Science.gov

Sample records for acrf millimeter wave

  1. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  2. Millimeter wave nonreciprocal devices

    NASA Astrophysics Data System (ADS)

    Morgenthaler, F. R.

    1983-01-01

    The Microwave and Quantum Magnetics Group within the MIT Department of Electrical Engineering and Computer Science and the Research Laboratory of Electronics proposed a three year research program aimed at developing coherent magnetic wave signal-processing techniques for microwave energy which may form either the primary signal or else the intermediate frequency (IF) modulation of millimeter wavelength signals-especially at frequencies in the 50-94 GHz. range. Emphasis has been placed upon developing advanced types of signal processors that make use of quasi-optical propagation of electromagnetic and magnetostatic waves propagating in high quality single crystal ferrite thin films. A strong theoretical effort is required in order to establish valid models useful for predicting device performance. We emphasized new filter and circulator designs that employ combinations of the Faraday effect, field displacement nonreciprocity and magnetostatic resonance and periodic structures.

  3. Compressive passive millimeter wave imager

    SciTech Connect

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W; Koehl, Eugene R; Heifetz, Alexander; Raptis, Apostolos C

    2015-01-27

    A compressive scanning approach for millimeter wave imaging and sensing. A Hadamard mask is positioned to receive millimeter waves from an object to be imaged. A subset of the full set of Hadamard acquisitions is sampled. The subset is used to reconstruct an image representing the object.

  4. Millimeter-wave studies

    NASA Technical Reports Server (NTRS)

    Allen, Kenneth C.

    1988-01-01

    Progress on millimeter-wave propagation experiments in Hawaii is reported. A short path for measuring attenuation in rain at 9.6, 28.8, 57.6, and 96.1 GHz is in operation. A slant path from Hilo to the top of Mauna Kea is scheduled. On this path, scattering from rain and clouds that may cause interference for satellites closely spaced in geosynchronous orbit will be measured at the same frequencies at 28.8 and 96.1 GHz. In addition the full transmission matrix will be measured at the same frequencies on the slant path. The technique and equipment used to measure the transmission matrix are described.

  5. Monolithic Millimeter Wave Oscillator

    NASA Astrophysics Data System (ADS)

    Wang, Nan-Lei

    There is an increasing interest in the millimeter -wave spectrum for use in communications and for military and scientific applications. The concept of monolithic integration aims to produce very-high-frequency circuits in a more reliable, reproducible way than conventional electronics, and also at lower cost, with smaller size and lighter weight. In this thesis, a negative resistance device is integrated monolithically with a resonator to produce an effective oscillator. This work fills the void resulting from the exclusion of the local oscillator from the monolithic millimeter-wave integrated circuit (MMMIC) receiver design. For convenience a microwave frequency model was used to design the resonator circuit. A 5 GHz hybrid oscillator was first fabricated to test the design; the necessary GaAs process technology was developed for the fabrication. Negative resistance devices and oscillator theory were studied, and a simple but practical model of the Gunn diode was devised to solve the impedance matching problem. Monolithic oscillators at the Ka band (35 GHz) were built and refined. All devices operated in CW mode. By means of an electric-field probe, the output power was coupled into a metallic waveguide for measurement purposes. The best result was 3.63 mW of power output, the highest efficiency was 0.43% and the frequency stability was better than 10-4. In the future, an IMPATT diode could replace the Gunn device to give much higher power and efficiency. A varactor-tuned circuit also suitable for large-scale integration is under study.

  6. Millimeter Waves: Acoustic and Electromagnetic

    PubMed Central

    Ziskin, Marvin C.

    2012-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects. PMID:22926874

  7. Millimeter waves: acoustic and electromagnetic.

    PubMed

    Ziskin, Marvin C

    2013-01-01

    This article is the presentation I gave at the D'Arsonval Award Ceremony on June 14, 2011 at the Bioelectromagnetics Society Annual Meeting in Halifax, Nova Scotia. It summarizes my research activities in acoustic and electromagnetic millimeter waves over the past 47 years. My earliest research involved acoustic millimeter waves, with a special interest in diagnostic ultrasound imaging and its safety. For the last 21 years my research expanded to include electromagnetic millimeter waves, with a special interest in the mechanisms underlying millimeter wave therapy. Millimeter wave therapy has been widely used in the former Soviet Union with great reported success for many diseases, but is virtually unknown to Western physicians. I and the very capable members of my laboratory were able to demonstrate that the local exposure of skin to low intensity millimeter waves caused the release of endogenous opioids, and the transport of these agents by blood flow to all parts of the body resulted in pain relief and other beneficial effects.

  8. Millimeter Wave Communication through Plasma

    NASA Technical Reports Server (NTRS)

    Bastin, Gary L.

    2008-01-01

    Millimeter wave communication through plasma at frequencies of 35 GHz or higher shows promise in maintaining communications connectivity during rocket launch and re-entry, critical events which are typically plagued with communication dropouts. Extensive prior research into plasmas has characterized the plasma frequency at these events, and research at the Kennedy Space Center is investigating the feasibility of millimeter communication through these plasma frequencies.

  9. Millimeter-wave active probe

    DOEpatents

    Majidi-Ahy, Gholamreza; Bloom, David M.

    1991-01-01

    A millimeter-wave active probe for use in injecting signals with frequencies above 50GHz to millimeter-wave and ultrafast devices and integrated circuits including a substrate upon which a frequency multiplier consisting of filter sections and impedance matching sections are fabricated in uniplanar transmission line format. A coaxial input and uniplanar 50 ohm transmission line couple an approximately 20 GHz input signal to a low pass filter which rolls off at approximately 25 GHz. An input impedance matching section couples the energy from the low pass filter to a pair of matched, antiparallel beam lead diodes. These diodes generate odd-numberd harmonics which are coupled out of the diodes by an output impedance matching network and bandpass filter which suppresses the fundamental and third harmonics and selects the fifth harmonic for presentation at an output.

  10. Millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Ibbott, A. C.; Parks, G. S.; Ricketts, W. B.

    1986-01-01

    A scanning 3-mm radiometer system has been built and used on a helicopter to produce moderate-resolution (0.5 deg) images of the ground. This millimeter-wave sensor can be used for a variety of remote-sensing applications and produces images through clouds, smoke, and dust when visual and IR sensors are not usable. The system is described and imaging results are presented.

  11. Passive millimeter-wave imaging

    NASA Technical Reports Server (NTRS)

    Young, Stephen K.; Davidheiser, Roger A.; Hauss, Bruce; Lee, Paul S. C.; Mussetto, Michael; Shoucri, Merit M.; Yujiri, Larry

    1993-01-01

    Millimeter-wave hardware systems are being developed. Our approach begins with identifying and defining the applications. System requirements are then specified based on mission needs using our end-to-end performance model. The model was benchmarked against existing data bases and, where data is deficient, it is acquired via field measurements. The derived system requirements are then validated with the appropriate field measurements using our imaging testbeds and hardware breadboards. The result is a final system that satisfies all the requirements of the target mission.

  12. Research in millimeter wave techniques

    NASA Technical Reports Server (NTRS)

    Mcmillan, R. W.

    1987-01-01

    The areas of millimeter wave (MMW) research include atmospheric propagation and radiometry, advanced MMW component design with emphasis on quasi-optical techniques, and the development of MMW receivers, especially those using subharmonic mixers. Calculations of atmospheric attenuation and radiometric antenna temperature were made in the range 100 to 700 GHz, together with measurements of atmospheric antenna temperature near 95 and 183 GHz. Quasi-optical components designed include lenses, mirrors, and wire grid devices, as well as feedhorns for interference with waveguide components. Subharmonic mixers with state-of-the-art performance at 183 GHz were also developed. Each of these areas of research is summarized.

  13. Topics in millimeter wave technology. Volume 1

    NASA Astrophysics Data System (ADS)

    Button, Kenneth John

    Topics dicussed include fin-line characteristics and circuits, millimeter-wave planar integrated-circuit filters, and H-plane millimeter-wave planar transmission lines and circuits. Attention is also given to modal power dynamics in multimode optical fibers and to a miniaturized monopulse assembly constructed in planar waveguide with multimode scalar horn feeds.

  14. Millimeter Wave Spectrum of Nitromethane

    NASA Astrophysics Data System (ADS)

    Ilyushin, V.

    2016-06-01

    A new study of the millimeter wave spectrum of nitromethane CH_3NO_2 is reported. The new measurements covering the frequency range from 49 GHz to 236 GHz have been carried out using spectrometer in IRA NASU (Ukraine). The transitions belonging to the m ≤ 8 torsional states have been analyzed using the RAM36 program, which has been modified for this study to take into account the quadrupole hyperfine structure due to presence of the nitrogen atom. The dataset consisting of 5838 microwave line frequencies and including transitions with J up to 50 was fit using a model consisting of 93 parameters and weighted root-mean-square deviation of 0.89 has been achieved. In the talk the details of this new study will be discussed. V. Ilyushin, Z. Kisiel, L. Pszczólkowski, H. Mäder, J. T. Hougen J. Mol. Spectrosc. 259 (2010) 26-38.

  15. Millimeter-wave sensor image enhancement

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Suess, Helmut

    1989-01-01

    Images from an airborne, scanning radiometer operating at a frequency of 98 GHz have been analyzed. The millimeter-wave images were obtained in 1985-1986 using the JPL millimeter-wave imaging sensor. The goal of this study was to enhance the information content of these images and make their interpretation easier. A visual-interpretative approach was used for information extraction from the images. This included application of nonlinear transform techniques for noise reduction and for color, contrast, and edge enhancement. Results of using the techniques on selected millimeter-wave images are discussed.

  16. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to see through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  17. Passive Millimeter Wave Camera (PMMWC) at TRW

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Engineers at TRW, Redondo Beach, California, inspect the Passive Millimeter Wave Camera, a weather-piercing camera designed to 'see' through fog, clouds, smoke and dust. Operating in the millimeter wave portion of the electromagnetic spectrum, the camera creates visual-like video images of objects, people, runways, obstacles and the horizon. A demonstration camera (shown in photo) has been completed and is scheduled for checkout tests and flight demonstration. Engineer (left) holds a compact, lightweight circuit board containing 40 complete radiometers, including antenna, monolithic millimeter wave integrated circuit (MMIC) receivers and signal processing and readout electronics that forms the basis for the camera's 1040-element focal plane array.

  18. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  19. The Millimeter-Wave Bolometric Interferometer

    NASA Technical Reports Server (NTRS)

    Ali, S.; Ade, P. A. R.; Bock, J. J.; Novak, G.; Piccirillo, L.; Timbie, P.; Tucker, G. S.

    2004-01-01

    The Millimeter-wave Bolometric Interferometer (MBI) is a proposed ground-based instrument designed for a wide range of cosmological and astrophysical observations including studies of the polarization of the cosmic microwave background (CMB). MBI combines the advantages of two well-developed technologies - interferometers and bolometric detectors. Interferometers have many advantages over .filled-aperture telescopes and are particularly suitable for high resolution imaging. Cooled bolometers are the highest sensitivity detectors at millimeter and sub-millimeter wavelengths. The combination of these two technologies results in an instrument with both high sensitivity and high angular resolution.

  20. Echelle crossed grating millimeter wave beam scanner.

    PubMed

    Furxhi, Orges; Marks, Daniel L; Brady, David J

    2014-06-30

    We present a two-dimensional, active, millimeter-wave, electronic beam scanner, with Doppler capabilities for stand-off imaging. The two-dimensional scan is achieved by mapping the millimeter wave spectrum to space using a pair of crossed gratings. The active transceiver and heterodyne quadrature detection allow the measurement of the relative phase between two consecutive measurements and the synthesis of the scene's Doppler signature. The frame rate of the imager is currently limited by the sweep rate of the vector network analyzer which is used to drive the millimeter wave extenders. All of the beam steering components are passive and can be designed to operate at any wavelength. The system design, characterization and measurements are presented and further uses and improvements are suggested.

  1. Millimeter wave transmission systems and related devices

    NASA Technical Reports Server (NTRS)

    Hebert, L. M.

    1984-01-01

    A survey was made of the state-of-the-art in millimeter (20 GHz to 300 GHz) wave transmission systems and related devices. The survey includes summaries of analytical studies and theoretical results that were obtained for various transmission line structures. This material was supplemented by further analysis where appropriate. The transmission line structures are evaluated in terms of electrical performance, ease of manufacture, usefulness for building other devices and compatibility with solid state devices. Descriptions of waveguide transmission lines which have commonly been used in the microwave frequency range are provided along with special attention given to the problems that these guides face when their use is extended into the millimeter wave range. Also, guides which have been introduced specifically to satisfy the requirements of millimeter wave transmission are discussed in detail.

  2. Advanced Microwave/Millimeter-Wave Imaging Technology

    NASA Astrophysics Data System (ADS)

    Shen, Zuowei; Yang, Lu; Luhmann, N. C., Jr.; Domier, C. W.; Ito, N.; Kogi, Y.; Liang, Y.; Mase, A.; Park, H.; Sakata, E.; Tsai, W.; Xia, Z. G.; Zhang, P.

    Millimeter wave technology advances have made possible active and passive millimeter wave imaging for a variety of applications including advanced plasma diagnostics, radio astronomy, atmospheric radiometry, concealed weapon detection, all-weather aircraft landing, contraband goods detection, harbor navigation/surveillance in fog, highway traffic monitoring in fog, helicopter and automotive collision avoidance in fog, and environmental remote sensing data associated with weather, pollution, soil moisture, oil spill detection, and monitoring of forest fires, to name but a few. The primary focus of this paper is on technology advances which have made possible advanced imaging and visualization of magnetohydrodynamic (MHD) fluctuations and microturbulence in fusion plasmas. Topics of particular emphasis include frequency selective surfaces, planar Schottky diode mixer arrays, electronically controlled beam shaping/steering arrays, and high power millimeter wave local oscillator and probe sources.

  3. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2009-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  4. Sub-millimeter wave frequency heterodyne detector system

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H. (Inventor); Dengler, Robert (Inventor); Mueller, Eric R. (Inventor)

    2010-01-01

    The present invention relates to sub-millimeter wave frequency heterodyne imaging systems. More specifically, the present invention relates to a sub-millimeter wave frequency heterodyne detector system for imaging the magnitude and phase of transmitted power through or reflected power off of mechanically scanned samples at sub-millimeter wave frequencies.

  5. Millimeter-Wave Photonics for Communications and Phased Arrays

    NASA Astrophysics Data System (ADS)

    Nanzer, Jeffrey A.; Wichman, Adam; Klamkin, Jonathan; McKenna, Timothy P.; Clark, Thomas R.

    2015-07-01

    This article presents recent developments in millimeter-wave communications architectures featuring broadband photonic signal generation, up-conversion and down-conversion, as well as true-time-delay photonic steering of millimeter-wave arrays. These developments will support future high-capacity millimeter-wave wireless communications by enabling broadband signals to be generated and converted between baseband and millimeter-wave carrier frequencies without electronic heterodyne systems and by permitting the use of true-time-delay beamsteering in millimeter-wave array apertures.

  6. Considerations for millimeter wave printed antennas

    NASA Technical Reports Server (NTRS)

    Pozar, D. M.

    1983-01-01

    Calculated data are presented on the performance of printed antenna elements on substrates which may be electrically thick, as would be the case for printed antennas at millimeter wave frequencies. Printed dipoles and microstrip patch antennas on polytetrafluoroethylene (PTFE), quartz, and gallium arsenide substrates are considered. Data are given for resonant length, resonant resistance, bandwidth, loss due to surface waves, loss due to dielectric heating, and mutual coupling. Also presented is an optimization procedure for maximizing or minimizing power launched into surface waves from a multielement printed antenna array. The data are calculated by a moment method solution.

  7. Millimeter wave sensor for monitoring effluents

    DOEpatents

    Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Dieckman, Stephen L.

    1995-01-01

    A millimeter-wave sensor for detecting and measuring effluents from processing plants either remotely or on-site includes a high frequency signal source for transmitting frequency-modulated continuous waves in the millimeter or submillimeter range with a wide sweep capability and a computer-controlled detector for detecting a plurality of species of effluents on a real time basis. A high resolution spectrum of an effluent, or effluents, is generated by a deconvolution of the measured spectra resulting in a narrowing of the line widths by 2 or 3 orders of magnitude as compared with the pressure broadened spectra detected at atmospheric pressure for improved spectral specificity and measurement sensitivity. The sensor is particularly adapted for remote monitoring such as where access is limited or sensor cost restricts multiple sensors as well as for large area monitoring under nearly all weather conditions.

  8. Superconducting submillimeter and millimeter wave detectors

    SciTech Connect

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  9. Millimeter Wave Holographical Inspection of Honeycomb Composites

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Kharkovsky, S.; Zoughi, R.; Stefes, G.; Hepburn, Frank L.; Hepburn, Frank L.

    2007-01-01

    Multi-layered composite structures manufactured with honeycomb, foam or balsa wood cores are finding increasing utility in a variety of aerospace, transportation, and infrastructure applications. Due to the low conductivity and inhomogeneity associated with these composites standard nondestructive testing (NDT) methods are not always capable of inspecting their interior for various defects caused during the manufacturing process or as a result of in-service loading. On the contrary, microwave and millimeter wave NDT methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. Millimeter wave frequency spectrum spans 30 GHz - 300 GHz with corresponding wavelengths of 10 - 1 mm. Due to the inherent short wavelengths at these frequencies, one can produce high spatial resolution images of these composites either using real-antenna focused or synthetic-aperture focused methods. In addition, incorporation of swept-frequency in the latter method (i.e., holography) results in high-resolution three-dimensional images. This paper presents the basic steps behind producing such images at millimeter wave frequencies and the results of two honeycomb composite panels are demonstrated at Q-band (33-50 GHz). In addition, these results are compared to previous results using X-ray computed tomography.

  10. Millimeter wave satellite concepts, volume 1

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Thomas, R. E.; Wallace, R. W.; Gallagher, J. G.

    1977-01-01

    The identification of technologies necessary for development of millimeter spectrum communication satellites was examined from a system point of view. Development of methodology based on the technical requirements of potential services that might be assigned to millimeter wave bands for identifying the viable and appropriate technologies for future NASA millimeter research and development programs, and testing of this methodology with selected user applications and services were the goals of the program. The entire communications network, both ground and space subsystems was studied. Cost, weight, and performance models for the subsystems, conceptual design for point-to-point and broadcast communications satellites, and analytic relationships between subsystem parameters and an overall link performance are discussed along with baseline conceptual systems, sensitivity studies, model adjustment analyses, identification of critical technologies and their risks, and brief research and development program scenarios for the technologies judged to be moderate or extensive risks. Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, was accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications.

  11. A millimeter-wave tunneladder TWT

    NASA Technical Reports Server (NTRS)

    Wilson, D.

    1988-01-01

    A millimeter-wave traveling wave tube (TWT) was developed using a dispersive, high-impedance forward wave interaction structure based on a ladder, with non-space-harmonic interaction, for a tube with high gain per inch and high efficiency. The 'TunneLadder' interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized PM focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active diffusion brazed to each ridge of a doubly ridged waveguide. Cold-test data, representing the (omega)(beta) and and impedance characteristics of the modified ladder circuit, were used in small and large-signal computer programs to predict TWT gain and efficiency. The structural design emphasizes ruggedness and reliability. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.

  12. The Millimeter-Wave Imaging Radiometer (MIR)

    NASA Technical Reports Server (NTRS)

    Gasiewski, A. J.; Jackson, D. M.; Adler, R. F.; Dod, L. R.; Shiue, J. C.

    1991-01-01

    The Millimeter-Wave Imaging Radiometer (MIR) is a new instrument being designed for studies of airborne passive microwave retrieval of tropospheric water vapor, clouds, and precipitation parameters. The MIR is a total-power cross-track scanning radiometer for use on either the NASA ER-2 (high-altitude) or DC-8 (medium altitude) aircraft. The current design includes millimeter-wave (MMW) channels at 90, 166, 183 +/- 1,3,7, and 220 GHz. An upgrade for the addition of submillimeter-wave (SMMW) channels at 325 +/- 1,3,7 and 340 GHz is planned. The nadiral spatial resolution is approximately 700 meters at mid-altitude when operated aboard the NASA ER-2. The MIR consists of a scanhead and data acquisition system, designed for installation in the ER-2 superpod nose cone. The scanhead will house the receivers (feedhorns, mixers, local oscillators, and preamplifiers), a scanning mirror, hot and cold calibration loads, and temperature sensors. Particular attention is being given to the characterization of the hot and cold calibration loads through both laboratory bistatic scattering measurements and analytical modeling. Other aspects of the MIR and the data acquisition system are briefly discussed, and diagrams of the location of the MIR in the ER-2 superpod nosecone and of the data acquisition system are presented.

  13. Personnel and Mail Screening with Millimeter Waves

    SciTech Connect

    McMakin, Douglas L.; Sheen, David M.; Griffin, Jeffrey W.; Valentine, Nancy B.; Lechelt, Wayne M.

    2005-08-01

    The detection and interdiction of biological and chemical warfare agents at point-of-entry military, government, and civilian facilities remains a high priority for security personnel. Commercial personnel and mail screening technologies for these harmful agents are still being developed and improved upon to meet all security client requirements. Millimeter-wave holographic imaging technology developed at the Pacific Northwest National Laboratory is an ideal sensor to interrogate objects concealed behind low dielectric barriers such as paper, cardboard, and clothing. It uses harmless millimeter waves to illuminate the object or person under surveillance. The waves penetrate through the low dielectric barrier and either reflects off or pass through the hidden object, depending on its material dielectric properties. The reflected signals are digitized and sent to high-speed computers to form high-resolution, three-dimensional (3-D) images. Feasibility imaging studies have been conducted to determine whether simulated biological or chemical agents concealed in mail packages or under clothing could be detected using holographic radar imaging techniques. The results of this study will be presented in this paper.

  14. High resolution millimeter-wave imaging sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. J.; Howard, R. J.; Parks, G. S.

    1985-01-01

    A scanning 3-mm radiometer is described that has been built for use on a small aircraft to produce real time high resolution images of the ground when atmospheric conditions such as smoke, dust, and clouds make IR and visual sensors unusable. The sensor can be used for a variety of remote sensing applications such as measurements of snow cover and snow water equivalent, precipitation mapping, vegetation type and extent, surface moisture and temperature, and surface thermal inertia. The advantages of millimeter waves for cloud penetration and the ability to observe different physical phenomena make this system an attractive supplement to visible and IR remote sensing systems.

  15. Wideband, phase coded millimeter wave instrumentation radar

    NASA Astrophysics Data System (ADS)

    Keicher, W. E.; Zieman, H. E.

