Science.gov

Sample records for acre drainage basin

  1. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  2. Fractal Analysis of Drainage Basins on Mars

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Marinova, M. M.; McGovern, P. J.; Clifford, S. M.

    2002-01-01

    We used statistical properties of drainage networks on Mars as a measure of martian landscape morphology and an indicator of landscape evolution processes. We utilize the Mars Orbiter Laser Altimeter (MOLA) data to construct digital elevation maps (DEMs) of several, mostly ancient, martian terrains. Drainage basins and channel networks are computationally extracted from DEMs and their structures are analyzed and compared to drainage networks extracted from terrestrial and lunar DEMs. We show that martian networks are self-affine statistical fractals with planar properties similar to terrestrial networks, but vertical properties similar to lunar networks. The uniformity of martian drainage density is between those for terrestrial and lunar landscapes. Our results are consistent with the roughening of ancient martian terrains by combination of rainfall-fed erosion and impacts, although roughening by other fluvial processes cannot be excluded. The notion of sustained rainfall in recent Mars history is inconsistent with our findings.

  3. Thermokarst lakes, drainage, and drained basins

    USGS Publications Warehouse

    Grosse, G.; Jones, B.; Arp, C.; Shroder, John F.

    2013-01-01

    Thermokarst lakes and drained lake basins are widespread in Arctic and sub-Arctic permafrost lowlands with ice-rich sediments. Thermokarst lake formation is a dominant mode of permafrost degradation and is linked to surface disturbance, subsequent melting of ground ice, surface subsidence, water impoundment, and positive feedbacks between lake growth and permafrost thaw, whereas lake drainage generally results in local permafrost aggradation. Thermokarst lakes characteristically have unique limnological, morphological, and biogeochemical characteristics that are closely tied to cold-climate conditions and permafrost properties. Thermokarst lakes also have a tendency toward complete or partial drainage through permafrost degradation and erosion. Thermokarst lake dynamics strongly affect the development of landscape geomorphology, hydrology, and the habitat characteristic of permafrost lowlands.

  4. Natural water loss in selected drainage basins

    USGS Publications Warehouse

    Williams, Gordon R.

    1940-01-01

    Determinations of areal rainfall, run-off, and water loss, comprising largely evaporation from land surfaces and transpiration by vegetation, are essential in indicating the hydrologic characteristics of river basins. This report is primarily a statistical study that presents the results of computations of annual water loss, or annual rainfall minus annual run-off, for river basins in the humid or semiarid regions east of the Rocky Mountains. The basic period for which the computations are made is the water year or year ending September 30. As it is impractical to present in this report all the basic data used in arriving at the results, only sample computations are given. The various steps in the computations and the probable accuracy of the results are discussed. The drainage areas for which data are presented are those above river-measuring stations that have records for 3 years or more. For each area there are determinations of annual rainfall, annual run-off, and annual water loss for each year of record .as well as the means for the period of record. Results are given for about 200 drainage areas with an aggregate period of record of more than 2,000 years. As an illustration of the magnitude involved, the annual water loss from the eastern streams draining directly into the Atlantic Ocean varies more or less closely with latitude from about 20 inches as an average in northern New England to about 30 inches in Georgia. As the annual water loss from a basin is affected by the temperature, a supplemental study was made of the relation between water loss and temperature. For 28 drainage areas selected in various parts 8f eastern and central United States, average temperatures were computed for each year of the period shown in table 1. The results indicate a relation between average annual water loss and average annual temperature.

  5. Subsurface recharge to the Tesuque aquifer system from selected drainage basins along the western side of the Sangre de Cristo Mountains near Santa Fe, New Mexico

    USGS Publications Warehouse

    Wasiolek, Maryann

    1995-01-01

    Water budgets developed for basins of five streams draining the western side of the Sangre de Cristo Mountains in northern New Mexico indicate that subsurface inflow along the mountain front is recharging the Tesuque aquifer system of the Espanola Basin. Approximately 14,700 acre-feet of water per year, or 12.7 percent of average annual precipitation over the mountains, is calculated to leave the mountain block and enter the basin as subsurface recharge from the drainage basins of the Rio Nambe, Rio en Medio, Tesuque Creek, Little Tesuque Creek, and Santa Fe River. About 5,520 acre- feet per year, or about 12 percent of average annual precipitation, is calculated to enter from the Rio Nambe drainage basin; about 1,710 acre- feet per year, or about 15 percent of average annual precipitation, is calculated to enter from the Rio en Medio drainage basin; about 1,530 acre- feet, or about 10 percent of average annual precipi- tation, is calculated to enter from the Tesuque Creek drainage basin; about 1,790 acre-feet, or about 19 percent of average annual precipitation, is calculated to enter from the Little Tesuque Creek drainage basin; and about 4,170 acre-feet per year, or about 12 percent average annual precipitation, is calculated to enter from the Santa Fe River drainage basin. Calculated subsurface recharge values were used to define maximum fluxes permitted along the specified-flux boundary defining the mountain front of the Sangre De Cristo Mountains in a numerical computer model of the Tesuque aquifer system near Santa Fe, New Mexico.

  6. Drainage basins and channel incision on Mars.

    PubMed

    Aharonson, Oded; Zuber, Maria T; Rothman, Daniel H; Schorghofer, Norbert; Whipple, Kelin X

    2002-02-19

    Measurements acquired by the Mars Orbiter Laser Altimeter on board the Mars Global Surveyor indicate that large drainage systems on Mars have geomorphic characteristics inconsistent with prolonged erosion by surface runoff. We find the topography has not evolved to an expected equilibrium terrain form, even in areas where runoff incision has been previously interpreted. By analogy with terrestrial examples, groundwater sapping may have played an important role in the incision. Longitudinally flat floor segments may provide a direct indication of lithologic layers in the bedrock, altering subsurface hydrology. However, it is unlikely that floor levels are entirely due to inherited structures due to their planar cross-cutting relations. These conclusions are based on previously unavailable observations, including extensive piece-wise linear longitudinal profiles, frequent knickpoints, hanging valleys, and small basin concavity exponents.

  7. Basinsoft, a computer program to quantify drainage basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    2001-01-01

    In 1988, the USGS began developing a program called Basinsoft. The initial program quantified 16 selected drainage basin characteristics from three source-data layers that were manually digitized from topographic maps using the versions of ARC/INFO, Fortran programs, and prime system Command Programming Language (CPL) programs available in 1988 (Majure and Soenksen, 1991). By 1991, Basinsoft was enhanced to quantify 27 selected drainage-basin characteristics from three source-data layers automatically generated from digital elevation model (DEM) data using a set of Fortran programs (Majure and Eash, 1991: Jenson and Dominique, 1988). Due to edge-matching problems encountered in 1991 with the preprocessing

  8. Canyon drainage induced mixing over a large basin

    SciTech Connect

    Stalker, J.

    2000-05-01

    Complex terrain surrounding urbanized basins around the world has long been recognized to strongly affect the characteristics of vertical transport and mixing of pollutants. The Department of Energy's Vertical Transport and Mixing (VTMX) program will investigate mixing processes within night-time boundary layers over large urban basins. The program will launch several field experiments within the Salt Lake City basin in the coming years. This modeling study, like many other studies being undertaken by the participants of the VTMX programs, is intended to complement the proposed field experiments by numerically examining some of the flow interactions known to occur in large basins. Using idealized simulations, we particularly investigate drainage flows from deep canyons similar to those along the Wasatch Front into the Salt Lake City basin. Literature shows that under favorable conditions, drainage flows can generate bore waves that may propagate ahead of the density current (e.g., Simpson 1969; Simpson 1982; Crook and Miller 1985). Existence and frequency of such bore waves can profoundly influence the spatial and temporal variability of vertical transport and mixing within large basins. If bore waves do occur on a regular basis within the Salt Lake City basin (a task for the upcoming experiments to determine), then understanding the basin-scale conditions under which these waves are produced and how they may propagate and interact with the city's buildings will be of great importance in characterizing transport and mixing processes within the basin.

  9. Agricultural Drainage Water Management in the Upper Mississippi River Basin: Potential Impact and Implementation Strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Drainage practices alter the ...

  10. Implication of drainage basin parameters of a tropical river basin of South India

    NASA Astrophysics Data System (ADS)

    Babu, K. J.; Sreekumar, S.; Aslam, Arish

    2016-03-01

    Drainage morphometry provides quantitative description of the drainage system which is an important aspect of the characterisation of watersheds. Chalakudi River is one of the important rivers of the South India which has attracted attention of many environmental scientists recently because of the proposed Athirapally Hydel Project across the river. SRTM (Shuttle Radar Topographic Mission) data were used for preparing DEM (Digital Elevation Model), Aspect Map and Slope Map. Geographical Information System (GIS) was used for the evaluation of linear, areal and relief aspects of morphometric parameters. The study reveals that the terrain exhibits dentritic and trellis pattern of drainage. The Chalakudi River Basin has a total area of 1,448.73 km2 and is designated as seventh-order basin. The drainage density of the basin is estimated as 2.54 and the lower-order streams mostly dominate the basin. The high basin relief indicates high runoff and sediment transport. The elongation ratio of the Chalakudi Basin is estimated as 0.48 and indicates that the shape of the basin is elongated. The development of stream segments in the basin area is more or less effected by rainfall. Relief ratio indicates that the discharge capability of watershed is very high and the groundwater potential is meagre. The low value of drainage density in spite of mountainous relief indicates that the area is covered by dense vegetation and resistant rocks permeated by fractures and joints. These studies are helpful in watershed development planning and wise utilization of natural resources.

  11. Erosion and deposition as indicated by sediment accumulation in stock reservoirs in the Powder River drainage basin, Wyoming

    USGS Publications Warehouse

    Roach, Carl H.; Colby, Bruce R.

    1957-01-01

    This report gives the results of an investigation by the U.S. Geological Survey and U.S. Bureau of Reclamation of sediment accumulation in stock reservoirs in the powder River drainage basin upstream from Arvada, Wyo. The study was made to determine the net rates of erosion in the upland areas and the effects of the reservoirs on the amount of sediment transported to the parent stream. The climate of the area ranges from cold and humid on the high mountains to warm and semiarid on the plains. The average annual precipitation ranges from less than 15 inches on the plains to more than 27 inches in the high mountains, which have a maximum altitude of 13,165 feet. The rocks in the Powder River drainage basin range in age from Precambrian to Recent. The 25 stock reservoirs that were used in the study have drainage areas of 0.09 to 3.53 square miles, are from 3 to 51 years old, and impound water from areas that have land slopes averaging from about 3 to 41 percent. The ratio of average reservoir capacity to drainage area ranges from about 2 to nearly 200 acre-feet per square mile. After adjustment for trap efficiency the average annual sediment yield to the 25 reservoirs ranged from 0.04 to 1.49 acre-feet per square mile and averaged 0.50 acre-foot per square mile of drainage area. The average sediment yield from 6 drainage areas mostly underlain by shale was 0.80 acre-foot per year, 2.3 times greater than yields from the areas underlain by sandstone or sandy shales. Correlations show that the sediment yield increased approximately as the 1.5 power of the channel density, the 0.4 power oif the shape factor, the 0.7 power of the average land slope, and the -0.25 power of the age of the reservoir. Empirical equations for sediment yield and trap efficiency for the area studied are given.

  12. Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain

    NASA Astrophysics Data System (ADS)

    Stokes, Martin

    2008-08-01

    The Vera basin is one of a series of interconnected Neogene-Quaternary sedimentary basins located within the Internal Zone of the Betic Cordillera (southeast Spain). Since the Pliocene the Vera basin has been subjected to low uplift rates (11-21 m Ma - 1 ) and inverted via compressive tectonics that are related to the ongoing oblique collision between the African and Iberian plates. Within this paper the sedimentary and geomorphic response to basin inversion is explored. Sedimentary processes and environments are established for key stratigraphic units of the Pliocene/Plio-Pleistocene basin fill and Pleistocene dissectional landscape. These data are subsequently utilised to reconstruct an evolving basin palaeogeography. Fault and uplift data are employed to discuss the role of tectonically driven basin inversion for controlling the resultant palaeogeographic changes and associated patterns of drainage development. During the Early-Mid Pliocene the Vera basin was characterised by shallow marine shelf conditions (Cuevas Formation). A major palaeogeographic reorganisation occurred during the Mid-Late Pliocene. Strike-slip movement along the eastern basin margin, coupled with uplift and basin emergence created a protected, partially enclosed marine embayment that was conducive for Gilbert-type fan-delta sedimentation from fluvial inputs along the northern and eastern basin margins (Espíritu Santo Formation). The Vera basin then became fully continental and internally drained through the development of a consequent drainage network that formed following the withdrawal of marine conditions during the Late Pliocene to Early Pleistocene. Alluvial fans developed along the northern and western basin margins, grading to a bajada and terminating in a playa lake in central basin areas (Salmerón Formation). During the Early-Mid Pleistocene a switch from basin infilling to dissection took place, recorded by alluvial fan incision, a switch to braided river sedimentation and

  13. Critical Concavity of a Drainage Basin for Steady-State

    NASA Astrophysics Data System (ADS)

    Byun, Jongmin; Paik, Kyungrock

    2015-04-01

    Longitudinal profiles of natural streams are known to show concave forms. Saying A as drainage area, channel gradient S can be expressed as the power-law, S≈A-θ (Flint, 1974), which is one of the scale-invariant features of drainage basin. According to literature, θ of most natural streams falls into a narrow range (0.4 < θ < 0.7) (Tucker and Whipple, 2002). It leads to fundamental questions: 'Why does θ falls into such narrow range?' and 'How is this related with other power-law scaling relationships reported in natural drainage basins?' To answer above questions, we analytically derive θ for a steady-state drainage basin following Lane's equilibrium (Lane, 1955) throughout the corridor and named this specific case as the 'critical concavity'. In the derivation, sediment transport capacity is estimated by unit stream power model (Yang, 1976), yielding a power function of upstream area. Stability of channel at a local point occurs when incoming flux equals outgoing flux at the point. Therefore, given the drainage at steady-state where all channel beds are stable, the exponent of the power function should be zero. From this, we can determine the critical concavity. Considering ranges of variables associated in this derivation, critical concavity cannot be resolved as a single definite value, rather a range of critical concavity is suggested. This range well agrees with the widely reported range of θ (0.4 < θ < 0.7) in natural streams. In this theoretical study, inter-relationships between power-laws such as hydraulic geometry (Leopold and Maddock, 1953), dominant discharge-drainage area (Knighton et al., 1999), and concavity, are coupled into the power-law framework of stream power sediment transport model. This allows us to explore close relationships between their power-law exponents: their relative roles and sensitivity. Detailed analysis and implications will be presented. References Flint, J. J., 1974, Stream gradient as a function of order, magnitude

  14. Hydrogeomorphic effects of explosive volcanic eruptions on drainage basins

    USGS Publications Warehouse

    Pierson, Thomas C.; Major, Jon J.

    2014-01-01

    Explosive eruptions can severely disturb landscapes downwind or downstream of volcanoes by damaging vegetation and depositing large volumes of erodible fragmental material. As a result, fluxes of water and sediment in affected drainage basins can increase dramatically. System-disturbing processes associated with explosive eruptions include tephra fall, pyroclastic density currents, debris avalanches, and lahars—processes that have greater impacts on water and sediment discharges than lava-flow emplacement. Geo-morphic responses to such disturbances can extend far downstream, persist for decades, and be hazardous. The severity of disturbances to a drainage basin is a function of the specific volcanic process acting, as well as distance from the volcano and magnitude of the eruption. Postdisturbance unit-area sediment yields are among the world's highest; such yields commonly result in abundant redeposition of sand and gravel in distal river reaches, which causes severe channel aggradation and instability. Response to volcanic disturbance can result in socioeconomic consequences more damaging than the direct impacts of the eruption itself.

  15. Geochemistry of the Birch Creek Drainage Basin, Idaho

    USGS Publications Warehouse

    Swanson, Shawn A.; Rosentreter, Jeffrey J.; Bartholomay, Roy C.; Knobel, LeRoy L.

    2003-01-01

    The U.S. Survey and Idaho State University, in cooperation with the U.S. Department of Energy, are conducting studies to describe the chemical character of ground water that moves as underflow from drainage basins into the eastern Snake River Plain aquifer (ESRPA) system at and near the Idaho National Engineering and Environmental Laboratory (INEEL) and the effects of these recharge waters on the geochemistry of the ESRPA system. Each of these recharge waters has a hydrochemical character related to geochemical processes, especially water-rock interactions, that occur during migration to the ESRPA. Results of these studies will benefit ongoing and planned geochemical modeling of the ESRPA at the INEEL by providing model input on the hydrochemical character of water from each drainage basin. During 2000, water samples were collected from five wells and one surface-water site in the Birch Creek drainage basin and analyzed for selected inorganic constituents, nutrients, dissolved organic carbon, tritium, measurements of gross alpha and beta radioactivity, and stable isotopes. Four duplicate samples also were collected for quality assurance. Results, which include analyses of samples previously collected from four other sites, in the basin, show that most water from the Birch Creek drainage basin has a calcium-magnesium bicarbonate character. The Birch Creek Valley can be divided roughly into three hydrologic areas. In the northern part, ground water is forced to the surface by a basalt barrier and the sampling sites were either surface water or shallow wells. Water chemistry in this area was characterized by simple evaporation models, simple calcite-carbon dioxide models, or complex models involving carbonate and silicate minerals. The central part of the valley is filled by sedimentary material and the sampling sites were wells that are deeper than those in the northern part. Water chemistry in this area was characterized by simple calcite-dolomite-carbon dioxide

  16. Drainage areas in the Big Sioux River basin in eastern South Dakota

    USGS Publications Warehouse

    Amundson, Frank D.; Koch, Neil C.

    1985-01-01

    The Big Sioux River basin of eastern South Dakota contains an important surface water supply and a sizeable aquifer system of major importance to the economy of South Dakota. The aquifers are complex, consisting of many small aquifers that are hydrologically associated with several large aquifers and the Big Sioux River. The complexity and interrelation of the surface water/groundwater systems has already created management problems. As development continues and increases, the problems will increase in number and complexity. To aid in planning for future development, an accurate determination of drainage areas for all basins, sub-basins, and noncontributing areas in the Big Sioux River basin is needed. All named stream basins, and all unnamed basins > 10 sq mi within the Big Sioux River basin in South Dakota are shown and are listed by stream name. Stream drainage basins in South Dakota were delineated by visual interpretation of contour information shown on U.S. Geological Survey 77-1/2 minute topographic maps. One table lists the drainage areas of major drainage basins in the Big Sioux River basin that do not have a total drainage area value > 10 sq mi. Another shows the drainage area above stream gaging stations in the Big Sioux River basin. (Lantz-PTT)

  17. A Geographic Information System procedure to quantify drainage-basin characteristics

    USGS Publications Warehouse

    Eash, David A.

    1993-01-01

    The Basin Characteristics System (BCS) has been developed to quantify characteristics of a drainage basin. The first of four main BCS processing steps creates four geographic information system (GIS) digital maps representing the drainage divide, the drainage network, elevation contours, and the basin length. The drainage divide and basin length are manually digitized from 1:250,000-scale topographic maps. The drainage network is extracted using GIS software from 1:100,000-scale digital line graph data. The elevation contours are generated using GIS software from 1:250,000-scale digital elevation model data. The second and third steps use software developed to assign attributes to specific features in three of the four digital maps and analyze the four maps to quantify 24 morphometric basin characteristics. The fourth step quantifies two climatic characteristics from digitized State maps of precipitation data. Compared to manual methods of measurement, the BCS provides a reduction in the time required to quantify the 26 basin characteristics. Comparison tests indicate the BCS measurements are not significantly different from manual topographic-map measurements for 11 of 12 primary drainage-basin characteristics. Tests indicate the BCS significantly underestimates basin slope. Comparison-measurement differences for basin slope, main channel slope, and basin relief appear to be due to limitations in the digital elevation model data.

  18. Cenozoic North American Drainage Basin Evolution, Sediment Yield, and Accumulation in the Gulf of Mexico Basin

    NASA Astrophysics Data System (ADS)

    Galloway, W.; Ganey-Curry, P. E.

    2010-12-01

    The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1

  19. Drainage basin morphometry controls on the active depositional area of debris flow fans

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Wasklewicz, Thad; Malamud, Bruce

    2015-04-01

    A majority of the research on understanding the connection between alluvial fans and drainage basins to date has focused on coarse-scale relations between total fan area and drainage basin area. Here we take a new approach where we assess relationships between active fan depositional area and drainage basin morphometry using 52 debris flow fans (32 from the White Mountains and 20 from the Inyo Mountains) on the eastern side of Owens Valley, California, USA. The boundaries for fans, drainage basin and active depositional areas were delineated from 10m digital elevation models and 1 m aerial photographs. We examined the relationships between the normalised active depositional area of the fan (Afad/Af, where Afad is the fan active depositional area and Af the entire fan area) and the following four variables for drainage basin: (i) area (Adb), (ii) total stream length (Ls), (iii) relief (BHH), (iv) roughness (R). We find a statistically significant (r2 > 0.40) inverse power-law relationship between recent sediment contribution to the fan and drainage basin area (Afad/Af = 0.29Adb-0.167) drainage network length (Afad/Af = 0.39Ls-0.161) and basin relief (Afad/Af = 3.90BHH-0.401), and a statistically weak (r2 = 0.22) inverse power law with basin roughness (Afad/Af = 0.32R0.5441). Drainage basin size combined with other morphometric variables may largely determine efficiency in sediment transport and delivery to the fan surface. A large proportion of the total fan area of smaller fans are flooded by debris flow indicating less sediment storage in the drainage basins and greater efficiency in sediment delivery. The findings signify the importance of coarse-scale relationships to both long- and short-term fan evolution.

  20. Functional and structural connectivity within a recently burned drainage basin

    NASA Astrophysics Data System (ADS)

    Wester, Thad; Wasklewicz, Thad; Staley, Dennis

    2014-02-01

    Studies examining post-wildfire sediment transport have often focused on changes to individual landscape compartments (planar slopes, rills, gullies, channels, or alluvial fans) or have captured coarse-scale hydrologic and sediment transport events at the drainage basin scale. We advance the understanding of functional and structural connectivity by quantifying changes of the morphodynamics of and sediment transport along seven rill-gully threads (RGTs) after two low intensity rainstorms in a burned basin from the 2008 Gap fire near Goleta, CA, USA. TLS surveys conducted within two months of the initial fire and three days after the rainfall events provide point clouds for high-resolution digital terrain models (DTMs). DTM differencing techniques and morphological sediment budgets from the RGTs showed discontinuous sediment transport along the extent of these two landscape compartments immediately after the rainfall. Surface runoff was unable to remove dry ravel deposits within the RGTs and implied a high degree of structural disconnectivity there. Dry ravel and runoff erosion from the contributing areas to the RGTs indicated functional and structural connectivity at this scale of analysis. The results provide clear evidence that small amounts of rainfall and gravity-induced erosion are interacting at different scales within the recently burned watershed to produce structural and functional disconnectivity along the RGTs. While the current system was transport-limited during the analyzed event, higher magnitude rainstorms may produce enhanced connectivity, resulting in the ability of surface runoff to remove the stored sediments and perhaps produce debris flows.

  1. Fluvial drainage basins, outflow channels, and valley networks: Margaritifer Sinus, Mars

    SciTech Connect

    Boothroyd, J.C.; Grant, J.A.

    1985-01-01

    The fluvial drainage basins of the Margaritifer Sinus Quadrangle (MC-19) are dominated by Capri and Eos Chasma and associated chaos on the northwest, by Ladon Basin in the center, and by Noachis Basin to the southeast. Laadon and Noachis are ancient, multi-ringed impact structures. The Uzboi/Ladon outflow channels are the principal drainage into Ladon Basin contributing to a major sediment sink on the central Basin plain (18/sup 0/S,29/sup 0/W). Osuga Valles outflow system (16S,39W), and some valley networks, have been beheaded by the formation of Eos Chasma. Flow out of Ladon Basin to the northeast is obscured by Margaritifer Chaos collapse. Two major longitudinal valley networks, Samara/Himera to the west and Parana/Loire to the east, dominate the drainage of eastern Margaritifer Sinus. These networks, through-going to the northwest, cross the outer ring hills of Ladon to debouch into etched terrain near Margaritifer Chaos. The Parana multi-digitate network flows into a small impact basin with a sediment sink characterized by positive relief chaos (22S,12W). Loire Valles heads in this basin; thus the authors treat Parana/Loire as a single system. Mapping with stereo pairs has allowed not only the delineation of major drainage basins, but also the identification of sub-basins, areas of internal drainage between larger basins, and determination of drainage-basin area. This mapping demonstrates that an integrated series of drainage systems with a complex fluvial history encompasses a large part of Margaritifer Sinus.

  2. Estimation of agricultural pesticide use in drainage basins using land cover maps and county pesticide data

    USGS Publications Warehouse

    Nakagaki, Naomi; Wolock, David M.

    2005-01-01

    A geographic information system (GIS) was used to estimate agricultural pesticide use in the drainage basins of streams that are studied as part of the U.S. Geological Survey?s National Water-Quality Assessment (NAWQA) Program. Drainage basin pesticide use estimates were computed by intersecting digital maps of drainage basin boundaries with an enhanced version of the National Land Cover Data 1992 combined with estimates of 1992 agricultural pesticide use in each United States county. This report presents the methods used to quantify agricultural pesticide use in drainage basins using a GIS and includes the estimates of atrazine use applied to row crops, small-grain crops, and fallow lands in 150 watersheds in the conterminous United States. Basin atrazine use estimates are presented to compare and analyze the results that were derived from 30-meter and 1-kilometer resolution land cover and county pesticide use data, and drainage basin boundaries at various grid cell resolutions. Comparisons of the basin atrazine use estimates derived from watershed boundaries, county pesticide use, and land cover data sets at different resolutions, indicated that overall differences were minor. The largest potential for differences in basin pesticide use estimates between those derived from the 30-meter and 1-kilometer resolution enhanced National Land Cover Data 1992 exists wherever there are abrupt agricultural land cover changes along the basin divide. Despite the limitations of the drainage basin pesticide use data described in this report, the basin estimates provide consistent and comparable indicators of agricultural pesticide application in surface-water drainage basins studied in the NAWQA Program.

  3. GIS Analysis of Size Relationships between Drainage Basins and Alluvial Fans

    NASA Astrophysics Data System (ADS)

    Wright, S. N.; Scuderi, L. A.; Weissmann, G. S.; Hartley, A. J.

    2014-12-01

    Imagery from the global database of modern sedimentary basins compiled by Weissman et al. (2010) allows us to test whether a size relationship between drainage basin area and distributive fluvial system (DFS) area exists. We are testing this hypothesis using a combination of SRTM-based digital elevation models and Landsat satellite imagery in ArcGIS. Sedimentary basins are delineated by preforming a Gaussian smoothing on the DEM, followed by optimal edge detection through application of a modified Canny edge detector. The pour points defining the link between contributing hydrologic basins and these sedimentary basins are then located by generating a stream network in ArcGIS and intersecting the stream network arcs with the sedimentary basin polygons. From these pour points we delineate the adjacent contributing drainage basin using the watershed tool in ArcGIS. We manually digitize the boundary and geometry of the DFS identified for each drainage basin, using the higher resolution imagery found on Google Earth for visual confirmation if the scale or resolution of the Landsat imagery requires it. We then extract drainage basins and DFS polygon parameters and calculate areal extents in order to evaluate whether such a size relationship exists within basins, regionally across several basins, or across different basin types (e.g., endorheic vs exhoreic). A limitation of this approach is that we cannot evaluate sediment volumes, only aerial coverage. Results from this study may provide a better understanding of extrabasinal processes that control DFS shape and size.

  4. Quantifying urban intensity in drainage basins for assessing stream ecological conditions

    USGS Publications Warehouse

    McMahon, G.; Cuffney, T.F.

    2000-01-01

    Three investigations are underway, as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program, to study the relation between varying levels of urban intensity in drainage basins and in-stream water quality, measured by physical, chemical, and biological factors. These studies are being conducted in the vicinities of Boston (Massachusetts), Salt Lake City (Utah), and Birmingham (Alabama), areas where rapid urbanization is occurring. For each study, water quality will be sampled in approximately 30 drainage basins that represent a gradient of urban intensity. This paper focuses on the methods used to characterize and select the basins used in the studies. It presents a methodology for limiting the variability of natural landscape characteristics in the potential study drainage basins and for ranking the magnitude of human influence, or urbanization, based on land cover, infrastructure, and socioeconomic data in potential study basins. Basin characterization efforts associated with the Boston study are described for illustrative purposes.

  5. Paleotopographic Reconstruction of the Tharsis Magmatic Complex Reveals Potential Ancient Drainage Basin/Aquifer System

    NASA Technical Reports Server (NTRS)

    Dohm, J. M.; Ferris, J.; Anderson, R. C.; Baker, V.; Hare, T.; Barlow, N. G.; Strom, R. G.; Tanaka, K. L.; Scott, D. H.

    2001-01-01

    Paleotopographic reconstructions reveal the potential existence of an enormous Noachian drainage basin in the eastern part of the Tharsis region of significant geologic and paleohydrologic implications. Additional information is contained in the original extended abstract.

  6. HANDBOOK: RETROFITTING POTWS FOR PHOSPHORUS REMOVAL IN THE CHESAPEAKE BAY DRAINAGE BASIN

    EPA Science Inventory

    This document assesses the technology, economics, and efficiency of phosphorus removal processes for use in the Chesapeake Bay Drainage basin (CBDB). ince phosphorus removal requirements in the CBDB vary widely with geographic location, this document discusses the feasibility of ...

  7. Drainage areas for selected stream-sampling stations, Missouri River Basin

    USGS Publications Warehouse

    2006-01-01

    As part of the U.S. Geological Survey's (USGS) National Water-Quality Assessment Program (NAWQA), an investigation of the Missouri River Basin is being conducted to document trends in surface-water quality, specifically for trends in nutrients and suspended sediment. Surface-water samples were collected from streams at specific sampling stations. Water-quality characteristics at each station are influenced by the natural and cultural characteristics of the drainage area upstream from the sampling station. Efficient quantification of the drainage area characteristics requires a digital map of the drainage area boundary that may be processed, together with other digital thematic maps (such as geology or land use), in a geographic information system (GIS). Digital drainage-area boundary data for one stream-sampling station in the Missouri River Basin (MRB4) study area is included in this data release. The drainage divides were identified chiefly using 1:24,000-scale hypsography.

  8. Glacial geology of the West Tensleep Drainage Basin, Bighorn Mountains, Wyoming

    SciTech Connect

    Burggraf, G.B.

    1980-08-01

    The glacial deposits of the West Tensleep Basin in the Bighorn Mountains of Wyoming are mapped and a relative chromology established. The deposits are correlated with the regional model as defined in the Wind River Mountains. A statistical analysis is performed on the density and weathering characteristics of the surficial boulders to determine their validity as indicators of relative age. (ACR)

  9. Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Wickert, Andrew D.

    2016-11-01

    Over the last glacial cycle, ice sheets and the resultant glacial isostatic adjustment (GIA) rearranged river systems. As these riverine threads that tied the ice sheets to the sea were stretched, severed, and restructured, they also shrank and swelled with the pulse of meltwater inputs and time-varying drainage basin areas, and sometimes delivered enough meltwater to the oceans in the right places to influence global climate. Here I present a general method to compute past river flow paths, drainage basin geometries, and river discharges, by combining models of past ice sheets, glacial isostatic adjustment, and climate. The result is a time series of synthetic paleohydrographs and drainage basin maps from the Last Glacial Maximum to present for nine major drainage basins - the Mississippi, Rio Grande, Colorado, Columbia, Mackenzie, Hudson Bay, Saint Lawrence, Hudson, and Susquehanna/Chesapeake Bay. These are based on five published reconstructions of the North American ice sheets. I compare these maps with drainage reconstructions and discharge histories based on a review of observational evidence, including river deposits and terraces, isotopic records, mineral provenance markers, glacial moraine histories, and evidence of ice stream and tunnel valley flow directions. The sharp boundaries of the reconstructed past drainage basins complement the flexurally smoothed GIA signal that is more often used to validate ice-sheet reconstructions, and provide a complementary framework to reduce nonuniqueness in model reconstructions of the North American ice-sheet complex.

  10. Power-law tail probabilities of drainage areas in river basins

    USGS Publications Warehouse

    Veitzer, S.A.; Troutman, B.M.; Gupta, V.K.

    2003-01-01

    The significance of power-law tail probabilities of drainage areas in river basins was discussed. The convergence to a power law was not observed for all underlying distributions, but for a large class of statistical distributions with specific limiting properties. The article also discussed about the scaling properties of topologic and geometric network properties in river basins.

  11. Late Wisconsinan deglaciation styles of parts of the Contoocook, Souhegan, and Piscataquog drainage basins, New Hampshire

    USGS Publications Warehouse

    Hildreth, C.T.; Moore, R.B.

    1996-01-01

    This report is the guidebook for the 56th annual meeting and field conference of the Friends of the Pleistocene, held May 22 and 23, 1993. Features were examined at 11 sites in the Contoocook, Souhegan, and Piscataquog Drainage Basins to illustrate the geologic history of this area, about 14,000 years ago, during the time of deglaciation. The Contoocook River Basin is the largest river basin that drains north in New Hampshire and is similar to northwardly draining parts of the Piscataquog and Souhegan River basins. During the retreat of the ice, the drainage divide between adjacent drainage basins acted as a dam and lakes formed behind it. As the ice continued to melt farther north, drainage outlets were uncovered at progressively lower altitudes along the drainage divide. This resulted in catastrophic draining of the lakes. Evidence for the existence of the lakes includes fine-grained lake-bottom deposits and deltas at successively lower elevations. Geomorphic evidence for the catastrophic draining includes Pulpit Rock in Bedford, N.H. and V-shaped notches eroded into till and bedrock. In Henniker, N.H., further evidence of catastrophic draining of a large lake in the Contoocook River Basin is a combination alluvial fan and delta that formed when rapidly draining lake water flowed across a till slope, eroded the till, and redeposited the material where it entered a smaller, much lower lake.

  12. Prairie stream water quality in sub-basins characterized by differing degrees of wetland drainage

    NASA Astrophysics Data System (ADS)

    Brunet, N. N.; Westbrook, C. J.

    2010-12-01

    The prairie pothole region is dotted with millions of pothole wetlands. These wetlands provide important habitat for numerous wildlife species. Potholes are small, shallow marshes that typically lack surface water connections and have been shown to trap nutrients, ions, and bacteria from catchment runoff. Approximately 70% of the potholes located in the Canadian prairies have been drained since 1900 to increase agricultural production; recently there have been renewed efforts to drain potholes. Wetland drainage has been shown to increase stream discharge and is perceived to impact downstream water quality as previously isolated wetlands become connected to streams via drainage ditches. Our objective was to determine the extent to which stream water quality was influenced by wetland drainage. We compared time series of water quality for four sub-basins of Smith Creek watershed, southeastern Saskatchewan. The stream drains into the Assiniboine River and then Lake Winnipeg where excessive N and P loadings are causing eutrophication. Wetland distribution in the sub-basins was historically similar, but recently the sub-basins have been subject to differing degrees of drainage (extreme, high, moderately-high, and low). Stream water sampling and discharge measurement occurred daily during peak flow (spring runoff) and weekly during low flows in 2009 at the outlet of each sub-basin. Export coefficients for nutrients, DOC, salts and bacteria were compared among sub-basins. The sub-basin characterized by extreme drainage (81% wetland reduction) had the largest nutrient and DOC export coefficients while the low drainage sub-basin (23% wetland reduction) had the lowest. Concentrations of TP and ortho-P were greater in the moderately-high and high drainage sub-basins than in the low drainage sub-basin during the snowmelt period. TP concentrations exceeded the Saskatchewan Watershed Authority Lake Stewardship Program objective of 0.1 mg/L. N concentrations were greatest in the

  13. Analysis of Length Distribution of Drainage Basin Perimeter

    NASA Astrophysics Data System (ADS)

    Werner, Christian

    1982-08-01

    To establish a theoretical base for the study of the length distribution of basin perimeters, the paper introduces a descriptive model of the topology of interlocking channel and ridge networks. Assuming topological randomness within and between both, the expected number of links of basin perimeters is derived; for large basin magnitudes n, it approximates a square root function in n. Observed link numbers of perimeters deviate significantly, showing a 0.69 regression exponent for their growth rate relative to the basin magnitude rather than the expected value of 0.5. The spatial constraint of possible perimeter/(area;)½ proportions as defined by the circle is translated into a corresponding topological constraint but fails to provide a sufficient explanation. The paper then explores the possibility that the relatively large length of the perimeter reflects the basin elongation which, following Hack, might be linked to the length of the mainstream. Although basin perimeter, elongation, and mainstream length are highly correlated and the elongation axis is oriented to the outlet in two-thirds of the sample basins, the data indicate that the mainstream link number does not account for the basin elongation, nor does it account for the number of links of the basin perimeter.

  14. Drainage water phosphorus losses in the great lakes basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The great lakes are one of the most important fresh water resources on the planet. While forestry is a primary land use throughout much of the great lakes basin, there are portions of the basin, such as much of the land that drains directly to Lake Erie, that are primarily agricultural. The primary ...

  15. Effects of drainage-basin geomorphology on insectivorous bird abundance in temperate forests.

    PubMed

    Iwata, Tomoya; Urabe, Jotaro; Mitsuhashi, Hiromune

    2010-10-01

    Interfaces between terrestrial and stream ecosystems often enhance species diversity and population abundance of ecological communities beyond levels that would be expected separately from both the ecosystems. Nevertheless, no study has examined how stream configuration within a watershed influences the population of terrestrial predators at the drainage-basin scale. We examined the habitat and abundance relationships of forest insectivorous birds in eight drainage basins in a cool temperate forest of Japan during spring and summer. Each basin has different drainage-basin geomorphology, such as the density and frequency of stream channels. In spring, when terrestrial arthropod prey biomass is limited, insectivorous birds aggregated in habitats closer to streams, where emerging aquatic prey was abundant. Nevertheless, birds ceased to aggregate around streams in summer because terrestrial prey became plentiful. Watershed-scale analyses showed that drainage basins with longer stream channels per unit area sustained higher densities of insectivorous birds. Moreover, such effects of streams on birds continued from spring through summer, even though birds dispersed out of riparian areas in the summer. Although our data are from only a single year, our findings imply that physical modifications of stream channels may reduce populations of forest birds; thus, they emphasize the importance of landscape-based management approaches that consider both stream and forest ecosystems for watershed biodiversity conservation.

  16. Comparing morphologies of drainage basins on Mars and Earth using integral-geometry and neural maps

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Coradetti, S.

    2004-01-01

    We compare morphologies of drainage basins on Mars and Earth in order to confine the formation process of Martian valley networks. Basins on both planets are computationally extracted from digital topography. Integral-geometry methods are used to represent each basin by a circularity function that encapsulates its internal structure. The shape of such a function is an indicator of the style of fluvial erosion. We use the self-organizing map technique to construct a similarity graph for all basins. The graph reveals systematic differences between morphologies of basins on the two planets. This dichotomy indicates that terrestrial and Martian surfaces were eroded differently. We argue that morphologies of Martian basins are incompatible with runoff from sustained, homogeneous rainfall. Fluvial environments compatible with observed morphologies are discussed. We also construct a similarity graph based on the comparison of basins hypsometric curves to demonstrate that hypsometry is incapable of discriminating between terrestrial and Martian basins. INDEX TERMS: 1824 Hydrology: Geomorphology (1625); 1886 Hydrology: Weathering (1625); 5415 Planetology: Solid Surface Planets: Erosion and weathering; 6225 Planetology: Solar System Objects Mars. Citation: Stepinski, T. F., and S. Coradetti (2004), Comparing morphologies of drainage basins on Mars and Earth using integral-ge

  17. Chemical quality of water and sedimentation in the Moreau River drainage basin, South Dakota

    USGS Publications Warehouse

    Colby, Bruce R.; Hembree, C.H.; Jochens, E.R.

    1953-01-01

    The Moreau River drainage basin is a narrow basin in northwestern South Dakota that covers about 5, 360 square miles of rolling, grassy plains, which are broken by buttes and by some small areas of badlands. It is underlain by shales, sandstones, siltstones, and limestones that are primarily of Cretaceous age. Precipitation averages about 16 inches per year. Average annual runoff is about 0. 7 inch but varies widely from year to year.

  18. The role of antecedent drainage networks and isolated normal fault propagation on basin stratigraphy

    NASA Astrophysics Data System (ADS)

    Finch, E.; Brocklehurst, S. H.; Gawthorpe, R.

    2010-12-01

    The stratigraphy of an extensional basin reflects a history of fault activity, erosion, drainage network evolution, and sediment transport and deposition. Here a three-dimensional numerical model of erosion and clastic sedimentation is applied to investigate the effect of displacement on a normal fault to the distribution of deposition in an extensional basin. Material is eroded from the hinterland through a stream-power incision law and deposited in the basin using a modified diffusion algorithm. Experiments are implemented for 3Ma, in which the initial 1Ma are used to permit a drainage network to evolve to a topographic steady state. This system is then perturbed by the introduction of a propagating isolated normal fault at varying displacement rates (1.0m/kyr - 2.0m/kyr) to demonstrate the influence of fault propagation on drainage capture, network re-organisation, sediment routing and deposition. Faster displacement rates and smaller antecedent drainage networks cause footwall-derived deltas to be cut-off more rapidly from the hinterland source area. Drainage networks are re-organised such that sediment is then transported around the fault tips into axially sourced deltas. Sediments may continue to be deposited in the hanging wall at the fault centre, but this material has not been sourced directly from the adjacent footwall, even though the stratigraphic architecture might suggest that this is the case. Drainage networks are modified by drainage reversals in the antecedent channels, and the development of areas of abandoned/trapped drainage. These changes in sediment supply due to network re-organisation are also reflected in the basin stratigraphy, with rapid back-stepping of deltas when the source is removed in the adjacent footwall. Later incision and headward erosion of the footwall channels may cause re-capture of earlier channels, while network re-organisation may also cause depositional in-filling of earlier channels. The drainage divide shifts

  19. 78 FR 26807 - Vista Grande Drainage Basin Improvement Project, Fort Funston, Golden Gate National Recreation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... the Vista Grande Watershed Drainage Basin and the effects of coastal erosion. The National Park... reduce future erosion. The existing force main would also be removed and replaced with a similar... renovated to protect it from erosion and extend its operating life. FOR FURTHER INFORMATION CONTACT:...

  20. Nutrient mass balance for the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia, 1990

    USGS Publications Warehouse

    McMahon, G.; Woodside, M.D.

    1997-01-01

    A 1990 nitrogen and phosphorus mass balance calculated for eight National Stream Quality Accounting Network (NASQAN) basins in the Albemarle-Pamlico Drainage Basin indicated the importance of agricultural nonpoint sources of nitrogen and phosphorus and watershed nitrogen retention and processing capabilities. Basin total nitrogen and phosphorus input estimates were calculated for atmospheric deposition (which averaged 27 percent of total nitrogen inputs and 22 percent of total phosphorus inputs); crop fertilizer (27 and 25 percent); animal-waste (22 and 50 percent, respectively); point sources (3 percent each of total nitrogen and total phosphorus inputs); and biological nitrogen fixation (21 percent of total nitrogen inputs). Highest in-stream nitrogen and phosphorus loads were measured in predominantly agricultural drainage areas. Intermediate loads were observed in mixed agricultural/urban drainage areas; the lowest loads were measured in mixed agricultural/forested drainage areas. The difference between the sum of the nutrient input categories and the sum of the instream nutrient loads and crop-harvest nutrient removal was assigned to a residual category for the basin. The residual category averaged 51 percent of total nitrogen inputs and 54 percent of total phosphorus inputs.

  1. Teaching the Hydrologic and Geomorphic Significance of Drainage Basins and Discharge in Physical Geography.

    ERIC Educational Resources Information Center

    Sutherland, Ross

    1994-01-01

    States that drainage basins, stream discharge, and sediment discharge are fundamental concepts in physical geography and integral parts of other cognate disciplines. Presents two exercises about these concepts. Includes a set of field-based exercises and a set of exercises for students who are unable to conduct field monitoring. (CFR)

  2. Recharge rates and aquifer hydraulic characteristics for selected drainage basins in middle and east Tennessee

    USGS Publications Warehouse

    Hoos, A.B.

    1990-01-01

    Quantitative information concerning aquifer hydrologic and hydraulic characteristics is needed to manage the development of ground-water resources. These characteristics are poorly defined for the bedrock aquifers in Middle and East Tennessee where demand for water is increasing. This report presents estimates of recharge rate, storage coefficient, diffusivity, and transmissivity for representative drainage basins in Middle and East Tennessee, as determined from analyses of stream-aquifer interactions. The drainage basins have been grouped according to the underlying major aquifer, then statistical descriptions applied to each group, in order to define area1 distribution of these characteristics. Aquifer recharge rates are estimated for representative low, average, and high flow years for 63 drainage basins using hydrograph analysis techniques. Net annual recharge during average flow years for all basins ranges from 4.1 to 16.8 in/yr (inches per year), with a mean value of 7.3 in. In general, recharge rates are highest for basins underlain by the Blue Ridge aquifer (mean value11.7 in/yr) and lowest for basins underlain by the Central Basin aquifer (mean value 5.6 in/yr). Mean recharge values for the Cumberland Plateau, Highland Rim, and Valley and Ridge aquifers are 6.5, 7.4, and 6.6 in/yr, respectively. Gravity drainage characterizes ground-water flow in most surficial bedrock aquifer in Tennessee. Accordingly, a gravity yield analysis, which compares concurrent water-level and streamflow hydrographs, was used to estimate aquifer storage coefficient for nine study basins. The basin estimates range from 0.002 to 0.140; however, most estimates are within a narrow range of values, from 0.01 to 0.025. Accordingly, storage coefficient is estimated to be 0.01 for all aquifers in Middle and East Tennessee, with the exception of the aquifer in the inner part of the Central Basin, for which storage coefficient is estimated to be 0.002. Estimates of aquifer hydraulic

  3. Estimating Vadose Zone Drainage From a Capped Seepage Basin, F Area, Savannah River Site

    NASA Astrophysics Data System (ADS)

    Wan, J.; Tokunaga, T. K.; Denham, M.

    2011-12-01

    Large volumes of waste solutions were commonly discharged into unlined seepage basins at many different facilities in the past. Plutonium was extracted from depleted uranium from 1955 to 1988 at the F-Area within the Savannah River Site, with contaminated process waters disposed of in permeable seepage basins. The primarily acidic solutions contained radioactive components (including tritium, 129I, and multiple isotopes of U, Pu, Sr, and Cs), elevated nitrate, and some metals (Hg, Pb, Cd). Basin 3 was the largest F-Area seepage basin, covering 2.0 hectare, with the water table typically at about 20 m below the soil surface. The local groundwater flows at an average velocity of 200 m/y in the approximately 10 m thick shallow aquifer, and is underlain by the low permeability Tan Clay. We used nearly 20 years of groundwater quality data from a monitoring well immediately downstream of Basin 3 to estimate the post-closure drainage of waste solutions through its underlying vadose zone, into the shallow aquifer. The measurements of tritium, nitrate, and specific conductance, were used as plume tracers in our estimates of vadose zone drainage. These calculations indicate that early stages of post-closure waste drainage occurred with high fluxes (≈ 1 m/y), and quickly declined. However, even after 20 years, drainage continues at a low but significant rate of several cm/y. These estimated drainage fluxes can help constrain predictions on the waste plume behavior, especially with respect to its emerging trailing gradient and anticipated time scales suitable for monitored natural attenuation.

  4. Nature of solute loads in the rivers of the Bengal drainage basin, Bangladesh

    NASA Astrophysics Data System (ADS)

    Datta, Dilip K.; Subramanian, V.

    1997-11-01

    The Bengal drainage basin is geologically one of the youngest and tectonically most active denudation regimes of the world, and encompasses the total lower reaches of the Ganges-Brahmaputra-Meghna (GBM) drainage basin. The GBM river system contributes around 4.5% of the total annual global freshwater flux to the oceans. The solute load of the GBM river system is dominated by the carbonate weathering products of the transport-limited denudation regime. However, in the Meghna basin, which drains a mountainous region, silicate weathering is slightly more predominant, and the solute load tends to be more influenced by the atmospheric contribution. The river system represents about 5% (152×10 6 t yr -1) of the annual global chemical flux to the world's oceans. The chemical denudation rate of the GBM system in the Bengal basin, is one of the world's highest (79-114 t km -2 yr -1), suggesting intensive weathering and erosion in the drainage basin both in Bangladesh as well as in the hinterlands of India and China.

  5. Erosional landform map of the Redwood Creek drainage basin, Humboldt County, California, 1947-74

    USGS Publications Warehouse

    Nolan, K.M.; Harden, D.M.; Colman, Steven M.

    1976-01-01

    Landslides and actively eroding stream channels disrupt roads, damage valuable timberland, and increase stream sediment loads in northwestern California. This 1:62,500 photointerpretative map shows the distribution of ten common types of fluvial and mass-movement erosional landforms in the drainage basin of Redwood Creek in 1947 and 1974. The mapped landforms include slides, slumps, large compound earthflows, debris avalanches, unstable streambanks and adjacent hillslopes, small mass-movement features, questionable or inactive landslides, deeply incised amphitheater shaped drainage basins, small actively eroding water courses, and actively eroding main channel stream banks. The map legend describes these landforms and the techniques used in preparing the map. The amount and diversity of erosional activity increased greatly between 1947 and 1974. This increased activity apparently reflects major floods in 1953, 1955, 1964, and 1972, as well as the start of large scale, tractor-yarded clearcut timber harvest in the basin. (Woodard-USGS)

  6. Organic Acid Concentrations in Rivers Within the Amazon River Drainage Basin

    NASA Astrophysics Data System (ADS)

    Skoog, A.

    2007-12-01

    The composition of the dissolved organic matter pool in both fresh and marine waters is largely unknown. Concentrations of low-molecular-weight organic acids (oxalate, citrate, glycolate, formate, acetate, succinate) have been determined in Brasilian (18 rivers sampled) and Peruvian (19 rivers sampled) rivers within the Amazon River drainage basin. Succinate concentrations were below the detection limit in all rivers. The dominant acid varied among the sampled rivers, indicating that organic acid concentrations depend on river basin characteristics. Organic-acid carbon comprised a highly significant, but variable, fraction of total dissolved carbon, with a range of 3-90%, indicating that organic-acid-derived carbon may be an important source of biologically labile carbon within the Amazon River drainage basin.

  7. Comparison of Peak-Flow Estimation Methods for Small Drainage Basins in Maine

    USGS Publications Warehouse

    Hodgkins, Glenn A.; Hebson, Charles; Lombard, Pamela J.; Mann, Alexander

    2007-01-01

    Understanding the accuracy of commonly used methods for estimating peak streamflows is important because the designs of bridges, culverts, and other river structures are based on these flows. Different methods for estimating peak streamflows were analyzed for small drainage basins in Maine. For the smallest basins, with drainage areas of 0.2 to 1.0 square mile, nine peak streamflows from actual rainfall events at four crest-stage gaging stations were modeled by the Rational Method and the Natural Resource Conservation Service TR-20 method and compared to observed peak flows. The Rational Method had a root mean square error (RMSE) of -69.7 to 230 percent (which means that approximately two thirds of the modeled flows were within -69.7 to 230 percent of the observed flows). The TR-20 method had an RMSE of -98.0 to 5,010 percent. Both the Rational Method and TR-20 underestimated the observed flows in most cases. For small basins, with drainage areas of 1.0 to 10 square miles, modeled peak flows were compared to observed statistical peak flows with return periods of 2, 50, and 100 years for 17 streams in Maine and adjoining parts of New Hampshire. Peak flows were modeled by the Rational Method, the Natural Resources Conservation Service TR-20 method, U.S. Geological Survey regression equations, and the Probabilistic Rational Method. The regression equations were the most accurate method of computing peak flows in Maine for streams with drainage areas of 1.0 to 10 square miles with an RMSE of -34.3 to 52.2 percent for 50-year peak flows. The Probabilistic Rational Method was the next most accurate method (-38.5 to 62.6 percent). The Rational Method (-56.1 to 128 percent) and particularly the TR-20 method (-76.4 to 323 percent) had much larger errors. Both the TR-20 and regression methods had similar numbers of underpredictions and overpredictions. The Rational Method overpredicted most peak flows and the Probabilistic Rational Method tended to overpredict peak flows

  8. Explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, A. G.

    2015-08-01

    Percolation theory can be used to find water flow paths of least resistance. The application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law allows interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  9. Brief communication: Possible explanation of the values of Hack's drainage basin, river length scaling exponent

    NASA Astrophysics Data System (ADS)

    Hunt, Allen G.

    2016-04-01

    Percolation theory can be used to find water flow paths of least resistance. Application of percolation theory to drainage networks allows identification of the range of exponent values that describe the tortuosity of rivers in real river networks, which is then used to generate the observed scaling between drainage basin area and channel length, a relationship known as Hack's law. Such a theoretical basis for Hack's law may allow interpretation of the range of exponent values based on an assessment of the heterogeneity of the substrate.

  10. Hydrologic data for the drainage basins of Chatfield and Cherry Creek Lakes, Denver metropolitan area, Colorado

    USGS Publications Warehouse

    Gibbs, J.W.; Arnold, L.M.; Reed, R.L.

    1983-01-01

    Chatfield and Cherry Creek Lakes are flood control lakes constructed by the U.S. Army Corps of Engineers and leased to the Colorado Division of Parks and Recreation. Both lakes are in the Denver metropolitan area and provide a variety of recreational activities, including boating, camping, fishing, picnicking, and swimming. The projected increase of urban development in the drainage basins of Chatfield and Cherry Creek lakes could increase the constituent loads delivered to the lakes. Due to the eutrophic condition of Cherry Creek Lake and the potential eutrophic condition of Chatfield Lake, increased constituent loads could affect the suitability of the lakes for recreation. A monitoring program was started to determine the constituent loads of the drainage basins to both lakes. A network of monitoring stations was established to collect ambient water quality samples, storm runoff water quality samples, precipitation, and stream discharge. In the Cherry Creek basin 12 observation wells were established in the alluvium upgradient from Cherry Creek lake. Water levels and water quality data were collected to determine the quantity and quality of groundwater entering Cherry Creek lake. Data were collected from January through December 1982. The data may be used to evaluate the present and projected impact of urbanization in the drainage basins and the effect of increased constituent loads delivered to Chatfield and Cherry Creek lakes. (Author 's abstract)

  11. Strengthening Adaptation to Extreme Climate Events in Southwestern Amazonia: an Example from the Trinational Acre River Basin in the Madre de Dios/Peru - Acre/Brazil - Pando/Bolivia (MAP) Region.

    NASA Astrophysics Data System (ADS)

    Brown, I. F.

    2015-12-01

    Southwestern Amazonia, where Bolivia, Brazil and Peru meet, faces numerous challenges to the sustainable utilization of land and water resources as the region experiences rapid population and economic growth, expanding agriculture, transportation and energy sectors, along with frequent flooding and droughts. It is also predicted to be one of the most susceptible areas for climate change in the coming decade. The Acre River Basin, one of the few trinational basins in Amazonia, lies at the center of the Madre de Dios Region (Peru), Acre State (Brazil) and Pando Department (Bolivia) or MAP Region. It covers approximately 7,500 km2 and its inhabitants range from indigenous groups avoiding contact with industrial society to more than 60,000 dwellers of a binational urban center. The basin incorporates most the challenges facing the region and this paper discusses steps underway to address the basin's vulnerability to climate-related threats. A trinational group of professionals used GIS databases and local knowledge to classify these threats and possible societal responses. To prioritize threats and to propose responses, this group adapted a method proposed by the Queensland Climate Change Centre of Excellence of Australia to develop climate risk matrices for assessing impacts, adaptation, risk and vulnerability. The three priority climate variables were prolonged and more frequent droughts, more intense flooding, and more days with temperatures > 35oC. The final matrix proposed two areas of concentration - 1) Reduce the vulnerability of communities to hydro-meteorological extreme events and 2) Protect and restore ecosystems that maintain critical water-related resources with actions in public policy, capacity-building, and immediate activities. These results are being incorporated into the Amazon Project of the Global Environment Fund of the United Nations Environment Program, administered by the Amazon Cooperation Treaty Organization (ACTO).

  12. Digital database architecture and delineation methodology for deriving drainage basins, and a comparison of digitally and non-digitally derived numeric drainage areas

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    The drainage basin is a fundamental hydrologic entity used for studies of surface-water resources and during planning of water-related projects. Numeric drainage areas published by the U.S. Geological Survey water science centers in Annual Water Data Reports and on the National Water Information Systems (NWIS) Web site are still primarily derived from hard-copy sources and by manual delineation of polygonal basin areas on paper topographic map sheets. To expedite numeric drainage area determinations, the Colorado Water Science Center developed a digital database structure and a delineation methodology based on the hydrologic unit boundaries in the National Watershed Boundary Dataset. This report describes the digital database architecture and delineation methodology and also presents the results of a comparison of the numeric drainage areas derived using this digital methodology with those derived using traditional, non-digital methods. (Please see report for full Abstract)

  13. Geologic evolution of drainage basins: Margaritifer Sinus Quadrangle, Mars

    SciTech Connect

    Grant, J.A.; Boothroyd, J.C.

    1985-01-01

    Relative ages have been assigned to selected surfaces in the Margaritifer Sinus Quadrangle based on 102 crater counts employing the method of dating local surfaces, utilizing small, homogeneous crater populations. Ages are given as the number of craters >1km x 10/sup 6/km/sup -2/, obtained by projection of the Neukum and Wise standard curve (1976). Four resurfacing events of probably volcanic origin have been recognized. The earliest (300,000-100,000), of wide regional extent, was the first modification of the cratered highlands. A second event (70,000-50,000), also of regional extent, coincides with the end of crustal destruction of the northern part of Mars. The third event (14,000-8200), the youngest surface dissected by valley networks, occurred near the end of emplacement of the Lunae Planum lava plains. The youngest surface (6000-2000), also dated mainly in MC19SE, occurs locally, filling basins, and always covers valley networks when present. Major valley and channel formation occurred from 10,000-5000, concurrent with peak Tharsis tectonic activity. Events include the formation of Uzboi/Ladon Valles with deposition in Ladon Basin (11,000-6200), and the formation of Samara and Parana/Loire Valles in MC19SE (8500-4500). Flow out of Ladon Basin and Samara and Parana/Loire Valles created etched terrain (9000-4500) that is synchronous with initiation of Margaritifer and Iani Chaos (10,000-2300). Comparison with the standard lunar crater curve yields an absolute date of 3.75 to 3.6 BY for the peak period of valley formation.

  14. Flooding of Sinking Creek, Garretts Spring karst drainage basin, Jessamine and Woodford counties, Kentucky, USA

    USGS Publications Warehouse

    Currens, J.C.; Graham, C.D.R.

    1993-01-01

    Tashamingo Subdivision in Sinking Creek karst valley, a tributary of the Garretts Spring drainage basin in Jessamine and Woodford counties, Kentucky, was flooded in February 1989. To determine the cause of flooding, the groundwater basin boundary was mapped, discharge data were measured to determine intake capacity of swallets, and hydrologic modeling of the basin was conducted. Swallet capacity was determined to be limited by the hydraulic parameters of the conduit, rather than by obstruction by trash. Flooding from a precipitation event is more likely, and will be higher, when antecedent soil moisture conditions in the watershed are near saturation. Hydrologic modeling shows that suburban development of 20 percent of the southeast basin will cause a small increase in flood stage at Tashamingo Subdivision. ?? 1993 Springer-Verlag.

