of nitrogen and 1,800 tons of phosphorus, to the study area in 1990. Data from 1970-79 indicate that mean annual suspended

  8. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  9. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance. PMID:26072049

  10. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  11. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs

    NASA Astrophysics Data System (ADS)

    Persendt, F. C.; Gomez, C.

    2016-05-01

    Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50 m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The 'maximum gradient deterministic eight (D8)' GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study

  12. Deployment of Indicator of Reduction in Soils (IRIS) Probes in Arctic Drained Thaw Lake Basins and Drainages: Time Integrated Signals of Soil Saturation and Redox

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Newman, B. D.; Hudak, M.; Gard, M.; Altmann, G.; Throckmorton, H.; Wilson, C. J.

    2013-12-01

    Climate driven warming and degradation of permafrost may lead to changes in the hydrology of low gradient regions like the North Slope of Alaska. Hydrologic changes will affect the saturation and redox state of soils in drained thaw lake basins (DTLBs), interlake areas, and associated drainages. These changes are being investigated at the Barrow Environmental Observatory (BEO) and surroundings as part of the Next Generation Ecosystem Experiment - Arctic project. As a complement to traditional redox and aqueous chemistry measurements, the use of indicator of reduction in soils (IRIS) probes is being assessed as a simple and cost-effective way to monitor redox changes. The probes consist of PVC sheets coated with a ferrihydrite paint. Under reducing conditions iron on these probes will partially dissolve. The amount of dissolution can be quantified by image analysis and related in a semi-quantitative fashion to redox conditions in the soils. IRIS probes have been successfully utilized in numerous temperate settings to demonstrate, for example, the presence of reducing soils for wetlands delineation. Test probes were installed in saturated soils for 48 hours in July, 2013. After 48 hours, minor reductive dissolution of ferrihydrite was observed. No sulfide precipitation was noted. As such, probes were installed in quadruplicate at 14 locations representing primarily outlet drainages from different-aged DTLBs and interlake areas. In each case, the probes were installed to refusal at the frost table within the active layer overlying the permafrost. IRIS probes were deployed adjacent to arrays of rhizon samplers used for soil pore water sampling so that time-integrated IRIS probe results can be compared to chemical results (a snapshot in time) obtained at the beginning and end of the monitoring period (probes will be extracted in September). Image analysis will employ LANL's GENIE technology. Field measurements of ferrous iron in water samples showed significant redox

  13. Environmental evolution of the Rio Grande drainage basin and Nasca region (Peru) in 2003-2007 using ENVISAT ASAR and ASTER time series

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Tapete, Deodato; Lasaponara, Rosa; Masini, Nicola

    2013-04-01

    Recent palaeo-environmental studies and remote sensing investigations demonstrated that the Rio Grande drainage basin in Southern Peru is a still evolving landscape, and impacts due to its changes have implications for the preservation of both the natural and cultural features of the Nasca region, well-known for the evidences of the ancient Paracas and Nasca Civilizations, who flourished from the 4th century BC to the 6th century AD. To image the modifications occurred in the last decade, we exploited the entire 4year-long stack of ENVISAT ASAR C-band archive imagery available over the region, which was provided by the European Space Agency (ESA) via the Cat-1 project 11073. The latter supports the activities of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), which directly involve researchers from the Institute for Archaeological and Monumental Heritage (IBAM) and the Institute of Methodologies for Environmental Analysis (IMAA), National Research Council (CNR) of Italy. With the aim of reconstructing the temporal evolution of the Rio Grande drainage basin and its effects and implications for the heritage of the region, we processed 8 ASAR Image Mode IS2 scenes acquired in descending mode between 04/02/2003 and 15/11/2005 and 5 images in ascending mode between 24/07/2005 and 11/11/2007, and focused on SAR backscattering information, amplitude change detection methods and extraction of ASAR-derived time series of the backscattering coefficient over target areas of interest. The ASAR 2003-2007 analysis was coupled and integrated with NDVI-based soil moisture and vegetation change assessment performed by using ASTER multi-spectral data acquired during the same time frame of the ASAR stacks, on 30/05/2003, 01/06/2004 and 10/06/2007. The research was performed both at the regional scale over the entire Rio Grande drainage basin, with particular focus on its tributaries Rio Ingenio, Rio Nazca and Rio Taruga, and at the local scale over the

  14. AcrB-AcrA Fusion Proteins That Act as Multidrug Efflux Transporters

    PubMed Central

    Nakashima, Ryosuke; Sakurai, Keisuke; Kitagawa, Kimie; Yamasaki, Seiji; Nishino, Kunihiko

    2015-01-01

    ABSTRACT The AcrAB-TolC system in Escherichia coli is an intrinsic RND-type multidrug efflux transporter that functions as a tripartite complex of the inner membrane transporter AcrB, the outer membrane channel TolC, and the adaptor protein AcrA. Although the crystal structures of each component of this system have been elucidated, the crystal structure of the whole complex has not been solved. The available crystal structures have shown that AcrB and TolC function as trimers, but the number of AcrA molecules in the complex is now under debate. Disulfide chemical cross-linking experiments have indicated that the stoichiometry of AcrB-AcrA-TolC is 1:1:1; on the other hand, recent cryo-electron microscopy images of AcrAB-TolC suggested a 1:2:1 stoichiometry. In this study, we constructed 1:1-fixed AcrB-AcrA fusion proteins using various linkers. Surprisingly, all the 1:1-fixed linker proteins showed drug export activity under both acrAB-deficient conditions and acrAB acrEF double-pump-knockout conditions regardless of the lengths of the linkers. Finally, we optimized a shorter linker lacking the conformational freedom imparted by the AcrB C terminus. These results suggest that a complex with equal amounts of AcrA and AcrB is sufficient for drug export function. IMPORTANCE The structure and stoichiometry of the RND-type multidrug exporter AcrB-AcrA-TolC complex are still under debate. Recently, electron microscopic images of the AcrB-AcrA-TolC complex have been reported, suggesting a 1:2:1 stoichiometry. However, we report here that the AcrB-AcrA 1:1 fusion protein is active for drug export under acrAB-deficient conditions and also under acrAB acrEF double-deficient conditions, which eliminate the aid of free AcrA and its close homolog AcrE, indicating that the AcrB-AcrA 1:1 stoichiometry is enough for drug export function. In addition, the AcrB-AcrA fusion protein can function without the aid of free AcrA. We believe that these results are very important for

  15. 76 FR 44964 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  16. 75 FR 82092 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  17. 75 FR 27841 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials...

  18. 76 FR 61119 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  19. 76 FR 36160 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  20. 75 FR 82093 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  1. 77 FR 56240 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  2. 75 FR 58447 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials...

  3. 76 FR 27101 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  4. 77 FR 31044 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  5. 78 FR 70597 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  6. 78 FR 79020 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  7. 78 FR 17944 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  8. 77 FR 38099 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  9. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  10. 78 FR 66967 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommitte on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommitte on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  11. 75 FR 27840 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials...

  12. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  13. 75 FR 4881 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  14. 76 FR 55716 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  15. 75 FR 16874 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  16. 76 FR 34779 - Advisory Committee On Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  17. 78 FR 70598 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  18. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    Dileanis, P.D.; Schwarzbach, S.E.; Bennett, Jewel

    1996-01-01

    The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal

  19. Major and trace-element analyses of acid mine waters in the Leviathan Mine drainage basin, California/Nevada; October, 1981 to October, 1982

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these

  20. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    USGS Publications Warehouse

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  1. Hydrologic conditions in the Jacobs Creek, Stony Brook, and Beden Brook drainage basins, west-central New Jersey, 1986-88

    USGS Publications Warehouse

    Jacobsen, Eric; Hardy, M.A.; Kurtz, B.A.

    1993-01-01

    Data on the quantity and quality of groundwater and surface water in the drainage basins of Jacobs Creek, Stony Brook, and Beden Brook upstream from U.S. Route 206 in west-central New Jersey were collected from October 1, 1986, through September 30, 1988. Water levels measured in 74 wells ranged from 49 to 453 ft above sea level. The water-table surface generally mimicked topography; however, the water-level altitude in one well indicates the possibility of local interbasin groundwater flow. Calcium and bicarbonate were the most abundant cation and anion in most of the 25 groundwater samples. With one exception, concentrations of nutrients, trace elements, organic carbon, and volatile organic compounds in groundwater samples were less than U.S. Environmental Protection Agency primary drinking-water regulations. Stream low-flow measurements made twice at each of 63 sites indicate that both discharge and runoff increased downstream for most reaches of Jacobs Creek, Stony Brook, and Beden Brook. For main-stem sites, the highest base-flow runoff occurred at site 01462733 on Jacobs Creek; the greatest discharge was measured at site 01401100 on Stony Brook. The flow-duration curve for Stony Brook for 1987-88 indicates a wetter- than-normal period for the area. Results of surface-water-quality analyses indicate that calcium and sodium plus potassium were the dominant or codominant cations, and bicarbonate and chloride were the dominant or codominant anions in most samples. Concentrations of nutrients typically exceeded those needed to support surplus algal growth. Concentrations of trace elements generally were less than U.S. Environmental Protection Agency primary drinking-water regulations. Bottom-sediment samples contained several persistent organic compounds. Significant downstream variations were found in concentrations of copper and lead in Jacobs Creek and Stony Brook. Results of macroinvertebrate community sampling indicate an input of nutrients to several stream

  2. Impact of Drainage Basin Geology and Geomorphology on Detrital Thermochronometric Data from Modern River Sands: A Case Study in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Coutand, I.; Whipp, D. M., Jr.; Bookhagen, B.; Grujic, D.

    2015-12-01

    Detrital thermochronology has become an important tool to quantify the erosional history of mountainous regions. Despite an increasing number of studies utilizing detrital records, it remains unclear how the record of spatially variable erosion of upstream drainage basins is preserved in the thermochronologic signal contained in the sediments. This important spatiotemporal problem is a first-order unknown that limits the interpretation of the geological significance of the detrital signal. To improve our understanding of detrital records in terms of spatiotemporal erosion rates, we use a three-step approach to study modern fluvial sediments from the Bhutan Himalaya. First, based on a preferred tectonomorphic scenario extracted by inversion of in situ multi-thermochronological ages, we predict apatite fission-track (AFT) age distributions in 18 catchments using the Pecube software. Second, we compare AFT age distributions from modern sand bars collected at each catchment outlet to distributions extracted from Monte Carlo sampling of the predicted catchment ages. We find that observed and predicted age distributions are statistically equivalent for only ~75% of the catchments. Third, we calculate predicted detrital age distributions by scaling the prevalence of ages in the catchment in proportion to topographic and climatic metrics (e.g., local relief, steepness index, specific stream power weighted by precipitation rate) or landslide-driven erosion to quantify their effects and relationships to the observed detrital AFT age distributions. Preliminary results suggest erosion in proportion to the topographic metrics cannot reproduce the observed age distributions, but bedrock landsliding may provide sufficient age variability to reproduce the observations. Ongoing work is determining whether variable target mineral concentrations in bedrock geological units or non-uniform sediment sourcing from moraine- or glacier-covered regions can reproduce the observed ages.

  3. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  4. Plasma retinoid profile in bullfrogs, Rana catesbeiana, in relation to agricultural intensity of sub-watersheds in the Yamaska River drainage basin, Québec, Canada.