    1982-10-01

    A wideband, biphase coded, CW millimeter wave instrumentation radar has been constructed to obtain both unresolved and resolved radar cross section data of tactical vehicles and naval vessels. The radar operates at 95.6 GHz with a selectable pseudo-noise code waveform which allows a variable range resolution and range ambiguity. The radar azimuth-elevation scanner is controlled by a microprocessor. Various scan patterns (e.g., raster) are stored in erasable programmable read only memory (EPROM). A 'sliding code' signal correlation is used to obtain processing gain as well as bandwidth compression in order to simplify signal recording and digitizing. Radar performance is also described.

  16. Apparatus for millimeter-wave signal generation

    SciTech Connect

    Vawter, G. Allen; Hietala, Vincent M.; Zolper, John C.; Mar, Alan; Hohimer, John P.

    1999-01-01

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency .gtoreq.10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  17. Apparatus for millimeter-wave signal generation

    SciTech Connect

    Vawter, G.A.; Hietala, V.M.; Zolper, J.C.; Mar, A.; Hohimer, J.P.

    1999-12-07

    An opto-electronic integrated circuit (OEIC) apparatus is disclosed for generating an electrical signal at a frequency {ge}10 GHz. The apparatus, formed on a single substrate, includes a semiconductor ring laser for generating a continuous train of mode-locked lasing pulses and a high-speed photodetector for detecting the train of lasing pulses and generating the electrical signal therefrom. Embodiments of the invention are disclosed with an active waveguide amplifier coupling the semiconductor ring laser and the high-speed photodetector. The invention has applications for use in OEICs and millimeter-wave monolithic integrated circuits (MMICs).

  18. Full spectrum millimeter-wave modulation.

    PubMed

    Macario, Julien; Yao, Peng; Shi, Shouyuan; Zablocki, Alicia; Harrity, Charles; Martin, Richard D; Schuetz, Christopher A; Prather, Dennis W

    2012-10-01

    In recent years, the development of new lithium niobate electro-optic modulator designs and material processing techniques have contributed to support the increasing need for faster optical networks by considerably extending the operational bandwidth of modulators. In an effort to provide higher bandwidths for future generations of networks, we have developed a lithium niobate electro-optic phase modulator based on a coplanar waveguide ridged structure that operates up to 300 GHz. By thinning the lithium niobate substrate down to less than 39 µm, we are able to eliminate substrate modes and observe optical sidebands over the full millimeter-wave spectrum.

  19. The Millimeter Wave Spectrum of Linalool

    NASA Astrophysics Data System (ADS)

    Evans, Corey J.; Allpress, Stephanie M.; Godfrey, Peter D.; McNaughton, Don

    2012-06-01

    The millimeter wave spectrum (48-72 GHz) of linalool has been recorded for the first time. Over 40 conformers of S-(+) and R-(-)-linalool have been investigated using computational chemistry techniques, with 10 conformers predicted to be within 400 cm-1 of the lowest lying isomer at the B3LYP/aug-cc-pVTZ level of theory. The observed lines can be assigned to two conformers of (S)-(+)-linalool. Precise rotational and centrifugal distortion constants have been determined for both conformers.

  20. Millimeter wave dosimetry of human skin.

    PubMed

    Alekseev, S I; Radzievsky, A A; Logani, M K; Ziskin, M C

    2008-01-01

    To identify the mechanisms of biological effects of mm waves it is important to develop accurate methods for evaluating absorption and penetration depth of mm waves in the epidermis and dermis. The main characteristics of mm wave skin dosimetry were calculated using a homogeneous unilayer model and two multilayer models of skin. These characteristics included reflection, power density (PD), penetration depth (delta), and specific absorption rate (SAR). The parameters of the models were found from fitting the models to the experimental data obtained from measurements of mm wave reflection from human skin. The forearm and palm data were used to model the skin with thin and thick stratum corneum (SC), respectively. The thin SC produced little influence on the interaction of mm waves with skin. On the contrary, the thick SC in the palm played the role of a matching layer and significantly reduced reflection. In addition, the palmar skin manifested a broad peak in reflection within the 83-277 GHz range. The viable epidermis plus dermis, containing a large amount of free water, greatly attenuated mm wave energy. Therefore, the deeper fat layer had little effect on the PD and SAR profiles. We observed the appearance of a moderate SAR peak in the therapeutic frequency range (42-62 GHz) within the skin at a depth of 0.3-0.4 mm. Millimeter waves penetrate into the human skin deep enough (delta = 0.65 mm at 42 GHz) to affect most skin structures located in the epidermis and dermis.

  1. Recent Advances in Millimeter-Wave NRD-Guide Circuits

    NASA Astrophysics Data System (ADS)

    Yoneyama, Tsukasa

    Though millimeter wave applications have attracted much attention in recent years, they have not yet been put to practical use. The major reason for the failure may be a large transmission loss peculiar to the short wavelength. In order to overcome the inconvenience, it may be promising to introduce the technology of millimeter-wave NRD-guide circuits. In this technology, not only NRD-guide but also Gunn diodes and Schottky diodes play the important role in high bit-rate millimeter-wave applications. A variety of practical millimeter wave wireless systems have been proposed and fabricated. Performances and applications of them are discussed in detail as well.

  2. Universal Millimeter-Wave Radar Front End

    NASA Technical Reports Server (NTRS)

    Perez, Raul M.

    2010-01-01

    A quasi-optical front end allows any arbitrary polarization to be transmitted by controlling the timing, amplitude, and phase of the two input ports. The front end consists of two independent channels horizontal and vertical. Each channel has two ports transmit and receive. The transmit signal is linearly polarized so as to pass through a periodic wire grid. It is then propagated through a ferrite Faraday rotator, which rotates the polarization state 45deg. The received signal is propagated through the Faraday rotator in the opposite direction, undergoing a further 45 of polarization rotation due to the non-reciprocal action of the ferrite under magnetic bias. The received signal is now polarized at 90deg relative to the transmit signal. This signal is now reflected from the wire grid and propagated to the receive port. The horizontal and vertical channels are propagated through, or reflected from, another wire grid. This design is an improvement on the state of the art in that any transmit signal polarization can be chosen in whatever sequence desired. Prior systems require switching of the transmit signal from the amplifier, either mechanically or by using high-power millimeter-wave switches. This design can have higher reliability, lower mass, and more flexibility than mechanical switching systems, as well as higher reliability and lower losses than systems using high-power millimeter-wave switches.

  3. Millimeter Wave Rheometry: Theory and Experiment

    SciTech Connect

    Chun, Jaehun; McCloy, John S.; Crum, J. V.; Sundaram, S. K.

    2011-01-29

    A novel millimeter wave (MMW) rheometry is developed to determine the viscosity of fluid based on an unsteady film flow in an inclined plane. The method measures fringes due to MMW interference between the front and back surfaces of the fluid flowing across the field of view of a ceramic wave guide coupled to a MMW receiver. With knowledge of the dielectric constant, the interference fringe spacing is used to calculate the thickness of the fluid layer. This thickness is then transformed into the viscosity by means of a simple hydrodynamic theory. Our results show that the MMW rheometry can easily distinguish between the 30, 100, and 200 Pa•s silicone oils. The geometry of the method allows for potential industrial applications such as measuring viscosity of the flowing slag in slagging coal gasifiers. The MMW rheometry with simple modifications can be easily extended to measure important non-Newtonian fluid characteristics such as yield stress.

  4. PNNL Expert Doug McMakin Discusses Millimeter Wave Technology

    ScienceCinema

    Doug McMakin

    2016-07-12

    Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.

  5. PNNL Expert Doug McMakin Discusses Millimeter Wave Technology

    SciTech Connect

    Doug McMakin

    2011-10-01

    Electrical Engineer Doug McMakin discusses Millimeter Wave Holographic technology, which uses non-harmful, ultrahigh-frequency radio waves to penetrate clothing to detect and identify concealed objects, as well as obtain accurate body measurements.

  6. Contact Whiskers for Millimeter Wave Diodes

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.; Grange, J. A.; Lichtenberger, J. A.

    1978-01-01

    Several techniques are investigated for making short conical tips on wires (whiskers) used for contacting millimeter-wave Schottky diodes. One procedure, using a phosphoric and chromic acid etching solution (PCE), is found to give good results on 12 microns phosphor-bronze wires. Full cone angles of 60 degrees-80 degrees are consistently obtained, compared with the 15 degrees-20 degrees angles obtained with the widely used sodium hydroxide etch. Methods are also described for cleaning, increasing the tip diameter (i.e. blunting), gold plating, and testing the contact resistance of the whiskers. The effects of the whisker tip shape on the electrical resistance, inductance, and capacitance of the whiskers are studied, and examples given for typical sets of parameters.

  7. Simulation of a passive millimeter wave sensor

    NASA Technical Reports Server (NTRS)

    Kahlbaum, William W.

    1993-01-01

    The visual display expected to be generated by a Passive Millimeter Wave (PMMW) camera and sensor system has been simulated on a Silicon Graphics IRIS workstation at the NASA Langley Research Center (LaRC). The low resolution of the sensor has been simulated by graphically manipulating the scene as it is being drawn by the IRIS in real time. Camera field of view, sensor resolution, and sensor update rate are the controllable parameters. Physical effects such as lens model, radome effects, and noise have not been included at this time. An approximate dynamic model of the atmospheric phenomenology has been included which generates the gray-scale intensity values in real time for the simulated image. The gray-scale values are proportional to temperature. A snapshot capability which captures individual image frames during real-time operation has been included. These images were used to validate the approximate phenomenology model against a more rigorous physical model.

  8. Millimeter-Wave Atmospheric Sounder (MAS)

    NASA Technical Reports Server (NTRS)

    Hartmann, G. K.

    1988-01-01

    MAS is a remote sensing instrument for passive sounding (limb sounding) of the earth's atmosphere from the Space Shuttle. The main objective of the MAS is to study the composition and dynamic structure of the stratosphere, mesosphere, and lower thermosphere in the height range 20 to 100 km, the region known as the middle atmosphere. The MAS will be flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission scheduled for late 1990. The Millimeter-Wave Atmospheric Sounder will provide, for the first time, information obtained simultaneously on the temperature and on ozone concentrations in the 20 to 90 km altitude region. The information will cover a large area of the globe, will have high accuracy and high vertical resolution, and will cover both day and night times. Additionally, data on the two important molecules, H2O and ClO, will also be provided.

  9. Thermoreflectance temperature measurement with millimeter wave.

    PubMed

    Pradere, C; Caumes, J-P; BenKhemis, S; Pernot, G; Palomo, E; Dilhaire, S; Batsale, J-C

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications.

  10. Thermoreflectance temperature measurement with millimeter wave

    SciTech Connect

    Pradere, C. Caumes, J.-P.; BenKhemis, S.; Palomo, E.; Batsale, J.-C.; Pernot, G.; Dilhaire, S.

    2014-06-15

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10{sup −3} K{sup −1} versus 10{sup −5} K{sup −1} for the visible domain, is very promising for future thermoreflectance applications.

  11. Thermoreflectance temperature measurement with millimeter wave

    NASA Astrophysics Data System (ADS)

    Pradere, C.; Caumes, J.-P.; BenKhemis, S.; Pernot, G.; Palomo, E.; Dilhaire, S.; Batsale, J.-C.

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10-3 K-1 versus 10-5 K-1 for the visible domain, is very promising for future thermoreflectance applications.

  12. Millimeter-wave concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Chang, Yu-Wen; Juhola, Markku; Grainger, William; Wang, Beining; Manahan, Brian

    1997-02-01

    Millimeter-wave concealed weapon detection, based on the use of a fast scan short-range FMCW 94 GHz radar, was evaluated in a small business innovative research phase I under the Technology Reinvestment Project (TRP) program. The feasibility of a fast circular scan technique invented by Chang Industry has been firmly established, with handgun images recorded. This fast scan technique is essential both for remote sensing and full-body fixed site scanner applications. Although only raw image data was obtained in Phase I, we propose to apply super-resolution image enhancements and target recognition software algorithms to provide more reliable detection. Endorsement from the Los Angeles County Sheriff's Department, to provide operational input and testing and evaluation, and the hiring of a consultant to plan for future program financing (including venture capital investment) make the project very attractive for commercialization.

  13. Millimeter wave band ultra wideband transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Ling, Jin; Rolland, Nathalie

    2015-09-01

    This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

  14. Millimeter-wave HF relativistic electron oscillators

    SciTech Connect

    Bratman, V.L.; Denisov, G.G.; Ofitserov, M.M.; Korovin, S.D.; Polevin, S.D.; Rostov, V.V.

    1987-02-01

    A review of the experimental study of single-mode oscillators based on stimulated bremsstrahlung and Cerenkov radiation of high-current relativistic electron beams is given. Three types of Cerenkov oscillators are investigated in detail: orotrons, surface wave oscillators and a flimatron (free electron maser (FEM) based on Smith-Purcell radiation). The bremsstrahlung oscillators studied are gyrotrons with TM modes, a ubitron operating at quasi-critical frequency and cyclotron autoresonance masers. Electrodynamic and electron methods of mode selection provide stable radiation with a reproducible space structure of radiation in all oscillators under study. The radiation power attained 50-100 MW for long and 10-30 MW for short millimeter wavelengths at the efficiency up to 5-10 percent. Various types of oscillators are compared. Promising methods for increasing power and radiation frequency are discussed.

  15. Thermoreflectance temperature measurement with millimeter wave.

    PubMed

    Pradere, C; Caumes, J-P; BenKhemis, S; Pernot, G; Palomo, E; Dilhaire, S; Batsale, J-C

    2014-06-01

    GigaHertz (GHz) thermoreflectance technique is developed to measure the transient temperature of metal and semiconductor materials located behind an opaque surface. The principle is based on the synchronous detection, using a commercial THz pyrometer, of a modulated millimeter wave (at 110 GHz) reflected by the sample hidden behind a shield layer. Measurements were performed on aluminum, copper, and silicon bulks hidden by a 5 cm thick Teflon plate. We report the first measurement of the thermoreflectance coefficient which exhibits a value 100 times higher at 2.8 mm radiation than those measured at visible wavelengths for both metallic and semiconductor materials. This giant thermoreflectance coefficient κ, close to 10(-3) K(-1) versus 10(-5) K(-1) for the visible domain, is very promising for future thermoreflectance applications. PMID:24985839

  16. Millimeter-wave video rate imagers

    NASA Astrophysics Data System (ADS)

    Huguenin, G. Richard

    1997-06-01

    The author will describe millimeter wave focal plane array (FPA) imagers developed primarily for concealed weapons detection (CWD) and through wall surveillance (TWS) applications. Both passive (radiometric) and active (radar) imagers will be described. The technology employed in these cameras is ideally suited to a wide range of other applications as well. Traditionally, passive millimeter wave images have been generated using scanned sensors of various types ranging from single elements to line arrays. A line scanner using FPA technology is being developed at Millimetrix for CWD and other applications. Scanning imagers, however, cannot meet the frame rate and sensitivity requirements for some applications. Certain CWD applications, in particular, require a passive, video rate (30 fps) imagers which we are also developing using a patented focal plane array technology we call MillivisionTM. Similarly, TWS applications demand an active, video rate imager which shares much of the same MillivisionTM FPA technology. Customers always need more resolution, more sensitivity, and a wider field-of-view all in the smallest possible package and at the lowest cost. To meet these difficult requirements, the MillivisionTM video rate imagers operate near 94 GHz and employ active optics and filled focal plane arrays, both of which will be briefly described. The optimally filled FPA is small angle scanned (dithered) electronically relative to the scene in a 4 X 4 matrix to achieve a 2 X 2 oversampling of the image. A multiplicative `super resolution' algorithm is then used to digitally enhance the spatial frequency resolution of the resulting image by a factor of approximately 2.

  17. Millimeter wave spectra of carbonyl cyanide ⋆

    PubMed Central

    Bteich, S.B.; Tercero, B.; Cernicharo, J.; Motiyenko, R.A.; Margulès, L.; Guillemin, J.-C.

    2016-01-01

    Context More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods The rotational spectrum of carbonyl cyanide was measured in the frequency range 152 - 308 GHz and analyzed using Watson’s A- and S-reduction Hamiltonians. Results The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. PMID:27738349

  18. Millimeter wave detection of nuclear radiation: An alternative detection mechanism

    SciTech Connect

    Gopalsami, N.; Chien, H. T.; Heifetz, A.; Koehl, E. R.; Raptis, A. C.

    2009-08-15

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  19. Millimeter wave detection of nuclear radiation - an alternative detection mechanism.

    SciTech Connect

    Gopalsami, N.; Chien, H. T.; Heifetz, A.; Koehl, E. R.; Raptis, A. C.; Nuclear Engineering Division

    2009-08-01

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  20. Passive millimeter wave imaging sensors for commercial markets.

    PubMed

    Lynch, Jonathan J; Macdonald, Perry A; Moyer, Harris P; Nagele, Robert G

    2010-07-01

    We describe the development of passive millimeter wave imaging sensors, operating at W band, that are currently being manufactured for commercial markets using standard automated assembly processes. A description of HRL Laboratories' millimeter wave imaging chipset is presented, focusing on parameters that limit sensor performance, such as detector 1/f noise, low noise amplifier noise figure, and gain drift. We conclude with a discussion of ongoing research and development in passive millimeter wave imaging and performance improvements that can be expected for future imaging sensors.

  1. Millimeter wave detection of nuclear radiation: an alternative detection mechanism.

    PubMed

    Gopalsami, N; Chien, H T; Heifetz, A; Koehl, E R; Raptis, A C

    2009-08-01

    We present a nuclear radiation detection mechanism using millimeter waves as an alternative to conventional detection. It is based on the concept that nuclear radiation causes ionization of air and that if we place a dielectric material near the radiation source, it acts as a charge accumulator of the air ions. We have found that millimeter waves can interrogate the charge cloud on the dielectric material remotely. This concept was tested with a standoff millimeter wave system by monitoring the charge levels on a cardboard tube placed in an x-ray beam.

  2. Millimeter wave spectra of carbonyl cyanide

    NASA Astrophysics Data System (ADS)

    Bteich, S. B.; Tercero, B.; Cernicharo, J.; Motiyenko, R. A.; Margulès, L.; Guillemin, J.-C.

    2016-07-01

    Context. More than 30 cyanide derivatives of simple organic molecules have been detected in the interstellar medium, but only one dicarbonitrile has been found and that very recently. There is still a lack of high-resolution spectroscopic data particularly for dinitriles derivatives. The carbonyl cyanide molecule is a new and interesting candidate for astrophysical detection. It could be formed by the reaction of CO and CN radicals, or by substitution of the hydrogen atom by a cyano group in cyanoformaldehyde, HC(=O)CN, that has already been detected in the interstellar medium. Aims: The available data on the rotational spectrum of carbonyl cyanide is limited in terms of quantum number values and frequency range, and does not allow accurate extrapolation of the spectrum into the millimeter-wave range. To provide a firm basis for astrophysical detection of carbonyl cyanide we studied its millimeter-wave spectrum. Methods: The rotational spectrum of carbonyl cyanide was measured in the frequency range 152-308 GHz and analyzed using Watson's A- and S-reduction Hamiltonians. Results: The ground and first excited state of v5 vibrational mode were assigned and analyzed. More than 1100 distinct frequency lines of the ground state were fitted to produce an accurate set of rotational and centrifugal distortion constants up to the eighth order. The frequency predictions based on these constants should be accurate enough for astrophysical searches in the frequency range up to 500 GHz and for transition involving energy levels with J ≤ 100 and Ka ≤ 42. Based on the results we searched for interstellar carbonyl cyanide in available observational data without success. Thus, we derived upper limits to its column density in different sources. This paper makes use of the following ALMA data: ADS/JAO.ALMA#2011.0.00009.SV. ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan) with NRC (Canada), NSC, and ASIAA (Taiwan), and KASI (Republic of

  3. Millimeter-wave radar sensing of airborne chemicals.

    SciTech Connect

    Gopalsami, N.; Raptis, A. C.; Energy Technology

    2001-04-01

    This paper discusses the development of a millimeter-wave radar chemical sensor for applications in environmental monitoring and arms-control treaty verification. The purpose of this paper is to investigate the use of fingerprint-type molecular rotational signatures in the millimeter-wave spectrum to sense airborne chemicals. The millimeter-wave sensor, operating in the frequency range of 225-315 GHz, can work under all weather conditions and in smoky and dusty environments. The basic configuration of the millimeter-wave sensor is a monostatic swept-frequency radar that consists of a millimeter-wave sweeper, a hot-electron bolometer or Schottky barrier detector, and a corner-cube reflector. The chemical plume to be detected is situated between the transmitter/detector and reflector. Millimeter-wave absorption spectra of chemicals in the plume are determined by measuring the swept-frequency radar return signals with and without the plume in the beam path. The problem of pressure broadening, which hampered open-path spectroscopy in the past, has been mitigated in this paper by designing a fast sweeping source over a broad frequency range. The heart of the system is a backward-wave oscillator (BWO) tube that can be tuned over 220-350 GHz. Using the BWO tube, we built a millimeter-wave radar system and field-tested it at the Department of Energy Nevada Test Site, Frenchman Flat, near Mercury, NV, at a standoff distance of 60 m, The millimeter-wave system detected chemical plumes very well; detection sensitivity for polar molecules such as methylchloride was down to 12 ppm for a 4-m two-way pathlength.

  4. Superconducting submillimeter and millimeter wave detectors

    SciTech Connect

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-{Tc} microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} films was subsequently measured and provided direct evidence for the bolometric response of high-{Tc} films to fast (ns) laser pulses. The low-{Tc} microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  5. Investigation of gigawatt millimeter wave source applications

    NASA Astrophysics Data System (ADS)

    Bruder, J. A.; Belcher, M. L.

    1991-09-01

    The Georgia Tech Research Institute (GTRI) investigated potential applications of millimeter wave (MMW) sources with peak powers on the order of a gigawatt. This power level is representative of MMW devices such as the free electron laser (FEL) and the cyclotron auto-resonance maser (CARM) that are under development at the Lawrence Livermore National Laboratory (LLNL). In addition to determining the technical requirements for these applications, the investigation considered potential users and how a high power MMW system would expand their current capabilities. Two of the more promising applications were examined in detail to include trade-off evaluations system parameters. The trade-off evaluations included overall system configuration, frequency and coherence, component availability, and performance estimates. Brainstorming sessions were held to try and uncover additional applications for a gigawatt MMW source. In setting up guidelines for the session, the need to attempt to predict applications for the years 2000 to 2030 was stressed. Also, possible non-DoD applications needed to be considered. While some of these applications could not in themselves justify the costs involved in the development of the radar system, they could be considered potential secondary applications of the system. As a result of the sessions, a number of interesting potential applications evolved including: space object identification; low angle tracking; illuminator for space-based radar; radio astronomy; space vehicle navigation; space debris location; atmospheric research; wind shear detection; electronic countermeasures; low observable detection; and long range detection via ducting.