  15. Evaluation of some /sup 90/Sr sources in the White Oak Creek drainage basin

    SciTech Connect

    Stueber, A.M.; Huff, D.D.; Farrow, N.D.; Jones, J.R.; Munro, I.L.

    1981-01-01

    The drainage basin was monitored to evaluate the relative importance of each source as a contributor to /sup 90/Sr in White Oak Creek. The various sources fall into two general categories, those whose /sup 90/Sr discharge is dependent upon rainfall and those relatively unaffected by the level of precipitation. The identification and ranking of existing non-point sources of /sup 90/Sr in the White Oak Creek basin represents an important step in the ongoing comprehensive program at ORNL to provide a scientific basis for improved control measures and future disposal practices in solid waste disposal areas.

  16. Hydraulic Characteristics of the San Gregorio Creek Drainage Basin, California: a Preliminary Study.

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Pestrong, R.; Sklar, L. S.; Vavro, M.; Sawachi, A.; Talapian, E.; Bailey, E.

    2004-12-01

    Population pressures within the greater San Francisco Bay Area are forcing development into nearby rural communities, and are impacting local environments. This study of the San Gregorio Creek Watershed is designed as a baseline for evaluating the effect increasing development within the drainage basin has on its river system. We hope to provide evidence for that impact through laboratory and field studies that provide a snap-shot of this drainage basin's current characteristics. The San Gregorio Creek watershed, in the Coast Ranges, is located in the southwestern portion of San Mateo County, California. It drains the western slopes of the Santa Cruz Mountains, in the Coast Ranges into the Pacific Ocean at the town of San Gregorio. Most of its fingertip tributaries flow into the trunk from the north and west, with elevations as high as 2050 feet. The watershed includes an area of approximately 51.6 square miles and San Gregorio Creek, the trunk stream, is roughly 12 miles long. San Gregorio Creek is a fourth order perennial stream. It is fed by a number of major tributaries, the largest of which are Alpine, Mindego, and La Honda creeks. The U.S. Geological Survey maintains a stream gauging station for San Gregorio Creek at the town of San Gregorio, where it has been monitoring stream flows for more than 30 years through its Water Resources Department. The resulting data indicate a mean discharge of 36.4 cfs. Map studies of hydraulic geometry for the drainage basin reveal geometric characteristics for San Gregorio Creek that coincide with similar streams in comparable climatic and environmental settings. Stream table studies are used to further investigate fundamental stream processes. Field studies at selected reaches throughout the drainage basin will document hydraulic characteristics. The results of this study will contribute to more comprehensive studies demonstrateing channel response to changing environmental conditions.

  17. Late Quaternary Glaciation of the Naches River Drainage Basin, Washington Cascades

    NASA Astrophysics Data System (ADS)

    Sheffer, H. B.; Goss, L.; Shimer, G.; Carson, R. J.

    2014-12-01

    The Naches River drainage basin east of Mount Rainer includes tributary valleys of the Little Naches, American, Bumping, and Tieton rivers. An investigation of surface boulder frequency, weathering rind thicknesses, and soil development on moraines in these valleys identified two stages of Pleistocene glaciations in the American, Bumping, and Tieton drainages, followed by Neoglaciation. These stages include a more extensive early glaciation (Hayden Creek?), and the later Evans Creek Glaciation (25-15 ka). Thick forest cover, limited road cuts, and widespread post-glacial mass wasting hamper efforts to determine the maximum extent of glaciation. However, glacial striations at Chinook Pass, moraine complexes in the vicinity of Goose Egg Mountain, ice-transported boulders and striations on Pinegrass Ridge, and a boulder field possibly derived from an Evans Creek jökulhaup in the Tieton River valley, all point to extensive Pleistocene ice in the central tributaries of the Naches River. Lowest observed ice elevations in the Tieton (780 m), Bumping (850 m), and American (920 m) drainages increase towards the north, while glacial lengths decrease from 40 to 28 km. The Little Naches is the northernmost drainage in the study, but despite a maximum elevation (1810 m) that exceeds the floor of ice caps to the south, glacially-derived sediments are not evident and the surrounding peaks lack cirques. The absence of ice in the Little Naches drainage, along with the systematic northward change in glacial length and lowest observed ice elevations in the other drainages, are likely due to a precipitation shadow northeast of Mount Rainier. In contrast, the source of glacial ice in the Tieton drainage to the southeast was the Goat Rocks peaks. Ground-based study of neoglacial moraines and analysis of 112 years of topographic maps and satellite imagery point to rapid retreat of the remaining Goat Rocks glaciers following the Little Ice Age.

  18. Chemical status of selenium in evaporation basins for disposal of agricultural drainage.

    PubMed

    Gao, S; Tanji, K K; Dahlgren, R A; Ryu, J; Herbel, M J; Higashi, R M

    2007-09-01

    Evaporation basins (or ponds) are the most commonly used facilities for disposal of selenium-laden saline agricultural drainage in the closed hydrologic basin portion of the San Joaquin Valley, California. However concerns remain for potential risk from selenium (Se) toxicity to water fowl in these evaporation basins. In this study, we examined the chemical status of Se in both waters and sediments in two currently operating evaporation pond facilities in the Tulare Lake Drainage District. Some of the saline ponds have been colonized by brine-shrimp (Artemia), which have been harvested since 2001. We evaluated Se concentration and speciation, including selenate [Se(VI)], selenite [Se(IV)], and organic Se [org-Se or Se(-II)] in waters and sediment extracts, and fractionation (soluble, adsorbed, organic matter (OM)-associated, and Se(0) and other resistant forms) in sediments and organic-rich surface detrital layers from the decay of algal blooms. Selenium in ponds without vascular plants exhibited similar behavior to wetlands with vascular plant present, indicating that similar Se transformation processes and mechanisms had resulted in Se immobilization and an increase of reduced Se species [Se(IV), org-Se, and Se(0)] from Se(VI)-dominated input waters. Selenium concentrations in most pond waters were significantly lower than the influent drainage water. This decrease of dissolved Se concentration was accompanied by the increase of reduced Se species. Selenium accumulated preferentially in sediments of the initial pond cell receiving drainage water. Brine-shrimp harvesting activities did not affect Se speciation but may have reduced Se accumulation in surface detrital and sediments.

  19. Pleistocene alterations of drainage network between the Alps and the Pannonian Basin

    NASA Astrophysics Data System (ADS)

    Kovács, G.

    2012-04-01

    The investigated study area is situated in the transition zone between the still uplifting Eastern Alps and the subsiding Little Hungarian Plain (Joó 1992), bordered by Lafnitz (Lapincs), Répce (Rabnitz) and Rába (Raab) rivers. The contrasting forcing of the regions of differential uplift created a distinctive surface morphology of typically low relief that has a characteristic drainage network pattern as well. Our study is aimed at the reconstruction of the surface evolution by separation of individual geomorphic domains delineated by their geomorphometric characteristics. The hilly area is mostly covered by Miocene sediments. The mesoscale geomorphological units of the study area are influenced by the uplifting metamorphic core complex of Koszeg-Rechnitz Mountains (Tari - Horváth 1995), by the also metamorphic and relatively uplifting Vas Hill as well as by the subsiding grabens. There are two dominant flow directions alternating downstream. Valley segments are often bordered by steep scarps, which were identified by previous research as listric normal faults and grabens. Largely, the investigated area consists of tilted blocks bordered by 30-60 m high and steep, fault-related escarpments as it was demonstrated by the analysis of lignite layers, topographic sections and topographic swath analyses (Kovács et al. 2010, Kovács et al. 2011). Drainage network reorganizations occurred in several steps during the Pleistocene. Corresponding landforms are abrupt changes in stream direction, wind gaps, uplifted terrace levels built up of sedimentary rocks and wide alluvial valleys. Terraces are best developed along the Strem stream, which has a strikingly small drainage area at present, due to the Pinka River, which captured the upper parts of the drainage basin. The widest valley belongs to Pinka River. Drainage reorganizations are most likely due to the uplifting scarps that diverted the streams. Remainders of previous cross-valleys are wind gaps. Using these

  20. Agricultural pesticides in six drainage basins used for public water supply in New Jersey, 1990

    USGS Publications Warehouse

    Ivahnenko, Tamara; Buxton, D.E.

    1994-01-01

    A reconnaissance study of six drainage basins in New Jersey was conducted to evaluate the presence of pesticides from agricultural runoff in surface water. In the first phase of the study, surface-water public-supply drainage basins throughout New Jersey that could be affected by pesticide applications were identified by use of a Geographic Information System. Six basins--Lower Mine Hill Reservoir, South Branch of the Raritan River, Main Branch of the Raritan River, Millstone River, Manasquan River, and Matchaponix Brook--were selected as those most likely to be affected by pesticides on the basis of calculated pesticide-application rates and percentage of agricultural land. The second phase of the project was a short-term water-quality reconnaissance of the six drainage basins to determine whether pesticides were present in the surface waters. Twenty-eight surface-water samples (22 water-quality samples, 3 sequentially collected samples, and 3 trip blanks), and 6 samples from water-treatment facilities were collected. Excluding trip blanks, samples from water-treatment facilities, and sequentially collected samples, the pesticides detected in the samples and the percentage of samples in which they were detected, were as follows: atrazine and metolachlor, 86 percent; alachlor, 55 percent; simazine, 45 percent; diazinon, 27 percent; cyanazine and carbaryl, 23 percent; linuron and isophenfos, 9 percent; and chlorpyrifos, 5 percent.Diazinon, detected in one stormflow sample collected from Matchaponix Brook on August 6, 1990, was the only compound to exceed the U.S. Environmental Protection Agency's recommended Lifetime Health Advisory Limit. Correlation between ranked metolachlor concentrations and ranked flow rates was high, and 25 percent of the variance in metolachlor concentrations can be attributed to variations in flow rate. Pesticide residues were detected in samples of pretreated and treated water from water-treatment facilities. Concentrations of all

  1. Transpressional tectonics in the Marrakech High Atlas: Insight by the geomorphic evolution of drainage basins

    NASA Astrophysics Data System (ADS)

    Delcaillau, Bernard; Amrhar, Mostafa; Namous, Mustapha; Laville, Edgard; Pedoja, Kevin; Dugué, Olivier

    2011-11-01

    The Ouzzelarh Massif extends across the Marrakech High Atlas (MHA) and forms the highest elevated mountain belt. To better understand the evolution of collision-related topography, we present the results of a geomorphological study in which elevation changes generated by reactivated pre-Alpine (Variscan and Triassic-Jurassic) faults drive a landscape evolution model. We aim to evaluate the relationship between the geometry of the drainage network and the main fault systems in this region. New insight into geomorphological changes in drainage patterns and related landforms is based on geological fieldwork combined with DEM analysis. To quantitatively measure landscape features we used several classical geomorphic indices (spacing ratio, hypsometric curves and integral, stream frequency drainage, stream length-gradient). The Ouzzelarh Massif is bounded to the north by the Tizi N'Test Fault Zone (TTFZ) and to the south by the Sour Fault Zone (SFZ). These faults delimit a pop-up structure. By using the above geomorphic parameters, we ascertained that the Ouzzelarh Massif is affected by a high spatial variability of uplift. The actual landscape of the Ouzzelarh Massif reveals remnants of an uplifted ancient erosional surface and the heterogeneity of exposed rocks in the range explaining the possibility that the topographic asymmetry between north and south flanks is due to differences in lithology-controlled resistance to erosion. Drainage, topography and fault pattern all concur to show uplifted rhomboidal-shaped blocks. It exhibits high stream frequency drainage and uplift in separate tectonically-uplifted blocks such as Jebel Toubkal which is characterized by asymmetric drainage basins.

  2. Estimating design-flood discharges for streams in Iowa using drainage-basin and channel-geometry characteristics

    USGS Publications Warehouse

    Eash, D.A.

    1993-01-01

    Procedures provided for applying the drainage-basin and channel-geometry regression equations depend on whether the design-flood discharge estimate is for a site on an ungaged stream, an ungaged site on a gaged stream, or a gaged site. When both a drainage-basin and a channel-geometry regression-equation estimate are available for a stream site, a procedure is presented for determining a weighted average of the two flood estimates. The drainage-basin regression equations are applicable to unregulated rural drainage areas less than 1,060 square miles, and the channel-geometry regression equations are applicable to unregulated rural streams in Iowa with stabilized channels.

  3. Water quality in the Santee River basin and coastal drainages, North and South Carolina, 1995-98

    USGS Publications Warehouse

    Hughes, W. Brian; Abrahamsen, Thomas A.; Maluk, Terry L.; Reuber, Eric J.; Wilhelm, Lance J.

    2000-01-01

    Surface water sampled in the Santee River basin and coastal drainages generally meets existing Federal and State guidelines for drinking-water quality and protection of aquatic life. However, urban and agricultural land uses have affected water quality, as indicated by elevated concentrations of bacteria, pesticides, and nutrients in basins dominated by these land uses.

  4. The Global Geometry of River Drainage Basins and the Signature of Tectonic and Autogenic Processes

    NASA Astrophysics Data System (ADS)

    Giachetta, E.; Willett, S.

    2015-12-01

    The plan-form structure of the world's river basins contains extensive information regarding tectonic, paleo-geographic and paleo-climate conditions, but interpretation of this structure is complicated by the need to disentangle these processes from the autogenic behavior of fluvial processes. One method of interpreting this structure is by utilizing the well-established scaling between drainage area and channel slope. Integration of this scaling relationship predicts a relationship between channel length and downstream integrated drainage area, referred to in recent studies as χ (Willett et al., 2014). In this paper, we apply this methodology at a continental scale by calculating χ for the world's river networks using hydrological information from the HydroSHED (Hydrological data and maps based on SHuttleElevation Derivatives at multiple Scales) suite of geo-referenced data sets (drainage directions and flow accumulations). River pixels were identified using a minimum drainage area of 5 km2. A constant value of m/n of 0.45 was assumed. We applied a new method to correct χ within closed basins where base level is different from sea level. Mapping of χ illustrates the geometric stability of a river network, thus highlighting where tectonic or climatic forcing has perturbed the shape and geometry. Each continent shows characteristic features. Continental rift margins on all continents show clear asymmetric escarpments indicating inland migration. Active orogenic belts break up older river basins, but are difficult to interpret because of spatially variable uplift rates. Regions of recent tilting are evident even in cratonic areas by lateral reorganizations of basins. Past and pending river captures are identified on all continents. Very few regions on Earth appear to be in near-equilibrium, though some are identified; for example the Urals appears to provide a stable continental divide for Eurasia. Our analysis of maps of χ at the global scale quantifies a

  5. The legacy of lead (Pb) in fluvial bed sediments of an urban drainage basin, Oahu, Hawaii.

    PubMed

    Hotton, Veronica K; Sutherland, Ross A

    2016-03-01

    The study of fluvial bed sediments is essential for deciphering the impact of anthropogenic activities on water quality and drainage basin integrity. In this study, a systematic sampling design was employed to characterize the spatial variation of lead (Pb) concentrations in bed sediment of urban streams in the Palolo drainage basin, southeastern Oahu, Hawaii. Potentially bioavailable Pb was assessed with a dilute 0.5 N HCl extraction of the <63 μm grain-size fraction from the upper bed sediment layer of 169 samples from Palolo, Pukele, and Waiomao streams. Contamination of bed sediments was associated with the direct transport of legacy Pb from the leaded gasoline era to stream channels via a dense network of storm drains linked to road surfaces throughout the basin. The Palolo Stream had the highest median Pb concentration (134 mg/kg), and the greatest road and storm drain densities, the greatest population, and the most vehicle numbers. Lower median Pb concentrations were associated with the less impacted Pukele Stream (24 mg/kg), and Waiomao Stream (7 mg/kg). The median Pb enrichment ratio values followed the sequence of Palolo (68) > Pukele (19) > Waiomao (8). Comparisons to sediment quality guidelines and potential toxicity estimates using a logistic regression model (LRM) indicated a significant potential risk of Palolo Stream bed sediments to bottom-dwelling organisms.

  6. Drainage reversals in Mono Basin during the late pliocene and Pleistocene

    USGS Publications Warehouse

    Reheis, M.C.; Stine, S.; Sarna-Wojcicki, A. M.

    2002-01-01

    Mono Basin, on the eastern flank of the central Sierra Nevada, is the highest of the large hydrographically closed basins in the Basin and Range province. We use geomorphic features, shoreline deposits, and basalt-filled paleochannels to reconstruct an early to middle Pleistocene record of shorelines and changing spillways of Lake Russell in Mono Basin. During this period of time, Lake Russell repeatedly attained altitudes between 2205 and 2280 m-levels far above the present surface of Mono Lake (~1950 m) and above its last overflow level (2188 m). The spill point of Lake Russell shifted through time owing to late Tertiary and Quaternary faulting and volcanism. During the early Pleistocene, the lake periodically discharged through the Mount Hicks spillway on the northeastern rim of Mono Basin and flowed northward into the Walker Lake drainage basin via the East Walker River. Paleochannels recording such discharge were incised prior to 1.6 Ma, possibly between 1.6 and 1.3 Ma, and again after 1.3 Ma (ages of basaltic flows that plugged the paleochannels). Faulting in the Adobe Hills on the southeastern margin of the basin eventually lowered the rim in this area to below the altitude of the Mount Hicks spillway. Twice after 0.76 Ma, and possibly as late as after 0.1 Ma, Lake Russell discharged southward through the Adobe Hills spillway into the Owens-Death Valley system of lakes. This study supports a pre-Pleistocene aquatic connection through Mono Basin between the hydrologically distinct Lahontan and Owens-Death Valley systems, as long postulated by biologists, and also confirms a probable link during the Pleistocene for species adapted to travel upstream in fast-flowing water.

  7. Migration of global radioactive fallout to the Arctic Ocean (on the example of the Ob's river drainage basin).

    PubMed

    Miroshnikov, A; Semenkov, I

    2012-11-01

    This article provides an assessment of the impact of global fallout on (137)Cs contamination in the bottom sediments of Kara Sea. The erosiveness of 10th-level river basins was estimated by landscape-geochemical and geomorphological characteristics. All 10th-level basins (n=154) were separated into three groups: mountain, mountain-lowland and plain. Four different types of basins were identified depending on the geochemical conditions of the migration of radiocaesium in the plain and mountain-lowland. Classifications of types were carried out using the geographic information systems-based approach. The Ob River's macroarena covers 3.5 million km(2). Internal drainage basins cover 23 % of the macroarena and accumulate whole radiocaesium from the global fallout. The remaining territory is transitional for the (137)Cs. The field research works performed in the three plain first-level basins allow one to estimate the radiocaesium run-off. The calculations show that 7 % of (137)Cs was removed from the first-level basin in arable land. Accumulation of radiocaesium in the first-level basin under undisturbed forest is 99.8 %. The research shows that (137)Cs transfer from the humid basins is in the range of 6.9-25.5 TBq and for semi-humid basins 5.6-285.5 TBq. The areas of these basins cover 40 and 8 % of the Ob River's macroarena, respectively. Drainage lakes and reservoir drainage basins make up 22 % of the macroarena. Mountainous and semi-arid drainage basins cover 7 % of the macroarena.

  8. Airborne hyperspectral imaging for sensing phosphorus concentration in the Lake Okeechobee drainage basin

    NASA Astrophysics Data System (ADS)

    Bogrekci, Ismail; Lee, Won Suk; Jordan, Jonathan D.

    2005-05-01

    Eutrophication disturbs the ecological balance in the Lake Okeechobee due to high concentration of phosphorus emanated from the regions in the lake's drainage basin. Ability of measuring phosphorus (P) concentrations of water in the Lake Okeechobee itself is very important. Furthermore, monitoring P in its drainage basins is crucial in order to find the cause of P loading and contributing regions. Also, inexpensive real-time sensing capability for a large area in a short time would help scientist, government agents, and civilians to understand the causes, spot the high-risk areas, and develop management practices for restoring the natural equilibrium. In order to measure P concentrations in the Lake Okeechobee drainage basin, airborne hyperspectral images were taken from five representative target sites by deploying a modified queen air twin engine aircraft. Each flight line covered a swath of approximately 365 m wide. Spatial resolution was about 1 m. Spectral range covered was between 412.65 and 991.82 nm with an approximate of 5 nm spectral resolution. Ground truthing was conducted to collect soil and vegetation samples, GPS coordinates of each location, and reflectance measurement of each sample. On the ground, spectral reflectance was measured using a handheld spectrometer in 400-2500 nm. The samples were sent to a laboratory for chemical analysis. Also diffuse reflectance of the samples was measured in a laboratory setting using a spectrophotometer with an integrating sphere. Images were geocorrected and rectified to reduce geometric effect. Calibration of images was conducted to obtain actual reflectance of the target area. Score, SAM (Spectral Angle Mapping), SFF (Spectral Feature Fitting) were computed for spectral matching with image derived spectral library.

  9. Assessment of waterlogging in agricultural megaprojects in the closed drainage basins of the Western Desert of Egypt

    NASA Astrophysics Data System (ADS)

    El Bastawesy, M.; Ramadan Ali, R.; Faid, A.; El Osta, M.

    2013-04-01

    This paper investigates the development of waterlogging in the cultivated and arable areas within typical dryland closed drainage basins (e.g. the Farafra and Baharia Oases), which are located in the Western Desert of Egypt. Multi-temporal remote sensing data of the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) were collected and processed to detect the land cover changes; cultivations, and the extent of water ponds and seepage channels. The Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) has been processed to delineate the catchment morphometrical parameters (i.e. drainage networks, catchment divides and surface areas of different basins) and to examine the spatial distribution of cultivated fields and their relation to the extracted drainage networks. The soil of these closed drainage basins is mainly shallow and lithic with high calcium carbonate content; therefore, the downward percolation of excess irrigation water is limited by the development of subsurface hardpan, which also saturates the upper layer of soil with water. The subsurface seepage from the newly cultivated areas in the Farafra Oasis has revealed the pattern of buried alluvial channels, which are waterlogged and outlined by the growth of diagnostic saline shrubs. Furthermore, the courses of these waterlogged channels are coinciding with their counterparts of the SRTM DEM, and the recent satellite images show that the surface playas in the downstream of these channels are partially occupied by water ponds. On the other hand, a large water pond has occupied the main playa and submerged the surrounding fields, as a large area has been cultivated within a relatively small closed drainage basin in the Baharia Oasis. The geomorphology of closed drainage basins has to be considered when planning for a new cultivation in dryland catchments to better control waterlogging hazards. The "dry-drainage" concept can be implemented as the drainage and seepage water can be

  10. Test drilling in the upper Sevier River drainage basin, Garfield and Piute Counties, Utah

    USGS Publications Warehouse

    Feltis, R.D.; Robinson, G.B. Jr.

    1963-01-01

    A test-drilling program was conducted by the U.S. Geological Survey in the upper Sevier River drainage basin (fig. 1) in the summer of 1962. The program was part of a ground-water investigation made in cooperation with the Utah State Engineer. The drilling was financed cooperatively through the State Engineer by the U.S. Geological Survey, Garfield, Piute, Sevier, Sanpete, and Millard Counties, and various water users within those counties. Drilling began in May and continued through September 1962, and 21 test holes were drilled.

  11. Water-Quality Characteristics for Sites in the Tongue, Powder, Cheyenne, and Belle Fourche River Drainage Basins, Wyoming and Montana, Water Years 2001-05, with Temporal Patterns of Selected Long-Term Water-Quality Data

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2007-01-01

    Water-quality sampling was conducted regularly at stream sites within or near the Powder River structural basin in northeastern Wyoming and southeastern Montana during water years 2001-05 (October 1, 2000, to September 30, 2005) to characterize water quality in an area of coalbed natural gas development. The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, characterized the water quality at 22 sampling sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins. Data for general hydrology, field measurements, major-ion chemistry, and selected trace elements were summarized, and specific conductance and sodium-adsorption ratios were evaluated for relations with streamflow and seasonal variability. Trend analysis for water years 1991-2005 was conducted for selected sites and constituents to assess change through time. Average annual runoff was highly variable among the stream sites. Generally, streams that have headwaters in the Bighorn Mountains had more runoff as a result of higher average annual precipitation than streams that have headwaters in the plains. The Powder River at Moorhead, Mont., had the largest average annual runoff (319,000 acre-feet) of all the sites; however, streams in the Tongue River drainage basin had the highest runoff per unit area of the four major drainage basins. Annual runoff in all major drainage basins was less than average during 2001-05 because of drought conditions. Consequently, water-quality samples collected during the study period may not represent long-term water-quality con-ditions for all sites. Water-quality characteristics were highly variable generally because of streamflow variability, geologic controls, and potential land-use effects. The range of median specific-conductance values among sites was smallest in the Tongue River drainage basin. Median values in that basin ranged from 643 microsiemens per centimeter at 25 degrees Celsius (?S/cm at 25?C) on the

  12. Hinterland tectonics and drainage evolution recorded by foreland basin archives: the Neogene Siwaliks of the Himalaya

    NASA Astrophysics Data System (ADS)

    Huyghe, Pascale; van der Beek, Peter; Matthias, Bernet; Catherine, Chauvel; Jean-Louis, Mugnier; Laurent, Husson; François, Chirouze

    2014-05-01

    Provenance analysis and detrital thermochronology of detrital synorogenic sediments, derived from erosion of mountain belts and deposited in surrounding sedimentary basins, are well-established methods to examine the exhumation history of convergent zones, tectonic activity and the associated evolution of the drainage network. We have conducted multidisciplinary studies on magnetostratigraphically dated sections throughout the Neogene Siwalik foreland basin of the Himalayan belt since more than 10 years. Sr, Nd and Hf isotopes are used as provenance indicators, providing information on the nature and size of catchment basins and their evolution through time in response to tectonics. Detrital zircon and apatite thermochronology provides constraints on exhumation rates in the hinterland of the Himalaya and the deformation of the Sub-Himalayan foreland basin. Throughout the Himalaya, detrital zircons from the Siwaliks generally show three age peaks: two static peaks (i.e., displaying constant peak ages through time), and a moving peak. The latter shows a constant lag time of ~4 m.y. corresponding to source-area exhumation rates on the order of 1.8 km/my, while the two static peaks respectively reveal a major 15-20 Ma exhumation event in the belt, the significance of which is still debated, and inheritance of pre-Himalayan ages that indicate recycling of Tethyan sediments. Therefore, our ZFT results suggest that the exhumation dynamics are broadly similar throughout the Himalaya since at least 13 m.y, as also shown by the Bengal Fan detrital sediment record. We relate this switch in tectonic regime to the destabilization of the Himalayan wedge that is rendered overcritical as a response to the transience of dynamic topography caused by the deforming underlying Indian slab. Nonetheless, in detail, the timing of thrusting in the Siwalik domain is delayed by about 1 my eastward as demonstrated by both structural and apatite fission-track data, suggesting overall eastward

  13. Modeling pollution potential input from the drainage basin into Barra Bonita reservoir, São Paulo - Brazil.

    PubMed

    Prado, R B; Novo, E M L M

    2015-05-01

    In this study multi-criteria modeling tools are applied to map the spatial distribution of drainage basin potential to pollute Barra Bonita Reservoir, São Paulo State, Brasil. Barra Bonita Reservoir Basin had undergone intense land use/land cover changes in the last decades, including the fast conversion from pasture into sugarcane. In this respect, this study answers to the lack of information about the variables (criteria) which affect the pollution potential of the drainage basin by building a Geographic Information System which provides their spatial distribution at sub-basin level. The GIS was fed by several data (geomorphology, pedology, geology, drainage network and rainfall) provided by public agencies. Landsat satellite images provided land use/land cover map for 2002. Ratings and weights of each criterion defined by specialists supported the modeling process. The results showed a wide variability in the pollution potential of different sub-basins according to the application of different criterion. If only land use is analyzed, for instance, less than 50% of the basin is classified as highly threatening to water quality and include sub basins located near the reservoir, indicating the importance of protection areas at the margins. Despite the subjectivity involved in the weighing processes, the multi-criteria analysis model allowed the simulation of scenarios which support rational land use polices at sub-basin level regarding the protection of water resources.

  14. Elaboration of climatic maps using GIS. Case study: Olãnesti drainage basin, Romania.

    PubMed

    Tîrlã, Laura

    2012-04-01

    Creating precise climatic maps (temperature and precipitation map especially) on small areas such as drainage basins or landform units is always very useful for ecology of plants, distribution of vegetation and also different types of agricultural land. The geographic information system (GIS) analysis of several key-factors (aspect and slope of terrain, insolation degree, thermal gradient, geology and structure of landforms) offers the necessary tools to operate with in order to create an accurate climatic map. This method was applied in order to create a map showing the distribution of temperatures in the Olanesti drainages basin, a 235 km2 area located at middle latitude, in Romania. After creating the DEM, aspect and slope of the terrain, reclassifying categories and calculating the thermal gradient, a map showing the distribution of the annual mean temperature is obtained. Other climatic parameters could be calculated for small areas too, with precise results. These demonstrate that not only elevation and mathematical location of an area are important factors in the distribution of temperature, but also the aspect, the gradient, the insolation, the type of rock and the structure.

  15. Distribution of bedrock and alluvial channels in forested mountain drainage basins

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.; Abbe, Tim B.; Buffington, John M.; Peterson, N. Phil; Schmidt, Kevin M.; Stock, Jonathan D.

    1996-06-01

    MOUNTAIN river networks often consist of both bedrock and alluvial channels1-5, the spatial distribution of which controls several fundamental geomorphological and ecological processes6,7. The nature of river channels can influence the rates of river incision and landscape evolution1,2, as well as the stream habitat characteristics affecting species abundance and aquatic ecosystem structure8-11. Studies of the factors controlling the distribution of bedrock and alluvial channels have hitherto been limited to anthropogenic badlands12. Here we investigate the distribution of channel types in forested mountain drainage basins, and show that the occurrence of bedrock and alluvial channels can be described by a threshold model relating local sediment transport capacity to sediment supply. In addition, we find that valley-spanning log jams create alluvial channels- hospitable to aquatic life-in what would otherwise be bedrock reaches. The formation of such jams depends critically on the stabilizing presence of logs derived from the largest trees in the riverside forests, suggesting that management strategies that allow harvesting of such trees can have a devastating influence on alluvial habitats in mountain drainage basins.

  16. Map showing major drainage basins and stream-gaging stations in Massachusetts

    USGS Publications Warehouse

    Rader, J.C.

    1994-01-01

    This map report shows the 27 major drainage basins, locations of the 71 permanent stream- gaging stations, and the primary rivers, lakes, and reservoirs of Massachusetts. These features are presented at a scale of 1:400,000 (map size about 36 by 24 inches). The map also lists uses of streamflow data. The map was produced from a digital data base using a Geographic Information System (GIS). It shows information about the stream-gaging stations that can be accessed from the digital data base--stream-gaging station number and name, telemetry code, and cooperating agency. By use of GIS and the major basin divides from the data base, additional data bases could be grouped to produce other hydrologic planning maps. The drainage divides were digitized from paper maps into the GIS at a scale of 1:24,000. The map was compiled from original maps that was produced by the USGS in cooperation with the Massachusetts Department of Environment Management.

  17. A full graphics processing unit implementation of uncertainty-aware drainage basin delineation

    NASA Astrophysics Data System (ADS)

    Eränen, David; Oksanen, Juha; Westerholm, Jan; Sarjakoski, Tapani

    2014-12-01

    Terrain analysis based on modern, high-resolution Digital Elevation Models (DEMs) has become quite time consuming because of the large amounts of data involved. Additionally, when the propagation of uncertainties during the analysis process is investigated using the Monte Carlo method, the run time of the algorithm can increase by a factor of between 100 and 1000, depending on the desired accuracy of the result. This increase in run time constitutes a large barrier when we expect the use of uncertainty-aware terrain analysis become more general. In this paper, we evaluate the use of Graphics Processing Units (GPUs) in uncertainty-aware drainage basin delineation. All computations are run on a GPU, including the creation of the realization of a stationary DEM uncertainty model, stream burning, pit filling, flow direction calculation, and the actual delineation of the drainage basins. On average, our GPU version is approximately 11 times faster than a sequential, one-core CPU version performing the same task.

  18. Preliminary study of the hydrologic response of an urban drainage basin at two different scales

    NASA Astrophysics Data System (ADS)

    Ferreira, Carla; Ferreira, António; Coelho, Celeste; de Lima João, Pedroso

    2010-05-01

    Predicted changes in climate and urban sprawl areas are expected to cause significant modification in rainfall pattern and hydrological regimes. Urbanization can alter the hydrologic response by increasing streamflow, reducing time of concentration, altering soil moisture levels and increasing overland flow, thereby increasing the size, frequency and speed of peak flow responses. However, despite the profusion of works, effective methodologies to investigate the impacts of potential land-use change on how spatial variability of soil moisture and precipitation affect runoff production at a range of scales and on different land uses remain largely undeveloped. This has important implications for flood prediction accuracy. The main aim of this work is to assess the hydrological response and to understand the influence of different land uses. The study is based on a small urban drainage basin (7 Km2), undergoing rapid urbanization, located in central Portugal: Ribeira dos Covões. It considers a combined approach of field survey and data acquisition to access spatiotemporal dynamics and land uses contributions to surface hydrology, based on drainage basins and small plot scales. At drainage basin scale, the study is based on three years rainfall and stream flow data analysis (collected through an automatic water level recorder and rain gauges). Rainfall-runoff relationship was assessed over the time and isolated events were studied. To understand land uses on the hydrology, rainfall simulations were conducted at the small plot scale (0.25 m2) during a dry period, in forested and deforested areas, agricultural areas, including tilled and abandoned areas, as well as built-up areas (21 experiments with 1 hour duration, with a rain intensity of 43±3 mm h-1). During the experiments hydrophobicity was monitored (Molarity of an Ethanol Droplet technique), soil moisture content was assessed every minute, and runoff volume was measured every 5 minutes. This work has shown the

  19. Characterization of a small-scale drainage basin in Central Portugal - a multidisciplinary approach

    NASA Astrophysics Data System (ADS)

    Correia, Carla G.; Azevedo, José Manuel; Rodrigues, Nelson V.; Figueiredo, Fernando P. O.

    2015-04-01

    This study presents a multidisciplinary characterization of a small-scale watershed encompassing its topography, geology, local and regional tectonics, morphometry of the drainage system, soil type, land use and climatology. All this parameters are important controllers of the groundwater circulation and storage, as well as the localization of the recharge areas. It also identifies the piezometric changes, the upper (or phreatic) aquifer flow and the major recharge areas. Simultaneously, it includes the hydrochemical classification and the active hydrogeochemical processes occurring on the local aquifers. The combined analysis of these data is necessary for interpreting the hydrodynamics of the local aquifer units. The research focused on the surrounding domains of Olhos da Fervença spring, particularly in the Fervença watershed, a small-scale drainage basin close to Cantanhede city (Coimbra District, Portugal). This watershed is located on a rural area within the Vouga hydrographic basin. The methodology included: (1) delimitation of the watershed; (2) geometric (or physiographic) characterization of the basin; (3) analysis of the digital elevation model to quantify the slopes and to detect structural alignments that influence the surface and groundwater flow; (4) geologic characterization of the basin; (5) description of the soil type and the land use; (6) classification of the regional climatic conditions; (7) inventory and regular hydrogeologic characterization of wells (diameter, depth, wellhead and piezometry); (8) elaboration of piezometric maps in order to identify the groundwater flow; (9) groundwater sampling and in situ measurement of physico-chemical parameters (pH, groundwater temperature, specific electrical conductivity, Eh, dissolved oxygen, HCO3); (10) conducting laboratorial hydrochemical analyzes (Cl, NO3, SO4, PO4, Ca, Na, Mg, K, Fe, Mn, Al); (11) groundwater classification, hydrochemical interpretation and identification of the water

  20. Phylogeographic Analysis of Blastomyces dermatitidis and Blastomyces gilchristii Reveals an Association with North American Freshwater Drainage Basins

    PubMed Central

    McTaggart, Lisa R.; Brown, Elizabeth M.; Richardson, Susan E.

    2016-01-01

    Blastomyces dermatitidis and Blastomyces gilchristii are dimorphic fungal pathogens that cause serious pulmonary and systemic infections in humans. Although their natural habitat is in the environment, little is known about their specific ecologic niche(s). Here, we analyzed 25 microsatellite loci from 169 strains collected from various regions throughout their known endemic range in North America, representing the largest and most geographically diverse collection of isolates studied to date. Genetic analysis of multilocus microsatellite data divided the strains into four populations of B. dermatitidis and four populations of B. gilchristii. B. dermatitidis isolates were recovered from areas throughout North America, while the B. gilchristii strains were restricted to Canada and some northern US states. Furthermore, the populations of both species were associated with major freshwater drainage basins. The four B. dermatitidis populations were partitioned among (1) the Nelson River drainage basin, (2) the St. Lawrence River and northeast Atlantic Ocean Seaboard drainage basins, (3) the Mississippi River System drainage basin, and (4) the Gulf of Mexico Seaboard and southeast Atlantic Ocean Seaboard drainage basins. A similar partitioning of the B. gilchristii populations was observed among the more northerly drainage basins only. These associations suggest that the ecologic niche where the sexual reproduction, growth, and dispersal of B. dermatitidis and B. gilchristii occur is intimately linked to freshwater systems. For most populations, sexual reproduction was rare enough to produce significant linkage disequilibrium among loci but frequent enough that mating-type idiomorphic ratios were not skewed from 1:1. Furthermore, the evolutionary divergence of B. dermatitidis and B. gilchristii was estimated at 1.9 MYA during the Pleistocene epoch. We suggest that repeated glaciations during the Pleistocene period and resulting biotic refugia may have provided the

  1. Simulating the Effects of Drainage and Agriculture on Hydrology and Sediment in the Minnesota River Basin

    NASA Astrophysics Data System (ADS)

    Downer, C. W.; Pradhan, N. R.; Skahill, B. E.; Banitt, A. M.; Eggers, G.; Pickett, R. E.

    2014-12-01

    Throughout the Midwest region of the United States, slopes are relatively flat, soils tend to have low permeability, and local water tables are high. In order to make the region suitable for agriculture, farmers have installed extensive networks of ditches to drain off excess surface water and subsurface tiles to lower the water table and remove excess soil water in the root zone that can stress common row crops, such as corn and soybeans. The combination of tiles, ditches, and intensive agricultural land practices radically alters the landscape and hydrology. Within the watershed, tiles have outlets to both the ditch/stream network as well as overland locations, where the tile discharge appears to initiate gullies and exacerbate overland erosion. As part of the Minnesota River Basin Integrated Study we are explicitly simulating the tile and drainage systems in the watershed at multiple scales using the physics-based watershed model GSSHA (Gridded Surface Subsurface Hydrologic Analysis). The tile drainage system is simulated as a network of pipes that collect water from the local water table. Within the watershed, testing of the methods on smaller basins shows the ability of the model to simulate tile flow, however, application at the larger scale is hampered by the computational burden of simulating the flow in the complex tile drain networks that drain the agricultural fields. Modeling indicates the subsurface drains account for approximately 40% of the stream flow in the Seven Mile Creek sub-basin account in the late spring and early summer when the tile is flowing. Preliminary results indicate that agricultural tile drains increase overland erosion in the Seven Mile Creek watershed.

  2. Pesticides in streams in the Tar-Pamlico drainage basin, North Carolina, 1992-94

    USGS Publications Warehouse

    Woodside, Michael D.; Ruhl, Kelly E.

    2001-01-01

    From 1992 to 1994, 147 water samples were collected at 5 sites in the Tar-Pamlico drainage basin in North Carolina and analyzed for 46 herbicides, insecticides, and pesticide metabolites as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Based on a common adjusted detection limit of 0.01 microgram per liter, the most frequently detected herbicides were metolachlor (84 percent), atrazine (78 percent), alachlor (72 percent), and prometon (57 percent). The insecticides detected most frequently were carbaryl (12 percent), carbofuran (7 percent), and diazinon (4 percent). Although the pesticides with the highest estimated uses generally were the compounds detected most frequently, there was not a strong correlation between estimated use and detection frequency. The development of statistical correlations between pesticide use and detection frequency was limited by the lack of information on pesticides commonly applied in urban and agricultural areas, such as prometon, chlorpyrifos, and diazinon, and the small number of basins included in this study. For example, prometon had the fourth highest detection frequency, but use information was not available. Nevertheless, the high detection frequency of prometon indicates that nonagricultural uses also contribute to pesticide levels in streams in the Tar-Pamlico drainage basin. Concentrations of the herbicides atrazine, alachlor, and trifluralin varied seasonally, with elevated concentrations generally occurring in the spring, during and immediately following application periods, and in the summer. Seasonal concentration patterns were less evident for prometon, diazinon, and chlorpyrifos. Alachlor is the only pesticide detected in concentrations that exceeded current (2000) drinking-water standards.

  3. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    PubMed

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun

    2016-04-01

    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.

  4. Ancient drainage basin of the Tharsis region, Mars: Potential source for outflow channel systems and putative oceans or paleolakes

    USGS Publications Warehouse

    Dohm, J.M.; Ferris, J.C.; Baker, V.R.; Anderson, R.C.; Hare, T.M.; Strom, R.G.; Barlow, N.G.; Tanaka, K.L.; Klemaszewski, J.E.; Scott, D.H.

    2001-01-01

    Paleotopographic reconstructions based on a synthesis of published geologic information and high-resolution topography, including topographic profiles, reveal the potential existence of an enormous drainage basin/aquifer system in the eastern part of the Tharsis region during the Noachian Period. Large topographic highs formed the margin of the gigantic drainage basin. Subsequently, lavas, sediments, and volatiles partly infilled the basin, resulting in an enormous and productive regional aquifer. The stacked sequences of water-bearing strata were then deformed locally and, in places, exposed by magmatic-driven uplifts, tectonic deformation, and erosion. This basin model provides a potential source of water necessary to carve the large outflow channel systems of the Tharsis and surrounding regions and to contribute to the formation of putative northern-plains ocean(s) and/or paleolakes. Copyright 2001 by the American Geophysical Union.

  5. Geodatabase of sites, basin boundaries, and topology rules used to store drainage basin boundaries for the U.S. Geological Survey, Colorado Water Science Center

    USGS Publications Warehouse

    Dupree, Jean A.; Crowfoot, Richard M.

    2012-01-01

    This geodatabase and its component datasets are part of U.S. Geological Survey Digital Data Series 650 and were generated to store basin boundaries for U.S. Geological Survey streamgages and other sites in Colorado. The geodatabase and its components were created by the U.S. Geological Survey, Colorado Water Science Center, and are used to derive the numeric drainage areas for Colorado that are input into the U.S. Geological Survey's National Water Information System (NWIS) database and also published in the Annual Water Data Report and on NWISWeb. The foundational dataset used to create the basin boundaries in this geodatabase was the National Watershed Boundary Dataset. This geodatabase accompanies a U.S. Geological Survey Techniques and Methods report (Book 11, Section C, Chapter 6) entitled "Digital Database Architecture and Delineation Methodology for Deriving Drainage Basins, and Comparison of Digitally and Non-Digitally Derived Numeric Drainage Areas." The Techniques and Methods report details the geodatabase architecture, describes the delineation methodology and workflows used to develop these basin boundaries, and compares digitally derived numeric drainage areas in this geodatabase to non-digitally derived areas. 1. COBasins.gdb: This geodatabase contains site locations and basin boundaries for Colorado. It includes a single feature dataset, called BasinsFD, which groups the component feature classes and topology rules. 2. BasinsFD: This feature dataset in the "COBasins.gdb" geodatabase is a digital container that holds the feature classes used to archive site locations and basin boundaries as well as the topology rules that govern spatial relations within and among component feature classes. This feature dataset includes three feature classes: the sites for which basins have been delineated (the "Sites" feature class), basin bounding lines (the "BasinLines" feature class), and polygonal basin areas (the "BasinPolys" feature class). The feature dataset

  6. Sea-floor drainage features of Cascadia Basin and the adjacent continental slope, northeast Pacific Ocean

    USGS Publications Warehouse

    Hampton, M.A.; Karl, Herman A.; Kenyon, Neil H.

    1989-01-01

    Sea-floor drainage features of Cascadia Basin and the adjacent continental slope include canyons, primary fan valleys, deep-sea valleys, and remnant valley segments. Long-range sidescan sonographs and associated seismic-reflection profiles indicate that the canyons may originate along a mid-slope escarpment and grow upslope by mass wasting and downslope by valley erosion or aggradation. Most canyons are partly filled with sediment, and Quillayute Canyon is almost completely filled. Under normal growth conditions, the larger canyons connect with primary fan valleys or deep-sea valleys in Cascadia Basin, but development of accretionary ridges blocks or re-routes most canyons, forcing abandonment of the associated valleys in the basin. Astoria Fan has a primary fan valley that connects with Astoria Canyon at the fan apex. The fan valley is bordered by parallel levees on the upper fan but becomes obscure on the lower fan, where a few valley segments appear on the sonographs. Apparently, Nitinat Fan does not presently have a primary fan valley; none of the numerous valleys on the fan connect with a canyon. The Willapa-Cascadia-Vancouver-Juan de Fuca deep-sea valley system bypasses the submarine fans and includes deeply incised valleys to broad shallow swales, as well as within-valley terraces and hanging-valley confluences. ?? 1989.

  7. Morphometric Discharge Relationships in the Cosumnes River Drainage Basin, Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    Cornwell, K.; Meyer, R.

    2002-12-01

    Hydrographic similarities between disparate gaging stations in the Consumnes River drainage basin suggest that it may be possible to extend stream gage records in areas with limited or missing records. This has led to an analysis of the relationship between recorded daily discharge values and bankfull channel conditions in the basin using USGS gage data from three sites in the basin [11335000 Cosumnes River at Michigan Bar (MBAR - period of record 1907-2002), 11333500 North Fork Cosumnes near El Dorado (NFELDO - period of record 1911-1941 and 1948-1987) and the 11334200 Middle Fork Cosumnes near Somerset (MFSOM - period of record 1957-1971)], 3-day mean discharge values and bank-full conditions (discharge recurrence interval of ~1.5 years) were calculated. Utilizing the bank-full discharge of the mainstem gage (MBAR) as a threshold, we compared discharge values between MBAR and two of its tributaries (NFELDO and MFSOM) and observed strong linear trends in the data sets. Mathematical expressions were derived to characterize the relations between the individual tributaries and the mainstem gage. When calibrated against the complete gage records of the tributaries we encountered overall error rates of less than 5 percent from both tributary data sets. This suggests that it is possible to extend stream gage records in areas with limited existing records or where occasional activiation and de-activation of gage sites result in incomplete long-term records.

  8. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors

    USGS Publications Warehouse

    Van Nest, J.; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective. ?? 1990.

  9. Drainage basin security of hazardous chemical fluxe in the Yodo River basin.

    PubMed

    Matsui, S

    2004-01-01

    The Yodo River basin consists of three major tributary basins (and other small river basins) namely Uji, Katsura and Kizu, which overlap respectively Shiga, Kvoto and Nara prefectures' administrative areas. Lake Biwa, the largest lake in Japan, drains water through the Uji river. The water quality of the lake, in terms of BOD, continuously improved over the last decade. However, the quality in terms of COD did not show any improvement in spite of a large amount of infrastructure finance being introduced. Eutrophication of the lake still continues, showing no improvement in the nitrogen concentration level. Non-point as well as point source control is not strong enough. There is a gap between BOD and COD evaluations of the lake water quality. Hazardous chemical fluxes are estimated based upon PRTR reports of Japan (2001). PCBs are still discharged into the lake, although the report of Shiga Prefecture showed zero discharge. Dace fish monitoring clearly showed that PCB contamination of the fish had not changed since the 1980s in spite of a ban on use and production of PCBs in the 1970s. There is still leakage of PCBs into the lake. The major exposure of dioxins to Japanese is fish rather than meat and eggs. The risk of water contamination must take into consideration not only drinking water safety but also ecological magnification of food chains in water. The ecological health aspect of hazardous chemicals is also important, such as organotins with imposex of sea snails. Finally, public participation in hazardous chemical management is very important using the method of risk communication based upon the annual report of PRTR in Japan.

  10. Preliminary evaluation of magnitude and frequency of floods in selected small drainage basins in Ohio

    USGS Publications Warehouse

    Kolva, J.R.

    1985-01-01

    A previous study of flood magitudes and frequencies in Ohio concluded that existing regionalized flood equations may not be adequate for estimating peak flows in small basins that are heavily forested, surface mined, or located in northwestern Ohio. In order to provide a large data base for improving estimation of flood peaks in these basins, 30 crest-stage gages were installed in 1977, in cooperation with the Ohio Department of Transportation, to provide a 10-year record of flood data The study area consists of two distinct parts: Northwestern Ohio, which contains 8 sites, and southern and eastern Ohio, which contains 22 sites in small forested or surface-mined drainage basins. Basin characteristics were determined for all 30 sites for 1978 conditions. Annual peaks were recorded or estimated for all 30 sites for water years 1978-82; an additional year of peak discharges was available at four sites. The 2-year (Q2) and 5-year (Q5) flood peaks were determined from these annual peaks.Q2 and Q5 values also were calculated using published regionalized regression equations for Ohio. The ratios of the observed to predicted 2-year (R2) and 5-year (R5) values were then calculated. This study found that observed flood peaks aree lower than estimated peaks by a significant amount in surface-mined basins. The average ratios of observed to predicted R2 values are 0.51 for basins with more than 40 percent surface-minded land, and 0.68 for sites with any surface-mined land. The average R5 value is 0.55 for sites with more than 40 percent surface-minded land, and 0.61 for sites with any surface-mined land. Estimated flood peaks from forested basins agree with the observed values fairly well. R2 values average 0.87 for sites with 20 percent or more forested land, but no surface-mined land, and R5 values average 0.96. If all sites with more than 20 percent forested land and some surface-mined land are considered, R2 the values average 0.86, and the R5 values average 0.82.

  11. National Water-Quality Assessment Program - Western Lake Michigan Drainage Basin

    USGS Publications Warehouse

    Setmire, J.O.

    1991-01-01

    A major component of the program is study-unit investigations, which comprise the princ ipal bui lding blocks of the program on which national-level asses ment activities a re based . The 60 study-unit in vestigations that make up the program are hydrologic systems that include parts of most major river bas ins and a qui fer systems. These study units cover areas of I ,200 to more than 65 ,000 square mi les and incorporate about 60 to 70 percent of the Nation's water use and popul ation e rved by public water supply. In 1991 , the Western Lake Michigan drainage basin was among the fir st 20 NA WQA study unit selected for study under the full -scale implementation plan.

  12. Water-quality conditions and relation to drainage-basin characteristics in the Scituate Reservoir Basin, Rhode Island, 1982-95

    USGS Publications Warehouse

    Breault, Robert F.; Waldron, Marcus C.; Barlow, Lora K.; Dickerman, David C.

    2000-01-01

    The Scituate Reservoir Basin covers about 94 square miles in north central Rhode Island and supplies more than 60 percent of the State of Rhode Island's drinking water. The basin includes the Scituate Reservoir Basin and six smaller tributary reservoirs with a combined capacity of about 40 billion gallons. Most of the basin is forested and undeveloped. However, because of its proximity to the Providence, Rhode Island, metropolitan area, the basin is subject to increasing development pressure and there is concern that this may lead to the degradation of the water supply. Selected water-quality constituent concentrations, loads, and trends in the Scituate Reservoir Basin, Rhode Island, were investigated locate parts of the basin likely responsible for exporting disproportionately large amounts of water-quality constituents to streams, rivers, and tributary reservoirs, and to determine whether water quality in the basin has been changing with time. Water-quality data collected between 1982 and 1995 by the Providence Water Supply Board PWSB) in 34 subbasins of the Scituate Reservoir Basin were analyzed. Subbasin loads and yields of total coliform bacteria, chloride, nitrate, iron, and manganese, estimated from constituent concentrations and estimated mean daily discharge records for the 1995 water year, were used to determine which subbasins contributed disproportionately large amounts of these constituents. Measurements of pH, color, turbidity, and concentrations of total coliform bacteria, sodium, alkalinity, chloride, nitrate, orthophosphate, iron, and manganese made between 1982 and 1995 by the PWSB were evaluated for trends. To determine the potential effects of human-induced changes in drainage- basin characteristics on water quality in the basin, relations between drainage-basin characteristics and concentrations of selected water-quality constituents also were investigated. Median values for pH, turbidity, total coliform bacteria, sodium, alkalinity, chloride

  13. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    USGS Publications Warehouse

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of .southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, ,adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  14. Geomorphometry of Drainage Basin for Natural Resources Management Using High Resolution Satellite Data an Indian Example

    NASA Astrophysics Data System (ADS)

    Venkateswarlu, P.; Reddy, M. A.; Prasad, A. T.

    2003-12-01

    Application of Remote Sensing and Geographic Information System for the development of land and water resources action plan at micro level for appropriate management of land/water resources of a watershed in rain fed region of Prakasam District in Andhra Pradesh, India forms the focal theme of this paper. The quantitative description of drainage basin geometry can be effectively determined using Remote Sensing and GIS techniques. Each of the sixty-two sub-watersheds of the study area have been studied in terms of the Morphometric parameters - Stream length, Bifurcation ratio, Length ratio, Drainage density, Stream frequency, Texture ratio, Form factor, Area Perimeters, Circularity ratio and Elongation ratio and prioritized all the sub-watersheds under study. The prioritization of sub sheds based on morphometry is compared with sediment yield prioritization and found nearly same for the study area. The information obtained from the thematic maps are integrated and action plans are suggested for land and water resources development on a sustainable basis. Landuse/Landcover, Hydrogeomorphology and Soil thematic maps were generated. In addition slope and Drainage maps were prepared from Survey of India toposheets. Based on the computerized database created using ARC/INFO software, information derived in terms of natural resources and their spatial distribution was then integrated with the socio economic data to formulate an action plan, which includes suggestion of alternative Landuse/Landcover practices. Such a plan is useful for natural resources management and for improving the socio-economic status of rural population on a sustainable basis. Keywords: Natural Resources, Remote Sensing, Morphometry sustainable development.

  15. Aquatic biology of the Redwood Creek and Mill Creek drainage basins, Redwood National Park, Humboldt and Del Norte counties, California

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Averett, R.C.

    1981-01-01

    A 2-year study of the aquatic biota in the Redwood Creek and Mill Creek drainage basins of Redwood National Park indicated that the aquatic productivity is low. Densities of coliform bacteria were low except in Prairie Creek, a tributary to Redwood Creek, where a State park, county fish hatchery, grazing land, lumber mill, and scattered residential areas are potential sources of fecal coliform bacteria. Benthic invertebrate data indicated a diverse fauna which varied considerably between streams and among stream sections. Noteworthy findings include: (1) benthic invertebrates rapidly recolonized the streambed following a major storm, and (2) man-caused disruption or sedimentation of the streambed during low flow can result in drastic reductions of the benthic invertebrate community. Seven species of fish representing species typically found in northern California coastal streams were captured during the study. Nonparametric statistical tests indicate that condition factors of steelhead trout were significantly larger at sampling stations with more insolation, regardless of drainage basin land-use history. Periphyton and phytoplankton communities were diverse, variable in numbers, and dominated by diatoms. Seston concentrations were extremely variable between stations and at each station sampled. The seston is influenced seasonally by aquatic productivity at each station and amount of allochthonous material from the terrestrial ecosystem. Time-series analysis of some seston data indicated larger and sharper peak concentrations being flushed from the logged drainage basin than from the control drainage basin. (USGS)

  16. Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Strouhal, Luděk; Landa, Martin; Neuman, Martin; Kožant, Petr; Muller, Miloslav

    2016-04-01

    The aim of this contribution is to introduce the recently started three year's project named "Variability of Short-term Precipitation and Runoff in Small Czech Drainage Basins and its Influence on Water Resources Management". Its main goal is to elaborate a methodology and online utility for deriving short-term design precipitation series, which could be utilized by a broad community of scientists, state administration as well as design planners. The outcomes of the project will especially be helpful in modelling hydrological or soil erosion problems when designing common measures for promoting water retention or landscape drainage systems in or out of the scope of Landscape consolidation projects. The precipitation scenarios will be derived from 10 years of observed data from point gauging stations and radar data. The analysis is focused on events' return period, rainfall total amount, internal intensity distribution and spatial distribution over the area of Czech Republic. The methodology will account for the choice of the simulation model. Several representatives of practically oriented models will be tested for the output sensitivity to selected precipitation scenario comparing to variability connected with other inputs uncertainty. The variability of the outputs will also be assessed in the context of economic impacts in design of landscape water structures or mitigation measures. The research was supported by the grant QJ1520265 of the Czech Ministry of Agriculture, using data provided by the Czech Hydrometeorological Institute.

  17. Water-quality data from Taylor Creek drainage basin, El Dorado County, California, July 1975 through October 1976

    USGS Publications Warehouse

    Templin, William E.; Green, D. Brady; Ferreira, Rodger F.

    1980-01-01

    Data were collected from July 1975 through October 1976 to establish benchmark water-quality conditions in the Taylor Creek drainage basin in California. The Taylor Creek drainage basin is a high-altitude system of lakes and streams which forms one of the tributaries to Lake Tahoe in the Sierra Nevada of California and Nevada. Sampling sites were distributed between the upper and lower reaches of the basin. Streamflow and water-quality data were collected at 13 stream sites. Water-quality data and depth profiles were collected at six lake sites. The reconnaissance included measurement and evaluation of the following selected characteristics: major chemicals, nutrients, fecal coliform bacteria, phytoplankton, periphytic algae, benthic macroinvertebrates, primary productivity, and stream community diversity. (USGS)

  18. Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins

    NASA Astrophysics Data System (ADS)

    Bring, Arvid; Asokan, Shilpa M.; Jaramillo, Fernando; Jarsjö, Jerker; Levi, Lea; Pietroń, Jan; Prieto, Carmen; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    The multimodel ensemble of the Coupled Model Intercomparison Project, Phase 5 (CMIP5) synthesizes the latest research in global climate modeling. The freshwater system on land, particularly runoff, has so far been of relatively low priority in global climate models, despite the societal and ecosystem importance of freshwater changes, and the science and policy needs for such model output on drainage basin scales. Here we investigate the implications of CMIP5 multimodel ensemble output data for the freshwater system across a set of drainage basins in the Northern Hemisphere. Results of individual models vary widely, with even ensemble mean results differing greatly from observations and implying unrealistic long-term systematic changes in water storage and level within entire basins. The CMIP5 projections of basin-scale freshwater fluxes differ considerably more from observations and among models for the warm temperate study basins than for the Arctic and cold temperate study basins. In general, the results call for concerted research efforts and model developments for improving the understanding and modeling of the freshwater system and its change drivers. Specifically, more attention to basin-scale water flux analyses should be a priority for climate model development, and an important focus for relevant model-based advice for adaptation to climate change.