    PubMed

    Bérubé, Virginie E; Boily, Monique H; DeBlois, Chistian; Dassylva, Nathalie; Spear, Philip A

    2005-01-26

    Amphibian populations are decreasing globally and the causes are presently unclear. Retinoids have been extensively studied in other vertebrate classes where they are associated with pleiotropic effects such as susceptibility to disease (including cancer and parasitic infections), deformities and reproduction. To investigate the hypothesis that retinoid homeostasis is influenced by agricultural activities, blood samples were collected from adult bullfrogs, Rana catesbeiana, at each of six sub-watersheds chosen to represent a gradient of agricultural intensity within the Yamaska River drainage basin. Samples of surface water were collected at each of the study sites approximately 1 month after spraying and analyzed for 53 pesticides. Male body weight was significantly different (p<0.001) between study sites with the smallest bullfrogs captured from the Rivière à la Barbue sub-watershed associated with high agricultural intensity. A significant linear regression (p<0.001; R2=0.176) was obtained between plasma retinol and body weight. Plasma retinol concentrations were significantly different between study sites (p<0.001) being lowest at both Rivière Noire and Rivière à la Barbue. More than 60% of the land area in these sub-watersheds is under intensive corn-soya cultivation and surface water contained the highest concentrations of the herbicides atrazine, deethyl-atrazine, simazine, metolachlor, dimethenamide, chlopyralide, dicamba and bentazone. Plasma 13-cis-4-oxo-retinoic acid was significantly different (p<0.001) between sub-watersheds, however this effect was apparently unrelated to agricultural intensity. Plasma retinol was negatively correlated (p=0.026; r=-0.237) with plasma 13-cis-4-oxo-retinoic acid. These results suggest that retinoid homeostasis in bullfrogs may be influenced by agricultural practices.

  5. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901-2008

    NASA Astrophysics Data System (ADS)

    Liu, Mingliang; Tian, Hanqin; Yang, Qichun; Yang, Jia; Song, Xia; Lohrenz, Steven E.; Cai, Wei-Jun

    2013-04-01

    The Gulf of Mexico (GOM) is facing large pressures from environmental changes since the beginning of the last century. However, the magnitude and long-term trend of total water discharge to the GOM and the underlying processes are not well understood. In this study, the dynamic land ecosystem model (DLEM) has been improved and applied to investigate spatial and temporal variations of evapotranspiration (ET) and runoff (R) over drainage basins of the GOM during 1901-2008. Modeled ET and discharge were evaluated against upscaled data sets and gauge observations. Simulated results demonstrated a significant decrease in ET at a rate of 15 mm yr-1 century-1 and an insignificant trend in runoff/precipitation (R/P) and river discharge over the whole region during 1901-2008. However, the trends in estimated water fluxes show substantial spatial and temporal heterogeneities across the study region. Generally, in the west arid area, ET, R, and R/P decreased; while they increased in the eastern part of the study area during the last 108 years. In the recent 30 years, this region experienced a substantial decrease in R. Factorial simulation experiments indicate that climate change, particularly P, was the dominant factor controlling interannual variations of ET and R; while land use change had the same magnitude of effects on long-term trends in water fluxes as climate change did. To eliminate modeling uncertainties, high-resolution historical meteorological data sets and model parameterizations on anthropogenic effects, such as water use and dam constructions, should be developed.

  6. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  7. Surface waters of Cottonwood Creek in the Cimarron River basin in central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1962-01-01

    Annual discharge from Cottonwood Creek basin is estimated to have averaged 73,000 acre-ft during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 3.6 inches over the 380 square-mile drainage area. About 30,000 acre-ft per year comes from Deer Creek basin, a tributary drainage of 155 square miles. Yearly streamflow is highly variable. The discharge of Bluff Creek above Lake Hefner, near Oklahoma City, a small sub-basin of 1.62 square miles in Deer Creek basin, has varied from 484 acre-ft in 1951 to 55 acre-ft in 1956, a ratio of 9 to 1 during the period of record 1950-58. Highest runoff within a year tends to occur in the spring months of April through June, a 3-month period that, on the average, accounts for about 60 percent of the annual discharge of Cottonwood Creek. Lowest streamflow usually occurs in August and September. Occurrence of no flow in some years has been observed in the lower part of the basin and in the upper parts of Bluff Creek and Chisholm Creek basins. Variation in daily streamflow is such that the estimated average discharge of 97 cfs (cubic feet per second) for Cottonwood Creek just upstream from Guthrie is exceeded only 12 percent of the time and the daily discharge is more than 16 cfs only half of the time. There is no flow at the site about 7 percent of the time, assuming conditions of basin development prevailing in the last decade. Base flow in parts of the basin is augmented to some extent by seepage from reservoirs. In Bluff Creek basin, the seepage from Lake Hefner toward Spring Creek is 0.2 to 0.3 acre-ft per day; that toward Bluff Creek ranges from 1.7 to 3 acre-ft per day, depending on variation of reservoir level in the top 6 feet of capacity; and that toward Dry Creek is 0.3 to 0.4 acre-ft per day. Low flow in Chisholm Creek is sustained by sewage effluent from The Village, averaging 3 acre-ft per day. The surface waters of Cottonwood Creek basin are hard but in general are usable for

  8. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  9. Geology and ground-water resources of the upper Lodgepole Creek drainage basin, Wyoming, with a section on chemical quality of the water

    USGS Publications Warehouse

    Bjorklund, Louis Jay; Krieger, R.A.; Jochens, E.R.

    1959-01-01

    The principal sources of ground-water supply in the upper Lodgepole Creek drainage basin-the part of the basin west of the Wyoming-Nebraska State line-are the Brule formation of Oligocene age, the Arikaree formation of Miocene age, the Ogallala formation of Pliocene age, and the unconsolidated deposits of Quaternary age. The Brule formation is a moderately hard siltstone that generally is not a good aquifer. However, where it is fractured or where the upper part consists of pebbles of reworked siltstone, it will yield large quantities of water to wells. Many wells in the Pine Bluffs lowland, at the east end of the area, derive water from the Brule. The Arikaree formation, which consists of loosely to moderately cemented fine sand, will yield small quantities of water to wells but is not thick enough or permeable enough to supply sufficient water for irrigation. Only a few wells derive water from it. The Ogallala formation consists of lenticular beds of clay, silt, sand, and gravel which, in part, are cemented with calcium carbonate. Only the lower part of the formation is saturated. Nearly all the wells in the upland part of the area tap the Ogallala, but they supply water in amounts sufficient for domestic and stock use only. Two of the wells have a moderately large discharge, and other wells of comparable discharge probably could be drilled in those parts of the upland where the saturated part of the Ogallala is fairly thick. Most of the unconsolidated deposits of Quaternary age are very permeable and, where a sufficient thickness is saturated, will yield large quantities of water to wells. These deposits are a significant source of water supply in the southeastern part of the area. The Chadron formation of Oligocene age, which underlies the Brule formation, is a medium- to coarse-grained sandstone where it crops out in the Islay lowland. No wells tap the Chadron, but it probably would yield small quantities of water to wells. It lies at a relatively shallow

  10. 76 FR 44377 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-65039... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on August 16, 2011, Room...

  11. 78 FR 51752 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 18, 2013, Room...

  12. 77 FR 74697 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on January 18, 2013, Room...

  13. 77 FR 28903 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126-64127). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 22, 2012, Room...

  14. 77 FR 28637 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... participation in ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126- 64127... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 22- 23, 2012, Room...

  15. 77 FR 45699 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... participation in ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126-64127... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on August 14, 2012, Room...

  16. 77 FR 45700 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126- 64127... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on August 15, 2012, Room...

  17. 77 FR 59676 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... in ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126-64127... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on October 3, 2012, Room...

  18. 78 FR 2694 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... the Federal Register on Monday, December 17, 2012, (77 FR 74697-74698). Information regarding this... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Fukushima; Cancellation of the January 18, 2013, ACRS Subcommittee Meeting The ACRS Subcommittee meeting on...

  19. 78 FR 37595 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  20. 75 FR 52999 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-30

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On ESBWR The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on...

  1. 75 FR 44818 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-29

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR The ACRS Subcommittee on ESBWR will hold a meeting on August 16-17, 2010, Room T-2B1, 11545 Rockville...

  2. 75 FR 38564 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-02

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR The ACRS Subcommittee on ESBWR will hold a meeting on July 13, 2010, Room T-2B1, 11545 Rockville...

  3. 77 FR 60480 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126-64127). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation...

  4. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Shamokin Creek Basin, Northumberland and Columbia Counties, Pennsylvania, 1999-2001

    USGS Publications Warehouse

    Cravotta, Charles A.; Kirby, Carl S.

    2003-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the upper Shamokin Creek Basin in east-central Pennsylvania. The upper Shamokin Creek Basin encompasses an area of 54 square miles (140 square kilometers) within the Western Middle Anthracite Field, including and upstream of the city of Shamokin. Elevated concentrations of acidity, metals, and sulfate in the AMD from flooded underground anthracite coal mines and (or) unreclaimed culm (waste rock) piles degrade the aquatic ecosystem and water quality of Shamokin Creek to its mouth and along many of its tributaries within the upper basin. Despite dilution by unpolluted streams that more than doubles the streamflow of Shamokin Creek in the lower basin, AMD contamination and ecological impairment persist to its mouth on the Susquehanna River at Sunbury, 20 miles (32 kilometers) downstream from the mined area. Aquatic ecological surveys were conducted by the U.S. Geological Survey (USGS) in cooperation with Bucknell University (BU) and the Northumberland County Conservation District (NCCD) at six stream sites in October 1999 and repeated in 2000 and 2001 on Shamokin Creek below Shamokin and at Sunbury. In 1999, fish were absent from Quaker Run and Shamokin Creek upstream of its confluence with Carbon Run; however, creek chub (Semotilus atromaculatus) were present within three sampled reaches of Carbon Run. During 1999, 2000, and 2001, six or more species of fish were identified in Shamokin Creek below Shamokin and at Sunbury despite elevated concentrations of dissolved iron and ironencrusted streambeds at these sites. Data on the flow rate and chemistry for 46 AMD sources and 22 stream sites throughout the upper basin plus 1 stream site at Sunbury were collected by the USGS with assistance from BU and the Shamokin Creek Restoration Alliance (SCRA) during low base-flow conditions in August 1999 and high baseflow

  5. Effects of urbanization on streamflow and sediment transport in the Rock Creek and Anacostia River basins, Montgomery County, Maryland, 1962-74

    USGS Publications Warehouse

    Yorke, Thomas H.; Herb, William J.

    1978-01-01

    Land use, precipitation, streamflow, and sediment discharge data were collected from nine small drainage basins in Montgomery County, Maryland, to evaluate runoff and sediment response to sediment-control practices in areas undergoing urban development. Drainage basins ranged in size from 0.35 to 21.1 sq mi and land use ranged from rural to 60 percent urban. Urbanization did not affect low and medium flows, but it did result in increased storm runoff and peak flows. Suspended sediment transported from one of the basins that underwent urban development, the 21.1 sq mi Anacostia River basin, averaged 15 ,400 tons/yr between 1962 and 1974. Bedload was estimated as 5 to 11 percent of the total load. Cropland, urban land, and construction sites were the major sources of sediment. Average annual sediment yields ranged from 065 to 4.3 tons/acre for cropland, 3.7 tons/acre for urban land, and 7 to 100 tons/acre for urban construction sites. The magnitude of the yields from construction sites was significantly affected by (1) the slope of the sites, (2) the proximity of stream channels, (3) buffer zones of natural vegetation, and (4) sediment-control measures. Sediment controls, particularly those enforced under a 1971 sediment-control ordinance, apparently decreased construction-site sediment yields by 60 to 80 percent. (Woodard-USGS)

  6. Debris-flow frequency and dynamics of an Alpine catchment during the past 150 years, the Schimbrig drainage basin, Central Switzerland

    NASA Astrophysics Data System (ADS)