  6. Detection of Explosives by Millimeter-wave Imaging

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2007-08-30

    Millimeter-wave imaging has emerged over the last several years as an effective method for screening people for non-metallic weapons, including explosives. Millimeter-waves are effective for personnel screening, since the waves pass through common clothing materials and are reflected by the human body and any concealed objects. Completely passive imaging systems have also been developed that rely on the natural thermal emission of millimeter-waves from the body and concealed objects. Millimeter-waves are non-ionizing and are harmless to people at low or moderate power levels. Active and passive imaging systems have been developed by several research groups, with several commercial imaging sensors becoming available recently. These systems provide images revealing concealed items, and as such, do not specifically identify detected materials. Rather, they provide indications of unusual concealed items. The design of practical, effective, high-speed (real-time or near real-time) imaging systems presents a number of scientific and engineering challenges, and this chapter will describe the current state-of-the-art in active and passive millimeter-wave imaging for personnel screening. Numerous imaging results are shown to demonstrate the effectiveness of the techniques described. The authors have been involved in the development of active wideband millimeter-wave imaging systems at Pacific Northwest National Laboratory (PNNL) since 1991.

  7. Monolithic millimeter-wave and picosecond electronic technologies

    SciTech Connect

    Talley, W.K.; Luhmann, N.C.

    1996-03-12

    Theoretical and experimental studies into monolithic millimeter-wave and picosecond electronic technologies have been undertaken as a collaborative project between the Lawrence Livermore National Laboratory (LLNL) and the University of California Department of Applied Science Coherent Millimeter-Wave Group under the auspices of the Laboratory Directed Research and Development Program at LLNL. The work involves the design and fabrication of monolithic frequency multiplier, beam control, and imaging arrays for millimeter-wave imaging and radar, as well as the development of high speed nonlinear transmission lines for ultra-wideband radar imaging, time domain materials characterization and magnetic fusion plasma applications. In addition, the Coherent Millimeter-Wave Group is involved in the fabrication of a state-of-the-art X-band ({approximately}8-11 GHz) RF photoinjector source aimed at producing psec high brightness electron bunches for advanced accelerator and coherent radiation generation studies.

  8. Millimeter-wave ICs for precision guided weapons

    NASA Astrophysics Data System (ADS)

    Seashore, C. R.; Singh, D. R.

    1983-06-01

    Attention is given to the possibility to add precision guided weapons (PGW) with autonomous, all-weather capabilities based on millimeter wave sensors to the NATO forces within the next decade. Millimeter wave radar and radiometer sensors with capabilities for penetrating fog, clouds, haze, dust, and smoke are currently under development. It is pointed out that the central issue is not whether millimeter wave sensors will work in a tactical environment, but whether they can be produced in an affordable and timely fashion. It is believed that the sensor quantity and cost objectives will be satisfied. The needs and approaches for millimeter wave integrated circuit components and subassemblies for use in current precision guided weapon systems are discussed. The two main integrated circuit techniques include the hybrid and monolithic. In a production transceiver configuration, a mix between hybrid and monolithic appears to yield the best performance and seems to be most cost-effective.

  9. Millimeter wave radar for automobile crash avoidance systems

    NASA Astrophysics Data System (ADS)

    Huguenin, G. Richard

    1994-08-01

    Low cost, millimeter wave, forward looking radar sensors for applications in Autonomous Collision Warning and Autonomous Intelligent Cruise Control systems will be described. These safety related systems promise the largest payoff in preventing highway crashes.

  10. An Ultra-Wideband Millimeter-Wave Phased Array

    NASA Technical Reports Server (NTRS)

    Novak, Markus H.; Miranda, Felix A.; Volakis, John L.

    2016-01-01

    Wideband millimeter-wave arrays are of increasing importance due to their growing use in high data rate systems, including 5G communication networks. In this paper, we present a new class of ultra-wideband millimeter wave arrays that operate from nearly 20 GHz to 90 GHz. The array is based on tightly coupled dipoles. Feeding designs and fabrication challenges are presented, and a method for suppressing feed resonances is provided.

  11. Infrared and millimeter waves. Volume 14 - Millimeter components and techniques. Part 5

    NASA Astrophysics Data System (ADS)

    Button, K. J.

    Experimental, theoretical and design efforts for millimeter-wave (mm-wave) propagation and integrated circuits (ICs) are discussed in depth. This volume includes contributions on mm-wave IC transducers and planar ICs and subsystems. Various design and analytical approaches taken to produce mm-wave planar antenna arrays are described, along with experimental work on optoelectronic devices to generating mm waves. Analytical tools are defined for investigating mm-wave GaAs IMPATT diodes and evaluating their thermal performance, reliability, and device-circuit interaction properties. Finally, theoretical and experimental results with several prototype low power tunable gyrotrons being developed as coherent millimeter-submillimeter radiation sources are discussed. Low-cost, mass producible solid-state mm-wave devices are being investigated as radiation sources for absorption spectroscopy of materials and radar and communications applications.

  12. Millimeter Wave Cloud Radar (MMCR) Handbook

    SciTech Connect

    KB Widener; K Johnson

    2005-01-30

    The millimeter cloud radar (MMCR) systems probe the extent and composition of clouds at millimeter wavelengths. The MMCR is a zenith-pointing radar that operates at a frequency of 35 GHz. The main purpose of this radar is to determine cloud boundaries (e.g., cloud bottoms and tops). This radar will also report radar reflectivity (dBZ) of the atmosphere up to 20 km. The radar possesses a doppler capability that will allow the measurement of cloud constituent vertical velocities.

  13. Cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    1998-03-01

    A novel cylindrical millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory for the detection of metallic and non-metallic concealed weapons. This technique uses a vertical array of millimeter- wave antennas which is mechanically swept around a person in a cylindrical fashion. The wideband millimeter-wave data is mathematically reconstructed into a series of high- resolution images of the person being screened. Clothing is relatively transparent to millimeter-wave illumination,whereas the human body and concealed items are reflective at millimeter wavelengths. Differences in shape and reflectivity are revealed in the images and allow a human operator to detect and identify concealed weapons. A full 360 degree scan is necessary to fully inspect a person for concealed items. The millimeter-wave images can be formed into a video animation sequence in which the person appears to rotate in front of a fixed illumination source.This is s convenient method for presenting the 3D image data for analysis. This work has been fully sponsored by the FAA. An engineering prototype based on the cylindrical imaging technique is presently under development. The FAA is currently opposed to presenting the image data directly to the operator due to personal privacy concerns. A computer automated system is desired to address this problem by eliminating operator viewing of the imagery.

  14. Study of Novel Slow Wave Circuit for Miniaturized Millimeter Wave Helical Traveling Wave Tube

    NASA Astrophysics Data System (ADS)

    Li, Bin; Zhu, Xiaofang; Liao, Li; Yang, Zhonghai; Zeng, Baoqing; Yao, Lieming

    2006-07-01

    Two kinds of novel helical slow wave circuit, supported by Chemical Vapor Deposition (CVD) diamond, are presented. They are applying in miniaturized millimeter wave helical traveling wave tube. Cold test characteristic of these circuits are simulated by MAFIA code. Higher performances are achieved with smaller size, compared with conventional circuit supported by BeO rods. The nonlinear analysis is implemented by Beam and Wave Interaction (BWI) module, which is a part of TWTCAD Integrated Framework. Results have been found to be consistent with the expectation. It should be wider apply in microwave and millimeter wave vacuum electronic devices.

  15. Passive millimeter-wave imaging model application and validation

    NASA Astrophysics Data System (ADS)

    Blume, Bradley T.; Chenault, David B.

    1997-06-01

    The military use of millimeter wave radiometers has been studied since the 1960's. It is only recently that advances in the technology have made passive millimeter wave (PMMW) systems practical. It is well established that metal targets will have a large contrast ratio versus the background in the millimeter wave (MMW) regime and that atmospheric propagation through clouds, fog and light rain is possible. The limitations have been the noise figures of the detectors, the size of the systems, and the cost of the systems. Through the advent of millimeter wave monolithic integrated circuits technology, MMW devices are becoming smaller, more sensitive, and less expensive. In addition many efforts are currently under way to develop PMMW array imaging devices. This renewed interest has likewise brought forth the need for passive millimeter wave system modeling capabilities. To fill this need, Nichols Research Corporation has developed for Eglin AFB a physics-based image synthesis code, capable of modeling the dominant effects in the MMW regime. This code has been developed to support the development of the next generation of PMMW seeker systems. This paper will describe the phenomenology of PMMW signatures, the Irma software, validation of the Irma models and the application of the models to both Air Force and Navy problems.

  16. Passive millimeter-wave imaging: seeing in very poor visibility

    NASA Astrophysics Data System (ADS)

    Appleby, Roger; Price, Sean; Gleed, David G.; Lettington, Alan H.

    1995-06-01

    It is more common to use the visible or infrared regions to image although it is possible to use millimeter waves. Passive millimeter wave imaging, however, has the advantage of being able to see in poor weather conditions such as in thick fog. The images, unlike radar signatures, have a natural appearance that can be easily interpreted. The spatial resolution of these imagers is limited by the aperture size and choice of operating frequency. Novel signal processing algorithms have been applied to improve the spatial resolution. Millimeter wave imagers detect slight temperature differences in the scene and using current technology it is possible to sense changes as low as 0.2 K whilst the contrast between an aircraft and its background can be as high as 200 K. A millimetric imager has been used at London Heathrow airport to demonstrate the high quality of the images that can be obtained. Aircraft can be recognized, runways and grass delineated and complex areas such as gates imaged. A qualitative comparison has been made of radar, thermal imaging and passive millimeter wave imaging for ground movement control. The possibility of deploying a passive millimeter wave imager on a commercial aircraft and of using it as part of an enhanced vision system is also discussed.

  17. Amplifier based broadband pixel for sub-millimeter wave imaging

    NASA Astrophysics Data System (ADS)

    Sarkozy, Stephen; Drewes, Jonathan; Leong, Kevin M. K. H.; Lai, Richard; Mei, X. B. (Gerry); Yoshida, Wayne; Lange, Michael D.; Lee, Jane; Deal, William R.

    2012-09-01

    Broadband sub-millimeter wave technology has received significant attention for potential applications in security, medical, and military imaging. Despite theoretical advantages of reduced size, weight, and power compared to current millimeter wave systems, sub-millimeter wave systems have been hampered by a fundamental lack of amplification with sufficient gain and noise figure properties. We report a broadband pixel operating from 300 to 340 GHz, biased off a single 2 V power supply. Over this frequency range, the amplifiers provide > 40 dB gain and <8 dB noise figure, representing the current state-of-art performance capabilities. This pixel is enabled by revolutionary enhancements to indium phosphide (InP) high electron mobility transistor technology, based on a sub-50 nm gate and indium arsenide composite channel with a projected maximum oscillation frequency fmax>1.0 THz. The first sub-millimeter wave-based images using active amplification are demonstrated as part of the Joint Improvised Explosive Device Defeat Organization Longe Range Personnel Imager Program. This development and demonstration may bring to life future sub-millimeter-wave and THz applications such as solutions to brownout problems, ultra-high bandwidth satellite communication cross-links, and future planetary exploration missions.

  18. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  19. Micro hot embossed plastic millimeter-wave systems

    NASA Astrophysics Data System (ADS)

    Cai, Ying; Sammoura, Firas; Chi, Chen-Yu; Lin, Liwei; Chiao, J.-C.

    2005-12-01

    Recently, millimeter-wave devices have been attracted more attentions in applications owing to their short wavelengths, higher resolutions, broader bandwidths and higher environmental tolerance. The great challenges of high fabrication and assembly costs, bulky volumes, and heavy weights of millimeter-wave systems call for new integrated manufacturing techniques. The hot embossing technique could address these challenges. In this paper, a review of micro plastic hot embossing was given for the fabrication of miniaturized millimeter-wave systems. The micro hot embossing on plastic materials demonstrated its advantages on significant costs, volume and weight reduction, while maintaining high performances. We have designed, fabricated and characterized a W-band rectangular waveguide and a W-band iris waveguide filter with integrated plastic flanges using micro hot embossing and selective electroplating. In this paper, we reviewed the results and discussed the design methodology in details for the micromachined components. The prototype devices showed promise for the system designs.

  20. Millimeter-wave spectra of the Jovian planets

    NASA Technical Reports Server (NTRS)

    Joiner, Joanna; Steffes, Paul G.

    1991-01-01

    The millimeter wave portion of the electromagnetic spectrum is critical for understanding the subcloud atmospheric structure of the Jovian planets (Jupiter, Saturn, Uranus, and Neptune). This research utilizes a combination of laboratory measurements, computer modeling, and radio astronomical observation in order to obtain a better understanding of the millimeter-wave spectra of the Jovian planets. The pressure broadened absorption from gaseous ammonia (NH3) and hydrogen sulfide (H2S) was measured in the laboratory under simulated conditions for the Jovian atmospheres. Researchers developed new formalisms for computing the absorptivity of gaseous NH3 and H2S based on their laboratory measurements. They developed a radiative transfer and thermochemical model to predict the abundance and distribution of absorbing constituents in the Jovian atmospheres. They used the model to compute the millimeter wave emission from the Jovian planets.

  1. Millimeter Wave Spectroscopy for Breast Cancer Diagnostics and Detection

    NASA Astrophysics Data System (ADS)

    Korolev, Konstantin; Chen, Shu; Afsar, Mohammed; Naber, Stephen

    2009-03-01

    Broad-band millimeter wave transmittance measurements of normal and tumorous (cancerous) human breast tissue samples have been acquired in--vitro by employing a free-space, quasi-optical spectrometer. Freshly excised breast tissues were prepared and preserved in 10% neutral-buffered formalin solution before testing. Significant differences in the transmittance profiles have been found between the normal and tumorous tissues. It has been found that despite the inhomogeneity and variable structure and composition of each single tissue, the tumorous specimens consistently manifest much higher absorption level of millimeter wave radiation than the normal ones. It has been shown that free space, quasi-optical spectrometer is capable of contributing valuable insights into the dielectric properties of normal and tumorous human breast tissues and aiding in further developments of millimeter wave spectroscopy and mammography for the breast cancer diagnostics and detection.

  2. Millimeter-wave technology advances since 1985 and future trends

    NASA Astrophysics Data System (ADS)

    Meinel, Holger H.

    1991-05-01

    The author focuses on finline or E-plane technology. Several examples, including AVES, a 61.5-GHz radar sensor for traffic data acquisition, are included. Monolithic integrated 60- and 94-GHz receiver circuits composed of a mixer and IF amplifier in compatible FET technology on GaAs are presented to show the state of the art in this area. A promising approach to the use of silicon technology for monolithic millimeter-wave integrated circuits, called SIMMWIC, is described as well. As millimeter-wave technology has matured, increased interest has been generated for very specific applications: (1) commercial automotive applications such as intelligent cruise control and enhanced vision have attracted great interest, calling for a low-cost design approach; and (2) an almost classical application of millimeter-wave techniques is the field of radar seekers, e.g., for intelligent ammunitions, calling for high performance under extreme environmental conditions. Two examples fulfilling these requirements are described.

  3. Microsystem integration from RF to millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Vähä-Heikkilä, T.; Lahti, M.

    2015-05-01

    Radio frequency systems have been applied successfully to consumer products. Typically these radios operate up to 6 GHz. During recent years, interest towards microwave (up to 30 GHz) and millimeter wave frequencies (30 ... 300 GHz) has increased significantly. Technologies have been developed to have high performance microwave and millimeter wave components. On the other hand, integration and packaging technologies have not developed as fast while their importance is crucial especially in consumer applications. This presentation focuses to latest trends in wireless microsystem component integration and packaging trends backed up with demonstrators and measured results based on VTT's demonstrations.

  4. The influence of polarization on millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.

    1972-01-01

    A program for the measurement and analysis of the depolarization and differential attenuation that occur when millimeter wave signals propagate through rain is described. Initial data are taken along a 1.43 km path at 17.65 GHz and a supporting theoretical model is developed to relate the propagation effects to rainfall rate and wind velocity. A block diagram of the overall experiment is included. It consists of: (1) an RF system (millimeter wave transmitter and receiver), (2) transmitting and receiving antennas, (3) a weather system with rain gauges, wind sensors, and drop counters, and (4) a digital control, processing, and data storage system.

  5. Millimeter-wave detection using resonant tunnelling diodes

    NASA Technical Reports Server (NTRS)

    Mehdi, I.; Kidner, C.; East, J. R.; Haddad, G. I.

    1990-01-01

    A lattice-matched InGaAs/InAlAs resonant tunnelling diode is studied as a video detector in the millimeter-wave range. Tangential signal sensitivity and video resistance measurements are made as a function of bias and frequency. A tangential signal sensitivity of -37 dBm (1 MHz amplifier bandwidth) with a corresponding video resistance of 350 ohms at 40 GHz has been measured. These results appear to be the first millimeter-wave tangential signal sensitivity and video resistance results for a resonant tunnelling diode.

  6. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  7. A Robust Waveguide Millimeter-Wave Noise Source

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; Piepmeier, Jeffrey R.; Solly, Michael; Macmurphy, Shawn; Lucey, Jared; Wollack, Edward

    2015-01-01

    This paper presents the design, fabrication, and characterization of a millimeter-wave noise source for the 160- 210 GHz frequency range. The noise source has been implemented in an E-split-block waveguide package and the internal circuitry was developed on a quartz substrate. The measured excess noise ratio at 200 GHz is 9.6 dB.

  8. A compendium of millimeter wave propagation studies performed by NASA

    NASA Technical Reports Server (NTRS)

    Kaul, R.; Rogers, D.; Bremer, J.

    1977-01-01

    Key millimeter wave propagation experiments and analytical results were summarized. The experiments were performed with the Ats-5, Ats-6 and Comstar satellites, radars, radiometers and rain gage networks. Analytic models were developed for extrapolation of experimental results to frequencies, locations, and communications systems.

  9. The digital signal processor for the ALCOR millimeter wave radar

    NASA Astrophysics Data System (ADS)

    Ford, R. A.

    1980-11-01

    This report describes the use of an array processor for real time radar signal processing. Pulse compression, range marking, and monopulse error computation are some of the functions that will be performed in the array processor for the millimeter wave ALCOR radar augmentation. Real time software design, processor architecture, and system interfaces are discussed in the report.

  10. Active Millimeter-Wave and Sub-Millimeter-Wave Imaging for Security Applications

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2011-09-02

    Active imaging at millimeter and sub-millimeter wavelengths has been developed for security applications including concealed weapon detection. The physical properties that affect imaging performance are discussed along with a review of the current state-of-the-art and future potential for security imaging systems.

  11. Infrared and millimeter waves. Volume 13 - Millimeter components and techniques. Part 4

    NASA Astrophysics Data System (ADS)

    Button, K. J.

    Recent experimentation and theoretical modeling of IR and millimeter-wave devices for various applications are discussed in depth. Attention is given to powerful gyrotrons for thermonuclear research, new, high power coherent, millimeter radiation sources, and a kinetic theory of a harmonic gyrotron oscillator with a slotted resonant structure. Communication, radar and radiometer applications of integrated fin-line components are discussed, and investigations into propagation and mode coupling phenomena in corrugated and smooth-wall circular waveguides are reviewed. The known far-infrared (FIR) properties of inhomogeneous materials are described, including experimentation with normal-metal and insulator composites and with superconductivity. Finally, recent experimental and theoretical work on solid-state spectroscopy with FIR continuous-wave lasers is summarized in comparison with the performance bounds of Fourier spectroscopy.

  12. Millimeter wave technology III; Proceedings of the Meeting, Arlington, VA, April 9, 10, 1985

    SciTech Connect

    Wiltse, J.C.

    1985-01-01

    Various papers on millimeter wave technology are presented. The subjects addressed include: high-power millimeter and submillimeter wave lasers and gyrotrons, GaAs IMPATT sources, InP Gunn diode sources, phase and frequency control of millimeter wave source, the Fresnel zone-plate lens, uniform waveguide leaky wave antennas, microstrip dipole antennas on electrically thick substrates, measurement of antenna patterns at 94 GHz using infrared detection, and transitions in open millimeter waveguides. Also discussed are: millimeter wave subassembly packaging techniques, recent advances in millimeter wave integrated circuits and subsystems, millimeter wave active solid state devices, applications of millimeter wave imaging, contrast reversal in MMW radiometric imaging, detection of stationary ground targets by airborne MMW radars, millimeter wave polarimetric background measurements, coherent 96 GHz high power radar, high-resolution 986 GHz FM-CW solid state radar, integrated circuit radar and radiometric sensors, millimeter-wave six-ports, atmospheric turbulence measuring system, near-millimeter wave propagation instrumentation, and millimeter wave measurement by Fabry-Perot.

  13. Circularly Polarized Millimeter-Wave Imaging for Personnel Screening

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Lechelt, Wayne M.; Griffin, Jeffrey W.

    2005-08-01

    A novel polarimetric millimeter-wave imaging technique has been developed at the Pacific Northwest National Laboratory (PNNL) for concealed weapon detection applications. Wideband millimeter-wave imaging systems developed at PNNL utilize low-power, coherent, millimeter-wave illumination in the 10-100 GHz range to form high-resolution images of personnel. Electromagnetic waves in these frequency ranges easily penetrate most clothing materials and are reflected from the body and any concealed items. Three-dimensional images are formed using computer image reconstruction algorithms developed to mathematically focus the received wavefronts scattered from the target. Circular polarimetric imaging can be employed to obtain additional information from the target. Circularly polarized waves incident on relatively smooth reflecting targets are typically reversed in their rotational handedness, e.g. left-hand circular polarization (LHCP) is reflected to become right-hand circular polarization (RHCP). An incident wave that is reflected twice (or any even number) of times prior to returning to the transceiver, has its handedness preserved. Sharp features such as wires and edges tend to return linear polarization, which can be considered to be a sum of both LHCP and RHCP. These characteristics can be exploited for personnel screening by allowing differentiation of smooth features, such as the body, and sharper features present in many concealed items. Additionally, imaging artifacts due to multipath can be identified and eliminated. Laboratory imaging results have been obtained in the 10-20 GHz frequency range and are presented in this paper.

  14. Advanced Millimeter-Wave Imaging Enhances Security Screening

    SciTech Connect

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-01-12

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  15. Advanced Millimeter-Wave Security Portal Imaging Techniques

    SciTech Connect

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-04-01

    Millimeter-wave imaging is rapidly gaining acceptance for passenger screening at airports and other secured facilities. This paper details a number of techniques developed over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, as well as high frequency high bandwidth techniques. Implementation of some of these methods will increase the cost and complexity of the mm-wave security portal imaging systems. RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems.