  19. Water environments: anthropogenic pressures and ecosystem changes in the Atlantic drainage basins of Brazil.

    PubMed

    Marques, Marcia; da Costa, Monica F; Mayorga, Maria Irles de O; Pinheiro, Patrícia R

    2004-02-01

    Densely occupied drainage basins and coastal zones in developing countries that are facing economic growth are likely to suffer from moderate to severe environmental impacts regarding different issues. The catchment basins draining towards the Atlantic coast from northeastern to southern Brazil include a wide range of climatic zones and diverse ecosystems. Within its borders lies the Atlantic rain forest, significant extensions of semiarid thorn forests (caatinga), vast tree and scrub woodlands (cerrado) and most of the 6670 km of the Brazilian coast and its marine ecosystems. In recent decades, human activities have increasingly advanced over these natural resources. Littoralization has imposed a burden on coastal habitats and communities. Most of the native vegetation of the cerrado and caatinga was removed and only 7% of the original Atlantic rainforest still exists. Estuaries, bays and coastal lagoons have been irreversibly damaged. Land uses, damming and water diversion have become the major driving forces for habitat loss and aquatic ecosystem modification. Regardless of the contrast between the drought-affected northeastern Brazil and the much more prosperous and industrialized southeastern/southern Brazil, the impacts on habitat and communities were found equally severe in both cases. Attempts to halt environmental degradation have not been effective. Instead of focusing on natural resources separately, it is suggested that more integrated environmental policies that focus on aquatic ecosystems integrity are introduced.

  20. Photogrammetrically Derived Estimates of Glacier Mass Loss in the Upper Susitna Drainage Basin, Alaska Range, Alaska

    NASA Astrophysics Data System (ADS)

    Wolken, G. J.; Whorton, E.; Murphy, N.

    2014-12-01

    Glaciers in Alaska are currently experiencing some of the highest rates of mass loss on Earth, with mass wastage rates accelerating during the last several decades. Glaciers, and other components of the hydrologic cycle, are expected to continue to change in response to anticipated future atmospheric warming, thus, affecting the quantity and timing of river runoff. This study uses sequential digital elevation model (DEM) analysis to estimate the mass loss of glaciers in the upper Susitna drainage basin, Alaska Range, for the purpose of validating model simulations of past runoff changes. We use mainly stereo optical airborne and satellite data for several epochs between 1949 and 2014, and employ traditional stereo-photogrammetric and structure from motion processing techniques to derive DEMs of the upper Susitna basin glaciers. This work aims to improve the record of glacier change in the central Alaska Range, and serves as a critical validation dataset for a hydrological model that simulates the potential effects of future glacier mass loss on changes in river runoff over the lifespan of the proposed Susitna-Watana Hydroelectric Project.

  1. Drainage areas of New York streams, by river basins; a stream gazetteer; Part 1, Data compiled as of October 1980

    USGS Publications Warehouse

    Wagner, L.A.

    1982-01-01

    Hydrologic studies concerned with surface water require geographic data of several types, among which are stream length and size of drainage area from which runoff is contributed. This gazetteer presents all drainage-area data on New York streams that were available as of October 1980. The information is grouped by river basin, and each section consists of two lists. The first gives sites alphabetically by stream name and includes the body of water to which the stream is tributary, county in which the site is located, drainage area above the mouth, coordinates of the topographic quadrangle on the State index map , and the Geological Survey site number. The second list presents site information by U.S. Geological Survey site number (downstream order along the main stream) and includes drainage area, distance of measurement site above the mouth, and location by latitude and longitude. Data were compiled from published and unpublished sources, all of which are available for inspection at the U.S. Geological Survey in Albany, N.Y. Also included are updated values on several river basins that have been redelineated and whose drainage areas have been recomputed and retabulated since 1977. (USGS)

  2. Discharge and sediment loads in the Boise River drainage basin, Idaho 1939-40

    USGS Publications Warehouse

    Love, S.K.; Benedict, Paul Charles

    1948-01-01

    The Boise River project is a highly developed agricultural area comprising some 520 square miles of valley and bench lands in southwestern Idaho. Water for irrigation is obtained from the Boise River and its tributaries which are regulated by storage in Arrow Rock and Deer Flat reservoirs. Distribution of water to the farms is effected by 27 principal canals and several small farm laterals which divert directly from the river. The- New York Canal, which is the largest, not only supplies water to smaller canals and farm laterals, but also is used to fill Deer Flat Reservoir near Nampa from which water is furnished to farms in the lower valley. During the past 15 years maintenance costs in a number of those canals have increased due to deposition of sediment in them and in the river channel itself below the mouth of Moore Creek. Interest in determining the runoff and sediment loads from certain areas in the Boise River drainage basin led to an investigation by the Flood Control Coordinating Committee of the Department of Agriculture. Measurements of daily discharge and sediments loads were made by the Geological Survey at 13 stations in the drainage basin during the 18-month period ended June 30, 1940. The stations were on streams in areas having different kinds of vegetative cover and subjected to different kinds of land-use practice. Data obtained during the investigation furnish a basis for certain comparisons of runoff and sediment loads from several areas arid for several periods of time. Runoff measured at stations on the. Boise River near Twin Springs and on Moore Creek near Arrow Rock was smaller during 1939 than during 1940 and was below the average annual runoff for the period of available record. Runoff measured at the other stations on the project also was smaller during 1939 than during 1940 and probably did not exceed the average for the previous 25 years. The sediment loads measured during the spring runoff in 1939 were smaller at most stations than

  3. Integration of the Gila River drainage system through the Basin and Range province of southern Arizona and southwestern New Mexico (USA)

    NASA Astrophysics Data System (ADS)

    Dickinson, William R.

    2015-05-01

    The Gila River and its tributaries in southern Arizona and adjoining states incorporate several dozen individual extensional basins of the central Basin and Range province into a single integrated drainage network. Forty basins in the Gila domain contain more than 1000 m (maximum ~ 3500 m) of post-12 Ma basin fill. Subsurface evaporites in many basins document internal drainages terminating in isolated playa lakes during early phases of basin history. The nature of intrabasinal and interbasinal divides and of eroded or sedimented stream passages through mountain ranges intervening between the basins reveal the geomorphic mechanisms that achieved drainage integration over late Miocene to early Pleistocene time. Drainage integration accompanied by headward erosion eastward toward Gila headwaters was a response to Miocene opening of the Gulf of California, into which the Gila River debouched directly before the Pliocene (< 5 Ma) lower course of the Colorado River was established. Residual basins of internal drainage where headward erosion has not yet penetrated into basin fill are most common in the easternmost Gila domain but also persist locally farther west. Most basin fill was dissected during drainage integration within the upstream Gila domain but continued accumulation of undissected basin fill by sediment aggradation is dominant in the downstream Gila domain. Basin dissection was initiated by Pliocene time in the central Gila domain but was delayed until Pleistocene time farther east. In the westernmost Gila domain, interaction with erosional and depositional episodes along the Colorado River influenced the development of Quaternary landscapes along the tributary Gila River. The sedimentary history of the Gila drainage network illustrates the means by which trunk rivers can establish courses across corrugated topography produced by the extensional rupture of continental blocks.

  4. StreamStats in Oklahoma - Drainage-Basin Characteristics and Peak-Flow Frequency Statistics for Ungaged Streams

    USGS Publications Warehouse

    Smith, S. Jerrod; Esralew, Rachel A.

    2010-01-01

    The USGS Streamflow Statistics (StreamStats) Program was created to make geographic information systems-based estimation of streamflow statistics easier, faster, and more consistent than previously used manual techniques. The StreamStats user interface is a map-based internet application that allows users to easily obtain streamflow statistics, basin characteristics, and other information for user-selected U.S. Geological Survey data-collection stations and ungaged sites of interest. The application relies on the data collected at U.S. Geological Survey streamflow-gaging stations, computer aided computations of drainage-basin characteristics, and published regression equations for several geographic regions comprising the United States. The StreamStats application interface allows the user to (1) obtain information on features in selected map layers, (2) delineate drainage basins for ungaged sites, (3) download drainage-basin polygons to a shapefile, (4) compute selected basin characteristics for delineated drainage basins, (5) estimate selected streamflow statistics for ungaged points on a stream, (6) print map views, (7) retrieve information for U.S. Geological Survey streamflow-gaging stations, and (8) get help on using StreamStats. StreamStats was designed for national application, with each state, territory, or group of states responsible for creating unique geospatial datasets and regression equations to compute selected streamflow statistics. With the cooperation of the Oklahoma Department of Transportation, StreamStats has been implemented for Oklahoma and is available at http://water.usgs.gov/osw/streamstats/. The Oklahoma StreamStats application covers 69 processed hydrologic units and most of the state of Oklahoma. Basin characteristics available for computation include contributing drainage area, contributing drainage area that is unregulated by Natural Resources Conservation Service floodwater retarding structures, mean-annual precipitation at the

  5. Generalized estimates from streamflow data of annual and seasonal ground-water-recharge rates for drainage basins in New Hampshire

    USGS Publications Warehouse

    Flynn, Robert H.; Tasker, Gary D.

    2004-01-01

    This report presents regression equations to estimate generalized annual and seasonal ground-water-recharge rates in drainage basins in New Hampshire. The ultimate source of water for a ground-water withdrawal is aquifer recharge from a combination of precipitation on the aquifer, ground-water flow from upland basin areas, and infiltration from streambeds to the aquifer. An assessment of ground-water availability in a basin requires that recharge rates be estimated under `normal' conditions and under assumed drought conditions. Recharge equations were developed by analyzing streamflow, basin characteristics, and precipitation at 55 unregulated continuous record stream-gaging stations in New Hampshire and in adjacent states. In the initial step, streamflow records were analyzed to estimate a series of annual and seasonal ground-water-recharge components of streamflow in each drainage basin evaluated in this study. Regression equations were then developed relating the series of annual and seasonal ground-water-recharge values to the corresponding series of annual and seasonal precipitation values as determined at the centroid of each drainage basin. This resulted in one equation for each of the 55 basins for each of the four seasonal periods and the annual period, or a total of 275 regression equations. Average annual and seasonal precipitation data for 1961-90 were then used to compute a set of normalized ground-water-recharge values that reflected the long-term average annual and seasonal variations (normalized) and mean recharge characteristics of each drainage basin. Ordinary-least-squares regression was applied in the process of selecting 10 out of 93 possible basin and climatic characteristics for further testing in the development of the equations for computing the generalized estimate of annual and seasonal ground-water recharge based on the set of normalized recharge values. Generalized-least-squares regression was used for the final parameter estimation and

  6. Regional-Scale Modeling of Soil Seasonal Freeze/Thaw Over the Arctic Drainage Basin

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2001-12-01

    Changes in active layer depth over permafrost during summer have direct impacts on soil water storage and river discharge through partitioning surface runoff. Since only the uppermost part of the soil is investigatable by remote sensing techniques and direct measurements are sparse, modeling is the only possibility to observe the thermal status of soil on a large scale.\\A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25 km resolution EASE-Grid. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. Soil moisture is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3 layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54 model nodes ranging from a thickness of 10 cm near the surface to 1 m at 15 m depth. Initial temperatures are chosen according to the pixel's permafrost classification in the Circumpolar Active-Layer Permafrost System (CAPS) on EASE grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. \\Active layer depths, simulated for the period September 1998 through December 2000, compare well to maximal thaw depths measured at Circumarctic Active Layer Monitoring (CALM) field sites. This study shows for the first time the regionally highly variable active layer depth, frozen ground depth, and freezing and thawing periods for the whole pan-Arctic land mass. Sensitivity studies for changes in seasonally frozen and thawed depths with air temperature, physical and thermal properties, and soil

  7. Estimated water use and availability in the South Coastal Drainage Basin, southern Rhode Island, 1995-99

    USGS Publications Warehouse

    Wild, Emily C.; Nimiroski, Mark T.

    2005-01-01

    The South Coastal Drainage Basin includes approximately 59.14 square miles in southern Rhode Island. The basin was divided into three subbasins to assess the water use and availability: the Saugatucket, Point Judith Pond, and the Southwestern Coastal Drainage subbasins. Because there is limited information on the ground-water system in this basin, the water use and availability evaluations for these subbasins were derived from delineated surface-water drainage areas. An assessment was completed to estimate water withdrawals, use, and return flow over a 5-year study period from 1995 through 1999 in the basin. During the study period, one major water supplier in the basin withdrew an average of 0.389 million gallons per day from the sand and gravel deposits. Most of the potable water is imported (about 2.152 million gallons per day) from the adjacent Pawcatuck Basin to the northwest. The estimated water withdrawals from the minor water suppliers, which are all in Charlestown, during the study period were 0.064 million gallons per day. The self-supplied domestic, industrial, commercial, and agricultural withdrawals from the basin were 0.574 million gallons per day. Water use in the basin was 2.874 million gallons per day. The average return flow in the basin was 1.190 million gallons per day, which was entirely from self-disposed water users. In this basin, wastewater from service collection areas was exported (about 1.139 million gallons per day) to the Narragansett Bay Drainage Basin for treatment and discharge. During times of little to no recharge, in the form of precipitation, the surface- and ground-water system flows are from storage primarily in the stratified sand and gravel deposits, although there is flow moving through the till deposits at a slower rate. The ground water discharging to the streams, during times of little to no precipitation, is referred to as base flow. The PART program, a computerized hydrograph-separation application, was used at the

  8. Climate change impacts on the Lehman-Baker Creek drainage in the Great Basin National Park

    NASA Astrophysics Data System (ADS)

    Volk, J. M.

    2013-12-01

    Global climate models (GCMs) forced by increased CO2 emissions forecast anomalously dry and warm trends over the southwestern U.S. for the 21st century. The effect of warmer conditions may result in decreased surface water resources within the Great Basin physiographic region critical for ecology, irrigation and municipal water supply. Here we use downscaled GCM output from the A2 and B1 greenhouse gas emission scenarios to force a Precipitation-Runoff Modeling System (PRMS) watershed model developed for the Lehman and Baker Creeks Drainage (LBCD) in the Great Basin National Park, NV for a century long time period. The goal is to quantify the effects of rising temperature to the water budget in the LBCD at monthly and annual timescales. Dynamically downscaled GCM projections are attained from the NSF EPSCoR Nevada Infrastructure for Climate Change Science, Education, and Outreach project and statistically downscaled output is retrieved from the "U.S. Bias Corrected and Downscaled WCRP CMIP3 Climate Projections". Historical daily climate and streamflow data have been collected simultaneously for periods extending 20 years or longer. Mann-Kendal trend test results showed a statistically significant (α= 0.05) long-term rising trend from 1895 to 2012 in annual and monthly average temperatures for the study area. A grid-based, PRMS watershed model of the LBCD has been created within ArcGIS 10, and physical parameters have been estimated at a spatial resolution of 100m. Simulation results will be available soon. Snow cover is expected to decrease and peak runoff to occur earlier in the spring, resulting in increased runoff, decreased infiltration/recharge, decreased baseflows, and decreased evapo-transpiration.

  9. Sediment yield and runoff frequency of small drainage basins in the Mojave Desert, U.S.A

    USGS Publications Warehouse

    Griffiths, P.G.; Hereford, R.; Webb, R.H.

    2006-01-01

    Sediment yield from small arid basins, particularly in the Mojave Desert, is largely unknown owing to the ephemeral nature of these fluvial systems and long recurrence interval of flow events. We examined 27 reservoirs in the northern and eastern Mojave Desert that trapped sediment from small (< 1 km2) drainage basins on alluvial fans over the past 100 yr, calculated annual sediment yield, and estimated the average recurrence interval (RI) of sediment-depositing flow events. These reservoirs formed where railbeds crossed and blocked channels, causing sediment to be trapped and stored upslope. Deposits are temporally constrained by the date of railway construction (1906-1910), the presence of 137Cs in the reservoir profile (post-1952 sediment), and either 1993, when some basins breached during regional flooding, or 2000-2001, when stratigraphic analyses were performed. Reservoir deposits are well stratified at most sites and have distinct fining-upward couplets indicative of discrete episodes of sediment-bearing runoff. Average RI of runoff events for these basins ranges from 2.6 to 7.3 yr and reflects the incidence of either intense or prolonged rainfall; more than half the runoff events occurred before 1963. A period of above-normal precipitation, from 1905 to 1941, may have increased runoff frequency in these basins. Mean sediment yield (9 to 48 tons km-2 yr-1) is an order of magnitude smaller than sediment yields calculated elsewhere and may be limited by reduced storm intensity, the presence of desert pavement, and shallow gradient of fan surfaces. Sediment yield decreases as drainage area increases, a trend typical of much larger drainage basins where sediment-transport processes constrain sediment yield. Coarse substrate and low-angle slopes of these alluvial fan surfaces likely limit sediment transport capacity through transmission losses and channel storage. ?? 2005 Elsevier B.V. All rights reserved.

  10. Assessing differences in topographic form between arctic and temperate drainage basins: Possible implications for dominant erosion processes

    NASA Astrophysics Data System (ADS)

    Prancevic, J. P.; Rowland, J. C.; Wilson, C. J.; Marsh, P.; Wilson, H.

    2010-12-01

    The extent and topology of channel networks are first-order controls on the timing and magnitude of flood events, as well as the rate of landscape drainage. The latter is particularly important in arctic environments, where the release of greenhouse gases from organic-rich permafrost is partially governed by the presence of water. Recent studies are in disagreement as to whether arctic channel networks will contract or expand due to a warming climate. A challenge in predicting arctic landscape adjustment is quantifying the uncertain role permafrost and ground ice play in erosional processes. An improved understanding of the dominant geomorphic processes in low-order arctic drainage basins is required to better inform predictions of the network response to warming. In both temperate and Arctic systems, researchers often use topographic analyses to suggest scaling breaks at which there are transitions between processes. This study utilizes 2-m resolution digital elevation models to investigate divergence in topographic form between temperate systems and Trail Valley Creek basin (TVC), a 63-km2 basin in Northwest Territories, Canada that is underlain by continuous permafrost and high amounts of ground ice. The valley bottoms of the low-order basins in TVC contain vegetated swales in place of incised channels. We constructed cumulative drainage area distributions and slope-area plots in order to assess any differences in scaling breaks and network topology. We also calculated estimates of fluvial basal shear stress along flow paths with drainage areas larger than an estimated threshold (~10,000 to 20,000 m2). Our analysis includes five sub-basins within TVC, three exhibiting relatively well-developed ridge and valley topography and two less dissected landscapes that are drained by small, closely-spaced swales. The cumulative drainage area distribution curves for these sub-basins do not reveal any scaling breaks that are different from those seen in temperate regions

  11. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  12. Mosses Indicating Atmospheric Nitrogen Deposition and Sources in the Yangtze River Drainage Basin, China

    NASA Astrophysics Data System (ADS)

    Xiao, Hua-Yun; Tang, Cong-Guo; Xiao, Hong-Wei; Liu, Xue-Yan; Liu, Cong-Qiang

    2010-07-01

    Characterizing the level and sources of atmospheric N deposition in a large-scale area is not easy when using physical monitoring. In this study, we attempted to use epilithic mosses (Haplocladium microphyllum (Hedw.)) as a bioindicator. A gradient of atmospheric N deposition from 13.8 kg N ha-1 yr-1 to 47.7 kg N ha-1 yr-1 was estimated on the basis of moss tissue N concentrations and the linear equation between them. The estimated results are reliable because the highest atmospheric N deposition occurred in the middle parts of the Yangtze River, where the highest TN concentrations were also observed. Moss δ15N values in cities and forests were found in distinctly different ranges of approximately -10‰ to -6‰ and approximately -2‰ to 2‰, respectively, indicating that the main N sources in most of these cities were excretory wastes and those in forests were soil emissions. A negative correlation between moss δ15N values and the ratios of NH4-N/NO3-N in deposition (y = -1.53 x + 1.78) has been established when the ratio increased from 1.6 to 6.5. On the basis of the source information, the negative moss δ15N values in this study strongly indicate that NHy-N is the dominant N form in N deposition in the whole drainage basin. These findings are supported by the existing data of chemical composition of local N deposition.

  13. Hydrogeologic Framework in Three Drainage Basins in the New Jersey Pinelands, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Reilly, Pamela A.; Watson, Kara M.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain underlain by the Kirkwood-Cohansey aquifer system. The demand for ground water from this aquifer system is increasing as local development increases. To assess the effects of ground-water withdrawals on Pinelands stream and wetland water levels, three drainage basins were selected for detailed hydrologic assessments, including the Albertson Brook, McDonalds Branch and the Morses Mill Stream basins. Study areas were defined surrounding the three drainage basins to provide sub-regional hydrogeologic data for the ground-water flow modeling phase of this study. In the first phase of the hydrologic assessments, a database of hydrogeologic information and a hydrogeologic framework model for each of the three study areas were produced. These framework models, which illustrate typical hydrogeologic variations among different geographic subregions of the Pinelands, are the structural foundation for predictive ground-water flow models to be used in assessing the hydrologic effects of increased ground-water withdrawals. During 2004-05, a hydrogeologic database was compiled using existing and new geophysical and lithologic data including suites of geophysical logs collected at 7 locations during the drilling of 21 wells and one deep boring within the three study areas. In addition, 27 miles of ground-penetrating radar (GPR) surface geophysical data were collected and analyzed to determine the depth and extent of shallow clays in the general vicinity of the streams. On the basis of these data, the Kirkwood-Cohansey aquifer system was divided into 7 layers to construct a hydrogeologic framework model for each study area. These

  14. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: STORMWATER SOURCE AREA TREATMENT DEVICE - STORMWATER MANAGEMENT INC., CATCH BASIN STORMFILTER®

    EPA Science Inventory

    Verification testing of the Stormwater Management CatchBasin StormFilter® (CBSF) was conducted on a 0.16 acre drainage basin at the City of St. Clair Shores, Michigan Department of Public Works facility. The four-cartridge CBSF consists of a storm grate and filter chamber inlet b...

  15. Geochemical Evolution of Groundwater in the Medicine Lodge Creek Drainage Basin with Implications for the Eastern Snake River Plain Aquifer, Eastern Idaho

    NASA Astrophysics Data System (ADS)

    Ginsbach, M. L.; Rattray, G. W.; McCurry, M. O.; Welhan, J. A.

    2012-12-01

    The eastern Snake River Plain aquifer (ESRPA) is an unconfined, continuous aquifer located in a northeast-trending structural basin filled with basaltic lava flows and sedimentary interbeds in eastern Idaho. The ESPRA is not an inert transport system, as it acts as both a sink and source for solutes found in the water. More than 90% of the water recharged naturally to the ESRPA is from the surrounding mountain drainage basins. Consequently, in order to understand the natural geochemistry of water within the ESRPA, the chemistry of the groundwater from the mountain drainage basins must be characterized and the processes that control the chemistry need to be understood. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy and Idaho State University, has been studying these mountain drainage basins to help understand the movement of waste solutes in the ESRPA at the Idaho National Laboratory (INL) in eastern Idaho. This study focuses on the Medicine Lodge Creek drainage basin, which originates in the Beaverhead Mountains, extends onto the eastern Snake River Plain, and contributes recharge to the ESRPA beneath the INL as underflow along the northeastern INL boundary. Water and rock samples taken from the Medicine Lodge Creek drainage basin were analyzed to better understand water/rock interactions occurring in this system and to define the groundwater geochemistry of this drainage basin. Water samples were collected at 10 locations in the drainage basin during June 2012: 6 groundwater wells used for agricultural irrigation or domestic use and 4 springs. These water samples were analyzed for major ions, nutrients, trace metals, isotopes, and dissolved gasses. Samples of rock representative of the basalt, rhyolite, and sediments that occur within the drainage basin also were collected. These samples were analyzed using x-ray diffraction and petrographic study to determine the mineralogical constituents of the rock and the presence and

  16. Hydrologic assessment of three drainage basins in the Pinelands of southern New Jersey, 2004-06

    USGS Publications Warehouse

    Walker, Richard L.; Nicholson, Robert S.; Storck, Donald A.

    2011-01-01

    The New Jersey Pinelands is an ecologically diverse area in the southern New Jersey Coastal Plain, most of which overlies the Kirkwood-Cohansey aquifer system. The demand for groundwater from this aquifer system is increasing as local development increases. Because any increase in groundwater withdrawals has the potential to affect streamflows and wetland water levels, and ultimately threaten the ecological health and diversity of the Pinelands ecosystem, the U.S. Geological Survey, in cooperation with the New Jersey Pinelands Commission, began a multi-phase hydrologic investigation in 2004 to characterize the hydrologic system supporting the aquatic and wetland communities of the New Jersey Pinelands area (Pinelands). The current investigation of the hydrology of three representative drainage basins in the Pinelands (Albertson Brook, McDonalds Branch, and Morses Mill Stream basins) included a compilation of existing data; collection of water-level and streamflow data; mapping of the water-table altitude and depth to the water table; and analyses of water-level and streamflow variability, subsurface gradients and flow patterns, and water budgets. During 2004-06, a hydrologic database of existing and new data from wells and stream sites was compiled. Methods of data collection and analysis were defined, and data networks consisting of 471 wells and 106 surface-water sites were established. Hydrographs from 26 water-level-monitoring wells and four streamflow-gaging stations were analyzed to show the response of water levels and streamflow to precipitation and recharge with respect to the locations of these wells and streams within each basin. Water-level hydrographs show varying hydraulic gradients and flow potentials, and indicate that responses to recharge events vary with well depth and proximity to recharge and discharge areas. Results of the investigation provide a detailed characterization of hydrologic conditions, processes, and relations among the components

  17. Hydrology of the Prairie Dog Creek drainage basin, Rosebud and Big Horn Counties, Montana

    USGS Publications Warehouse

    McClymonds, N.E.

    1982-01-01

    The Prairie Dog Creek drainage basin in southeastern Montana was investigated during 1978-79 to establish a basic understanding of its surface-water and ground-water resources and the quality of water in an area having coal-mining potential. The principal minable coal is the 40-to 60-foot-thick Wall and lower Wall coal beds near the middle part of the Tongue River Member of the Fort Union Formation (Paleocene age). Prairie Dog Creek, which originates from springs and seeps from coal and sandstone layers , maintained perennial flow in its upstream and middle reaches then lost flow until the channel near its mouth had only standing water or was dry. The dissolved-solids concentration of streamwater during periods of high flow (1 cubic foot per second) ranged from 700 to about 1,000 milligrams per liter and during periods of lesser flow (0.5 cubic foot per second) ranged from about 1,300 to 1,600 milligrams per liter. Relatively clean sandstone aquifers had transmissivities of about 15 feet squared per day and water of the magnesium sulfate or sodium sulfate type, with dissolved-solids concentrations ranging from about 2 ,200 to 3,000 milligrams per liter; the water was of a sodium sulfate type and ranged from 1,820 to 4,190 milligrams per liter. The Brewster-Arnold coal aquifer had transmissivities similar to the Wall coal but its water was of a different type, sodium bicarbonate; it also contained large concentration of fluoride (more than 10 milligrams per liter) and had a very high sodium-adsorption ratio (more than 60). (USGS)

  18. Multisensor monitoring system for assessment of locust hazard risk in the Lake Balkhash drainage basin.

    PubMed

    Propastin, Pavel

    2012-12-01

    Satellite and ground-based data were combined in a monitoring system to quantify the link between climate conditions and the risk of locust infestations in the southern part of Lake Balkhash's drainage basin in the Republic of Kazakhstan. In this monitoring system, the Normalized Difference Vegetation Index (NDVI), derived from the SPOT-VGT satellite, was used for mapping potential locust habitats and monitoring their area throughout 1998 to 2007. TOPEX/Poseidon and Jason 1 altimeter data were used to track the interannual dynamics of water level in Balkhash Lake. Climate conditions were represented by weather records for air temperature and precipitation during the same period. The classification procedure, based on an analysis of multitemporal dynamics of SPOT-VGT NDVI values observed by individual vegetation classes, generated annual areas of ten land-cover types, which were then categorized as areas with low, medium, and high risk for locust infestation. Statistical analyses showed significant influences of the climatic parameters and the Balkhash Lake hydrological regime on the spatial extend of annual areas of potential locust habitats. The results also indicate that the linkages between locust infestation risk and environmental factors are characterized by time lags. The expansion of locust risk areas are usually preceded by dry, hot years and lower water levels in Balkhash Lake when larger areas of reed grass are free from seasonal flooding. Years with such conditions are favourable for locust outbreaks due to expansion of the habitat areas suitable for locust oviposition and nymphal development. In contrast, years with higher water levels in Balkhash Lake and lower temperature decrease the potential locust habitat area.

  19. Water quality in the Albemarle-Pamlico drainage basin, North Carolina and Virginia, 1992-95

    USGS Publications Warehouse

    Spruill, Timothy B.; Harned, Douglas A.; Ruhl, Peter M.; Eimers, Jo Leslie; McMahon, Gerard; Smith, Kelly E.; Galeone, David R.; Woodside, Michael D.

    1998-01-01

    The NAWQA Program is assessing the water-quality conditions of more than 50 of the Nation's largest river basins and aquifers, known as Study Units. Collectively, these Study Units cover about one-half of the United States and include sources of drinking water used by about 70 percent of the U.S. population. Comprehensive assessments of about one-third of the Study Units are ongoing at a given time. Each Study Unit is scheduled to be revisited every decade to evaluate changes in water-quality conditions. NAWQA assessments rely heavily on existing information collected by the USGS and many other agencies as well as the use of nationally consistent study designs and methods of sampling and analysis. Such consistency simultaneously provides information about the status and trends in water-quality conditions in a particular stream or aquifer and, more importantly, provides the basis to make comparisons among watersheds and improve our understanding of the factors that affect water-quality conditions regionally and nationally. This report is intended to summarize major findings that emerged between 1992 and 1995 from the water-quality assessment of the Albemarle-Pamlico Drainage Study Unit and to relate these findings to water-quality issues of regional and national concern. The information is primarily intended for those who are involved in water-resource management. Indeed, this report addresses many of the concerns raised by regulators, water-utility managers, industry representatives, and other scientists, engineers, public officials, and members of stakeholder groups who provided advice and input to the USGS during this NAWQA Study-Unit investigation. Yet, the information contained here may also interest those who simply wish to know more about the quality of water in the rivers and aquifers in the area where they live.

  20. Analysis of dew precipitation in three habitats within a small arid drainage basin, Negev Highlands, Israel

    NASA Astrophysics Data System (ADS)

    Kidron, Giora J.

    Water availability is the most important limiting factor in arid lands. Any additional source of water, such as dew and fog, may have a positive impact upon the ecosystem. Dew and fog precipitation are largely dictated by weather conditions and habitat. Dew and fog measurements were carried out for 29 days in the fall of 1987-1989 at three distinctive habitats within a single drainage basin in the Negev Highlands, Israel. The habitats were a sun- and wind-exposed habitat, at two hilltops, a sun-shaded habitat, at the north- and west-facing footslopes, and a wind-protected habitat, at two wadi beds. Morning weather conditions (cloudiness, wind speed) were also monitored. An analysis of the dew and fog quantities and duration was performed. Clear mornings and a single foggy morning recorded were characterized by high dew and fog amounts and duration, whereas lower values were recorded during cloudy and especially windy mornings. The hilltop stations and especially the sun-shaded footslope stations obtained significantly higher values of dew and fog for a significantly longer duration than the wadi bed stations. Whereas the results did not support the hypothesis that advective condensation is responsible for the high dew amounts at the sun-shaded habitat, the data showed a continuous dew condensation even after sunrise. This continuous condensation, averaging up to 1.1 h following sunrise, was especially pronounced at the sun-shaded habitat and may explain the higher dew values and longer time duration obtained at this habitat. Since maximal dew values may not necessarily be obtained at sunrise and may change according to habitat, dew collection time should be carefully considered.

  1. Attenuating reaches and the regional flood response of an urbanizing drainage basin

    NASA Astrophysics Data System (ADS)

    Turner-Gillespie, Daniel F.; Smith, James A.; Bates, Paul D.

    The Charlotte, North Carolina metropolitan area has experienced extensive urban and suburban growth and sharply increasing trends in the magnitude and frequency of flooding. The hydraulics and hydrology of flood response in the region are examined through a combination of numerical modeling studies and diagnostic analyses of paired discharge observations from upstream-downstream gaging stations. The regional flood response is shown to strongly reflect urbanization effects, which increase flood peaks and decrease response times, and geologically controlled attenuating reaches, which decrease flood peaks and increase lag times. Attenuating reaches are characterized by systematic changes in valley bottom geometry and longitudinal profile. The morphology of the fluvial system is controlled by the bedrock geology, with pronounced changes occurring at or near contacts between intrusive igneous and metamorphic rocks. Analyses of wave celerity and flood peak attenuation over a range of discharge values for an 8.3 km valley bottom section of Little Sugar Creek are consistent with Knight and Shiono's characterization of the variation of flood wave velocity from in-channel conditions to valley bottom full conditions. The cumulative effect of variation in longitudinal profile, expansions and contractions of the valley bottom, floodplain roughness and sub-basin flood response is investigated using a two-dimensional, depth-averaged, finite element hydrodynamic model coupled with a distributed hydrologic model. For a 10.1 km stream reach of Briar Creek, with drainage area ranging from 13 km 2 at the upstream end of the reach to 49 km 2 at the downstream end, it is shown that flood response reflects a complex interplay of hydrologic and hydraulic processes on hillslopes and valley bottoms.

  2. The relationship between conductivity and major ions within the Davis Spring drainage basin as a method to determine the source of spring discharge

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Davis Spring drainage basin is a 190 km2 karst basin in Greenbrier County, West Virginia underlain by the 300+ m sequence of the Mississippian Greenbrier Limestone Group which rests on top of the Maccrady Shale. Davis Spring is the largest karst spring in West Virginia with average flows of 10 ...

  3. Drainage basin and topographic analysis of a tropical landscape: Insights into surface and tectonic processes in northern Borneo

    NASA Astrophysics Data System (ADS)

    Mathew, Manoj Joseph; Menier, David; Siddiqui, Numair; Ramkumar, Mu.; Santosh, M.; Kumar, Shashi; Hassaan, Muhammad

    2016-07-01

    We investigated the recent landscape development of Borneo through geomorphic analysis of two large drainage basins (Rajang and Baram basins). The extraction of morphometric parameters utilizing digital terrain data in a GIS environment, focusing on hydrography (stream length-gradient index, ratio of valley floor width to valley height, and transverse topographic symmetry factor) and topography (local relief and relief anomaly), was carried out in order to elucidate processes governing drainage and landscape evolution. Anomalously high and low values of stream length-gradient indices of main tributary streams associated with faults and multiple knick-points along the channel profiles are linked to deformation events. The development of deeply incised V-shaped valleys show enhanced incision capability of streams in response to steepening of hillslope gradients following tectonic inputs. Deflection of streams and probable dynamic reorganization of the drainage system through stream capture processes as feedbacks to tectonic uplift and orographic effect are observed. Local relief and relief anomaly maps highlight the presence of preserved elevation-accordant relict portions of landscapes characterized by low amplitude relief, nested between ridgelines in regions of complex folding. Our results reveal dynamic geomorphic adjustment of the landscape due to perturbations in tectonic and climatic boundary conditions. The implication is that the landscape of north Borneo experienced a tectonic phase of rapid uplift after 5 Ma and undergoes active folding of the Rajang Group thrust belts in the present-day. Active shortening combined with high rates of denudation in Sarawak, demonstrates transience emphasized by the drainage system attempting to adjust to tectonic and climatic forcing.

  4. Effects of agriculture, housing development, and industry on water quality in a small drainage basin, Bushkill Creek, Pennsylvania

    SciTech Connect

    Germanoski, D. . Geology Dept.); Braunwell, P. . Dept. of Environmental Science and Engineering); Coykendall, J.P. ); Kelsey, J. . Dept. of Environmental Chemistry)

    1993-03-01

    Beginning in 1989, three successive studies have focused on the effects of various land use activities on water quality in the Bushkill Creek. Bushkill Creek is located in Northampton County, Pennsylvania and is a tributary to the Delaware River. Bushkill Creek has a drainage area of 206 km[sup 2]. The watershed is underlain by slate and shale units of the Martinsburg Formation and Ordovician carbonate rocks including the Jacksonburg Formation, the Beeckmantown Group, and the Allentown Formations. The authors have been collecting water quality data in the Bushkill Creek drainage basin over a three-year period (1989--1992) in order to determine the general quality of the water and to assess the impact of various land use and industrial activities on water quality. The authors' initial investigation focused on the impact of several potential point sources of contamination in the lower, more heavily industrialized, portion of the Bushkill Creek. Water samples were analyzed for ammonia, chromium (at one site only), nitrate, nitrite, orthophosphate, sulfate, and gasoline (at one site only). The results of that research indicated that background concentrations of nitrates and sulfates were quite high. Therefore, subsequent investigations have focused on the potential impact of agricultural activity and housing development in the upper portion of the Bushkill drainage basin. In particular: (1) petroleum contamination was occurring as a point source in the lower Bushkill drainage, (2) nitrate concentrations in the creek have increased during the past twenty years, most likely as the result of agricultural activity and housing development, (3) sulfate loading into the Bushkill Creek occurs from the Little Bushkill Creek, and (4) the high sulfate concentration in the Little Bushkill Creek originates in the vicinity of a slate quarry.

  5. Hydrologic and chemical-quality data from four rural basins in Guilford County, North Carolina, 1985-88

    USGS Publications Warehouse

    Hill, C.L.

    1989-01-01

    An investigation was begun in 1984 in Guilford County, North Carolina, to monitor water quality and soil erosion in basins with various land-management practices. Hydrologic and chemical-quality data were collected from four rural drainage basins, including two agricultural basins (7.4 and 4.8 acres) cultivated in tobacco and small grains, a mixed rural land-use basin (665 acres) currently under standard land-management practices, and a forested control basin (44 acres) characterizing background conditions. Mean concentrations of total nitrite plus nitrate were 1.0 milligrams per liter from the agricultural basin under standard land-management practices. This was nearly 10 times greater than concentrations from the forested basin. Records of streamflow discharge, chemical quality, ground-water levels, precipitation, and farming activities collected from October 1984 through September 1988 at one or more of the basins are also presented in this report.

  6. Transport of fallout and reactor radionuclides in the drainage basin of the Hudson River estuary

    SciTech Connect

    Simpson, H.J.; Linsalata, P.; Olsen, C.R.

    1982-01-01

    The transport and fate of Strontium 90, Cesium 137 and Plutonium 239, 240 in the Hudson River Estuary is discussed. Rates of radionuclide deposition and accumulation over time and space are calculated for the Hudson River watershed, estuary, and continental shelf offshore. 37 references, 7 figures, 15 tables. (ACR)

  7. Geochemistry of Groundwater in the Beaver and Camas Creek Drainage Basins, Idaho

    NASA Astrophysics Data System (ADS)

    Rattray, G.

    2013-12-01

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from two sediment and three rock samples and water-quality analyses from four surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. The groundwater geochemistry was influenced by reactions with rocks of the geologic terranes--carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway15 were a source of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake Terreton, is an important contributor of

  8. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    USGS Publications Warehouse

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  9. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    NASA Astrophysics Data System (ADS)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    basin is an ideal location to quantify long wavelength dynamic topography due to its low relief. Long river profiles streams that are transverse to the topographic swell in the basin suggest a transient advective signal preserved as profile knickpoints. Abandoned strath terraces, stream piracy, drainage reorganization, and lateral channel migration within the Bighorn Basin are all consistent indicators of the advection of a topographic swell. However, the lack of a high-resolution absolute age chronology precludes us from attributing the primary landscape and drainage forcing to climate change or dynamic topography. Our future work will focus on the timing of geomorphic and river profile evolution to disentangle competing effects of topographic advection, climate, and other factors.

  10. Sediment sources, spatiotemporal variability and rates of fluvial bedload transport in glacier-connected steep mountain valleys in western Norway (Erdalen and Bødalen drainage basins)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.; Laute, Katja

    2015-01-01

    Contemporary fluvial bedload transport rates are still very difficult to measure and, as a result of this, in many sites only quantitative data on suspended and solute transport are included in sediment budget studies carried out for defined drainage basin systems. The presented analysis of fluvial bedload dynamics in different defined subsystems of the glacier-connected Erdalen (79.5 km2) and Bødalen (60.1 km2) drainage basins in the steep fjord landscape of western Norway provides insights into (i) detectable relevant sediment sources, (ii) instream channel storage of bedload material, (iii) spatiotemporal variability and controls of bedload transport rates and bedload yields, and (iv) the absolute and relative importance of fluvial bedload transport within the sedimentary budgets of these steep cold climate mountain valleys. Rockfalls, snow avalanches, stream channel bank erosion, and fluvial transfers through small tributaries draining slope systems are relevant sediment sources for fluvial bedload transport in the main stream channels, whereas the main outlet glaciers in both drainage basins are not of importance as all bedload material delivered directly from these outlet glaciers is trapped within proglacial lakes. Narrow valleys within both drainage basin systems are characterized by a higher intensity of slope-channel coupling and display higher rates of sediment supply from slopes into the main stream channels than wider valleys. Snow avalanches are the most important sediment source in Erdalen, whereas fluvial transfers through small tributaries followed by snow avalanches are most important in Bødalen. Longer term, instream channel storage is not of great importance in the steep Bødalen drainage basin but currently plays an important role within the Erdalen drainage basin, which is characterized by a stepped longitudinal main valley bottom profile favoring deposition of bedload material within less steep main channel reaches. The mean annual bedload

  11. Hydrologic landscapes on the Delmarva Peninsula Part 1: Drainage basin type and base-flow chemistry

    USGS Publications Warehouse

    Phillips, P.J.; Bachman, L.J.

    1996-01-01

    The relation between landscape characteristics and water chemistry on the Delmarva Peninsula can be determined through a principal-component analysis of basin characteristics. Two basin types were defined by factor scores: (1) well-drained basins, characterized by combinations of a low percentage of forest cover, a low percentage of poorly drained soil, and elevated channel slope; and (2) poorly drained basins, characterized by a combinations of an elevated percentage of forest cover, an elevated percentage of poorly drained soil, and low channel slopes. Results from base- flow sampling of 29 basins during spring 1991 indicate that water chemistry of the two basin types differ significantly. Concentrations of calcium, magnesium, potassium, alkalinity, chloride, and nitrate are elevated in well- drained basins, and specific conductance is elevated. Concentrations of aluminum, dissolved organic carbon, sodium, and silica are elevated in poorly drained basins whereas specific conductance is low. The chemical patterns found in well-drained basins can be attributed to the application of agricultural chemicals, and those in poorly drained basins can be attributed to ground-water flowpaths. These results indicate that basin types determined by a quantitative analysis of basin characteristics can be related statistically to differences in base-flow chemistry, and that the observed statistical differences can be related to major processes that affect water chemistry.

  12. High levels of mercury contamination in multiple media of the Carson River drainage basin of Nevada: implications for risk assessment.

    PubMed Central

    Gustin, M S; Taylor, G E; Leonard, T L

    1994-01-01

    Approximately 5.5 x 109 g (4.0 x 105) of mercury was discharged into the Carson River Drainage Basin of west-central Nevada during processing of the gold- and silver-rich Comstock ore in the late 1800s. For the past 13 decades, mercury has been redistributed throughout 500 km2 of the basin, and concentrations are some of the highest reported values in North America. This article documents the concentrations of mercury in the air, water, and substrate at both contaminated and noncontaminated sites within the basin and discusses the implications for risk assessment. At contaminated areas, the range of mercury concentrations are as follows: mill tailings, 3-1610 micrograms/g; unfiltered reservoir water, 53-591 ng/l; atmospheric vapor, 2-294 ng/m3. These values are three to five orders of magnitude greater than natural background. In all media at contaminated sites, concentrations are spatially variable, and air and water mercury concentrations vary temporally. The study are in situated in a natural mercuriferous belt, and regional background mercury concentrations in all environmental media are higher than values typically cited for natural background. As a mercury-contaminated site in North America, the Carson River Drainage Basin is unusual for a number of reasons, including its location in a natural mercuriferous belt, high and sustained levels of anthropogenic mercury inputs, long exposure time, aridity of the climate, and the riparian setting in an arid landscape, where biological activity is concentrated in the same areas that contain high levels of mercury in multiple media. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 4. Figure 4. PMID:9657709

  13. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Blackstone River Watershed.

    DTIC Science & Technology

    1981-08-01

    stretch: The Berkeley Industrial Park at Martin Street with 80 acres in the flood plain, the Owens - Corning Fiberglas Company at Ashton, and the...River, Ashton, RI 8/2Z/55 Owens Corning Fiberglas Plant lower right. Lonsdale Area, Cumnberland, RI 8/22/55 Al4 * raw Old Slater Mill, Cumberland, RI...area, the Owens - Corning Fiberglas Corporation industrial concern may be subject to damages. The industry has implemented nonstructural floodproofing

  14. Discovery of South American suckermouth armored catfishes (Loricariidae, Pterygoplichthys spp.) in the Santa Fe River drainage, Suwannee River basin, USA

    USGS Publications Warehouse

    Nico, Leo G.; Butt, Peter L.; Johnston, Gerald R.; Jelks, Howard L.; Kail, Matthew; Walsh, Stephen J.

    2012-01-01

    We report on the occurrence of South American suckermouth armored catfishes (Loricariidae) in the Suwannee River basin, southeastern USA. Over the past few years (2009-2012), loricariid catfishes have been observed at various sites in the Santa Fe River drainage, a major tributary of the Suwannee in the state of Florida. Similar to other introduced populations of Pterygoplichthys, there is high likelihood of hybridization. To date, we have captured nine specimens (270-585 mm, standard length) in the Santa Fe River drainage. One specimen taken from Poe Spring best agrees with Pterygoplichthys gibbiceps (Kner, 1854) or may be a hybrid with either P. pardalis or P. disjunctivus. The other specimens were taken from several sites in the drainage and include seven that best agree with Pterygoplichthys disjunctivus (Weber, 1991); and one a possible P. disjunctivus x P. pardalis hybrid. We observed additional individuals, either these or similar appearing loricariids, in Hornsby and Poe springs and at various sites upstream and downstream of the long (> 4 km) subterranean portion of the Santa Fe River. These specimens represent the first confirmed records of Pterygoplichthys in the Suwannee River basin. The P. gibbiceps specimen represents the first documented record of an adult or near adult of this species in open waters of North America. Pterygoplichthys disjunctivus or its hybrids (perhaps hybrid swarms) are already abundant and widespread in other parts of peninsular Florida, but the Santa Fe River represents a northern extension of the catfish in the state. Pterygoplichthys are still relatively uncommon in the Santa Fe drainage and successful reproduction not yet documented. However, in May 2012 we captured five adult catfish (two mature or maturing males and three gravid females) from a single riverine swallet pool. One male was stationed at a nest burrow (no eggs present). To survive the occasional harsh Florida winters, these South American catfish apparently use

  15. [Drainage basin of the the Senegal River, sanitary conditions in 2010. Part I: Illnesses directly linked to the water].

    PubMed

    Michel, R; Sondaz, D; Philip, J M; Calvet, F; Daoud, W

    2011-04-01

    Recent decades have seen an increase in the number of cases of waterborne illnesses involving humans and animals living in the Senegal River Basin. The "Senegal River Basin Development Authority" (French acronym, OMVS) decided to draft a "Water Development and Management Master Plan" (French acronym, SDAGE) for the Senegal drainage basin. The aim of ther plan is to avoid overuse of natural resources while allowing development of human activities in the area of the Senegal River. The SDAGE was designed to serve as a timetable and program for mobilizing resources and monitoring impact on the environment and local population until 2025. As part of the initial phase of the SDAGE, a study was carried out in 2009 to evaluate the status of waterborne illness in the Senegal River Basin. This study of the sanitary conditions was based on review of documents compiled from a bibliographic search. The purpose of this report is describe the main findings regarding diseases directly linked to water and national or regional programs for control of those disease in the study area.

  16. Stabilization of large drainage basins over geological time scales: Cenozoic West Africa, hot spot swell growth, and the Niger River

    NASA Astrophysics Data System (ADS)

    Chardon, Dominique; Grimaud, Jean-Louis; Rouby, Delphine; Beauvais, Anicet; Christophoul, Frédéric

    2016-03-01

    Reconstructing the evolving geometry of large river catchments over geological time scales is crucial to constraining yields to sedimentary basins. In the case of Africa, it should further help deciphering the response of large cratonic sediment routing systems to Cenozoic growth of the basin-and-swell topography of the continent. Mapping of dated and regionally correlated lateritic paleolandscape remnants complemented by onshore sedimentological archives allows the reconstruction of two physiographic configurations of West Africa in the Paleogene. Those reconstructions show that the geometry of the drainage is stabilized by the late early Oligocene (29 Ma) and probably by the end of the Eocene (34 Ma), allowing to effectively link the inland morphoclimatic record to offshore sedimentation since that time, particularly in the case of the Niger catchment—delta system. Mid-Eocene paleogeography reveals the antiquity of the Senegambia catchment back to at least 45 Ma and suggests that a marginal upwarp forming a continental divide preexisted early Oligocene connection of the Niger and Volta catchments to the Equatorial Atlantic Ocean. Such a drainage rearrangement was primarily enhanced by the topographic growth of the Hoggar hot spot swell and caused a stratigraphic turnover along the Equatorial margin of West Africa.

  17. Description, instructions, and verification for Basinsoft, a computer program to quantify drainage- basin characteristics

    USGS Publications Warehouse

    Harvey, Craig A.; Eash, David A.

    1996-01-01

    Statistical comparison tests indicate Basinsoft quantifications are not significantly different from manual topographic-map measurements for 9 of 10 basin characteristics tested. The results also indicate that elevation contours generated by ARC/INFO from l:250,000-scale digital elevation model (DEM) data are over-generalized when compared to elevation contours shown on l:250,000-scale topographic maps, and that quantification of basin-slope thus is underestimated using DEM data. A qualitative comparison test indicated that the Basinsoft module used to quantify basin slope is valid and that differences in the quantification of basin slope are due to sourcedata differences.

  18. Analysis of Existing Hydrologic Models, Red River of the North Drainage Basin, North Dakota and Minnesota.

    DTIC Science & Technology

    1980-11-01

    storage of water. " Deep groundwater seepage, K24L, is higher for lowlands since near surface ponding and poor surface drainage prolongs the period when...streams. o Evaporation from perched groundwater , K24EL, is higher in lowlands where muck deposits and poor surface drainage hold water near the surface...parameter 0.30 0.25 0.30 0.902 K24L Seepage to deep groundwater 0.08 0.08 0.08 0.152 K24EL Evaporation from perched groundwater 0.04 0.08 0.04 0.152 INFIL

  19. Postglacial adjustment of steep, low-order drainage basins, Canadian Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Hoffmann, T.; Müller, T.; Johnson, E. A.; Martin, Y. E.

    2013-12-01

    is generally argued that Pleistocene glaciation results in increased sediment flux in mountain systems. An important, but not well constrained, aspect of Pleistocene glacial erosion is the geomorphic decoupling of cirque basins from main river systems. This study provides a quantitative link between glacier-induced basin morphology, postglacial erosion, and sediment delivery for mountain headwaters (with basin area <10 km2). We analyze the morphology of 57 headwater basins in the Canadian Rockies and establish postglacial sediment budgets for select basins. Notable differences in headwater morphology suggest different degrees of erosion by cirque glaciers, which we classify into headwater basins with either cirque or noncirque morphology. Despite steeper slope gradients in cirque basins, higher-mean postglacial erosion rates in basins with noncirque morphology (0.43-0.6 mm a-1) compared to those in cirques (0.19-0.39 mm a-1) suggest a more complex relationship between hillslope erosion and slope gradient in calcareous mountain environments than implied by the threshold hillslope concept. Higher values of channel profile concavity and lower channel gradients in cirques imply lower transport capacities and, thus, lower sediment delivery ratios (SDR). These results are supported by (i) postglacial SDR values for cirques and noncirque basins of <15% and >28%, respectively, and (ii) larger fan sizes at outlets of noncirque basins compared to cirques. Although small headwater basins represent the steepest part of mountain environments and erode significant postglacial sediment, the majority of sediment remains in storage under interglacial climatic conditions and does not affect large-scale mountain river systems.

  20. Depth to water table, recharge areas, drainage basins, and relief of Duval County, Florida

    USGS Publications Warehouse

    Causey, L.V.

    1975-01-01

    This 3-sheet map report depicts hydrologic systems of surface water and groundwater in Duval County, Florida. The maps are from 1:20,000 and 1:62,500 quadrangles, U.S. Geological Survey. Symbols and colors describe water levels, groundwater recharge, drainage areas, and topography. (Woodard-USGS)

  1. Impacts of Hydro-Climatic Change, Permafrost Thaw and Industrial Pressures in the Lake Baikal Drainage Basin (Mongolia and Russia)

    NASA Astrophysics Data System (ADS)

    Jarsjo, J.; Törnqvist, R.; Bring, A.; Pietron, J.; Rogberg, P.; Asokan, S. M.; Destouni, G.

    2014-12-01

    The large Arctic river Yenisei and Lake Baikal with its unique ecosystem containing endemic species are influenced by on-going hydro-climatic changes in the Lake Baikal Drainage Basin. The latter extends from southern Siberia into northern Mongolia, and contains one of the word's larger mining regions, for instance with mining of gold, silver, copper and coal. Recognizing that changing hydro-climatic conditions in the basin may lead to changed loading pattern of anthropogenic substances to Lake Baikal and Yenisei, we aim at identifying long-term historic and projected future hydro-climatic trends in this basin and their (possible) impacts. The analyses are based on hydro-climatic observations and the output 22 Earth System Models (ESMs) of the Coupled Model Intercomparison Project, Phase 5 (CMIP5). Observations show that warming rates of the basin were twice as high as the global average during past 70 years. Decreased intra annual variability of river discharge over this period indicates basin-scale permafrost degradation. CMIP5 ensemble projections show further future warming, implying continued permafrost thaw. Most individual models as well as the CMIP5 ensemble mean result indicate increased runoff in the future. However the spread of individual model results is large. Parallel results show that such increased runoff can considerably increase the annual riverine sediment loads and consequently the loading of contaminants that are attached to the sediments, in particular downstream of mining sites. More generally, this exemplifies how long-term hydro-climatic changes, permafrost thaw, and industrial pressures may interact in increasing the bioavailability of contaminants in downstream recipients.

  2. Hydrogeological restrictions to saline ground-water discharge in the Red River of the North drainage basin, North Dakota

    SciTech Connect

    Strobel, M.L. Univ. of North Dakota, Grand Forks, ND )

    1992-01-01

    Discharge of saline water from bedrock aquifers along the eastern margin of the Williston basin is restricted by surficial glacial till and lacustrine deposits in the Red River of the North drainage basin. Water from these aquifers reaches the surface by (1) diffusion; (2) slow, upward seepage along zones of relatively larger hydraulic conductivity in the till and lacustrine deposits; or (3) flow from artesian wells. Ground-water quality varies near the surface because of mixing of water being discharged from bedrock aquifers with shallower ground water in the surficial deposits. Ground-water quality, hydraulic-gradient, and hydraulic-conductivity data obtained from pumped-well and slug tests indicate that flow in the surficial deposits is eastward, but at slow rates because of small hydraulic conductivities. Base-flow and specific-conductance measurements of water in tributaries to the Red River of the North indicate that focused points of ground-water discharge result in substantial increases in salinity in surface water in the northern part of the basin in North Dakota. Core analyses and drillers' logs were used to generalize hydrogeologic characteristics of the deposits in the basin, and a two-dimensional ground-water-flow model was used to simulate the basin's geohydrologic processes. Model results indicate that the ground-water flow paths in the bedrock aquifers and surficial deposits converge, and that water from the bedrock aquifers contributes to the overall increase in ground-water discharge toward the east. Model results are supported by water-quality data collected along an east-west hydrogeologic section.

  3. Postglacial response of a stream in central Iowa to changes in climate and Drainage basin factors*1

    NASA Astrophysics Data System (ADS)

    Van Nest, Julieann; Bettis, E. Arthur

    1990-01-01

    Postglacial geomorphic development of the Buchanan Drainage, a small tributary to the South Skunk River, is reconstructed by documenting relationships among four allostratigraphic units and 17 radiocarbon dates. Formation and headward expansion of the valley was both episodic and time-transgressive. Response to downstream conditions in the South Skunk River largely controlled the early formation of the basin. Downcutting through Pleistocene deposits produced a gravelly lag deposit that was buried by alluvium in the downstream portion of the valley during the early Holocene (10,500-7700 yr B.P.). Lag deposits formed in a similar manner continued to develop in the upper portion of the drainageway into the late Holocene (3000-2000 yr B.P.). Episodes of aggradation during the middle Holocene (7700-6300 yr B.P.) and late Holocene (3000-2000 yr B.P.) were separated by a period of soil formation. Holocene geomorphic events in the drainageway coincide with some vegetational and climatic changes as documented in upland pollen sequences from central Iowa. Analysis of plant macrofossil assemblages recovered from alluvium indicates that during the middle Holocene forest contracted and prairie expanded into the uplands within the basin. Vegetational changes within the basin apparently had only minor influence on rates of hillslope erosion, and the widely accepted relationship between prairie (versus forest) vegetative cover and increased rates of hillslope erosion did not hold. Instead, greater amounts of erosion occurred under forested conditions when local water tables were higher and seepage erosion was more effective.

  4. A new species of Cottus from the Onega River drainage, White Sea basin (Actinopterygii: Scorpaeniformes: Cottidae).

    PubMed

    Sideleva, Valentina G; Naseka, Alexander M; Zhidkov, Zakhar V

    2015-04-29

    Cottus gratzianowi, a new cottid species, is described from material collected in the Ukhtomitsa River in the Onega River drainage, White Sea basin. It differs from its congeners in Europe east of the Meuse except C. koshewnikowi by having no transverse dark bands on the pelvic fin, a single chin canal pore, an incomplete lateral line not reaching behind the anal-fin insertion, and the position of the lateral line which is located considerably above the mid-line of the flank. From C. koshewnikowi distributed in the Volga (Caspian basin), Pechora, and Northern Dvina rivers (Arctic basin), C. gratzianowi sp. nov. can be distinguished by a combination of character states, the most differentiating are as follows: a larger eye (horizontal diameter 23-28% HL, equal to or exceeding snout length vs. 16-25% HL, less than snout length), a rounded caudal fin (vs. commonly truncated), frequent presence of one to three branched rays in median part of the pectoral fin (vs. usual absence), an interrupted supratemporal canal commissure with 4 pores (vs. non-interrupted, with 3 pores), abdominal vertebrae commonly 10 (vs. 11), and contrasting black blotches on all fins including pelvic and anal fins (vs. no blotches on pelvic and anal fins).

  5. Paleo-drainage basin connectivity predicts evolutionary relationships across three Southeast Asian biodiversity hotspots.

    PubMed

    de Bruyn, Mark; Rüber, Lukas; Nylinder, Stephan; Stelbrink, Björn; Lovejoy, Nathan R; Lavoué, Sébastien; Tan, Heok Hui; Nugroho, Estu; Wowor, Daisy; Ng, Peter K L; Siti Azizah, M N; Von Rintelen, Thomas; Hall, Robert; Carvalho, Gary R

    2013-05-01

    Understanding factors driving diversity across biodiversity hotspots is critical for formulating conservation priorities in the face of ongoing and escalating environmental deterioration. While biodiversity hotspots encompass a small fraction of Earth's land surface, more than half the world's plants and two-thirds of terrestrial vertebrate species are endemic to these hotspots. Tropical Southeast (SE) Asia displays extraordinary species richness, encompassing four biodiversity hotspots, though disentangling multiple potential drivers of species richness is confounded by the region's dynamic geological and climatic history. Here, we use multilocus molecular genetic data from dense multispecies sampling of freshwater fishes across three biodiversity hotspots, to test the effect of Quaternary climate change and resulting drainage rearrangements on aquatic faunal diversification. While Cenozoic geological processes have clearly shaped evolutionary history in SE Asian halfbeak fishes, we show that paleo-drainage re-arrangements resulting from Quaternary climate change played a significant role in the spatiotemporal evolution of lowland aquatic taxa, and provide priorities for conservation efforts.