    Savi, Sara; Bollschweiler, Michelle; Stoffel, Markus; Schlunegger, Fritz

    2010-05-01

    This paper focuses on links between landsliding and debris-flow activity in a ca. 4 km2-large drainage basin located at the northern foothills of the Central Swiss Alps. Debris-flow frequency of the recent past was reconstructed using dendrogeomorphic methods. In addition, the source area was mapped in detail to assess the spatial distribution of landslides, and to determine the connectivity between hillslopes and the channel network. The geomorphic map indicates that the hillslopes host abundant landslides sourced in Paleogene Flysch and Molasse sandstone-mudstone alternations. Major differences in the landscape architecture between the eastern and western sides were identified. In particular, the eastern segment is characterized by a >300'000 m2 large earth flow (Schimbrig landslide) that is 5-10 m deep. This flow experienced a phase of high slip rates >2m day-1 between September 1994 and May 1995, transferring a total of 350'000 m3 of material. In contrast, the western side is characterized by a network of deeply incised channels (>50 m) bordered by hillslopes that host landslides that generally measure <15'000 m2. On these hillslopes, the downslope transfer of sediment is dominated by soil creep or by rotational and translational slip. The depositional fan at the outlet of the catchment has an approximate size of 50'000 m2. The surface is characterized by levees, lobes and channels and is covered by a conifer forest comprising spruces (Picea abies (L.) Karst.) and firs (Abies alba Mill.). A total of 325 increment cores were sampled from 162 trees obviously influenced by past debris-flow activity. Preliminary analysis of the tree samples indicate that 64% of the tree grew up between 1900 and 2009. 34% of the tree samples showed germination dates between 1800 and 1900, and the remaining 2% of the sampled specimens germinated before 1800. Dendrogeomorphic analyses depict that nearly 50% of the sampled trees were affected by debris-flow activity in the 1990s. This

  7. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  8. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  9. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  10. Geomorphic and stratigraphic evidence of incision-induced halokinetic uplift and dissolution subsidence in transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline (Ebro Basin, NE Spain)

    NASA Astrophysics Data System (ADS)

    Lucha, Pedro; Gutiérrez, Francisco; Galve, Jorge Pedro; Guerrero, Jesús

    2012-10-01

    The evaporite-cored Barbastro-Balaguer Anticline, located in the northeastern sector of the Ebro Tertiary Basin, NE Spain, is traversed perpendicularly by several drainages coming from the Pyrenees, including the Cinca, Noguera-Ribagorzana and Segre rivers. The terraces associated with these discordant fluvial systems, deposited upon evaporitic and detrital formations across the anticline, allow the analysis of geomorphic and stratigraphic anomalies related to the soluble and ductile nature of the halite-bearing rocks in the core of the anticline. Geomorphological mapping reveals that the gravels discontinuously capping the evaporitic core of the anticline, together with some alluvial mantles disconnected from the present-day river valleys, constitute the oldest sediments deposited under exorheic conditions in this sector of the Ebro Tertiary Basin. These alluvial deposits inset into the basin fill record an early post-capture palaeogeographic stage during which the drainage was dominated by unconfined distributary channels developed on extensive alluvial fans fed by perennial rivers coming from the Pyrenees. The terraces associated with the present-day fluvial valleys correspond to a later palaeogeographic stage characterized by a well-integrated drainage confined to fluvial valleys entrenched in the basin fill. These terraces show evidence of both dissolution-induced subsidence and halokinesis restricted to areas underlain by the evaporites of the anticline core. The deposits of the highest terrace levels of the Noguera-Ribagorzana and Segre rivers and its tributaries, Lo Reguer Creek and Farfanya River, are locally thickened filling basins generated by dissolution-induced synsedimentary subsidence up to several kilometers long and more than 100 m deep. Subsidence caused by the karstification of the evaporites reached higher magnitude and extent during the early stages of development of the new external drainage network, when the more soluble halite-bearing units

  11. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers, 1992-93

    USGS Publications Warehouse

    Ruhl, P.M.; Smith, K.E.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.

  12. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and

  13. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  14. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994-95

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn

    1999-01-01

    The influence of land use on the water quality of four tributaries to the Toms River, which drains nearly one-half of the Barnegat Bay wateshed, was studied during the initial phase of a multiyear investigation. Water samples were collected from and streamflows were measured in Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Creek during periods of base flow and stormflow in the growing and nongrowing seasons during May 1994 to October 1995. The drainage areas upstream from the seven measurement sites were characterized as highly developed, moderately developed, slightly developed, or undeveloped. Concentrations were determined and area-normalized instantaneous loads (yields) were estimated for total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthosphosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria in the water samples. Specific conductance, pH, temperature, and dissolved oxygen were measured. Yields of total nitrogen, nitrate, and organic nitrogen at sites on Wrangel Brook, which drains moderately developed areas, were either larger than or similar to yields at the site on Long Swamp Creek, which drains a highly developed area. The magnitude of these yields probably was not related directly to the intensity of land development, but more likely was influenced by the type of development, the amount of base flow, and historical land use in the basin. The large concentrations of total nitrogen and nitrate in base flow in Wrangel Brook could have resulted from fertilizers that were applied to high-maintenance lawns and from agricultural runoff that has remained in the ground water since the 1950's and eventually was discharged to streams. Yields of ammonia appear to be partly related to the intensity of land development and storm runoff. Yields of ammonia at the site on Long Swamp Creek (a highly developed area) were either larger than or similar to yields at sites on Wrangel Brook (moderately

  15. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational

  16. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... and Probabilistic Risk Assessment The ACRS Subcommittee on Reliability and PRA will hold a meeting... ACRS meetings were published in the Federal Register on October 21, 2010 (75 FR 65038-65039)....

  17. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... participation in ACRS meetings were published in the Federal Register on November 8, 2013 (78 FR 67205-67206..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  18. 77 FR 45699 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Economic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64126-64127). Detailed... Simplified Boiling Water Reactors (ESBWR); Notice of Meeting The ACRS Subcommittee on ESBWR will hold...

  19. Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013

    USGS Publications Warehouse

    Eash, David A.

    2015-01-01

    An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1-4 from the 1987 single-variable RREs and for flood regions 1-3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.

  20. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  1. 76 FR 18586 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on United...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on United States-Advanced Pressurized Water Reactor (US-APWR); Notice of Meeting The ACRS Subcommittee on United States-Advanced Pressurized Water Reactor...

  2. 76 FR 32240 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 7, 2011, Room T-2B1, 11545 Rockville Pike,...

  3. 76 FR 52715 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and... Diversity on Defense-In-Depth in Digital Computer-Based I&C Systems,'' and other related activities...

  4. 77 FR 52371 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... Register on October 17, 2011, (76 FR 64126- 64127). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 5, 2012, Room...

  5. 78 FR 65008 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on November 5, 2013, Room...

  6. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on December 5, 2012, Room...

  7. 78 FR 50457 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 4, 2013, Room...

  8. 77 FR 64147 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... published in the Federal Register on October 17, 2011 (76 FR 64126- 64127). Detailed meeting agendas and... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on October 31, 2012, Room...

  9. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Register on October 18, 2012 (77 FR 64146- 64147). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on December 4, 2012, Room...

  10. 78 FR 27442 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147). Detailed meeting... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 23, Room T-2B1,...

  11. 76 FR 27103 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... were published in the Federal Register on October 21, 2010 (75 FR 65038-65039). Detailed meeting... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 26, 2011, Room...

  12. 76 FR 34778 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on June 23, 2011, Room...

  13. 77 FR 31676 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... October 17, 2011, (76 FR 64126- 64127). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on June 20, 2012, Room...

  14. 78 FR 17945 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on April 10, 2013, Room...

  15. 76 FR 5218 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... Register on October 21, 2010 (75 FR 65038- 65039). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  16. 77 FR 59678 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... October 17, 2011, (76 FR 64126-64127). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  17. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  18. 76 FR 53979 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-30

    ... published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulics Phenomena will hold...

  19. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... October 14, 2009, (74 FR 58268- 58269). Detailed meeting agendas and meeting transcripts are available on... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal Hydraulics Phenomena The ACRS Subcommittee on Thermal Hydraulics Phenomena will hold a meeting on September...

  20. 75 FR 30077 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on June...

  1. 75 FR 25302 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-07

    ..., (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are available on the NRC Web... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on ESBWR The ACRS Subcommittee on ESBWR will hold a meeting on May 18-19, 2010, Room T-2B1, 11545 Rockville Pike,...

  2. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Register on October 21, 2010 (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Digital Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation...

  3. Effects of Coal-Mine Drainage on Stream Water Quality in the Allegheny and Monongahela River Basins-Sulfate Transport and Trends

    USGS Publications Warehouse

    Sams, James I.; Beer, Kevin M.

    2000-01-01

    In 1980, the Allegheny and Monongahela Rivers transported a sulfate load of 1.2 million and 1.35 million tons, respectively, to the Ohio River at Pittsburgh. The Monongahela River Basin had a sulfate yield of 184 tons per square mile per year compared to 105 tons per square mile per year for the Allegheny River Basin. Within the large Allegheny and Monongahela River Basins, the subbasins with the highest sulfate yields in tons per square mile per year were those of Redstone Creek (580), Blacklick Creek (524), Conemaugh River (292), Buffalo Creek (247), Stonycreek River (239), Two Lick Creek (231), Dunkard Creek (212), and Loyalhanna Creek (196). These basins have been extensively mined. The sulfate yields of Brokenstraw and Conewango Creeks, which are outside the area underlain by coal and thus contain no coal mines, were 25 and 24 tons per square mile per year, respectively. Within the Allegheny and Monongahela River Basins, seven sites showed significant trends in sulfate concentration from 1965 to 1995. Dunkard Creek and Stonycreek River show significant upward trends in sulfate concentration. These trends appear to be related to increases in coal production in the two basins from 1965 to 1995. Blacklick Creek at Josephine and Loyalhanna Creek at Loyalhanna Dam show significant downward trends in sulfate concentration between 1965 and 1995. Blacklick Creek had a 50-percent decrease in sulfate concentration. Coal production in the Blacklick Creek Basin, which reached its peak at almost 4 million tons per year in the 1940's, dropped to less than 1 million tons per year by 1995. In the Loyalhanna Creek Basin, which had a 41-percent decrease in sulfate concentration, coal-production rates dropped steadily from more than 1.5 million tons per year in the 1940's to less than 200,000 tons per year in 1995.

  4. Predicting community-environment relationships of stream fishes across multiple drainage basins: insights into model generality and the effect of spatial extent.

    PubMed

    Troia, Matthew J; Gido, Keith B

    2013-10-15

    Resource managers increasingly rely on predictive models to understand species-environment relationships. Stream fish communities are influenced by longitudinal position within the stream network as well as local environmental characteristics that are constrained by catchment characteristics. Despite an abundance of studies quantifying species-environment relationships, few studies have evaluated the generality of these relationships among basins and spatial extents. We modeled community composition of stream fishes in thirteen sub-basins, nested within three basins in Kansas, USA using constrained ordination and environmental predictor variables representing (1) longitudinal network position, (2) local habitat, and (3) catchment characteristics. We tested the generality of species-environment relationships by quantifying the variation in model performance and the importance of environmental variables among the thirteen sub-basins and among three spatial extents (sub-basin, basin, state). Model performance was variable across the thirteen sub-basins, with adjusted constrained inertia ranging from 0.13 to 0.36. The importance of environmental variables was also variable among sub-basins, but longitudinal network position consistently predicted more variation in community composition than local or catchment variables. Model performance did not differ among spatial extents, but the importance of longitudinal network position decreased at broader spatial extents whereas local and catchment variables increased in importance. Results of this study support the longstanding frameworks of the river continuum and hierarchically-structured habitat. We show that (1) the relative importance of longitudinal network position, local characteristics, and catchment characteristics can vary from one region to another and (2) the spatial extent at which predictive habitat models are developed can influence the perceived importance of different environmental predictor variables

  5. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico

    NASA Astrophysics Data System (ADS)

    Carrillo-Rivera, J. J.

    2000-09-01

    An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une

  6. ACR Appropriateness Criteria Head Trauma.

    PubMed

    Shetty, Vilaas S; Reis, Martin N; Aulino, Joseph M; Berger, Kevin L; Broder, Joshua; Choudhri, Asim F; Kendi, A Tuba; Kessler, Marcus M; Kirsch, Claudia F; Luttrull, Michael D; Mechtler, Laszlo L; Prall, J Adair; Raksin, Patricia B; Roth, Christopher J; Sharma, Aseem; West, O Clark; Wintermark, Max; Cornelius, Rebecca S; Bykowski, Julie

    2016-06-01

    Neuroimaging plays an important role in the management of head trauma. Several guidelines have been published for identifying which patients can avoid neuroimaging. Noncontrast head CT is the most appropriate initial examination in patients with minor or mild acute closed head injury who require neuroimaging as well as patients with moderate to severe acute closed head injury. In short-term follow-up neuroimaging of acute traumatic brain injury, CT and MRI may have complementary roles. In subacute to chronic traumatic brain injury, MRI is the most appropriate initial examination, though CT may have a complementary role in select circumstances. Advanced neuroimaging techniques are areas of active research but are not considered routine clinical practice at this time. In suspected intracranial vascular injury, CT angiography or venography or MR angiography or venography is the most appropriate imaging study. In suspected posttraumatic cerebrospinal fluid leak, high-resolution noncontrast skull base CT is the most appropriate initial imaging study to identify the source, with cisternography reserved for problem solving. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. PMID:27262056

  7. Mismatch between sediment metal distribution and pollution source gradient: a case study of a small-size drainage basin (Southeastern Brazil).