  16. Millimeter-wave sensor image analysis

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Suess, Helmut

    1989-01-01

    Images of an airborne, scanning, radiometer operating at a frequency of 98 GHz, have been analyzed. The mm-wave images were obtained in 1985/1986 using the JPL mm-wave imaging sensor. The goal of this study was to enhance the information content of these images and make their interpretation easier for human analysis. In this paper, a visual interpretative approach was used for information extraction from the images. This included application of nonlinear transform techniques for noise reduction and for color, contrast and edge enhancement. Results of the techniques on selected mm-wave images are presented.

  17. Millimeter-wave Sensor Image Enhancement

    NASA Technical Reports Server (NTRS)

    Wilson, William J.; Suess, Helmut

    1988-01-01

    Images of an airborne scanning radiometer operating at a frequency of 98 GHz were analyzed. The mm wave images were obtained using the JPL mm wave imaging sensor. The goal was to enhance the information content of these images and make their interpretation easier for human analysis. A visual interpretative approach was used for information extraction from the images. This included application of nonlinear transform techniques for noise reduction and for color, contrast, and edge enhancement. Results of the techniques on selected mm wave images are shown.

  18. Nondestructive millimeter wave imaging and spectroscopy using dielectric focusing probes

    SciTech Connect

    Hejase, Jose A.; Shane, Steven S.; Park, Kyoung Y.; Chahal, Premjeet

    2014-02-18

    A tool for interrogating objects over a wide band of frequencies with subwavelength resolution at small standoff distances (near field region) in the transmission mode using a single source and detector measurement setup in the millimeter wave band is presented. The design utilizes optics like principles for guiding electromagnetic millimeter waves from large cross-sectional areas to considerably smaller sub-wavelength areas. While plano-convex lenses can be used to focus waves to a fine resolution, they usually require a large stand-off distance thus resulting in alignment and spacing issues. The design procedure and simulation analysis of the focusing probes are presented in this study along with experimental verification of performance and imaging and spectroscopy examples. Nondestructive evaluation will find benefit from such an apparatus including biological tissue imaging, electronic package integrity testing, composite dielectric structure evaluation for defects and microfluidic sensing.

  19. High performance millimeter-wave microstrip circulators and isolators

    NASA Technical Reports Server (NTRS)

    Shih, Ming; Pan, J. J.

    1990-01-01

    Millimeter wave systems, phased array antennas, and high performance components all require wideband circulators (and isolators) to perform diplexing and switching, to improve isolation and Voltage Standing Wave Ratio (VSWR), and to construct IMPATT diode reflection amplifiers. Presently, most of the millimeter-wave circulators and isolators are available in the configurations of waveguide or stripline, both of which suffer from the shortcomings of bulky size/weight, narrow bandwidth, and poor compatibility with monolithic millimeter-wave integrated circuits (MMIC). MMW microstrip circulators/isolators can eliminate or improve these shortcomings. Stub-tuned microstrip circulator configuration were developed utilizing the electromagnetic fields perturbation technique, the adhesion problems of microstrip metallization on new ferrite substrate were overcome, the fabrication, assembly, packaging techniques were improved, and then successfully designed, fabricated a Ka band circulator which has isolation and return loss of greater than 16dB, insertion loss less than 0.7dB. To assess the steady and reliable performance of the circulator, a temperature cycling test was done over the range of -20 to +50 C for 3 continuous cycles and found no significant impact or variation of circulator performance.

  20. Millimeter-wave high-resolution holographic surveillance system

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Sheen, David M.; Collins, H. D.; Hall, Thomas E.; Smith, Russell R.

    1994-03-01

    A prototype millimeter wave holographic surveillance system has been developed and demonstrated at the Pacific Northwest Laboratory (PNL). The prototype millimeter wave holographic surveillance system developed at PNL consists of a sequentially switched 2 X 64 element array coupled to a 35 GHz bi-static transceiver. The sequentially switched array of antennas can be used to obtain the holographic data at high speed by electronically sequencing the antennas along one dimension and performing a mechanical scan along the other dimension. A 1D mechanical scan can be performed in about one second. The prototype system scans an aperture of 0.75 by 2.05 m. This system has been demonstrated and images have been obtained on volunteers at Sea-Tac International airport in Seattle, Washington.

  1. RF to millimeter wave integration and module technologies

    NASA Astrophysics Data System (ADS)

    Vähä-Heikkilä, T.

    2015-04-01

    Radio Frequency (RF) consumer applications have boosted silicon integrated circuits (IC) and corresponding technologies. More and more functions are integrated to ICs and their performance is also increasing. However, RF front-end modules with filters and switches as well as antennas still need other way of integration. This paper focuses to RF front-end module and antenna developments as well as to the integration of millimeter wave radios. VTT Technical Research Centre of Finland has developed both Low Temperature Co-fired Ceramics (LTCC) and Integrated Passive Devices (IPD) integration platforms for RF and millimeter wave integrated modules. In addition to in-house technologies, VTT is using module and component technologies from other commercial sources.

  2. Millimeter-wave generation with spiraling electron beams

    NASA Technical Reports Server (NTRS)

    Kulke, B.

    1971-01-01

    The feasibility of using the interaction between a thin, solid, spiraling electron beam of 10 to 20 kV energy and a microwave cavity to generate watts of CW millimeter-wave power was investigated. Experimental results are given for several prototype devices operating at 9.4 GHz and at 94 GHz. Power outputs of 5 W, and electronic efficiencies near 3%, were obtained at X band, and moderate gain was obtained at 94 GHz. The small-signal theory gives a good fit to the X-band data, and the device behavior at 94 GHz is as expected from the given beam characteristics. The performance is limited chiefly by the velocity spread in the spiraling electron beam, and once this can be brought under control, high-power generation of millimeter waves appears quite feasible with this type of device.

  3. Image guide couplers used in millimeter wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Qi, Lanfen; Xu, Liqun; Luo, Ye

    1988-12-01

    The odd-even mode principle and the effective dielectric constant method are used to explore the dispersion and coupling characteristics of coupled image guides. The design for an image guide directional coupler is discussed. It is suggested that 3-dB and 10-dB couplers in Ka band can be used to provide millimeter wave integrated circuits with flat coupling, mechanical stability, and low losses.

  4. Circulators for microwave and millimeter-wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Schloemann, Ernst F.

    1988-02-01

    The requirements for circulators for use in combination with microwave and millimeter-wave integrated circuits are reviewed, with special emphasis on modules for phased-array antennas. Recent advances in broadbanding and in miniaturization are summarized. Novel types of circulators that are fabricated by attaching a ferrite disc and a suitable coupling structure to the surface of a dielectric or semiconductor substrate ('quasi-monolithic' integration) are described. Methods for achieving complete monolithic integration are also discussed.

  5. New trends in millimeter-wave mixer technology

    NASA Astrophysics Data System (ADS)

    Paul, J.; Kung, J.

    1980-05-01

    The paper is concerned with the new millimeter-wave mixer technologies under active consideration for the frequency range 60-340 GHz. First are examined three types of GaAs Schottky barrier mixer diodes: honeycomb, notch front and beam lead. Then are presented four types of mixers involving different circuit technologies: waveguide, suspended stripline, dielectric guide and quasi-optical. The design and performance of both mixer circuits and diodes are analyzed as a function of frequency and instantaneous bandwidth.

  6. Control techniques for millimeter-wave active arrays

    SciTech Connect

    Sjogren, L.B.; Liu, H.L.; Liu, T.; Wang, F.; Domier, C.W.; Luhmann, N.C. Jr. )

    1993-06-01

    Control techniques for millimeter-wave active arrays are considered. In addition to voltage control, optical and quasi-optical approaches are discussed as analog control techniques. Digital control techniques discussed include on/off switching arrays and designs with superimposed device and/or grid structures for multi-bit capability. A quasi-optical Q switch, capable of high peak power pulse generation, is discussed as an example application of these techniques. 31 refs., 7 figs.

  7. Millimeter-wave sensing of the environment: A bibliographic survey

    NASA Technical Reports Server (NTRS)

    Schneider, E.; Epstein, E. E.

    1981-01-01

    This literature survey was conducted to examine the field of millimeter wave remote sensing of the environment and collect all relevant observations made in the atmospheric windows near 90, 140, and 230 GHz of ocean, terrain, man-made features, and the atmosphere. Over 170 articles and reports were examined; bibliographic references are provided for all and abstracts are quoted when available. Selected highlights were extracted from the pertinent articles.

  8. Millimeter wave, high-resolution, holographic surveillance system

    NASA Astrophysics Data System (ADS)

    McMakin, D. L.; Sheen, D. M.; Collins, H. D.; Hall, T. E.; Smith, R. R.; Droppo, J. G., Jr.

    Millimeter wave holographic imaging systems capable of imaging through clothing to detect contraband, metal, plastic, or ceramic weapons may provided a practical solution to personnel inspection needs in mass transportation centers. Traditional inspection systems, such as metal detectors and x-ray imaging systems, have limitations for the detection of concealed weapons. Metal detectors are limited because they cannot detect plastic weapons and x-ray imaging systems are limited in use due to radiological health considerations. A prototype millimeter wave holographic surveillance system has been developed and demonstrated at the Pacific Northwest Laboratory (PNL). The prototype millimeter wave holographic surveillance system developed at PNL consists of a sequentially switched 2 (times) 64 element array coupled to a 35 GHz bi-static transceiver. The sequentially switched array of antennas can be used to obtain the holographic data at high speed by electronically sequencing the antennas along one dimension and performing a mechanical scan along the other dimension. A one-dimensional mechanical scan be be performed in about one second. The prototype system scans an aperture of 0.75 by 2.05. This system has been demonstrated and images have been obtained on volunteers at Sea-Tac International airport in Seattle, Washington.

  9. Polydimethylsiloxane membranes for millimeter-wave planar ultra flexible antennas

    NASA Astrophysics Data System (ADS)

    Tiercelin, Nicolas; Coquet, Philippe; Sauleau, Ronan; Senez, Vincent; Fujita, Hiroyuki

    2006-11-01

    We present here the use of polydimethylsiloxane (PDMS) membranes as a new soft polymer substrate (ɛr ap 2.67 at 77 GHz) for the realization of ultra-flexible millimeter-wave printed antennas thanks to the extremely low Young's modulus (EPDMS < 2 MPa). Ultimately this peculiar property enables one to design wide-angle mechanically beam-steering antennas and flexible conformal antennas. The experimental characterization of PDMS material in V- and W-bands highlights high loss tangent values (tanδ ap 0.04 at 77 GHz). Thus micromachining techniques have been developed to reduce dielectric losses for antenna applications at millimeter waves. Here the antenna performance is demonstrated in the 60 GHz band by considering a single microstrip patch antenna supported by a PDMS membrane over an air-filled cavity. After a brief description of the design approach using the method of moments (MoM) and the finite-difference time-domain (FDTD) technique, the technological processes are described in detail. The input impedance and radiation patterns of the prototype are in good agreement with numerical simulations. The radiation efficiency of the micromachined antenna is equal to 60% and is in the same order as that obtained with conventional polymer bulk substrates such as Duroids. These results confirm the validity of the new technological process and assembly procedure, and demonstrate that PDMS membranes can be used to realize low-loss planar membrane-supported millimeter-wave printed circuits and radiating structures.

  10. A Three-Frequency Feed for Millimeter-Wave Radiometry

    NASA Technical Reports Server (NTRS)

    Hoppe, Daniel J.; Khayatian, Behrouz; Sosnowski, John B.; Johnson, Alan K.; Bruneau, Peter J.

    2012-01-01

    A three-frequency millimeter-wave feed horn was developed as part of an advanced component technology task that provides components necessary for higher-frequency radiometers to meet the needs of the Surface Water and Ocean Topography (SWOT) mission. The primary objectives of SWOT are to characterize ocean sub-mesoscale processes on 10-km and larger scales in the global oceans, and to measure the global water storage in inland surface water bodies, including rivers, lakes, reservoirs, and wetlands. In this innovation, the feed provides three separate output ports in the 87-to- 97-GHz, 125-to-135-GHz, and 161-to-183- GHz bands; WR10 for the 90-GHz channel, WR8 for the 130-GHz channel, and WR5 for the 170-GHz channel. These ports are in turn connected to individual radiometer channels that will also demonstrate component technology including new PIN-diode switches and noise diodes for internal calibration integrated into each radiometer front end. For this application, a prime focus feed is required with an edge taper of approximately 20 dB at an illumination angle of 40 deg. A single polarization is provided in each band. Preliminary requirements called for a return loss of better than 15 dB, which is achieved across all three bands. Good pattern symmetry is also obtained throughout all three-frequency bands. This three-frequency broadband millimeter-wave feed also minimizes mass and provides a common focal point for all three millimeter-wave bands.

  11. Microwave-to-millimeter-wave synthesis chain phase noise performance.

    PubMed

    Bara-Maillet, Romain; Parker, Stephen R; Nand, Nitin R; Le Floch, Jean-Michel; Tobar, Michael E

    2015-10-01

    We report on the phase noise measurement of a millimeter-wave synthesis chain developed for a continuous wave (CW) source exhibiting high frequency stability. We quantify the performance of each multiplication stage in terms of phase spectral purity. From the initial cryogenic sapphire oscillator generating 12.97 GHz, a total multiplication factor of eight is applied through two stages to reach a frequency of 103.75 GHz. We find that the chain performance is primarily limited by the phase noise of the initial frequency doubler.

  12. Multiferroic Microwave and Millimeter Wave Devices

    NASA Astrophysics Data System (ADS)

    Srinivasan, Gopalan

    2009-03-01

    Layered composites of ferrites and ferroelectrics are magneto-electric (ME) multiferroics and are of interest for studies on the physics of ME interactions and for novel signal processing devices. There are two types of interactions. (i) ME coupling in bound ferrite-piezoelectrics: An electric field E applied to the composite produces a mechanical deformation in the piezoelectric phase that in turn is coupled to the ferrite, resulting in a shift in the ferromagnetic resonance field. The strength of the interactions is measured from the FMR shifts. (ii) ME interactions in unbound ferrite-ferroelectrics: This is a proximity effect in which hybrid spin-electromagnetic waves are formed. An electric field applied to the ferroelectric will result in a change in the permittivity and a shift in the hybrid modes. We performed studies on the nature of ME interactions at 1-110 GHz in bilayers of epitaxial yttrium iron garnet (YIG) films, single crystal spinel ferrites or hexagonal ferrites and single crystal lead magnesium niobate-lead titanate (PMN-PT) or polycrystalline lead zirconium titanate (PZT). A stripline structure or a cavity resonator was used. Electric fields effects were investigated on magnetostatic waves, uniform precession modes or hybrid modes in the ferrite. We found evidence for strong microwave ME coupling. The coupling strength has been found to be dependent on magnetic field orientation, the nature of piezoelectric coupling and volume for both phases [1]. The high frequency ME effect is of importance for dual electric and magnetic field tunable ferrite-ferroelectric devices. We will discuss the design and characterization of ME resonators, phase shifters, delay lines and filters [2]. The work is supported by grants from the Army Research Office and the office of Naval Research. [4pt] [1] ``Multiferroic magnetoelectric composites: Historical perspective, status, and future direction,'' Ce-Wen Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J

  13. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    Do nearby stars have planetary systems like our own? How do such systems evolve? How common are such systems? Proposed radio observatories operating at millimeter wavelengths could start answering these questions within the next 6-10 years, according to scientists at the National Radio Astronomy Observatory (NRAO). Bryan Butler, Robert Brown, Richard Simon, Al Wootten and Darrel Emerson, all of NRAO, presented their findings today to the American Astronomical Society meeting in San Antonio, TX. Detecting planets circling other stars is a particularly difficult task, and only a few such planets have been discovered so far. In order to answer fundamental questions about planetary systems and their origin, scientists need to find and study many more extrasolar planets. According to the NRAO scientists, millimeter-wavelength observatories could provide valuable information about extrasolar planetary systems at all stages of their evolution. "With instruments planned by 2005, we could detect planets the size of Jupiter around a solar-type star out to a distance of 100 light-years," said Robert Brown, Associate Director of NRAO. "That means," he added, "that we could survey approximately 2,000 stars of different types to learn if they have planets this size." Millimeter waves occupy the portion of the electromagnetic spectrum between radio microwaves and infrared waves. Telescopes for observing at millimeter wavelengths utilize advanced electronic equipment similar to that used in radio telescopes observing at longer wavelengths. Millimeter-wave observatories offer a number of advantages in the search for extrasolar planets. Planned multi-antenna millimeter-wave telescopes can provide much higher resolving power, or ability to see fine detail, than current optical or infrared telescopes. Millimeter-wave observations would not be degraded by interference from the "zodiacal light" reflected by interplanetary dust, either in the extrasolar system or our own solar system

  14. Millimeter-wave and terahertz integrated circuit antennas

    NASA Astrophysics Data System (ADS)

    Rebeiz, Gabriel M.

    1992-11-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  15. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  16. Millimeter-wave and terahertz integrated circuit antennas

    NASA Technical Reports Server (NTRS)

    Rebeiz, Gabriel M.

    1992-01-01

    This paper presents a comprehensive review of integrated circuit antennas suitable for millimeter and terahertz applications. A great deal of research was done on integrated circuit antennas in the last decade and many of the problems associated with electrically thick dielectric substrates, such as substrate modes and poor radiation patterns, have been understood and solved. Several new antennas, such as the integrated horn antenna, the dielectric-filled parabola, the Fresnel plate antenna, the dual-slot antenna, and the log-periodic and spiral antennas on extended hemispherical lenses, have resulted in excellent performance at millimeter-wave frequencies, and are covered in detail in this paper. Also, a review of the efficiency definitions used with planar antennas is given in detail in the appendix.

  17. Millimeter-wave generation and characterization of a GaAs FET by optical mixing

    NASA Technical Reports Server (NTRS)

    Ni, David C.; Fetterman, Harold R.; Chew, Wilbert

    1990-01-01

    Coherent mixing of optical radiation from a tunable continuous-wave dye laser and a stabilized He-Ne laser was used to generate millimeter-wave signals in GaAs FETs attached to printed-circuit millimeter-wave antennas. The generated signal was further down-converted to a 2-GHz IF by an antenna-coupled millimeter-wave local oscillator at 62 GHz. Detailed characterizations of power and S/N under different bias conditions have been performed. This technique is expected to allow signal generation and frequency-response evaluation of millimeter-wave devices at frequencies as high as 100 GHz.

  18. Millimeter-wave waveguiding using photonic band structures

    NASA Astrophysics Data System (ADS)

    Eliyahu, Danny; Sadovnik, Lev S.; Manasson, Vladimir A.

    2000-07-01

    Current trends in device miniaturization and integration, especially in the development of microwave monolithic integrated circuits, calls for flexible, arbitrarily shaped and curved interconnects. Standard dielectric waveguides and microstrip lines are subject to prohibitive losses and their functionality is limited because of their unflexible structures. The problem is addressed by confining the wave- guiding path in a substrate with a Photonic Band Gap structure in a manner that will result in the guided mode being localized within the band gap. Two devices implementing Photonic Band Structures for millimeter waves confinement are presented. The first waveguide is a linear defect in triangular lattice created in a silicon slab (TE mode). The structure consists of parallel air holes of circular cross sections. The silicon was laser drilled to create the 2D crystal. The second device consists of alumina rods arranged in a triangular lattice, surrounded by air and sandwiched between two parallel metal plates (TM mode). Electromagnetic wave (W-band) confinement was obtained in both devices for straight and bent waveguides. Three branch waveguides (intersecting line defects) was studied as well. Measurements confirmed the lowloss waveguide confinement property of the utilizing Photonic Band Gap structure. This structure can find applications in power combiner/splitter and other millimeter wave devices.

  19. Advanced millimeter-wave security portal imaging techniques

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; Bernacki, Bruce E.; McMakin, Douglas L.

    2012-03-01

    Millimeter-wave (mm-wave) imaging is rapidly gaining acceptance as a security tool to augment conventional metal detectors and baggage x-ray systems for passenger screening at airports and other secured facilities. This acceptance indicates that the technology has matured; however, many potential improvements can yet be realized. The authors have developed a number of techniques over the last several years including novel image reconstruction and display techniques, polarimetric imaging techniques, array switching schemes, and high-frequency high-bandwidth techniques. All of these may improve the performance of new systems; however, some of these techniques will increase the cost and complexity of the mm-wave security portal imaging systems. Reducing this cost may require the development of novel array designs. In particular, RF photonic methods may provide new solutions to the design and development of the sequentially switched linear mm-wave arrays that are the key element in the mm-wave portal imaging systems. Highfrequency, high-bandwidth designs are difficult to achieve with conventional mm-wave electronic devices, and RF photonic devices may be a practical alternative. In this paper, the mm-wave imaging techniques developed at PNNL are reviewed and the potential for implementing RF photonic mm-wave array designs is explored.

  20. Laminated metamaterial flat lens at millimeter-wave frequencies.

    PubMed

    Kitayama, Daisuke; Yaita, Makoto; Song, Ho-Jin

    2015-09-01

    A flat and thin shape is obviously advantageous not only in terms of reducing the volume of a device, but also in handling and using it. Particularly, laminating or stacking flat devices is an intuitive and straightforward way of tailoring performance and functions. Here, we experimentally demonstrated a laminated flat lens for millimeter-wave frequencies that is based on split-ring resonators (SRRs) composed of multiple layers with different and/or identical index profiles and that exhibits characteristics that are linear combinations of those of the individual lenses. Since the characteristics of the lenses of each layer are preserved regardless of the neighbouring layers, the desired functionalities can be easily implemented simply by laminating elementary lenses designed already. When we laminated two lenses designed for bending or focusing incoming waves at 120 GHz, we clearly observed that the outgoing waves collimated and bended as desired.

  1. Optical millimeter-wave generation with modified frequency quadrupling scheme

    NASA Astrophysics Data System (ADS)

    Zhao, Shanghong; Zhu, Zihang; Li, Yongjun; Chu, Xingchun; Li, Xuan

    2013-11-01

    A dispersion-tolerant full-duplex radio-over-fiber (RoF) system based on modified quadrupling-frequency optical millimeter (mm)-wave generation using an integrated nested Mach-Zehnder modulator (MZM), an electrical phase modulator, and an electrical gain is proposed. Not only does the scheme reduce the cost and complexity of base station by reusing the downlink optical carrier, but also the generated optical mm-wave signal with base-band data carried only by 1-s order sideband can overcome both the fading effect and bit walk-off effect caused by the fiber dispersion. Simulation results show that the eye diagram keeps open and clear even when the quadrupling-frequency optical mm-wave is transmitted over 120-km single-mode fiber, and the bidirectional 2.5 Gbit/s data are successfully transmitted over 40 km for both upstream and downstream channels with <1-dB power penalty.

  2. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    SciTech Connect

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  3. On the mechanisms of interaction of low-intensity millimeter waves with biological objects

    NASA Astrophysics Data System (ADS)

    Betskii, O. V.