  6. Hydrology of Johnson Creek Basin, a Mixed-Use Drainage Basin in the Portland, Oregon, Metropolitan Area

    USGS Publications Warehouse

    Williams, John S.; Lee, Karl K.; Snyder, Daniel T.

    2010-01-01

    Johnson Creek forms a wildlife and recreational corridor through densely populated areas of the Portland, Oregon, metropolitan area and through rural and agricultural land in unincorporated Multnomah and Clackamas Counties. Johnson Creek has had a history of persistent flooding and water-quality problems. The U.S. Geological Survey (USGS) has conducted streamflow monitoring and other hydrologic studies in the basin since 1941.

  7. Holocene valley-floor deposition and incision in a small drainage basin in western Colorado, USA

    NASA Astrophysics Data System (ADS)

    Jones, Lawrence S.; Rosenburg, Margaret; Figueroa, Maria del Mar; McKee, Kathleen; Haravitch, Ben; Hunter, Jenna

    2010-09-01

    The valley floor of a 33.9 km 2 watershed in western Colorado experienced gradual sedimentation from before ˜ 6765 to ˜ 500 cal yr BP followed by deep incision, renewed aggradation, and secondary incision. In contrast, at least four terraces and widespread cut-and-fill architecture in the valley floor downstream indicate multiple episodes of incision and deposition occurred during the same time interval. The upper valley fill history is atypical compared to other drainages in the Colorado Plateau. One possible reason for these differences is that a bedrock canyon between the upper and lower valley prevented headward erosion from reaching the upper valley fill. Another possibility is that widespread, sand-rich, clay-poor lithologies in the upper drainage limited surface runoff and generally favored alluviation, whereas more clay-rich lithologies in the lower drainage resulted in increased surface runoff and more frequent incision. Twenty-two dates from valley fill charcoal indicate an approximate forest fire recurrence interval of several hundred years, similar to that from other studies in juniper-piñon woodlands. Results show that closely spaced vertical sampling of alluvium in headwater valleys where linkages between hillslope processes and fluvial activity are relatively direct can provide insight about the role of fires in alluvial chronologies of semi-arid watersheds.

  8. Hydrologic data of the coastal drainage basins of southeastern Massachusetts, Weir River, Hingham, to Jonas River, Kingston

    USGS Publications Warehouse

    Williams, John R.; Willey, Richard E.; Tasker, Gary D.

    1975-01-01

    This report presents, in tabular form, selected records of wells, test wells, borings, and springs; measurements of stream discharge, specific conductance, and temperature at partial-record stations; chemical analyses of ground water and surface water; and a summary of municipal water sources and additional sources available. The data were collected during a study of the drainage basins from 1969 to 1971 in cooperation with the Massachusetts Water Resources Commission. The report is released in order to make available to the public and to local, state, and federal agencies basic hydrologic information that may aid in planning water-resources development. Basic records contained in this report and streamflow data published elsewhere (U.S. Geol. Survey, 1960 et seq.) complement an interpretive report (Williams and Tasker, 1974).

  9. Ecological data collected in the Santee River basin and coastal drainages, North and South Carolina, 1996-98

    USGS Publications Warehouse

    Abrahamsen, Thomas A.

    2001-01-01

    As part of the National Water-Quality Assessment Program, ecological investigations were conducted in 23 reaches of 16 streams in the Santee River Basin and Coastal Drainages study unit in North and South Carolina during 1996-98. Habitat characteristics, such as stream width and depth, bank composition, bank vegetative cover, stream shading by overhanging vegetation, and streambed composition were recorded. Algal and benthic invertebrate communities were sampled using quantitative and qualitative techniques. These data will provide information needed to: (1) support findings of the effects of human landuse activities on water quality by augmenting or enhancing physical and chemical water-quality data, (2) provide a basic overview of aquatic community structure in selected stream reaches in the study unit, and (3) provide a means for comparing aquatic communities in subsequent years of the assessment program.

  10. Hawaii StreamStats; a web application for defining drainage-basin characteristics and estimating peak-streamflow statistics

    USGS Publications Warehouse

    Rosa, Sarah N.; Oki, Delwyn S.

    2010-01-01

    Reliable estimates of the magnitude and frequency of floods are necessary for the safe and efficient design of roads, bridges, water-conveyance structures, and flood-control projects and for the management of flood plains and flood-prone areas. StreamStats provides a simple, fast, and reproducible method to define drainage-basin characteristics and estimate the frequency and magnitude of peak discharges in Hawaii?s streams using recently developed regional regression equations. StreamStats allows the user to estimate the magnitude of floods for streams where data from stream-gaging stations do not exist. Existing estimates of the magnitude and frequency of peak discharges in Hawaii can be improved with continued operation of existing stream-gaging stations and installation of additional gaging stations for areas where limited stream-gaging data are available.

  11. Morphotectonic control of the Białka drainage basin (Central Carpathians): Insights from DEM and morphometric analysis.

    NASA Astrophysics Data System (ADS)

    Wołosiewicz, Bartosz

    2016-06-01

    The Białka river valley is directly related to a deep NNW-SSE oriented fault zone. According to the results of previous morphometric analyses, the Białka drainage basin is one of the most tectonically active zones in the Central Carpathians. It is also located within an area of high seismic activity. In this study Digital Elevation Model (DEM) based, morphometric analyses were used to investigate the morphotectonic conditions of the watershed. The results reveal the relationships between the main tectonic feature and the landforms within the research area. The lineaments, as obtained from the classified aspect map, seem to coincide with the orientation of the main structures as well as the trends revealed by the theoretical Riedel-Skempton shear model. Base-level and isolong maps support the conclusion that the Białka and Biały Dunajec fault zones exert a strong influence on the morphology of the adjacent area.

  12. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  13. Geomorphological and sedimentological analysis of a catastrophic flash flood in the Arás drainage basin (Central Pyrenees, Spain)

    NASA Astrophysics Data System (ADS)

    Gutiérrez, Francisco; Gutiérrez, Mateo; Sancho, Carlos

    1998-04-01

    On August 7th, 1996, an intense and short-duration convective storm occurred over the 18.6-km 2 Arás drainage basin (Central Pyrenees, Spain). This high relief basin is composed of three subbasins, Aso, Betés and La Selva, and feeds the Arás alluvial fan, in the Gállego river valley. This alluvial fan had been drained by an artificial channel (about 125 m 3/s at bank-full capacity). More than 30 check dams in its feeder channel, the Arás barranco, had been previously filled by earlier sediments. The heaviest rain was over the Betés subbasin (total rainfall 178.4 mm; maximum rainfall intensity of 153 mm/h for a 10-min time interval was estimated). Most of the rainfall fell in a 70-min period. This storm resulted in high runoff, causing catastrophic damage and significant geomorphic changes in the drainage basin, especially in the Betés subbasin. The high discharge, concentrated in the Arás barranco, destroyed most of the check dams, flushing out a great amount of debris. Major channel trenching and widening occurred in this barranco. When the confined sediment-laden flash flood reached the basin mouth, it sheet-flooded the southern sector of the Arás fan depositing a massive amount of debris. On this fan 87 people lost their lives and the direct physical damage has been estimated at 55 million dollars. Two stages in the development of the flood have been differentiated from the sedimentological and morphological analysis of the flooded fan lobe. A first stage (peak discharge) of sheet-flooding deposited a coarse boulder lobe, burying the artificial channel at the fan head and causing a darnming effect on the water flood. During the second stage (discharge decline) the flood made its way through the fan head, incising the previous debris accumulation and splitting into two main flow paths.

  14. Overview of mine drainage geochemistry at historical mines, Humboldt River basin and adjacent mining areas, Nevada. Chapter E.

    USGS Publications Warehouse

    Nash, J. Thomas; Stillings, Lisa L.

    2004-01-01

    Reconnaissance hydrogeochemical studies of the Humboldt River basin and adjacent areas of northern Nevada have identified local sources of acidic waters generated by historical mine workings and mine waste. The mine-related acidic waters are rare and generally flow less than a kilometer before being neutralized by natural processes. Where waters have a pH of less than about 3, particularly in the presence of sulfide minerals, the waters take on high to extremely high concentrations of many potentially toxic metals. The processes that create these acidic, metal-rich waters in Nevada are the same as for other parts of the world, but the scale of transport and the fate of metals are much more localized because of the ubiquitous presence of caliche soils. Acid mine drainage is rare in historical mining districts of northern Nevada, and the volume of drainage rarely exceeds about 20 gpm. My findings are in close agreement with those of Price and others (1995) who estimated that less than 0.05 percent of inactive and abandoned mines in Nevada are likely to be a concern for acid mine drainage. Most historical mining districts have no draining mines. Only in two districts (Hilltop and National) does water affected by mining flow into streams of significant size and length (more than 8 km). Water quality in even the worst cases is naturally attenuated to meet water-quality standards within about 1 km of the source. Only a few historical mines release acidic water with elevated metal concentrations to small streams that reach the Humboldt River, and these contaminants and are not detectable in the Humboldt. These reconnaissance studies offer encouraging evidence that abandoned mines in Nevada create only minimal and local water-quality problems. Natural attenuation processes are sufficient to compensate for these relatively small sources of contamination. These results may provide useful analogs for future mining in the Humboldt River basin, but attention must be given to

  15. Land use and nutrient concentrations and yields in selected streams in the Albemarle-Pamlico drainage basin, North Carolina and Virginia

    USGS Publications Warehouse

    Woodside, M.D.; Simerl, B.R.

    1995-01-01

    Because nutrients can cause water-quaiity degradation, a major focus of NAWQA is to investigate effects of nutrients on surface- and ground-water quality. This report summarizes surface-water quality study design and land uses in the NAWQA Albemarle-Pamlico Drainage Basin study unit, one of 60 study units nationwide, and shows how nutrient concentrations are related to land uses at selected basins in the study unit. The study area encompasses about 28,000 square miles (mi2) in central and eastern North Carolina and southern Virginia. The major river basins in the Albemarle-Pamlico Drainage Basin are the Chowan, Roanoke, Tar, and Neuse. The barrier islands, estuaries, and the AlbemarIe, Pamlico, and associated sounds are not included in the study-unit area. The Albemarle-Pamlico Drainage Basin covers four physiographic provinces:Valley and Ridge, Blue Ridge, Piedmont, and Coastal Plain. About 50 percent of the land in the study areais forested, 30 percent is cropland, 15 percent is wetland, and 5 percent is developed. The population--of the study unit is about 3 million people.

  16. Pesticides detected in surface waters and fish of the Red River of the North drainage basin

    USGS Publications Warehouse

    Brigham, Mark E.

    1994-01-01

    Pesticide data have been collected in the Red River Basin by various Federal, State, and local agencies. Tornes and Brigham (1994) recently summarized many of these historical data. This paper summarizes selected data collected as part of the NAWQA program during 1992-93, and briefly compares these data to historical data and to pesticide usage.

  17. Synthesis of nutrient and sediment data for watersheds within the Chesapaeake Bay drainage basin

    USGS Publications Warehouse

    Langland, M.J.; Lietman, P.L.; Hoffman, S.A.

    1995-01-01

    Nutrient and sediment data collected by Federal and state agencies from 1972 through 1992 at 1,058 surface-water sites in nontidal parts of the Chesapeake Bay Basin were compiled into a large database. Adequate nutrient, sediment, and streamflow data were not available to compute annual loads for all sites because water-quality monitoring at many of the sites was either short term or noncontinuous or because stream-flow was not measured. Annual nutrient and sediment loads were calculated at a total of 127 sites. Annual loads of dissolved nitrate were calculated for 108 sites, but total nitrogen loads could be calculated for only 48 of these sites because ammonia plus organic nitrogen data were not available for many of these 108 sites. Annual loads of total phosphorus were calculated for 99 sites, and annual loads of suspended sediment were calculated for 33 sites. Loads could be calculated for only a very few sites in the Juniata River Basin (a tributary to the Susquehanna River), the York River Basin, the middle and lower reaches of the James River, and the nontidal parts of the eastern shore of the Bay. Geographic Information System (GIS) spatial data sets of land use, physiographic province, rock type, and watershed delineation were compiled for the entire Chesapeake Bay Basin (approximately 64,000 square miles). The nutrient- and sediment-yield were evaluated with respect to land use, physiographic province, rock type, and hydrologic characteristics. During years that the mean streamflow was about equal to the long-term mean streamflow, the Susquehanna River contributed about 50 percent of the freshwater, 66 percent of the total nitrogen, and 40 percent of the total phosphorus transported by tributaries to the Bay. Nutrient and sediment data were available for less than 18 percent of the predominantly agricultural areas underlain by siliciclastic rock and for less than 35 percent of the predominantly agricultural areas underlain by either carbonate rock or

  18. Occurrence, distribution, and transport of pesticides in agricultural irrigation-return flow from four drainage basins in the Columbia Basin Project, Washington, 2002-04, and comparison with historical data

    USGS Publications Warehouse

    Wagner, Richard J.; Frans, Lonna M.; Huffman, Raegan L.

    2006-01-01

    Water-quality samples were collected from sites in four irrigation return-flow drainage basins in the Columbia Basin Project from July 2002 through October 2004. Ten samples were collected throughout the irrigation season (generally April through October) and two samples were collected during the non-irrigation season. Samples were analyzed for temperature, pH, specific conductance, dissolved oxygen, major ions, trace elements, nutrients, and a suite of 107 pesticides and pesticide metabolites (pesticide transformation products) and to document the occurrence, distribution, and pesticides transport and pesticide metabolites. The four drainage basins vary in size from 19 to 710 square miles. Percentage of agricultural cropland ranges from about 35 percent in Crab Creek drainage basin to a maximum of 75 percent in Lind Coulee drainage basin. More than 95 percent of cropland in Red Rock Coulee, Crab Creek, and Sand Hollow drainage basins is irrigated, whereas only 30 percent of cropland in Lind Coulee is irrigated. Forty-two pesticides and five metabolites were detected in samples from the four irrigation return-flow drainage basins. The most compounds detected were in samples from Sand Hollow with 37, followed by Lind Coulee with 33, Red Rock Coulee with 30, and Crab Creek with 28. Herbicides were the most frequently detected pesticides, followed by insecticides, metabolites, and fungicides. Atrazine, bentazon, diuron, and 2,4-D were the most frequently detected herbicides and chlorpyrifos and azinphos-methyl were the most frequently detected insecticides. A statistical comparison of pesticide concentrations in surface-water samples collected in the mid-1990s at Crab Creek and Sand Hollow with those collected in this study showed a statistically significant increase in concentrations for diuron and a statistically significant decrease for ethoprophos and atrazine in Crab Creek. Statistically significant increases were in concentrations of bromacil, diuron, and

  19. The Vigil Network: A means of observing landscape change in drainage basins

    USGS Publications Warehouse

    Osterkamp, W.R.; Emmett, W.W.; Leopold, Luna Bergere

    1991-01-01

    Long-term monitoring of geomorphic, hydrological, and biological characteristics of landscapes provides an effective means of relating observed change to possible causes of the change. Identification of changes in basin characteristics, especially in arid areas where the response to altered climate or land use is generally rapid and readily apparent, might provide the initial direct indications that factors such as global warming and cultural impacts have affected the environment. The Vigil Network provides an opportunity for earth and life scientists to participate in a systematic monitoring effort to detect landscape changes over time, and to relate such changes to possible causes. The Vigil Network is an ever-increasing group of sites and basins used to monitor landscape features with as much as 50 years of documented geomorphic and related observations.

  20. Agricultural pesticide applications and observed concentrations in surface waters from four drainage basins in the Central Columbia Plateau, Washington and Idaho, 1993-94

    USGS Publications Warehouse

    Wagner, R.J.; Ebbert, J.C.; Roberts, L.M.; Ryker, S.J.

    1995-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program, the use and occurrence of agricultural pesticides were investigated in four drainage basins--two dominated by irrigated agriculture and two by dryland agriculture--in the Central Columbia Plateau of eastern Washington. For this study, 85 pesticides or pesticide metabolites were selected for analysis from a list of nearly 400 compounds commonly used in the United States. Pesticide-use data included estimates of the total quantity of herbicides, insecticides, and fungicides applied to croplands in each of the four drainage basins and reported times of application for selected pesticides. Pesticide-occurrence data included concentrations of pesticides in samples collected at one surface-water site at or near the outflow of each of the four drainage basins, where surface waters were sampled one to five times a month from March 1993 through May 1994. Of the 85 pesticides or pesticide metabolites targeted for analysis, a total of 45 different compounds were detected in samples from the four sites, ranging in concentration from at or near the limit of detection (as low as 0.001 microgram per liter) to a maximum of 8.1 micrograms per liter. None of the concentrations of pesticides exceeded the U.S. Environmental Protection Agency (USEPA) drinking water standards, but concentrations of five pesticides exceeded the USEPA freshwater-chronic criteria for the protection of aquatic life. Forty-one different pesticides or pesticide metabolites were detected in surface waters sampled at the two sites representing irrigated agriculture drainage basins. The herbicides atrazine, DCPA, and EPTC were detected most frequently at the two sampling sites. Not all pesticides that were applied were detected, however. For example, disulfoton, phorate, and methyl parathion accounted for 15 percent of the insecticides applied in the two irrigated drainage basins, yet none of these pesticides were detected in

  1. An analytical study on artesian flow conditions in unconfined-aquifer drainage basins

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Jiang, Xiao-Wei; Wan, Li; Wörman, Anders; Wang, Heng; Wang, Xu-Sheng; Li, Hailong

    2015-10-01

    Although it has been reported that flowing artesian wells could be topographically controlled, there is no quantitative research on artesian flow conditions in unconfined aquifers. In this study, the water table, which has a lower amplitude than the land surface, is damped from the topography and used as the boundary condition to obtain the analytical solution of hydraulic head of a unit basin with a single flow system. The term artesian head is defined to characterize the condition of flowing artesian wells. The zone with positive artesian head is called artesian zone while with negative artesian head is nonartesian zone. The maximum artesian head and the size of artesian zones are found to increase with the damping factor and the anisotropy ratio, and decrease with the ratio of basin width to depth and the depth-decay exponent of hydraulic conductivity. Moreover, the artesian head increases with depth nearby the valley and decreases with depth near by the divide, and the variation rates are influenced by the decay exponent and the anisotropy ratio. Finally, the distribution of flowing artesian wells and the artesian head measurements in different depths of a borehole in a small catchment in the Ordos Plateau, Northwestern China is used to illustrate the theoretical findings. The change in artesian head with depth was used to estimate the anisotropy ratio and the decay exponent. This study opens up a new door to analyze basin-scale groundwater flow.

  2. An Open Source approach to automated hydrological analysis of ungauged drainage basins in Serbia using R and SAGA

    NASA Astrophysics Data System (ADS)

    Zlatanovic, Nikola; Milovanovic, Irina; Cotric, Jelena

    2014-05-01

    Drainage basins are for the most part ungauged or poorly gauged not only in Serbia but in most parts of the world, usually due to insufficient funds, but also the decommission of river gauges in upland catchments to focus on downstream areas which are more populated. Very often, design discharges are needed for these streams or rivers where no streamflow data is available, for various applications. Examples include river training works for flood protection measures or erosion control, design of culverts, water supply facilities, small hydropower plants etc. The estimation of discharges in ungauged basins is most often performed using rainfall-runoff models, whose parameters heavily rely on geomorphometric attributes of the basin (e.g. catchment area, elevation, slopes of channels and hillslopes etc.). The calculation of these, as well as other paramaters, is most often done in GIS (Geographic Information System) software environments. This study deals with the application of freely available and open source software and datasets for automating rainfall-runoff analysis of ungauged basins using methodologies currently in use hydrological practice. The R programming language was used for scripting and automating the hydrological calculations, coupled with SAGA GIS (System for Automated Geoscientivic Analysis) for geocomputing functions and terrain analysis. Datasets used in the analyses include the freely available SRTM (Shuttle Radar Topography Mission) terrain data, CORINE (Coordination of Information on the Environment) Land Cover data, as well as soil maps and rainfall data. The choice of free and open source software and datasets makes the project ideal for academic and research purposes and cross-platform projects. The geomorphometric module was tested on more than 100 catchments throughout Serbia and compared to manually calculated values (using topographic maps). The discharge estimation module was tested on 21 catchments where data were available and compared

  3. Full Stokes or shallow ice approximation? Comparing the ice flow dynamics at the Shirase Drainage Basin, Antarctica

    NASA Astrophysics Data System (ADS)

    Seddik, H.; Greve, R.; Zwinger, T.; Sugiyama, S.

    2012-12-01

    Covering an area of 2 x 105 km2, the Shirase Drainage Basin is located in East Antarctica (37-50° E, 70-78° S). The basin is characterized by the convergence of the ice flow towards the Shirase glacier, one of the fastest flowing glacier in Antarctica. The Shirase glacier flows at a speed of 2.3 km a-1 at the grounding line (Rignot, 2002; Pattyn and Derauw, 2002; Nakamura and others, 2008) and drains about 10 Gt a-1 of ice through a narrow outlet into the Lützow-Holm Bay (Fujii, 1981). With nearly 90% of total ice discharge from the basin being calved by the glacier, the fast flowing nature of the Shirase glacier is important for the investigation of the ice sheet mass budget in this region. The dynamics of the Shirase glacier is investigated by means of the full Stokes equations and the shallow ice approximation. The model Elmer/Ice (http://elmerice.elmerfem.com) is applied to the Shirase Drainage Basin and employs the finite element method to solve the full Stokes equations, the temperature evolution equation and the evolution equation of the free surface. The shallow ice approximation is also implemented into Elmer/Ice so that both the full Stokes and the shallow ice approximation are computed on the same mesh. Data for the present geometry (surface and basal topographies with no shelf) are obtained from the Community Ice Sheet Model, based on the DEM of Bamber and others (2009) and Griggs and Bamber (2009), and on the BEDMAP1-Plus ice sheet basal topography. A mesh of the computational domain is created using an initial footprint which contains elements from 15 km to 500 m horizontal resolution. The footprint is vertically extruded to form a 3D mesh of 240720 elements with 21 equidistant, terrain-following layers. The approach taken in this study is to compare the response of the glacier to dynamical and climate forcings when separately the full Stokes and the shallow ice approximation are employed. The sensitivity experiments are modeled after the Sea

  4. Potential hazards from flood in part of the Chalone Creek and Bear Valley drainage basins, Pinnacles National Monument, California

    USGS Publications Warehouse

    Meyer, Robert W.

    1995-01-01

    Areas of Chalone Creek and Bear Valley drainage basins in Pinnacles National Monument, California, are subject to frontal storms that can cause major flooding from November to April in areas designated for public use. To enhance visitor safety and to protect cultural and natural resources, the U.S. Geological Survey in cooperation with the National Park Service studied flood-hazard potentials within the boundaries of the Pinnacles National Monument. This study area extends from about a quarter of a mile north of Chalone Creek Campground to the mouth of Bear Valley and from the east monument entrance to Chalone Creek. Historical data of precipitation and floodflow within the monument area are sparse to nonexistent, therefore, U.S. Soil Conservation Service unit-hydrograph procedures were used to determine the magnitude of a 100-year flood. Because of a lack of specific storm-rainfall data, a simulated storm was applied to the basins using a digital-computer model developed by the Soil Conservation Service. A graphical relation was used to define the regionally based maximum flood for Chalone Creek and Bear Valley. Water-surface elevations and inundation areas were determined using a conventional step-backwater program. Flood-zone boundaries were derived from the computed water-surface elevations. The 100-year flood plain for both streams would be inundated at all points by the regional maximum flood. Most of the buildings and proposed building sites in the monument area are above the elevation of the 100-year flood, except the proposed building sites near the horse corral and the east monument entrance. The 100-year flood may cause reverse flow through a 12-inch culvert embedded in the embankment of Old Pinnacles Campground Road in the center of Chalone Creek Campground. The likelihood of this occurring is dependant upon the amount of aggradation that occurs upstream; therefore, the campground area also is considered to be within the 100-year flood zone.

  5. Using U-Pb Detrital Zircon to Identify Evolution of Sediment Drainage in the South Central Pyrenean Foreland Basin, Spain

    NASA Astrophysics Data System (ADS)

    Clark, J. D.; Stockli, D. F.; McKay, M. P.; Thomson, K.; Puigdefabregas, C.; Castelltort, S.; Dykstra, M.; Fildani, A.

    2014-12-01

    Until the 2011 Mw9.0 Tohoku earthquake, the role of earthquakes as agents of sediment dispersal and deposition at erosional trenches was largely under-appreciated. A series of cruises carried out after the 2011 event has revealed a variety of unsuspected sediment transport mechanisms, such as tsunami-triggered sheet turbidites, suggesting that great earthquakes may in fact be important agents for dispersing sediments across trench slopes. To complement these observational data, we have modeled the pathways of sediments across the trench slope based on bathymetric grids. Our approach assumes that transport direction is controlled by slope azimuth only, and ignores obstacles smaller than 0.6-1 km; these constraints are meant to approximate the behavior of turbidites. Results indicate that (1) most pathways issued from the upper slope terminate near the top of the small frontal wedge, and thus do not reach the trench axis; (2) in turn, sediments transported to the trench axis are likely derived from the small frontal wedge or from the subducting Pacific plate. These results are consistent with the stratigraphy imaged in seismic profiles, which reveals that the slope apron does not extend as far as the frontal wedge, and that the thickness of sediments at the trench axis is similar to that of the incoming Pacific plate. We further applied this modeling technique to the Cascadia, Nankai, Middle-America, and Sumatra trenches. Where well-defined canyons carve the trench slopes, sediments from the upper slope may routinely reach the trench axis (e.g., off Costa Rica and Cascadia). In turn, slope basins that are isolated from the canyons drainage systems must mainly accumulate locally-derived sediments. Therefore, their turbiditic infill may be diagnostic of seismic activity only - and not from storm or flood activity. If correct, this would make isolated slope basins ideal targets for paleoseismological investigation.

  6. Future glaciation and river flow in the Vakhsh and Panj drainage basins, Central Asia

    NASA Astrophysics Data System (ADS)

    Hoelzle, Martin; Hagg, Wilfried; Wagner, Stephan

    2010-05-01

    Central Asia is well known as an area of substantial water problems mainly caused by climate change and careless consumption of water resources. As in other parts of the globe where high mountains are surrounded by arid and semi-arid zones, snow and glacier melt are major contributors to runoff and important resources for agriculture in the lowlands. The FAO-UNESCO has started a "Climate Impact Study on Streamflow" to estimate future discharge in the catchments of the rivers Vakhsh (39,100 km2) and Panj(114,000 km2), the two tributaries of Amu Darya river. According to the World Glacier Inventory (WGI) prepared in the mid 20th century, the Panj and Vakhsh catchments have glacier covers of 3,913 km2 and 3,675 km2, respectively. A new inventory was conducted in 2003 within the frame of the GLIMS project. We used a simple parametrization scheme based on steady state conditions to infer the ice volumes for the two different time periods in the past and to extrapolate future changes. The resulting volumes for the WGI are 170-200 km3 for the Panj catchment and 200-240 km3 for the Vakhsh catchment. From the mid of the 20th century to 2003, an area (volume) decrease of 8.2% (10.5%) for the Panj and 7.5% (4.1%) for the Vakhsh catchment was determined. A comparison of two digital elevation models (SRTM of 2001 and Aster 2008) show for the glacier areas a mean mass change of -0.61 m a-1 for the Vakhsh and -0.81 m a-1 for the Panj. Regional climate simulations project a warming of 1.8°C-2.9°C until 2050, while it remains unclear if and in what direction precipitation will change. Assuming a temperature increase of 2°C until 2050 and no change in precipitation, the ice reserves in the two catchments will decline at an accelerated rate in comparison to the past with total volume reduction of 75.5% for the Panj basin and of 53% for the Vakhsh basin. To simulate present-day and future runoff, the HBV-ETH hydrological model was set up in the two sub-basins of Abramov (56 km

  7. Pleistocene-Recent Drainage Evolution in the Western Himalayan Foreland Basin

    NASA Astrophysics Data System (ADS)

    Clift, P. D.; Giosan, L.; Macklin, M.; Carter, A.; Tabrez, A. R.

    2011-12-01

    The rivers of the upper Indus flood plains support large populations in an area where rainfall is relatively weak. Nonetheless, the region has been one in which early civilizations flourished and then dispersed, most notably the Indus Valley or Harappan Culture. We investigated potential links between human settlement and drainage evolution by drilling abandoned and filled river channels on the northern edge of the Thar Desert to see how they have evolved. Pb isotope data from single K-feldspar grains from Holocene and Pleistocene sands showed that the channels were sourced from Himalayan rivers before and at 6-8 ka, but that after that time the proportion of high isotopic ratio grains rose, indicating increased contribution from the Thar Desert dunes prior to ~4.5 ka when flow in the Ghaggar-Hakra ceased entirely. U-Pb dating of single zircon sand grains confirms this general pattern. Grain ages <300 Ma are typical of the Thar Desert and become more common around 6-8 ka as the river flux decreased and desert began to encroach. Zircons ages at ~1900 Ma can be linked to a westward flow of the Yamuna River into the Indus but this flow may have finished as early as 49 ka, so that this capture does not affect the Harappan Culture. After this time the Sutlej and Beas River flowed through the region until they were both captured away to the north prior to 6-8 ka. The Harappan centers on the north of the Thar Desert likely dispersed because of unpredictable water supply as the monsoon weakened and because the flow of major rivers had ceased well before 4 ka.

  8. Flood frequency analysis for nonstationary annual peak records in an urban drainage basin

    USGS Publications Warehouse

    Villarini, G.; Smith, J.A.; Serinaldi, F.; Bales, J.; Bates, P.D.; Krajewski, W.F.

    2009-01-01

    Flood frequency analysis in urban watersheds is complicated by nonstationarities of annual peak records associated with land use change and evolving urban stormwater infrastructure. In this study, a framework for flood frequency analysis is developed based on the Generalized Additive Models for Location, Scale and Shape parameters (GAMLSS), a tool for modeling time series under nonstationary conditions. GAMLSS is applied to annual maximum peak discharge records for Little Sugar Creek, a highly urbanized watershed which drains the urban core of Charlotte, North Carolina. It is shown that GAMLSS is able to describe the variability in the mean and variance of the annual maximum peak discharge by modeling the parameters of the selected parametric distribution as a smooth function of time via cubic splines. Flood frequency analyses for Little Sugar Creek (at a drainage area of 110 km2) show that the maximum flow with a 0.01-annual probability (corresponding to 100-year flood peak under stationary conditions) over the 83-year record has ranged from a minimum unit discharge of 2.1 m3 s- 1 km- 2 to a maximum of 5.1 m3 s- 1 km- 2. An alternative characterization can be made by examining the estimated return interval of the peak discharge that would have an annual exceedance probability of 0.01 under the assumption of stationarity (3.2 m3 s- 1 km- 2). Under nonstationary conditions, alternative definitions of return period should be adapted. Under the GAMLSS model, the return interval of an annual peak discharge of 3.2 m3 s- 1 km- 2 ranges from a maximum value of more than 5000 years in 1957 to a minimum value of almost 8 years for the present time (2007). The GAMLSS framework is also used to examine the links between population trends and flood frequency, as well as trends in annual maximum rainfall. These analyses are used to examine evolving flood frequency over future decades. ?? 2009 Elsevier Ltd.

  9. Establishing the geometry and nature of sediments trapped in either natural or artificial dam lakes in contrasted drainage basins from Western Europe (French Massif Central and Pyrenees)

    NASA Astrophysics Data System (ADS)

    Chapron, Emmanuel; Chassiot, Léo; Zouzou, Claude; Simonneau, Anaelle; Galop, Didier; Di Giovanni, Christian

    2016-04-01

    Lacustrine sedimentary archives from artificial dam lakes are poorly documented both in terms of basin fill geometries and dominating sedimentary processes. In order to better understand their sensitivities to regional environmental changes, we performed a similar multidisciplinary study of French natural and artificial dam lakes in contrasted drainage basins from the volcanic Massif Central (lakes Aydat and Crégut) and two granitic sectors of the northern Pyrenees (lakes Fourcat and Orédon). Our approach combined high-resolution sub bottom profiling (14 kHz and 4 kHz chirp) and a detailed study of sediment cores based on qualitative and quantitative analysis (radiographies, sediment physical and chemical properties) together with radionuclide and radiocarbon dates. In all cases either changes in land uses within the drainage basin or the flooding of natural lakes by dams and the production of hydroelectricity induced changes in sedimentation rates and modes. Human activities affecting either the catchment or the lake itself favored enhanced clastic sediment supply in the lake basins and/or higher and fluctuating lake levels. Subaquatic slopes failures are also identified in Lake Aydat formed by a lava flow 8.5 kYrs ago and in glacial lakes Crégut (Massif Central) and Orédon (Pyrenees) now used to produce hydroelectricity and suggest that lake level changes and ground accelerations during earthquakes can remobilize distinct sectors of the basin fills and not only deltaic environments.

  10. A water-resources data-network evaluation for Monterey County, California; Phase 3, Northern Salinas River drainage basin

    USGS Publications Warehouse

    Templin, W.E.; Schluter, R.C.

    1990-01-01

    This report evaluates existing data collection networks and possible additional data collection to monitor quantity and quality of precipitation, surface water, and groundwater in the northern Salinas River drainage basin, California. Of the 34 precipitation stations identified, 20 were active and are concentrated in the northwestern part of the study area. No precipitation quality networks were identified, but possible data collection efforts include monitoring for acid rain and pesticides. Six of ten stream-gaging stations are active. Two surface water quality sites are sampled for suspended sediment, specific conductance, and chloride; one U.S. Geological Survey NASOAN site and one site operated by California Department of Water Resources make up the four active sampling locations; reactivation of 45 inactive surface water quality sites might help to achieve objectives described in the report. Three local networks measure water levels in 318 wells monthly, during peak irrigation, and at the end of the irrigation season. Water quality conditions are monitored in 379 wells; samples are collected in summer to monitor saltwater intrusion near Castroville and are also collected annually throughout the study area for analysis of chloride, specific conductance, and nitrate. An ideal baseline network would be an evenly spaced grid of index wells with a density of one per section. When baseline conditions are established, representative wells within the network could be monitored periodically according to specific data needs. (USGS)

  11. Prey capture behavior of native vs. nonnative fishes: a case study from the Colorado River drainage basin (USA).

    PubMed

    Arena, Anthony; Ferry, Lara A; Gibb, Alice C

    2012-02-01

    The Colorado River drainage basin is home to a diverse but imperiled fish fauna; one putative challenge facing natives is competition with nonnatives. We examined fishes from Colorado River tributaries to address the following questions: Do natives and nonnatives from the same trophic guild consume the same prey items? Will a given species alter its behavior when presented with different prey types? Do different species procure the same prey types via similar feeding behaviors? Roundtail chub (Gila robusta) and smallmouth bass (Micropterus dolomieu), midwater predators, and Sonora sucker (Catostomus insignis) and common carp (Cyprinus carpio), benthic omnivores, were offered six ecologically relevant prey types in more than 600 laboratory trials. Native species consumed a broader array of prey than nonnatives, and species from a given trophic guild demonstrated functional convergence in key aspects of feeding behavior. For example, roundtail chub and smallmouth bass consume prey attached to the substrate by biting, then ripping the prey from its point of attachment; in contrast, Sonora sucker remove attached prey via scraping. When presented with different prey types, common carp, roundtail chub, and smallmouth bass altered their prey capture behavior by modifying strike distance, gape, and angle of attack. Gape varied among the species examined here, with smallmouth bass demonstrating the largest functional and anatomical gape at a given body size. Because fish predators are gape-limited, smallmouth bass will be able to consume a variety of large prey items in the wild, including large, invasive crayfish and young roundtail chub-their presumptive trophic competitors.

  12. Morphological evolution of the Pyrenees and Ebro drainage basin: effect of a capture on the erosion of a mountain chain

    NASA Astrophysics Data System (ADS)

    Babault, J.; van den Driessche, J.; Bonnet, S.; Crave, A.

    2003-04-01

    In the Pyrenees, the existence of summit flat erosional surfaces is well known for a long time. This smoothed topography meets around 2000 m above sea level in the Axial Zone. The current relief is characterized by the deeply dissection of this surfaces by rivers of the Ebro drainage basin. These observations lead Boissevin (1934) and De Sitter (1952) to argue for a 2000 m post-orogenic uplift of the Pyrenean chain. However Molnar and England (1990) argue that climatic changes can also be responsible for the acceleration of erosional processes and the isostatic uplift of summit flat of the Pyrenees. The southern Pyrenees foreland fold thrust belt undergone a syn-tectonic and pos-tectonic burial allowing the development of the smoothed topography in the Axial Zone (Coney, 1996). Then it has been re-excavated to its present relief. It is assumed that the opening of the Valencia Trough and the Messinian desiccation crisis favoured the growth of a proto-Ebro river along the Catalan coastal range and the subsequent capture and re-excavation of the Pyrenees. In order to test the assumption of a burial of the Pyrenees and Ebro basin we reconstructed the paleo-topography of the Pyrenees and Ebro basin before the capture and we compare it to the present-day relief. The paleotopographic reconstruction is based on the field recognition of end-burial, post-tectonic sedimentary deposits and flat surfaces of the Axial Zone. We use elevations of the summit flat and crests plus elevations of the top of post-tectonic deposits to build a DEM of the Pyrenean paleotopography. From reconstruction, the volume of eroded material we calculate since capture (2.8 1013 m^3) is on the same order than the volume of sediments deposited within the Ebro margin calculated by Nelson (1990). The architecture of the sedimentary bodies on the Ebro margin shows an increase in sedimentary flux during the Pleistocene by 3 times superior than the flux of sediments during Pliocene and the amount of

  13. Long-term erosion rates of Panamanian drainage basins determined using in situ 10Be

    NASA Astrophysics Data System (ADS)

    Gonzalez, Veronica Sosa; Bierman, Paul R.; Nichols, Kyle K.; Rood, Dylan H.

    2016-12-01

    Erosion rates of tropical landscapes are poorly known. Using measurements of in situ-produced 10Be in quartz extracted from river and landslide sediment samples, we calculate long-term erosion rates for many physiographic regions of Panama. We collected river sediment samples from a wide variety of watersheds (n = 35), and then quantified 24 landscape-scale variables (physiographic, climatic, seismic, geologic, and land-use proxies) for each watershed before determining the relationship between these variables and long-term erosion rates using linear regression, multiple regression, and analysis of variance (ANOVA). We also used grain-size-specific 10Be analysis to infer the effect of landslides on the concentration of 10Be in fluvial sediment and thus on erosion rates. Cosmogenic 10Be-inferred, background erosion rates in Panama range from 26 to 595 m My- 1, with an arithmetic average of 201 m My- 1, and an area-weighted average of 144 m My- 1. The strongest and most significant relationship in the dataset was between erosion rate and silicate weathering rate, the mass of material leaving the basin in solution. None of the topographic variables showed a significant relationship with erosion rate at the 95% significance level; we observed weak but significant correlation between erosion rates and several climatic variables related to precipitation and temperature. On average, erosion rates in Panama are higher than other cosmogenically-derived erosion rates in tropical climates including those from Puerto Rico, Madagascar, Australia and Sri Lanka, likely the result of Panama's active tectonic setting and thus high rates of seismicity and uplift. Contemporary sediment yield and cosmogenically-derived erosion rates for three of the rivers we studied are similar, suggesting that human activities are not increasing sediment yield above long-term erosion rate averages in Panama. 10Be concentration is inversely proportional to grain size in landslide and fluvial samples

  14. Phase II modification of the Water Availability Tool for Environmental Resources (WATER) for Kentucky: The sinkhole-drainage process, point-and-click basin delineation, and results of karst test-basin simulations

    USGS Publications Warehouse

    Taylor, Charles J.; Williamson, Tanja N.; Newson, Jeremy K.; Ulery, Randy L.; Nelson, Hugh L.; Cinotto, Peter J.

    2012-01-01

    This report describes Phase II modifications made to the Water Availability Tool for Environmental Resources (WATER), which applies the process-based TOPMODEL approach to simulate or predict stream discharge in surface basins in the Commonwealth of Kentucky. The previous (Phase I) version of WATER did not provide a means of identifying sinkhole catchments or accounting for the effects of karst (internal) drainage in a TOPMODEL-simulated basin. In the Phase II version of WATER, sinkhole catchments are automatically identified and delineated as internally drained subbasins, and a modified TOPMODEL approach (called the sinkhole drainage process, or SDP-TOPMODEL) is applied that calculates mean daily discharges for the basin based on summed area-weighted contributions from sinkhole drain-age (SD) areas and non-karstic topographically drained (TD) areas. Results obtained using the SDP-TOPMODEL approach were evaluated for 12 karst test basins located in each of the major karst terrains in Kentucky. Visual comparison of simulated hydrographs and flow-duration curves, along with statistical measures applied to the simulated discharge data (bias, correlation, root mean square error, and Nash-Sutcliffe efficiency coefficients), indicate that the SDPOPMODEL approach provides acceptably accurate estimates of discharge for most flow conditions and typically provides more accurate simulation of stream discharge in karstic basins compared to the standard TOPMODEL approach. Additional programming modifications made to the Phase II version of WATER included implementation of a point-and-click graphical user interface (GUI), which fully automates the delineation of simulation-basin boundaries and improves the speed of input-data processing. The Phase II version of WATER enables the user to select a pour point anywhere on a stream reach of interest, and the program will automatically delineate all upstream areas that contribute drainage to that point. This capability enables

  15. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 2. performance of treatment systems

    USGS Publications Warehouse

    Cravotta, Charles A.

    2010-01-01

    A variety of passive and semi-passive treatment systems were constructed by state and local agencies to neutralize acidic mine drainage (AMD) and reduce the transport of dissolved metals in the upper Swatara Creek Basin in the Southern Anthracite Coalfield in eastern Pennsylvania. To evaluate the effectiveness of selected treatment systems installed during 1995–2001, the US Geological Survey collected water-quality data at upstream and downstream locations relative to each system eight or more times annually for a minimum of 3 years at each site during 1996–2007. Performance was normalized among treatment types by dividing the acid load removed by the size of the treatment system. For the limestone sand, open limestone channel, oxic limestone drain, anoxic limestone drain (ALD), and limestone diversion well treatment systems, the size was indicated by the total mass of limestone; for the aerobic wetland systems, the size was indicated by the total surface area of ponds and wetlands. Additionally, the approximate cost per tonne of acid treated over an assumed service life of 20 years was computed. On the basis of these performance metrics, the limestone sand, ALD, oxic limestone drain, and limestone diversion wells had similar ranges of acid-removal efficiency and cost efficiency. However, the open limestone channel had lower removal efficiency and higher cost per ton of acid treated. The wetlands effectively attenuated metals transport but were relatively expensive considering metrics that evaluated acid removal and cost efficiency. Although the water-quality data indicated that all treatments reduced the acidity load from AMD, the ALD was most effective at producing near-neutral pH and attenuating acidity and dissolved metals. The diversion wells were effective at removing acidity and increasing pH of downstream water and exhibited unique potential to treat moderate to high flows associated with storm flow conditions.

  16. Modeling Active Layer Depth Over Permafrost for the Arctic Drainage Basin and the Comparison to Measurements at CALM Field Sites

    NASA Astrophysics Data System (ADS)

    Oelke, C.; Zhang, T.; Serreze, M.; Armstrong, R.

    2002-12-01

    A finite difference model for one-dimensional heat conduction with phase change is applied to investigate soil freezing and thawing processes over the Arctic drainage basin. Calculations are performed on the 25~km~x~25~km resolution NSIDC EASE-Grid. NCEP re-analyzed sigma-0.995 surface temperature with a topography correction, and SSM/I-derived weekly snow height are used as forcing parameters. The importance of using an annual cycle of snow density for different snow classes is emphasized. Soil bulk density and the percentages of silt/clay and sand/gravel are from the SoilData System of the International Geosphere Biosphere Programme. In addition, we parameterize a spatially and vertically variable peat layer and modify soil bulk density and thermal conductivity accordingly. Climatological soil moisture content is from the Permafrost/Water Balance Model (P/WBM) at the University of New Hampshire. The model domain is divided into 3~layers with distinct thermal properties of frozen and thawed soil, respectively. Calculations are performed on 54~model nodes ranging from a thickness of 10~cm near the surface to 1~m at 15~m depth. Initial temperatures are chosen according to the grid cell's IPA permafrost classification on EASE grid. Active layer depths, simulated for the summers of 1999 and 2000, compare well to maximal thaw depths measured at about 60 Circumarctic Active Layer Monitoring Network (CALM) field sites. A remaining RMS-error between modeled and measured values is attributed mainly to scale discrepancies (100~m~x~100~m vs. 25~km~x~25~km) based on differences in the fields of air temperature, snow height, and soil bulk density. For the whole pan-Arctic land mass and the time period 1980 through 2001, this study shows the regionally highly variable active layer depth, frozen ground depth, lengths of freezing and thawing periods, and the day of year when the maxima are reached.

  17. Verification of LANDSAT imagery for morphametric and topological studies of drainage basins in a section of the western plateau of Sao Paulo State: Tiete-Aguapei watershed. M.S. Thesis; [Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Camargo, J. C. G.

    1982-01-01

    The potential of using LANDSAT MSS imagery for morphometric and topological studies of drainage basins was verified. Using Tiete and Aguapei watershed (Western Plateau) as the test site because of its homogeneous landscape. Morphometric variables collected for ten drainage basins include: circularity index; river density; drainage density; topographic texture; areal and index length; basin parameter; and main river length 1st order and 2nd order channel length. The topographical variables determined were: order; magnitude; bifuraction ratio; weighted bifuraction ratio; number of segments; number of linking; trajectory length; and topological diameter. Data were collected on topographical maps at the scale of 1:250,000 and 1:59,000 and on LANDSAT imagery at the scale of 1:250,000. The results which were summarized on tables for further analysis, show that LANDSAT imagery can supply the lack of topographic charts for drainage studies.

  18. Attributes for MRB_E2RF1 Catchments by Major River Basins in the Conterminous United States: Artificial Drainage (1992) and Irrigation (1997)

    USGS Publications Warehouse

    Wieczorek, Michael; LaMotte, Andrew E.

    2010-01-01

    This tabular data set represents the estimated area of artifical drainage for the year 1992 and irrigation types for the year 1997 compiled for every MRB_E2RF1 catchment of Major River Basins (MRBs, Crawford and others, 2006). The source data sets were derived from tabular National Resource Inventory (NRI) data sets created by the National Resources Conservation Service (NRCS, U.S. Department of Agriculture, 1995, 2000). Artificial drainage is defined as subsurface drains and ditches. Irrigation types are defined as gravity and pressure. Subsurface drains are described as conduits, such as corrugated plastic tubing, tile, or pipe, installed beneath the ground surface to collect and/or convey drainage. Surface drainage field ditches are described as graded ditches for collecting excess water. Gravity irrigation source is described as irrigation delivered to the farm and/or field by canals or pipelines open to the atmosphere; and water is distributed by the force of gravity down the field by: (1) A surface irrigation system (border, basin, furrow, corrugation, wild flooding, etc.) or (2) Sub-surface irrigation pipelines or ditches. Pressure irrigation source is described as irrigation delivered to the farm and/or field in pump or elevation-induced pressure pipelines, and water is distributed across the field by: (1) Sprinkle irrigation (center pivot, linear move, traveling gun, side roll, hand move, big gun, or fixed set sprinklers), or (2) Micro irrigation (drip emitters, continuous tube bubblers, micro spray or micro sprinklers). NRI data do not include Federal lands and are thus excluded from this dataset. The tabular data for drainage were spatially apportioned to the National Land Cover Dataset (NLCD, Kerie Hitt, U.S. Geological Survey, written commun., 2005) and the tabular data for irrigation were spatially apportioned to an enhanced version of the National Land Cover Dataset (NLCDe, Nakagaki and others, 2007). The MRB_E2RF1 catchments are based on a modified

  19. Hydrogeology and ground-water flow, fractured Mesozoic structural-basin rocks, Stony Brook, Beden Brook, and Jacobs Creek drainage basins, west-central New Jersey

    USGS Publications Warehouse

    Lewis, Jean C.; Jacobsen, Eric

    1995-01-01

    This study was undertaken to characterize ground- water flow in the Stony Brook, Beden Brook, and Jacobs Creek drainage basins in west-central New Jersey. The 89-square-mile study area is underlain by dipping beds of fractured siltstone, shale, and sandstone and by massive diabase sills. In all of the rocks, the density of interconnected fractures decreases with depth. A major fault extends through the study area, and rocks on both sides of the fault are extensively fractured. The average annual rates of precipitation and ground-water recharge in the study area are 45.07 inches and 8.58 inches, respectively. The rate of recharge to diabase rocks is about one-half the rate of recharge to other rocks. Part of the surface runoff from diabase rocks enters the ground-water system where it encounters more permeable rocks. Most ground water in the study area follows short, shallow flow paths. A three- dimensional finite-difference model of ground-water flow was developed to test hypotheses concerning geologic features that control ground-water flow in the study area. The decrease in the density of interconnected fractures with depth was represented by dividing the model into two layers with different hydraulic conductivity. The pinching out of water- bearing beds in the dip direction at land surface and at depth was simulated as a lower hydraulic conductivity in the dip direction than in the strike direction. This model can be used to analyze ground-water flow if the area of interest is more than about 0.5 square mile.

  20. Praise Acres Project

    ERIC Educational Resources Information Center

    Hayes, Carolyn

    2004-01-01

    In this article, the author presents the "Praise Acres Project," which was initiated from a letter written by a local resident. The resident wrote about an idea to develop a wetlands and outdoor lab facility on his property for students. Thus, a plan was conceived that would not only benefit the owner, but also enhance high school science…

  1. Statistical Summary of Hydrologic and Water-Quality Data from the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-99

    USGS Publications Warehouse

    Wong, Michael F.; Young, Stacie T.M.

    2001-01-01

    This report provides statistical summaries of rainfall, streamflow, suspended-sediment, and water-quality data collected in the Halawa, Haiku, and Kaneohe drainage basins before, during, and after construction of the H-3 Highway on the island of Oahu, Hawaii. Methods of data collection also are described. Data collected during water years 1983 through 1999 at eight streamflow and six stream water-quality gaging stations, and two water-quality stations located in Waimaluhia Reservoir are included. Physiographic data for all basins contributing to the 14 stream stations as well as brief land-use descriptions of the Halawa, Haiku, and Kaneohe drainage basins are provided.

  2. Hydrologic data for Mountain Creek, Trinity River basin, Texas, 1976

    USGS Publications Warehouse

    Buckner, H.D.

    1978-01-01

    The total drainage area of Mountain Creek, Texas, is 304 sq mi. The stream-gaging stations on Mountain Creek near Cedar Hill and Walnut Creek near Mansfield provide hydrologic data to define runoff characteristics from small drainage basins. They also serve as index stations for inflow into the reservoir and provide operational data for the reservoir. In addition, the station Walnut Creek near Mansfield is equipped with a recording rain gage. The stage station near Duncanville provides data pertinent to operation of the gates in the Mountain Creek Lake Dam. The reservoir-content station at the dam provides records of reservoir state and contents. The stream-gaging station Mountain Creek at Grand Prairie provides records of outflow from Mountain Creek Lake and the basin. Basin outflow for the 1976 water year was 78,660 acre-feet which is only 1,140 acre-feet above the 16-year (1960-76) average of 77,520 acre-feet. Storage in Mountain Creek Lake showed a net gain of 760 acre-feet during the water year. Rainfall over the study area for the 1976 water year was about 32 inches, which is about 2 inches below the long-term mean rainfall (1960-75) for the area. (Woodard-USGS)

  3. Drainage Areas of Selected Streams in Virginia

    USGS Publications Warehouse

    Hayes, Donald C.; Wiegand, Ute

    2006-01-01

    Drainage areas were determined for more than 1,600 basins in the three major river basins of Virginia -- the North Atlantic Slope, South Atlantic Slope, and Ohio River Basins. Drainage areas range from 0.004 square mile to 7,866 square miles. A geographic information system was used to digitize and store data associated with the drainage basins. Drainage divides were digitized from digital U.S. Geological Survey 7.5-minute, 1:24,000-scale, topographic quadrangles using procedures recommended by the Subcommittee on Hydrology, Federal Interagency River Basin Committee. Digital drainage basins were quality assured, polygons of the closed drainage basins were generated, and drainage areas were computed.

  4. Molecular cloning and characterization of acrA and acrE genes of Escherichia coli.

    PubMed Central

    Ma, D; Cook, D N; Alberti, M; Pon, N G; Nikaido, H; Hearst, J E

    1993-01-01

    The DNA fragment containing the acrA locus of the Escherichia coli chromosome has been cloned by using a complementation test. The nucleotide sequence indicates the presence of two open reading frames (ORFs). Sequence analysis suggests that the first ORF encodes a 397-residue lipoprotein with a 24-amino-acid signal peptide at its N terminus. One inactive allele of acrA from strain N43 was shown to contain an IS2 element inserted into this ORF. Therefore, this ORF was designated acrA. The second downstream ORF is predicted to encode a transmembrane protein of 1,049 amino acids and is named acrE. Genes acrA and acrE are probably located on the same operon, and both of their products are likely to affect drug susceptibilities observed in wild-type cells. The cellular localizations of these polypeptides have been analyzed by making acrA::TnphoA and acrE::TnphoA fusion proteins. Interestingly, AcrA and AcrE share 65 and 77% amino acid identity with two other E. coli polypeptides, EnvC and EnvD, respectively. Drug susceptibilities in one acrA mutant (N43) and one envCD mutant (PM61) have been determined and compared. Finally, the possible functions of these proteins are discussed. Images PMID:8407802

  5. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; characterization of suspended sediment, nutrients, and pesticides

    USGS Publications Warehouse

    Harned, Douglas; McMahon, Gerard; Spruill, T.B.; Woodside, M.D.

    1995-01-01

    The 28,000-square-mile Albemarle-Pamlico drainage basin includes the Roanoke, Dan, Chowan Tar, and Neuse Rivers. The basin extends through four physiographic provinces in North Carolina and Virginia-Valley and Ridge, Blue Ridge, Piedmont and Coastal Plain. The spatial and temporal trends in ground-water and riverine water quality in the study area were characterized by using readily available data sources The primary data sources that were used included the U.S. Geological Survey's National Water Data Storage and Retrieval System (WATSTORE) database, the U.S. Environmental Protection Agency's Storage and Retrieval System (STORET) database, and results of a few investigations of pesticide occurrence. The principal water-quality constituents examined were suspended sediment, nutrients, and pesticides. The data examined generally spanned the period from 1950 to 1993. The only significant trends in suspended sediment were detected at three Chowan River tributary sites which showed long-term decreases. Suspended- and total-solids concentrations have decreased throughout the Albemarle-Pamlico drainage basin. The decreases are probably a result of (1) construction of new lakes and ponds in the basin, which trap solids, (2) improved agricultural soil management, and (3) improved wastewater treatment. Nutrient point sources are much less than nonpoint nutrient sources at the eight NASQAN basins examined for nutrient loads. The greatest nitrogen inputs are associated with crop fertilizer and biological nitrogen fixation by soybeans and peanuts, whereas atmospheric and animal-related nitrogen inputs are comparable in magnitude. The largest phosphorus inputs are associated with animal wastes. The most commonly detected pesticides in surface water in the STORET database were atrazine and aldrin.Intensive organonitrogen herbicide sampling of Chicod Creek in 1992 showed seasonal variations in pesticide concentration. The most commonly detected herbicides were atrazine, alachlor

  6. Use of a precipitation-runoff model for simulating effects of forest management on streamflow in 11 small drainage basins, Oregon Coast Range

    USGS Publications Warehouse

    Risley, J.C.

    1994-01-01

    The Precipitation-Runoff Modeling System (PRMS) model of the U.S. Geological Survey was used to simulate the hydrologic effects of timber management in 11 small, upland drainage basins of the Coast Range in Oregon. The coefficients of determination for observed and simulated daily flow during the calibration periods ranged from 0.92 for the Flynn Creek Basin to 0.68 for the Priorli Creek Basin; percent error ranged from -0.25 for the Deer Creek Basin to -4.49 for the Nestucca River Basin. The coefficients of determination during the validation periods ranged from 0.90 for the Flynn Creek Basin to 0.66 for the Wind River Basin; percent error during the validation periods ranged from -0.91 for the Flynn Creek Basin to 22.3 for the Priorli Creek Basin. In addition to daily simulations, 42 storms were selected from the time-series periods in which the 11 basins were studied and used in hourly storm-mode simulations. Sources of simulation error included the quality of the input data, deficiencies in the PRMS model-algorithms, and the quality of parameter estimation. Times-series data from the Flynn Creek and Needle Branch Basins, collected during an earlier U.S. Geological Survey paired-watershed study, were used to evaluate the PRMS as a tool for predicting the hydrologic effects of timber-management practices. The Flynn Creek Basin remained forested and undisturbed during the data-collection period, while the Needle Branch Basin had been clearcut 82 percent at a midpoint during the period of data collection. Using the PRMS, streamflow at the Needle Branch Basin was simulated during the postlogging period using prelogging parameter values. Comparison of postlogging observed streamflow with the simulated data showed an increase in annual discharge volume of approximately 8 percent and a small increase in peak flows of from 1 to 2 percent. The simulated flows from the basins studied were generally insensitive to the number of hydrologic-response units used to replicate

  7. How Big Is an Acre?

    ERIC Educational Resources Information Center

    Augustin, Byron D.; Brandes, Donald

    1984-01-01

    Many students do not have the slightest idea of how much land is in an acre. A diagram of the official playing field for American football is used to illustrate the approximate size of an acre of land. (RM)

  8. Relation of water quality to land use in the drainage basins of six tributaries to the lower Delaware River, New Jersey, 2002-07

    USGS Publications Warehouse

    Baker, Ronald J.; Esralew, Rachel A.

    2010-01-01

    Concentrations and loads of water-quality constituents in six streams in the lower Delaware River Basin of New Jersey were determined in a multi-year study conducted by the U.S. Geological Survey, in cooperation with the New Jersey Department of Environmental Protection. Two streams receive water from relatively undeveloped basins, two from largely agricultural basins, and two from heavily urbanized basins. Each stream was monitored during eight storms and at least eight times during base flow during 2002-07. Sampling was conducted during base flow before each storm, when stage was first observed to rise, and several times during the rising limb of the hydrographs. Agricultural and urban land use has resulted in statistically significant increases in loads of nitrogen and phosphorus species relative to loads in undeveloped basins. For example, during the growing season, median storm flow concentrations of total nitrogen in the two streams in agricultural areas were 6,290 and 1,760 mg/L, compared to 988 and 823 mg/L for streams in urban areas, and 719 and 333 mg/L in undeveloped areas. Although nutrient concentrations and loads were clearly related to land useurban, agricultural, and undeveloped within the drainage basins, other basin characteristics were found to be important. Residual nutrients entrapped in lake sediments from streams that received effluent from recently removed sewage-treatment plants are hypothesized to be the cause of extremely high levels of nutrient loads to one urban stream, whereas another urban stream with similar land-use percentages (but without the legacy of sewage-treatment plants) had much lower levels of nutrients. One of the two agricultural streams studied had higher nutrient loads than the other, especially for total phosphorous and organic nitrogen. This difference appears to be related to the presence (or absence) of livestock (cattle).