    PubMed

    Molisani, Mauricio Mussi; Noronha, Frederico Ricardo C; Schultz, Mario Sergio; de Rezende, Carlos Eduardo; de Almeida, Marcelo Gomes; Silveira, Carla Semiramis

    2015-06-01

    Metal contamination in aquatic environments may occur when the anthropogenic emission exceeds the natural contribution although other factors might influence the metal distribution. In the small-size Macaé river basin, most of the metal emission was originated from anthropogenic sources suggesting a contamination status. Total and exchangeable metal concentrations were determined in sediments from the pristine upstream to the urban estuary and compared to the metal content in rocks to establish contamination and background concentrations. The enrichment of Pb in sediments compared to the regional background and high exchangeable concentrations suggest the influence of anthropogenic sources on Pb distribution. Al, Fe Mn, Zn, Ba, Cu, Cr, Ni concentrations in sediments were similar to the rock content and the values were considered regional background. Spatial distribution did not follow the whole-basin emission source gradient suggesting that despite actual anthropogenic sources, the sediment mineralogy and basin geomorphology might influence the sediment metal distribution. PMID:25792107

  8. Sediment transport by irrigation return flows in four small drains within the DID-18 drainage of the Sulphur Creek basin, Yakima County, Washington, April 1979 to October 1981

    USGS Publications Warehouse

    Boucher, P.R.

    1984-01-01

    Suspended sediment, water discharges, and water temperatures were monitored in four small drains in the DID-18 basin of the Sulphur Creek basin, a tributary to the Yakima River, Washington. Water outflow, inflow, and miscellaneous sites were also monitored. The information was used to evaluate the effectiveness of management practices in reducing sediment loads in irrigated areas. This study was one of seven Model Implementation Plan projects selected by the U.S. Soil Conservation Service and the U.S. Environmental Protection Agency to demonstrate the effectiveness of institutional and administrative implementation of management plans. Sediment discharges from the four basins could not be correlated with changes in management practices, because Imhoff Cone readings collected for the study showed no statistical differences between the three irrigation seasons. However, one drain acted as a sink for sediment where more lands were sprinkler irrigated; this drain had a smaller proportion of row crops than did the other three drains. (USGS)

  9. Mismatch between sediment metal distribution and pollution source gradient: a case study of a small-size drainage basin (Southeastern Brazil).

    PubMed

    Molisani, Mauricio Mussi; Noronha, Frederico Ricardo C; Schultz, Mario Sergio; de Rezende, Carlos Eduardo; de Almeida, Marcelo Gomes; Silveira, Carla Semiramis

    2015-06-01

    Metal contamination in aquatic environments may occur when the anthropogenic emission exceeds the natural contribution although other factors might influence the metal distribution. In the small-size Macaé river basin, most of the metal emission was originated from anthropogenic sources suggesting a contamination status. Total and exchangeable metal concentrations were determined in sediments from the pristine upstream to the urban estuary and compared to the metal content in rocks to establish contamination and background concentrations. The enrichment of Pb in sediments compared to the regional background and high exchangeable concentrations suggest the influence of anthropogenic sources on Pb distribution. Al, Fe Mn, Zn, Ba, Cu, Cr, Ni concentrations in sediments were similar to the rock content and the values were considered regional background. Spatial distribution did not follow the whole-basin emission source gradient suggesting that despite actual anthropogenic sources, the sediment mineralogy and basin geomorphology might influence the sediment metal distribution.

  10. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  11. The Automated Conflict Resolution System (ACRS)

    NASA Technical Reports Server (NTRS)

    Kaplan, Ted; Musliner, Andrew; Wampler, David

    1993-01-01

    The Automated Conflict Resolution System (ACRS) is a mission-current scheduling aid that predicts periods of mutual interference when two or more orbiting spacecraft are scheduled to communicate with the same Tracking and Data Relay Satellite (TDRS) at the same time. The mutual interference predicted has the potential to degrade or prevent communications. Thus the ACRS system is a useful tool for aiding in the scheduling of Space Network (SN) communications.

  12. Hydrogeology, water resources, and water budget of the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010

    USGS Publications Warehouse

    Darr, Michael J.; McCoy, Kurt J.; Rattray, Gordon W.; Durall, Roger A.

    2014-01-01

    The upper Rio Hondo Basin occupies a drainage area of 585 square miles in south-central New Mexico and comprises three general hydrogeologic terranes: the higher elevation “Mountain Block,” the “Central Basin” piedmont area, and the lower elevation “Hondo Slope.” As many as 12 hydrostratigraphic units serve as aquifers locally and form a continuous aquifer on the regional scale. Streams and aquifers in the basin are closely interconnected, with numerous gaining and losing stream reaches across the study area. In general, the aquifers are characterized by low storage capacity and respond to short-term and long-term variations in recharge with marked water-level fluctuations on short (days to months) and long (decadal) time scales. Droughts and local groundwater withdrawals have caused marked water-table declines in some areas, whereas periodically heavy monsoons and snowmelt events have rapidly recharged aquifers in some areas. A regional-scale conceptual water budget was developed for the study area in order to gain a basic understanding of the magnitude of the various components of input, output, and change in storage. The primary input is watershed yield from the Mountain Block terrane, supplying about 38,200 to 42,300 acre-feet per year (acre-ft/yr) to the basin, as estimated by comparing the residual of precipitation and evapotranspiration with local streamgage data. Streamflow from the basin averaged about 21,200 acre-ft/yr, and groundwater output left the basin at an estimated 2,300 to 5,700 acre-ft/yr. The other major output (about 13,500 acre-ft/yr) was by public water supply, private water supply, livestock, commercial and industrial uses, and the Bonito Pipeline. The residual in the water budget, the difference between the totals of the input and output terms or the potential change in storage, ranged from -2,200 acre-ft/yr to +5,300 acre-ft/yr. There is a high degree of variability in precipitation and consequently in the water supply; small

  13. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... materials and metallurgy. The Subcommittee will hear presentations by and hold discussions with the...

  14. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  15. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  16. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity

    PubMed Central

    Robalo, Joana I.; Pereira, Ana M.; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  17. Structural and Hydrologic Implications of Joint Orientations in the Warner Creek and Stony Clove Drainage Basins, Catskill Mountains, Eastern New York

    NASA Astrophysics Data System (ADS)

    Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.

    2010-12-01

    To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.

  18. Quaternary Stratigraphy, Drainage-Basin Development, and Geomorphology of the Lake Manix Basin, Mojave Desert: Guidebook for Fall Field Trip, Friends of the Pleistocene, Pacific Cell, October 4-7, 2007

    USGS Publications Warehouse

    Reheis, Marith C.; Miller, David M.; Redwine, Joanna L.

    2007-01-01

    The 2007 field trip of the Pacific Cell, Friends of the Pleistocene, visited features of the Quaternary geology and geomorphology of the Lake Manix basin in the Mojave Desert. This report is the guidebook for this trip and includes some discussion of relations observable along the road and at various field trip stops. The Mojave River originates in the San Bernardino Mountains and in high-water years flows north and east to its terminus in Silver Lake playa north of Baker, Calif. Along this course, the river passes through or near several basins that were internally drained prior to integration by the Mojave River, including the Victorville, Harper, Manix, and Soda Lake basins. Sediments in the Lake Manix basin record Mojave River discharge and lake fluctuations that began during the middle Pleistocene and continued through most of the late Pleistocene.

  19. Storm-runoff generation in the Permanente Creek drainage basin, west central California - An example of flood-wave effects on runoff composition

    USGS Publications Warehouse

    Nolan, K.M.; Hill, B.R.

    1990-01-01

    Variations in the isotopic and chemical composition of storm runoff in the 10.6-km2 Permanente Creek basin, Santa Clara County, California, indicate that changes in water composition lag behind changes in streamflow. This lag occurs even though field observations and rainfall-runoff modeling indicate that much of the storm runoff must be composed of "new" water running off impervious surfaces. The apparent incompatibility posed by the presence of "old" water and the direct and indirect evidence that surface runoff contributes substantially to storm runoff can be explained if initial rises in streamflow result from effects of flood waves. Flood waves composed of old channel water reach downstream locations ahead of the new water derived from impervious areas. By this mechanism, streamflow can rise rapidly in response to surface runoff and still be composed of large amounts of old water. Data collected in Permanente Creek indicate that flood waves can occur even in small basins, at least when those basins contain impervious surfaces. ?? 1990.

  20. Water-resources appraisal of the upper Arkansas River basin from Leadville to Pueblo, Colorado

    USGS Publications Warehouse

    Crouch, T.M.; Cain, Doug; Abbott, P.O.; Penley, R.D.; Hurr, R.T.

    1984-01-01

    Water used for agriculture and stock and municipal supplies in the upper Arkansas River basin is derived mostly from the Arkansas River and its tributaries. The flow regime of the river has been altered by increased reservoir capacities and importation of 69,200 acre-feet per year from the Colorado River drainage through transmountain diversions. An estimated 10.2 million acre-feet of hydrologically recoverable water is present in the first 200 feet of basin-fill alluvium. Well yields of 300 gallons per minute have been reported for the Dakota-Purgatoire aquifer aquifer located east of Canon City. Water quality of ground- and surface-water resources are generally acceptable for agriculture and stock watering, but concentrations of iron, manganese, sulfate, pH, and hardness may exceed recommended drinking-water criteria during periods of river low flow. Concentrations of mercury, selenium, and select radiochemical constituents also were high in the Dakota-Purgatoire aquifer. Dissolved solids increased downstream and in local areas as a result of water use and in the Leadville area because of mine drainage. (USGS)

  1. 76 FR 22934 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on May 11, 2011, Room T-2B3, 11545 Rockville Pike... ACRS meetings were published in the Federal Register on October 21, 2010 (75 FR 65038- 65039)....

  2. 76 FR 71609 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on December 14, 2011, Room T-2B3, 11545 Rockville Pike... ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR 64127-...

  3. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... and Probabilistic Risk Assessment The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on September 20, 2011, Room T-2B1, 11545 Rockville Pike, Rockville... ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-...

  4. 76 FR 11524 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... Boiling Water Reactors (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactors... the meeting, if possible, so that appropriate arrangements can be made. Thirty five hard copies of... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-...

  5. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting... possible, so that appropriate arrangements can be made. Thirty-five hard copies of each presentation or... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR...

  6. 77 FR 24745 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal..., ``Evaluation of Long- Term Cooling Considering Particulate, Fibrous and Chemical Debris in the Recirculating... October 17, 2011, (76 FR 64126- 64127). Detailed meeting agendas and meeting transcripts are available...

  7. 77 FR 2571 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Power Plants.'' The Subcommittee will hear presentations by and hold discussions with the NRC staff and... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on...

  8. 77 FR 56239 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Plant License...-Besse Nuclear Power station and the associated draft Safety Evaluation Report (SER) with open items....

  9. 76 FR 4738 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Plant License... Canyon Power Plant, Units 1 and 2 and the associated Safety Evaluation Report (SER) with Open Items....

  10. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae.