    1994-01-01

    The interaction of low-intensity millimeter-band electromagnetic waves with biological objects is examined. These waves are widely used in medical practice as a means of physiotherapy for the treatment of various human disorders. Principal attention is given to the mechanisms through which millimeter waves act on the human organism.

  4. Millimeter-wave/infrared rectenna development at Georgia Tech

    NASA Technical Reports Server (NTRS)

    Gouker, Mark A.

    1989-01-01

    The key design issues of the Millimeter Wave/Infrared (MMW/IR) monolithic rectenna have been resolved. The work at Georgia Tech in the last year has focused on increasing the power received by the physically small MMW rectennas in order to increase the rectification efficiency. The solution to this problem is to place a focusing element on the back side of the substrate. The size of the focusing element can be adjusted to help maintain the optimum input power density not only for different power densities called for in various mission scenarios, but also for the nonuniform power density profile of a narrow EM-beam.

  5. Photonic Generation of Dual-Band Power-Efficient Millimeter-Wave UWB Signals

    NASA Astrophysics Data System (ADS)

    Xiang, Peng; Guo, Hao; Chen, Dalei; Zhou, Hua

    2015-05-01

    Ultra-wideband (UWB) technology has attracted great interest because it can provide a promising solution of future radar and short-range broadband wireless communications. The generation of millimeter-wave UWB signals using photonic approaches can reduce the high cost of the millimeter-wave electrical circuits. Moreover, it is well compatible with fiber transmission, which can effectively extend its signal coverage. In this paper, a novel approach to the photonic generation of millimeter-wave UWB signals with dual-band operation consideration is proposed. The proposed scheme can simultaneously generate millimeter-wave UWB signals in both 24 GHz and 60 GHz millimeter band, and can efficiently exploit the spectrum limit allowed by the FCC mask by using the linear combination pulse design concept. A model describing the proposed system is developed and the generation of 24/60 GHz millimeter-wave UWB signals is demonstrated via computer simulations.

  6. Sniper bullet detection by millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Bernstein, Uri; Lefevre, Russell J.; Mann, John; Avent, Randy K.; Deo, Naresh

    1999-01-01

    Law enforcement and military operations would clearly benefit from a capability to locate snipers by backtracking the sniper's bullet trajectory. Achieving sufficient backtracking accuracy for bullets is a demanding radar design, requiring good measurement accuracy, high update rate, and detection of very low cross-section objects. In addition, reasonable cost is a driving requirement for law enforcement use. These divergent design requirements are addressed in an experimental millimeter-wave focal plane array radar that uses integrated millimeter-wave receiver technology. The radar is being built for DARPA by Technology Service Corporation, with assistance from M.I.T. Lincoln Laboratory and QuinStar Technology. The key element in the radar is a 35-GHz focal plane array receiver. The receiving antenna lens focuses radar signals from a wide field of view onto an array of receivers, each receiver processing a separate element of the field of view. Receiver detections are then combined in a tracking processor. An FM-CW waveform is used to provide high average power, good range resolution, and stationary clutter rejection. TSC will be testing the sniper detection radar, using radar environment simulator technology developed at Lincoln Laboratory. The simulator will retransmit the received signal with the range delay, Doppler shift, and ERP for various simulated bullet trajectories.

  7. Computational spectral microscopy and compressive millimeter-wave holography

    NASA Astrophysics Data System (ADS)

    Fernandez, Christy Ann

    This dissertation describes three computational sensors. The first sensor is a scanning multi-spectral aperture-coded microscope containing a coded aperture spectrometer that is vertically scanned through a microscope intermediate image plane. The spectrometer aperture-code spatially encodes the object spectral data and nonnegative least squares inversion combined with a series of reconfigured two-dimensional (2D spatial-spectral) scanned measurements enables three-dimensional (3D) (x, y, lambda) object estimation. The second sensor is a coded aperture snapshot spectral imager that employs a compressive optical architecture to record a spectrally filtered projection of a 3D object data cube onto a 2D detector array. Two nonlinear and adapted TV-minimization schemes are presented for 3D (x, y, lambda) object estimation from a 2D compressed snapshot. Both sensors are interfaced to laboratory-grade microscopes and applied to fluorescence microscopy. The third sensor is a millimeter-wave holographic imaging system that is used to study the impact of 2D compressive measurement on 3D (x, y, z) data estimation. Holography is a natural compressive encoder since a 3D parabolic slice of the object band volume is recorded onto a 2D planar surface. An adapted nonlinear TV-minimization algorithm is used for 3D tomographic estimation from a 2D and a sparse 2D hologram composite. This strategy aims to reduce scan time costs associated with millimeter-wave image acquisition using a single pixel receiver.

  8. Millimeter-wave diode-grid frequency doubler

    NASA Technical Reports Server (NTRS)

    Jou, Christina F.; Luhmann, Neville C., Jr.; Lam, Wayne W.; Stolt, Kjell S.; Chen, Howard Z.

    1988-01-01

    Monolithic diode grids were fabricated on 2-cm square gallium-arsenide wafers in a proof-of-principle test of a quasi-optical varactor millimeter-wave frequency multiplier array concept. An equivalent circuit model based on a transmission-line analysis of plane wave illumination was applied to predict the array performance. The doubler experiments were performed under far-field illumination conditions. A second-harmonic conversion efficiency of 9.5 percent and output powers of 0.5 W were achieved at 66 GHz when the diode grid was pumped with a pulsed source at 33 GHz. This grid had 760 Schottky-barrier varactor diodes. The average series resistance was 27 ohms, the minimum capacitance was 18 fF at a reverse breakdown voltage of -3 V. The measurements indicate that the diode grid is a feasible device for generating watt-level powers at millimeter frequencies and that substantial improvement is possible by improving the diode breakdown voltage.

  9. Reflective measurement of water concentration using millimeter wave illumination

    NASA Astrophysics Data System (ADS)

    Sung, Shijun; Bennett, David; Taylor, Zachary; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Culjat, Martin; Singh, Rahul; Grundfest, Warren

    2011-04-01

    THz and millimeter wave technology have shown the potential to become a valuable medical imaging tool because of its sensitivity to water and safe, non-ionizing photon energy. Using the high dielectric constant of water in these frequency bands, reflectionmode THz sensing systems can be employed to measure water content in a target with high sensitivity. This phenomenology may lead to the development of clinical systems to measure the hydration state of biological targets. Such measurements may be useful in fast and convenient diagnosis of conditions whose symptoms can be characterized by changes in water concentration such as skin burns, dehydration, or chemical exposure. To explore millimeter wave sensitivity to hydration, a reflectometry system is constructed to make water concentration measurements at 100 GHz, and the minimum detectable water concentration difference is measured. This system employs a 100 GHz Gunn diode source and Golay cell detector to perform point reflectivity measurements of a wetted polypropylene towel as it dries on a mass balance. A noise limited, minimum detectable concentration difference of less than 0.5% by mass can be detected in water concentrations ranging from 70% to 80%. This sensitivity is sufficient to detect hydration changes caused by many diseases and pathologies and may be useful in the future as a diagnostic tool for the assessment of burns and other surface pathologies.

  10. Millimeter and terahertz wave absorption in a lossy conducting layer

    SciTech Connect

    Shen, M. K.; Chiang, W. Y.; Wu, K. L.; Chu, K. R.

    2013-10-15

    Relativistic electronics research in recent years has produced powerful millimeter waves on the MW level, while also extending the frequency range into the terahertz (THz) region and beyond. These developments have opened up new horizons in applications. The current study is motivated by the associated need for high-power absorbers not readily available at such frequencies. Our focus is on effective absorber schemes which can handle high power while also possessing a structural simplicity for easy implementation. In and above the THz region, the electrical conductivity can no longer be treated as a real constant. We begin with a derivation of the field penetration depth applicable to all frequencies. Requirements to meet the intended criteria are then determined from the wave penetration and reflection properties. Design examples in the 1–1000 GHz range are illustrated, which consist of a thin lossy conducting layer on the surface of a pyramidal shaped metal base. It is shown in theory that such structures can function effectively in the millimeter and THz regions.

  11. A superconducting tunnel junction receiver for millimeter-wave astronomy

    NASA Technical Reports Server (NTRS)

    Pan, S. K.; Kerr, A. R.

    1986-01-01

    The development and construction of an ultralow noise heterodyne receiver for millimeter wave astronomy is described along with its use for 115.3 GHz Co line observations. The receiver uses a Superconductor-Insulator-Superconductor (SIS) quasiparticle tunnel junction mixer to convert the millimeter wave signal to a microwave intermediate frequency. Experiments aimed at quantitative verification of J. R. Tucker's quantum mixer theory are studied, to see whether it could be used as the basis for the design of a practical receiver. The experimental results were in excellent agreement with the theory, assuming the three frequency approximation. Infinite available gain and negative output resistance were observed for the first time, nonclassical effects which are not seen in conventional diode mixers. Using Tucker's theory, an SIS receiver was then designed and constructed. At 115 GHz, the single sideband receiver noise temperature is 83K, the lowest ever reported in this frequency range. A CO survey toward Cygnus-X region, using this SIS receiver on the Columbia-GISS 4 ft. telescope, is also described.

  12. Nonintrusive cryogenic propellant sensing with millimeter-wave/EM beams

    NASA Astrophysics Data System (ADS)

    Osterwalder, J. M.; Nyland, T. W.

    1993-07-01

    In this paper experimental results of cryogenic tankage mass measurements and descriptions of level sensors using optical and millimeter wave signal beams are presented. The discussed results are based on a 100 GHz frequency modulated radar mass sensor. Test results are compared with a similar system which makes use of a laser beam and a frequency modulated microwave subcarrier. In addition the performance of a laser triangulation level sensor is presented which is suitable for normal gravity applications. Performance prediction in terms of the resolution and measurement accuracy are discussed with emphasis on the measurement difficulties encountered while using liquid hydrogen under normal gravity conditions. For a mass sensor the small 11% refractive index change between an empty and a filled tank of hydrogen causes a loss of measurement accuracy by a factor of ten, as compared to a level sensor. This loss is common to all mass propellant sensing systems, including the conventional capacitance probe sensor. Special processing techniques are indicated. Extensions of the presented millimeter wave mass sensor concept for micro and zero gravity cryogenic systems and for other special space related propellant conditions such as slush hydrogen are discussed.

  13. A millimeter-wave tunneLadder TWT

    NASA Technical Reports Server (NTRS)

    Jacquez, A.; Karp, A.; Wilson, D.; Scott, A.

    1988-01-01

    A millimeter wave traveling wave tube was developed using a dispersive, high impedance forward interaction structure based on a ladder, with non-space harmonic interaction, for a tube with high gain per unit length and high efficiency. The TunneLadder interaction structure combines ladder properties modified to accommodate Pierce gun beam optics in a radially magnetized permanent magnet focusing structure. The development involved the fabrication of chemically milled, shaped ladders diffusion brazed to diamond cubes which are in turn active-diffusion brazed to each ridge of a doubly ridged waveguide. Cold test data are presented, representing the omega-beta and impedance characteristics of the modified ladder circuit. These results were used in small and large signal computer programs to predict TWT gain and efficiency. Actual data from tested tubes verify the predicted performance while providing broader bandwidth than expected.

  14. Millimeter-wave generation via plasma three-wave mixing

    NASA Astrophysics Data System (ADS)

    Schumacher, Robert W.; Santoru, Joseph

    1988-06-01

    Plasma three-wave mixing is a collective phenomena whereby electron-beam-driven electron plasma waves (EPWs) are nonlinearly coupled to an electromagnetic (EM) radiation field. The basic physics of three-wave mixing is investigated in the mm-wave regime and the scaling of mm-wave characteristics established with beam and plasma parameters. Our approach is to employ two counterinjected electron beams in a plasma-loaded circular waveguide to drive counterstreaming EPWs. The nonlinear coupling of these waves generates an EM waveguide mode which oscillates at twice the plasma frequency and is coupled out into rectangular waveguides. Independent control of the waveguide plasma, beam voltage, and beam current is exercised to allow a careful parametric investigation of beam transport, EPW dynamics and three-wave-mixing physics. The beam-plasma experiment, which employs a wire-anode discharge to generate high-density plasma in a 3.8 cm-diameter waveguide, has been used to generate radiation at frequencies from 7 to 60 GHz. Two cold-cathode, secondary-emission electron guns are used to excite the EPWs. Output radiation is observed only when both beams are injected, and the total beam current exceeds a threshold value of 3 A. The threshold is related to the self-magnetic pinch of each beam which increases the beam density and growth rate of the EPWs.

  15. Experimental millimeter-wave personal satellite communications system

    NASA Technical Reports Server (NTRS)

    Suzuki, Yoshiaki; Kimura, Shigeru; Shimada, Masaaki; Tanaka, Masato; Takahashi, Yasuhiro

    1991-01-01

    Communications Research Laboratory (CRL) has investigated an advanced millimeter (mm)-wave satellite communications system for personal use. Experiments in mm-wave personal satellite communication are to be conducted for 3 years using Japan's Engineering Test Satellite VI (ETS-VI). This paper describes an experimental mm-wave (43/38 GHz) personal satellite communication system, including an onboard transponder and an earth terminal. The on-board transponder is almost completed, and the ground experiment system is still in the design stage. The transponder employs advanced mm-wave solid state technology. It uses 38 GHz high power solid state amplifiers to accelerate the development of mm-wave solid state devices which are indispensable to personal earth terminals. The transponder consists of a 43 GHz receiver with a built-in low noise amplifier, an IF filter section with very narrow bandwidth to improve the carrier-to-noise power ratio of the weak personal communication signal, and two high power amplifiers using newly developed high power Gallium Arsenide (GaAs) metal-semiconductor field effect transistors (MESFETs).

  16. Millimeter Wave Sensor For On-Line Inspection Of Thin Sheet Dielectrics

    DOEpatents

    Bakhtiari, Sasan; Gopalsami, Nachappa; Raptis, Apostolos C.

    1999-03-23

    A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components. A millimeter wave sensor is provided for non-destructive inspection of thin sheet dielectric materials. The millimeter wave sensor includes a Gunn diode oscillator (GDO) source generating a mill meter wave electromagnetic energy signal having a single frequency. A heater is coupled to the GDO source for stabilizing the single frequency. A small size antenna is coupled to the GDO source for transmitting the millimeter wave electromagnetic energy signal to a sample material and for receiving a reflected millimeter wave electromagnetic energy signal from the sample material. Ferrite circulator isolators coupled between the GDO source and the antenna separate the millimeter wave electromagnetic energy signal into transmitted and received electromagnetic energy signal components and a detector detects change in both amplitude and phase of the transmitted and received electromagnetic energy signal components.

  17. Modern Microwave and Millimeter-Wave Power Electronics

    NASA Astrophysics Data System (ADS)

    Barker, Robert J.; Luhmann, Neville C.; Booske, John H.; Nusinovich, Gregory S.

    2005-04-01

    A comprehensive study of microwave vacuum electronic devices and their current and future applications While both vacuum and solid-state electronics continue to evolve and provide unique solutions, emerging commercial and military applications that call for higher power and higher frequencies to accommodate massive volumes of transmitted data are the natural domain of vacuum electronics technology. Modern Microwave and Millimeter-Wave Power Electronics provides systems designers, engineers, and researchers-especially those with primarily solid-state training-with a thoroughly up-to-date survey of the rich field of microwave vacuum electronic device (MVED) technology. This book familiarizes the R&D and academic communities with the capabilities and limitations of MVED and highlights the exciting scientific breakthroughs of the past decade that are dramatically increasing the compactness, efficiency, cost-effectiveness, and reliability of this entire class of devices. This comprehensive text explores a wide range of topics: * Traveling-wave tubes, which form the backbone of satellite and airborne communications, as well as of military electronic countermeasures systems * Microfabricated MVEDs and advanced electron beam sources * Klystrons, gyro-amplifiers, and crossed-field devices * "Virtual prototyping" of MVEDs via advanced 3-D computational models * High-Power Microwave (HPM) sources * Next-generation microwave structures and circuits * How to achieve linear amplification * Advanced materials technologies for MVEDs * A Web site appendix providing a step-by-step walk-through of a typical MVED design process Concluding with an in-depth examination of emerging applications and future possibilities for MVEDs, Modern Microwave and Millimeter-Wave Power Electronics ensures that systems designers and engineers understand and utilize the significant potential of this mature, yet continually developing technology. SPECIAL NOTE: All of the editors' royalties realized from

  18. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  19. Photonic generation of a millimeter-wave signal based on sextuple-frequency multiplication.

    PubMed

    Zhang, Jian; Chen, Hongwei; Chen, Minghua; Wang, Tianliang; Xie, Shizhong

    2007-05-01

    A millimeter-wave signal with sextuple-frequency multiplication of a microwave source is obtained with two cascaded optical modulators, which are driven by the same microwave source with phase deviation of pi/2 introduced by an electrical phase shifter. Without any optical filter, a wideband continuously tunable millimeter-wave signal is easily generated.

  20. Passive front-ends for wideband millimeter wave electronic warfare

    NASA Astrophysics Data System (ADS)

    Jastram, Nathan Joseph

    This thesis presents the analysis, design and measurements of novel passive front ends of interest to millimeter wave electronic warfare systems. However, emerging threats in the millimeter waves (18 GHz and above) has led to a push for new systems capable of addressing these threats. At these frequencies, traditional techniques of design and fabrication are challenging due to small size, limited bandwidth and losses. The use of surface micromachining technology for wideband direction finding with multiple element antenna arrays for electronic support is demonstrated. A wideband tapered slot antenna is first designed and measured as an array element for the subsequent arrays. Both 18--36 GHz and 75--110 GHz amplitude only and amplitude/phase two element direction finding front ends are designed and measured. The design of arrays using Butler matrix and Rotman lens beamformers for greater than two element direction finding over W band and beyond using is also presented. The design of a dual polarized high power capable front end for electronic attack over an 18--45 GHz band is presented. To combine two polarizations into the same radiating aperture, an orthomode transducer (OMT) based upon a new double ridge waveguide cross section is developed. To provide greater flexibility in needed performance characteristics, several different turnstile junction matching sections are tested. A modular horn section is proposed to address flexible and ever changing operational requirements, and is designed for performance criteria such as constant gain, beamwidth, etc. A multi-section branch guide coupler and low loss Rotman lens based upon the proposed cross section are also developed. Prototyping methods for the herein designed millimeter wave electronic warfare front ends are investigated. Specifically, both printed circuit board (PCB) prototyping of micromachined systems and 3D printing of conventionally machined horns are presented. A 4--8 GHz two element array with

  1. Millimeter- and Submillimeter-Wave Remote Sensing Using Small Satellites

    NASA Technical Reports Server (NTRS)

    Ehsan, N.; Esper, J.; Piepmeier, J.; Racette, P.; Wu, D.

    2014-01-01

    Cloud ice properties and processes play fundamental roles in atmospheric radiation and precipitation. Limited knowledge and poor representation of clouds in global climate models have led to large uncertainties about cloud feedback processes under climate change. Ice clouds have been used as a tuning parameter in the models to force agreement with observations of the radiation budget at the top of the atmosphere, and precipitation at the bottom. The lack of ice cloud measurements has left the cloud processes at intermediate altitudes unconstrained. Millimeter (mm) and submillimeter (submm)-wave radiometry is widely recognized for its potential to fill the cloud measurement gap in the middle and upper troposphere. Analyses have shown that channels from 183900 GHz offer good sensitivity to ice cloud scattering and can provide ice water path (IWP) products to an accuracy of 25 by simultaneously retrieving ice particle size (Dme) and IWP. Therefore, it is highly desirable to develop a cost-effective, compact mm/submm-wave instrument for cloud observations that can be deployed on future small satellites.This paper presents a conceptual study for a mm/submm-wave instrument for multispectral measurements of ice clouds. It discusses previous work at these frequencies by NASA Goddard Space Flight Center (GSFC) and the current instrument study, as well as receiver architectures and their anticipated performance. And finally, it describes a microsatellite prototype intended for use with this mm/submm-wave instrument.

  2. Frequency sixupler for millimeter-wave over fiber systems.

    PubMed

    Mohamed, Mohmoud; Zhang, Xiupu; Hraimel, Bouchaib; Wu, Ke

    2008-07-01

    In this work, we propose and investigate a novel technique for the generation of millimeter-wave (mm-wave), i.e. frequency sixuplexing technique. The proposed technique is comprised of two cascaded Mach- Zehnder modulators (MZMs). The first MZM, biased at maximum transmission, is only used for even-order optical harmonic generation, and then a second MZM, biased at minimum transmission, is used for both optical carrier suppression modulation and data signal modulation. As an example, we consider an RF at 10 GHz, which carries the data signal and drives the MZMs; and an mm-wave signal at 60 GHz, i.e. a frequency sixupler, is obtained. It is found that our proposed sixupler leads to an 8-dB higher RF power at 60 GHz and a 6-dB improvement in receiver sensitivity with comparison to the conventional technique, i.e. optical carrier suppression modulation. The generated mm-wave signal is robust to fiber chromatic dispersion. The proposed technique is verified by experiments.

  3. Millimeter-wave imaging of thermal and chemical signatures.

    SciTech Connect

    Gopalsami, N.

    1999-03-30

    Development of a passive millimeter-wave (mm-wave) system is described for remotely mapping thermal and chemical signatures of process effluents with application to arms control and nonproliferation. Because a large amount of heat is usually dissipated in the air or waterway as a by-product of most weapons of mass destruction facilities, remote thermal mapping may be used to detect concealed or open facilities of weapons of mass destruction. We have developed a focal-plane mm-wave imaging system to investigate the potential of thermal mapping. Results of mm-wave images obtained with a 160-GHz radiometer system are presented for different target scenes simulated in the laboratory. Chemical and nuclear facilities may be identified by remotely measuring molecular signatures of airborne molecules emitted from these facilities. We have developed a filterbank radiometer to investigate the potential of passive spectral measurements. Proof of principle is presented by measuring the HDO spectral line at 80.6 GHz with a 4-channel 77-83 GHz radiometer.

  4. Millimeter-wave Absorption Studies of Molecules in Diffuse Clouds

    NASA Astrophysics Data System (ADS)

    Lucas, Robert; Liszt, Harvey S.

    1999-10-01

    With IRAM instruments in the last few years, we have been using compact extragalactic millimeter wave radio sources as background objects to study the absorption spectrum of diffuse interstellar gas at millimeter wavelengths. The molecular content of interstellar gas has turned out to be unexpectedly rich. Simple polyatomic molecules such as HCO+, C2H are quite ubiquitous near the Galactic plane (beta < 15o), and many species are detected in some directions (CO, HCO+, H2CO, HCN, HNC, CN, C2H, C3H2, H2S, CS, HCS+, SO, SiO). Remarkable proportionality relations are found between related species such as HCO+ and OH, or CN, HCN and HNC. The high abundance of some species is still a challenge for current models of diffuse cloud chemistry. A factor of 10 increase in the sensitivity will make such studies achievable in denser clouds, where the chemistry is still more active and where abundances are nowadays only available by emission measurements, and thus subject to uncertainties due to sometimes poorly understood line formation and excitation conditions.