  9. Application of a watershed model (HSPF) for evaluating sources and transport of pathogen indicators in the Chino Basin drainage area, San Bernardino County, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Lorraine E.; Church, Clinton D.; Mendez, Gregory O.

    2011-01-01

    A watershed model using Hydrologic Simulation Program-FORTRAN (HSPF) was developed for the urbanized Chino Basin in southern California to simulate the transport of pathogen indicator bacteria, evaluate the flow-component and land-use contributions to bacteria contamination and water-quality degradation throughout the basin, and develop a better understanding of the potential effects of climate and land-use change on water quality. The calibration of the model for indicator bacteria was supported by historical data collected before this study and by samples collected by the U.S. Geological Survey from targeted land-use areas during storms in water-year 2004. The model was successfully calibrated for streamflow at 5 gage locations representing the Chino Creek and Mill Creek drainages. Although representing pathogens as dissolved constituents limits the model's ability to simulate the transport of pathogen indicator bacteria, the bacteria concentrations measured over the period 1998-2004 were well represented by the simulated concentrations for most locations. Hourly concentrations were more difficult to predict because of high variability in measured bacteria concentrations. In general, model simulations indicated that the residential and commercial land uses were the dominant sources for most of the pathogen indicator bacteria during low streamflows. However, simulations indicated that land used for intensive livestock (dairies and feedlots) and mixed agriculture contributed the most bacteria during storms. The calibrated model was used to evaluate how various land use, air temperature, and precipitation scenarios would affect flow and transport of bacteria. Results indicated that snow pack formation and melt were sensitive to changes in air temperature in the northern, mountainous part of the Chino Basin, causing the timing and magnitude of streamflow to shift in the natural drainages and impact the urbanized areas of the central Chino Basin. The relation between

  10. Sources of coal-mine drainage and their effects on surface-water chemistry in the Claybank Creek basin and vicinity, north-central Missouri, 1983-84

    USGS Publications Warehouse

    Blevins, Dale W.

    1989-01-01

    Eighteen sources of drainage related to past coal-mining activity were identified in the Claybank Creek, Missouri, study area, and eight of them were considered large enough to have detectable effects on receiving streams. However, only three sources (two coal-waste sites and one spring draining an underground mine) significantly affected the chemistry of water in receiving streams. Coal wastes in the Claybank Creek basin contributed large quantities of acid drainage to receiving streams during storm runoff. The pH of coal-waste runoff ranged from 2.1 to 2.8. At these small pH values, concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards established for these constituents. Effects of acid storm runoff were detected near the mouth of North Fork Claybank Creek where the pH during a small storm was 3.9. Coal wastes in the streambeds and seepage from coal wastes also had significant effects on receiving streams during base flows. The receiving waters had pH values between 2.8 and 3.5, and concentrations of some dissolved metals and dissolved sulfate were a few to several hundred times larger than Federal and State water-quality standards. Most underground mines in the North Fork Claybank Creek basin seem to be hydraulically connected, and about 80 percent of their discharge surfaced at one site. Drainage from the underground mines contributed most of the dissolved constituents in North Fork Claybank Creek during dry weather. Underground-mine water always had a pH near 5.9 and was well-buffered. It had a dissolved-sulfate concentration of about 2,400 milligrams per liter, dissolved-manganese concentrations ranging from 4.0 to 5.3 milligrams per liter, and large concentrations of ferrous iron. Iron was in the ferrous state because of reducing conditions in the mines. When underground-mine drainage reached the ground surface, the ferrous iron was oxidized and precipitated to

  11. A geochemical approach to the restoration plans for the Odiel River basin (SW Spain), a watershed deeply polluted by acid mine drainage.

    PubMed

    Macías, Francisco; Pérez-López, Rafael; Caraballo, Manuel A; Sarmiento, Aguasanta M; Cánovas, Carlos R; Nieto, Jose M; Olías, Manuel; Ayora, Carlos

    2017-02-01

    The Odiel River Basin (SW Spain) drains the central part of the Iberian Pyrite Belt (IPB), a world-class example of sulfide mining district and concomitantly of acid mine drainage (AMD) pollution. The severe AMD pollution and the incipient state of remediation strategies implemented in this region, coupled with the proximity of the deadline for compliance with the European Water Framework Directive (WFD), urge to develop a restoration and water resources management strategy. Furthermore, despite the presence of some reservoirs with acid waters in the Odiel basin, the construction of the Alcolea water reservoir has already started. On the basis of the positive results obtained after more than 10 years of developing a specific passive remediation technology (dispersed alkaline substrate (DAS)) for the highly polluted AMD of this region, a restoration strategy is proposed. The implementation of 13 DAS treatment plants in selected acid discharges along the Odiel and Oraque sub-basins and other restoration measurements of two acidic creeks is proposed as essential to obtain a good water quality in the future Alcolea reservoir. This restoration strategy is also suggested as an economically and environmentally sustainable approach to the extreme metal pollution affecting the waters of the region and could be considered the starting point for the future compliance with the WFD in the Odiel River Basin.

  12. Status and understanding of groundwater quality in the San Diego Drainages Hydrogeologic Province, 2004: California GAMA Priority Basin Project

    USGS Publications Warehouse

    Wright, Michael T.; Belitz, Kenneth

    2011-01-01

    Groundwater quality in the approximately 3,900-square-mile (mi2) San Diego Drainages Hydrogeologic Province (hereinafter San Diego) study unit was investigated from May through July 2004 as part of the Priority Basin Project of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The study unit is located in southwestern California in the counties of San Diego, Riverside, and Orange. The GAMA Priority Basin Project is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey (USGS) and the Lawrence Livermore National Laboratory. The GAMA San Diego study was designed to provide a statistically robust assessment of untreated-groundwater quality within the primary aquifer systems. The assessment is based on water-quality and ancillary data collected by the USGS from 58 wells in 2004 and water-quality data from the California Department of Public Health (CDPH) database. The primary aquifer systems (hereinafter referred to as the primary aquifers) were defined by the depth interval of the wells listed in the California Department of Public Health (CDPH) database for the San Diego study unit. The San Diego study unit consisted of four study areas: Temecula Valley (140 mi2), Warner Valley (34 mi2), Alluvial Basins (166 mi2), and Hard Rock (850 mi2). The quality of groundwater in shallow or deep water-bearing zones may differ from that in the primary aquifers. For example, shallow groundwater may be more vulnerable to surficial contamination than groundwater in deep water-bearing zones. This study had two components: the status assessment and the understanding assessment. The first component of this study-the status assessment of the current quality of the groundwater resource-was assessed by using data from samples analyzed for volatile organic compounds (VOC), pesticides, and naturally occurring inorganic constituents, such as major ions and trace elements. The status assessment is intended to

  13. Martian drainage densities

    USGS Publications Warehouse

    Carr, M.H.; Chuang, F.C.

    1997-01-01

    Drainage densities on Mars range from zero over large areas of volcanic plains to 0.3-0.5 km-1 locally on some volcanoes. These values refer to geologic units, not to drainage basins, as is normal for terrestrial drainage densities. The highest values are close to the lowest terrestrial values derived by similar techniques. Drainage densities were determined for every geologic unit portrayed on the 1:15,000,000 geologic map of Mars. Except for volcanoes the geologic unit with the highest drainage density is the dissected Noachian plains with a drainage density of 0.0074 km-1. The average drainage density for Noachian units is 0.0032 km-1, for Hesperian units is 0.00047 km-1, and for Amazonian units is 0.00007 km-1, excluding the volcanoes. These values are 2-3 orders of magnitude lower than typical terrestrial densities as determined by similar techniques from Landsat images. The low drainage densities, despite a cumulative record that spans billions of years, indicate that compared with the Earth, the channel-forming processes have been very inefficient or have operated only rarely or that the surface is extremely permeable. The high drainage density on volcanoes is attributed to a local cause, such as hydrothermal activity, rather than to a global cause such as climate change. Copyright. Published in 1997 by the American Geophysical Union.

  14. A fingerprinting mixing model approach to generate uniformly representative solutions for distributed contributions of sediment sources in a Pyrenean drainage basin

    NASA Astrophysics Data System (ADS)

    Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana

    2014-05-01

    Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment

  15. Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.

    SciTech Connect

    Trotter, Patrick C.

    2001-10-01

    The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

  16. Implications for the tectonic transition zone of active orogeny in Hoping drainage basin, by landscape evolution at the multi-temporal timescale

    NASA Astrophysics Data System (ADS)

    Chang, Q.; Chen, R. F.; Lin, W.; Hsieh, P. S.

    2015-12-01

    In an actively orogeny the landscape are transient state of disequilibrium in response to climatic and tectonic inputs. At the catchment scale, sensitivity of river systems plays an important role in landscape evolution. Hoping drainage basin is located at the tectonic transition zone in the north-eastern Taiwan, where the behavior of Philippine Sea plate switches from overriding above the east-dipping Eurasian Continental plate to northward subducting under the Ryukyu arc. However, extensive deep-seated landslides, debris flow, and numerous large alluvial terraces can be observed, suggesting strong surface processes in this watershed. This effect on regional climate fundamentally changed the landscape by reconfiguring drainage patterns and creating a vast influx of sediments into the basin. In this study we review the morphological evidence from multi-temporal timescale, including in-situ cosmogenic nuclides denudation rate and suspension load data, coupled with the analysis of the longitudinal profiles. The main goal of this study is to compare Holocene erosion rates with thermochronology and radiometric dating of river terraces to investigate the erosion history of Hoping area. The result shows that short-term erosion rate is around twice as large as the long-term denudation rate, which might due to the climate-driven erosion events such as typhoon-induced landslide. We've also mapped detail morphological features by using the high-resolution LiDAR image, which help us to identify not only the landslide but also tectonic features such as lineation, fault scarps, and fracture zones. The tectonic surface features and field investigation results show that the drainage basin is highly fractured, suggesting that even though the vertical tectonic activity rate is small, the horizontal shortening influenced by both southward opening of the back-arc Okinawa trough and the north-western collision in this area is significant. This might cause the reducing in rock strength

  17. Annual suspended sediment and trace element fluxes in the Mississippi, Columbia, Colorado, and Rio Grande drainage basins

    USGS Publications Warehouse

    Horowitz, A.J.; Elrick, K.A.; Smith, J.J.

    2001-01-01

    Suspended sediment, sediment-associated, total trace element, phosphorus (P), and total organic carbon (TOC) fluxes were determined for the Mississippi, Columbia, Rio Grande, and Colorado Basins for the study period (the 1996, 1997, and 1998 water years) as part of the US Geological Survey's redesigned National Stream Quality Accounting Network (NASQAN) programme. The majority (??? 70%) of Cu, Zn, Cr, Ni, Ba, P, As, Fe, Mn, and Al are transported in association with suspended sediment; Sr transport seems dominated by the dissolved phase, whereas the transport of Li and TOC seems to be divided equally between both phases. Average dissolved trace element levels are markedly lower than reported during the original NASQAN programme; this seems due to the use of 'clean' sampling, processing, and analytical techniques rather than to improvements in water quality. Partitioning between sediment and water for Ag, Pb, Cd, Cr, Co, V, Be, As, Sb, Hg, and Ti could not be estimated due to a lack of detectable dissolved concentrations in most samples. Elevated suspended sediment-associated Zn levels were detected in the Ohio River Basin and elevated Hg levels were detected in the Tennessee River, the former may affect the mainstem Mississippi River, whereas the latter probably do not. Sediment-associated concentrations of Ag, Cu, Pb, Zn, Cd, Cr, Co, Ba, Mo, Sb, Hg, and Fe are markedly elevated in the upper Columbia Basin, and appear to be detectable (Zn, Cd) as far downstream as the middle of the basin. These elevated concentrations seem to result from mining and/or mining-related activities. Consistently detectable concentrations of dissolved Se were found only in the Colorado River Basin. Calculated average annual suspended sediment fluxes at the mouths of the Mississippi and Rio Grande Basins were below, whereas those for the Columbia and Colorado Basins were above previously published annual values. Downstream suspended sediment-associated and total trace element fluxes

  18. Estimating debris-flow probability using fan stratigraphy, historic records, and drainage-basin morphology, Interstate 70 highway corridor, central Colorado, U.S.A

    USGS Publications Warehouse

    Coe, J.A.; Godt, J.W.; Parise, M.; Moscariello, A.; ,

    2003-01-01

    We have used stratigraphic and historic records of debris-flows to estimate mean recurrence intervals of past debris-flow events on 19 fans along the Interstate 70 highway corridor in the Front Range of Colorado. Estimated mean recurrence intervals were used in the Poisson probability model to estimate the probability of future debris-flow events on the fans. Mean recurrence intervals range from 7 to about 2900 years. Annual probabilities range from less than 0.1% to about 13%. A regression analysis of mean recurrence interval data and drainage-basin morphometry yields a regression model that may be suitable to estimate mean recurrence intervals on fans with no stratigraphic or historic records. Additional work is needed to verify this model. ?? 2003 Millpress.

  19. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2000 to June 30, 2001

    USGS Publications Warehouse

    Presley, Todd K.

    2001-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall and streamflow data were collected from July 1, 2000 to June 30, 2001. Few storms during the year met criteria for antecedent dry conditions or provided enough runoff to sample. The storm of June 5, 2001 was sufficiently large to cause runoff. On June 5, 2001, grab samples were collected at five sites along North Halawa and Halawa Streams. The five samples were later analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological and chemical oxygen demands, total suspended solids, and total dissolved solids.

  20. Post-Eruption Changes in Channel Geometry of Streams in the Toutle River Drainage Basin, 1980-82, Mount St. Helens, Washington

    USGS Publications Warehouse

    Meyer, D.F.; Nolan, K. Michael; Dodge, J.E.

    1985-01-01

    The May 18, 1980, eruption of Mount St. Helens, Washington, generated a debris avalanche, lateral blast, lahars, and tephra deposits that altered mainstem and tributary channels within the Toutle River drainage basin. Channel cross sections were monumented and surveyed on North Fork Toutle River and its tributaries, on South Fork Toutle River, on Green River, and on Toutle River in 1980 and 1981. These streams drain the north and west flanks of the volcano. The network of channel cross sections was surveyed more frequently following periods of higher flow. The repetitive cross-section surveys provide measurements of bank erosion or accretion and of channel erosion or aggradation. These data can be used to determine erosion rates, and to identify sources and storage sites of sediment in sediment budget computations. This report presents channel cross-section profiles constructed from the survey data collected during water years 1980 through 1982.

  1. Health risks from large-scale water pollution: Current trends and implications for improving drinking water quality in the lower Amu Darya drainage basin, Uzbekistan

    NASA Astrophysics Data System (ADS)

    Törnqvist, Rebecka; Jarsjö, Jerker

    2010-05-01

    Safe drinking water is a primary prerequisite to human health, well being and development. Yet, there are roughly one billion people around the world that lack access to safe drinking water supply. Health risk assessments are effective for evaluating the suitability of using various water sources as drinking water supply. Additionally, knowledge of pollutant transport processes on relatively large scales is needed to identify effective management strategies for improving water resources of poor quality. The lower Amu Darya drainage basin close to the Aral Sea in Uzbekistan suffers from physical water scarcity and poor water quality. This is mainly due to the intensive agriculture production in the region, which requires extensive freshwater withdrawals and use of fertilizers and pesticides. In addition, recurrent droughts in the region affect the surface water availability. On average 20% of the population in rural areas in Uzbekistan lack access to improved drinking water sources, and the situation is even more severe in the lower Amu Darya basin. In this study, we consider health risks related to water-borne contaminants by dividing measured substance concentrations with health-risk based guideline values from the World Health Organisation (WHO). In particular, we analyse novel results of water quality measurements performed in 2007 and 2008 in the Mejdurechye Reservoir (located in the downstream part of the Amu Darya river basin). We furthermore identify large-scale trends by comparing the Mejdurechye results to reported water quality results from a considerable stretch of the Amu Darya river basin, including drainage water, river water and groundwater. The results show that concentrations of cadmium and nitrite exceed the WHO health-risk based guideline values in Mejdurechye Reservoir. Furthermore, concentrations of the since long ago banned and highly toxic pesticides dichlorodiphenyltrichloroethane (DDT) and γ-hexachlorocyclohexane (γ-HCH) were detected in

  2. Quantitative catchment profiling to apportion faecal indicator organism budgets for the Ribble system, the UK's sentinel drainage basin for Water Framework Directive research.

    PubMed

    Stapleton, C M; Wyer, M D; Crowther, J; McDonald, A T; Kay, D; Greaves, J; Wither, A; Watkins, J; Francis, C; Humphrey, N; Bradford, M

    2008-06-01

    Under the EU Water Framework Directive (WFD) 20/60/EC and the US Federal Water Pollution Control Act 2002 management of water quality within river drainage basins has shifted from traditional point-source control to a holistic approach whereby the overall contribution of point and diffuse sources of pollutants has to be considered. Consequently, there is a requirement to undertake source-apportionment studies of pollutant fluxes within catchments. The inclusion of the Bathing Water Directive (BWD), under the list of 'protected areas' in the WFD places a requirement to control sources of faecal indicator organisms within catchments in order to achieve the objectives of both the BWD (and its revision - 2006/7/EC) and the WFD. This study was therefore initiated to quantify catchment-derived fluxes of faecal indicator compliance parameters originating from both point and diffuse sources. The Ribble drainage basin is the single UK sentinel WFD research catchment and discharges to the south of the Fylde coast, which includes a number of high profile, historically non-compliant, bathing waters. Faecal indicator concentrations (faecal coliform concentrations are reported herein) were measured at 41 riverine locations, the 15 largest wastewater treatment works (WwTWs) and 15 combined sewer overflows (CSOs) across the Ribble basin over a 44-day period during the 2002 bathing season. The sampling programme included targeting rainfall-induced high flow events and sample results were categorised as either base flow or high flow. At the riverine sites, geometric mean faecal coliform concentrations showed statistically significant elevation at high flow compared to base flow. The resultant faecal coliform flux estimates revealed that over 90% of the total organism load to the Ribble Estuary was discharged by sewage related sources during high flow events. These sewage sources were largely related to the urban areas to the south and east of the Ribble basin, with over half the

  3. Effect of environmental setting on sediment, nitrogen, and phosphorus concentrations in Albemarle-Pamlico drainage basin, North Carolina and Virginia, USA

    USGS Publications Warehouse

    McMahon, G.; Harned, D.A.

    1998-01-01

    Environmental settings were defined, through an overlay process, as areas of coincidence between categories of three mapped variables - land use, surficial geology, and soil drainage characteristics. Expert judgment was used in selecting factors thought to influence sediment and nutrient concentrations in the Albemarle-Pamlico drainage area. This study's findings support the hypothesis that environmental settings defined using these three variables can explain variations in the concentration of certain sediment and nutrient constituents. This finding underscores the importance of developing watershed management plans that account for differences associated with the mosaic of natural and anthropogenic factors that define a basin's environmental setting. At least in the case of sediment and nutrients in the Albemarle-Pamlico region, a watershed management plan that focuses only on anthropogenic factors, such as point-source discharges, and does not account for natural characteristics of a watershed and the influences of these characteristics on water quality, may lead to water-quality goals that are over- or underprotective of key environmental features and to a misallocation of the resources available for environmental protection.

  4. Garra mondica, a new species from the Mond River drainage with remarks on the genus Garra from the Persian Gulf basin in Iran (Teleostei: Cyprinidae).

    PubMed

    Sayyadzadeh, Golnaz; Esmaeili, Hamid Reza; Freyhof, Jörg

    2015-11-24

    Garra mondica, new species, from the Mond River drainage in Iran is distinguished from its congeners by having 7½ branched dorsal-fin rays; the breast, belly and back in front of the dorsal-fin origin naked and 9+8 branched caudal-fin rays. Garra mondica is also distinguished from all other congeners in the Persian Gulf basin, except an unidentified species from the Kol River, by having two fixed, diagnostic nucleotide substitutions in the mtDNA COI barcode region. The identity of G. gymnothorax, a nominal species from the Karun River drainage, and G. crenulata, a nominal species from Central Iran, are discussed. Garra populations examined from the Karun have a unique mtDNA COI barcode sequence, but their diagnostic characters are not consistent with the description and syntypes of G. gymnothorax. G. crenulata is considered as a synonym of G. rufa. Two populations of Garra from the Kol River have a sequence of the COI barcode region very similar to G. mondica, but cannot be identified as G. mondica and their identity cannot be resolved here.

  5. Two new species of Melanorivulus (Cyprinodontiformes: Cynolebiidae) from Rio Verde drainage, Upper Rio Paraná basin, Brazil.

    PubMed

    Volcan, Matheus Vieira; Klotzel, Bruno; Lanés, Luis Esteban Krause

    2017-02-21

    Two new species of the genus Melanorivulus are herein described from the middle Rio Verde drainage, upper Rio Paraná basin, Mato Grosso do Sul, Brazil. Both new species are members of the Melanorivulus pictus clade, diagnosed by having ventral process of angulo-articular vestigial and flanks intense greenish blue or greenish golden to purplish blue above anal fin base in males. Melanorivulus nigropunctatus, new species, from wetlands of a small drainage tributary of right side of the Rio Verde, differs from all other congeners by possessing black dots over the head and body in both sexes and pectoral fin orange with a dark grey margin in males. Melanorivulus ofaie, new species, is found in a similar environment, but at the opposite margin of the Rio Verde. It is distinguished by males presenting flank greenish blue to light blue, with seven to nine oblique chevron-like red bars, ventral portion of head whitish with dark brown spots, dorsal fin yellow with two to three transverse broad red oblique stripes and distal region red, anal fin light orangish yellow, basal area light blue with short red bars and distal portion with a dark red margin, and caudal fin yellow or orangish yellow with three to four vertical red bars in the dorsal and middle portions, sometimes with a orange distal margin. Both new species are considered endangered due to the loss and degradation of their habitat.

  6. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  7. ACR Appropriateness Criteria Myelopathy.

    PubMed

    Roth, Christopher J; Angevine, Peter D; Aulino, Joseph M; Berger, Kevin L; Choudhri, Asim F; Fries, Ian Blair; Holly, Langston T; Kendi, Ayse Tuba Karaqulle; Kessler, Marcus M; Kirsch, Claudia F; Luttrull, Michael D; Mechtler, Laszlo L; O'Toole, John E; Sharma, Aseem; Shetty, Vilaas S; West, O Clark; Cornelius, Rebecca S; Bykowski, Julie

    2016-01-01

    Patients presenting with myelopathic symptoms may have a number of causative intradural and extradural etiologies, including disc degenerative diseases, spinal masses, infectious or inflammatory processes, vascular compromise, and vertebral fracture. Patients may present acutely or insidiously and may progress toward long-term paralysis if not treated promptly and effectively. Noncontrast CT is the most appropriate first examination in acute trauma cases to diagnose vertebral fracture as the cause of acute myelopathy. In most nontraumatic cases, MRI is the modality of choice to evaluate the location, severity, and causative etiology of spinal cord myelopathy, and predicts which patients may benefit from surgery. Myelopathy from spinal stenosis and spinal osteoarthritis is best confirmed without MRI intravenous contrast. Many other myelopathic conditions are more easily visualized after contrast administration. Imaging performed should be limited to the appropriate spinal levels, based on history, physical examination, and clinical judgment. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals, and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  8. ACR appropriateness criteria jaundice.

    PubMed

    Lalani, Tasneem; Couto, Corey A; Rosen, Max P; Baker, Mark E; Blake, Michael A; Cash, Brooks D; Fidler, Jeff L; Greene, Frederick L; Hindman, Nicole M; Katz, Douglas S; Kaur, Harmeet; Miller, Frank H; Qayyum, Aliya; Small, William C; Sudakoff, Gary S; Yaghmai, Vahid; Yarmish, Gail M; Yee, Judy

    2013-06-01

    A fundamental consideration in the workup of a jaundiced patient is the pretest probability of mechanical obstruction. Ultrasound is the first-line modality to exclude biliary tract obstruction. When mechanical obstruction is present, additional imaging with CT or MRI can clarify etiology, define level of obstruction, stage disease, and guide intervention. When mechanical obstruction is absent, additional imaging can evaluate liver parenchyma for fat and iron deposition and help direct biopsy in cases where underlying parenchymal disease or mass is found. Imaging techniques are reviewed for the following clinical scenarios: (1) the patient with painful jaundice, (2) the patient with painless jaundice, and (3) the patient with a nonmechanical cause for jaundice. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  9. Neutralization of atmospheric acidity by chemical weathering in an alpine drainage basin in the North Cascade mountains

    SciTech Connect

    Drever, J.I.; Hurcomb, D.R.

    1986-03-01

    The most important weathering reaction that neutralizes incoming atmospheric acidity in the South Cascade Lake basin is weathering of calcite, which occurs in trace amounts in veins, on joint surfaces, and as a subglacial surficial deposit. Although the basin is underlain by igneous and high-grade metamorphic rocks, weathering of plagioclase is quantitatively negligible; the principal silicate weathering reaction is alteration of biotite to vermiculite. These conclusions are based on mass-balance calculations involving runoff compositions and on mineralogical observations. For predictive modeling of the effects of increased acid deposition, it is essential to identify the relevant weathering reactions. Feldspar weathering is commonly not an important source of solutes in alpine basins underlain by granitic rocks. 30 references, 2 figures, 1 table.

  10. Factors affecting water quality and net flux of solutes in two stream basins in the Quabbin Reservoir drainage basin, central Massachusetts,1983-85

    USGS Publications Warehouse

    Rittmaster, R.L.; Shanley, J.B.

    1995-01-01

    The factors that affect stream-water quality were studied at West Branch Swift River (Swift River), and East Branch Fever Brook (Fever Brook), two forested watersheds that drain into the Quabbin Reservoir, central Massachusetts, from December 1983 through August 1985. Spatial and temporal variations of chemistry of precipitation, surface water; and ground water and the linkages between chemical changes and hydrologic processes were used to identify the mechanisms that control stream chemistry. Precipitation chemistry was dominated by hydrogen ion (composite p.H 4.23), sulfate, and nitrate. Inputs of hydrogen and nitrate from pre- cipitation were almost entirely retained in the basins, whereas input of sulfate was approximately balanced by export by streamflow draining the basins. Both streams were poorly buffered, with mean pH near 5.7, mean alkalinity less than 30 microequivalents per liter, and sulfate concen- trations greater than 130 microequivalents per liter. Sodium and chloride, derived primarily from highway deicing salts, were the dominant solutes at Fever Brook. After adjustments for deicing salts, fluxes of base cations during the 21-month study were 2,014 and 1,429 equivalents per hectare in Swift River and Fever Brook, respectively. Base cation fluxes were controlled primarily by weathering of hornblende (Fever Brook) and plagioclase (Swift River). The overall weathering rate was greater in the Swift River Basin because easily weathered gabbro underlies one subbasin which comprises 11.2 percent of the total basin area but contributed about 77 percent of the total alkalinity. Alkalinity export was nearly equal in the two basins, however, because some alkalinity was generated in wetlands in the Fever Brook Basin through bacterial sulfate reduction coupled with organic-carbon oxidation.

  11. Hydrologic, sediment, and biological data associated with irrigation drainage in the middle Green River basin, Utah and Colorado, water years 1991-2000

    USGS Publications Warehouse

    Rowland, Ryan C.; Allen, David V.; Stephens, Doyle W.; Yahnke, James W.; Darnall, Nathan L.; Waddell, Bruce

    2002-01-01

    Hydrologic, sediment, and biological data were collected in the middle Green River basin in eastern Utah from 1991 to 2000 in an effort to monitor the effects of irrigation drainage on wetland areas and streams, aid in the development of remediation plans, and evaluate the effectiveness of selenium remediation efforts at Stewart Lake Waterfowl Management Area (WMA). Data consist primarily of selenium concentrations in surface water, ground water, bottom sediment, and biological samples. Supporting hydrologic data include field measurements of temperature, pH, specific conductance, water levels in wells, and discharge at surface-water sites. Selected water samples also were analyzed for major ions, trace elements, nutrients, and gross alpha and beta radiation. The concentration of selected selenium species is reported for several bottom-sediment samples from Stewart Lake WMA and the concentration of total selenium in suspended-sediment samples from the area are included. Well logs for six wells installed at Stewart Lake WMA are presented along with trace-element data for several biological samples collected at selected sites throughout the middle Green River basin.

  12. Hydrogeology and hydrogeochemistry at a site of strategic importance: the Pareja Limno-reservoir drainage basin (Guadalajara, central Spain)

    NASA Astrophysics Data System (ADS)

    Molina-Navarro, Eugenio; Sastre-Merlín, Antonio; Vicente, Rosa; Martínez-Pérez, Silvia

    2014-08-01

    A small calcareous basin in central Spain was studied to establish the role of groundwater in the Pareja Limno-reservoir. Limno-reservoirs aim to preserve a constant water level in the riverine zone of large reservoirs to mitigate the impacts arising from their construction. Groundwater flow contribution (mean 60 %) was derived by recharge estimation. In situ measurements (spring discharge, electrical conductivity and sulfate) were undertaken and spring discharge was compared with a drought index. Twenty-eight springs were monitored and three hydrogeological units (HGUs) were defined: a carbonate plateau (HGU1), the underlying aquitard (HGU2), and the gypsum-enriched HGU3. HGU1 is the main aquifer and may play a role in the preservation of the limno-reservoir water level. Hydrogeochemical sampling was conducted and the code PHREEQC used to describe the main geochemical processes. Weathering and dissolution of calcite and gypsum seem to control the hydrogeochemical processes in the basin. Water progresses from Ca2+-HCO3 - in the upper basin to Ca2+-SO4 2- in the lower basin, where HGU3 outcrops. A clear temporal pattern was observed in the limno-reservoir, with salinity decreasing in winter and increasing in summer. This variation was wider at the river outlet, but the mixing of the river discharge with limno-reservoir water buffered it.

  13. Dissolution rates and vadose zone drainage from strontium isotope measurements of groundwater in the Pasco Basin, WA unconfined aquifer

    SciTech Connect

    Singleton, Michael J.; Maher, Katharine; DePaolo, Donald J.; Conrad, Mark E.; Dresel, P. EVAN

    2006-04-30

    Strontium isotope compositions measured in groundwater samples from 273 wells in the Pasco Basin unconfined aquifer below the Hanford Site show large and systematic variations that provide constraints on groundwater recharge, weathering rates of the aquifer host rocks, communication between unconfined and deeper confined aquifers, and vadose zone-groundwater interaction. This article describes the evaluation of strontium geochemistry of a major aquifer.

  14. 78 FR 2694 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Fukushima; Cancellation of the January 18, 2013, ACRS Subcommittee Meeting The ACRS Subcommittee meeting on...

  15. Fault-sourced alluvial fans and their interaction with axial fluvial drainage: An example from the Plio-Pleistocene Upper Valdarno Basin (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Fidolini, Francesco; Ghinassi, Massimiliano; Aldinucci, Mauro; Billi, Paolo; Boaga, Jacopo; Deiana, Rita; Brivio, Lara

    2013-05-01

    The present study deals with the fault-sourced, alluvial-fan deposits of the Plio-Pleistocene Upper Valdarno Basin (Northern Apennines, Italy). Different phases of alluvial fan aggradation, progradation and backstep are discussed as possible effects of the interaction among fault-generated accommodation space, sediment supply and discharge variations affecting the axial fluvial drainage. The Upper Valdarno Basin, located about 35 km SE of Florence, is filled with 550 m palustrine, lacustrine and alluvial deposits forming four main unconformity-bounded units (i.e. synthems). The study alluvial-fan deposits belong to the two uppermost synthems (Montevarchi and Torrente Ciuffenna synthems) and are Early to Middle Pleistocene in age. These deposits are sourced from the fault-bounded, NE margin of the basin and interfinger with axial fluvial deposits. Alluvial fan deposits of the Montevarchi Synthem consist of three main intervals: i) a lower interval, which lacks any evidence of a depositional trend and testify balance between the subsidence rate (i.e. fault activity) and the amount of sediment provided from the margin; ii) a coarsening-upward middle interval, pointing to a decrease in subsidence rate associated with an augment in sediment supply; iii) a fining-upward, upper interval (locally preserved), documenting a phase of tectonic quiescence associated with a progressive re-equilibration of the tectonically-induced morphological profile. The basin-scale unconformity, which separates the Montevarchi and Torrente Ciuffenna synthems was due to the entrance of the Arno River into the basin as consequence of a piracy. This event caused a dramatic increase in water discharge of the axial fluvial system, and its consequent embanking. Such an erosional surface started to develop in the axial areas, and propagated along the main tributaries, triggering erosion of the alluvial fan deposits. Alluvial-fan deposits of the Torrente Ciuffenna Synthem accumulated above the

  16. Ground-water resources in the Hood Basin, Oregon

    USGS Publications Warehouse

    Grady, Stephen J.

    1983-01-01

    The Hood Basin, an area of 1,035 square miles in north-central Oregon, includes the drainage basins of all tributaries of the Columbia River between Eagle Creek and Fifteenmile Creek. The physical characteristics and climate of the basin are diverse. The Wasco subarea, in the eastern half of the basin, has moderate relief, mostly intermittent streams, and semiarid climate. The Hood subarea, in the western half, has rugged topography, numerous perennial streams, and a humid climate.Water-bearing geologic units that underlie the basin include volcanic, volcaniclastic, and sedimentary rocks of Miocene to Holocene age, and unconsolidated surficial deposits of Pleistocene and Holocene age. The most important water-bearing unit, the Columbia River Basalt Group, underlies almost the entire basin. Total thickness probably exceeds 2,000 feet, but by 1980 only the upper 1,000 feet or less had been developed by wells. Wells in this unit generally yield from 15 to 1,000 gallons per minute and a few yield as much as 3,300 gallons per minute.The most productive aquifer in the Columbia River Basalt Group is The Dalles Ground Water Reservoir, a permeable zone of fractured basalt about 25 to 30 square miles in extent that underlies the city of The Dalles. During the late 1950's and mid-1960's, withdrawals of 15,000 acre-feet per year or more caused water levels in the aquifer to decline sharply. Pumpage had diminished to about 5,000 acre-feet per year in 1979 and water levels have stabilized, indicating that ground water recharge and discharge, including the pumping, are in balance.The other principal geologic units in the basin have more limited areal distribution and less saturated thickness than the Columbia River Basalt Group. Generally, these units are capable of yielding from a few to a hundred gallons per minute to wells.Most of the ground water in the basin is chemically suitable for domestic, irrigation, or other uses. Some ground water has objectionable concentrations of

  17. Drainage-area data for Wisconsin streams

    USGS Publications Warehouse

    Henrich, E.W.; Daniel, D.N.

    1983-01-01

    Drainage areas were delineated on U.S. Geological Survey topographic maps. Drainage areas are shown in tabular form under six headings : station number; stream name, rank, and location; township, range, and section ; county; type of site; and drainage area. Eleven major-river-basin maps show the location and station number of key sites .

  18. San Mateo Creek Basin

    EPA Pesticide Factsheets

    The San Mateo Creek Basin comprises approximately 321 square miles within the Rio San Jose drainage basin in McKinley and Cibola counties, New Mexico. This basin is located within the Grants Mining District (GMD).

  19. Mass movement and storms in the drainage basin of Redwood Creek, Humboldt County, California: a progress report

    USGS Publications Warehouse

    Harden, Deborah Reid; Janda, Richard J.; Nolan, K. Michael

    1978-01-01

    Numerous active landslides are clearly significant contributors to high sediment loads in the Redwood Creek basin. Field and aerial-photograph inspections indicate that large mass-movement features, such as earthflows and massive streamside debris slides, occur primarily in terrain underlain by unmetamorphosed or slightly metamorphosed sedimentary rocks. These features cannot account for stream sediment derived from schist. Observed lithologic heterogeneity of stream sediment therefore suggests that large-scale mass movement is only one part of a complex suite of processes supplying sediment to streams in this basin. Other significant sediment contributors include various forms of fluvial erosion and small-scale discrete mass failures, particularly on oversteepened hillslopes adjacent to perennial streams. Photo-interpretive studies of landslide and timber-harvest history adjacent to Redwood Creek, together with analysis of regional precipitation and runoff records for six flood-producing storms between 1953 and 1975, indicate that loci and times of significant streamside landsliding are influenced by both local storm intensity and streamside logging. Analysis of rainfall records and historic accounts indicates that the individual storms comprising a late-19th-century series of storms in northwestern California were similar in magnitude and spacing to those of the past 25 years. The recent storms apparently initiated more streamside landslides than comparable earlier storms, which occurred prior to extensive road construction and timber harvest. Field observations and repeated surveys of stake arrays at 10 sites in the basin indicate that earthflows are especially active during prolonged periods of moderate rainfall; but that during brief intense storms, fluvial processes are the dominant erosion mechanism. Stake movement occurs mostly during wet winter months. Spring and summer movement was detected at some moist streamside sites. Surveys of stake arrays in two

  20. Solute load concentrations in some streams in the Upper Osun and Owena drainage basins, central western Nigeria

    NASA Astrophysics Data System (ADS)

    Jeje, L. K.; Ogunkoya, O. O.; Oluwatimilehin, J. M.

    1999-12-01

    The solute load dynamics of 12 third-order streams in central western Nigeria are presented, during storm and non-storm runoff events. The relevance of the Walling and Foster model for explaining storm period solute load dynamics in the humid tropical environment was assessed and it was found that this model was generally applicable to the study area. Exceptions appear to be streams draining settlements and/or farms where fertilizers are applied heavily. The solute load ranged from 5 mg l -1 to 580 mg l -1 with streams draining basins with tree-crop plantations ( Theobroma cacao, Cola sp.) as the dominant land cover having the highest solute load.

  1. Irrigation and streamflow depletion in Columbia River basin above The Dalles, Oregon

    USGS Publications Warehouse

    Simons, Wilbur Douglas

    1953-01-01

    The Columbia River is the largest stream in western United States. Above The Dalles, Oregon, it drains an area of 237,000 square miles, of which 39,000 square miles is in Canada. This area is largely mountainous and lies between the Rocky Mountains and the Cascade Range. The Kootenai, Pend Oreille, and Snake Rivers are the principal tributaries. Precipitation varies from 7 inches near Kennewick, Wash. to over 100 inches in some of the mountainous regions. Most of the runoff occurs in the spring and summer months as a result of melting snow. Precipitation is generally light during the summer months, and irrigation is necessary for sustained crop production. Historical data indicate that irrigation in the Columbia River basin began prior to 1840 at the site of missions established near Walla Walla, Wash. and Lewiston, Idaho. During the next half century the increase in irrigated area was slow and by 1890 included only 506,000 acres. The period 1890 to 1910 was marked by phenomenal increase to a total of 2,276,000 acres in 1910. Since that time there has been more gradual addition to a total of 4,004,S00 acres of irrigated land in 1946 in the Columbia River basin above The Dalles, Oreg. Of this total 918,000 acres were located in the Columbia Basin above the mouth of the Snake River; 2,830,000 acres in the Snake River basin, and the balance, 256,000 acres below the mouth of the Snake River. Values of net consumptive use were determined or estimated for various tributary basins of the Columbia River basin and compared to available experimental data. These values were then used to compute the average depletion which could be directly attributed to irrigation. The yield of a drainage basin was considered to be the rum of the ob- served runoff and the estimated depletion. For purposes of comparison, the depletion was expressed both in terms of acre-feet and as a percentage of the yield of the basin. This percentage depletion varied from less than 1 percent for many

  2. Kinetic Modeling of Arsenic Cycling by a Freshwater Cyanobacterium as Influenced by N:P Ratios: A Potential Biologic Control in an Iron-Limited Drainage Basin

    NASA Astrophysics Data System (ADS)

    Markley, C. T.; Herbert, B. E.

    2004-12-01

    Elevated As levels are common in South Texas surface waters, where As is derived from the natural weathering of geogenic sources and a byproduct of historical uranium mining. The impacted surface waters of the Nueces River drainage basin supply Lake Corpus Christi (LCC), a major drinking water reservoir for the Corpus Christi area. The soils and sediments of the Nueces River drainage basin generally have low levels of reactive iron (average concentration of 2780 mg/kg), limiting the control of iron oxyhydroxides on As geochemistry and bioavailability. Given these conditions, biologic cycling of As may have a large influence on As fate and transport in LCC. Sediment cores from LCC show evidence for cyanobacterial blooms after reservoir formation based upon stable isotopes, total organic matter and specific elemental correlations. While algae have been shown to accumulate and reduce inorganic As(V), few studies have reported biologic cycling of As by cyanobacteria. Therefore, As(V) uptake, accumulation, reduction, and excretion in a 1.0 μ M As(V) solution by the freshwater cyanobacterium, Anabaena sp. Strain PCC 7120, was measured over time as a function of low, middle and high N:P ratios (1.2, 12, 120) to determine nutrient effects on As cycling by the cyanobacterium. Total As(V) reduction was observed in all three conditions upon completion of the ten-day experiment. Maximum As(V) reduction rates ranged from (0.013 mmol g C-1 day-1) in the low N:P solution to (0.398 mmol g C-1 day-1) in the high N:P solution. Increased cell biomass in the low N:P ratio solution compensated for the low maximum reduction rate to allow total As(V) reduction. Kinetic equations commonly used to model algal-nutrient interactions were utilized in modeling the current data. The Michaelis-Menten enzyme saturation equation modified with a competitive inhibition term adequately modeled As(III) excretion in the high and middle N:P ratio test conditions. The low N:P test condition further

  3. Potential Effects of a Warming Climate on Water Resources within the Lehman and Baker Creek Drainages, Great Basin National Park, Nevada

    NASA Astrophysics Data System (ADS)

    Volk, John M.

    Warming trends in near-surface air temperature across the Southwestern U.S. have been observed over the last century and are projected to continue over the 21st century. This warming trend will result in decreased snowpack and earlier snowmelt in mountainous basins throughout the West; however, predictions of future precipitation in the Southwest are much more uncertain among global climate models (GCMs). In this study, the objective was to quantitatively evaluate the impacts of projected warming on streamflow in the Lehman and Baker Creek drainages. The drainages are located in Great Basin National Park that encompasses the highest elevations in the southern part of the Snake Range in eastern Nevada. The Precipitation-Runoff Modeling System (PRMS) was used to evaluate impacts of warming on streamflow. Calibration and validation periods had total errors between 0.6 and 12 percent in simulated streamflow. Daily maximum and minimum temperatures for a future 90-year period were used in the model to evaluate how warming temperatures may affect streamflow. Daily temperatures were statistically downscaled and bias corrected using daily projections from the National Center for Atmospheric Research Community Climate System Model 4.0 for four representative greenhouse gas concentration trajectories. A 30-year record of historical precipitation was repeated three times over the 90-year simulation. Results from the 90-year simulation were divided into three 30-year periods (water years 2009--2038, 2039--2068, and 2069--2098) and were compared among the four greenhouse gas concentration trajectories such that volumes and variations in precipitation were identical and changes could be directly related to different projected warming temperatures. The study area was sensitive to small increases in temperature; results include shifts to earlier snowmelt timing for most warming trajectories from May to April with an increase in winter streamflow. For a temperature rise of 5.5°F by

  4. Carbon isotopes and iodine concentrations in a Mississippi River delta core recording land use, sediment transport, and dam building in the river's drainage basin.

    PubMed

    Santschi, Peter H; Oktay, Sarah D; Cifuentes, Luis

    2007-04-01

    Sedimentary material from coastal and nearshore areas in the Mississippi Delta region are comprised of different organic carbon sources with diverse ages that require isotopic and elemental records for resolving the various sources of plant residues. Carbon isotopic ((13)C, (14)C) values were used to differentiate contributions from plants using the C3, C4, and/or CAM (crassulacean acid metabolism) carbon fixation pathways., and iodine concentrations indicated that wetland plant residues are a significant source of organic carbon in a sediment core from the Mississippi River delta region collected at a 60 m water depth. This sediment core had been extensively described in Oktay et al. [Oktay, S.D., Santschi, P.H., Moran, J.E., Sharma, P., 2000. The (129)Iodine Bomb Pulse Recorded in Mississippi River delta Sediments: Results from Isotopes of I, Pu, Cs, Pb, and C. Geochim. Cosmochim. Acta 64 (6), 989-996.] and significantly, includes unique features that had not previously been seen in the marine environment. These special features include a plutonium isotopic close-in fallout record that indicates a purely terrestrial source for these sediment particles and the elements associated with it, and a distinct iodine isotopic peak (as well as peaks for plutonium and cesium isotopes) that indicate little bioturbation in this core. Our carbon isotopic and iodine data can thus be compared to published records of changes in drainage basin land use, river hydrology, and hydrodynamic sorting of suspended particles to elucidate if these changes are reflected in nearshore sediments. This comparison suggests a significant contribution for organic carbon (OC) from C4 plants to these sediments during the 1950's to early 1960's. Relative older carbon isotopes, and episodically high iodine concentrations (up to 34 ppm) were observed during this time period that (1) indicate sediment deposition that is coincident with the times of major hydrological changes induced from dam and levee

  5. Arctic-HYCOS: a Large Sample observing system for estimating freshwater fluxes in the drainage basin of the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Pietroniro, Al; Korhonen, Johanna; Looser, Ulrich; Hardardóttir, Jórunn; Johnsrud, Morten; Vuglinsky, Valery; Gustafsson, David; Lins, Harry F.; Conaway, Jeffrey S.; Lammers, Richard; Stewart, Bruce; Abrate, Tommaso; Pilon, Paul; Sighomnou, Daniel; Arheimer, Berit

    2015-04-01

    The Arctic region is an important regulating component of the global climate system, and is also experiencing a considerable change during recent decades. More than 10% of world's river-runoff flows to the Arctic Ocean and there is evidence of changes in its fresh-water balance. However, about 30% of the Arctic basin is still ungauged, with differing monitoring practices and data availability from the countries in the region. A consistent system for monitoring and sharing of hydrological information throughout the Arctic region is thus of highest interest for further studies and monitoring of the freshwater flux to the Arctic Ocean. The purpose of the Arctic-HYCOS project is to allow for collection and sharing of hydrological data. Preliminary 616 stations were identified with long-term daily discharge data available, and around 250 of these already provide online available data in near real time. This large sample will be used in the following scientific analysis: 1) to evaluate freshwater flux to the Arctic Ocean and Seas, 2) to monitor changes and enhance understanding of the hydrological regime and 3) to estimate flows in ungauged regions and develop models for enhanced hydrological prediction in the Arctic region. The project is intended as a component of the WMO (World Meteorological Organization) WHYCOS (World Hydrological Cycle Observing System) initiative, covering the area of the expansive transnational Arctic basin with participation from Canada, Denmark, Finland, Iceland, Norway, Russian Federation, Sweden and United States of America. The overall objective is to regularly collect, manage and share high quality data from a defined basic network of hydrological stations in the Arctic basin. The project focus on collecting data on discharge and possibly sediment transport and temperature. Data should be provisional in near-real time if available, whereas time-series of historical data should be provided once quality assurance has been completed. The

  6. Cretaceous( )-Paleocene uplift, drainage, and depositional basins along the southwestern margin of the Colorado Plateau, NW Arizona

    SciTech Connect

    Young, R.A. . Dept. of Geological Sciences)

    1993-04-01

    The SW margin of the Colorado Plateau has over 1,200 m of paleorelief partially buried by arkosic sediments with intercalated fossiliferous limestones of middle Eocene or greater age, indicating a Laramide origin for nearly 1.5 km of uplift by late Cretaceous or Paleocene time. The arkosic sediments contain 30-cm clasts currently 100 to 150 km from potential source areas bordering the plateau margin. Clast studies of stratigraphic sequences 150+ m thick and at elevations from 975 to 2,010 m (3,200 to 6,600 ft) demonstrate an initial unroofing of upper Paleozoic rocks from source terranes to the south and west, followed by an increase in the percentages of Precambrian quartzites and older crystalline basement clasts. These basal gravels give way to an influx of exotic volcanic debris (exceeding 50% of total clasts) with measured ages in the 63 to 80 Ma range. The upward change to predominantly exotic volcanic clasts in some sections is interpreted to record Laramide tectonism, erosion, and syntectonic sedimentation along the Plateau margin, accompanying late Cretaceous volcanism. Erosional unroofing of plausible Laramide source terranes beginning after volcanism could not have produced the observed vertical distribution of clasts. Clast lithologies also demonstrate a convergence of several distinct drainages toward the Hurricane fault structural zone, paralleling the northward trends of other Laramide monoclines. Stratigraphic and paleogeographic field relations at three sites suggest some monoclinal deformation accompanied sedimentation and paleocanyon incision. Thus a strong case exists for syntectonic Laramide sedimentation following Cretaceous uplift.

  7. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin.

    PubMed

    Kiedrzyńska, Edyta; Jóźwik, Adam; Kiedrzyński, Marcin; Zalewski, Maciej

    2014-11-15

    The aim of the paper was to evaluate 23 catchment factors that determine total phosphorus and total nitrogen load to the Baltic Sea. Standard correlation analysis and clustering were used. Both phosphorus and nitrogen loads were found to be positively related to the number of pigs and the human population associated with wastewater treatment plants (WWTPs) per km(2), while the number of cattle and agricultural area were found to influence nitrogen rather than phosphorus load, and the area of forests is negatively related to loads of both nutrients. Clustering indicates an overall north-south pattern in the spatial co-occurrence of socio-ecological factors, with some exceptions discussed in the paper. Positive steps in the Baltic Sea region have already been taken, but much remains to be done. The development of coherent response policies to reduce eutrophication in the Baltic Sea should be based on a comprehensive knowledge base, an appropriate information strategy and learning alliance platform in each drainage river catchments.

  8. Land Resources Information for the Lake Erie Drainage Basin. Co-Occurrence of Land Resource Features. Volume II. Major River Basins.

    DTIC Science & Technology

    1979-03-01

    intrinsic erodability (high K factor) and hIgh slopes. Inventories such as these are used to describe watersheds and screen those which may have a high...intrinsic erodability tables inventory the acreage of each basin in each of the K factor soil erodability groups. The K factor is the soil erodabi- lity...is on soils with a slope of 0.5 percent and soil erodability of K = 0.10; 12.1 percent of the land having 0.5 percent slope has K a 0.1; 59.1 percent

  9. Effect of erosion-control structures on sediment and nutrient transport, Edgewood Creek drainage, Lake Tahoe basin, Nevada, 1981-83

    USGS Publications Warehouse

    Garcia, K.T.

    1988-01-01

    Three sites in the Edgewood Creek basin with a combined drainage area of about 1.2 sq mi were selected to assess the effect of erosion-control structures along Nevada State Highway 207, on sediment and nutrient transport. The flow at site one is thought to have been largely unaffected by urban development, and was completely unaffected by erosion control structures. The flow at site two was from a basin affected by urban development and erosion control structures. Site three was downstream from the confluence of streams measured at sites one and two. Most data on streamflow and water quality were collected between June 1981 and May 1983 to assess the hydrologic characteristics of the three sites. As a result of the erosion control structures, mean annual concentrations of total sediment were reduced from about 24,000 to about 410 mg/l at site two and from about 1,900 to about 190 ml/l at site three. Sediment loads were reduced from about 240 to about 10 tons/year at site two and from about 550 to about 110 tons/year at site three. At site one, in contrast, mean concentrations and loads remained low throughout the study period. At site two, sediment particle size changed from predominately coarse prior to construction, to predominately fine thereafter; at site three, it changed from about half coarse sediments to predominately fine. Mean concentration and loads of total iron also were significantly reduced after construction at sites two and three, whereas mean concentrations of nitrogen and phosphorus species did not change appreciably. (Author 's abstract)

  10. Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drainage basin, southeastern Iran.

    PubMed

    Rashki, A; Kaskaoutis, D G; Goudie, A S; Kahn, R A

    2013-10-01

    This study examines the influence of changes in the water coverage in the Hamoun dry-bed lakes on visibility, dust outbreaks, aerosol loading and land-atmospheric fluxes over the region covering the period 1985-2005. The Hamoun basin, located on the southeastern Iran and western Afghanistan borders, has been recognized as one of the major dust source regions in south Asia and is covered by shallow, marshy lakes that are fed by the Helmand and Farahrood rivers. When the water in watersheds that support the lakes is drawn down for natural or human-induced reasons, the end result is a decrease in the water coverage in the basin, or even complete dryness as occurred in 2001. Then, strong seasonal winds, mainly in summer, blow fine sand and silt off the exposed lakebed, enhancing dust activity and aerosol loading over the region. Satellite (Landsat) and meteorological observations reveal that the water levels in the Hamoun lakes exhibit considerable inter-annual variability during the period 1985-2005 strongly related to anomalies in precipitation. This is the trigger for concurrent changes in the frequency of the dusty days, aerosol loading and deterioration of visibility over the region, as satellite (TOMS, MODIS, MISR) observations reveal. On the other hand, soil moisture and latent heat, obtained via model (GLDAS_noah-10) simulations are directly linked with water levels and precipitation over the region. The desiccation of the Hamoun lakes in certain years and the consequent increase in frequency and intensity of dust storms are serious concerns for the regional climate, ecosystems and human health.

  11. Distribution and Diversity of Escherichia coli Populations in the South Nation River Drainage Basin, Eastern Ontario, Canada ▿

    PubMed Central

    Lyautey, Emilie; Lu, Zexun; Lapen, David R.; Wilkes, Graham; Scott, Andrew; Berkers, Tanya; Edge, Thomas A.; Topp, Edward

    2010-01-01

    We investigated the prevalence and diversity of Escherichia coli strains isolated from surface waters from multiple watersheds within the South Nation River basin in eastern Ontario, Canada. The basin is composed of mixed but primarily agricultural land uses. From March 2004 to November 2007, a total of 2,004 surface water samples were collected from 24 sampling sites. E. coli densities ranged from undetectable to 1.64 × 105 CFU 100 ml−1 and were correlated with stream order and proximity to livestock production systems. The diversity of 21,307 E. coli isolates was characterized using repetitive extragenic palindromic PCR (rep-PCR), allowing for the identification of as many as 7,325 distinct genotypes, without capturing all of the diversity. The community was temporally and spatially dominated by a few dominant genotypes (clusters of more than 500 isolates) and several genotypes of intermediary abundance (clustering between 10 and 499 isolates). Simpson diversity indices, assessed on a normalized number of isolates per sample, ranged from 0.050 to 0.668. Simpson indices could be statistically discriminated on the basis of year and stream order, but land use, discharge, weather, and water physical-chemical properties were not statistically important discriminators. The detection of Campylobacter species was associated with statistically lower Simpson indices (greater diversity; P < 0.05). Waterborne E. coli isolates from genotypes of dominant and intermediary abundance were clustered with isolates obtained from fecal samples collected in the study area over the same period, and 90% of the isolates tested proved to share genotypes with fecal isolates. Overall, our data indicated that the densities and distribution of E. coli in these mixed-use watersheds were linked to stream order and livestock-based land uses. Waterborne E. coli populations that were distinct from fecal isolates were detected and, on this basis, were possibly naturalized E. coli strains. PMID

  12. The influence of major dams on hydrology through the drainage network of the Sacramento River basin, California

    USGS Publications Warehouse

    Singer, M.B.

    2007-01-01

    This paper reports basinwide patterns of hydrograph alteration via statistical and graphical analysis from a network of long-term streamflow gauges located various distances downstream of major dams and confluences in the Sacramento River basin in California, USA. Streamflow data from 10 gauging stations downstream of major dams were divided into hydrologic series corresponding to the periods before and after dam construction. Pre- and post-dam flows were compared with respect to hydrograph characteristics representing frequency, magnitude and shape: annual flood peak, annual flow trough, annual flood volume, time to flood peak, flood drawdown time and interarrival time. The use of such a suite of characteristics within a statistical and graphical framework allows for generalising distinct strategies of flood control operation that can be identified without any a priori knowledge of operations rules. Dam operation is highly dependent on the ratio of reservoir capacity to annual flood volume (impounded runoff index). Dams with high values of this index generally completely cut off flood peaks thus reducing time to peak, drawdown time and annual flood volume. Those with low values conduct early and late flow releases to extend the hydrograph, increasing time to peak, drawdown time and annual flood volume. The analyses reveal minimal flood control benefits from foothill dams in the lower Sacramento River (i.e. dissipation of the down-valley flood control signal). The lower part of the basin is instead reliant on a weir and bypass system to control lowland flooding. Data from a control gauge (i.e. with no upstream dams) suggest a background signature of global climate change expressed as shortened flood hydrograph falling limbs and lengthened flood interarrival times at low exceedence probabilities. This research has implications for flood control, water resource management, aquatic and riparian ecosystems and for rehabilitation strategies involving flow alteration and

  13. Utilization Management and ACR Select.

    PubMed

    Cooke, Robert

    2015-01-01

    The ACR, published as ACR Select, provides an industry standard for imaging and through its experience with Appropriateness Criteria, is positioned to respond quickly to changing market demands. It has added hundreds of clinically relevant indications to ensure that even common scenarios have coverage. ACR Select is inclusive of numerous other credible content sources and actively receives vetted criteria from other medical specialty societies. ACR Select is well established in the market and available for integration into multiple physician access points. It also has support for the provisions and requirements of PL113-93. Healthcare providers have adopted ACR Select within their physician access points to deliver higher quality imaging services and understand the impact that imaging has on the overall care cycle. This better positions these providers to participate in risk-based contracts based on the value that appropriate imaging delivers. With the passage of PAMA, Congress has set a powerful precedent that has created the opportunity for every healthcare payer to transform the way imaging utilization is managed. Physicians will be required to consult Appropriateness Criteria delivered through CDS when placing orders for HTDI exams for Medicaid patients, and this can easily extend across the entire payer mix. PAMA has passed into public law (PLI113-93) and represents an opportunity for healthcare providers to develop risk based payment models across all imaging services, regardless of the payer of the claim or care setting.

  14. Susceptibility to Myxobolus cerebralis among Tubifex tubifex populations from ten major drainage basins in Colorado where Cutthroat Trout are endemic.

    PubMed

    Nehring, R Barry; Lukacs, P M; Baxa, D V; Stinson, M E T; Chiaramonte, L; Wise, S K; Poole, B; Horton, A

    2014-03-01

    Establishment of Myxobolus cerebralis (Mc) resulted in declines of wild Rainbow Trout Oncorhynchus mykiss populations in streams across Colorado during the 1990s. However, the risk for establishment and spread of this parasite into high-elevation habitats occupied by native Cutthroat Trout O. clarkii was unknown. Beginning in 2003, tubificid worms were collected from all major drainages where Cutthroat Trout were endemic and were assayed by quantitative PCR to determine the occurrence and distribution of the various lineages of Tubifex tubifex (Tt) oligochaetes. Over a 5-year period, 40 groups of Tt oligochaetes collected from 27 streams, 3 natural lakes, 2 private ponds, and a reservoir were evaluated for their relative susceptibility to Mc. Exposure groups were drawn from populations of pure lineage III Tt, mixed-lineage populations where one or more of the highly resistant (lineage I) or nonsusceptible lineages (V or VI) were the dominant oligochaete and susceptible lineage III worms were the subdominant worm, or pure lineage VI Tt. Experimental replicates of 250 oligochaetes were exposed to 50 Mc myxospores per worm. The parasite amplification ratio (total triactinomyxons [TAMs] produced / total myxospore exposure) was very high among all pure lineage III Colorado exposure groups, averaging 363 compared with 8.24 among the mixed-lineage exposure groups. Lineage III oligochaetes from Mt. Whitney Hatchery in California, which served as the laboratory standard for comparative purposes, had an average parasite amplification ratio of 933 among 10 exposed replicates over a 5-year period. Lineage I oligochaetes were highly resistant to infection and did not produce any TAMs. Lineages V and VI Tt did not become infected and did not produce any TAMs. These results suggest that the risk of establishment of Mc is high for aquatic habitats in Colorado where Cutthroat Trout and lineage III Tt are sympatric.