    PubMed

    Bobrowicz, P; Wysocki, R; Owsianik, G; Goffeau, A; Ułaszewski, S

    1997-07-01

    A 4.2 kb region from Saccharomyces cerevisiae chromosome XVI was isolated as a yeast fragment conferring resistance to 7 mM-sodium arsenite (NaAsO2), when put on a multicopy plasmid. Homology searches revealed a cluster of three new open reading frames named ACR1, ACR2 and ACR3. The hypothetical product of the ACR1 gene is similar to the transcriptional regulatory proteins, encoded by YAP1, and YAP2 genes from S. cerevisiae. Disruption of the ACR1 gene conduces to an arsenite and arsenate hypersensitivity phenotype. The ACR2 gene is indispensable for arsenate but not for arsenite resistance. The hypothetical product of the ACR3 gene shows high similarity to the hypothetical membrane protein encoded by Bacillus subtilis ORF1 of the skin element and weak similarity to the ArsB membrane protein of the Staphylococcus aureus arsenical-resistance operon. Overexpression of the ACR3 gene confers an arsenite- but not an arsenate-resistance phenotype. The presence of ACR3 together with ACR2 on a multicopy plasmid expands the resistance phenotype into arsenate. These findings suggest that all three novel genes: ACR1, ACR2 and ACR3 are involved in the arsenical-resistance phenomenon in S. cerevisiae.

  11. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  12. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos

    2011-12-01

    During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage. PMID:21862191

  13. 75 FR 51501 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and Procedures The ACRS Subcommittee on Planning and Procedures will hold a meeting on September 8, 2010,...

  14. 76 FR 44964 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-65039... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor...

  15. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems will hold a meeting...

  16. 77 FR 67688 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146-64147... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C; Notice of Meeting The ACRS Subcommittee on Digital I&C will hold a meeting on November 16, 2012, Room...

  17. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  18. Water-quality assessment of the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia; organochlorine compounds in Asiatic clam (Corbicula fluminea) soft tissues and whole redbrest sunfish (Lepomis auritus) 1992-93

    USGS Publications Warehouse

    Smith, K.E.; Ruhl, P.M.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, Asiatic clam (Corbicula fluminea) soft tissues and whole redbreast sunfish (Lepomis auritus) samples were collected and analyzed to obtain information about the occurrence and distribution of organochlorine compounds in the Albemarle-Pamlico drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. Relatively few organochlorine compounds were detected and of the compounds detected, all were detected in relatively low concentrations. The organochlorine compounds detected were p,p'-DDD, p,p'-DDE, p,p'-DDT, dieldrin, trans-nonachlor, PCB's, and toxaphene. Multiple compounds were detected at 16 of 19 sites sampled. Compared to Asiatic clams, redbreast sunfish appear to be better bioindicators of organochlorine contamination in aquatic systems. Except for one detection of toxaphene, pesticide concentrations are well below the National Academy of Sciences and National Academy of Engineering (NAS/NAE) guidelines for the protection of fish-eating wildlife.

  19. The Expanding Significance of One Acre.

    ERIC Educational Resources Information Center

    Gilbert, Daniel R., Jr.

    2003-01-01

    A management class assignment requires students to study the history and complexity of one acre of land. The intent is to develop connections between the natural environment and human acts of management, focusing on the concept of privilege. (Contains 15 references.) (SK)

  20. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Payment acres. 760.632 Section 760.632 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE... considered the same as a planting of an initial crop in tropical regions as defined in part 1437, subpart...

  1. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment acres. 760.632 Section 760.632 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE... considered the same as a planting of an initial crop in tropical regions as defined in part 1437, subpart...

  2. Rainfall-runoff characteristics and effects of increased urban density on streamflow and infiltration in the eastern part of the San Jacinto River basin, Riverside County, California

    USGS Publications Warehouse

    Guay, Joel R.

    2002-01-01

    To better understand the rainfall-runoff characteristics of the eastern part of the San Jacinto River Basin and to estimate the effects of increased urbanization on streamflow, channel infiltration, and land-surface infiltration, a long-term (1950?98) time series of monthly flows in and out of the channels and land surfaces were simulated using the Hydrologic Simulation Program- FORTRAN (HSPF) rainfall-runoff model. Channel and land-surface infiltration includes rainfall or runoff that infiltrates past the zone of evapotranspiration and may become ground-water recharge. The study area encompasses about 256 square miles of the San Jacinto River drainage basin in Riverside County, California. Daily streamflow (for periods with available data between 1950 and 1998), and daily rainfall and evaporation (1950?98) data; monthly reservoir storage data (1961?98); and estimated mean annual reservoir inflow data (for 1974 conditions) were used to calibrate the rainfall-runoff model. Measured and simulated mean annual streamflows for the San Jacinto River near San Jacinto streamflow-gaging station (North-South Fork subbasin) for 1950?91 and 1997?98 were 14,000 and 14,200 acre-feet, respectively, a difference of 1.4 percent. The standard error of the mean for measured and simulated annual streamflow in the North-South Fork subbasin was 3,520 and 3,160 acre-feet, respectively. Measured and simulated mean annual streamflows for the Bautista Creek streamflow-gaging station (Bautista Creek subbasin) for 1950?98 were 980 acre-feet and 991 acre-feet, respectively, a difference of 1.1 percent. The standard error of the mean for measured and simulated annual streamflow in the Bautista Creek subbasin was 299 and 217 acre-feet, respectively. Measured and simulated annual streamflows for the San Jacinto River above State Street near San Jacinto streamflow-gaging station (Poppet subbasin) for 1998 were 23,400 and 23,500 acre-feet, respectively, a difference of 0.4 percent. The simulated

  3. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the

  4. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  5. 77 FR 47680 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittees on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... published in the Federal Register on Wednesday, August 1, 2012 (77 FR 45698-45699). Further information... and PRA and Fukushima; Revision to Notice of Meetings The (ACRS) Subcommittee on Fukushima...

  6. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  7. 76 FR 34778 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ..., (75 FR 65038- 65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  8. 78 FR 56756 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... were published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  9. 78 FR 3474 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  10. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a...

  11. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy And Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy and...

  12. 78 FR 34677 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  13. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web..., Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a...

  14. 76 FR 72451 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ... October 17, 2011, (76 FR 64127- 64128). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  15. 78 FR 29159 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed meeting agendas and..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  16. 78 FR 31987 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... Register on October 18, 2012, (77 FR 64146- 64147). Detailed meeting agendas and meeting transcripts are..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  17. 75 FR 65036 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-21

    ... participation in ACRS meetings were published in the Federal Register on October 14, 2009, (74 FR 58268-58269... protection program transition to National Fire Protection Association (NFPA) Standard 805. The...

  18. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... participation in ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-65039... the NRC staff, Nuclear Innovation North America (NINA), and other interested persons. The...

  19. 77 FR 24745 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... Power Operations (INPO) Nuclear Safety Culture Survey. The Subcommittee will hear presentations by and... participation in ACRS meetings were published in the Federal Register on October 17, 2011, (76 FR...

  20. Unpredictability of lymphatic drainage patterns in melanoma patients.

    PubMed

    Statius Muller, Markwin G; Hennipman, Feitse A; van Leeuwen, Paul A M; Pijpers, Rik; Vuylsteke, Ronald J; Meijer, Sybren

    2002-02-01

    We analysed the localisations of sentinel nodes (SN) found with the SN procedure to compare these sites with those that would have been predicted by conventional clinical descriptions of cutaneous lymphatic drainage. We assessed the surplus value of performing the SN procedure in melanoma patients who underwent regional nodal surgery. The SN procedure was performed in 348 patients with melanomas who were referred to our institute between 1993 and 1999. The localisations of the melanomas with the corresponding SNs were meticulously recorded on drawings of the human body and grouped according to the conventional descriptions. Predictability of lymph drainage was defined as the percentage of melanomas whose draining pattern was to the ipsilateral nearest basin, without simultaneous drainage to other basins or to an interval node. In all patients the SN procedure visualised at least one SN. We found 410 lymphatic basins in 347 patients. These basins included basins that could not have been predicted by the conventional clinical descriptions, such as multiple basins and contralateral drainage sites. For the head/neck region, SNs could be found in any of the basins described in the literature. The trunk's drainage predictability depended strongly on the melanoma localisation, ranging from 0% in the midline to 92% in one of the upper quadrants. The lower extremities had a high predictability of almost 100%, and predictability of drainage for the upper extremities ranged from 77% to 100%. In total, 34% of the patients had a cutaneous lymphatic drainage that was unpredictable, either totally or partially. We therefore conclude that an SN procedure is indispensable if the drainage site(s) are to be accurately identified. PMID:11930886

  1. On the surging potential of polar ice streams: Part 2, Ice streams and physical characteristics of the Ross Sea drainage basin, West Antarctica

    SciTech Connect

    Jenssen, D.; Budd, W.F.; Smith, I.N.; Radok, U.

    1985-01-01

    The West Antarctic region from which ice drains into the Ross Sea is described and analyzed on a twenty km grid with the assumption that the ice is in a steady state of zero overall mass balance. The most striking features of the basin are five major ice streams moving in their lower reaches with velocities two orders of magnitude larger than the ice in which they are embedded. These high velocities are produced by driving stresses which markedly decrease downstream; this suggests that basal sliding takes over from internal deformation as dominant mode of flow. Algebraic expressions for both velocity components are given in terms of the downslope driving (or basal shear) stress, the ice thickness excess above the maximum thickness that can float on rock below mean sea level (''thickness above buoyancy''), and the basal temperature. Thus computed the velocities agree broadly with those derived directly from the condition of steady-state mass conservation (''balance velocities'') but there remain large local discrepancies. The latter fully define the three-dimensional strain rate fields and permit the residence times and ages of the ice to be estimated. They also enter into solutions of thermodynamic energy balance equations which give the temperatures in the ice and define regions where basal melting can be expected to occur for different values of the geothermal heat flux. The associated melt water layer is the key feature for a deeper understanding of the sliding and surging processes in ice streams and for improving the agreement between modeled and observed ice velocities.

  2. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    USGS Publications Warehouse

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    Westbury and the Syosset basins are not expected to change; however, the unit hydrograph for the Deer Park basin is expected to broaden somewhat as a result of additional future house construction within the drainage area. Infiltration rates averaged 0.9 fph (feet per hour) for 63 storms between July 1967 and May 1970 at the Westbury recharge basin, 0.8 fph for 22 storms from July 1969 to September 1970 at the Syosset recharge basin, and 0.2 fph for 24 storms from March to September 1970 at the Deer Park recharge basin. Low infiltration rates at Deer Park resulted mainly from (1) a high percentage of eroded silt, clay, and organic debris washed in from construction sites in the drainage area, which partly filled the interstices of the natural deposits, and (2) a lack of a well-developed plant-root system on the floor of the younger basin, which would have kept the soil zone more permeable. The apparent rate of movement of storm water through the unsaturated zone below each basin averaged 5.5 fph at Westbury, 3.7 fph at Syosset, and 3.1 fph at Deer Park. The rates of movement for storms during the warm months (April through October) were slightly higher than average, probably because the recharging water was warmer than it was during the rest of the year, and therefore, was slightly less viscous. On the average, a 1-inch rainfall resulted in a peak rise of the water table directly below each basin of 0.5 foot; a 2-inch rainfall resulted in a peak rise of about 2 feet. The mound commonly dissipated within 1 to 4 days at Westbury, 7 days to more than 15 days at Syosset, and 1 to 3 days at Deer Park, depending on the magnitude of the peak buildup. Average annual ground-water recharge was estimated to be 6.4 acre-feet at the Westbury recharge basin, 10.3 acre-feet at the Syosset recharge basin, and 29.6 acre-feet at the Deer Park recharge basin. Chemical composition of precipitation at Westbury, Syosset, and Deer Park drainage areas was similar:

  3. Synthesis of monthly and annual streamflow records (water years 1950-2003) for Big Sandy, Clear, Peoples, and Beaver Creeks in the Milk River basin, Montana

    USGS Publications Warehouse

    Parrett, Charles

    2006-01-01

    To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate

  4. Radiology practice models: the 2008 ACR Forum.

    PubMed

    Gunderman, Richard B; Weinreb, Jeffrey C; Van Moore, Arl; Hillman, Bruce J; Neiman, Harvey L; Thrall, James H

    2008-09-01

    The 2008 ACR Forum brought together a diverse group of participants from clinical radiology, radiology leadership and practice management, managed care, economics, law, and entrepreneurship in Washington, DC, in January 2008 to discuss current models of radiology practice and anticipate new ones. It addressed what forces shape the practice of radiology, how these forces are changing, and how radiology practices can most effectively respond to them in the future.