  5. Beam lead quartz chips for superconducting millimeter-wave circuits

    NASA Astrophysics Data System (ADS)

    Bass, Robert B.; Zhang, Jian Z.; Bishop, William L.; Lichtenberger, Arthur W.; Pan, Shing-Kuo

    2003-02-01

    The assembly of superconducting millimeter and submillimeter-wave circuits often requires RF ground connections. These are usually made by soldering, wire bonding, conductive adhesive or conductive wire gaskets. The difficulty of assembly increases with frequency as chip dimensions and tolerances shrink. The assembly issues, and also the throughput requirements of large radio astronomy projects such as ALMA (Atacama Large Millimeter Array), suggest the need of a beam lead technology for these circuits. Beam lead processes are already established for silicon and gallium arsenide wafers. However, niobium circuits on quartz substrates present unique difficulties. SIS junctions introduce additional thermal and chemical constraints to process development. For quartz, wet etches are isotropic and dry etches with high etch rates require large ion energies. Therefore, it is difficult to develop a conventional process in which gold pads on the substrate surface are formed into beam leads by a backside etch. Instead we have developed a topside process in which, after the mixer circuits are completed, dicing cuts are made at the finished chip dimensions but only partly through the wafer. The dicing cuts are then filled with a sacrificial material in a non-CMP process, and planarized. Gold plated pads are then defined, overhanging the planarized cuts. The sacrificial material is then removed from these cuts, leaving the gold beam leads. The wafer is then backside lapped into the cuts to the desired thickness, separating the individual chips. We discuss the new planarization scheme developed for this beam lead process and compare a variety of sacrificial materials.

  6. Quantum Tunneling Sb-Heterostructures for Millimeter Wave Radiometry

    NASA Astrophysics Data System (ADS)

    Schulman, Joel N.

    2003-03-01

    Imaging in the millimeter wavelength range has been making rapid progress as high speed electronics increase in frequency. Applications include viewing through adverse visibility conditions (fog, smoke, dust, precipitation) and also the relative transparency of clothing (concealed-weapons-detection) and some building materials (through-the-wall-detection). Atmospheric radiometry (climate assessment and weather prediction) already depend heavily on this wavelength range. Astronomical applications include incorporation in instruments for cosmic microwave background detection. An important ingredient is a diode that "rectifies" in a special way. It must convert input power, i.e., voltage squared, into a DC voltage output -- a "square-law" detector. We have recently found that quantum tunneling through an InAs/AlSb/GaAlSb heterostructure system provides the ideal physical mechanism for this purpose.1,2 We will present our results to date, demonstrating how a close coupling of semiconductor quantum tunneling theory with electrical engineering know-how have brought an "exotic" quantum phenomon to practical and economic application. 1. "Sb-heterostructure interband backward diodes" J.N. Schulman and D.H. Chow. IEEE Electron Device Letters 21, 353-355 (2000). 2. "High-Performance Antimonide-Based Heterostructure Backward Diodes for Millimeter-wave Detection" P. Fay, J. N. Schulman, S. Thomas III, D. H. Chow, Y. K. Boegeman, and K. S. Holabird, IEEE Electron Device Letters 23, 585-587 (2002).

  7. Passive millimeter-wave imaging for concealed article detection

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Galliano, Joseph A., Jr.; Clark, Stuart E.

    1997-02-01

    Passive-millimeter-wave imaging (PMI) provides a powerful sensing tool for law enforcement, allowing an unobtrusive means for detecting concealed weapons, explosives, or contraband on persons or in baggage. Natural thermal emissions at millimeter wavelengths from bodies, guns, explosives, and other articles pass easily through clothing or other concealment materials, where they can be detected and converted into conventional 2-dimensional images. A new implementation of PMI has demonstrated a large-area, near- real-time staring capability for personnel inspection at standoff ranges of greater than 10 meters. In this form, PMI does not require operator cuing based on subjective 'profiles' of suspicious appearance or behaviors, which may otherwise be construed as violations of civil rights. To the contrary, PMI detects and images heat generated by any object with no predisposition as to its nature or function (e.g. race or gender of humans). As a totally passive imaging tool, it generates no radio-frequency or other radiation which might raise public health concerns. Specifics of the new PMI architecture are presented along with a host of imaging data representing the current state- of-the-art.

  8. The fourth-generation Water Vapor Millimeter-Wave Spectrometer

    NASA Astrophysics Data System (ADS)

    Gomez, R. Michael; Nedoluha, Gerald E.; Neal, Helen L.; McDermid, I. Stuart

    2012-02-01

    For 20 years the Naval Research Laboratory has been making continuous water vapor profile measurements at 22.235 GHz with the Water Vapor Millimeter-Wave Spectrometer (WVMS) instruments, with the program expanding from one to three instruments in the first 6 years. Since the initial deployments there have been gradual improvements in the instrument design which have improved data quality and reduced maintenance requirements. Recent technological developments have made it possible to entirely redesign the instrument and improve not only the quality of the measurements but also the capability of the instrument. We present the fourth-generation instrument now operating at Table Mountain, California, which incorporates the most recent advances in microwave radiometry. This instrument represents the most significant extension of our measurement capability to date, enabling us to measure middle atmospheric water vapor from ˜26-80 km.

  9. An updated model for millimeter wave propagation in moist air

    NASA Astrophysics Data System (ADS)

    Liebe, H. J.

    1985-10-01

    A practical atmospheric Millimeter-Wave Propagation Model is formulated that predicts attenuation, delay, and noise properties of moist air for frequencies up to 1000 GHz. Input variables are height distributions (0-30 km) of pressure, temperature, humidity, and suspended droplet concentration along an anticipated radio path. Spectroscopic data consists of more than 450 parameters describing local O2 and H2O absorption lines complemented by continuum spectra for dry air, water vapor, and hydrosols. For a model limited to frequencies below GHz, the number of spectroscopic parameters can be reduced to less than 200. Recent laboratory measurements at 138 GHz absolute attenuation rates for simulated air with water vapor pressures up to saturation allow the formulation of an improved, though empirical water vapor continuum. Model predictions are compared with selected (2.5-430 GHz) data from both laboratory and field experiments. In general, good agreement is obtained.

  10. Active millimeter-wave imaging using a raster scanner

    NASA Astrophysics Data System (ADS)

    Hülsmann, Axel; Liebelt, Andreas; Tessmann, Axel; Leuther, Arnulf; Schlechtweg, Michael; Ambacher, Oliver

    2009-05-01

    A millimeter-wave imaging system has been developed operating at a center frequency of 94 GHz. The system has a single stationary mounted transmit and receive lensed horn antenna and two moving mirrors in x and y. The beam is generated by a FMCW-radar module. The final beam aperture is an off-set parabolic mirror which focuses the beam to a small spot at 2 m distance. Key component of the FMCW radar module is a MMIC, which includes a VCO, a MPA/HPA, two Lange-couplers, an LNA , a Wilkenson splitter, and an I/Q-mixer. This MMIC is fabricated using IAF's 100 nm metamorphic HEMT process.

  11. Millimeter-wave planar integrated circuits and subsystems

    NASA Astrophysics Data System (ADS)

    Chang, K.

    Millimeter-wave planar ICs based on microstrip line, suspended strip line and fin line design approaches are described, including the performance properties of the materials involved and numerical models for the functioning of the ICs. Techniques for designing mixers and tailored transition steps between each of the types of planar ICs are discussed, along with mixer configurations. A general theory of IC active sources is presented and illustrated for Gunn and IMPATT oscillators and amplifiers. Design guidelines for frequency multipliers are discussed, along with IC switches and phase shifters and other components, such as dc blocks and broadside couplers, couplers, filters and multiplexers, and circulators. Finally, IC subsystems, i.e., receivers, transceivers, and QPSK exciter/modulator subsystems are described, and future trends are projected.

  12. Passive Fully Polarimetric W-Band Millimeter-Wave Imaging

    SciTech Connect

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; McMakin, Douglas L.; Tedeschi, Jonathan R.; Harris, Robert V.; Mendoza, Albert; Hall, Thomas E.; Hatchell, Brian K.; Valdez, Patrick LJ

    2012-04-01

    We present the theory, design, and experimental results obtained from a scanning passive W-band fully polarimetric imager. Passive millimeter-wave imaging offers persistent day/nighttime imaging and the ability to penetrate dust, clouds and other obscurants, including clothing and dry soil. The single-pixel scanning imager includes both far-field and near-field fore-optics for investigation of polarization phenomena. Using both fore-optics, a variety of scenes including natural and man-made objects was imaged and these results are presented showing the utility of polarimetric imaging for anomaly detection. Analysis includes conventional Stokes-parameter based approaches as well as multivariate image analysis methods.

  13. Display of polarization information for passive millimeter-wave imagery

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Dillon, Thomas E.; Eng, David L. K.; Kozacik, Stephen; Prather, Dennis W.

    2012-09-01

    A technique is described for displaying polarization information from passive millimeter-wave (mmW) sensors. This technique uses the hue of an image to display the polarization information and the lightness of an image to provide the unpolarized information. The fusion of both images is done in such a way that minimal information is lost from the unpolarized image while adding polarization information within a single image. The technique is applied to experimental imagery collected in a desert environment with two orthogonal linear polarization states of light and the results are discussed. Several objects such as footprints, ground textures, tire tracks, and shrubs display strong polarization features that are clearly visible with this technique, while materials with low polarization signatures such as metal are also clearly visible in the same image.

  14. Identification of passive millimeter-wave images using neural networks

    NASA Astrophysics Data System (ADS)

    Sundstrom, Bryce M.; Min, Kwang-Shik

    1993-09-01

    Recent developments in passive millimeter-wave imaging technology are remarkable. Images of objects obtained through clouds and fog are almost indistinguishable from similar scenes taken under clear conditions. Of particular interest is the ability to image metal targets beneath camouflage, tents, polymers, wooden shelters, and certain levels of ceramic materials. A brief description of this emerging technology will be followed by several convincing examples of images to support the claims made above. Once image formation is complete, the technique of identifying objects in the image using neural networks is similar to the schemes utilized in previous Wright Laboratory Armament directorate implementations of Automatic Target Identification work for electro-optical and infrared images.

  15. Dielectrically embedded flat mesh lens for millimeter waves applications.

    PubMed

    Pisano, Giampaolo; Ng, Ming Wah; Ozturk, Fahri; Maffei, Bruno; Haynes, Vic

    2013-04-10

    A flat lens based on subwavelength periodic metal meshes has been developed using photolithographic techniques. These mesh grids are stacked at specific distances and embedded in polypropylene. A code was developed to optimize more than 1000 transmission line circuits required to vary the device phase shift across the lens flat surface, mimicking the behavior of a classical lens. A W-band mesh-lens prototype was successfully manufactured and its RF performance characterized using a vector network analyzer coupled to corrugated horn antennas. Co-polarization far-field beam patterns were measured and compared with finite-element method models. The excellent agreement between data and simulations validated our designing tools and manufacturing procedures. This mesh lens is a low-loss, robust, light, and compact device that has many potential applications including millimeter wave quasi-optical systems for future cosmic microwave background polarization instruments.

  16. Permittivity of water at millimeter wave-lengths

    NASA Technical Reports Server (NTRS)

    Blue, M. D.

    1976-01-01

    Work performed on the permittivity of seawater and ice at 100 GHz was described. Measurements on water covered the temperature range from 0 to 50 C, while the measurements on ice were taken near - 10 C. In addition, a small number of measurements were made on the reflectivity of absorber materials used in a previous program on research in millimeter wave techniques. Normal incidence reflectivity was measured, and the result was used to obtain the index of refraction. For the case of normal incidence, reflectivity at a fixed temperature was reproducible to 1% for values near 40%. For reflectivity measurements on ice, the lack of attenuation leads to reflection from the back surface of the sample; this complication was circumvented by using a wedge shaped sample and freezing the water in a container lined with absorber material.

  17. Remote detection of chemicals with passive millimeter waves.

    SciTech Connect

    Gopalsami, N.; Bakhtiari, S.; Elmer, T. W.; Raptis, A. C.; Nuclear Engineering Division

    2006-01-01

    Passive millimeter-wave (mmW) systems have been used in the past to remotely map solid targets and to measure low-pressure spectral lines of stratospheric and interstellar gases; however, its application to pressure-broadened spectral detection of terrestrial gases is new. A radiative transfer model was developed to determine the detection feasibility and system requirements for passive mmW spectral detection. A Dicke-switched multispectral radiometer that operates at 146-154 GHz was designed and built for remote detection of stack gases. The radiometer was tested in the laboratory using a gas cell; the spectra of acetonitrile were detected passively against a cold background, which mimicked typical remote detection scenarios in the field. With Dicke-switched integration of radiometric signals, on-line calibration, and novel signal processing to minimize atmospheric fluctuation, spectral line detection of polar molecules is possible from chemical plumes a few kilometers away.

  18. New law enforcement applications of millimeter-wave radar

    NASA Astrophysics Data System (ADS)

    Currie, Nicholas C.; Ferris, David D., Jr.; McMillan, Robert W.; Wicks, Michael C.

    1997-06-01

    Recent advances in millimeter-wave (MMW) radar technologies provide new applications for law enforcement use over-and- above the venerable speed timing radar. These applications include the potential to detect weapons under clothing and to conduct surveillance through walls. Concealed Weapon Detection and covert surveillance are of high interest to both the Department of Defense in support of Small Unit Operations and the Justice Department for civilian law enforcement applications. MMW sensors are under development which should provide the needed capabilities including radiometric sensors at 95 GHz, active 95 GHz real aperture radars, active focal plane array (FPA) radars, and holographic radars. Radiometric sensors include 2D FPA systems, 1D FPA, scanned systems, and single element scanned sensors. Active FPA radars include illuminated radiometric systems and coherent radar systems. Real aperture MMW radar systems include raster scanned and conical scanned sensors. Holographic systems ruse mechanical scanners to collect coherent data over a significant solid angular sector.

  19. Airborne Millimeter-Wave Radiometric Observations of Cirrus Clouds

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.

    1997-01-01

    This paper reports the first radiometric measurements of cirrus clouds in the frequency range of 89-325 GHz from a high-altitude aircraft flight. The measurements are conducted with a Millimeter-wave Imaging Radiometer (MIR) on board the NASA ER-2 aircraft over a region in northern Oklahoma. Aboard the same aircraft are a cloud lidar system and a multichannel radiometer operating at the visible and infrared wavelengths. The instrument ensemble is well suited for identifying cirrus clouds. It is shown that the depressions in brightness temperatures associated with a few intense cirrus clouds occur at all frequency channels of the MIR. Estimates of total ice water path of the cirrus clouds are derived from comparisons of radiative transfer calculations and observed brightness depressions.

  20. Passive millimeter wave camera for enhanced vision systems

    NASA Astrophysics Data System (ADS)

    Shoucri, Merit; Dow, G. Samuel; Fornaca, Steven W.; Hauss, Bruce I.; Yujiri, Larry; Shannon, James; Summers, Leland

    1996-05-01

    Passive millimeter wave (PMMW) sensors have been proposed as forward vision sensors for enhanced vision systems used in low visibility aircraft landing. This work reports on progress achieved to date in the development and manufacturing of a demonstration PMMW camera. The unit is designed to be ground and flight tested starting 1996. The camera displays on a head-up or head-down display unit a real time true image of the forward scene. With appropriate head-up symbology and accurate navigation guidance provided by global positioning satellite receivers on-board the aircraft, pilots can autonomously (without ground assist) execute category 3 low visibility take-offs and landings on non-equipped runways. We shall discuss utility of fielding these systems to airlines and other users.

  1. Boring and Sealing Rock with Directed Energy Millimeter-Waves

    NASA Astrophysics Data System (ADS)

    Woskov, P.; Einstein, H. H.; Oglesby, K.

    2015-12-01

    Millimeter-wave directed energy is being investigated to penetrate into deep crystalline basement rock formations to lower well costs and to melt rocks, metals, and other additives to seal wells for applications that include nuclear waste storage and geothermal energy. Laboratory tests have established that intense millimeter-wave (MMW) beams > 1 kW/cm2 can melt and/ or vaporize hard crystalline rocks. In principle this will make it possible to create open boreholes and a method to seal them with a glass/ceramic liner and plug formed from the original rock or with other materials. A 10 kW, 28 GHz commercial (CPI) gyrotron system with a launched beam diameter of about 32 mm was used to heat basalt, granite, limestone, and sandstone specimens to temperatures over 2500 °C to create melts and holes. A calibrated 137 GHz radiometer view, collinear with the heating beam, monitored real time peak rock temperature. A water load surrounding the rock test specimen primarily monitored unabsorbed power at 28 GHz. Power balance analysis of the laboratory observations shows that the temperature rise is limited by radiative heat loss, which would be expected to be trapped in a borehole. The analysis also indicates that the emissivity (absorption efficiency) in the radiated infrared range is lower than the emissivity at 28 GHz, giving the MMW frequency range an important advantage for rock melting. Strength tests on one granite type indicated that heating the rock initially weakens it, but with exposure to higher temperatures the resolidified black glassy product regains strength. Basalt was the easiest to melt and penetrate, if a melt leak path was provided, because of its low viscosity. Full beam holes up to about 50 mm diameter (diffraction increased beam size) were achieved through 30 mm thick basalt and granite specimens. Laboratory experiments to form a seal in an existing hole have also been carried out by melting rock and a simulated steel casing.

  2. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    The use of microwave and millimeter wave beamed energy for propulsion of vehicles in the atmosphere and in space has been under study for at least 35 years. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of over $3,000/lb. The key advantage of the beamed power approach is to place the heavy and expensive components on the ground or in space, not in the vehicle. This paper, following upon the high power laser propulsion programs, uses a multi-cycle propulsion engine in which the first phase of ascent is based on the air breathing ramjet principle, a repetitive Pulsed Detonation Engine (PDE) which uses a microwave-supported detonation to heat the air working fluid, i.e., propellant. The second phase is a pure beam-heated rocket. The key factor is that high peak power is essential to this pulsed engine. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. The authors find that efficient system concepts can be developed for the beam powered launch system and that, while the capital cost may be as high as the earlier orbital transfer concepts, the operating cost is much lower. The vehicle can have payload-to-mass ratios on the order of one and cost (per pound to orbit) two orders of magnitudes less than for chemical rockets. This allows the weight of microwave powered vehicles to be very small, as low as {approximately}100 kg for test devices.

  3. Interferometric millimeter wave and THz wave doppler radar

    SciTech Connect

    Liao, Shaolin; Gopalsami, Nachappa; Bakhtiari, Sasan; Raptis, Apostolos C.; Elmer, Thomas

    2015-08-11

    A mixerless high frequency interferometric Doppler radar system and methods has been invented, numerically validated and experimentally tested. A continuous wave source, phase modulator (e.g., a continuously oscillating reference mirror) and intensity detector are utilized. The intensity detector measures the intensity of the combined reflected Doppler signal and the modulated reference beam. Rigorous mathematics formulas have been developed to extract bot amplitude and phase from the measured intensity signal. Software in Matlab has been developed and used to extract such amplitude and phase information from the experimental data. Both amplitude and phase are calculated and the Doppler frequency signature of the object is determined.

  4. Development of a millimeter-wave sensor for environmental monitoring

    SciTech Connect

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1995-06-01

    A millimeter-wave (mm-wave) sensor in the frequency range of 225-315 GHz is being developed for continuous emission monitoring of airborne effluents from industrial sites for environmental compliance monitoring and process control. Detection of chemical species is based on measuring the molecular rotational energy transitions at mm-wave frequencies. The mm-wave technique offers better transmission properties compared to optics in harsh industrial environments with smoke, dust, aerosols, and steam, as well as in adverse atmospheric conditions. The laboratory measurements indicate that polar molecules can be measured with a sensitivity of tens of parts-per-million-meter using this technology. Proof of principle of the open-path system was tested by releasing and detecting innocuous chemicals in the open air. It uses a monostatic radar configuration with transmitter and receiver on one side and a comer cube on tire other side of the plume to be measured. A wide-band swept frequency mm-wave signal is transmitted through the plume and return signal from the comer cube is detected by a hot-electron-bolometer. Absorption spectra of plume gases are measured by comparing the return signals with and without the plume in the beam path. Using signal processing based on deconvolution, high specificity of detection has been shown for resolving individual chemicals from a mixture. This technology is applicable for real-time measurement of a suite of airborne gases/vapors emitted from vents and stacks of process industries. A prototype sensor is being developed for wide-area monitoring of industrial sites and in-place monitoring of stack gases.

  5. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOEpatents

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  6. Millimeter and Submillimeter Wave Spectroscopy: Molecules of Astrophysical Interest.

    NASA Astrophysics Data System (ADS)

    Plummer, Grant M.

    Because of the rich chemistry and rather bizarre conditions prevalent in interstellar clouds, molecular species of many different types must be studied if we are to understand completely the processes at work there. In this work, species of three general types have been studied by means of millimeter-submillimeter wave spectroscopy. Because of their highly reactive nature, it has been possible to study ionic species in the microwave region for only the past ten years. We present a new method for the production of such molecular ions in concentrations greater by one to two orders of magnitude than possible with previous techniques, and the subsequent first millimeter/submillimeter detections of two isotopic forms of HCO('+), three isotopic forms of ArD('+), and the molecular ion H(,3)O('+). Simple neutral species, which are generally less reactive than ions, are also present in relatively large concentrations in the interstellar medium and in the atmospheres of cool stars themselves. Though LiH has not yet been observed astronomically, its detection could lead to knowledge of fundamental importance to the theory of stellar evolution. We present the first laboratory microwave detection of two isotopic species of this molecule, a solid at normal temperatures and pressures. In addition, a combined analysis of these data, additional data we have collected on the related species LiD, and existing data on LiD is presented. The analysis is of some theoretical interest because of the breakdown of the Born-Oppenheimer approximation in this, the lightest neutral heteronuclear diatomic. Finally, a large fraction of the millimeter/submillimeter emissions observed toward the interstellar medium have been shown to belong to a small number of relatively heavy, stable, but spectroscopically complicated molecules, many of them internal rotors. We present a complete analysis of one of these species, methyl formate, in its ground torsional states of both A and E symmetries. Over four

  7. Millimeter Wave and Terahertz Spectra of C-13 Methanol

    NASA Astrophysics Data System (ADS)

    Xu, Li-Hong; Lees, Ronald M.; Müller, Holger S. P.; Endres, Christian P.; Lewen, Frank; Schlemmer, Stephan; Menten, Karl M.