  15. Estimates of mountain-front streamflow available for potential recharge to the Tularosa Basin, New Mexico

    USGS Publications Warehouse

    Waltemeyer, Scott D.

    2001-01-01

    Streamflow in the Tularosa Basin, New Mexico, infiltrates into alluvial-basin aquifers at or near mountain fronts. Streamflow at or near mountain fronts is a substantial component of potential recharge to these aquifers. Streamflow response from precipitation differs substantially between the streams draining the Sacramento Mountains on the eastern side of the basin and those draining the San Andres Mountains on the western side. Mean annual streamflow at mountain fronts that is available for potential recharge to the Tularosa Basin was estimated using two regional regression methods. The method for estimating mean annual streamflow using basin-climatic characteristics was applied to 46 subbasins in the Tularosa Basin. Drainage areas for the subbasins ranged from 0.87 to 157 square miles, and mean annual precipitation ranged from 11.80 to 24.89 inches. Mean annual streamflow to the basin is estimated to be about 95 cubic feet per second or 68,800 acre-feet using the basin-climatic characteristics method. The method for estimating mean annual streamflow using channel-geometry characteristics was applied to 12 subbasins in the Tularosa Basin. Of the 46 basins, 31 had drainage areas less than 20.7 square miles and 3 had active-channel widths less than 15 feet, which were outside the ranges used to develop the regression equations.

  16. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Mahanoy Creek Basin, Schuylkill, Columbia, and Northumberland Counties, Pennsylvania, 2001

    USGS Publications Warehouse

    Cravotta, Charles A.

    2004-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the Mahanoy Creek Basin in east-central Pennsylvania. The Mahanoy Creek Basin encompasses an area of 157 square miles (407 square kilometers) including approximately 42 square miles (109 square kilometers) underlain by the Western Middle Anthracite Field. As a result of more than 150 years of anthracite mining in the basin, ground water, surface water, and streambed sediments have been adversely affected. Leakage from streams to underground mines and elevated concentrations (above background levels) of acidity, metals, and sulfate in the AMD from flooded underground mines and (or) unreclaimed culm (waste rock) degrade the aquatic ecosystem and impair uses of the main stem of Mahanoy Creek from its headwaters to its mouth on the Susquehanna River. Various tributaries also are affected, including North Mahanoy Creek, Waste House Run, Shenandoah Creek, Zerbe Run, and two unnamed tributaries locally called Big Mine Run and Big Run. The Little Mahanoy Creek and Schwaben Creek are the only major tributaries not affected by mining. To assess the current hydrological and chemical characteristics of the AMD and its effect on receiving streams, and to identify possible remedial alternatives, the U.S. Geological Survey (USGS) began a study in 2001, in cooperation with the Pennsylvania Department of Environmental Protection and the Schuylkill Conservation District. Aquatic ecological surveys were conducted by the USGS at five stream sites during low base-flow conditions in October 2001. Twenty species of fish were identified in Schwaben Creek near Red Cross, which drains an unmined area of 22.7 square miles (58.8 square kilometers) in the lower part of the Mahanoy Creek Basin. In contrast, 14 species of fish were identified in Mahanoy Creek near its mouth at Kneass, below Schwaben Creek. The diversity and abundance of fish

  17. Assessment of patterns of water sharing of the Tigris-Euphrates drainage basin (Iraq, Turkey, Syria) from 1990 to 2010 with GIS and Remote Sensing

    NASA Astrophysics Data System (ADS)

    Hasan, M.

    2012-12-01

    The Tigris-Euphrates drainage basin extends 1800 km from the mountainous area of eastern Turkey across three countries (Turkey, Syria, and Iraq) and empties into the Persian Gulf. The river system is one of the largest in the middle east with an average total volume of river flow of 31,820 MCM for Euphrates and 49,200 MCM for Tigris (Kolars, 1994), and with about 90% of the waters being consumed (agricultural, domestic, industrials, etc) along its course. In this study I used Landsat imagery to quantify the amount of water in the river system in 1990 and 2010 and how it was partitioned between the three countries at these two times in the past. GIS tools were applied to the Landsat imagery to quantify changes in all manmade reservoirs based on total fresh water surface area in the three countries. Results of the study showed a 84% increase in the surface area of water retained by dams and human activity in Turkey, vs. a 70 % increase for Syria, and a 38 % decline for Iraq. The decline in the Iraqi usage was a function of more water being impounded in 52 reservoirs in Turkey and 15 in Syria. Based on these data a more equitable water sharing plan can be adopted by the three countries.

  18. Water Quality in the Halawa, Haiku, and Kaneohe Drainage Basins Before, During, and After H-3 Highway Construction, Oahu, Hawaii, 1983-1999

    USGS Publications Warehouse

    Wong, Michael F.

    2005-01-01

    Selected water-quality data collected before, during, and after construction of the H-3 Highway at 13 water-quality stations were compared to the State of Hawaii Department of Health water-quality standards to determine the effects of highway construction on the water quality of the affected streams. Highway construction had no effect on the high concentrations of total nitrogen and nitrite plus nitrate nitrogen observed except for increased nitrite plus nitrate nitrogen concentrations at one station on Hooleinaiwa Stream. Exceedences of the 10- and 2-percent-of-the-time concentration standards for total phosphorus, total suspended solids, and turbidity, all constituents associated with sediment, occurred more commonly and at more stations during construction than either before or after. These exceedences may be, in part, due to land disturbance caused by highway construction. Highway construction had no effect on the physical water-quality properties of pH, dissolved oxygen, temperature, and specific conductance except at North Halawa and Kuou Streams, where specific-conductance values increased throughout the study period, most likely due to highway construction. No effects on selected trace metals and organic chemical compounds were observed due to highway construction. No effects due to highway construction were observed in the water quality of Waimaluhia Reservoir. Runoff from areas of urban land use in the Kaneohe drainage basin contributed more to the higher loads of selected water-quality constituents than did runoff from areas affected by highway construction.

  19. Rainfall, Streamflow, and Water-Quality Data During Stormwater Monitoring, Halawa Stream Drainage Basin, Oahu, Hawaii, July 1, 2001 to June 30, 2002

    USGS Publications Warehouse

    Presley, Todd K.

    2002-01-01

    The State of Hawaii Department of Transportation Stormwater Monitoring Program was implemented on January 1, 2001. The program includes the collection of rainfall, streamflow, and water-quality data at selected sites in the Halawa Stream drainage basin. Rainfall data were collected at two sites, and streamflow data were collected at 3 sites for the year July 1, 2001 to June 30, 2002. Water-quality data were collected at five sites, which include the three streamflow sites. Six storms were sampled during the year July 1, 2001 to June 30, 2002, for a total of 44 samples. For each storm event, grab samples were collected nearly simultaneously at all five sites, and flow-weighted, time-composite samples were collected at the three sites equipped with automatic samplers. Samples were analyzed for nutrients, trace metals, oil and grease, total petroleum hydrocarbons, fecal coliform, biological oxygen demand, chemical oxygen demand, total suspended solids, and total dissolved solids. Quality assurance samples were also collected to verify analytical procedures and insure proper cleaning of equipment.

  20. Physical, chemical, and biological data for detailed study of irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    MacCoy, D.E.

    1994-01-01

    Physical, chemical, and biological data were collected between 1990 and 1992 as part of a detailed study by the U.S. Department of Interior of the effects of irrigation drainage on aquatic resources in the Klamath Basin of California and Oregon. Most of the sites for data collection were in and around the upper and lower sump of Tule Lake, in the Tule Lake National Wildlife Refuge, and along major drains in Lower Klamath National Wildlife Refuge. The physical and chemical data consist of particle-size determinations and concentrations of carbon, mercury, arsenic, chlorophenoxy acid, and organochlorine, organophosphate, and carbamate pesticides in bottom sediment; and concentrations of organophosphate, carbamate, and pyrethroid pesticides, major and trace inorganic constituents, nitrogen, phosphorus, and organic carbon in water. Continuous dissolved oxygen, pH, specific conduc- tance, and temperature data from selected sites in 1991 and 1992 are presented in graphical form to summarize the diel water-quality conditions. The biological data consists of concentrations of inorganic constituents and organochlorine pesticides in tissue, invertebrate and fish population surveys, fish health surveys, frog call surveys, egg shell thickness of avian eggs, and in situ and static toxicity bioassay data collected in 1991 and 1992 using aquatic bacteria, plants, invertebrates, fish, and bird species as test organisms.

  1. Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.

    2001-01-01

    strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph

  2. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; environmental setting and water-quality issues

    USGS Publications Warehouse

    McMahon, Gerard; Lloyd, Orville B.

    1995-01-01

    The Albemarle-Pamlico drainage study unit is one of 60 units of the U.S. Geological Survey's National Water-Quality Assessment Program, and includes the large river basins which drain into the Albemarle and Pamlico Sounds-the Chowan, Roanoke, Tar-Pamlico, and Neuse River Basins. The study unit includes about 28,000 square miles and has an interrelated set of environmental characteristics which strongly influence water quality. The chemical and physical nature of these characteristics are the dominant controls on baseline water quality in the study area. About 50 percent of the study area is forested, slightly more than 30 percent is agricultural, about 15 percent is wetlands, and less than 5 percent is developed. Three million people live in the study area, and activities related to agriculture and development have caused increased concentrations of constituents such as nutrients, pesticides, and suspended sediment. About two-thirds of the 36 to 52 inches of precipitation in the area reenters the atmosphere by evapotranspiration. About one-third of the remaining precipitation reaches streams by overland runoff; the remainder recharges the water table aquifer, where much of the water eventually discharges to streams as ground water. Thus, ground-water quality has a substantial influence on surface-water quality, particularly during dry weather. In 1990, about 152,900 tons of elemental nitrogen and 10,500 tons of elemental phosphorus either were applied to crops as fertilizer or fixed by biological processes, and in 1987, about 43,500 tons of nitrogen and 12,200 tons of phosphorus were produced as animal wastes. In addition, about 1,300 tons of selected herbicides and 400 tons of selected insecticides were applied to crops in 1990. Some 249 permitted point sources discharged 410 million gallons per day, containing an annual load of 5,800 tons of nitrogen and 1,800 tons of phosphorus, to the study area in 1990. Data from 1970-79 indicate that mean annual suspended

  3. Ecologically based targets for bioavailable (reactive) nitrogen discharge from the drainage basins of the Wet Tropics region, Great Barrier Reef.

    PubMed

    Wooldridge, Scott A; Brodie, Jon E; Kroon, Frederieke J; Turner, Ryan D R

    2015-08-15

    A modelling framework is developed for the Wet Tropics region of the Great Barrier Reef that links a quantitative river discharge parameter (viz. dissolved inorganic nitrogen concentration, DIN) with an eutrophication indicator within the marine environment (viz. chlorophyll-a concentration, chl-a). The model predicts catchment-specific levels of reduction (%) in end-of-river DIN concentrations (as a proxy for total potentially reactive nitrogen, PRN) needed to ensure compliance with chl-a 'trigger' guidelines for the ecologically distinct, but PRN-related issues of crown-of-thorns starfish (COTS) outbreaks, reef biodiversity loss, and thermal bleaching sensitivity. The results indicate that even for river basins dominated by agricultural land uses, quite modest reductions in end-of-river PRN concentrations (∼20-40%) may assist in mitigating the risk of primary COTS outbreaks from the mid-shelf reefs of the Wet Tropics. However, more significant reductions (∼60-80%) are required to halt and reverse declines in reef biodiversity, and loss of thermal bleaching resistance.

  4. Water resources in basin-fill deposits in the Tularosa Basin, New Mexico

    USGS Publications Warehouse

    Orr, B.R.; Myers, R.G.

    1986-01-01

    The Tularosa Basin, a faulted intermontane depression in south-central New Mexico, contains a thick sequence of alluvial and lacustrine deposits of Tertiary and Quaternary age. Most of these sediments are saturated with very saline water. Freshwater supplies (dissolved solids concentration < 1000 mg/L) principally are found in alluvial fans located around the basin margin. On the eastern side of the Tularosa Basin, fresh groundwater supplies are limited to alluvial fan deposits from Grapevine Canyon to about 3 mi south of Alamogordo. Data from surface geophysical surveys indicate that about 1.4 to 2.1 million acre-ft of freshwater may be in storage in this area, not all of which is recoverable. An additional 3.6 to 5.4 million acre-ft of slightly saline water (dissolved solids concentration 1000 to 3000 mg/L) may be in storage in the same area, again not all of which is recoverable. On the western side of the Tularosa Basin, alluvial fans in the vicinity of Rhodes Canyon may contain freshwater. Geophysical data indicate the freshwater zone may be as thick as 1500 ft in places; however, the limited number of wells in this area precludes a precise definition of the volume of freshwater in storage. To the south, freshwater is present in alluvial fans associated with the Ash Canyon drainage system. Geophysical data indicate that perhaps as much as 450,000 acre-ft of freshwater, not all recoverable, may be in storage in this area. Fan deposits between Ash Canyon and Rhodes canyon may contain additional freshwater supplies. Possibly 10.7 million acre-ft of freshwater, not all of which is recoverable, may be in storage on the western side of the Tularosa Basin. Possibly 180 million acre-ft of brine (concentrations of dissolved solids exceeding 35,000 mg/L), not all of which is recoverable, may be in storage in the Tularosa Basin. Information is sparse concerning the capability of saline aquifers in the Tularosa Basin to store and transmit fluid. (Author 's abstract)

  5. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-05-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  6. Multi-decadal increases in dissolved organic carbon and alkalinity flux from the Mackenzie drainage basin to the Arctic Ocean

    USGS Publications Warehouse

    Tank, Suzanne E.; Striegl, Robert G.; McClelland, James W.; Kokelj, Steven V.

    2016-01-01

    Riverine exports of organic and inorganic carbon (OC, IC) to oceans are intricately linked to processes occurring on land. Across high latitudes, thawing permafrost, alteration of hydrologic flow paths, and changes in vegetation may all affect this flux, with subsequent implications for regional and global carbon (C) budgets. Using a unique, multi-decadal dataset of continuous discharge coupled with water chemistry measurements for the Mackenzie River, we show major increases in dissolved OC (DOC) and IC (as alkalinity) fluxes since the early 1970s, for a watershed that covers 1.8 M km2 of northwestern Canada, and provides substantial inputs of freshwater and biogeochemical constituents to the Arctic Ocean. Over a 39-year period of record, DOC flux at the Mackenzie mouth increased by 39.3% (44.5 ± 22.6 Gmol), while alkalinity flux increased by 12.5% (61.5 ± 60.1 Gmol). Isotopic analyses and substantial increases in sulfate flux indicate that increases in alkalinity are driven by accelerating sulfide oxidation, a process that liberates IC from rock and soils in the absence of CO2 consumption. Seasonal and sub-catchment trends suggest that permafrost thaw plays an important role in the observed increases in DOC and alkalinity: sub-catchment increases for all constituents are confined to northern, permafrost-affected regions, while observed increases in autumn to winter are consistent with documented landscape-scale changes that have resulted from changing thaw dynamics. This increase in DOC and sulfide-derived alkalinity represents a substantial intensification of land-to-ocean C mobilization, at a level that is significant within the regional C budget. The change we observe, for example, is similar to current and projected future rates of CO2 consumption by weathering in the Mackenzie basin.

  7. Deployment of Indicator of Reduction in Soils (IRIS) Probes in Arctic Drained Thaw Lake Basins and Drainages: Time Integrated Signals of Soil Saturation and Redox

    NASA Astrophysics Data System (ADS)

    Heikoop, J. M.; Newman, B. D.; Hudak, M.; Gard, M.; Altmann, G.; Throckmorton, H.; Wilson, C. J.

    2013-12-01

    Climate driven warming and degradation of permafrost may lead to changes in the hydrology of low gradient regions like the North Slope of Alaska. Hydrologic changes will affect the saturation and redox state of soils in drained thaw lake basins (DTLBs), interlake areas, and associated drainages. These changes are being investigated at the Barrow Environmental Observatory (BEO) and surroundings as part of the Next Generation Ecosystem Experiment - Arctic project. As a complement to traditional redox and aqueous chemistry measurements, the use of indicator of reduction in soils (IRIS) probes is being assessed as a simple and cost-effective way to monitor redox changes. The probes consist of PVC sheets coated with a ferrihydrite paint. Under reducing conditions iron on these probes will partially dissolve. The amount of dissolution can be quantified by image analysis and related in a semi-quantitative fashion to redox conditions in the soils. IRIS probes have been successfully utilized in numerous temperate settings to demonstrate, for example, the presence of reducing soils for wetlands delineation. Test probes were installed in saturated soils for 48 hours in July, 2013. After 48 hours, minor reductive dissolution of ferrihydrite was observed. No sulfide precipitation was noted. As such, probes were installed in quadruplicate at 14 locations representing primarily outlet drainages from different-aged DTLBs and interlake areas. In each case, the probes were installed to refusal at the frost table within the active layer overlying the permafrost. IRIS probes were deployed adjacent to arrays of rhizon samplers used for soil pore water sampling so that time-integrated IRIS probe results can be compared to chemical results (a snapshot in time) obtained at the beginning and end of the monitoring period (probes will be extracted in September). Image analysis will employ LANL's GENIE technology. Field measurements of ferrous iron in water samples showed significant redox

  8. Assessment of drainage network extractions in a low-relief area of the Cuvelai Basin (Namibia) from multiple sources: LiDAR, topographic maps, and digital aerial orthophotographs

    NASA Astrophysics Data System (ADS)

    Persendt, F. C.; Gomez, C.

    2016-05-01

    Accurate delineation of drainage networks (DNs) is crucial for hydrological or hydraulic modelling, and the comprehension of fluvial processes. This task presents challenging aspects in complex lowland terrains with subtle relief and particularly for data poor-areas like the Cuvelai river basin (CRB), Namibia, where the present study takes place. In the CRB standard methods of drainage network extraction from low resolution gridded digital elevation models (DEMs) are unsuitable, hence airborne Light Detection and Ranging (LiDAR) solutions have been utilized. However, LiDAR also presents challenges to large areal applications, especially with a surface roughness exceeding the capacity of numerous algorithms. Indeed, LiDAR-based DEMs (2 and 50 m resolutions) need to be hydrologically corrected and smoothed to enable the extraction of scale-relevant geomorphologic features such as DNs. In the present contribution, channels from topographic maps (blue lines) were compared to those from hydrologically corrected and uncorrected LiDAR DEMs, heads-up digitized channels from high-resolution digital aerial orthophotographs, field-mapped channels and auxiliary data. The 'maximum gradient deterministic eight (D8)' GIS algorithm was applied to the corrected and uncorrected LiDAR DEMs using two network extraction methods: area threshold support and curvature/drop analysis. Different progressive flow accumulation threshold values (12) were used to delineate channels with these methods. Validation was performed between the field-mapped channels, the modelled channels and those derived from multiple sources. Additionally, spatial and quantitative analyses were performed on geomorphologic parameters and indices. The results have shown that hydrologically corrected LiDAR DEMs offer useful details for identifying low order stream segments in headwaters, while blue lines derived from the national hydrography datasets for watersheds, located in elevated and low-lying areas of the study

  9. Environmental evolution of the Rio Grande drainage basin and Nasca region (Peru) in 2003-2007 using ENVISAT ASAR and ASTER time series

    NASA Astrophysics Data System (ADS)

    Cigna, Francesca; Tapete, Deodato; Lasaponara, Rosa; Masini, Nicola

    2013-04-01

    Recent palaeo-environmental studies and remote sensing investigations demonstrated that the Rio Grande drainage basin in Southern Peru is a still evolving landscape, and impacts due to its changes have implications for the preservation of both the natural and cultural features of the Nasca region, well-known for the evidences of the ancient Paracas and Nasca Civilizations, who flourished from the 4th century BC to the 6th century AD. To image the modifications occurred in the last decade, we exploited the entire 4year-long stack of ENVISAT ASAR C-band archive imagery available over the region, which was provided by the European Space Agency (ESA) via the Cat-1 project 11073. The latter supports the activities of the Italian mission of heritage Conservation and Archaeogeophysics (ITACA), which directly involve researchers from the Institute for Archaeological and Monumental Heritage (IBAM) and the Institute of Methodologies for Environmental Analysis (IMAA), National Research Council (CNR) of Italy. With the aim of reconstructing the temporal evolution of the Rio Grande drainage basin and its effects and implications for the heritage of the region, we processed 8 ASAR Image Mode IS2 scenes acquired in descending mode between 04/02/2003 and 15/11/2005 and 5 images in ascending mode between 24/07/2005 and 11/11/2007, and focused on SAR backscattering information, amplitude change detection methods and extraction of ASAR-derived time series of the backscattering coefficient over target areas of interest. The ASAR 2003-2007 analysis was coupled and integrated with NDVI-based soil moisture and vegetation change assessment performed by using ASTER multi-spectral data acquired during the same time frame of the ASAR stacks, on 30/05/2003, 01/06/2004 and 10/06/2007. The research was performed both at the regional scale over the entire Rio Grande drainage basin, with particular focus on its tributaries Rio Ingenio, Rio Nazca and Rio Taruga, and at the local scale over the

  10. 77 FR 47680 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittees on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittees on Reliability and PRA and Fukushima; Revision to Notice of Meetings The (ACRS) Subcommittee on Fukushima...

  11. 77 FR 24745 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Thermal Hydraulic Phenomena; Notice of Meeting The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold...

  12. 76 FR 18585 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  13. 78 FR 66968 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  14. 76 FR 11524 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactors (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water...

  15. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  16. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  17. 78 FR 56756 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  18. 76 FR 24540 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... From the Federal Register Online via the Government Publishing Office Nuclear Regulatory Commission Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor...

  19. 75 FR 55365 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Joint Subcommittee The ACRS Subcommittees on Thermal Hydraulics Phenomena; Advanced Boiling Water Reactor (ABWR); and Materials,...

  20. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability and Probabilistic Risk Assessment The ACRS Subcommittee on Reliability and PRA will hold a...

  1. 78 FR 34677 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-10

    ... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the Acrs Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... pellet-cladding interaction during anticipated operational occurrences for Pressurized Water...

  2. 77 FR 76089 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  3. 78 FR 3474 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-16

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  4. 78 FR 29159 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels.... Cayetano Santos, Chief, Technical Support Branch, Advisory Committee on Reactor Safeguards. BILLING...

  5. 78 FR 79020 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  6. 75 FR 16874 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  7. 76 FR 61119 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  8. 75 FR 58447 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials...

  9. 78 FR 66967 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommitte on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommitte on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  10. 76 FR 27101 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  11. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  12. 76 FR 55716 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  13. 77 FR 56240 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  14. 78 FR 17944 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  15. 76 FR 36160 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  16. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  17. 76 FR 34779 - Advisory Committee On Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  18. 77 FR 38099 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-26

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  19. 75 FR 4881 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and...

  20. Detailed study of water quality, bottom sediment, and biota associated with irrigation drainage in the Klamath Basin, California and Oregon, 1990-92

    USGS Publications Warehouse

    Dileanis, P.D.; Schwarzbach, S.E.; Bennett, Jewel

    1996-01-01

    The effect of irrigation drainage on the water quality and wildlife of the Klamath Basin in California and Oregon was evaluated during 1990-92 as part of the National Irrigation Water Quality Program of the U.S. Department of the Interior. The study focused on land serviced by the Bureau of Reclamation Klamath Project, which supplies irrigation water to agricultural land in the Klamath Basin and the Lost River Basin. The Tule Lake and Lower Klamath National Wildlife Refuges, managed by the U.S. Fish and Wildlife Service, are in the study area. These refuges provide critical resting and breeding habitat for waterfowl on the Pacific flyway and are dependent on irrigation drainwater from upstream agriculture for most of their water supply. Water-quality characteristics throughout the study area were typical of highly eutrophic systems during the summer months of 1991 and 1992. Dissolved-oxygen concentrations and pH tended to fluctuate each day in response to diurnal patterns of photosynthesis, and frequently exceeded criteria for protection of aquatic organisms. Nitrogen and phosphorus concentrations were generally at or above threshold levels characteristic of eutrophic lakes and streams. At most sites the bulk of dissolved nitrogen was organically bound. Elevated ammonia concentrations were common in the study area, especially down- stream of drain inputs. High pH of water increased the toxicity of ammonia, and concentrations exceeded criteria at sites upstream and downstream of irrigated land. Concentrations of ammonia in samples from small drains on the Tule Lake refuge leaseland were higher than those measured in the larger, integrating drains at primary monitoring sites. The mean ammonia concentration in leaseland drains [1.21 milligrams per liter (mg/L)] was significantly higher than the mean concentration in canals delivering water to the leaseland fields (0.065 mg/L) and higher than concentrations reported to be lethal to Daphnia magna (median lethal

  1. Refinement of regression models to estimate real-time concentrations of contaminants in the Menomonee River drainage basin, southeast Wisconsin, 2008-11

    USGS Publications Warehouse

    Baldwin, Austin K.; Robertson, Dale M.; Saad, David A.; Magruder, Christopher

    2013-01-01

    In 2008, the U.S. Geological Survey and the Milwaukee Metropolitan Sewerage District initiated a study to develop regression models to estimate real-time concentrations and loads of chloride, suspended solids, phosphorus, and bacteria in streams near Milwaukee, Wisconsin. To collect monitoring data for calibration of models, water-quality sensors and automated samplers were installed at six sites in the Menomonee River drainage basin. The sensors continuously measured four potential explanatory variables: water temperature, specific conductance, dissolved oxygen, and turbidity. Discrete water-quality samples were collected and analyzed for five response variables: chloride, total suspended solids, total phosphorus, Escherichia coli bacteria, and fecal coliform bacteria. Using the first year of data, regression models were developed to continuously estimate the response variables on the basis of the continuously measured explanatory variables. Those models were published in a previous report. In this report, those models are refined using 2 years of additional data, and the relative improvement in model predictability is discussed. In addition, a set of regression models is presented for a new site in the Menomonee River Basin, Underwood Creek at Wauwatosa. The refined models use the same explanatory variables as the original models. The chloride models all used specific conductance as the explanatory variable, except for the model for the Little Menomonee River near Freistadt, which used both specific conductance and turbidity. Total suspended solids and total phosphorus models used turbidity as the only explanatory variable, and bacteria models used water temperature and turbidity as explanatory variables. An analysis of covariance (ANCOVA), used to compare the coefficients in the original models to those in the refined models calibrated using all of the data, showed that only 3 of the 25 original models changed significantly. Root-mean-squared errors (RMSEs

  2. Major and trace-element analyses of acid mine waters in the Leviathan Mine drainage basin, California/Nevada; October, 1981 to October, 1982

    USGS Publications Warehouse

    Ball, J.W.; Nordstrom, D.K.

    1985-01-01

    Water issuing from the inactive Leviathan open-pit sulfur mine has caused serious degradation of the water quality in the Leviathan/Bryant Creek drainage basin which drains into the East Fork of the Carson River. As part of a pollution abatement project of the California Regional Water Quality Control Board, the U.S. Geological Survey collected hydrologic and water quality data for the basin during 1981-82. During this period a comprehensive sampling survey was completed to provide information on trace metal attenuation during downstream transport and to provide data for interpreting geochemical processes. This report presents the analytical results from this sampling survey. Sixty-seven water samples were filtered and preserved on-site at 45 locations and at 3 different times. Temperature, discharge, pH, and Eh and specific conductance were measured on-site. Concentrations of 37 major and trace constituents were determined later in the laboratory on preserved samples. The quality of the analyses was checked by using two or more techniques to determine the concentrations including d.c.-argon plasma emission spectrometry (DCP), flame and flameless atomic absorption spectrophotometry, UV-visible spectrophotometry, hydride-generation atomic absorption spectrophotometry and ion chromatography. Additional quality control was obtained by comparing measured to calculated conductance, comparing measured to calculated Eh (from Fe-2 +/Fe-3+ determinations), charge balance calculations and mass balance calculations for conservative constituents at confluence points. Leviathan acid mine waters contain mg/L concentrations of As, Cr, Co, Cu, Mn, Ni, T1, V and Zn, and hundreds to thousands of mg/L concentrations of Al, Fe, and sulfate at pH values as low as 1.8. Other elements including Ba, B, Be, Bi, Cd , Mo, Sb, Se and Te are elevated above normal background concentrations and fall in the microgram/L range. The chemical and 34 S/32 S isotopic analyses demonstrate that these

  3. Hydrologic conditions in the Jacobs Creek, Stony Brook, and Beden Brook drainage basins, west-central New Jersey, 1986-88

    USGS Publications Warehouse

    Jacobsen, Eric; Hardy, M.A.; Kurtz, B.A.

    1993-01-01

    Data on the quantity and quality of groundwater and surface water in the drainage basins of Jacobs Creek, Stony Brook, and Beden Brook upstream from U.S. Route 206 in west-central New Jersey were collected from October 1, 1986, through September 30, 1988. Water levels measured in 74 wells ranged from 49 to 453 ft above sea level. The water-table surface generally mimicked topography; however, the water-level altitude in one well indicates the possibility of local interbasin groundwater flow. Calcium and bicarbonate were the most abundant cation and anion in most of the 25 groundwater samples. With one exception, concentrations of nutrients, trace elements, organic carbon, and volatile organic compounds in groundwater samples were less than U.S. Environmental Protection Agency primary drinking-water regulations. Stream low-flow measurements made twice at each of 63 sites indicate that both discharge and runoff increased downstream for most reaches of Jacobs Creek, Stony Brook, and Beden Brook. For main-stem sites, the highest base-flow runoff occurred at site 01462733 on Jacobs Creek; the greatest discharge was measured at site 01401100 on Stony Brook. The flow-duration curve for Stony Brook for 1987-88 indicates a wetter- than-normal period for the area. Results of surface-water-quality analyses indicate that calcium and sodium plus potassium were the dominant or codominant cations, and bicarbonate and chloride were the dominant or codominant anions in most samples. Concentrations of nutrients typically exceeded those needed to support surplus algal growth. Concentrations of trace elements generally were less than U.S. Environmental Protection Agency primary drinking-water regulations. Bottom-sediment samples contained several persistent organic compounds. Significant downstream variations were found in concentrations of copper and lead in Jacobs Creek and Stony Brook. Results of macroinvertebrate community sampling indicate an input of nutrients to several stream

  4. Streamflow and Suspended-Sediment Loads Before and During Highway Construction, North Halawa, Haiku, and Kamooalii Drainage Basins, Oahu, Hawaii, 1983-91

    USGS Publications Warehouse

    Hill, Barry R.

    1996-01-01

    Concern over potential effects from construction of the H-3 highway on Oahu, Hawaii, prompted a long-term study of streamflow and suspended-sediment transport at a network of five stream-gaging stations along the highway route. This report presents results for 1983-91, which included pre-construction and construction periods at all stream-gaging stations. Annual rainfall, streamflow, and suspended-sediment loads were generally higher during construction than before construction. Data collected before and during construction were compared using analysis of covariance to determine whether streamflow and suspended-sediment loads changed significantly during construction after accounting for effects of increased rainfall. Streamflow at stream-gaging stations was compared with streamflow at an index stream-gaging station unaffected by construction. Streamflow data were divided into low- and high-flow classes, and the two flow classes were analyzed separately. Low flows increased 117 percent during construction at one station. This increase probably was related to the removal of vegetation for highway construction. Low flows decreased 28 percent at another station, probably as a result of increased ground-water withdrawals and highway construction activities. No significant changes in low flows were detected at the other stations, and no significant changes in high flows were detected at any stations. Suspended-sediment loads increased significantly during construction at three stations. Highway construction contributed between 56 and 76 percent of the suspended-sediment loads measured at these stations during construction. Loads did not change significantly at a station downstream of a reservoir, and loads decreased at a station downstream of a drainage basin that was heavily used for agriculture before construction. Suspended-sediment concentrations were used to assess compliance with applicable State water-quality standards. State water-quality standards for suspended

  5. Impact of Drainage Basin Geology and Geomorphology on Detrital Thermochronometric Data from Modern River Sands: A Case Study in the Bhutan Himalaya

    NASA Astrophysics Data System (ADS)

    Coutand, I.; Whipp, D. M., Jr.; Bookhagen, B.; Grujic, D.

    2015-12-01

    Detrital thermochronology has become an important tool to quantify the erosional history of mountainous regions. Despite an increasing number of studies utilizing detrital records, it remains unclear how the record of spatially variable erosion of upstream drainage basins is preserved in the thermochronologic signal contained in the sediments. This important spatiotemporal problem is a first-order unknown that limits the interpretation of the geological significance of the detrital signal. To improve our understanding of detrital records in terms of spatiotemporal erosion rates, we use a three-step approach to study modern fluvial sediments from the Bhutan Himalaya. First, based on a preferred tectonomorphic scenario extracted by inversion of in situ multi-thermochronological ages, we predict apatite fission-track (AFT) age distributions in 18 catchments using the Pecube software. Second, we compare AFT age distributions from modern sand bars collected at each catchment outlet to distributions extracted from Monte Carlo sampling of the predicted catchment ages. We find that observed and predicted age distributions are statistically equivalent for only ~75% of the catchments. Third, we calculate predicted detrital age distributions by scaling the prevalence of ages in the catchment in proportion to topographic and climatic metrics (e.g., local relief, steepness index, specific stream power weighted by precipitation rate) or landslide-driven erosion to quantify their effects and relationships to the observed detrital AFT age distributions. Preliminary results suggest erosion in proportion to the topographic metrics cannot reproduce the observed age distributions, but bedrock landsliding may provide sufficient age variability to reproduce the observations. Ongoing work is determining whether variable target mineral concentrations in bedrock geological units or non-uniform sediment sourcing from moraine- or glacier-covered regions can reproduce the observed ages.

  6. Water-quality characteristics of streams in the Piceance Creek and Yellow Creek drainage basins, northwestern Colorado, water years 1977-81

    USGS Publications Warehouse

    Tobin, R.L.; Stranathan, H.E.; Covay, K.J.

    1985-01-01

    Physical and chemical data for streams in the Piceance Creek and Yellow Creek drainage basins, Colorado collected during the 1977-81 water years are summarized. Stream temperatures ranged from -0.5 to 35.0 degrees Celsius and were warmest near the downstream reaches of Piceance and Yellow Creeks. Minimum concentrations of dissolved oxygen were greater than 3.0 milligrams per liter in Piceance and Yellow Creeks, and concentrations of dissolved oxygen exceeded saturation during periods of active photosynthesis. Values of pH in streams ranged from 6.9 to 9.0 and were least during snowmelt runoff and greatest in low flows in the lower reaches of Piceance and Yellow Creeks. Concentrations of suspended sediment exceeded 100 ,000 milligrams per liter in localized runoff. Specific conductance varied inversely with discharge. Sodium, magnesium, bicarbonate, and sulfate ions and concentration ranges of dissolved solids between 400 and 1,700 milligrams per liter were characteristic of the water quality of the perennial streams. Calcium and bicarbonate dominated the major ions, and concentrations of dissolved solids normally were less than 600 milligrams per liter in the intermittent streams during storm and snowmelt runoff. Augmentation to Piceance and Yellow Creeks from ground-water sources in the lower reaches of both streams increased concentrations of dissolved solids several thousand milligrams per liter during medium and low flows and caused a change in water-quality type from sodium magnesium bicarbonate to a high-percentage sodium bicarbonate. Increases in dissolved concentrations of arsenic, boron, fluoride, lithium, strontium, and sulfate were related to ground-water sources or discharges from areas of energy resource development. (USGS)

  7. GIS and MCDM analysis to evaluate and zoning of soil erosion in Junaghan drainage sub-basin in Karun , SW-Iran

    NASA Astrophysics Data System (ADS)

    Rezaei, Khalil; Yavari, Shahla; Khodabakhsh, Saeid; Mohseni, Hasan; Bozorgzadeh, Eisa

    2010-05-01

    Problems involving the processing of spatial data such as soil erosion are multi-facetted challenges. Recently, absolute determination of sediment production with using quality and quantity data of drainage basins is one of the most important factors in soil protection management. In this research, we use MPSIAC method for calculating of annually sediment production and then we compare results with other methods. Results showed 21.93% difference with field observations. As there are many agents affecting on erosion and they depend on geographical location, soil, topography, climate, land use, geology and hydrology of selected area, solutions for these problems involve highly complex spatial data analysis processes and frequently require advanced means to address physical suitability conditions, while considering the multiple ecological and geological variables. Geographic Information Systems (GIS) and Multi-Criteria Decision-Making techniques (MCDM) are two common tools employed to solve these problems. However, each suffers from serious shortcomings. GIS, which deals mainly with physical suitability analysis, has very limited capability of incorporating the decision maker's preferences into the problem solving process. MCDM, which deals mainly with analyzing decision problems and evaluating the alternatives based on a decision maker's values and preferences, lacks the capability of handling spatial data (e. g., buffering and overlay) that are crucial to spatial analysis. The need for combining the strengths of these two techniques has prompted researchers to seek integration of GIS and MCDM. Also, in this research, MCDM methods have been integrated with a GIS to provide a map for soil erosion based upon a variety of different choice criteria (agent) and on the importance (weight) a decision maker might attach to these. This integration could benefit environmental, soil and water planners and decision makers. Key words: soil erosion, MPSIAC, GIS, MCDM.

  8. Reconnaissance investigation of water quality, bottom sediment, and biota associated with irrigation drainage in the middle Green River basin, Utah, 1986-87

    USGS Publications Warehouse

    Stephens, D.W.; Waddell, Bruce; Miller, J.B.

    1988-01-01

    Reconnaissance of wildlife areas in the middle Green River basin of Utah was conducted during 1986 and 1987 to determine whether irrigation drainage has caused, or has the potential to cause significant harmful effects on human health, fish, and wildlife, or may adversely affect the suitability of water for beneficial uses. Studies at Stewart Lake Waterfowl Management Area and Ouray National Wildlife Refuge indicated that concentrations of boron, selenium, and zinc in water, bottom sediment, and biological tissue were sufficiently large to be harmful to fish and wildlife, and to adversely affect beneficial uses of water. Selenium is the principal element of concern in both areas. Concentrations of dissolved selenium in irrigation drain water entering Stewart Lake Waterfowl Management Area ranged from 14-140 micrograms/L (ug/L) and consistently exceeded Utah standards for wildlife protection in water in two of the four drains. Concentrations of boron and zinc exceeded Utah standards only occasionally in the drain waters. Concentrations of total selenium in sediments collected where the drains discharge into the lake were 10-85 ug/gm. Liver tissue collected from American coots at Stewart Lake Waterfowl Management Area contained concentrations of selenium from 4.9-26 ug/gm (dry weight), and whole body samples of carp contained as much as 31 ug/gm (dry weight). Concentrations of selenium in Potamogeton and blue-green algae ranged from 2.1-27 ug/gm. Concentrations of boron, selenium, and zinc were also measured in water from Ouray National Wildlife Refuge. Liver tissue of American coots from the North Roadside Pond, which receives irrigation tailwater, contained a geometric-mean concentration of selenium of 32 ug/gm (dry weight). Five water-bird eggs collected from the North and South Roadside Ponds contained selenium concentrations of 63-120 ug/gm (dry weight). (Lantz-PTT)

  9. Effects of urbanization on streamflow and sediment transport in the Rock Creek and Anacostia River basins, Montgomery County, Maryland, 1962-74

    USGS Publications Warehouse

    Yorke, Thomas H.; Herb, William J.

    1978-01-01

    Land use, precipitation, streamflow, and sediment discharge data were collected from nine small drainage basins in Montgomery County, Maryland, to evaluate runoff and sediment response to sediment-control practices in areas undergoing urban development. Drainage basins ranged in size from 0.35 to 21.1 sq mi and land use ranged from rural to 60 percent urban. Urbanization did not affect low and medium flows, but it did result in increased storm runoff and peak flows. Suspended sediment transported from one of the basins that underwent urban development, the 21.1 sq mi Anacostia River basin, averaged 15 ,400 tons/yr between 1962 and 1974. Bedload was estimated as 5 to 11 percent of the total load. Cropland, urban land, and construction sites were the major sources of sediment. Average annual sediment yields ranged from 065 to 4.3 tons/acre for cropland, 3.7 tons/acre for urban land, and 7 to 100 tons/acre for urban construction sites. The magnitude of the yields from construction sites was significantly affected by (1) the slope of the sites, (2) the proximity of stream channels, (3) buffer zones of natural vegetation, and (4) sediment-control measures. Sediment controls, particularly those enforced under a 1971 sediment-control ordinance, apparently decreased construction-site sediment yields by 60 to 80 percent. (Woodard-USGS)

  10. Climate, Landscape, and Management Effects on Nitrate and Soluble Phosphorus concentrations in subsurface drainage discharge in the western Lake Erie basin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drainage, while an important and necessary agricultural production practice in the Midwest, contributes nitrate (NO3) and soluble phosphorus (P) to surface waters. The magnitude of NO3 and soluble P losses in subsurface drainage varies greatly by landscape, climate, and field management f...

  11. Drainage area data for Alabama streams

    USGS Publications Warehouse

    Stallings, J.S.; Peirce, L.B.

    1957-01-01

    The drainage area of a river basin is an important parameter in many engineering equations used for hydrologic design. It is not a parameter, however, that always requires precise measurement. Factors in the hydrologic cycle such as rainfall, runoff, transpiration, and infiltration cannot be measured nearly as closely as drainage area. Largely for this reason, drainage areas are often measured to varying degrees of precision depending upon the immediate need, with little thought to some other use or some other user of the figure obtained. It can readily be appreciated that this practice, continued for long by many different agencies, will result in a heterogeneous collection of drainage area figures, often discordant and of an accuracy unknown to any but those who computed them. Figures of drainage area published by various Federal agencies are frequently discrepant or contradictory, giving rise to confusion in the use of drainage area data. Seeking to better this situation, the Federal Inter-Agency River Basin Committee (FIARBC) in November 1951 published its Bulletin No. 4, Inter-Agency Coordination of Drainage Area Data. That Bulletin recommended procedures to be followed by the interested Federal agencies “for coordinating drainage area data in the interest of promoting uniformity, reducing confusion and contradiction of published figures, and improving the ready availability of drainage area data pertaining to drainage basins of the United States and its possessions.”

  12. Foam drainage

    SciTech Connect

    Kraynik, A.M.

    1983-11-01

    Transient drainage from a column of persistent foam has been analyzed theoretically. Gravity-driven flow was assumed to occur through an interconnected network of Plateau borders that define the edges of foam cells taken to be regular pentagonal dodecahedrons. A small liquid volume fraction and monodisperse cell size distribution were assumed. In the basic model, it is assumed that all liquid is contained in Plateau borders that are bounded by rigid gas-liquid interfaces. The predicted half life, the time required for one half of the liquid to drain from the foam, is inversely proportional to the square of the cell diameter, illustrating the importance of foam structure in drainage. Liquid hold up in the films separating adjacent cells, nonuniform initial liquid volume fraction distribution and interfacial mobility are explored. Border suction due to reduced pressure in the Plateau borders provides a mechanism for film drainage. Simultaneous film drainage and flow through the Plateau borders are analyzed. Sufficient conditions for neglecting film drainage kinetics are obtained. The results indicate that improved foam stability is related to small cells, liquid hold up in the films and slow film drainage kinetics.

  13. First description of Leishmania (Viannia) infection in Evandromyia saulensis, Pressatia sp. and Trichophoromyia auraensis (Psychodidae: Phlebotominae) in a transmission area of cutaneous leishmaniasis in Acre state, Amazon Basin, Brazil

    PubMed Central

    de Araujo-Pereira, Thais; de Pita-Pereira, Daniela; Boité, Mariana Côrtes; Melo, Myllena; da Costa-Rego, Taiana Amancio; Fuzari, Andressa Alencastre; Brazil, Reginaldo Peçanha; Britto, Constança

    2017-01-01

    Studies on the sandfly fauna to evaluate natural infection indexes are still limited in the Brazilian Amazon, a region with an increasing incidence of cutaneous leishmaniasis. Here, by using a multiplex polymerase chain reaction directed to Leishmania kDNA and hybridisation, we were able to identify L. (Viannia) subgenus in 12 out of 173 sandflies captured in the municipality of Rio Branco, Acre state, revealing a positivity of 6.94%. By sequencing the Leishmania 234 bp-hsp70 amplified products from positive samples, infection by L. (V.) braziliensis was confirmed in five sandflies: one Evandromyia saulensis, three Trichophoromyia auraensis and one Pressatia sp. The finding of L. (Viannia) DNA in two Ev. saulensis corresponds to the first record of possible infection associated with this sandfly. Moreover, our study reveals for the first time in Brazil, Th. auraensis and Pressatia sp. infected by L. (Viannia) parasites. PMID:28076470

  14. First description of Leishmania (Viannia) infection in Evandromyia saulensis, Pressatia sp. and Trichophoromyia auraensis (Psychodidae: Phlebotominae) in a transmission area of cutaneous leishmaniasis in Acre state, Amazon Basin, Brazil.

    PubMed

    Araujo-Pereira, Thais de; Pita-Pereira, Daniela de; Boité, Mariana Côrtes; Melo, Myllena; Costa-Rego, Taiana Amancio da; Fuzari, Andressa Alencastre; Brazil, Reginaldo Peçanha; Britto, Constança

    2017-01-01

    Studies on the sandfly fauna to evaluate natural infection indexes are still limited in the Brazilian Amazon, a region with an increasing incidence of cutaneous leishmaniasis. Here, by using a multiplex polymerase chain reaction directed to Leishmania kDNA and hybridisation, we were able to identify L. (Viannia) subgenus in 12 out of 173 sandflies captured in the municipality of Rio Branco, Acre state, revealing a positivity of 6.94%. By sequencing the Leishmania 234 bp-hsp70 amplified products from positive samples, infection by L. (V.) braziliensis was confirmed in five sandflies: one Evandromyia saulensis, three Trichophoromyia auraensis and one Pressatia sp. The finding of L. (Viannia) DNA in two Ev. saulensis corresponds to the first record of possible infection associated with this sandfly. Moreover, our study reveals for the first time in Brazil, Th. auraensis and Pressatia sp. infected by L. (Viannia) parasites.

  15. Effects of Abandoned Coal-Mine Drainage on Streamflow and Water Quality in the Shamokin Creek Basin, Northumberland and Columbia Counties, Pennsylvania, 1999-2001

    USGS Publications Warehouse

    Cravotta, Charles A.; Kirby, Carl S.

    2003-01-01

    This report assesses the contaminant loading, effects to receiving streams, and possible remedial alternatives for abandoned mine drainage (AMD) within the upper Shamokin Creek Basin in east-central Pennsylvania. The upper Shamokin Creek Basin encompasses an area of 54 square miles (140 square kilometers) within the Western Middle Anthracite Field, including and upstream of the city of Shamokin. Elevated concentrations of acidity, metals, and sulfate in the AMD from flooded underground anthracite coal mines and (or) unreclaimed culm (waste rock) piles degrade the aquatic ecosystem and water quality of Shamokin Creek to its mouth and along many of its tributaries within the upper basin. Despite dilution by unpolluted streams that more than doubles the streamflow of Shamokin Creek in the lower basin, AMD contamination and ecological impairment persist to its mouth on the Susquehanna River at Sunbury, 20 miles (32 kilometers) downstream from the mined area. Aquatic ecological surveys were conducted by the U.S. Geological Survey (USGS) in cooperation with Bucknell University (BU) and the Northumberland County Conservation District (NCCD) at six stream sites in October 1999 and repeated in 2000 and 2001 on Shamokin Creek below Shamokin and at Sunbury. In 1999, fish were absent from Quaker Run and Shamokin Creek upstream of its confluence with Carbon Run; however, creek chub (Semotilus atromaculatus) were present within three sampled reaches of Carbon Run. During 1999, 2000, and 2001, six or more species of fish were identified in Shamokin Creek below Shamokin and at Sunbury despite elevated concentrations of dissolved iron and ironencrusted streambeds at these sites. Data on the flow rate and chemistry for 46 AMD sources and 22 stream sites throughout the upper basin plus 1 stream site at Sunbury were collected by the USGS with assistance from BU and the Shamokin Creek Restoration Alliance (SCRA) during low base-flow conditions in August 1999 and high baseflow

  16. Water-quality characteristics, including sodium-adsorption ratios, for four sites in the Powder River drainage basin, Wyoming and Montana, water years 2001-2004

    USGS Publications Warehouse

    Clark, Melanie L.; Mason, Jon P.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Wyoming Department of Environmental Quality, monitors streams throughout the Powder River structural basin in Wyoming and parts of Montana for potential effects of coalbed natural gas development. Specific conductance and sodium-adsorption ratios may be larger in coalbed waters than in stream waters that may receive the discharge waters. Therefore, continuous water-quality instruments for specific conductance were installed and discrete water-quality samples were collected to characterize water quality during water years 2001-2004 at four sites in the Powder River drainage basin: Powder River at Sussex, Wyoming; Crazy Woman Creek near Arvada, Wyoming; Clear Creek near Arvada, Wyoming; and Powder River at Moorhead, Montana. During water years 2001-2004, the median specific conductance of 2,270 microsiemens per centimeter at 25 degrees Celsius (?S/cm) in discrete samples from the Powder River at Sussex, Wyoming, was larger than the median specific conductance of 1,930 ?S/cm in discrete samples collected downstream from the Powder River at Moorhead, Montana. The median specific conductance was smallest in discrete samples from Clear Creek (1,180 ?S/cm), which has a dilution effect on the specific conductance for the Powder River at Moorhead, Montana. The daily mean specific conductance from continuous water-quality instruments during the irrigation season showed the same spatial pattern as specific conductance values for the discrete samples. Dissolved sodium, sodium-adsorption ratios, and dissolved solids generally showed the same spatial pattern as specific conductance. The largest median sodium concentration (274 milligrams per liter) and the largest range of sodium-adsorption ratios (3.7 to 21) were measured in discrete samples from the Powder River at Sussex, Wyoming. Median concentrations of sodium and sodium-adsorption ratios were substantially smaller in Crazy Woman Creek and Clear Creek, which tend to

  17. Water-quality characteristics and trend analyses for the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins, Wyoming and Montana, for selected periods, water years 1991 through 2010

    USGS Publications Warehouse

    Clark, Melanie L.

    2012-01-01

    The Powder River structural basin in northeastern Wyoming and southeastern Montana is an area of ongoing coalbed natural gas (CBNG) development. Waters produced during CBNG development are managed with a variety of techniques, including surface impoundments and discharges into stream drainages. The interaction of CBNG-produced waters with the atmosphere and the semiarid soils of the Powder River structural basin can affect water chemistry in several ways. Specific conductance and sodium adsorption ratios (SAR) of CBNG-produced waters that are discharged to streams have been of particular concern because they have the potential to affect the use of the water for irrigation. Water-quality monitoring has been conducted since 2001 at main-stem and tributary sites in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins in response to concerns about CBNG effects. A study was conducted to summarize characteristics of stream-water quality for water years 2001–10 (October 1, 2000, to September 30, 2010) and examine trends in specific conductance, SAR, and primary constituents that contribute to specific conductance and SAR for changes through time (water years 1991–2010) that may have occurred as a result of CBNG development. Specific conductance and SAR are the focus characteristics of this report. Dissolved calcium, magnesium, and sodium, which are primary contributors to specific conductance and SAR, as well as dissolved alkalinity, chloride, and sulfate, which are other primary contributors to specific conductance, also are described. Stream-water quality in the Tongue, Powder, Cheyenne, and Belle Fourche River drainage basins was variable during water years 2001–10, in part because of variations in streamflow. In general, annual runoff was less than average during water years 2001–06 and near or above average during water years 2007–10. Stream water of the Tongue River had the smallest specific conductance values, sodium adsorption ratios

  18. BASINS

    EPA Pesticide Factsheets

    Better Assessment Science Integrating Point and Nonpoint Sources (BASINS) is a multipurpose environmental analysis system designed to help regional, state, and local agencies perform watershed- and water quality-based studies.

  19. Water-quality assessment of the Albemarle-Pamlico drainage basin, North Carolina and Virginia; trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers, 1992-93

    USGS Publications Warehouse

    Ruhl, P.M.; Smith, K.E.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, trace elements in Asiatic clam (Corbicula fluminea) soft tissues and redbreast sunfish (Lepomis auritus) livers were analyzed to obtain information about the occurrence and distribution of trace element contaminants in the Albemarle-Pamlico Drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. All but 3 of the 22 trace elements that were analyzed were detected. Although all 10 of the U.S. Environmental Protection Agency (U.S. EPA) priority pollutants were detected in the tissues sampled, they were present in relatively low concentrations. Concentrations of U.S. EPA priority pollutants in Asiatic clams collected in the Albemarle-Pamlico Drainage Basin are similar to concentrations observed in other NAWQA study units in the southeastern United States. Mercury (a U.S. EPA priority pollutant) was widely detected, being present in 29 of 30 tissue samples, but concentrations did not exceed the FDA action level for mercury of a risk-based screening value for the general public. Mercury concentrations in Asiatic clams were similar to concentrations in other NAWQA study areas in the Southeast.

  20. Natural factors and mining activity bearings on the water quality of the Choapa basin, North Central Chile: insights on the role of mafic volcanic rocks in the buffering of the acid drainage process.

    PubMed

    Parra, Amparo; Oyarzún, Jorge; Maturana, Hugo; Kretschmer, Nicole; Meza, Francisco; Oyarzún, Ricardo

    2011-10-01

    This contribution analyzes water chemical data for the Choapa basin, North Central Chile, for the period 1980-2004. The parameters considered are As, Cu Fe, pH, EC, SO₄⁻², Cl⁻¹, and HCO[Formula: see text], from samples taken in nine monitoring stations throughout the basin. Results show rather moderate contents of As, Cu, and Fe, with the exception of the Cuncumén River and the Aucó creek, explained by the influence of the huge porphyry copper deposit of Los Pelambres and by the presence of mining operations, respectively. When compared against results obtained in previous researches at the neighboring Elqui river basin, which host the El Indio Au-Cu-As district, a much reduced grade of pollution is recognized for the Choapa basin. Considering the effect of acid rock drainage (ARD)-related Cu contents on the fine fraction of the sediments of both river basins, the differences recorded are even more striking. Although the Los Pelambres porphyry copper deposit, on the headwaters of the Choapa river basin, is between one and two orders of magnitude bigger than El Indio, stream water and sediments of the former exhibit significantly lower copper contents than those of the latter. A main factor which may explain these results is the smaller degree of H( + )-metasomatism on the host rocks of the Los Pelambres deposit, where mafic andesitic volcanic rocks presenting propylitic hydrothermal alteration are dominant. This fact contrast with the highly altered host rocks of El Indio district, where most of them have lost their potential to neutralize ARD.

  1. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and

  2. A method for estimating peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area

    USGS Publications Warehouse

    Asquith, William H.; Cleveland, Theodore G.; Roussel, Meghan C.

    2011-01-01

    Estimates of peak and time of peak streamflow for small watersheds (less than about 640 acres) in a suburban to urban, low-slope setting are needed for drainage design that is cost-effective and risk-mitigated. During 2007-10, the U.S. Geological Survey (USGS), in cooperation with the Harris County Flood Control District and the Texas Department of Transportation, developed a method to estimate peak and time of peak streamflow from excess rainfall for 10- to 640-acre watersheds in the Houston, Texas, metropolitan area. To develop the method, 24 watersheds in the study area with drainage areas less than about 3.5 square miles (2,240 acres) and with concomitant rainfall and runoff data were selected. The method is based on conjunctive analysis of rainfall and runoff data in the context of the unit hydrograph method and the rational method. For the unit hydrograph analysis, a gamma distribution model of unit hydrograph shape (a gamma unit hydrograph) was chosen and parameters estimated through matching of modeled peak and time of peak streamflow to observed values on a storm-by-storm basis. Watershed mean or watershed-specific values of peak and time to peak ("time to peak" is a parameter of the gamma unit hydrograph and is distinct from "time of peak") of the gamma unit hydrograph were computed. Two regression equations to estimate peak and time to peak of the gamma unit hydrograph that are based on watershed characteristics of drainage area and basin-development factor (BDF) were developed. For the rational method analysis, a lag time (time-R), volumetric runoff coefficient, and runoff coefficient were computed on a storm-by-storm basis. Watershed-specific values of these three metrics were computed. A regression equation to estimate time-R based on drainage area and BDF was developed. Overall arithmetic means of volumetric runoff coefficient (0.41 dimensionless) and runoff coefficient (0.25 dimensionless) for the 24 watersheds were used to express the rational

  3. Questa Baseline and Pre-Mining Ground-Water-Quality Investigation 22 - Ground-Water Budget for the Straight Creek Drainage Basin, Red River Valley, New Mexico

    USGS Publications Warehouse

    McAda, Douglas P.; Naus, Cheryl A.