  5. Categorization of nocturnal drainage flows in the Anderson Creek valley

    SciTech Connect

    Gudiksen, P.H.; Walton, J.J.

    1981-06-01

    A network of eight meteorological towers was operated over about a one-year period within the Anderson Creek valley in the Geysers Geothermal Area of northern California. The purpose was to define the noctural wind and temperature structure along the valley's sloped surfaces for use in evaluating the frequency of drainage flows throughout the year and to assess the representativeness of the flows observed during the few nights that intensive studies were undertaken. (ACR)

  6. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Notification of base acres. 1412.44 Section 1412.44... Through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  7. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  8. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  9. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Notification of base acres. 1412.44 Section 1412.44... Through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  10. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  11. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  12. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  13. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  14. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  15. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  16. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  17. Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000

    USGS Publications Warehouse

    Tadayon, Saeid

    2005-01-01

    thermoelectric-power generation generally increased owing to an increase in production of electricity. Ground-water withdrawals for drainage of agricultural lands in the Lower Gila and Yuma Basins varied irregularly from year to year. Annual total water withdrawals are not presented in this report because for some years irrigation values for some of the basins are reported as 'less than 1,000 acre-feet,' and municipal and mining values for some of the basins are reported as 'less than 300 acre-feet.'

  18. 76 FR 22935 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... Safety Branch B, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on...

  19. Hydrologic Conditions and Water-Quality Conditions Following Underground Coal Mining in the North Fork of the Right Fork of Miller Creek Drainage Basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed. During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus-Plateau Mining Corporation from 1992 through 2001. Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999-2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by land

  20. Surface water of Muddy Boggy River basin in south-central Oklahoma

    USGS Publications Warehouse

    Westfall, A.O.; Cummings, T. Ray

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Muddy Boggy River basin, and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Muddy Boggy River has a drainage area of 2,429 square miles. The climate is moist subhumid and the annual precipitation averages about 39 inches. Gross annual lake evaporation averages 54 inches. The average annual discharge at the gaging stations for the period 1938-62 was 24,000 acre-feet for Chickasaw Creek near Stringtown; 72,000 acre-feet for McGee Creek near Stringtown; 671,800 acre-feet for Muddy Boggy Creek near Farris; and 358,200 acre-feet for Clear Boggy Creek near Caney. Flow-duration curves of daily discharge have been developed to show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for determining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves that define the recurrence intervals of 7, 14, 30, 60, and 120 day mean flows have been prepared for two gaging stations. Curves showing the relation of measured discharge at the low-flow partial-record stations to the daily mean discharge at a base gaging station are presented. Discharge measurements made in February 1963 at selected sites show the areal distribution of low flow. The storage requirements to supplement natural flows have been prepared for two gaging-stations sites. The chemical quality of surface water of Muddy Boggy River basin varies from place-to-place during base flow periods. Limestone and dolomite outcrops and oilfield brines affect water quality in some areas. Water of North Boggy Creek, McGee Creek, and their tributaries contains less than 100 ppm (parts per million) dissolved solids. Water of other streams in Muddy Boggy River basin has a higher dissolved-solids content, but the content does not exceed 500 ppm. Water of Muddy Boggy River basin is usable for domestic, irrigation, and

  1. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  2. 75 FR 67783 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and Procedures The ACRS Subcommittee on Planning and Procedures will hold a meeting on December 1, 2010, in Room... conduct of the meeting, persons planning to attend should check with these references if such...

  3. 77 FR 4838 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary...

  4. 75 FR 16203 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on EPR; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on EPR; Notice of Meeting The ACRS Subcommittee on the U.S. Evolutionary Power Reactor (EPR) will hold a meeting on April 20-21, 2010, at 11545 Rockville Pike, T2-...

  5. 75 FR 58448 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on October 21, 2010, at 11545... Subcommittee will review current Design Acceptance Criteria associated with Digital Instrumentation and...

  6. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on January 17... were published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed...

  7. 76 FR 64123 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on November 2..., (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on the NRC...

  8. 78 FR 17945 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 9... were published in the Federal Register on October 18, 2012, (77 FR 64146-64147). Detailed...

  9. 76 FR 5220 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on February 9, 2011, at 11545... small modular reactor applications. The Subcommittee will hear presentations by and hold...

  10. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 5, 2011, at 11545..., 10 a.m. until 5 p.m. The Subcommittee will review the NRC Staff's High Temperature Gas Cooled...

  11. 76 FR 7882 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ..., (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on the NRC Web... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation & Control (DI&C) Systems will hold a meeting...

  12. 75 FR 30077 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and meeting transcripts are... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Control (DI&C) Systems will hold a meeting...

  13. Simultaneous Exposure–Response Modeling of ACR20, ACR50, and ACR70 Improvement Scores in Rheumatoid Arthritis Patients Treated With Certolizumab Pegol

    PubMed Central

    Lacroix, B D; Karlsson, M O; Friberg, L E

    2014-01-01

    The Markovian approach has been proposed to model American College of Rheumatology's (ACR) response (ACR20, ACR50, or ACR70) reported in rheumatoid arthritis clinical trials to account for the dependency of the scores over time. However, dichotomizing the composite ACR assessment discards much information. Here, we propose a new approach for modeling together the three thresholds: a continuous-time Markov exposure–response model was developed, based on data from five placebo-controlled certolizumab pegol clinical trials. This approach allows adequate prediction of individual ACR20/50/70 time-response, even for non-periodic observations. An exposure–response was established over a large range of licensed and unlicensed doses including phase II dose-ranging data. Simulations from the model (50–400 mg every other week) illustrated the range and sustainability of response (ACR20: 56–68%, ACR50: 27–42%, ACR70: 11–22% at week 24) with maximum clinical effect achieved at the recommended maintenance dose of 200 mg every other week. PMID:25353186

  14. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  15. Surface waters of Illinois River basin in Arkansas and Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1959-01-01

    The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily

  16. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  17. 78 FR 20958 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... & PRA The ACRS Subcommittee on Reliability & PRA will hold a meeting on April 24, 2013, Room T-2B1..., presenters should provide the DFO with a CD containing each presentation at least thirty minutes before the... published in the Federal Register on October 18, 2012, (77 FR 64146- 64147). Detailed meeting agendas...

  18. 78 FR 20958 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Regulatory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... April 23, 2013, Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire meeting will be open... cannot be provided within this timeframe, presenters should provide the DFO with a CD containing each... participation in ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR...

  19. 75 FR 57536 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... published in the Federal Register on October 14, 2009, (74 FR 58268-58269). Detailed meeting agendas and... Hydraulic Phenomena The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold a meeting on October 18... 5 p.m. The Subcommittee will review the thermal-hydraulic research activities in the Office...

  20. 76 FR 24540 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... scheduled public comment period later in the year. A FR notice will be issued requesting public... October 21, 2010, (75 FR 65038-65039). Detailed meeting agendas and meeting transcripts are available on..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  1. 75 FR 66803 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Evolutionary...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... ACRS meetings were ] published in the Federal Register on October 14, 2009, (74 FR 58268- 58269... with the NRC staff, AREVA, UniStar, and other interested persons. The Subcommittee will gather... rescheduling would result in a major inconvenience. Dated: October 21, 2010. Antonio F. Dias, Chief,...

  2. 77 FR 5063 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-01

    ...), ``Preoperational Testing of Emergency Core Cooling Systems for Pressurized Water Reactors,'' and Draft Guide DG-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling Water Reactors.'' The...-Hydraulics Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal-Hydraulics Phenomena will hold...

  3. 76 FR 7882 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... Report (SSER), Supplement 22, associated with the staff's review of the Watts Bar Unit 2 Operating... ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038-65039). Detailed... facilitate the conduct of the meeting, persons planning to attend should check with these references if...

  4. 76 FR 61118 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... Bar Unit 2 Operating License application. The Subcommittee will hear presentations by and hold... ACRS meetings were published in the Federal Register on October 21, 2010, (75 FR 65038- 65039... facilitate the conduct of the meeting, persons planning to attend should check with these references if...

  5. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  6. Downeast Drainage: Characterization of Upland Drainage Attributes for Parameterization of Gulf of Maine Watersheds

    NASA Astrophysics Data System (ADS)

    Van Dam, B. M., Jr.; Smith, S. M.; Beard, K.; Peckenham, J. M.

    2014-12-01

    Research undertaken by the New England Sustainability Consortium includes use of multi-scale elevation data ranging from one arc-second (~30m) NED to two-meter LiDAR for delineation and subsequent characterization of watersheds draining to the Gulf of Maine. Watersheds within the study area range from the Penobscot River (drainage area > 22,000 km2) to small coastal streams with drainage basins <1km2. The research seeks to relate fresh water flows to water quality conditions within bathing beaches and shellfish harvesting areas along the Maine coast. Although spatial analysts typically pursue topographic data with the highest available resolution, use of multi-scale elevation data is necessary in regions where datasets are created from different survey methods. The sizes of the watersheds draining to the Gulf of Maine vary substantially, with several large interior-reaching watersheds dwarfing most of the coastal basins. An elevation raster at a two meter grid size can produce large file sizes and long processing times, presenting cost-benefit considerations due to the relatively low level of detail necessary for comparison of the largest watersheds to the rest of the study basins. Our watershed delineation method involves a multi-step approach to capture the inland portions of large watersheds using 10m and 30m USGS DEMs, while maintaining use of two-meter coastal LiDAR to accurately delineate the small coastal basins. Our delineated watersheds are parameterized based on multiple geomorphological and land use characteristics to facilitate evaluation of the relation between watershed and coastal water quality conditions at monitoring stations along the Maine coast. Landscape characteristics under consideration include watershed size (drainage area), surface drainage network density, soil drainage, vegetation cover, and impervious surface area.

  7. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  8. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  9. Water Quality Significance of Wetlands Receiving Agricultural Drainage

    NASA Astrophysics Data System (ADS)

    Stringfellow, W.; Sharon, B.; Engelage, S.; Hanlon, J.; Graham, J.; Burks, R.

    2007-12-01

    The San Joaquin Valley is one of the most productive agricultural regions in the world and this productivity is heavily dependent on irrigated agricultural. An inevitable consequence of irrigated agricultural is the generation of return-flows conveyed down-gradient in agricultural drains that eventually discharge to surface waters. Agricultural drainage often has poor water quality characteristics, but demand for water in California is high and agricultural drainage is often diverted for secondary use, including the maintenance of ponds and wetlands. Additionally, agricultural drainage often discharges into riparian wetlands, rather than into the open river channel. In this study we tested the hypothesis that wetlands were mitigating or buffering the impact of agricultural drainage and that discharge of agricultural drainage into wetland buffer zones would provide water quality benefits. Water samples were collected at wetland, agricultural, and mixed drainages in the San Joaquin River basin and analyzed for a broad array of physical and chemical water quality parameters, including nutrients and organic carbon. At selected wetlands, input-output studies were conducted to determine wetland specific water quality effects. The water quality of drainages influenced by wetlands was compared to drainages that were predominantly influenced by other types of land-use. Wetland influenced drainages are more likely to have higher DOC concentrations that other drainages, including agricultural and mixed urban-agricultural drains. Wetland dominated drainages had lower nitrates than agricultural drainages and studies of individual wetlands demonstrated that wetlands remove soluble phosphate and nitrate, but produce DOC and biochemical oxygen demand (BOD). Overall land use in a drainage was a less significant determinant of water quality than soil type and the presence or absence of wetlands. The specific trihalomethane formation potential (THMFP) of the DOC from wetland

  10. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  11. Urine drainage bags

    MedlinePlus

    ... catheter and urine drainage bag because you have urinary incontinence (leakage), urinary retention (not being able to urinate), ... wall repair Inflatable artificial sphincter Radical prostatectomy Stress urinary incontinence Urge incontinence Urinary incontinence Urinary incontinence - injectable implant ...