    2009-06-01

    Methanol is a very ubiquitous molecule in space. A previous combined analysis of microwave and millimeter wave spectra of C-13 methanol together with Fourier transform far-infrared spectra was limited to the first two torsional states (i.e. v_t = 0 and 1 for J values up to 20). We have recently carried out new millimeter and terahertz measurements for ^{13}CH_3OH on several different spectrometers in the Cologne laboratory to overcome the limits in frequency and quantum number coverage. The new measurements have been carried out in the frequency windows 34-70 GHz, 75-120 GHz, 240-340 GHz, 370-500 GHz and 1.12-1.35 THz. With the new data, we are extending our previous global treatment to include the first three torsional states (i.e. v_t = 0, 1 and 2 for J values up to 30). We hope to provide the radio astronomical community with a C-13 methanol database that will have been improved substantially compared to the existing one. The new database will be available in the Cologne Database for Molecular Spectroscopy, CDMS, in support of present and future astronomical studies associated with the launch of HIFI (Heterodyne Instrument for the Far-Infrared) on board the Herschel Space Observatory, the flying of SOFIA (Stratospheric Observatory For Infrared Astronomy) and the commissioning of ALMA (Atacama Large Millimeter/Submillimeter Array). Li-Hong Xu, M. S. Walsh, R. M. Lees, 1996, J. Mol. Spectrosc. 179, 269-281. Li-Hong Xu, F. J. Lovas, 1997, J. Phys. Chem. Ref. Data, 26, 17-156; also available in the CDMS, see ^c. H. S. P. Müller, S. Thorwirth, D. A. Roth, G. Winnewisser, 2001, Astron. Astrophys. 370, L49-L52 H. S. P. Müller, F. Schlöder, J. Stutzki, G. Winnewisser, 2005 J. Mol. Struct. 742, 215-227; web-page: http://www.astro.uni-koeln.de/cdms/.

  8. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  9. Beamforming Based Full-Duplex for Millimeter-Wave Communication.

    PubMed

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors.

  10. Millimeter-wave monolithic diode-grid frequency multiplier

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A semiconductor diode structure useful for harmonic generation of millimeter or submillimeter wave radiation from a fundamental input wave is fabricated on a GaAs substrate. A heavily doped layer of n(sup ++) GaAs is produced on the substrate and then a layer of intrinsic GaAs on said heavily doped layer on top of which a sheet of heavy doping (++) is produced. A thin layer of intrinsic GaAs grown over the sheet is capped with two metal contacts separated by a gap to produce two diodes connected back to back through the n(sup ++) layer for multiplication of frequency by an odd multiple. If only one metal contact caps the thin layer of intrinsic GaAs, the second diode contact is produced to connect to the n(sup ++) layer for multiplication of frequency by an even number. The odd or even frequency multiple is selected by a filter. A phased array of diodes in a grid will increase the power of the higher frequency generated.

  11. Microwave and millimeter-wave losses in conventional optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Mortazy, Ebrahim; Wu, Ke

    2011-06-01

    In this paper, microwave characteristics of conventional optoelectronic devices, with emphasis on devices with microstrip (MS) and coplanar waveguide (CPW) electrode structures, are obtained. This analysis is essential for any improvement in the structure of the conventional optoelectronic devices so as to obtain a high performance. Microwave loss is one of the important bandwidth limitation factors in microwave and millimeter-wave (mmW) optical devices. Different sources of loss including ohmic, dielectric and radiating loss in MS and CPW of conventional optical devices are analyzed and compared. The results show that the total microwave loss increases with frequency in conventional MS and CPW waveguides. Also, in traveling-wave optoelectronic devices, the bandwidth is limited in the optical part by effects such as the carrier transit time effect and in the microwave part by factors such as length of the devices in active and non-active sections. In addition, validation of the results in the paper is performed with published theoretical and/or measurement results.

  12. Beamforming Based Full-Duplex for Millimeter-Wave Communication

    PubMed Central

    Liu, Xiao; Xiao, Zhenyu; Bai, Lin; Choi, Jinho; Xia, Pengfei; Xia, Xiang-Gen

    2016-01-01

    In this paper, we study beamforming based full-duplex (FD) systems in millimeter-wave (mmWave) communications. A joint transmission and reception (Tx/Rx) beamforming problem is formulated to maximize the achievable rate by mitigating self-interference (SI). Since the optimal solution is difficult to find due to the non-convexity of the objective function, suboptimal schemes are proposed in this paper. A low-complexity algorithm, which iteratively maximizes signal power while suppressing SI, is proposed and its convergence is proven. Moreover, two closed-form solutions, which do not require iterations, are also derived under minimum-mean-square-error (MMSE), zero-forcing (ZF), and maximum-ratio transmission (MRT) criteria. Performance evaluations show that the proposed iterative scheme converges fast (within only two iterations on average) and approaches an upper-bound performance, while the two closed-form solutions also achieve appealing performances, although there are noticeable differences from the upper bound depending on channel conditions. Interestingly, these three schemes show different robustness against the geometry of Tx/Rx antenna arrays and channel estimation errors. PMID:27455256

  13. Photonic generation of millimeter-wave using a silicon microdisk resonator

    NASA Astrophysics Data System (ADS)

    Liu, Li; Yang, Ting; Liao, Shasha; Dong, Jianji

    2015-05-01

    A simple photonic approach to generating millimeter-wave based on a high-Q silicon microdisk resonator is proposed and demonstrated. The MDR is designed with periodical dual passbands at the drop port so as to filter out different pairs of optical carriers from an optical frequency comb. By beating the two optical frequency components, several millimeter-wave signals have been obtained. A proof-of-concept experiment illustrates millimeter-wave generation of 277 GHz, 306 GHz and 335 GHz with harmonic distortion suppression ratio over 25 dB.

  14. Generation of Optical Millimeter Wave Using Two Cascaded Polarization Modulators Based on Frequency Octupling Without Filtering

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ma, Jianxin; Zhang, Ruijiao; Xin, Xiangjun; Zhang, Junyi

    2015-11-01

    An approach to generate an optical millimeter wave is introduced with frequency octupling using two cascaded polarization modulators followed by polarizers, respectively. By adjusting the modulation indexes of polarization modulators, only the ±4th-order sidebands are generated with a pure spectrum. Since no filter is needed, the proposed technique can be used to generate a frequency-tunable millimeter wave with a large frequency-tunable range. To prove the feasibility of the proposed approach, a simulation is conducted to generate an 80-GHz millimeter wave, and then its transmission performance is checked.

  15. [Local heating of murine skin by millimeter waves based on HBHE].

    PubMed

    Hu, Shuang-Xi; Fan, Chun-Li; Yang, Li; Sun, Feng-Rui

    2012-07-01

    The authors deduced Gaussian function of millimeter wave power distribution, and built up a transient thermal multilayer model for the heating of murine skin by high power millimeter waves with finite volume method (FVM) based on HBHE in the present paper. We analyzed the calculated results and compared them with the results calculated by Pennes' equation and the experimental ones; found that the temperature calculated by HBHE was more reasonable. Especially under high power millimeter wave, the calculated results were basically consistent with the experimental ones, and the superiority of the theoretical model was confirmed.

  16. Polarization difference imaging for millimeter-wave in a desert environment

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Stein, Edwin L., Jr.; Samluk, Jesse P.; Mackrides, Daniel G.; Prather, Dennis W.

    2010-10-01

    The low attenuation of millimeter-wave radiation propagating through sandstorms has created an interest in using millimeter-wave imagers in desert environments. The ground in desert environments can have significant differences in polarization properties depending on the angle of observation. Perturbations to the natural desert surface will change these polarization properties and by using a polarization difference technique these changes are highlighted. This technique has been applied to millimeter-wave images from a desert environment for several different objects including holes in the ground, footsteps, and changes to the surface created by digging.

  17. Millimeter-Wave Dielectric Properties of Single Crystal Ferroelectric and Dielectric Materials

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Li, Zijing; Afsar, Mohammed N.; Sundaram, S. K.

    2011-01-03

    Transmittance measurements on various single crystal ferroelectric materials over a broad millimeter-wave frequency range have been performed. Frequency dependence of the complex dielectric permittivity has been determined in the millimeter wave region for the first time. The measurements have been employed using a free-space quasi-optical millimeter-wave spectrometer equipped with a set of high power backward wave oscillators (BWOs) as sources of coherent radiation, tunable in the range from 30 - 120 GHz. The uncertainties and possible sources of instrumentation and measurement errors related to the free-space millimeter-wave technique are discussed. This work has demonstrated that precise MMW permittivities can be obtained even on small thin crystals using the BWO quasi-optical approach.

  18. Millimeter and submillimeter wave spectra of 13C-glycolaldehydes

    NASA Astrophysics Data System (ADS)

    Haykal, I.; Motiyenko, R. A.; Margulès, L.; Huet, T. R.

    2013-01-01

    Context. Glycolaldehyde (CH2OHCHO) is the simplest sugar and an important intermediate in the path toward forming more complex biologically relevant molecules. Astronomical surveys of interstellar molecules, such as those available with the very sensitive ALMA telescope, require preliminary laboratory investigations of the microwave and submillimeter-wave spectra of molecular species including new isotopologs - to identify these in the interstellar media. Aims: To achieve the detection of the 13C isotopologs of glycolaldehyde in the interstellar medium, their rotational spectra in the millimeter and submillimeter-wave regions were studied. Methods: The spectra of 13CH2OHCHO and CH2OH13CHO were recorded in the 150-945 GHz spectral range in the laboratory using a solid-state submillimeter-wave spectrometer in Lille. The observed line frequencies were measured with an accuracy of 30 kHz up to 700 GHz and of 50 kHz above 700 GHz. We analyzed the spectra with a standard Watson Hamiltonian. Results: About 10 000 new lines were identified for each isotopolog. The spectroscopic parameters were determined for the ground- and the three lowest vibrational states up to 945 and 630 GHz. Previous microwave assignments of 13CH2OHCHO were not confirmed. Conclusions: The provided line-lists and sets of molecular parameters meet the needs for a first astrophysical search of 13C-glycolaldehydes. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/549/A96

  19. Microwave and millimeter-wave resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Sollner, T. C. L. Gerhard; Brown, Elliott R.; Goodhue, W. D.

    1987-01-01

    Several demonstrated resonant tunneling devices including oscillators, mixers, multiplexers, and a variable negative resistance are discussed. Techniques of the millimeter/submillimeter regime are also discussed.

  20. AC/RF Superconductivity

    SciTech Connect

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  1. Compact Packaging of Photonic Millimeter-Wave Receiver

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.

    2007-01-01

    A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out

  2. Millimeter waves as a source of selective heating of skin.

    PubMed

    Zhadobov, Maxim; Alekseev, Stanislav I; Le Dréan, Yves; Sauleau, Ronan; Fesenko, Evgeny E

    2015-09-01

    This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution. PMID:26179286

  3. A millimeter-wave radiometer for detecting microbursts

    NASA Technical Reports Server (NTRS)

    Mcmillan, Robert

    1992-01-01

    This paper describes a millimeter-wave radiometer for the detection of wind shear from airborne platforms or at airport terminals. This proposed instrument will operate near the group of atmospheric oxygen absorptions centered near 60 GHz, which it will use to sense temperature from a distance. The instrument will use two channels to provide two different temperature measurements, providing the basis for solution of two equations in two unknowns, which are range to the wind shear plume and its temperature. A third channel will measure ambient atmospheric temperature. Depending on the temperature difference between the wind-shear plume and ambient, the standard deviation of range measurement accuracy is expected to be about 1 km at 5 km range, while the temperature measurement standard deviation will be about one-fourth the temperature difference between plume and ambient at this range. The instrument is expected to perform usefully at ranges up to 10 km, giving adequate warning of the presence of wind shear even for high performance jet aircraft. Other atmospheric hazards which might be detected by this radiometer include aircraft wakes and vortices, clear-air turbulence, and wind rotors, although the latter two phenomena would be detected by an airborne version of the instrument. A separate radiometer channel will be provided in the proposed instrument to detect aircraft wakes and vortices based on perturbation of the spectrum of microscopic atmospheric temperature fluctuations caused by the passage of large aircraft.

  4. Millimeter wave sensor requirements for maritime small craft identification

    NASA Astrophysics Data System (ADS)

    Krapels, Keith; Driggers, Ronald G.; Garcia, Jose; Boettcher, Evelyn; Prather, Dennis; Schuetz, Chrisopher; Samluk, Jesse; Stein, Lee; Kiser, William; Visnansky, Andrew; Grata, Jeremy; Wikner, David; Harris, Russ

    2009-09-01

    Passive millimeter wave (mmW) imagers have improved in terms of resolution sensitivity and frame rate. Currently, the Office of Naval Research (ONR), along with the US Army Research, Development and Engineering Command, Communications Electronics Research Development and Engineering Center (RDECOM CERDEC) Night Vision and Electronic Sensor Directorate (NVESD), are investigating the current state-of-the-art of mmW imaging systems. The focus of this study was the performance of mmW imaging systems for the task of small watercraft / boat identification field performance. First mmW signatures were collected. This consisted of a set of eight small watercrafts; at 5 different aspects, during the daylight hours over a 48 hour period in the spring of 2008. Target characteristics were measured and characteristic dimension, signatures, and Root Sum Squared of Target's Temperature (RRSΔT) tabulated. Then an eight-alternative, forced choice (8AFC) human perception experiment was developed and conducted at NVESD. The ability of observers to discriminate between small watercraft was quantified. Next, the task difficulty criterion, V50, was quantified by applying this data to NVESD's target acquisition models using the Targeting Task Performance (TTP) metric. These parameters can be used to evaluate sensor field performance for Anti-Terrorism / Force Protection (AT/FP) and navigation tasks for the U.S. Navy, as well as for design and evaluation of imaging passive mmW sensors for both the U.S. Navy and U.S. Coast Guard.

  5. Near-field millimeter-wave imaging for weapons detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Collins, H. D.; Hall, Thomas E.

    1993-04-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration/signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two- dimensional image formation from a one-dimensional scanned (or array) system has been developed. Signal/image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far- field and narrow-bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a Ka-band system.

  6. Induced movements of giant vesicles by millimeter wave radiation.

    PubMed

    Albini, Martina; Dinarelli, Simone; Pennella, Francesco; Romeo, Stefania; Zampetti, Emiliano; Girasole, Marco; Morbiducci, Umberto; Massa, Rita; Ramundo-Orlando, Alfonsina

    2014-07-01

    Our previous study of interaction between low intensity radiation at 53.37GHz and cell-size system - such as giant vesicles - indicated that a vectorial movement of vesicles was induced. This effect among others, i.e. elongation, induced diffusion of fluorescent dye di-8-ANEPPS, and increased attractions between vesicles was attributed to the action of the field on charged and dipolar residues located at the membrane-water interface. In an attempt to improve the understanding on how millimeter wave radiation (MMW) can induce this movement we report here a real time evaluation of changes induced on the movement of giant vesicles. Direct optical observations of vesicles subjected to irradiation enabled the monitoring in real time of the response of vesicles. Changes of the direction of vesicle movement are demonstrated, which occur only during irradiation with a "switch on" of the effect. This MMW-induced effect was observed at a larger extent on giant vesicles prepared with negatively charged phospholipids. The monitoring of induced-by-irradiation temperature variation and numerical dosimetry indicate that the observed effects in vesicle movement cannot be attributed to local heating. PMID:24704354

  7. Near-Millimeter Wave Issues for a Space Power Grid

    NASA Astrophysics Data System (ADS)

    Komerath, Narayanan; Venkat, Vigneshwar; Fernandez, Jason

    2009-03-01

    This paper reports continuing work on an evolutionary revenue-generating approach to Space Solar Power. The 220 GHz atmospheric transmission window is chosen, leaving open the option of using millimeter wave or laser wavelengths. The progression from frequency to system business case is laid out, seeking the performance figures needed for a self-sustaining system and to open up Space Solar Power in 15 to 17 years from first launch. An overall transmission efficiency in excess of 30 percent is required, from DC to beamed power and back to DC or high-voltage AC, to meet a delivered free-market price target of 30 cents per KWH, or 20 percent if a price of 45 cents per KWH. Climate data show that rain obscuration is a non-issue for many of the renewable-power sites that comprise the market. The technology of direct solar conversion to DC and to beamed power would satisfy the needed efficiencies but requires advances in nano-scale fabrication with dielectrics.

  8. Millimeter waves as a source of selective heating of skin.

    PubMed

    Zhadobov, Maxim; Alekseev, Stanislav I; Le Dréan, Yves; Sauleau, Ronan; Fesenko, Evgeny E

    2015-09-01

    This study demonstrates that 20-100 GHz range can be used for spatially-accurate focusing of heating inside the skin achieved by varying frequency and exposure beam size, as well as by enforcing air convection. The latter is also used to reduce overheating of skin surface. Heating at different skin depths depending on these parameters is investigated in detail using the hybrid bio-heat equation. In particular, it is shown that decreasing frequency and/or increasing exposure beam size at forced airflow result in elevation of heating of deeper layers of tissue and decrease of skin surface temperature. Changes of water content within 15%, which exceed those due to aging and presence of tumors, only slightly affect heating. Exposure intensity necessary to reach a target temperature significantly increases in different areas of body with elevated blood flow. Dependence on exposure intensity and hyperthermia treatment duration is also investigated and discussed. Results of this study suggest that the lower part of the millimeter-wave range is an attractive alternative for non-invasive thermal treatment of skin cancer with a high spatial resolution.

  9. Adaptive reconstruction of millimeter-wave radiometric images.

    PubMed

    Sarkis, Michel

    2012-09-01

    We present a robust method to reconstruct a millimeter-wave image from a passive sensor. The method operates directly on the raw samples from the radiometer. It allocates for each pixel to be estimated a patch in the space formed by all the raw samples of the image. It then estimates the noise in the patch by measuring some distances that reflect how far the samples are from forming a piecewise smooth surface. It then allocates a weight for each sample that defines its contribution in the pixel reconstruction. This is done via a smoothing Kernel that enforces the distances to have a piecewise smooth variation inside the patch. Results on real datasets show that our scheme leads to more contrast and less noise and the shape of an object is better preserved in a constructed image compared to state-of-the-art schemes. The proposed scheme produces better results even with low integration times, i.e., 10% of the total integration time used in our experiments.

  10. Passive millimeter-wave imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Gopalsami, Nachappa; Liao, Shaolin; Elmer, Thomas W.; Koehl, Eugene R.; Heifetz, Alexander; Raptis, Apostolos C.; Spinoulas, Leonidas; Katsaggelos, Aggelos K.

    2012-09-01

    Passive millimeter-wave (PMMW) imagers using a single radiometer, called single pixel imagers, employ raster scanning to produce images. A serious drawback of such a single pixel imaging system is the long acquisition time needed to produce a high-fidelity image, arising from two factors: (a) the time to scan the whole scene pixel by pixel and (b) the integration time for each pixel to achieve adequate signal to noise ratio. Recently, compressive sensing (CS) has been developed for single-pixel optical cameras to significantly reduce the imaging time and at the same time produce high-fidelity images by exploiting the sparsity of the data in some transform domain. While the efficacy of CS has been established for single-pixel optical systems, its application to PMMW imaging is not straightforward due to its (a) longer wavelength by three to four orders of magnitude that suffers high diffraction losses at finite size spatial waveform modulators and (b) weaker radiation intensity, for example, by eight orders of magnitude less than that of infrared. We present the development and implementation of a CS technique for PMMW imagers and shows a factor-of-ten increase in imaging speed.

  11. Multifunctional millimeter-wave radar system for helicopter safety

    NASA Astrophysics Data System (ADS)

    Goshi, Darren S.; Case, Timothy J.; McKitterick, John B.; Bui, Long Q.

    2012-06-01

    A multi-featured sensor solution has been developed that enhances the operational safety and functionality of small airborne platforms, representing an invaluable stride toward enabling higher-risk, tactical missions. This paper demonstrates results from a recently developed multi-functional sensor system that integrates a high performance millimeter-wave radar front end, an evidence grid-based integration processing scheme, and the incorporation into a 3D Synthetic Vision System (SVS) display. The front end architecture consists of a w-band real-beam scanning radar that generates a high resolution real-time radar map and operates with an adaptable antenna architecture currently configured with an interferometric capability for target height estimation. The raw sensor data is further processed within an evidence grid-based integration functionality that results in high-resolution maps in the region surrounding the platform. Lastly, the accumulated radar results are displayed in a fully rendered 3D SVS environment integrated with local database information to provide the best representation of the surrounding environment. The integrated system concept will be discussed and initial results from an experimental flight test of this developmental system will be presented. Specifically, the forward-looking operation of the system demonstrates the system's ability to produce high precision terrain mapping with obstacle detection and avoidance capability, showcasing the system's versatility in a true operational environment.

  12. Topics in the optimization of millimeter-wave mixers

    NASA Technical Reports Server (NTRS)

    Siegel, P. H.; Kerr, A. R.; Hwang, W.

    1984-01-01

    A user oriented computer program for the analysis of single-ended Schottky diode mixers is described. The program is used to compute the performance of a 140 to 220 GHz mixer and excellent agreement with measurements at 150 and 180 GHz is obtained. A sensitivity analysis indicates the importance of various diode and mount characteristics on the mixer performance. A computer program for the analysis of varactor diode multipliers is described. The diode operates in either the reverse biased varactor mode or with substantial forward current flow where the conversion mechanism is predominantly resistive. A description and analysis of a new H-plane rectangular waveguide transformer is reported. The transformer is made quickly and easily in split-block waveguide using a standard slitting saw. It is particularly suited for use in the millimeter-wave band, replacing conventional electroformed stepped transformers. A theoretical analysis of the transformer is given and good agreement is obtained with measurements made at X-band.

  13. Passive millimeter-wave cross polarization imaging and phenomenology

    NASA Astrophysics Data System (ADS)

    Stein, E. Lee, Jr.; Schuetz, Christopher A.; Martin, Richard D.; Samluk, Jesse P.; Wilson, John P.; Mackrides, Daniel G.; Murakowski, Janusz A.; Murakowski, Maciej; Prather, Dennis W.

    2009-05-01

    Passive millimeter-wave (mmW) imaging has many specific defense, security and safety applications, due to the fact that all terrestrial bodies above absolute zero are emissive, and these wavelengths are not scattered by normal obscurants such as haze, fog, smoke, dust, sandstorms, clouds, or fabrics. We have previously demonstrated results from the construction of a 94 GHz passive mmW far-field imaging system utilizing optical upconversion, which imaged in only horizontal polarization. The effective radiometric temperature of an object is a combination of the object's surface and scattered radiometric temperatures. The surface radiometric temperature is a function of the object's emissivity, which is polarization dependent. Imaging with radiometric temperature data from both polarizations will allow a greater identification of the scene being imaged, and allow the recognition of subtle features which were not previously observable. This additional functionality is accomplished through the installation of added equipment and programming on our system, thus allowing the simultaneous data collection of imagery in both polarizations. Herein, we present our experimental procedures, results and passive mmW images obtained by using our far-field imaging system, a brief discussion of the phenomenology observed through the application of these techniques, as well as the preliminary details regarding our work on a 3-D passive mmW simulator capable of true physical polarization dependent effective emissivity and reflectivity rendering, based on the open-source Blender engine.