    2008-01-01

    In April 2001, the U.S. Geological Survey (USGS) and the New Mexico Environment Department (NMED) began a cooperative study to infer the pre-mining ground-water chemistry at the Molycorp molybdenum mine site in the Red River Valley. The Molycorp mine has been in operation since the 1920s. Because ground-water conditions prior to mining are not available, sites analogous to the pre-mining conditions at the mine site must be studied to infer those pre-mining conditions. The Straight Creek drainage basin (watershed) was selected as the primary analog site for this study because of its similar terrain and geology to the mine site, accessibility, potential for well construction, and minimal anthropogenic activity. The purpose of this report is to present results of a water-budget analysis of the debris-flow aquifer in the Straight Creek watershed. The water budget is based on mean annual conditions and is assumed to be steady state. For this study, the Straight Creek watershed was divided into sub-watersheds on the basis of locations of seismic lines, which were used to calculate cross-section area through the Straight Creek debris-flow deposits and underlying fractured and weathered bedrock (regolith). Water-budget components were calculated for areas upstream from and between the seismic lines. Components of the water budget were precipitation, evapotranspiration, surface-water flow, and ground-water flow under a steady-state mean annual condition. Watershed yield, defined as precipitation minus evapotranspiration, was separated into surface-water flow, ground-water flow through the debris-flow deposits and regolith, and ground-water flow through fractured bedrock. The approach to this calculation was to use Darcy?s Law to calculate the flow through the cross-section area of the saturated debris-flow deposits and underlying regolith as defined by the interpreted seismic data. The amount of watershed yield unaccounted for through this section then was attributed to

  4. Relation of water quality to land use in the drainage basins of four tributaries to the Toms River, New Jersey, 1994-95

    USGS Publications Warehouse

    Hunchak-Kariouk, Kathryn

    1999-01-01

    The influence of land use on the water quality of four tributaries to the Toms River, which drains nearly one-half of the Barnegat Bay wateshed, was studied during the initial phase of a multiyear investigation. Water samples were collected from and streamflows were measured in Long Swamp Creek, Wrangel Brook, Davenport Branch, and Jakes Creek during periods of base flow and stormflow in the growing and nongrowing seasons during May 1994 to October 1995. The drainage areas upstream from the seven measurement sites were characterized as highly developed, moderately developed, slightly developed, or undeveloped. Concentrations were determined and area-normalized instantaneous loads (yields) were estimated for total nitrogen, ammonia, nitrate, organic nitrogen, hydrolyzable phosphorus plus orthosphosphorus, orthophosphorus, total suspended solids, and fecal-coliform bacteria in the water samples. Specific conductance, pH, temperature, and dissolved oxygen were measured. Yields of total nitrogen, nitrate, and organic nitrogen at sites on Wrangel Brook, which drains moderately developed areas, were either larger than or similar to yields at the site on Long Swamp Creek, which drains a highly developed area. The magnitude of these yields probably was not related directly to the intensity of land development, but more likely was influenced by the type of development, the amount of base flow, and historical land use in the basin. The large concentrations of total nitrogen and nitrate in base flow in Wrangel Brook could have resulted from fertilizers that were applied to high-maintenance lawns and from agricultural runoff that has remained in the ground water since the 1950's and eventually was discharged to streams. Yields of ammonia appear to be partly related to the intensity of land development and storm runoff. Yields of ammonia at the site on Long Swamp Creek (a highly developed area) were either larger than or similar to yields at sites on Wrangel Brook (moderately

  5. Surface-water resources of Polecat Creek basin, Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1956-01-01

    A compilation of basic data on surface waters in Polecat Creek basin is presented on a monthly basis for Heyburn Reservoir and for Polecat Creek at Heyburn, Okla. Chemical analyses are shown for five sites in the basin. Correlation of runoff records with those for nearby basins indicates that the average annual runoff of the basin above gaging station at Heyburn is 325 acre-feet per square mile. Estimated duration curves of daily flow indicate that under natural conditions there would be no flow in Polecat Creek at Heyburn (drainage area, 129 square miles) about 16 percent of the time on an average, and that the flow would be less than 3 cubic feet per second half of the time. As there is no significant base flow in the basin, comparable low flows during dry-weather periods may be expected in other parts of the basin. During drought periods Heyburn Reservoir does not sustain a dependable low-water flow in Polecat Creek. Except for possible re-use of the small sewage effluent from city of Sapulpa, dependable supplies for additional water needs on the main stem will require development of supplemental storage. There has been no regular program for collection of chemical quality data in the basin, but miscellaneous analyses indicate a water of suitable quality for municipal and agricultural uses in Heyburn Reservoir and Polecat Creek near Heyburn. One recent chemical analysis indicates the possibility of a salt pollution problem in the Creek near Sapulpa. (available as photostat copy only)

  6. 77 FR 45700 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ...); Meeting of the ACRS Subcommittee On Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will... addressing the Fukushima Near Term Task Force (NTTF) Recommendation 1: Enhanced Regulatory Framework....

  7. Agricultural drainage water management: Potential impact and implementation strategies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  8. 77 FR 64147 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-18

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on October 31, 2012, Room...

  9. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on December 5, 2012, Room T-2B3... requested in the March 2012 10 CFR 50.54(f) letters to address Fukushima Near-Term Task Force Report, Task...

  10. 77 FR 74697 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on January 18, 2013, Room...

  11. 77 FR 68161 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on December 4, 2012, Room...

  12. 78 FR 27442 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-10

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 23, Room T-2B1,...

  13. 77 FR 59676 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on October 3, 2012, Room...

  14. 77 FR 28637 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-15

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 22- 23, 2012, Room...

  15. 78 FR 17945 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on April 10, 2013, Room T-2B1... requested in the March 2012 10 CFR 50.54(f) letters to address Fukushima Near-Term Task Force Report Task...

  16. 77 FR 45699 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... [Federal Register Volume 77, Number 148 (Wednesday, August 1, 2012)] [Notices] [Page 45699] [FR Doc No: 2012-18757] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima...

  17. 76 FR 27103 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 26, 2011, Room T-2B1... Subcommittee will review recent events at the Fukushima site in Japan. The Subcommittee will hear...

  18. 78 FR 65008 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on November 5, 2013, Room...

  19. 78 FR 50457 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 4, 2013, Room...

  20. 78 FR 51752 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-21

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 18, 2013, Room...

  1. 77 FR 52371 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on September 5, 2012, Room...

  2. 77 FR 31676 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on June 20, 2012, Room...

  3. 76 FR 44377 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on August 16, 2011, Room T-2B1... events at the Fukushima Dai-Ichi reactor site in Japan. The Subcommittee will hear presentations by...

  4. 76 FR 34778 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on June 23, 2011, Room T-2B1... Subcommittee will review recent events at the Fukushima site in Japan. The Subcommittee will hear...

  5. 77 FR 28903 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Fukushima; Notice of Meeting The ACRS Subcommittee on Fukushima will hold a meeting on May 22, 2012, Room...

  6. 75 FR 30077 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ESBWR The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on June...

  7. 75 FR 32229 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ABWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-07

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ABWR The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on June 23-24, 2010, Room...

  8. 75 FR 57536 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ABWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on ABWR The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting on October 20, 2010, Room...

  9. 75 FR 66803 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-29

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on ABWR will hold a meeting...

  10. 76 FR 68793 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... No: 2011-28737] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on November 30,...

  11. 76 FR 34778 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-14

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... room. Dated: June 7, 2011 Cayetano Santos, Chief, Reactor Safety Branch A, Advisory Committee...

  12. 78 FR 31987 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-28

    ... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels..., Technical Support Branch, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  13. 78 FR 37595 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR.... Kathy Weaver, Acting Chief, Technical Support Branch, Advisory Committee on Reactor Safeguards....

  14. 76 FR 27102 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-10

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on May 26, 2011, Room T-2B1, 11545 Rockville Pike,...

  15. 76 FR 5218 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR); Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor... inconvenience. Dated: January 24, 2011. Antonio Dias, Chief, Reactor Safety Branch B, Advisory Committee...

  16. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR..., Chief, Reactor Safety Branch A, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  17. 77 FR 59678 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR... Branch, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  18. 76 FR 55718 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting... (RES) initiative on quantitatively ensuring ``extremely low (XLPR) probability of rupture'' for...

  19. 76 FR 62866 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Economic Simplified Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Economic Simplified Boiling Water Reactor (ESBWR) will hold a meeting on October 21, 2011, Room T-2B1, 11545 Rockville...

  20. 76 FR 72451 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-23

    ...-72452] [FR Doc No: 2011-30238] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting on December 15,...

  1. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of The ACRS Subcommittee on Materials, Metallurgy And Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy and Reactor...: March 15, 2011. Cayetano Santos, Chief, Reactor Safety Branch A, Advisory Committee on...

  2. 75 FR 58449 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels will hold a meeting... inconvenience. Dated: September 17, 2010. Antonio Dias, Chief, Reactor Safety Branch B, Advisory Committee...

  3. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR) will hold a meeting.... Antonio Dias, Technical Advisor, Advisory Committee on Reactor Safeguards. BILLING CODE 7590-01-P...

  4. 75 FR 27841 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Doc No: 2010-11820] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on May 18, 2010, Room T-2B1, 11545...

  5. 78 FR 70597 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Doc No: 2013-28328] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on December 3, 2013, Room...

  6. 77 FR 31044 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-24

    ...] [FR Doc No: 2012-12611] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on June 5, 2012, Room...

  7. 75 FR 82093 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Doc No: 2010-32822] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on January 11, 2011, Room...

  8. 75 FR 82092 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... Doc No: 2010-32810] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on January 12, 2011, Room...

  9. 75 FR 27840 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-18

    ... Doc No: 2010-11823] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on May 18, 2010, Room T-2B1, 11545...

  10. 76 FR 44964 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ...] [FR Doc No: 2011-18954] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Radiation Protection and Nuclear Materials; Notice of Meeting The ACRS Subcommittee on Radiation Protection and Nuclear Materials will hold a meeting on August 17, 2011, Room...

  11. Comparisons of estimates of annual exceedance-probability discharges for small drainage basins in Iowa, based on data through water year 2013

    USGS Publications Warehouse

    Eash, David A.

    2015-01-01

    An examination was conducted to understand why the 1987 single-variable RREs seem to provide better accuracy and less bias than either of the 2013 multi- or single-variable RREs. A comparison of 1-percent annual exceedance-probability regression lines for hydrologic regions 1-4 from the 1987 single-variable RREs and for flood regions 1-3 from the 2013 single-variable RREs indicates that the 1987 single-variable regional-regression lines generally have steeper slopes and lower discharges when compared to 2013 single-variable regional-regression lines for corresponding areas of Iowa. The combination of the definition of hydrologic regions, the lower discharges, and the steeper slopes of regression lines associated with the 1987 single-variable RREs seem to provide better accuracy and less bias when compared to the 2013 multi- or single-variable RREs; better accuracy and less bias was determined particularly for drainage areas less than 2 mi2, and also for some drainage areas between 2 and 20 mi2. The 2013 multi- and single-variable RREs are considered to provide better accuracy and less bias for larger drainage areas. Results of this study indicate that additional research is needed to address the curvilinear relation between drainage area and AEPDs for areas of Iowa.

  12. Questa baseline and pre-mining ground-water quality investigation. 5. Well installation, water-level data, and surface- and ground-water geochemistry in the Straight Creek drainage basin, Red River Valley, New Mexico, 2001-03

    USGS Publications Warehouse

    Naus, Cheryl A.; McCleskey, R. Blaine; Nordstrom, D. Kirk; Donohoe, Lisa C.; Hunt, Andrew G.; Paillet, Frederick L.; Morin, Roger H.; Verplanck, Philip L.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the New Mexico Environment Department, is investigating the pre-mining ground-water chemistry at the Molycorp molybdenum mine in the Red River Valley, northern New Mexico. The primary approach is to determine the processes controlling ground-water chemistry at an unmined, off-site, proximal analog. The Straight Creek drainage basin, chosen for this purpose, consists of the same quartz-sericite-pyrite altered andesitic and rhyolitic volcanic rock of Tertiary age as the mine site. The weathered and rugged volcanic bedrock surface is overlain by heterogeneous debris-flow deposits that interfinger with alluvial deposits near the confluence of Straight Creek and the Red River. Pyritized rock in the upper part of the drainage basin is the source of acid rock drainage (pH 2.8-3.3) that infiltrates debris-flow deposits containing acidic ground water (pH 3.0-4.0) and bedrock containing water of circumneutral pH values (5.6-7.7). Eleven observation wells were installed in the Straight Creek drainage basin. The wells were completed in debris-flow deposits, bedrock, and interfingering debris-flow and Red River alluvial deposits. Chemical analyses of ground water from these wells, combined with chemical analyses of surface water, water-level data, and lithologic and geophysical logs, provided information used to develop an understanding of the processes contributing to the chemistry of ground water in the Straight Creek drainage basin. Surface- and ground-water samples were routinely collected for determination of total major cations and selected trace metals; dissolved major cations, selected trace metals, and rare-earth elements; anions and alkalinity; and dissolved-iron species. Rare-earth elements were determined on selected samples only. Samples were collected for determination of dissolved organic carbon, mercury, sulfur isotopic composition (34S and 18O of sulfate), and water isotopic composition (2H and 18O) during

  13. ACR Appropriateness Criteria Crohn Disease.

    PubMed

    Kim, David H; Carucci, Laura R; Baker, Mark E; Cash, Brooks D; Dillman, Jonathan R; Feig, Barry W; Fowler, Kathryn J; Gage, Kenneth L; Noto, Richard B; Smith, Martin P; Yaghmai, Vahid; Yee, Judy; Lalani, Tasneem

    2015-10-01

    Crohn disease is a chronic inflammatory disorder involving the gastrointestinal tract, characterized by episodic flares and times of remission. Underlying structural damage occurs progressively, with recurrent bouts of inflammation. The diagnosis and management of this disease process is dependent on several clinical, laboratory, imaging, endoscopic, and histologic factors. In recent years, with the maturation of CT enterography, and MR enterography, imaging has played an increasingly important role in relation to Crohn Disease. In addition to these specialized examination modalities, ultrasound and routine CT have potential uses. Fluoroscopy, radiography, and nuclear medicine may be less beneficial depending on the clinical scenario. The imaging modality best suited to evaluating this disease may change, depending on the target population, severity of presentation, and specific clinical situation. This document presents seven clinical scenarios (variants) in both the adult and pediatric populations and rates the appropriateness of the available imaging options. They are summarized in a consolidated table, and the underlying rationale and supporting literature are presented in the accompanying narrative. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every three years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  14. Estimation of Agricultural Pesticide Use in Drainage Basins Using Land Cover Maps and County Pesticide Data. National Water-Quality Assessment Program

    DTIC Science & Technology

    2005-01-01

    2001, the NAWQA Program completed interdisciplinary assessments in 51 of the Nation’s major river basins and aquifer systems, referred to as Study Units...others, 1995). To meet these goals, water-quality investigations are conducted in major river basins and aquifers referred to as “study units.” The...Creek near Monetta, South Carolina 02174250 02174250 62 Cow Castle Creek near Bowman, South Carolina 02175000 02175000 7,077 Edisto River near Givhans

  15. Effects of Coal-Mine Drainage on Stream Water Quality in the Allegheny and Monongahela River Basins-Sulfate Transport and Trends

    USGS Publications Warehouse

    Sams, James I.; Beer, Kevin M.

    2000-01-01

    In 1980, the Allegheny and Monongahela Rivers transported a sulfate load of 1.2 million and 1.35 million tons, respectively, to the Ohio River at Pittsburgh. The Monongahela River Basin had a sulfate yield of 184 tons per square mile per year compared to 105 tons per square mile per year for the Allegheny River Basin. Within the large Allegheny and Monongahela River Basins, the subbasins with the highest sulfate yields in tons per square mile per year were those of Redstone Creek (580), Blacklick Creek (524), Conemaugh River (292), Buffalo Creek (247), Stonycreek River (239), Two Lick Creek (231), Dunkard Creek (212), and Loyalhanna Creek (196). These basins have been extensively mined. The sulfate yields of Brokenstraw and Conewango Creeks, which are outside the area underlain by coal and thus contain no coal mines, were 25 and 24 tons per square mile per year, respectively. Within the Allegheny and Monongahela River Basins, seven sites showed significant trends in sulfate concentration from 1965 to 1995. Dunkard Creek and Stonycreek River show significant upward trends in sulfate concentration. These trends appear to be related to increases in coal production in the two basins from 1965 to 1995. Blacklick Creek at Josephine and Loyalhanna Creek at Loyalhanna Dam show significant downward trends in sulfate concentration between 1965 and 1995. Blacklick Creek had a 50-percent decrease in sulfate concentration. Coal production in the Blacklick Creek Basin, which reached its peak at almost 4 million tons per year in the 1940's, dropped to less than 1 million tons per year by 1995. In the Loyalhanna Creek Basin, which had a 41-percent decrease in sulfate concentration, coal-production rates dropped steadily from more than 1.5 million tons per year in the 1940's to less than 200,000 tons per year in 1995.

  16. Upper Klamath Lake Basin nutrient-loading study; assessment of historic flows in the Williamson and Sprague rivers

    USGS Publications Warehouse

    Risley, John C.; Laenen, Antonius

    1999-01-01

    The Williamson River Basin, located in southcentral Oregon, has a drainage area of approximately 3,000 square miles. The Sprague River, which flows into the Williamson River Basin, has a drainage area of 1,580 square miles. Together, the Williamson and Sprague Rivers supply about one-half of the inflow to Upper Klamath Lake. Various statistical techniques, which included trend tests, double-mass curves, and two-sample tests, were used to detect significant changes in the precipitation-runoff relation for the Williamson and Sprague River Basins. Flows from these two rivers were compared with the precipitation and air temperature records collected at Klamath Falls to assess the effect of climate on flow variations. Most of the double-mass curves showed a major break in the slope of the curve occurring around 1950 and a smaller one near 1990. For the years 1930?50 and 1990?96, February through May flows were relatively lower in the Williamson River than in rivers in nearby basins, by an average of 25,000 acre-feet per year and 36,000 acre-feet per year, respectively, for the 4-month period. From 1950 through 1963, flows were generally higher in the Williamson River compared with the nearby rivers by an average of 38,000 acre-feet for the 4 months. In July through September of 1945?51, 1970?76, and 1992?96, flows were lower in the Williamson River than in the comparison rivers by an average of about 6,000 acre-feet for the 3-month period. Two-sample statistical tests of the annual flow data sets for the Williamson and Sprague Rivers showed a significant increase in the estimated population mean for the period 1951?96 compared to the estimated population mean for the period 1922?50. However, climate data, which included annual precipitation data from Klamath Falls, Crater Lake, and Medford, and annual air temperature data from Klamath Falls, all showed no significant difference between the two periods. During the past century, various human land-use activities, such as

  17. Application of the groundwater-balance equation to indicate interbasin and vertical flow in two semi-arid drainage basins, Mexico

    NASA Astrophysics Data System (ADS)

    Carrillo-Rivera, J. J.

    2000-09-01

    An analysis of horizontal inflow and outflow in the groundwater-budget equation and the significance for interbasin flow are presented. Two field cases in Mexico, one in the Baja California peninsula and another in central Mexico, highlight the influence of interbasin flow. A significant proportion (approximately 70%) of the ed (thermal) groundwater probably originates outside the drainage basin. A conclusion is that a groundwater-balance study is an unsatisfactory method for determining some parameters, such as storativity (S). Specifically, the groundwater-balance approach provides unreliable results when vertical inflow is ignored or cannot be adequately defined. Vertical flow is indicated by the presence of groundwater temperatures as much as 23 °C higher than ambient temperature. Regional faults could be the pathways for upward flow. When vertical inflow is ignored, uncertainty in the estimation of the storativity through regional groundwater-balance calculation results. On the basis of the groundwater-balance equation, a value of S=0.19 appears to represent the confined condition of the developed part of the aquifer; this result is several orders of magnitude higher than would be reasonable according to the geological conditions. Findings are useful in evaluating whether a groundwater resource is being "overexploited". Conclusions are instructive in the application of transient-flow computer models, in which vertical flow of less dense water from beneath is not included. Résumé. L'article présente une analyse des entrées et des sorties horizontales dans l'équation du bilan d'une nappe et leur signification dans les écoulements entre bassins. Deux exemples provenant du Mexique, l'un dans la péninsule de Basse Californie, l'autre dans le centre du Mexique, mettent en lumière l'influence de l'écoulement entre bassins, où une proportion significative (environ 70%) de l'eau souterraine extraite, thermale, a probablement son origine hors du bassin. Une

  18. Reconnaissance of the chemical quality of water in western Utah, Part I: Sink Valley area, drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area

    USGS Publications Warehouse

    Waddell, K.M.

    1967-01-01

    This report presents data collected during the first part of an investigation that was started in 1963 by the U.S. Geological Survey in cooperation with the Utah Geological and Mineralogical Survey. The investigation has the purpose of providing information about the chemical quality of water in western Utah that will help interested parties to evaluate the suitability of the water for various uses in a broad area of Utah where little information of this type previously has been available. The area studied includes the Sink Valley area, the drainage basins of Skull, Rush, and Government Creek Valleys, and the Dugway Valley-Old River Bed area (fig. 1). Osamu Hattori and G. L. Hewitt started the investigation, and the author completed it and prepared the report.

  19. Hydrogeology, water resources, and water budget of the upper Rio Hondo Basin, Lincoln County, New Mexico, 2010

    USGS Publications Warehouse

    Darr, Michael J.; McCoy, Kurt J.; Rattray, Gordon W.; Durall, Roger A.

    2014-01-01

    The upper Rio Hondo Basin occupies a drainage area of 585 square miles in south-central New Mexico and comprises three general hydrogeologic terranes: the higher elevation “Mountain Block,” the “Central Basin” piedmont area, and the lower elevation “Hondo Slope.” As many as 12 hydrostratigraphic units serve as aquifers locally and form a continuous aquifer on the regional scale. Streams and aquifers in the basin are closely interconnected, with numerous gaining and losing stream reaches across the study area. In general, the aquifers are characterized by low storage capacity and respond to short-term and long-term variations in recharge with marked water-level fluctuations on short (days to months) and long (decadal) time scales. Droughts and local groundwater withdrawals have caused marked water-table declines in some areas, whereas periodically heavy monsoons and snowmelt events have rapidly recharged aquifers in some areas. A regional-scale conceptual water budget was developed for the study area in order to gain a basic understanding of the magnitude of the various components of input, output, and change in storage. The primary input is watershed yield from the Mountain Block terrane, supplying about 38,200 to 42,300 acre-feet per year (acre-ft/yr) to the basin, as estimated by comparing the residual of precipitation and evapotranspiration with local streamgage data. Streamflow from the basin averaged about 21,200 acre-ft/yr, and groundwater output left the basin at an estimated 2,300 to 5,700 acre-ft/yr. The other major output (about 13,500 acre-ft/yr) was by public water supply, private water supply, livestock, commercial and industrial uses, and the Bonito Pipeline. The residual in the water budget, the difference between the totals of the input and output terms or the potential change in storage, ranged from -2,200 acre-ft/yr to +5,300 acre-ft/yr. There is a high degree of variability in precipitation and consequently in the water supply; small

  20. ARM Cloud Retrieval Ensemble Data Set (ACRED)

    SciTech Connect

    Zhao, C; Xie, S; Klein, SA; McCoy, R; Comstock, JM; Delanoë, J; Deng, M; Dunn, M; Hogan, RJ; Jensen, MP; Mace, GG; McFarlane, SA; O’Connor, EJ; Protat, A; Shupe, MD; Turner, D; Wang, Z

    2011-09-12

    This document describes a new Atmospheric Radiation Measurement (ARM) data set, the ARM Cloud Retrieval Ensemble Data Set (ACRED), which is created by assembling nine existing ground-based cloud retrievals of ARM measurements from different cloud retrieval algorithms. The current version of ACRED includes an hourly average of nine ground-based retrievals with vertical resolution of 45 m for 512 layers. The techniques used for the nine cloud retrievals are briefly described in this document. This document also outlines the ACRED data availability, variables, and the nine retrieval products. Technical details about the generation of ACRED, such as the methods used for time average and vertical re-grid, are also provided.

  1. ACR Appropriateness Criteria on Resectable Rectal Cancer

    SciTech Connect

    Suh, W. Warren; Konski, Andre A.; Mohiuddin, Mohammed; Poggi, Matthew M.; Regine, William F.; Cosman, Bard C.; Saltz, Leonard; Johnstone, Peter A.S.

    2008-04-01

    The American College of Radiology (ACR) Appropriateness Criteria on Resectable Rectal Cancer was updated by the Expert Panel on Radiation Oncology-Rectal/Anal Cancer, based on a literature review completed in 2007.

  2. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... acreage of a crop produced on land that is not eligible for crop insurance or NAP. (h) For any crop acreage for which crop insurance or NAP coverage is canceled, those acres will no longer be considered...

  3. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... acreage of a crop produced on land that is not eligible for crop insurance or NAP. (h) For any crop acreage for which crop insurance or NAP coverage is canceled, those acres will no longer be considered...

  4. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... acreage of a crop produced on land that is not eligible for crop insurance or NAP. (h) For any crop acreage for which crop insurance or NAP coverage is canceled, those acres will no longer be considered...

  5. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... acreage of a crop produced on land that is not eligible for crop insurance or NAP. (h) For any crop acreage for which crop insurance or NAP coverage is canceled, those acres will no longer be considered...

  6. 7 CFR 760.632 - Payment acres.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... acreage of a crop produced on land that is not eligible for crop insurance or NAP. (h) For any crop acreage for which crop insurance or NAP coverage is canceled, those acres will no longer be considered...

  7. The Automated Conflict Resolution System (ACRS)

    NASA Technical Reports Server (NTRS)

    Kaplan, Ted; Musliner, Andrew; Wampler, David

    1993-01-01

    The Automated Conflict Resolution System (ACRS) is a mission-current scheduling aid that predicts periods of mutual interference when two or more orbiting spacecraft are scheduled to communicate with the same Tracking and Data Relay Satellite (TDRS) at the same time. The mutual interference predicted has the potential to degrade or prevent communications. Thus the ACRS system is a useful tool for aiding in the scheduling of Space Network (SN) communications.

  8. 78 FR 79019 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Materials...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ..., Metallurgy & Reactor Fuels; Notice of Meeting The ACRS Subcommittee on Materials, Metallurgy & Reactor Fuels... materials and metallurgy. The Subcommittee will hear presentations by and hold discussions with the...

  9. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity.

    PubMed

    Sousa-Santos, Carla; Robalo, Joana I; Pereira, Ana M; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  10. Broad-scale sampling of primary freshwater fish populations reveals the role of intrinsic traits, inter-basin connectivity, drainage area and latitude on shaping contemporary patterns of genetic diversity

    PubMed Central

    Robalo, Joana I.; Pereira, Ana M.; Branco, Paulo; Santos, José Maria; Ferreira, Maria Teresa; Sousa, Mónica; Doadrio, Ignacio

    2016-01-01

    Background. Worldwide predictions suggest that up to 75% of the freshwater fish species occurring in rivers with reduced discharge could be extinct by 2070 due to the combined effect of climate change and water abstraction. The Mediterranean region is considered to be a hotspot of freshwater fish diversity but also one of the regions where the effects of climate change will be more severe. Iberian cyprinids are currently highly endangered, with over 68% of the species raising some level of conservation concern. Methods. During the FISHATLAS project, the Portuguese hydrographical network was extensively covered (all the 34 river basins and 47 sub-basins) in order to contribute with valuable data on the genetic diversity distribution patterns of native cyprinid species. A total of 188 populations belonging to 16 cyprinid species of Squalius, Luciobarbus, Achondrostoma, Iberochondrostoma, Anaecypris and Pseudochondrostoma were characterized, for a total of 3,678 cytochrome b gene sequences. Results. When the genetic diversity of these populations was mapped, it highlighted differences among populations from the same species and between species with identical distribution areas. Factors shaping the contemporary patterns of genetic diversity were explored and the results revealed the role of latitude, inter-basin connectivity, migratory behaviour, species maximum size, species range and other species intrinsic traits in determining the genetic diversity of sampled populations. Contrastingly, drainage area and hydrological regime (permanent vs. temporary) seem to have no significant effect on genetic diversity. Species intrinsic traits, maximum size attained, inter-basin connectivity and latitude explained over 30% of the haplotype diversity variance and, generally, the levels of diversity were significantly higher for smaller sized species, from connected and southerly river basins. Discussion. Targeting multiple co-distributed species of primary freshwater fish allowed

  11. Quaternary Stratigraphy, Drainage-Basin Development, and Geomorphology of the Lake Manix Basin, Mojave Desert: Guidebook for Fall Field Trip, Friends of the Pleistocene, Pacific Cell, October 4-7, 2007

    USGS Publications Warehouse

    Reheis, Marith C.; Miller, David M.; Redwine, Joanna L.

    2007-01-01

    The 2007 field trip of the Pacific Cell, Friends of the Pleistocene, visited features of the Quaternary geology and geomorphology of the Lake Manix basin in the Mojave Desert. This report is the guidebook for this trip and includes some discussion of relations observable along the road and at various field trip stops. The Mojave River originates in the San Bernardino Mountains and in high-water years flows north and east to its terminus in Silver Lake playa north of Baker, Calif. Along this course, the river passes through or near several basins that were internally drained prior to integration by the Mojave River, including the Victorville, Harper, Manix, and Soda Lake basins. Sediments in the Lake Manix basin record Mojave River discharge and lake fluctuations that began during the middle Pleistocene and continued through most of the late Pleistocene.

  12. Big River Reservoir Project. Pawcatuck River and Narragansett Bay Drainage Basins. Water and Related Land Resources Study. Volume I. Main Report.

    DTIC Science & Technology

    1981-07-01

    of the nation’s output of goods and services and by increasing the national economic efficiency. EQ is to be achieved by the management, preservation...PROBLEM IDENTIFICATION 7 NATIONAL OBJECTIVES 7 EXISTING CONDITIONS 7 WITHOUT CONDITION PROFILE 17 PROBLEMS, NEEDS AND OPPORTUNITIES 21 PLANNING...Basin and for water supply planning to the legislated service area of the Pro":idence Water Supply Board. Not all areas were investigated to the same

  13. Structural and Hydrologic Implications of Joint Orientations in the Warner Creek and Stony Clove Drainage Basins, Catskill Mountains, Eastern New York

    NASA Astrophysics Data System (ADS)

    Haskins, M. N.; Vollmer, F. W.; Rayburn, J. A.; Gurdak, J. J.

    2010-12-01

    To investigate joint control on hydrology as well as tectonic implications, we conducted a study of joint orientations near the Stony Clove and Warner Creek drainages of the Catskill Mountains, Eastern New York. Specific goals of this research were to determine joint control on stream orientations and groundwater flow, to compare results with previous studies in the area, and to investigate their tectonic significance. Trails, streams, and road cuts were traversed to locate bedrock outcrops whose positions were determined using topographic maps and a handheld GPS unit. Additional outcrops were located using aerial photographs and GIS data. Joint orientations were measured using a standard Brunton pocket transit. The data was analyzed using Orient (Vollmer, 2010), an orientation analysis program, to plot joint and stream orientations on rose diagrams. ArcGIS was used to produce topographic, hill-shade, and stream drainage maps. Over 500 joint orientations at over 100 outcrop stations were collected. The data were plotted on a rose diagrams, and two major joint sets were found, one with a mean strike of 021° and one with a mean strike of 096°. Stream orientations were also plotted on a rose diagram showing an axial mean of 022°, and indicate that the joint set with mean strike of 021 may have a significant control on stream orientations. The hill-shade maps also demonstrate clearly the strong control of jointing on the topography. The data collected in this research expands on previous joint orientation studies of Engelder and Geiser (1980) in the southwestern and central Catskills, and is similar to joint orientations found by Isachsen et al. (1977) in their study of the Panther Mountain circular structure, a possible impact-related feature. The origin of this jointing is thought to be related to Alleghanian (Permian) and possibly Acadian (Devonian) orogenic events.

  14. 77 FR 45699 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Economic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-01

    ... [Federal Register Volume 77, Number 148 (Wednesday, August 1, 2012)] [Notices] [Pages 45699-45700] [FR Doc No: 2012-18759] NUCLEAR REGULATORY COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Economic Simplified Boiling Water Reactors (ESBWR); Notice of...

  15. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos

    2011-12-01

    During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage.

  16. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    USGS Publications Warehouse

    Gilchrist, S.; Gates, A.; Szabo, Z.; Lamothe, P.J.

    2009-01-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4.7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  17. Impact of AMD on water quality in critical watershed in the Hudson River drainage basin: Phillips Mine, Hudson Highlands, New York

    NASA Astrophysics Data System (ADS)

    Gilchrist, Sivajini; Gates, Alexander; Szabo, Zoltan; Lamothe, Paul J.

    2009-03-01

    A sulfur and trace element enriched U-Th-laced tailings pile at the abandoned Phillips Mine in Garrison, New York, releases acid mine drainage (AMD, generally pH < 3, minimum pH 1.78) into the first-order Copper Mine Brook (CMB) that drains into the Hudson River. The pyrrhotite-rich Phillips Mine is located in the Highlands region, a critical water source for the New York metro area. A conceptual model for derivation/dissolution, sequestration, transport and dilution of contaminants is proposed. The acidic water interacts with the tailings, leaching and dissolving the trace metals. AMD evaporation during dry periods concentrates solid phase trace metals and sulfate, forming melanterite (FeSO4·7H2O) on sulfide-rich tailings surfaces. Wet periods dissolve these concentrates/precipitates, releasing stored acidity and trace metals into the CMB. Sediments along CMB are enriched in iron hydroxides which act as sinks for metals, indicating progressive sequestration that correlates with dilution and sharp rise in pH when mine water mixes with tributaries. Seasonal variations in metal concentrations were partly attributable to dissolution of the efflorescent salts with their sorbed metals and additional metals from surging acidic seepage induced by precipitation.

  18. Field screening of water, soil, bottom sediment, and biota associated with irrigation drainage in the Dolores Project and the Macos River basin, southwestern Colorado, 1994

    USGS Publications Warehouse

    Butler, D.L.; Osmundson, B.C.; Krueger, R.P.

    1997-01-01

    A reconnaissance investigation for the National Irrigation Water Quality Program in 1990 indicated elevated selenium concentrations in some water and biota samples collected in the Dolores Project in southwestern Colorado. High selenium concentrations also were indicated in bird samples collected in the Mancos Project in 1989. In 1994, field screenings were done in parts of the Dolores Project and Mancos River Basin to collect additional selenium data associated with irrigation inthose areas. Selenium is mobilized from soils in newly irrigated areas of the Dolores Project called the Dove Creek area, which includes newly (since 1987) irrigated land north of Cortez and south of Dove Creek.Selenium was detected in 18 of 20stream samples, and the maximum concentration was 12micrograms per liter. The Dove Creek area is unique compared to other study areas of the National Irrigation Water Quality Program becauseselenium concentrations probably are indicative of initial leaching conditions in a newly irrigated area.Selenium concentrations in nine shallow soil samples from the Dove Creek area ranged from 0.13 to 0.20 micrograms per gram. Selenium concentrations in bottom sediment from six ponds were less than the level of concern for fish and wildlife of 4 micrograms per gram. Many biota samples collected in the Dove Creek area had elevated selenium concentrations when compared to various guidelines and effect levels,although selenium concentrations in water, soil, and bottom sediment were relatively low. Selenium concentrations in 12 of 14 aquatic-invertebratesamples from ponds exceeded 3 micrograms per gram dry weight, a dietary guideline for protection of fish and wildlife. The mean seleniumconcentration of 10.3 micrograms per gram dry weight in aquatic bird eggs exceeded the guideline for reduced hatchability of 8 micrograms per gramdry weight. Two ponds in the Dove Creek area had a high selenium hazard rating based on a new protocol for assessing selenium hazard in

  19. The Expanding Significance of One Acre.

    ERIC Educational Resources Information Center

    Gilbert, Daniel R., Jr.

    2003-01-01

    A management class assignment requires students to study the history and complexity of one acre of land. The intent is to develop connections between the natural environment and human acts of management, focusing on the concept of privilege. (Contains 15 references.) (SK)

  20. Water-quality assessment of the Albemarle-Pamlico Drainage Basin, North Carolina and Virginia; organochlorine compounds in Asiatic clam (Corbicula fluminea) soft tissues and whole redbrest sunfish (Lepomis auritus) 1992-93

    USGS Publications Warehouse

    Smith, K.E.; Ruhl, P.M.

    1996-01-01

    The analysis of potential contaminants in biological tissues is an important part of many water-quality assessment programs, including the National Water-Quality Assessment (NAWQA) Program. Tissue analyses often are used to provide information about (1) direct threats to ecosystem integrity, and (2) the occurrence and distribution of potential contaminants in the environment. During 1992-93, Asiatic clam (Corbicula fluminea) soft tissues and whole redbreast sunfish (Lepomis auritus) samples were collected and analyzed to obtain information about the occurrence and distribution of organochlorine compounds in the Albemarle-Pamlico drainage Basin of North Carolina and Virginia. The investigation was conducted as part of the NAWQA Program. Relatively few organochlorine compounds were detected and of the compounds detected, all were detected in relatively low concentrations. The organochlorine compounds detected were p,p'-DDD, p,p'-DDE, p,p'-DDT, dieldrin, trans-nonachlor, PCB's, and toxaphene. Multiple compounds were detected at 16 of 19 sites sampled. Compared to Asiatic clams, redbreast sunfish appear to be better bioindicators of organochlorine contamination in aquatic systems. Except for one detection of toxaphene, pesticide concentrations are well below the National Academy of Sciences and National Academy of Engineering (NAS/NAE) guidelines for the protection of fish-eating wildlife.

  1. Hydrologic conditions and water-quality conditions following underground coal mining in the North Fork of the Right Fork of Miller Creek drainage basin, Carbon and Emery Counties, Utah, 2004-2005

    USGS Publications Warehouse

    Wilkowske, C.D.; Cillessen, J.L.; Brinton, P.N.

    2007-01-01

    In 2004 and 2005, the U.S. Geological Survey, in cooperation with the Bureau of Land Management, reassessed the hydrologic system in and around the drainage basin of the North Fork of the Right Fork (NFRF) of Miller Creek, in Carbon and Emery Counties, Utah. The reassessment occurred 13 years after cessation of underground coal mining that was performed beneath private land at shallow depths (30 to 880 feet) beneath the NFRF of Miller Creek. This study is a follow-up to a previous USGS study of the effects of underground coal mining on the hydrologic system in the area from 1988 to 1992. The previous study concluded that mining related subsidence had impacted the hydrologic system through the loss of streamflow over reaches of the perennial portion of the stream, and through a significant increase in dissolved solids in the stream. The previous study also reported that no substantial differences in spring-water quality resulted from longwall mining, and that no clear relationship between mining subsidence and spring discharge existed.During the summers of 2004 and 2005, the USGS measured discharge and collected water-quality samples from springs and surface water at various locations in the NFRF of Miller Creek drainage basin, and maintained a streamflow-gaging station in the NFRF of Miller Creek. This study also utilized data collected by Cyprus–Plateau Mining Corporation from 1992 through 2001.Of thirteen monitored springs, five have discharge levels that have not returned to those observed prior to August 1988, which is when longwall coal mining began beneath the NFRF of Miller Creek. Discharge at two of these five springs appears to fluctuate with wet and dry cycles and is currently low due to a drought that occurred from 1999–2004. Discharge at two other of the five springs did not increase with increased precipitation during the mid-1990s, as was observed at other monitored springs. This suggests that flowpaths to these springs may have been altered by

  2. Influence of recharge basins on the hydrology of Nassau and Suffolk Counties, Long Island, New York

    USGS Publications Warehouse

    Seaburn, G.E.; Aronson, D.A.

    1974-01-01

    Westbury and the Syosset basins are not expected to change; however, the unit hydrograph for the Deer Park basin is expected to broaden somewhat as a result of additional future house construction within the drainage area. Infiltration rates averaged 0.9 fph (feet per hour) for 63 storms between July 1967 and May 1970 at the Westbury recharge basin, 0.8 fph for 22 storms from July 1969 to September 1970 at the Syosset recharge basin, and 0.2 fph for 24 storms from March to September 1970 at the Deer Park recharge basin. Low infiltration rates at Deer Park resulted mainly from (1) a high percentage of eroded silt, clay, and organic debris washed in from construction sites in the drainage area, which partly filled the interstices of the natural deposits, and (2) a lack of a well-developed plant-root system on the floor of the younger basin, which would have kept the soil zone more permeable. The apparent rate of movement of storm water through the unsaturated zone below each basin averaged 5.5 fph at Westbury, 3.7 fph at Syosset, and 3.1 fph at Deer Park. The rates of movement for storms during the warm months (April through October) were slightly higher than average, probably because the recharging water was warmer than it was during the rest of the year, and therefore, was slightly less viscous. On the average, a 1-inch rainfall resulted in a peak rise of the water table directly below each basin of 0.5 foot; a 2-inch rainfall resulted in a peak rise of about 2 feet. The mound commonly dissipated within 1 to 4 days at Westbury, 7 days to more than 15 days at Syosset, and 1 to 3 days at Deer Park, depending on the magnitude of the peak buildup. Average annual ground-water recharge was estimated to be 6.4 acre-feet at the Westbury recharge basin, 10.3 acre-feet at the Syosset recharge basin, and 29.6 acre-feet at the Deer Park recharge basin. Chemical composition of precipitation at Westbury, Syosset, and Deer Park drainage areas was similar:

  3. Abandoned mine drainage in the Swatara Creek Basin, southern anthracite coalfield, Pennsylvania, USA: 1. stream quality trends coinciding with the return of fish

    USGS Publications Warehouse

    Cravotta, Charles A.; Brightbill, Robin A.; Langland, Michael J.

    2010-01-01

    Acidic mine drainage (AMD) from legacy anthracite mines has contaminated Swatara Creek in eastern Pennsylvania. Intermittently collected base-flow data for 1959–1986 indicate that fish were absent immediately downstream from the mined area where pH ranged from 3.5 to 7.2 and concentrations of sulfate, dissolved iron, and dissolved aluminum were as high as 250, 2.0, and 4.7 mg/L, respectively. However, in the 1990s, fish returned to upper Swatara Creek, coinciding with the implementation of AMD treatment (limestone drains, limestone diversion wells, limestone sand, constructed wetlands) in the watershed. During 1996–2006, as many as 25 species of fish were identified in the reach downstream from the mined area, with base-flow pH from 5.8 to 7.6 and concentrations of sulfate, dissolved iron, and dissolved aluminum as high as 120, 1.2, and 0.43 mg/L, respectively. Several of the fish taxa are intolerant of pollution and low pH, such as river chub (Nocomis icropogon) and longnose dace (Rhinichthys cataractae). Cold-water species such as brook trout (Salvelinus fontinalis) and warm-water species such as rock bass (Ambloplites rupestris) varied in predominance depending on stream flow and stream temperature. Storm flow data for 1996–2007 indicated pH, alkalinity, and sulfate concentrations decreased as the stream flow and associated storm-runoff component increased, whereas iron and other metal concentrations were poorly correlated with stream flow because of hysteresis effects (greater metal concentrations during rising stage than falling stage). Prior to 1999, pH\\5.0 was recorded during several storm events; however, since the implementation of AMD treatments, pH has been maintained near neutral. Flow-adjusted trends for1997–2006 indicated significant increases in calcium; decreases in hydrogen ion, dissolved aluminum, dissolved and total manganese, and total iron; and no change in sulfate or dissolved iron in Swatara Creek immediately downstream from the

  4. Synthesis of monthly and annual streamflow records (water years 1950-2003) for Big Sandy, Clear, Peoples, and Beaver Creeks in the Milk River basin, Montana

    USGS Publications Warehouse

    Parrett, Charles

    2006-01-01

    To address concerns expressed by the State of Montana about the apportionment of water in the St. Mary and Milk River basins between Canada and the United States, the International Joint Commission requested information from the United States government about water that originates in the United States but does not cross the border into Canada. In response to this request, the U.S. Geological Survey synthesized monthly and annual streamflow records for Big Sandy, Clear, Peoples, and Beaver Creeks, all of which are in the Milk River basin in Montana, for water years 1950-2003. This report presents the synthesized values of monthly and annual streamflow for Big Sandy, Clear, Peoples, and Beaver Creeks in Montana. Synthesized values were derived from recorded and estimated streamflows. Statistics, including long-term medians and averages and flows for various exceedance probabilities, were computed from the synthesized data. Beaver Creek had the largest median annual discharge (19,490 acre-feet), and Clear Creek had the smallest median annual discharge (6,680 acre-feet). Big Sandy Creek, the stream with the largest drainage area, had the second smallest median annual discharge (9,640 acre-feet), whereas Peoples Creek, the stream with the second smallest drainage area, had the second largest median annual discharge (11,700 acre-feet). The combined median annual discharge for the four streams was 45,400 acre-feet. The largest combined median monthly discharge for the four creeks was 6,930 acre-feet in March, and the smallest combined median monthly discharge was 48 acre-feet in January. The combined median monthly values were substantially smaller than the average monthly values. Overall, synthesized flow records for the four creeks are considered to be reasonable given the prevailing climatic conditions in the region during the 1950-2003 base period. Individual estimates of monthly streamflow may have large errors, however. Linear regression was used to relate

  5. 75 FR 57536 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Thermal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-21

    ... Hydraulic Phenomena The ACRS Subcommittee on Thermal Hydraulic Phenomena will hold a meeting on October 18... 5 p.m. The Subcommittee will review the thermal-hydraulic research activities in the Office...

  6. 76 FR 11525 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-02

    ... and Probabilistic Risk Assessment (PRA); Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA), Room T-2B1, 11545 Rockville Pike, Rockville, Maryland. The entire...

  7. 76 FR 22934 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ... and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on May 11, 2011, Room T-2B3, 11545 Rockville...

  8. 76 FR 18586 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... and Probabilistic Risk Assessment (PRA); Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on April 20, 2011, Room T-2B1, 11545 Rockville...

  9. 76 FR 71609 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... and Probabilistic Risk Assessment; Notice of Meeting The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on December 14, 2011, Room T-2B3, 11545 Rockville...

  10. 76 FR 32240 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-03

    ... Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 7, 2011, Room T-2B1, 11545 Rockville Pike,...

  11. Effects of surface mining on streamflow, suspended-sediment, and water quality in the Stony Fork drainage basin, Fayette County, Pennsylvania

    USGS Publications Warehouse

    Stump, D.E.; Mastrilli, T.M.

    1985-01-01

    A study of the Stony Fork basin in southern Fayette County, Pennsylvania, from 1977 through 1980 determined the impacts of surface coal mining on surface-water quality. Stony Fork was sampled at six sites, during which time the area of surface mines increased from 0.5 to 5.5 percent of the study area. Streamflow, suspended-sediment, and water quality data were collected at gaging stations upstream and downstream of mining. The total runoff between the upstream and downstream stations differed by one percent; this small difference could not be attributed to the effects of mining. The suspended-sediment yield increased during storms due to erosion from the mining sites. The suspended-sediment yield doubled at the downstream site following mining. Specific conductance was highly variable during storm runoff but generally varied inversely with flow and increased slightly during the study period. The pH ranged between 4.8 and 7.9 with values below 6.0 usually occurring during storm runoff. Concentrations of dissolved zinc and sulfate increased between the upstream and downstream sampling sites. Laboratory analysis of a precipitation sample indicates that acid precipitation may be partly responsible for pH depressions during storm runoff periods. (USGS)

  12. Stormwater Drainage Wells

    EPA Pesticide Factsheets

    Provides information for identifying stormwater drainage wells, learn how to comply with regulations for storm water drainage wells, and how to reduce the threat to ground water from stormwater injection wells.

  13. Urine drainage bags

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000142.htm Urine drainage bags To use the sharing features on this page, please enable JavaScript. Urine drainage bags collect urine. Your bag will attach ...

  14. Transient drainage summary report

    SciTech Connect

    1996-09-01

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  15. Hygienic drainage for healthcare.

    PubMed

    Jennings, Peter

    2012-08-01

    Peter Jennings, technical director for ACO Building Drainage, which specialises in the development of corrosion-resistant drainage systems and building products, looks at the key issues to consider when specifying and installing pipework and drainage for hygiene-critical environments such as hospitals and other healthcare facilities.

  16. Surface water of Muddy Boggy River basin in south-central Oklahoma

    USGS Publications Warehouse

    Westfall, A.O.; Cummings, T. Ray

    1963-01-01

    This report summarizes basic hydrologic data of the surface water resources of Muddy Boggy River basin, and by analysis and interpretation, presents certain streamflow characteristics at specified points in the basin. Muddy Boggy River has a drainage area of 2,429 square miles. The climate is moist subhumid and the annual precipitation averages about 39 inches. Gross annual lake evaporation averages 54 inches. The average annual discharge at the gaging stations for the period 1938-62 was 24,000 acre-feet for Chickasaw Creek near Stringtown; 72,000 acre-feet for McGee Creek near Stringtown; 671,800 acre-feet for Muddy Boggy Creek near Farris; and 358,200 acre-feet for Clear Boggy Creek near Caney. Flow-duration curves of daily discharge have been developed to show the percentage of time various rates of discharge have been equaled or exceeded. Procedures for determining the frequency of annual floods at any point in the basin are given. Low-flow frequency curves that define the recurrence intervals of 7, 14, 30, 60, and 120 day mean flows have been prepared for two gaging stations. Curves showing the relation of measured discharge at the low-flow partial-record stations to the daily mean discharge at a base gaging station are presented. Discharge measurements made in February 1963 at selected sites show the areal distribution of low flow. The storage requirements to supplement natural flows have been prepared for two gaging-stations sites. The chemical quality of surface water of Muddy Boggy River basin varies from place-to-place during base flow periods. Limestone and dolomite outcrops and oilfield brines affect water quality in some areas. Water of North Boggy Creek, McGee Creek, and their tributaries contains less than 100 ppm (parts per million) dissolved solids. Water of other streams in Muddy Boggy River basin has a higher dissolved-solids content, but the content does not exceed 500 ppm. Water of Muddy Boggy River basin is usable for domestic, irrigation, and

  17. Water withdrawals for irrigation, municipal, mining, thermoelectric-power, and drainage uses in Arizona outside of active management areas, 1991-2000

    USGS Publications Warehouse

    Tadayon, Saeid

    2005-01-01

    thermoelectric-power generation generally increased owing to an increase in production of electricity. Ground-water withdrawals for drainage of agricultural lands in the Lower Gila and Yuma Basins varied irregularly from year to year. Annual total water withdrawals are not presented in this report because for some years irrigation values for some of the basins are reported as 'less than 1,000 acre-feet,' and municipal and mining values for some of the basins are reported as 'less than 300 acre-feet.'

  18. Agricultural Drainage Water Management: Potential Impact and Implementation Strategies for Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The unique soil and climate of the Upper Mississippi River Basin (and the Lake Erie Basin) area provide the resources for bountiful agricultural production. Agricultural drainage (both surface and subsurface drainage) is essential for achieving economically viable crop production and management. Dra...

  19. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  20. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  1. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  2. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Notification of base acres. 1412.44 Section 1412.44... Through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  3. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  4. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  5. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Notification of base acres. 1412.44 Section 1412.44... through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  6. 7 CFR 1412.44 - Notification of base acres.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Notification of base acres. 1412.44 Section 1412.44... Through 2012 § 1412.44 Notification of base acres. The operator and owners of record of a farm will be notified in writing of the number of base acres eligible for enrollment in a contract, unless such...

  7. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  8. 7 CFR 1412.21 - Election of base acres.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Election of base acres. 1412.21 Section 1412.21... CROP REVENUE ELECTION PROGRAM FOR THE 2008 AND SUBSEQUENT CROP YEARS Establishment of Base Acres for a Farm for Covered Commodities § 1412.21 Election of base acres. (a) Subject to adjustments in...

  9. In situ measurements of microbially-catalyzed nitrification and nitrate reduction rates in an ephemeral drainage channel receiving water from coalbed natural gas discharge, Powder River Basin, Wyoming, USA

    USGS Publications Warehouse

    Harris, S.H.; Smith, R.L.

    2009-01-01

    Nitrification and nitrate reduction were examined in an ephemeral drainage channel receiving discharge from coalbed natural gas (CBNG) production wells in the Powder River Basin, Wyoming. CBNG co-produced water typically contains dissolved inorganic nitrogen (DIN), primarily as ammonium. In this study, a substantial portion of discharged ammonium was oxidized within 50??m of downstream transport, but speciation was markedly influenced by diel fluctuations in dissolved oxygen (> 300????M). After 300??m of transport, 60% of the initial DIN load had been removed. The effect of benthic nitrogen-cycling processes on stream water chemistry was assessed at 2 locations within the stream channel using acrylic chambers to conduct short-term (2-6??h), in-stream incubations. The highest ambient DIN removal rates (2103????mol N m- 2 h- 1) were found at a location where ammonium concentrations > 350????M. This occurred during light incubations when oxygen concentrations were highest. Nitrification was occurring at the site, however, net accumulation of nitrate and nitrite accounted for < 12% of the ammonium consumed, indicating that other ammonium-consuming processes were also occurring. In dark incubations, nitrite and nitrate consumption were dominant processes, while ammonium was produced rather than consumed. At a downstream location nitrification was not a factor and changes in DIN removal rates were controlled by nitrate reduction, diel fluctuations in oxygen concentration, and availability of electron donor. This study indicates that short-term adaptation of stream channel processes can be effective for removing CBNG DIN loads given sufficient travel distances, but the long-term potential for nitrogen remobilization and nitrogen saturation remain to be determined.

  10. 75 FR 51501 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and Procedures The ACRS Subcommittee on Planning and Procedures will hold a meeting on September 8, 2010, at... conduct of the meeting, persons planning to attend should check with these references if such...

  11. 75 FR 67783 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Planning and Procedures The ACRS Subcommittee on Planning and Procedures will hold a meeting on December 1, 2010, in Room... conduct of the meeting, persons planning to attend should check with these references if such...

  12. 77 FR 4838 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR); Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on...

  13. 77 FR 74696 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP-1000...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on AP-1000; Notice of Meeting The ACRS Subcommittee on AP-1000 will hold a meeting on January 18, 2013, Room...

  14. 76 FR 44964 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-27

    ... No: 2011-18952] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S. Evolutionary Power Reactor; Notice of Meeting The ACRS Subcommittee on U.S. Evolutionary Power Reactor (U.S. EPR) will hold a meeting on August 18, 2011, Room...

  15. 77 FR 61791 - Advisory Committee On Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee On US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... COMMISSION Advisory Committee On Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee On US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on October 18- 19, 2012, Room T... review Chapter 4, ``Reactor,'' of the Safety Evaluation Reports associated with the US-APWR...

  16. 77 FR 73497 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on January 15, 2013, Room T-2B3... Reports are associated with the design certification of the US-APWR. The Subcommittee will...

  17. 77 FR 56240 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on September 20, 2012, Room...

  18. 78 FR 47802 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-06

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on September 17-18, 2013, Room T... Chapter 6, ``Engineered Safety Features,'' of the Safety Evaluation Report (SER) associated with the...

  19. 78 FR 59076 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on October 1, 2013, Room T-2B1... the US-APWR design. The Subcommittee will hear presentations by and hold discussions...

  20. 78 FR 20959 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on US-APWR The ACRS Subcommittee on US-APWR will hold a meeting on April 25- 26, 2013, Room T-2B1, 11545 Rockville..., ``Instrumentation and Control,'' of the Safety Evaluation Report (SER) associated with the US-APWR...

  1. 78 FR 68867 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-15

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on US-APWR; Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on November 20-21, 2013, Room T... the Safety Evaluation Report (SER) associated with the US-APWR design certification and the...

  2. 78 FR 17945 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-25

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 9... based licensing framework for the Next Generation Nuclear Plant (NGNP). The Subcommittee will...

  3. 75 FR 58448 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-24

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on October 21, 2010, at 11545... Subcommittee will review current Design Acceptance Criteria associated with Digital Instrumentation and...

  4. 76 FR 5220 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-28

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on February 9, 2011, at...

  5. 76 FR 64123 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on November...

  6. 77 FR 74698 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-17

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs; Notice of Meeting The ACRS Subcommittee on Future Plant Designs will hold a meeting on January 17... Generation Nuclear Plant (NGNP) fuel and source term research and development of risk-informed...

  7. 76 FR 16016 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Future Plant Designs The ACRS Subcommittee on Future Plant Designs will hold a meeting on April 5, 2011, at...

  8. 78 FR 50457 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-19

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital I&C; Notice of Meeting The ACRS Subcommittee on Digital I&C will hold a briefing on September 19, 2013, Room T... identification of digital system failure modes and use of hazard analysis methods for digital safety systems....

  9. 75 FR 30077 - Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-28

    ... COMMISSION Advisory Committee On Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee On Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Control (DI&C) Systems will hold a meeting on... Digital Instrumentation and Control (DI&C) Probabilistic Risk Assessment (PRA). Topics will include...

  10. 77 FR 67688 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C; Notice of Meeting The ACRS Subcommittee on Digital I&C will hold a meeting on November 16, 2012, Room...

  11. 76 FR 7882 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation & Control (DI&C) Systems will hold a meeting...

  12. 75 FR 51499 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... COMMISSION Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital I&C Systems The ACRS Subcommittee on Digital Instrumentation and Controls (I&C) Systems will hold a meeting on...--8:30 a.m. until 12 p.m. The Subcommittee will review Digital I&C Interim Staff Guidance on...

  13. Drainage-return, surface-water withdrawal, and land-use data for the Sacramento-San Joaquin Delta, with emphasis on Twitchell Island, California

    USGS Publications Warehouse

    Templin, William E.; Cherry, Daniel E.

    1997-01-01

    Partial data on drainage returns and surface-water withdrawals are presented for areas of the Sacramento-San Joaquin Delta, California, for March 1994 through February 1996. These areas cover most of the delta. Data are also presented for all drainage returns and some surface-water withdrawals for Twitchell Island, which is in the western part of the delta. Changes in land use between 1968 and 1991 are also presented for the delta. Measurements of monthly drainage returns and surface-water withdrawals were made using flowmeters installed in siphons and drain pipes on Twitchell Island. Estimates of monthly returns throughout the delta were made using electric power-consumption data with pump-efficiency-test data. For Twitchell Island, monthly measured drainage returns for the 1995 calendar year totaled about 11,200 acre-feet, whereas drainage returns estimated from power-consumption data totaled 5 percent less at about 10,600 acre-feet. Monthly surface-water withdrawals onto Twitchell Island through 12 of the 21 siphons totaled about 2,400 acre-feet for 1995. For most of the delta, the monthly estimated drainage returns for 1995 totaled about 430,000 acre-feet. The area consisting of Bouldin, Brannan, Staten, Tyler, and Venice Islands had the largest estimated drainage returns for calendar year 1995. Between 1968 and 1991, native vegetation in the delta decreased by 25 percent (about 40,000 acres), and grain and hay crops increased by 340 percent (about 71,000 acres). For Twitchell Island, native vegetation decreased about 77 percent (about 850 acres), while field crop acreage increased by about 44 percent (about 780 acres).

  14. Inventory of drainage wells and potential sources of contaminants to drainage-well inflow in Southwest Orlando, Orange County, Florida

    USGS Publications Warehouse

    Taylor, George Fred

    1993-01-01

    Potential sources of contaminants that could pose a threat to drainage-well inflow and to water in the Floridan aquifer system in southwest Orlando, Florida, were studied between October and December 1990. Drainage wells and public-supply wells were inventoried in a 14-square-mile area, and available data on land use and activities within each drainage well basin were tabulated. Three public-supply wells (tapping the Lower Floridan aquifer) and 38 drainage wells (open to the Upper Floridan aquifer) were located in 17 drainage basins within the study area. The primary sources of drainage-well inflow are lake overflow, street runoff, seepage from the surficial aquifer system, and process-wastewater disposal. Drainage-well inflow from a variety of ares, including resi- dential, commercial, undeveloped, paved, and industrial areas, are potential sources of con- taminants. The four general types of possible contaminants to drainage-well inflow are inorganic chemicals, organic compounds, turbidity, and microbiological contaminants. Potential contami- nant sources include plant nurseries, citrus groves, parking lots, plating companies, auto- motive repair shops, and most commonly, lake- overflow water. Drainage wells provide a pathway for contaminants to enter the Upper Floridan aquifer and there is a potential for contaminants to move downward from the Upper Floridan to the Lower Floridan aquifer.

  15. Hydrologic Response Differences Between Drainage Network Classifications

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Gironas, J. A.; Niemann, J. D.

    2013-12-01

    Basin drainage networks have been grouped into classifications such as dendritic, parallel, pinnate, rectangular and trellis based on their planform structures. While it has long been known that the size and shape of a drainage basin affect its hydrologic response to precipitation events, the effects of the network organization have not been investigated as extensively. The objective of this work is to simulate and analyze the instantaneous unit hydrographs (IUHs) and hydrologic responses of networks from different classifications for potential systematic differences between the classifications. That goal is accomplished by calculating the IUH for ten previously-classified basins of each network type listed above using a spatially-distributed travel time (SDTT) model applied to the outlet flow length distributions (i.e., width functions) of each drainage network. We find that the width functions, IUHs and the resulting hydrologic responses of the different network classifications are each largely distinguishable from one another based on statistical tests of their moments. Additionally, we find that the differences in hydrologic responses are at least partially independent of the differences in the basin vertical characteristics, as represented by the slope-area relationships. The results indicate that network classification-dependent inputs to semi-distributed rainfall-runoff models could improve model performance.