  12. Regulation of agricultural drainage to San Joaquin River

    SciTech Connect

    Johns, G.E.; Watkins, D.A. )

    1989-02-01

    A technical committee reported on: (1) proposed water quality objectives for the San Joaquin River Basin; (2) proposed effluent limitations for agricultural drainage discharges in the basin to achieve these objectives; and (3) a proposal to regulate these discharges. The costs and economic impact of achieving various alternative water quality objectives were also evaluated. The information gathered by the technical committee will be used by the Regional Board along with other information in their review of the San Joaquin River Basin Water Quality Control Plan and their actions to regulate agricultural drainage in the San Joaquin Valley. The results of the Technical Committee's efforts as reported in Regulation of Agricultural Drainage to the San Joaquin River, August 1987. Based on the available information, the improvement in water quality resulting from implementation of the interim selenium objective and long-term objectives for salts, molybdenum and boron is necessary to provide reasonable protection to beneficial uses. The costs needed to implement these objectives seem reasonable. However, data on the: (1) concentrations of selenium that protect aquatic ecosystems in the basin; (2) concentrations of selenium that protect human consumers of fish and wildlife; and (3) drainage flows and quality produced in and upgradient of the drainage study area need to be developed and reviewed before a long-term selenium water quality objective is implemented. 16 refs., 2 figs., 4 tabs.

  13. 12 CFR 1010.9 - Twenty acre lots.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 8 2012-01-01 2012-01-01 false Twenty acre lots. 1010.9 Section 1010.9 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION LAND REGISTRATION (REGULATION J) General Requirements § 1010.9 Twenty acre lots. (a) The sale of lots in a subdivision is exempt from the...

  14. 12 CFR 1010.9 - Twenty acre lots.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 8 2014-01-01 2014-01-01 false Twenty acre lots. 1010.9 Section 1010.9 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION LAND REGISTRATION (REGULATION J) General Requirements § 1010.9 Twenty acre lots. (a) The sale of lots in a subdivision is exempt from the...

  15. 12 CFR 1010.9 - Twenty acre lots.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 8 2013-01-01 2013-01-01 false Twenty acre lots. 1010.9 Section 1010.9 Banks and Banking BUREAU OF CONSUMER FINANCIAL PROTECTION LAND REGISTRATION (REGULATION J) General Requirements § 1010.9 Twenty acre lots. (a) The sale of lots in a subdivision is exempt from the...

  16. A reconnaissance of hydrogeologic conditions in Lehigh Acres and adjacent areas of Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.

    1975-01-01

    Lehigh Acres, a residential community with a population of about 13,500 and comprising an area of about 94 square miles (243 square kilometres) in the eastern part of Lee County, has been under development since 1954. Prior to development the area was poorly drained. By 1974, more than 150 miles (241 kilometres) of drainageways had been constructed to drain the area. The water-bearing formations underlying Lehigh Acres include the water-table, sandstone, lower Hawthorn, and Suwannee aquifers. The water-table aquifer is usually not more than 30 feet (9 metres) thick; it contains water of relatively good quality, except for iron and color. Water levels in this aquifer probably have been affected by construction of drainage canals. The sandstone aquifer, used extensively throughout the area as a source of water supply usually contains water of good quality although the water is hard and in places may contain concentrations of dissolved solids and iron which exceed the recommended limits of the U.S. Public Health Service and the State of Florida for drinking water. The lower Hawthorn and Suwannee aquifers, usually encountered at depths between 440 and 850 feet (135 and 262 metres), contains water with relatively high concentrations of sodium, sulfate, chloride, and dissolved solids. Three streams, the Orange River, Hickey Creek, and Bedman Creek and the canals connected to them, provide drainage of the area. Except for the Orange River, where the water is of good chemical quality, little is known of the water quality. Similarly, little information is available on stream discharge except for the Orange River where the average annual discharge was 41.1 cubic feet per second (11.6 cubic metres per second) between 1935-46. Most lakes and ponds in Lehigh Acres are hydraulically connected to the water-table aquifer such that factors which affect one also affect the other. Theoretical drawdown curves indicate that the drainage canals may affect ground-water levels to a

  17. Licensing the ACR in the USA - A Status Report

    SciTech Connect

    Snell, Victor; Langman, Vince; Ion, Robert; Reid, Calvin

    2004-07-01

    The ACR-700 (ACR) is an evolutionary reactor design, which incorporates the inherent safety features of the Candu products, as well as the successful operating experience of the current Candu 6 reactors. The improvements to the ACR from Candu 6 result in significant reductions in capital and operating costs as well as enhanced safety. AECL Technologies (AECLT, a wholly owned US subsidiary of Atomic Energy of Canada Limited) is the proponent for the ongoing pre-application review of the ACR with the US Nuclear Regulatory Commission (NRC) in the United States. This pre-application review will be completed shortly and will support an application to the USNRC for Standard Design Certification (SDC). AECL Technologies' overall objective for the pre-application review of the ACR is to obtain an understanding of the scope, cost, and the schedule to obtain a Standard Design Certification for the ACR. The pre-application review will address licensing issues associated with the Candu reactor technologies in ACR that depart from the light water reactor, pressure-vessel based regulatory framework in the USA. Therefore, during the course of the ACR pre-application review, major USNRC issues with the ACR design will be identified early and the scope of the work required to address these concerns, along with associated completion schedules, will be formulated and ultimately agreed upon with the USNRC. AECLT has been informed by the NRC staff that the results of their pre-application review will be documented in a Safety Assessment Report (SAR), which will state whether there are any major impediments to licensing the ACR in the United States. In particular, the SAR should provide confirmation of the licensing criteria applicable to the ACR, provide an assessment of the completeness of AECL's Research and Development (R and D) programs that exist or are planned in support of the ACR, provide an assessment of the suitability for purpose of the computer codes used in the safety

  18. Algal-bacterial treatment facility removes selenium from drainage water

    SciTech Connect

    Quinn, Nigel W.T.; Lundquist, Tryg J.; Green, F. Bailey; Zarate, Max A.; Oswald, William J.; Leighton, Terrance

    2000-01-25

    A demonstration algal-bacterial selenium removal (ABSR) facility has been treating agricultural drainage water in the Panoche Drainage District on the west side of the San Joaquin Valley since 1997. The project goals are to demonstrate the effectiveness of the ABSR technology for selenium removal, to investigate potential wildlife exposure to selenium at full-scale facilities, and to develop an operational plant configuration that will minimize the life-cycle cost for each pound of selenium removed. The facility consists of a series of ponds designed to promote native microorganisms that remove nitrate and selenium. Previous treatment research efforts sought to reduce selenium concentrations to less than 5 mu g/L, but the ABSR Facility demonstration focuses on providing affordable reduction of the selenium load that is discharged to the San Joaquin River. During 1997 and 1998, the best-performing ABSR plant configuration reduced nitrate by more than 95 percent and reduced total soluble selenium mass by 80 percent. Ongoing investigations focus on optimizing operational parameters and determining operational costs and scale-up engineering requirements. The preliminary total cost estimate for a 10-acre-foot per day ABSR facility is less than $200 per acre-foot of treated drainage water.

  19. 77 FR 36017 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ...; Cancellation of the June 19, 2012 ACRS Subcommittee Meeting The ACRS Subcommittee meeting on Digital I&C scheduled for June 19, 2012 has been cancelled. The notice of this meeting was previously published in the Federal Register on Monday, June 4, 2012, (77 FR 33003-33004). Information regarding this meeting can...

  20. 78 FR 8202 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-05

    ... and/or written comments should notify the Designated Federal Official (DFO), Girija Shukla (Telephone... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146- 64147.../reading-rm/doc-collections/acrs . Information regarding topics to be discussed, changes to the...

  1. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR The... that may be closed to protect information that is propriety pursuant to 5 U.S.C. 552(c)(4). The...

  2. 77 FR 56240 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR...(c)(4). The agenda for the subject meeting shall be as follows: Thursday, September 20, 2012-8:30...

  3. 78 FR 47802 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...)(4). The agenda for the subject meeting shall be as follows: Tuesday, September 17, 2013--8:30...

  4. Impact of land drainage on peatland hydrology.

    PubMed

    Holden, J; Evans, M G; Burt, T P; Horton, M

    2006-01-01

    There is a long history of drainage of blanket peat but few studies of the long-term hydrological impact of drainage. This paper aims to test differences in runoff production processes between intact and drained blanket peat catchments and determine whether there have been any long-term changes in stream flow since drainage occurred. Hillslope runoff processes and stream discharge were measured in four blanket peat catchments. Two catchments were drained with open-cut ditches in the 1950s. Ditching originally resulted in shorter lag times and flashier storm hydrographs but no change in the annual catchment runoff efficiency. In the period between 2002 and 2004, the hydrographs in the drained catchments, while still flashy, were less sensitive to rainfall than in the 1950s and the runoff efficiency had significantly increased. Drains resulted in a distinctive spatial pattern of runoff production across the slopes. Overland flow was significantly lower in the drained catchments where throughflow was more dominant. In the intact peatlands, matrix throughflow produced by peat layers below 10 cm was rare and produced <1% of the runoff. However, in drained peatlands, matrix throughflow in deeper peat layers was common and provided around 23% of the runoff from gauged plots. Macropore flow, the density of soil piping, and pipeflow were significantly greater in drained peatlands than in intact basins. Gradual changes to peat structure could explain the long-term changes in river flow, which are in addition to those occurring in the immediate aftermath of peatland drainage.

  5. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  6. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  7. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  8. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  9. ACR Appropriateness Criteria Osteonecrosis of the Hip.

    PubMed

    Murphey, Mark D; Roberts, Catherine C; Bencardino, Jenny T; Appel, Marc; Arnold, Erin; Chang, Eric Y; Dempsey, Molly E; Fox, Michael G; Fries, Ian Blair; Greenspan, Bennett S; Hochman, Mary G; Jacobson, Jon A; Mintz, Douglas N; Newman, Joel S; Rosenberg, Zehava S; Rubin, David A; Small, Kirstin M; Weissman, Barbara N

    2016-02-01

    Osteonecrosis of the hip (Legg-Calvé-Perthes) is a common disease, with 10,000-20,000 symptomatic cases annually in the United States. The disorder affects both adults and children and is most frequently associated with trauma and corticosteroid usage. The initial imaging evaluation of suspected hip osteonecrosis is done using radiography. MRI is the most sensitive and specific imaging modality for diagnosis of osteonecrosis of the hip. The clinical significance of hip osteonecrosis is dependent on its potential for articular collapse. The likelihood of articular collapse is significantly increased with involvement of greater than 30%-50% of the femoral head area, which is optimally evaluated by MRI, often in the sagittal plane. Contrast-enhanced MRI may be needed to detect early osteonecrosis of the hip in pediatric patients, revealing hypoperfusion. In patients with a contraindication for MRI, use of either CT or bone scintigraphy with SPECT (single-photon emission CT) are alternative radiologic methods of assessment. Imaging helps guide treatment, which may include core decompression, osteotomy, and ultimately, need for joint replacement. The ACR Appropriateness Criteria(®) are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. PMID:26846390

  10. Skeletonizing a DEM into a drainage network

    NASA Astrophysics Data System (ADS)

    Meisels, Amnon; Raizman, Sonia; Karnieli, Arnon

    1995-02-01

    A new method for extracting drainage systems from Digital Elevation Models (DEMs) is presented. The main algorithm of the proposed method performs a skeletonization process of the set of elevations in the DEM and produces a skeleton of flow paths. An enumeration algorithm performs the removal of loops from the initial flow path. A preprocess for filling depressions is described as is the necessary postprocessing for determining the drainage network through depressions. The new method does not suffer from any of the maladies of former methods described in the literature, such as flow cutoffs, loops of flow, and basin flooding. The new method is tested on several real-world DEMs and produced connected, complete, and loopless networks.

  11. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect

  12. Fluvial drainage systems: Margaritifer Sinus and Agyre (NC, NE) quadrangles, Mars

    NASA Astrophysics Data System (ADS)

    Boothroyd, J. C.; Grant, J. A.

    1984-04-01

    Fluvial drainage systems, delineated by mapping on stereo pairs of Viking Orbiter images, have developed in various-sized basins in the Margaritifer Sinus (MC-19) and Agyre (MC-26) Quadrangles, Mars. The Ladon Valles system is the largest, draining into and through two multi-ringed impact basins. Smaller fluvial basins to the southeast of the Ladon structural basin appear to have internal drainage. An intermediate-scale fluvial basin containing Himera Vallis extends along a north-south axis at 22 W and opens northward toward outflow channels south of Margaritifer Chaos. Stereo-pair mapping was extended furhter to the east, in MC-19 Ne, Se, and MC-26 NE, to investigate sources of outflow to the Ares Vallis system. The direction of flow in the channel at the northeast quadrant of the Ladon Basin is unresolved at present because of the poor quality of images available to form stereo pairs. However, an easterly drainage basin boundary running north-south along longitude 9 W, and extending westward at latitude 32-35 S, encloses a series of longitudinal drainage systems. Both the Parana Valles-Loire Vallis system and the Samara Valles system appear to drain in a northwesterly direction. The Samara flows to the Himera drainage basin, and the Parana-Loire to the northeast Ladon channel area.

  13. 7 CFR 1924.108 - Grading and drainage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... exposed for long periods during construction. (d) Storm water systems. The design of storm water systems... basin level. Storm water systems should be compatible with the natural features of the site. In areas with inadequate drainage systems, permanent or temporary storm water storage shall be an integral...

  14. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  15. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  16. Conceptual model of the Great Basin carbonate and alluvial aquifer system

    USGS Publications Warehouse

    Heilweil, Victor M.; Brooks, Lynette E.

    2011-01-01

    Prior to groundwater development, total groundwater discharge was estimated to be 4,200,000 acre-ft/yr with an uncertainty of ± 30 percent (± 1,300,000 acre-ft/yr). The two major components of discharge are evapotranspiration and springs. Estimated groundwater discharge to evapotranspiration and springs for predevelopment conditions was 1,800,000 acre-ft/yr and 990,000 acre-ft/yr, respectively. Other forms of discharge include discharge to basin-fill streams/lakes/reservoirs (660,000 acre-ft/yr), disc

  17. 6. View northeast of Ten Acre Lot with Joseph Fry ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. View northeast of Ten Acre Lot with Joseph Fry Farm complex (center) and Beehive House (right)in the background - Joseph Fry Farm Landscape, 2153 South County Trail Road (U.S. Route 2), East Greenwich, Kent County, RI

  18. 24 CFR 1710.9 - Twenty acre lots.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION General Requirements § 1710.9 Twenty acre lots. (a) The sale of lots in a subdivision is exempt from the registration requirements...

  19. 24 CFR 1710.9 - Twenty acre lots.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVELOPMENT (INTERSTATE LAND SALES REGISTRATION PROGRAM) LAND REGISTRATION General Requirements § 1710.9 Twenty acre lots. (a) The sale of lots in a subdivision is exempt from the registration requirements...

  20. The Raft River Basin, Idaho-Utah as of 1966: A reappraisal of the water resources and effects of ground-water development

    USGS Publications Warehouse

    Walker, E.H.; Dutcher, L.C.; Decker, S.O.; Dyer, K.L.

    1970-01-01

    The Raft River basin, mostly in south-central Idaho and partly in Utah, is a drainage basin of approximately 1,510 square miles. Much arable land in the basin lacks water for irrigation, and the potentially irrigable acreage far exceeds the amount that could be irrigated with the 140,000 acre-feet estimated annual water yield. Therefore, the amount of uncommitted water that could be intercepted and used within the basin is the limiting factor in further development of agriculture irrigated with water derived from within the basin; Water for additional irrigation might be obtained by pumping more ground water, but only if large additional ground-water storage depletion can be tolerated. Alternatively, supplemental water might be imported. The Raft River basin is an area of rugged mountain ranges, aggraded alluvial plains, and intermontane valleys. Topography and geologic structure strongly influence the climate and hydrology. The Raft River rises in the Goose Creek Range of northwestern Utah and flows generally northeastward and northward, joining the Snake River in the backwater of Lake Walcott. The climate ranges from cool subhumid in the mountains to semiarid on the floor of the Raft River valley. Precipitation ranges from less than l0 inches on the valley floor to more than 30 inches at some places in the mountains. Rainfall is light during the growing season of about 100 days, and irrigation is necessary for most cultivated crops. About 87,000 acres of land was irrigated in the 1960's, on the average, and most of that is in the lower Raft River valley. Nearly all usable surface water in the basin is diverted for irrigation and as of 1966 less than 20,000 acres were irrigated exclusively with surface water. Most stock, farm, and domestic water is from wells. Irrigation with ground water is Widely practiced and about 69,000 acres were irrigated partly or wholly with ground water in, 1966. In 1963 the valley was closed to further issuance of permits to appropriate

  1. Ground water in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  2. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Things to Know About Zika & Pregnancy Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A Text Size What's in ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  3. Physical modeling of transverse drainage mechanisms

    NASA Astrophysics Data System (ADS)

    Douglass, J. C.; Schmeeckle, M. W.

    2005-12-01

    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  4. 75 FR 1831 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP1000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-13

    ... October 14, 2009 (74 FR 58268-58269). Detailed ACRS meeting agendas and meeting transcripts are available... Federal Official (DFO), Mr. Peter Wen, (Telephone 301-415-2832, E-mail: Peter.Wen@nrc.gov ) five...

  5. 78 FR 27443 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ...-1210), ``Developing Software Life-Cycle Processes for Digital Computer Software Used in Safety Systems... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146-64147)....

  6. 78 FR 50457 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... identification of digital system failure modes and use of hazard analysis methods for digital safety systems. The... ACRS meetings were published in the Federal Register on October 18, 2012, (77 FR 64146-64147)....

  7. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    SciTech Connect

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    2011-06-20

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location

  8. Minerals and mine drainage

    SciTech Connect

    Liang, H.C.; Thomson, B.M.

    2009-09-15

    A review of literature published in 2008 and early 2009 on research related to the production of acid mine drainage and/or in the dissolution of minerals as a result of mining, with special emphasis on the effects of these phenomena on the water quality in the surrounding environment, is presented. This review is divided into six sections: 1) Site Characterization and Assessment, 2) Protection, Prevention, and Restoration, 3) Toxicity Assessment, 4) Environmental Fate and Transport, 5) Biological Characterization, and 6) Treatment Technologies. Because there is much overlap in research areas associated with minerals and mine drainage, many papers presented in this review can be classified into more than one category, and the six sections should not be regarded as being mutually-exclusive, nor should they be thought of as being all-inclusive.

  9. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  10. Agricultural drainage practices in Ireland

    NASA Astrophysics Data System (ADS)

    Ryan, T. D.

    1986-02-01

    Agricultural drainage practices are reviewed under two main headings: arterial drainage of river catch-ments by developing main channels, and field drainage of smaller parcels of land using pipes and open trenches. The use of cost/benefit analysis on the arterial drainage program is considered and the inherent errors are discussed. Conservation of the environment is described as it applies to land-scaping, fisheries, and wildlife, and the drainage authorities are shown to have an enlightened attitude to proper preservation of the world around us.

  11. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  12. Determination of the Relationship between Hydrologic Processes and Basin Morphometry - The Lamos Basin (Mersin, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldırım, Ümit; Güler, Cüneyt

    2016-04-01

    This study has been carried out to determine the relationship between hydrologic processes and basin morphometry in the Lamos Basin, which is located at the northern part of the Mersin (SE Turkey). The morphometric parameters of the basin was derived from the 1:25K scale topographic map sheets that were digitized using ArcGIS 9.3.1 geographic information system (GIS) software. Morphometric parameters considered in this study include basin area, basin length, basin perimeter length, stream order, stream number, stream length, mean stream length, basin relief, drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio, and hypsometric integral. The results have shown that there are 1252 individual stream reaches with a total length of 1414.1 km in the Lamos basin, which covers an area of 1358 km2 and has a length of 103 km in the N-S direction. Furthermore, the basin has a medium drainage density of 1.04 1/km with a stream frequency and drainage texture values of 0.92 and 4.33, respectively. The basin can be classified as elongated because of the low values of elongation ratio (0.48) and form factor (0.12). The hypsometric integral of the basin (0.58) indicates that it is in the youth period and thus reasonably sensitive to erosion. The values of drainage texture, drainage density, and stream frequency indicate that the Lamos basin is moderately well drained, therefore overland flow in the basin is not expected to be so quick. Thus, in case of occurrence of sudden peak flows, sensitivity to the land sliding and erosion may increase further. As a result, it is suggested that human activities in the basin should be limited in areas in fairly close proximity to the present day stream network to prevent or reduce the risk to life and property.

  13. Quantity and quality of stormwater runoff recharged to the Floridan aquifer system through two drainage wells in the Orlando, Florida area

    SciTech Connect

    German, E.R.

    1989-01-01

    Quantity and quality of inflow to two drainage wells in the Orlando, Fla., area were determined for the period April 1982 through March 1983. The wells, located at Lake Midget and at Park Lake, are used to control the lake levels during rainy periods. The lakes receive stormwater runoff from mixed residential-commercial areas of about 64 acres (Lake Midget) and 96 acres (Park Lake) and would frequently flood adjacent areas if the wells did not drain the excess stormwater. These lakes and wells are typical of stormwater drainage systems in the area.

  14. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; a summary of selected trace element, nutrient, and pesticide data for bed sediments, 1969-90

    USGS Publications Warehouse

    Skrobialowski, S.C.

    1996-01-01

    Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen

  15. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  16. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  17. Hydrology of the Price River basin, Utah, with emphasis on selected coal-field areas

    USGS Publications Warehouse

    Waddell, Kidd M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1986-01-01

    Data obtained during a hydrologic study of the Price River basin, Utah, are used to describe seasonal variations of flow of springs, relation between ground water and surface water, hydraulic properties of the ground-water reservoir, ground-water recharge and discharge, flood characteristics of streams, mineralogic composition and depositional rates of sediments, nutrient and inorganic loading in streams and Scofield Reservoir, and water budgets for selected basins. Additional study and monitoring are needed to detect possible hydrologic changes caused by coal mining. Much of the ground-water discharge from the Star Point Sandstone in the Mesaverde Group in the Wasatch Plateau occurs along faults. In the Book Cliffs, where faulting is less extensive, most of the ground-water discharge is from the Flagstaff Limestone. The Flagstaff Limestone is greatly diffusive, has a small storage coefficient, and contains water which is perched. Springs issuing from the Star Point Sandstone in the Mud Creek drainage (Wasatch Plateau) had recession indexes greater than 365 days per log cycle. Springs issuing at higher altitudes from the Colton Formation and the Flagstaff Limestone in the Soldier Creek area (Book Cliffs) have great seasonal variability, with recession indexes ranging from 24 to 115 days per log cycle. Estimated transmissivities in the Soldier Creek area ranged from 0.003 foot squared per day in the lower part of the Castlegate Sandstone to 0.07 foot squared per day in the Price River Formation. Seepage from the Star Point Sandstone is the major contributor to base flow of the stream in Eccles Canyon (Wasatch Plateau). Gains of as much as 230 gallons per minute occurred near a fault zone which crosses Eccles Canyon at the junction with South Fork Canyon. The potentiometric surface of water in the Blackhawk Formation in the Wasatch Plateau (Mud Creek drainage) and the Book Cliffs (Soldier Creek area) generally is above the coal zones, and dewatering will be necessary

  18. Storm water management: Potential for lower cost & more benefits if farmers & municipalities cooperate on tile drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common approach to protect communities from the ravages of stream flooding is to construct storm water retention basins upstream from the property to be protected. Retention basins are an expensive solution and often take valuable agricultural land out of production. Improved drainage of agricultu...

  19. Nitrogen budget in the Changjiang River drainage area

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Yu, Zhiming; Song, Xiuxian; Cao, Xihua

    2012-07-01

    We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km2, large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.

  20. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... year, adjust the base acres for covered commodities and peanuts with respect to the farm by the...