  16. Surface waters of Illinois River basin in Arkansas and Oklahoma

    USGS Publications Warehouse

    Laine, L.L.

    1959-01-01

    The estimated runoff from the Illinois River basin of 1,660 square miles has averaged 1,160,000 acre-feet per year during the water years 1938-56, equivalent to an average annual runoff depth of 13.1 inches. About 47 percent of the streamflow is contributed from drainage in Arkansas, where an average of 550,000 acre-ft per year runs off from 755 square miles, 45.5 percent of the total drainage area. The streamflow is highly variable. Twenty-two years of record for Illinois River near Tahlequah, Okla., shows a variation in runoff for the water year 1945 in comparison with 1954 in a ratio of almost 10 to 1. Runoff in 1927 may have exceeded that of 1945, according to records for White River at Beaver, Ark., the drainage basin just east of the Illinois River basin. Variation in daily discharge is suggested by a frequency analysis of low flows at the gaging station near Tahlequah, Okla. The mean flow at that site is 901 cfs (cubic feet per second), the median daily flow is 350 cfs, and the lowest 30-day mean flow in a year probably will be less than 130 cfs half of the time and less than 20 cfs every 10 years on the average. The higher runoff tends to occur in the spring months, March to May, a 3-month period that, on the average, accounts for almost half of the annual flow. High runoff may occur during any month in the year, but in general, the streamflow is the lowest in the summer. The mean monthly flow of Illinois River near Tahlequah, Okla., for September is about 11 percent of that for May. Records show that there is flow throughout the year in Illinois River and its principal tributaries Osage Creek, Flint Creek and Barren Fork. The high variability in streamflow in this region requires the development of storage by impoundment if maximum utilization of the available water supplies is to be attained. For example, a 120-day average low flow of 22 cfs occurred in 1954 at Illinois River near Tahlequah, Okla. To have maintained the flow at 350 cfs, the median daily

  17. WATER DRAINAGE MODEL

    SciTech Connect

    J.B. Case

    2000-05-30

    The drainage of water from the emplacement drift is essential for the performance of the EBS. The unsaturated flow properties of the surrounding rock matrix and fractures determine how well the water will be naturally drained. To enhance natural drainage, it may be necessary to introduce engineered drainage features (e.g. drilled holes in the drifts), that will ensure communication of the flow into the fracture system. The purpose of the Water Drainage Model is to quantify and evaluate the capability of the drift to remove water naturally, using the selected conceptual repository design as a basis (CRWMS M&O, 1999d). The analysis will provide input to the Water Distribution and Removal Model of the EBS. The model is intended to be used to provide postclosure analysis of temperatures and drainage from the EBS. It has been determined that drainage from the EBS is a factor important to the postclosure safety case.

  18. Water resources and potential hydrologic effects of oil-shale development in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Lindskov, K.L.; Kimball, B.A.

    1984-01-01

    Normal annual precipitation varies with altitude from less than 8 inches at altitudes below 5,000 feet to more than 20 inches where altitudes exceed 9,000 feet. In areas where precipitation is less than 10 inches, streams are ephemeral. Mean annual runoff is about 28,000 acre-feet and varies from less than 0.1 to 1.6 inches. Runoff varies yearly and seasonally, and potentially evapotranspiration exceeds precipitation. The White and Green Rivers convey an average flow of 4.3 million acre-feet per year from an outside drainage of 34,000 squqre miles, more than 150 times the flow originating in the area. Total recoverable groundwater in storage is about 18 million acre-feet. Yields of individual wells and interference between wells cound limit withdrawals to about 15,000 acre-feet per year. A 400,000-barrel-per-day oil-shale industry would require a water supply of 70,000 acre-feet per year. Other sources of water supply discussed are diversion from the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage, diversion from the Green River, and conjunctive use of ground and surface water. Leachate water from retorted-shale piles has large concentrations of sodium and sulfates, and retort waters contain much organic carbon and nutrients. Without proper disposal of these water, the natural waters of the area could be contaminated and the salinity of downstream waters in the Colorado River Basin could be increased. (USGS)

  19. Constructability -- from Qinshan to the ACR

    SciTech Connect

    Elgohary, Medhat; Fairclough, Neville; Ricciuti, Rick

    2003-09-01

    Atomic Energy of Canada Limited (AECL) has recognized the importance of constructability for many years, and it is applying its principals to CANDU projects with increasing success. The CANDU 6 Nuclear Power Plant has been constructed eleven times in the last 25 years. However, the last two units completed on the Qinshan project in China have employed some very innovative construction methods that have not been used on the previous units. In order to make nuclear power generation more competitive, shorter construction schedules and reduced project cost and risks are essential objectives. The application of constructability principles is a major contributor to achieving these objectives. The success of Qinshan has increased the confidence in the new construction methods, which are being implemented on the ACR (Advanced CANDU Reactor) successfully. An ACR construction strategy that utilizes advanced construction techniques has been developed by AECL. The strategy includes paralleling of activities by using extensive modularization and the vertical installation of equipment and modules into the reactor building using a VHL (Very Heavy Lift) crane. This strategy allows short schedules to be met with a minimum risk to the project.

  20. Potential for oil mining at Elk Basin oil field, Wyoming-Montana

    SciTech Connect

    Ayler, M.F.; Brechtel, C.

    1987-08-01

    By using the teachings of two US Patents, 4,458,945 and 4,595,239, it is possible to place mine workings below the Frontier sands of the Elk basin field, drill upward safely into the reservoir, and produce by gravity added to any present drive system. The patents describe equipment and a way of drilling upward with all cuttings and fluids flowing into a closed pipeline system for surface discharge. A final casing can be cemented into place and the well completed, again with all production into a closed pipeline. This system would permit field pressure control and maintenance with gravity drainage. Wells could be placed on one-acre spacing or less, thus producing much of the oil normally lost between surface wells. An analysis will be presented of probable mining costs for development of the Elk basin oil field on one-acre spacing. Petroleum engineers will then be able to estimate for themselves which method has the most profit potential and maximum recovery - the present systems or oil recovery by mining.

  1. Surface water of Beaver Creek Basin, in South-Central Oklahoma

    USGS Publications Warehouse

    Laine, L.L.; Murphy, J.J.

    1962-01-01

    Annual discharge from Beaver Creek basin is estimated to have averaged 217,000 acre-feet during a 19-year base period, water years 1938-56, equivalent to an average annual runoff depth of 4.7 inches over the 857 square-mile drainage area. About 55,000 acre-feet per year comes from Little Beaver Creek basin, a tributary drainage of 195 square miles. Yearly streamflow is highly variable. The discharge of Little Beaver Creek near Duncan during 13-year period of record (water years 1949-61) has ranged from 86,530 acre-feet in calendar year 1957 to 4,880 acre-feet in 1956, a ratio of almost 18 to 1. Highest runoff within a year tends to occur in the spring months of May and June, a 2-month period that, on the average, accounts for more than half of the annual discharge of Little Beaver Creek near Duncan. The average monthly runoff during record was lowest in January. Variation in daily streamflow is such that while the average discharge for the 13-year period of record was 50.1 cfs (cubic feet per second), the daily discharge was more than 6 cfs only about half of the time. There was no flow at the site 19 percent of the time during the period. Some base runoff usually exists in the headwaters of Beaver and Little Beaver Creeks, and in the lower reaches of Beaver Creek. Low flow in Cow Creek tends to be sustained by waste water from Duncan, where water use in 1961 averaged 4 million gallons per day. In the remainder of the basin, periods of no flow occur in most years. The surface water of Beaver Creek basin is very hard but in general is usable for municipal, agricultural and industrial purposes. The chemical character of the water is predominantly a calcium, magnesium bicarbonate type of water in the lower three quarters of the basin, except in Cow Creek where oil-field brines induce a distinct sodium, calcium chloride characteristic at low and medium flows. A calcium sulfate type of water occurs in most of the northern part of the basin except in headwater areas

  2. 76 FR 34276 - Advisory Committee on Reactor Safeguards (ACRS), Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... with Inventory and Certification of digital systems, operating experience for digital systems, and... Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on June 22, 2011, Room T-2B3, 11545 Rockville Pike,...

  3. 76 FR 55717 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-08

    ... and Probabilistic Risk Assessment The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a meeting on September 20, 2011, Room T-2B1, 11545 Rockville Pike, Rockville... Modifying the Risk-Informed Regulatory Guidance for New Reactors. The Subcommittee will hear...

  4. 77 FR 60480 - Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ... Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on October 30, 2012, Room T-2B1, 11545 Rockville Pike... and discuss the Design Specific Review Standard (DSRS) for Instrumentation and Control of the...

  5. 76 FR 52715 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Digital...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ... Instrumentation and Control Systems; Notice of Meeting The ACRS Subcommittee on Digital Instrumentation and Control Systems (DI&C) will hold a meeting on September 7, 2011, Room T-2B1, 11545 Rockville Pike... Diversity on Defense-In-Depth in Digital Computer-Based I&C Systems,'' and other related activities...

  6. 75 FR 61781 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on Reliability...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... and PRA The ACRS Subcommittee on Reliability and Probabilistic Risk Assessment (PRA) will hold a... statement on Safety Culture. The Subcommittee will hear presentations by and hold discussions with...: September 30, 2010. Antonio Dias, Chief, Reactor Safety Branch B, Advisory Committee on Reactor...

  7. Comparison between tracer measurements and model calculations for nighttime drainage flows in complex terrain

    SciTech Connect

    Foster, K.T.; Dickerson, M.H.

    1984-06-01

    Results from a series of field experiments in the Geysers area of northern California, in which nonreactive tracers were released from different locations within or near nighttime drainage flows, were used to evaluate a three-dimensional mars-consistent diagnostic wind field model (MATHEW) and a particle-in-cell transport and diffusion model (APDIC). 9 references, 4 figures, 2 tables. (ACR)

  8. Drainage water management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article introduces a series of papers that report results of field studies to determine the effectiveness of drainage water management (DWM) on conserving drainage water and reducing losses of nitrogen (N) to surface waters. The series is focused on the performance of the DWM (also called contr...

  9. Percutaneous Abscess Drainage

    MedlinePlus

    ... the local anesthetic is injected. Most of the sensation is at the skin incision site which is numbed using local anesthetic. ... open surgical drainage. Risks Any procedure where the skin is penetrated ... organ may be damaged by percutaneous abscess drainage. Occasionally ...

  10. Biotreatment of mine drainage

    SciTech Connect

    Bender, J.; Phillips, R.

    1996-12-31

    Several experiments and field tests of microbial mats are described. One study determined the removal rate of Uranium 238 and metals from groundwater by microbial mats. Free floating mats, immobilized mats, excised mats, and pond treatment were examined. Field tests of acid coal mine drainage and precious metal mine drainage are also summarized. The mechanisms of metal removal are briefly described.

  11. Foam consolidation and drainage.

    PubMed

    Jun, S; Pelot, D D; Yarin, A L

    2012-03-27

    A theoretical model of foam as a consolidating continuum is proposed. The general model is applied to foam in a gravity settler. It is predicted that liquid drainage from foam in a gravity settler begins with a slow drainage stage. Next, a stage with faster drainage occurs where the drainage rate doubles compared to the initial stage. The experiments conducted within the framework of this work confirmed the theoretical predictions and allowed measurements of foam characteristics. Foams of three different concentrations of Pantene Pro-V Classic Care Solutions shampoo were studied, as well as the addition of polyethylene oxide (PEO) in one case. The shampoo's main foaming components are sodium lauryl sulfate and sodium laureth sulfate. It is shown to what extent foam drainage is slowed down by using higher shampoo concentrations and how it is further decreased by adding polymer (PEO).

  12. MO-AB-207-04: ACR Update in Mammography

    SciTech Connect

    Berns, E.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  13. MO-AB-207-01: ACR Update in CT

    SciTech Connect

    McNitt-Gray, M.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  14. MO-AB-207-02: ACR Update in MR

    SciTech Connect

    Price, R.

    2015-06-15

    A goal of an imaging accreditation program is to ensure adequate image quality, verify appropriate staff qualifications, and to assure patient and personnel safety. Currently, more than 35,000 facilities in 10 modalities have been accredited by the American College of Radiology (ACR), making the ACR program one of the most prolific accreditation options in the U.S. In addition, ACR is one of the accepted accreditations required by some state laws, CMS/MIPPA insurance and others. Familiarity with the ACR accreditation process is therefore essential to clinical diagnostic medical physicists. Maintaining sufficient knowledge of the ACR program must include keeping up-to-date as the various modality requirements are refined to better serve the goals of the program and to accommodate newer technologies and practices. This session consists of presentations from authorities in four ACR accreditation modality programs, including magnetic resonance imaging, computed tomography, nuclear medicine, and mammography. Each speaker will discuss the general components of the modality program and address any recent changes to the requirements. Learning Objectives: To understand the requirements of the ACR MR Accreditation program. The discussion will include accreditation of whole-body general purpose magnets, dedicated extremity systems well as breast MRI accreditation. Anticipated updates to the ACR MRI Quality Control Manual will also be reviewed. To understand the requirements of the ACR CT accreditation program, including updates to the QC manual as well as updates through the FAQ process. To understand the requirements of the ACR nuclear medicine accreditation program, and the role of the physicist in annual equipment surveys and the set up and supervision of the routine QC program. To understand the current ACR MAP Accreditation requirement and present the concepts and structure of the forthcoming ACR Digital Mammography QC Manual and Program.

  15. Technical Analysis of In-Valley Drainage Management Strategies for the Western San Joaquin Valley, California

    USGS Publications Warehouse

    Presser, Theresa S.; Schwarzbach, Steven E.

    2008-01-01

    The western San Joaquin Valley is one of the most productive farming areas in the United States, but salt-buildup in soils and shallow groundwater aquifers threatens this area?s productivity. Elevated selenium concentrations in soils and groundwater complicate drainage management and salt disposal. In this document, we evaluate constraints on drainage management and implications of various approaches to management considered in: *the San Luis Drainage Feature Re-Evaluation (SLDFRE) Environmental Impact Statement (EIS) (about 5,000 pages of documentation, including supporting technical reports and appendices); *recent conceptual plans put forward by the San Luis Unit (SLU) contractors (i.e., the SLU Plans) (about 6 pages of documentation); *approaches recommended by the San Joaquin Valley Drainage Program (SJVDP) (1990a); and *other U.S. Geological Survey (USGS) models and analysis relevant to the western San Joaquin Valley. The alternatives developed in the SLDFRE EIS and other recently proposed drainage plans (refer to appendix A for details) differ from the strategies proposed by the San Joaquin Valley Drainage Program (1990a). The Bureau of Reclamation (USBR) in March 2007 signed a record of decision for an in-valley disposal option that would retire 194,000 acres of land, build 1,900 acres of evaporation ponds, and develop a treatment system to remove salt and selenium from drainwater. The recently proposed SLU Plans emphasize pumping drainage to the surface, storing approximately 33% in agricultural water re-use areas, treating selenium through biotechnology, enhancing the evaporation of water to concentrate salt, and identifying ultimate storage facilities for the remaining approximately 67% of waste selenium and salt. The treatment sequence of reuse, reverse osmosis, selenium bio-treatment, and enhanced solar evaporation is unprecedented and untested at the scale needed to meet plan requirements. All drainage management strategies that have been proposed

  16. ACR Appropriateness Criteria colorectal cancer screening.

    PubMed

    Yee, Judy; Kim, David H; Rosen, Max P; Lalani, Tasneem; Carucci, Laura R; Cash, Brooks D; Feig, Barry W; Fowler, Kathryn J; Katz, Douglas S; Smith, Martin P; Yaghmai, Vahid

    2014-06-01

    Colorectal cancer is the third leading cause of cancer deaths in the United States. Most colorectal cancers can be prevented by detecting and removing the precursor adenomatous polyp. Individual risk factors for the development of colorectal cancer will influence the particular choice of screening tool. CT colonography (CTC) is the primary imaging test for colorectal cancer screening in average-risk individuals, whereas the double-contrast barium enema (DCBE) is now considered to be a test that may be appropriate, particularly in settings where CTC is unavailable. Single-contrast barium enema has a lower performance profile and is indicated for screening only when CTC and DCBE are not available. CTC is also the preferred test for colon evaluation following an incomplete colonoscopy. Imaging tests including CTC and DCBE are not indicated for colorectal cancer screening in high-risk patients with polyposis syndromes or inflammatory bowel disease. This paper presents the updated colorectal cancer imaging test ratings and is the result of evidence-based consensus by the ACR Appropriateness Criteria Expert Panel on Gastrointestinal Imaging. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances where evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  17. A reconnaissance of hydrogeologic conditions in Lehigh Acres and adjacent areas of Lee County, Florida

    USGS Publications Warehouse

    Boggess, Durward Hoye; Missimer, T.M.

    1975-01-01

    Lehigh Acres, a residential community with a population of about 13,500 and comprising an area of about 94 square miles (243 square kilometres) in the eastern part of Lee County, has been under development since 1954. Prior to development the area was poorly drained. By 1974, more than 150 miles (241 kilometres) of drainageways had been constructed to drain the area. The water-bearing formations underlying Lehigh Acres include the water-table, sandstone, lower Hawthorn, and Suwannee aquifers. The water-table aquifer is usually not more than 30 feet (9 metres) thick; it contains water of relatively good quality, except for iron and color. Water levels in this aquifer probably have been affected by construction of drainage canals. The sandstone aquifer, used extensively throughout the area as a source of water supply usually contains water of good quality although the water is hard and in places may contain concentrations of dissolved solids and iron which exceed the recommended limits of the U.S. Public Health Service and the State of Florida for drinking water. The lower Hawthorn and Suwannee aquifers, usually encountered at depths between 440 and 850 feet (135 and 262 metres), contains water with relatively high concentrations of sodium, sulfate, chloride, and dissolved solids. Three streams, the Orange River, Hickey Creek, and Bedman Creek and the canals connected to them, provide drainage of the area. Except for the Orange River, where the water is of good chemical quality, little is known of the water quality. Similarly, little information is available on stream discharge except for the Orange River where the average annual discharge was 41.1 cubic feet per second (11.6 cubic metres per second) between 1935-46. Most lakes and ponds in Lehigh Acres are hydraulically connected to the water-table aquifer such that factors which affect one also affect the other. Theoretical drawdown curves indicate that the drainage canals may affect ground-water levels to a

  18. Ear drainage culture

    MedlinePlus

    ... needed. Your health care provider will use a cotton swab to collect the sample from inside the ... Using a cotton swab to take a sample of drainage from the outer ear is not painful. However, ear pain may ...

  19. Ground-water conditions and geologic reconnaissance of the Upper Sevier River basin, Utah

    USGS Publications Warehouse

    Carpenter, Carl H.; Robinson, Gerald B.; Bjorklund, Louis Jay

    1967-01-01

    The upper Sevier River basin is in south-central Utah and includes an area of about 2,400 .square miles of high plateaus and valleys. It comprises the entire Sevier River drainage basin above Kingston, including the East Fork Sevier River and its tributaries. The basin was investigated to determine general ground-water conditions, the interrelation of ground water and surface water, the effects of increasing the pumping of ground water, and the amount of ground water in storage. The basin includes four main valleys--Panguitch Valley, Circle Valley, East Fork Valley, and Grass Valley--which are drained by the Sevier River, the East Fork Sevier River, and Otter Creek. The plateaus surrounding the valleys consist of sedimentary and igneous rocks that range in age from Triassic to Quaternary. The valley fill, which is predominantly alluvial gravel, sand, silt, and clay, has a maximum thickness of more than 800 feet. The four main valleys constitute separate ground-water basins. East Fork Valley basin is divided into Emery Valley, Johns Valley, and Antimony subbasins, and Grass Valley basin is divided into Koosharem and Angle subbasins. Ground water occurs under both artesian and water-table conditions in all the basins and subbasins except Johns Valley, Emery Valley, and Angle subbasins, where water is only under water-table conditions. The. water is under artesian pressure in beds of gravel and sand confined by overlying beds of silt and clay in the downstream parts of Panguitch Valley basin, Circle Valley basin, and Antimony subbasin, and in most of Koosharem subbasin. Along the sides and upstream ends of these basins, water is usually under water-table conditions. About 1 million acre-feet of ground water that is readily available to wells is stored in the gravel and sand of the upper 200 feet of saturated valley fill. About 570,000 acre-feet is stored in Panguitch Valley basin, about 210,000 in Circle Valley basin, about 6,000 in Emery Valley subbasin, about 90

  20. Airport Pavement Drainage

    DTIC Science & Technology

    1990-06-01

    drainage layer and trench drains can be found in Cedergren (10). 4.2 COMPONENTS OF SUBSURFACE DRAINAGE SYSTEM 4.2.1 Outflow Once the water has found...According to Cedergren (10) the open graded aggregate can replace the normally used dense graded materials on an inch-for-inch basis. A main problem in...the perforated pipe to prevent fines from entering, Figure 4.24 (11). Cedergren (10) suggests that collector pipes should be 42 laid with the

  1. ACR Appropriateness Criteria Right Upper Quadrant Pain

    PubMed Central

    Yarmish, Gail M.; Smith, Martin P.; Rosen, Max P.; Baker, Mark E.; Blake, Michael A.; Cash, Brooks D.; Hindman, Nicole M.; Kamel, Ihab R.; Kaur, Harmeet; Nelson, Rendon C.; Piorkowski, Robert J.; Qayyum, Aliya; Tulchinsky, Mark

    2015-01-01

    Acute right upper quadrant pain is a common presenting symptom in patients with acute cholecystitis. When acute cholecystitis is suspected in patients with right upper quadrant pain, in most clinical scenarios, the initial imaging modality of choice is ultrasound. Although cholescintigraphy has been shown to have slightly higher sensitivity and specificity for diagnosis, ultrasound is preferred as the initial study for a variety of reasons, including greater availability, shorter examination time, lack of ionizing radiation, morphologic evaluation, confirmation of the presence or absence of gallstones, evaluation of bile ducts, and identification or exclusion of alternative diagnoses. CT or MRI may be helpful in equivocal cases and may identify complications of acute cholecystitis. When ultrasound findings are inconclusive, MRI is the preferred imaging test in pregnant patients who present with right upper quadrant pain. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment. PMID:24485592

  2. ACR appropriateness criteria right upper quadrant pain.

    PubMed

    Yarmish, Gail M; Smith, Martin P; Rosen, Max P; Baker, Mark E; Blake, Michael A; Cash, Brooks D; Hindman, Nicole M; Kamel, Ihab R; Kaur, Harmeet; Nelson, Rendon C; Piorkowski, Robert J; Qayyum, Aliya; Tulchinsky, Mark

    2014-03-01

    Acute right upper quadrant pain is a common presenting symptom in patients with acute cholecystitis. When acute cholecystitis is suspected in patients with right upper quadrant pain, in most clinical scenarios, the initial imaging modality of choice is ultrasound. Although cholescintigraphy has been shown to have slightly higher sensitivity and specificity for diagnosis, ultrasound is preferred as the initial study for a variety of reasons, including greater availability, shorter examination time, lack of ionizing radiation, morphologic evaluation, confirmation of the presence or absence of gallstones, evaluation of bile ducts, and identification or exclusion of alternative diagnoses. CT or MRI may be helpful in equivocal cases and may identify complications of acute cholecystitis. When ultrasound findings are inconclusive, MRI is the preferred imaging test in pregnant patients who present with right upper quadrant pain. The ACR Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed every 2 years by a multidisciplinary expert panel. The guideline development and review include an extensive analysis of current medical literature from peer-reviewed journals and the application of a well-established consensus methodology (modified Delphi) to rate the appropriateness of imaging and treatment procedures by the panel. In those instances in which evidence is lacking or not definitive, expert opinion may be used to recommend imaging or treatment.

  3. Grande Ronde Basin Fish Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    McGowan, Vance R.; Powell, Russ M.; Stennfeld, Scott P.

    2001-04-01

    On July 1, 1984 the Bonneville Power Administration and the Oregon Department of Fish and Wildlife entered into an agreement to initiate fish habitat enhancement work in the Joseph Creek subbasin of the Grande Ronde River Basin in northeast Oregon. In July of 1985 the Upper and Middle Grande Ronde River, and Catherine Creek subbasins were included in the intergovernmental contract, and on March 1, 1996 the Wallowa River subbasin was added. The primary goal of ''The Grande Ronde Basin Fish Habitat Enhancement Project'' is to access, create, improve, protect, and restore riparian and instream habitat for anadromous salmonids, thereby maximizing opportunities for natural fish production within the basin. This project provided for implementation of Program Measure 703 (C)(1), Action Item 4.2 of the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC, 1987), and continues to be implemented as offsite mitigation for mainstem fishery losses caused by the Columbia River hydro-electric system. All work conducted by the Oregon Department of Fish and Wildlife is on private lands and therefore requires that considerable time be spent developing rapport with landowners to gain acceptance of, and continued cooperation with this program throughout 10-15 year lease periods. This project calls for passive regeneration of habitat, using riparian enclosure fencing as the primary method to restore degraded streams to a normative condition. Active remediation techniques using plantings, off-site water developments, site-specific instream structures, or whole channel alterations are also utilized where applicable. Individual projects contribute to and complement ecosystem and basin-wide watershed restoration efforts that are underway by state, federal, and tribal agencies, and local watershed councils. Work undertaken during 2000 included: (1) Implementing 2 new projects in the Grande Ronde drainage, and retrofitting one old project that will protect

  4. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  5. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  6. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  7. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... of production flexibility contract acres or base acres protected by a Conservation Reserve...

  8. Geohydrologic summary of the Pearl River basin, Mississippi and Louisiana

    USGS Publications Warehouse

    Lang, Joseph W.

    1972-01-01

    Fresh water in abundance is contained in large artesian reservoirs in sand and gravel deposits of Tertiary and Quaternary ages in the Pearl River basin, a watershed of 8,760 square miles. Shallow, water-table reservoirs occur in Quarternary deposits (Pleistocene and Holocene) that blanket most of the uplands in .the southern half of the basin and that are present in smaller upland areas and along streams elsewhere. The shallow reservoirs contribute substantially to dry-weather flow of the Strong River and Bogue Chitto and of Holiday, Lower Little, Silver, and Whitesand Creeks, among others. About 3 billion acre-feet of ground water is in storage in the fresh-water section, which extends from the surface to depths ranging from about sea level in the extreme northern part of the basin to more than 3,000 feet below sea level in the southern part of the basin. Variations in low flow for different parts of the river basin are closely related to geologic terrane and occurrence of ground water. The upland terrace belt that crosses the south-central part of the basin is underlain by permeable sand and gravel deposits and yields more than 0.20 cubic feet per second per square mile of drainage area to streamflow, whereas the northern part of the basin, underlain by clay, marl, and fine to medium sand, yields less than 0.05 cubic feet per second per square mile of drainage area (based on 7-day Q2 minimum flow computed from records). Overall, the potential surface-water supplies are large. Because water is available at shallow depths, most of the deeper aquifers have not been developed anywhere in the basin. At many places in the south, seven or more aquifers could be developed either by tapping one sand in each well or by screening two or more sands in a single well. Well fields each capable, of producing several million gallons of water a day are feasible nearly anywhere in the Pearl River basin. Water in nearly all the aquifers is of good to excellent quality and requires

  9. The Raft River Basin, Idaho-Utah as of 1966: A reappraisal of the water resources and effects of ground-water development

    USGS Publications Warehouse

    Walker, E.H.; Dutcher, L.C.; Decker, S.O.; Dyer, K.L.

    1970-01-01

    The Raft River basin, mostly in south-central Idaho and partly in Utah, is a drainage basin of approximately 1,510 square miles. Much arable land in the basin lacks water for irrigation, and the potentially irrigable acreage far exceeds the amount that could be irrigated with the 140,000 acre-feet estimated annual water yield. Therefore, the amount of uncommitted water that could be intercepted and used within the basin is the limiting factor in further development of agriculture irrigated with water derived from within the basin; Water for additional irrigation might be obtained by pumping more ground water, but only if large additional ground-water storage depletion can be tolerated. Alternatively, supplemental water might be imported. The Raft River basin is an area of rugged mountain ranges, aggraded alluvial plains, and intermontane valleys. Topography and geologic structure strongly influence the climate and hydrology. The Raft River rises in the Goose Creek Range of northwestern Utah and flows generally northeastward and northward, joining the Snake River in the backwater of Lake Walcott. The climate ranges from cool subhumid in the mountains to semiarid on the floor of the Raft River valley. Precipitation ranges from less than l0 inches on the valley floor to more than 30 inches at some places in the mountains. Rainfall is light during the growing season of about 100 days, and irrigation is necessary for most cultivated crops. About 87,000 acres of land was irrigated in the 1960's, on the average, and most of that is in the lower Raft River valley. Nearly all usable surface water in the basin is diverted for irrigation and as of 1966 less than 20,000 acres were irrigated exclusively with surface water. Most stock, farm, and domestic water is from wells. Irrigation with ground water is Widely practiced and about 69,000 acres were irrigated partly or wholly with ground water in, 1966. In 1963 the valley was closed to further issuance of permits to appropriate

  10. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor...

  11. Ground water in the southeastern Uinta Basin, Utah and Colorado

    USGS Publications Warehouse

    Holmes, Walter F.; Kimball, Briant A.

    1987-01-01

    The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present in valley-fill deposits of six major drainages. Consolidated-rock aquifers include the bird?s-nest aquifer in the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area. The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute. Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to

  12. An advanced distributed automated extraction of drainage network model on high-resolution DEM

    NASA Astrophysics Data System (ADS)

    Mao, Y.; Ye, A.; Xu, J.; Ma, F.; Deng, X.; Miao, C.; Gong, W.; Di, Z.

    2014-07-01

    A high-resolution and high-accuracy drainage network map is a prerequisite for simulating the water cycle in land surface hydrological models. The objective of this study was to develop a new automated extraction of drainage network model, which can get high-precision continuous drainage network on high-resolution DEM (Digital Elevation Model). The high-resolution DEM need too much computer resources to extract drainage network. The conventional GIS method often can not complete to calculate on high-resolution DEM of big basins, because the number of grids is too large. In order to decrease the computation time, an advanced distributed automated extraction of drainage network model (Adam) was proposed in the study. The Adam model has two features: (1) searching upward from outlet of basin instead of sink filling, (2) dividing sub-basins on low-resolution DEM, and then extracting drainage network on sub-basins of high-resolution DEM. The case study used elevation data of the Shuttle Radar Topography Mission (SRTM) at 3 arc-second resolution in Zhujiang River basin, China. The results show Adam model can dramatically reduce the computation time. The extracting drainage network was continuous and more accurate than HydroSHEDS (Hydrological data and maps based on Shuttle Elevation Derivatives at multiple Scales).

  13. Drainage networks after wildfire

    USGS Publications Warehouse

    Kinner, D.A.; Moody, J.A.

    2005-01-01

    Predicting runoff and erosion from watersheds burned by wildfires requires an understanding of the three-dimensional structure of both hillslope and channel drainage networks. We investigate the small-and large-scale structures of drainage networks using field studies and computer analysis of 30-m digital elevation model. Topologic variables were derived from a composite 30-m DEM, which included 14 order 6 watersheds within the Pikes Peak batholith. Both topologic and hydraulic variables were measured in the field in two smaller burned watersheds (3.7 and 7.0 hectares) located within one of the order 6 watersheds burned by the 1996 Buffalo Creek Fire in Central Colorado. Horton ratios of topologic variables (stream number, drainage area, stream length, and stream slope) for small-scale and large-scale watersheds are shown to scale geometrically with stream order (i.e., to be scale invariant). However, the ratios derived for the large-scale drainage networks could not be used to predict the rill and gully drainage network structure. Hydraulic variables (width, depth, cross-sectional area, and bed roughness) for small-scale drainage networks were found to be scale invariant across 3 to 4 stream orders. The relation between hydraulic radius and cross-sectional area is similar for rills and gullies, suggesting that their geometry can be treated similarly in hydraulic modeling. Additionally, the rills and gullies have relatively small width-to-depth ratios, implying sidewall friction may be important to the erosion and evolutionary process relative to main stem channels.

  14. Climate and Tectonics Need Not Apply: Transient Erosion Driven by Drainage Integration, Aravaipa Creek, AZ

    NASA Astrophysics Data System (ADS)

    Jungers, M.; Heimsath, A. M.

    2013-12-01

    Periods of transient erosion during landscape evolution are most commonly attributed to fluvial systems' responses to changes in tectonic or climatic forcing. Dramatic changes in base level and sudden increases in drainage area associated with drainage reorganization can, however, drive punctuated events of incision and erosion equal in magnitude to those driven by tectonics or climate. In southeastern Arizona's Basin and Range, a mature portion of the North American physiographic province, the modern Gila River system integrates a network of previously internally drained structural basins. One basin in particular, Aravaipa Creek, is the most recent to join the broader Gila River fluvial network. Following drainage integration, Aravaipa Creek rapidly incised to equilibrate with its new, much lower, base level. In doing so, it carved Aravaipa Canyon, excavated a large volume of sedimentary basin fill, and captured drainage area from the still internally drained Sulphur Springs basin. Importantly, this dramatic episode of transient incision and erosion was the result of drainage integration alone. We hypothesize that the adjustment time for Aravaipa Creek was shorter than the timescale of any climate forcing, and regional extensional tectonics were quiescent at the time of integration. We can, therefore, explicitly quantify the magnitude of transient incision and erosion driven by drainage reorganization. We use remnants of the paleo-basin surface and modern landscape elevations to reconstruct the pre-drainage integration topography of Aravaipa Creek basin. Doing so enables us to quantify the magnitude of incision driven by drainage reorganization as well as the volume of material eroded from the basin subsequent to integration. Key control points for our landscape reconstruction are: (1) the inferred elevation of the spillover point between Aravaipa Creek and the San Pedro River; (2) Quaternary pediment-capping gravels above Aravaipa Canyon (3) perched remnants of

  15. 130. Julian Price Memorial Park. Fortyseven acre Julian Price Lake ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    130. Julian Price Memorial Park. Forty-seven acre Julian Price Lake created by an impoundment. Looking west. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  16. Hydrologic Impact Of Subsurface Drainage Of Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Naz, B. S.; Johannsen, C. J.; Bowling, L. C.

    2005-12-01

    Although subsurface drainage has benefited agricultural productions in many regions of the U.S., there are also concerns about the potential impacts of these systems on watershed hydrology and water quality. This study was focused on tile lines identification and hydrologic response of subsurface drainage systems for the Agronomy Center for Research and Education (ACRE), West Lafayette, Indiana and the Southeastern Purdue Agriculture Center (SEPAC) in southeastern, Indiana. The purpose of the study was to develop and evaluate a remote sensing methodology for automatic detection of tile lines from aerial photographs and to evaluate the Distributed Hydrology Soil-Vegetation Model (DHSVM) to analyze the hydrologic response of tile drained fields. A step-wise approach was developed to first use different image enhancement techniques to increase the visual distinction of tile lines from other details in the image. A new classification model was developed to identify locations of subsurface tiles using a decision tree classifier which compares the multiple data sets such as enhanced image data, land use class, soil drainage class, hydrologic group and surface slope. Accuracy assessment of the predicted tile map was done by comparing the locations of tile drains with existing historic maps and ground-truth data. The overall performance of decision tree classifier model coupled with other pre- and post- classification methods shows that this model can be a very effective tool in identifying tile lines from aerial photographs over large areas of land. Once the tile map was created, the DHSVM was applied to ACRE and SEPAC respectively to see the hydrological impact of the subsurface drainage network. Observed data for 3-years (1998-2000) at ACRE and for 6-years (1993-1998) at SEPAC were used to calibrate and validate the model. The model was simulated for three scenarios: 1) baseline scenario (no tiles), 2) with known tile lines and 3) with tile lines created through

  17. [Drainage in thyroid surgery].

    PubMed

    Ardito, G; Revelli, L; Guidi, M L; Murazio, M; Lucci, C; Modugno, P; Di Giovanni, V

    1999-01-01

    Bleeding represents a rare complication of thyroid surgery but when it occurs it may be life-threatening. To prevent this complication drainage is widely used. However no study has demonstrated the drains' value and recent reports have questioned its benefits. Therefore we have analyzed our experience of a 10 year-period in which 1.217 thyroidectomies were performed by the same surgical team and prophylactic routine drainage was always adopted. In 13 patients (1.06%) a benign hematoma occurred with spontaneous remission. In 6 patients the bleeding was severe and compressive hematoma occurred; it required surgical re-exploration. Such a complication is unusual in the neck surgery (0.49% in the authors' series) performed by experienced surgeons and when life-threatening hematomas do occur they depend on various uncontrolled factors and drainage is often not helpful. Otherwise a meticulous haemostatic technique is necessary and patients should be observed very closely during the few first hours following surgery on the thyroid gland. Therefore on the basis of the analysis of their series, although it is not always possible to prove the benefit of the drainage, the authors suggest its indication in the neck surgery, as in other fields with dead space, to remove blood and secretions reducing postoperative complications. They have never observed wound infections and patients were discharged within 72 hours.

  18. Drainage Water Filtration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tile drainage discharge from managed turf is known to carry elevated concentrations of agronomic fertilizers and chemicals. One approach being considered to reduce the transport is end-of-tile-filters. Laboratory and field studies have been initiated to address the efficacy of this approach. Result...

  19. Determination of the Relationship between Hydrologic Processes and Basin Morphometry - The Lamos Basin (Mersin, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldırım, Ümit; Güler, Cüneyt

    2016-04-01

    This study has been carried out to determine the relationship between hydrologic processes and basin morphometry in the Lamos Basin, which is located at the northern part of the Mersin (SE Turkey). The morphometric parameters of the basin was derived from the 1:25K scale topographic map sheets that were digitized using ArcGIS 9.3.1 geographic information system (GIS) software. Morphometric parameters considered in this study include basin area, basin length, basin perimeter length, stream order, stream number, stream length, mean stream length, basin relief, drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio, and hypsometric integral. The results have shown that there are 1252 individual stream reaches with a total length of 1414.1 km in the Lamos basin, which covers an area of 1358 km2 and has a length of 103 km in the N-S direction. Furthermore, the basin has a medium drainage density of 1.04 1/km with a stream frequency and drainage texture values of 0.92 and 4.33, respectively. The basin can be classified as elongated because of the low values of elongation ratio (0.48) and form factor (0.12). The hypsometric integral of the basin (0.58) indicates that it is in the youth period and thus reasonably sensitive to erosion. The values of drainage texture, drainage density, and stream frequency indicate that the Lamos basin is moderately well drained, therefore overland flow in the basin is not expected to be so quick. Thus, in case of occurrence of sudden peak flows, sensitivity to the land sliding and erosion may increase further. As a result, it is suggested that human activities in the basin should be limited in areas in fairly close proximity to the present day stream network to prevent or reduce the risk to life and property.

  20. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    SciTech Connect

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    2011-06-20

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location

  1. 75 FR 66401 - Advisory Committee on Reactor Safeguards (ACRS); Meeting of the ACRS Subcommittee on U.S...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-28

    ... Pressurized-Water Reactor (US-APWR); Notice of Meeting The ACRS Subcommittee on US-APWR will hold a meeting on... Evaluation report (SER) associated with the US-APWR design certification. The Subcommittee will...

  2. Hydrology of the Price River basin, Utah, with emphasis on selected coal-field areas

    USGS Publications Warehouse

    Waddell, Kidd M.; Dodge, J.E.; Darby, D.W.; Theobald, S.M.

    1986-01-01

    Data obtained during a hydrologic study of the Price River basin, Utah, are used to describe seasonal variations of flow of springs, relation between ground water and surface water, hydraulic properties of the ground-water reservoir, ground-water recharge and discharge, flood characteristics of streams, mineralogic composition and depositional rates of sediments, nutrient and inorganic loading in streams and Scofield Reservoir, and water budgets for selected basins. Additional study and monitoring are needed to detect possible hydrologic changes caused by coal mining. Much of the ground-water discharge from the Star Point Sandstone in the Mesaverde Group in the Wasatch Plateau occurs along faults. In the Book Cliffs, where faulting is less extensive, most of the ground-water discharge is from the Flagstaff Limestone. The Flagstaff Limestone is greatly diffusive, has a small storage coefficient, and contains water which is perched. Springs issuing from the Star Point Sandstone in the Mud Creek drainage (Wasatch Plateau) had recession indexes greater than 365 days per log cycle. Springs issuing at higher altitudes from the Colton Formation and the Flagstaff Limestone in the Soldier Creek area (Book Cliffs) have great seasonal variability, with recession indexes ranging from 24 to 115 days per log cycle. Estimated transmissivities in the Soldier Creek area ranged from 0.003 foot squared per day in the lower part of the Castlegate Sandstone to 0.07 foot squared per day in the Price River Formation. Seepage from the Star Point Sandstone is the major contributor to base flow of the stream in Eccles Canyon (Wasatch Plateau). Gains of as much as 230 gallons per minute occurred near a fault zone which crosses Eccles Canyon at the junction with South Fork Canyon. The potentiometric surface of water in the Blackhawk Formation in the Wasatch Plateau (Mud Creek drainage) and the Book Cliffs (Soldier Creek area) generally is above the coal zones, and dewatering will be necessary

  3. Quaternary Reorganization of North American Mid-continent Drainage Systems

    NASA Astrophysics Data System (ADS)

    Carson, E. C.; Rawling, J. E., III; Attig, J. W.; Bates, B. R.

    2013-12-01

    Identification of ancestral drainage systems in the North American mid-continent has been a topic of research and debate among geologists since the middle of the 19th Century. Over time our understanding of the significance of Quaternary glaciations in reshaping drainage patterns has grown. The ancestral Teays River, which drained large areas of the central Appalachians and flowed westward across Indiana and western Illinois, was dammed multiple times by Quaternary glaciers before finally being rerouted to the course of the modern central Ohio River. Similarly, the northward-flowing ancestral Pittsburgh River was dammed by pre-Illinoian glaciers; subsequent stream piracy converted this river system into the modern Allegheny, Monongahela and uppermost Ohio Rivers. Deposits and geomorphic features along the westward-flowing lower Wisconsin River indicate that the modern upper Mississippi River and Wisconsin River may have experienced a similar history of ice blockage, stream piracy, and radical rerouting. Coring into the Bridgeport strath terrace along the lower Wisconsin River reveals that the bedrock surface dips to the east, indicating the valley was cut by an eastward-flowing river. We believe the most likely scenario following this interpretation is that an ancestral river flowing along the modern upper Mississippi River valley made a sharp bend at Prairie du Chien, WI, and flowed eastward along the valley occupied by the modern lower Wisconsin River. This river, referred to here as the Wyalusing River, likely flowed northeastward into the Great Lakes (St. Lawrence) drainage until that path was blocked by ice advancing from the northwest. Subsequent stream piracy immediately south of the modern confluence of the Mississippi and Wisconsin Rivers rerouted these streams, converting them to the headwaters of the greater Mississippi drainage. The combined rerouting of these river systems into entirely different drainage basins necessitates significant fundamental

  4. Wound Drainage Culture (For Parents)

    MedlinePlus

    ... Your 1- to 2-Year-Old Wound Drainage Culture KidsHealth > For Parents > Wound Drainage Culture Print A A A What's in this article? ... de heridas What It Is A wound drainage culture is a test to detect germs such as ...

  5. Physical modeling of transverse drainage mechanisms

    NASA Astrophysics Data System (ADS)

    Douglass, J. C.; Schmeeckle, M. W.

    2005-12-01

    Streams that incise across bedrock highlands such as anticlines, upwarps, cuestas, or horsts are termed transverse drainages. Their relevance today involves such diverse matters as highway and dam construction decisions, location of wildlife corridors, better-informed sediment budgets, and detailed studies into developmental histories of late Cenozoic landscapes. The transient conditions responsible for transverse drainage incision have been extensively studied on a case-by-case basis, and the dominate mechanisms proposed include: antecedence, superimposition, overflow, and piracy. Modeling efforts have been limited to antecedence, and such the specific erosional conditions required for transverse drainage incision, with respect to the individual mechanisms, remains poorly understood. In this study, fifteen experiments attempted to simulate the four mechanisms and constructed on a 9.15 m long, 2.1 m wide, and 0.45 m deep stream table. Experiments lasted between 50 and 220 minutes. The stream table was filled with seven tons of sediment consisting of a silt and clay (30%) and a fine to coarse sand (70%) mixture. The physical models highlighted the importance of downstream aggradation with regard to antecedent incision versus possible defeat and diversion. The overflow experiments indicate that retreating knickpoints across a basin outlet produce a high probability of downstream flooding when associated with a deep lake. Misters used in a couple of experiments illustrate a potential complication with regard to headward erosion driven piracy. Relatively level asymmetrically sloped ridges allow for the drainage divide across the ridge to retreat from headward erosion, but hindered when the ridge's apex undulates or when symmetrically sloped. Although these physical models cannot strictly simulate natural transverse drainages, the observed processes, their development over time, and resultant landforms roughly emulate their natural counterparts. Proposed originally from

  6. Regional view of a Trans-African Drainage System

    PubMed Central

    Abdelkareem, Mohamed; El-Baz, Farouk

    2014-01-01

    Despite the arid to hyperarid climate of the Great Sahara of North Africa, pluvial climates dominated the region. Radar data shed some light on the postulated Trans-African Drainage System and its relationship to active and inactive tributaries of the Nile basin. Interpretations of recent elevation data confirm a source of the river water from the Red Sea highlands did not connect the Atlantic Ocean across Tushka basin, highlands of Uwinate and Darfur, and Chad basin, but northward to the ancestral Nile Delta. Elements of topography and climate were considered. They show that the former segments of the Nile closely mirror present-day tributaries of the Nile basin in drainage geometry, landscape, and climate. A rainfall data interpolation scenario revealed that this basin received concurrent runoff from both flanks such as Gabgaba-Allaqi to the east and Tushka basin to the west, similar to present-day Sobat and White Nile tributaries, respectively. Overall the western tributaries such as those of Tushka basin and Howar lead to the Nile, which was (and still is) the biggest river system in Africa. PMID:26257941

  7. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; a summary of selected trace element, nutrient, and pesticide data for bed sediments, 1969-90

    USGS Publications Warehouse

    Skrobialowski, S.C.

    1996-01-01

    Spatial distributions of metals and trace elements, nutrients, and pesticides and polychiorinated biphenyls (PCB's) in bed sediment were characterized using data collected from 1969 through 1990 and stored in the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system and the U.S. Environmental Protection Agency's Storage and Retrieval (STORET) system databases. Bed-sediment data from WATSTORE and STORET were combined to form a single database of 1,049 records representing 301 sites. Data were examined for concentrations of 16 metals and trace elements, 4 nutrients, 10 pesticides, and PCB's. Maximum bed-sediment concentrations were evaluated relative to sediment-quality guidelines developed by the National Oceanic and Atmospheric Administration, the Ontario Ministry of Environment and Energy, and the Virginia Department of Environmental Quality. Sites were not selected randomly; therefore, results should not be interpreted as representing average conditions. Many sites were located in or around lakes and reservoirs, urban areas, and areas where special investigations were conducted. Lakes and reservoirs function as effective sediment traps, and elevated concentrations of some constituents occurred at these sites. High concentrations of many metals and trace elements also occurred near urban areas where streams receive runoff or inputs from industrial, residential, and municipal activities. Elevated nutrient concentrations occurred near lakes, reservoirs, and the mouths of major rivers. The highest concentrations of arsenic, beryllium, chromium, iron. mercury, nickel, and selenium occurred in the Roanoke River Basin and may be a result of geologic formations or accumulations of bed sediment in lakes and reservoirs. The highest concentrations of cadmium, lead, and thallium were detected in the Chowan River Basin; copper and zinc were reported highest in the Neuse River Basin. Total phosphorus and total ammonia plus organic nitrogen

  8. Dynamic reorganization of river basins.

    PubMed

    Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu

    2014-03-07

    River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.

  9. Acid mine drainage

    USGS Publications Warehouse

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  10. 7 CFR 1412.23 - Base acres and Conservation Reserve Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Base acres and Conservation Reserve Program. 1412.23... Base Acres for a Farm for Covered Commodities § 1412.23 Base acres and Conservation Reserve Program. (a... year, adjust the base acres for covered commodities and peanuts with respect to the farm by the...

  11. National Program for Inspection of Non-Federal Dams. Griswold Pond Dam(MA00292), Suagus River Basin, Suagus Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-10-01

    drainage area consists of 90 acres (0.14 square miles) directly tribu - tary to Griswold Pond plus an additional 51 acres (0.08 square miles) which...previous recoriandations thnat wvider spillways are needed, and that either’ the tops of’ the danis should be raised or the spilways lowered to obtain

  12. Observing a catastrophic thermokarst lake drainage in northern Alaska

    USGS Publications Warehouse

    Jones, Benjamin M.; Arp, Christopher D.

    2015-01-01

    The formation and drainage of thermokarst lakes have reshaped ice-rich permafrost lowlands in the Arctic throughout the Holocene. North of Teshekpuk Lake, on the Arctic Coastal Plain of northern Alaska, thermokarst lakes presently occupy 22.5% of the landscape, and drained thermokarst lake basins occupy 61.8%. Analysis of remotely sensed imagery indicates that nine lakes (>10 ha) have drained in the 1,750 km2 study area between 1955 and 2014. The most recent lake drainage was observed using in situ data loggers providing information on the duration and magnitude of the event, and a nearby weather station provided information on the environmental conditions preceding the lake drainage. Lake 195 (L195), an 80 ha thermokarst lake with an estimated water volume of ~872,000 m3, catastrophically drained on 05 July 2014. Abundant winter snowfall and heavy early summer precipitation resulted in elevated lake water levels that likely promoted bank overtopping, thermo-erosion along an ice-wedge network, and formation of a 9 m wide, 2 m deep, and 70 m long drainage gully. The lake emptied in 36 hours, with 75% of the water volume loss occurring in the first ten hours. The observed peak discharge of the resultant flood was 25 m3/s, which is similar to that in northern Alaska river basins whose areas are more than two orders of magnitude larger. Our findings support the catastrophic nature of sudden lake drainage events and the mechanistic hypotheses developed by J. Ross Mackay.

  13. Retrofitting for watershed drainage

    SciTech Connect

    Bennett, D.B. ); Heaney, J.P. )

    1991-09-01

    Over the past 8 years, degradation in Florida's Indian River Lagoon has taken the form of fish kills, reduced viable recreational and commercial fisheries, and loss of seagrass beds. Stormwater drainage practices in the watershed have been identified as the primary culprit in the slow demise of the lagoon. Specific drainage problems include an increased volume of freshwater runoff to the estuarine receiving water and deposition of organic sediments, reduced water clarity because of increased discharge of suspended solids and tea colored' groundwater - a result of drainage-canal-induced land dewatering, and eutrophication caused by nutrient loadings. In addition, poor flushing in lagoon segments makes runoff impacts even more damaging to the ecosystem. Recently, the lagoon has received national, regional, state, and local attention over its degradation and citizens' action and multi-agency efforts to restore it. To mitigate damage to the Indian River lagoon, agencies are considering alternatives such as retrofitting to reduce pollutant loads and implementing a more comprehensive watershed approach to stormwater management instead of individual controls on new development currently widely practiced. A comprehensive, long-term watershed control approach avoids unnecessary construction expenses, encourages cost-effective tradeoffs based on specific objectives, facilities performance monitoring, and accounts for cumulative impacts of continued growth in the watershed.

  14. Numerical simulations of drainage flows on Mars

    NASA Technical Reports Server (NTRS)

    Parish, Thomas R.; Howard, Alan D.

    1992-01-01

    Data collected by Viking Landers have shown that the meteorology of the near surface Martian environment is analogous to desertlike terrestrial conditions. Geological evidence such as dunes and frost streaks indicate that the surface wind is a potentially important factor in scouring of the martian landscape. In particular, the north polar basin shows erosional features that suggest katabatic wind convergence into broad valleys near the margin of the polar cap. The pattern of katabatic wind drainage off the north polar cap is similar to that observed on Earth over Antarctica or Greenland. The sensitivity is explored of Martian drainage flows to variations in terrain slope and diurnal heating using a numerical modeling approach. The model used is a 2-D sigma coordinate primitive equation system that has been used for simulations of Antarctic drainage flows. Prognostic equations include the flux forms of the horizontal scalar momentum equations, temperature, and continuity. Parameterization of both longwave (terrestrial) and shortwave (solar) radiation is included. Turbulent transfer of heat and momentum in the Martian atmosphere remains uncertain since relevant measurements are essentially nonexistent.

  15. Storm water management: Potential for lower cost & more benefits if farmers & municipalities cooperate on tile drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A common approach to protect communities from the ravages of stream flooding is to construct storm water retention basins upstream from the property to be protected. Retention basins are an expensive solution and often take valuable agricultural land out of production. Improved drainage of agricultu...

  16. Nitrogen budget in the Changjiang River drainage area

    NASA Astrophysics Data System (ADS)

    Jiang, Tao; Yu, Zhiming; Song, Xiuxian; Cao, Xihua

    2012-07-01

    We established a budget model of nitrogen (N) inputs and outputs between watersheds and waterbodies to determine the sources of riverine N in the Changjiang (Yangtze) River drainage area. Nitrogen inputs in the budget included N from synthetic fertilizer, biological fixation by leguminous and other crops, wet/dry atmospheric deposition, excreta from humans and animals, and crop residues. The total N input was estimated to be 17.6 Tg, of which 20% or 3.5 Tg N was transported into waterbodies. Of the total N transported into waterbodies, the largest proportion was N from animal waste (26%), followed by N from atmospheric wet/dry deposition (25%), synthetic fertilizer N (17%), N in sewage wastes (17%), N in human waste from rural areas (6%) and industrial wastewater N (9%). We studied the spatial patterns of N inputs and outputs by dividing the Changjiang River drainage area into four sub-basins, from upstream to downstream: the Tongtian River drainage area (TTD, the headwater drainage area, 138 000 km2, less disturbed by human activities); the Jinsha River drainage area (JSD, 347 000 km2, less disturbed by human activities, approx. 3 500 km upstream of the Changjiang estuary); the Pingshan-Yichang drainage area (PYD, 520 500 km2, large-scale human disturbance, about 2 000 km upstream of the Changjiang estuary); and the Yichang-Datong drainage area (YDD, 699 900 km2, large-scale human disturbance, approx. 620 km upstream of the Changjiang estuary). The average N input into waterbodies was 2.3, 7.3, 24.1, and 28.2 kg N/ha in the TTD, JSD, PYD, and YDD sub-basins, respectively, suggesting an increase of N-components of more than 10 times from upstream to downstream areas.

  17. Edisto River Basin, South Carolina Feasibility Report for Water Resources Development.

    DTIC Science & Technology

    BASINS (GEOGRAPHIC), DRAINAGE, FLOOD CONTROL, HYDROELECTRICITY, OUTDOOR, PLANNING, POWER, QUALITY CONTROL, RECREATION, RIVERS , SOUTH CAROLINA, STREAMS, WATER QUALITY, WATER RESOURCES, WATER SUPPLIES, WIDTH

  18. Geohydrology and water utilization in the Willcox Basin, Graham and Cochise Counties, Arizona

    USGS Publications Warehouse

    Brown, S.G.; Schumann, Herbert H.

    1969-01-01

    The Willcox basin is an area of interior drainage in the northern part of Sulphur Springs Valley, Cochise and Graham Counties, Ariz. The basin comprises about 1,500 square miles, of which the valley floor occupies about 950 square miles. The basin probably formed during middle and late Tertiary time, when the area was subjected to large-scale faulting accompanied by the uplift of the mountain ranges that presently border it. During and after faulting, large quantities of alluvium were deposited in the closed basin. The rocks in the basin are divided into two broad groups--the rocks of the mountain blocks, of Precambrian through Tertiary age, and the rocks of the basin, of Tertiary and Quaternary age. The mountain blocks consist of igneous, metamorphic, and sedimentary rocks; the water-bearing characteristics of these rocks depend primarily on their degree of weathering and fracturing. Even in areas where these rocks are fractured and jointed, only small amounts of water have been developed. The rocks of the basin consist of moderately consolidated alluvium, poorly consolidated alluvium, and unconsolidated alluvium. The water-bearing characteristics of the moderately and poorly consolidated alluvium are not well known. The unconsolidated alluvium underlies most of the valley floor and consists of two facies, stream deposits and lake beds associated with the old playa. The lenticular sand and gravel layers interbedded in silt- and clay-size material of the unconsolidated alluvium constitute the principal aquifer in the basin. The other aquifers, which yield less water, consist of beds of poorly to moderately consolidated sand- and gravel-size material; these beds occur in both the poorly consolidated and moderately consolidated alluvium. In the Stewart area the median specific capacity of wells per 100 feet of saturated unconsolidated alluvium was 20 gallons per minute, and in the Kansas Settlement area the specific capacity of wells penetrating the poorly and

  19. Inorganic Carbon Isotopes and Chemical Characterization of Watershed Drainages, Barrow, Alaska, 2013

    DOE Data Explorer

    Heikoop, Jeffrey H.; Wilson, Cathy J.; Newman, Brent D.; Throckmorton, Heather M.

    2015-09-25

    Data include results from geochemical and isotopic analyses for samples collected in Barrow, Alaska during July and September 2013. Samples were soil pore waters from 17 drainages that could be interlake (basins with polygonal terrain), different-aged drain thaw lake basins (young, medium, old, or ancient), or a combination of different aged basins. Samples taken in different drainage flow types at three different depths at each location in and around the Barrow Environmental Observatory. This dataset used in Throckmorton, et.al. 2015.

  20. Scalable, massively parallel approaches to upstream drainage area computation

    NASA Astrophysics Data System (ADS)

    Richardson, A.; Hill, C. N.; Perron, T.

    2011-12-01

    Accumulated drainage area maps of large regions are required for several applications. Among these are assessments of regional patterns of flow and sediment routing, high-resolution landscape evolution models in which drainage basin geometry evolves with time, and surveys of the characteristics of river basins that drain to continental margins. The computation of accumulated drainage areas is accomplished by inferring the vector field of drainage flow directions from a two-dimensional digital elevation map, and then computing the area that drains to each tile. From this map of elevations we can compute the integrated, upstream area that drains to each tile of the map. Generally this last step is done with a recursive algorithm, that accumulates upstream areas sequentially. The inherently serial nature of this restricts the number of tiles that can be included, thereby limiting the resolution of continental-size domains. This is because of the requirements of both memory, which will rise proportionally to the number of tiles, N, and computing time, which is O(N2). The fundamental sequential property of this approach prohibits effective use of large scale parallelism. An alternate method of calculating accumulated drainage area from drainage direction data can be arrived at by reformulating the problem as the solution of a system of simultaneous linear equations. The equations define the relation that the total upslope area of a particular tile is the sum of all the upslope areas for tiles immediately adjacent to that tile that drain to it, and the tile's own area. Solving these equations amounts to finding the solution of a sparse, nine-diagonal matrix operating on a vector for a right-hand-side that is simply the individual tile areas and where the diagonals of the matrix are determined by the landscape geometry. We show how an iterative method, Bi-CGSTAB, can be used to solve this problem in a scalable, massively parallel manner. However, this introduces