  14. Active millimeter wave detection of concealed layers of dielectric material

    NASA Astrophysics Data System (ADS)

    Bowring, N. J.; Baker, J. G.; Rezgui, N. D.; Southgate, M.; Alder, J. F.

    2007-04-01

    Extensive work has been published on millimetre wave active and passive detection and imaging of metallic objects concealed under clothing. We propose and demonstrate a technique for revealing the depth as well as the outline of partially transparent objects, which is especially suited to imaging layer materials such as explosives and drugs. The technique uses a focussed and scanned FMCW source, swept through many GHz to reveal this structure. The principle involved is that a parallel sided dielectric slab produces reflections at both its upper and lower surfaces, acting as a Fabry-Perot interferometer. This produces a pattern of alternating reflected peaks and troughs in frequency space. Fourier or Burg transforming this pattern into z-space generates a peak at the thickness of the irradiated sample. It could be argued that though such a technique may work for single uniform slabs of dielectric material, it will give results of little or no significance when the sample both scatters the incident radiation and gives erratic reflectivities due to its non-uniform thickness and permittivity . We show results for a variety of materials such as explosive simulants, powder and drugs, both alone and concealed under clothing or in a rucksack, which display strongly directional reflectivities at millimeter wavelengths, and whose location is well displayed by a varying thickness parameter as the millimetre beam is scanned across the target. With this system we find that samples can easily be detected at standoff distances of at least 4.6m.

  15. Performance modeling of a passive interferometric millimeter-wave sensor

    NASA Astrophysics Data System (ADS)

    Jacobs, Eddie L.; Furxhi, Orges

    2009-05-01

    This paper describes the modeling of human task performance using a passive interferometric millimeter wave (MMW) imaging sensor. The model is based on a previous model developed for concealed weapon identification using an active terahertz imager. Both models leverage the task performance modeling approach developed by the US Army Night Vision and Electronic Sensors Directorate. Key developments for this model include modeling of the effects of an interferometric antenna array, including sparse arrays, and a novel optical upconversion and processing stage being developed by the University of Delaware. Sparse interferometric arrays do not fully sample the spatial frequency extent of the image and as a result, can have degraded spatial frequency response over a fully populated array. The spatial frequency response of the sparse array can have a dramatic effect on image quality. Image quality is empirically related to task performance through the use of perception experiments. Possible applications of this model include system trade studies, concealed weapon identification, and navigation in fog and brown out conditions.

  16. Aqueous blackbody calibration source for millimeter-wave/terahertz metrology

    SciTech Connect

    Dietlein, Charles; Popovic, Zoya; Grossman, Erich N

    2008-10-20

    This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45 deg. . For water reflectance Rw of 40% at 45 deg. in W-band, this implies a theoretical effective aperture emissivity of (1-R{sup 2}wsR{sup 2}wp)>98.8%. From W-band to 450 GHz, the maximum radiometric temperature uncertainty is {+-}0.40 K, independent of water temperature. Uncertainty from 450 GHz to 1 THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of -3 K at 1 THz.

  17. Aqueous blackbody calibration source for millimeter-wave/terahertz metrology.

    PubMed

    Dietlein, Charles; Popović, Zoya; Grossman, Erich N

    2008-10-20

    This paper describes a calibrated broadband emitter for the millimeter-wave through terahertz frequency regime, called the aqueous blackbody calibration source. Due to its extremely high absorption, liquid water is chosen as the emitter on the basis of reciprocity. The water is constrained to a specific shape (an optical trap geometry) in an expanded polystyrene (EPS) container and maintained at a selected, uniform temperature. Uncertainty in the selected radiometric temperature due to the undesirable reflectance present at a water interface is minimized by the trap geometry, ensuring that radiation incident on the entrance aperture encounters a pair of s and a pair of p reflections at 45 degrees. For water reflectance R(w) of 40% at 45 degrees in W-band, this implies a theoretical effective aperture emissivity of (1-R(2)(ws)R(2)(wp))>98.8%. From W-band to 450 GHz, the maximum radiometric temperature uncertainty is +/-0.40 K, independent of water temperature. Uncertainty from 450 GHz to 1 THz is increased due to EPS scattering and absorption, resulting in a maximum uncertainty of -3 K at 1 THz.

  18. High-power millimeter-wave rotary joint

    NASA Astrophysics Data System (ADS)

    Chang, T. H.; Yu, B. R.

    2009-03-01

    The rotary joint is a useful microwave component that connects a fixed part to a rotatable part. This study systematically analyzes the effect of the discontinuity on the interface of a rotary joint for several waveguide modes. Simulation results indicate that the transmission of the TE01 mode is independent of the geometry of the joint, and thus is ideal for such application. A rotary joint consisting of two identical TE01 mode converters, clasped each other by a bearing, is designed, fabricated, and tested. Back-to-back transmission measurements exhibit an excellent agreement to the results of computer simulations. The measured optimum transmission is 97% with a 3 dB bandwidth of 8.5 GHz, centered at 35.0 GHz. The cold measurement shows that the results are independent of the angle of rotation. In addition, a high-power experiment is conducted. The just developed rotary joint can operate up to a peak input power of 210 W with a duty of 18%. The working principle, although demonstrated in the millimeter-wave region, can be applied up to the terahertz region where the joint gap is generally critical except for the operating TE01 mode.

  19. Microwave and millimeter-wave systems for wall penetration

    NASA Astrophysics Data System (ADS)

    Ferris, David D., Jr.; Currie, Nicholas C.

    1998-07-01

    The need for through-the-wall surveillance sensors has existed for many years. Recent advances in microwave and millimeter-wave (MMW) technologies provide new applications for law enforcement use. These applications include the potential to conduct surveillance through walls and the ability to detect the presence of living persons behind doors or other barriers. Covert surveillance and personnel detection are of high interest to both the Department of Defense in support of Small Unit Operations and the Justice Department for civilian law enforcement applications. Microwave sensors are under development that can detect the presence of persons (and even weapons) behind walls and track moving persons behind walls. MMW sensors are under development which can provide pseudo-images of persons behind the walls including radiometric sensors at 95 GHz, active 95 GHz real aperture radars, and heartbeat detection radars. Radiometric sensors include 2D FPA systems, 1D FPA, scanned systems, and single element scanned sensors. Active FPA radars include illuminated radiometric systems and coherent radar systems. Real aperture MMW radar systems include raster scanned and non-scanned (hand-held) sensors.

  20. Near millimeter wave imaging/multi-beam integrated antennas

    NASA Technical Reports Server (NTRS)

    Yngvesson, K. Sigfrid; Schaubert, Daniel H.; Stephan, Karl D.; Pozar, David M.; Sollner, T. C. L. Gerhard; Parrish, Peter T.

    1986-01-01

    Some preliminary results on a mixer design which is suitable for integration with tapered slot antennas have been obtained and published. This mixer design was tested both in a 4 to 10 GHz model, and (slightly modified) at 94 GHz. The latter utilized the same Hewlett-Packard beam-lead diodes which were used as detector diodes in the linearly tapered slot antennas (LTSA) arrays. These diodes are the most rugged to be found, and generally survive well on the flexible Kapton substrates. The 4 to 10 GHz version of this mixer has less than 6 dB conversion loss over an octave bandwidth. It uses a slot ring in a balanced configuration, and requires the LO to be fed through a separate port. A different design for a mixer which may be integrated with an LTSA antenna element is discussed. This mixer was tested at 38 GHz with the same HP beam-lead diodes, and has less than 10 dB conversion loss. Further work on mixers has emphasized theoretical modeling, using a computer program, which takes into account the effect of excess noise of Schottky-barrier diodes for the first time. Calculated results agree quantitatively with measured results on millimeter wave mixers.

  1. Passive millimeter-wave video camera for aviation applications

    NASA Astrophysics Data System (ADS)

    Fornaca, Steven W.; Shoucri, Merit; Yujiri, Larry

    1998-07-01

    Passive Millimeter Wave (PMMW) imaging technology offers significant safety benefits to world aviation. Made possible by recent technological breakthroughs, PMMW imaging sensors provide visual-like images of objects under low visibility conditions (e.g., fog, clouds, snow, sandstorms, and smoke) which blind visual and infrared sensors. TRW has developed an advanced, demonstrator version of a PMMW imaging camera that, when front-mounted on an aircraft, gives images of the forward scene at a rate and quality sufficient to enhance aircrew vision and situational awareness under low visibility conditions. Potential aviation uses for a PMMW camera are numerous and include: (1) Enhanced vision for autonomous take- off, landing, and surface operations in Category III weather on Category I and non-precision runways; (2) Enhanced situational awareness during initial and final approach, including Controlled Flight Into Terrain (CFIT) mitigation; (3) Ground traffic control in low visibility; (4) Enhanced airport security. TRW leads a consortium which began flight tests with the demonstration PMMW camera in September 1997. Flight testing will continue in 1998. We discuss the characteristics of PMMW images, the current state of the technology, the integration of the camera with other flight avionics to form an enhanced vision system, and other aviation applications.

  2. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K{sub a}-band system.

  3. Near-field millimeter-wave imaging for weapon detection

    SciTech Connect

    Sheen, D.M.; McMakin, D.L.; Collins, H.D.; Hall, T.E.

    1992-11-01

    Various millimeter-wave imaging systems capable of imaging through clothing for the detection of contraband metal, plastic, or ceramic weapons, have been developed at PNL. Two dimensional scanned holographic systems, developed at 35, 90, and 350 GHz, are used to obtain high resolution images of metal and plastic targets concealed by clothing. Coherent single-frequency amplitude and phase data, which is gathered over a two-dimensional scanned aperture, is reconstructed to the target plane using a holographic wavefront reconstruction technique. Practical weapon detection systems require high-speed scanning. To achieve this goal, a 35 GHz linear sequentially switched array has been built and integrated into a high speed linear scanner. This system poses special challenges on calibration / signal processing of the holographic system. Further, significant improvements in speed are required to achieve real time operation. Toward this goal, a wideband scanned system which allows for a two-dimensional image formation from a one-dimensional scanned (or array) system has been developed . Signal / image processing techniques developed and implemented for this technique are a variation on conventional synthetic aperture radar (SAR) techniques which eliminate far-field and narrow bandwidth requirements. Performance of this technique is demonstrated with imaging results obtained from a K[sub a]-band system.

  4. Propulsion of small launch vehicles using high power millimeter waves

    SciTech Connect

    Benford, J.; Myrabo, L.

    1994-12-31

    High power microwaves have been proposed for propulsion of vehicles and projectiles in the atmosphere and in space. The requirements in terms of high power microwave technology have not been examined in any detail. The need for improved propulsion technology is clear: chemical rockets orbit only a few percent of the liftoff mass at a cost of about 3,000$/lb. The key advantage of any beamed power approach is in placing the heavy and expensive components on the ground or in space. The authors propose a system with uses a two-stage propulsion method in which the first phase of ascent is based on the ramjet principle, a repetitive Pulsed Detonation Engine which uses a microwave-supported detonation to heat the air fuel. The second phase is a pure rocket. This paper explores this propulsion concept using millimeter waves, the most advantageous part of the spectrum. They find that efficient system concepts can be developed: the vehicle can have payload-to-mass ratios on the order of one and cost per pound to orbit one or two orders of magnitude less that chemical rockets.

  5. Millimeter-wave Molecular Line Observations of the Tornado Nebula

    NASA Astrophysics Data System (ADS)

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-01

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, 13CO, and HCO+ with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V LSR = -14 km s-1 and +5 km s-1. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado "head" in the -14 km s-1 cloud, also suggesting the interaction. Virial analysis shows that the +5 km s-1 cloud is more tightly bound by self-gravity than the -14 km s-1 cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s-1 cloud collided into the -14 km s-1 cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  6. Thermal Mechanisms of Millimeter Wave Stimulation of Excitable Cells

    PubMed Central

    Shapiro, Mikhail G.; Priest, Michael F.; Siegel, Peter H.; Bezanilla, Francisco

    2013-01-01

    Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems. PMID:23790370

  7. Compressive sensing for direct millimeter-wave holographic imaging.

    PubMed

    Qiao, Lingbo; Wang, Yingxin; Shen, Zongjun; Zhao, Ziran; Chen, Zhiqiang

    2015-04-10

    Direct millimeter-wave (MMW) holographic imaging, which provides both the amplitude and phase information by using the heterodyne mixing technique, is considered a powerful tool for personnel security surveillance. However, MWW imaging systems usually suffer from the problem of high cost or relatively long data acquisition periods for array or single-pixel systems. In this paper, compressive sensing (CS), which aims at sparse sampling, is extended to direct MMW holographic imaging for reducing the number of antenna units or the data acquisition time. First, following the scalar diffraction theory, an exact derivation of the direct MMW holographic reconstruction is presented. Then, CS reconstruction strategies for complex-valued MMW images are introduced based on the derived reconstruction formula. To pursue the applicability for near-field MMW imaging and more complicated imaging targets, three sparsity bases, including total variance, wavelet, and curvelet, are evaluated for the CS reconstruction of MMW images. We also discuss different sampling patterns for single-pixel, linear array and two-dimensional array MMW imaging systems. Both simulations and experiments demonstrate the feasibility of recovering MMW images from measurements at 1/2 or even 1/4 of the Nyquist rate.

  8. Choice of transmission line for operation in the millimeter-wave range

    NASA Astrophysics Data System (ADS)

    Kazantsev, V. I.; Kharitonov, A. I.

    1989-10-01

    The paper presents requirements for millimeter-wave transmission lines, including low losses, high electrical strength, wide operating band, weak dispersion, good manufacturability, electrohermeticity, low weight and small size, and low cost. Lines that fully satisfy these requirements are described.

  9. Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Case, J. T.; McClanahan, A. D.; Abou-Khousa, M.; Guinn, K.; Kharkovsky, S.; Zoughi, R.; Afaki-Beni, A.; DePaulis, F.; Pommerenke, D.

    2008-01-01

    This is the video that accompanies the "Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System" presentation. It shows the operation of the scanning system, and reviews the results of the scanning of a sample.

  10. Analytical model and optical design of distributed aperture optical system for millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Chen, Caihua; Schuetz, Christopher A.; Martin, Richard D.; Samluk, Jesse; Stein, E. Lee, Jr.; MacKrides, Daniel G.; Mirotznik, Mark; Prather, Dennis W.

    2008-10-01

    Millimeter-wave imaging is very interesting due to its unique transmission properties through a broad range of atmospheric obscurants such as cloud, dust, fog, sandstorms, and smoke, which thereby enables all-weather passive imaging. Unfortunately, the usefulness of millimeter-wave imagers is often limited by the large aperture sizes required to obtain images of sufficient resolution, as governed by the diffraction limit. To this end, we previously proposed a distributed aperture system for direct non-scan millimeter-wave imaging using an optical upconversion technique. In this proposed approach, an antenna array is employed to sample image signals in the millimeter-wave domain. The sampled millimeter-wave signals are then upconverted to the optical domain using electro-optic modulation techniques. These optical signals are mapped into a similar array on the entrance pupil of the following optical system for direct imaging. Although distributed aperture imaging is not new in both radio astronomy and conventional optical inteferometric imaging, the proposed approach is different in that it physically samples image in the millimeter-wave domain and directly forms the image in the optical domain. Therefore, specific analysis and evaluation techniques are required for the design and optimization of the proposed system. In this paper, we will address these issues, develop techniques to evaluate and enhance the system imaging performance and present methods to optimize the geometric configuration.

  11. Efficient millimeter wave 1140 GHz/ diode for harmonic power generation

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Epitaxial gallium arsenide diode junction formed in a crossed waveguide structure operates as a variable reactance harmonic generator. This varactor diode can generate power efficiently in the low-millimeter wavelength.

  12. Millimeter-wave nondestructive evaluation of pavement conditions

    NASA Astrophysics Data System (ADS)

    Vines-Cavanau, David; Busuioc, Dan; Birken, Ralf; Wang, Ming

    2012-04-01

    The United States is suffering from an aging civil infrastructure crisis. Key to recovery are rapid inspection technologies like that being investigated by the VOTERS project (Versatile Onboard Traffic Embedded Roaming Sensors), which aims to outfit ordinary road vehicles with compact low-cost hardware that enables them to rapidly assess and report the condition of roadways and bridge decks free of driver interaction. A key piece of hardware, and the focus of this paper, is a 24 GHz millimeter-wave radar system that measures the reflectivity of pavement surfaces. To account for the variability of real-world driving, such as changes in height, angle, speed, and temperature, a sensor fusion approach is used that corrects MWR measurements based on data from four additional sensors. The corrected MWR measurements are expected to be useful for various characterization applications, including: material type; deterioration such as cracks and potholes; and surface coverage conditions such as dry, wet, oil, water, and ice. Success at each of these applications is an important step towards achieving the VOTERS objective, however, this paper focuses on surface coverage, as whatever covers the driving surface will be most apparent to the MWR sensor and if not accounted for could significantly limit the accuracy of other applications. Contributions of the paper include findings from static lab tests, which validate the approach and show the effects of height and angle. Further contributions come from lab and in-field dynamic tests, which show the effects of speed and demonstrate that the MWR approach is accurate under city driving conditions.

  13. Millimeter-wave molecular line observations of the Tornado nebula

    SciTech Connect

    Sakai, D.; Oka, T.; Tanaka, K.; Matsumura, S.; Miura, K.; Takekawa, S.

    2014-08-10

    We report the results of millimeter-wave molecular line observations of the Tornado Nebula (G357.7-0.1), which is a bright radio source behind the Galactic center region. A 15' × 15' area was mapped in the J = 1-0 lines of CO, {sup 13}CO, and HCO{sup +} with the Nobeyama Radio Observatory 45 m telescope. The Very Large Array archival data of OH at 1720 MHz were also reanalyzed. We found two molecular clouds with separate velocities, V{sub LSR} = –14 km s{sup –1} and +5 km s{sup –1}. These clouds show rough spatial anti-correlation. Both clouds are associated with OH 1720 MHz emissions in the area overlapping with the Tornado Nebula. The spatial and velocity coincidence indicates violent interaction between the clouds and the Tornado Nebula. Modestly excited gas prefers the position of the Tornado 'head' in the –14 km s{sup –1} cloud, also suggesting the interaction. Virial analysis shows that the +5 km s{sup –1} cloud is more tightly bound by self-gravity than the –14 km s{sup –1} cloud. We propose a formation scenario for the Tornado Nebula; the +5 km s{sup –1} cloud collided into the –14 km s{sup –1} cloud, generating a high-density layer behind the shock front, which activates a putative compact object by Bondi-Hoyle-Lyttleton accretion to eject a pair of bipolar jets.

  14. The Detectability of Millimeter-wave Molecular Rotational Transitions

    NASA Astrophysics Data System (ADS)

    Liszt, Harvey S.; Pety, Jerome

    2016-06-01

    Elaborating on a formalism that was first expressed some 40 years ago, we consider the brightness of low-lying millimeter-wave rotational lines of strongly polar molecules at the threshold of detectability. We derive a simple expression relating the brightness to the line-of-sight integral of the product of the total gas and molecular number densities and a suitably defined temperature-dependent excitation rate into the upper level of the transition. Detectability of a line is contingent only on the ability of a molecule to channel enough of the ambient thermal energy into the line, and the excitation can be computed in bulk by summing over rates without solving the multi-level rate equations, or computing optical depths and excitation temperatures. Results for {{HCO}}+, HNC, and CS are compared with escape-probability solutions of the rate equations using closed-form expressions for the expected range of validity of our ansatz, with the result that gas number densities as high as {10}4 {{{cm}}}-3 or optical depths as high as 100 can be accommodated in some cases. For densities below a well-defined upper bound, the range of validity of the discussion can be cast as an upper bound on the line brightness which is 0.3 K for the J = 1–0 lines and 0.8–1.7 K for the J = 2–1 lines of these species. The discussion casts new light on the interpretation of line brightnesses under conditions of weak excitation, simplifies derivation of physical parameters, and eliminates the need to construct grids of numerical solutions of the rate equations.

  15. REMOTE DETECTION OF RADIOACTIVE PLUMES USING MILLIMETER WAVE TECHNOLOGY

    SciTech Connect

    Barnowski, R.; Chien; H.; Gopalsami, N.

    2009-01-01

    The reprocessing of spent nuclear fuel, a common method for manufacturing weapons-grade special nuclear materials, is accompanied by the release of fi ssion products trapped within the fuel. One of these fi ssion products is a radioactive isotope of Krypton (Kr-85); a pure β- emitter with a half-life of 10.72 years. Due to its chemical neutrality and relatively long half life, nearly all of the Kr-85 is released into the surrounding air during reprocessing, resulting in a concentration of Kr-85 near the source that is several orders of magnitude higher than the typical background (atmospheric) concentrations. This high concentration of Kr-85 is accompanied by a proportionately high increase in air ionization due to the release of beta radiation from Kr-85 decay. Millimeter wave (MMW) sensing technology can be used to detect the presence of Kr-85 induced plumes since a high concentration of ions in the air increases the radar cross section due to a combination of atmospheric phenomena. Possible applications for this technology include the remote sensing of reprocessing activities across national borders bolstering global anti-proliferation initiatives. The feasibility of using MMW radar technology to uniquely detect the presence of Kr-85 can be tested using commercial ion generators or sealed radioactive sources in the laboratory. In this paper we describe our work to derive an ion dispersion model that will describe the spatial distribution of ions from Kr-85 and other common lab sources. The types and energies of radiation emitted by isotopes Co-60 and Cs-137 were researched, and these parameters were incorporated into these dispersion models. Our results can be compared with the results of MMW detection experiments in order to quantify the relationship between radar cross section and air ionization as well as to further calibrate the MMW detection equipment.

  16. The Millimeter Wave Radiation of a Traveling Wave Sinusoidal Wire Antenna

    NASA Astrophysics Data System (ADS)

    Salman, A. O.; Dibekci, D.; Gavrilov, S.; Vertiy, A. Alexei

    2008-05-01

    In this paper, investigation of radiation properties of the traveling-wave sinusoidal wire antennas is extended to the millimeter-wave frequencies (Ka-band) for the antennas whose geometrical dimensions vary in a wide range. Far-field patterns and S-parameters of composed three antenna sets were measured. A mathematical model was constructed for the structure and a MATLAB code based on this theoretical approach was written to calculate patterns, phase and attenuation constants of all investigated antennas. Frequency characteristics and the relation of antenna dimensions with wave parameters were investigated. Measured and calculated patterns were also compared with the constructed far-field patterns obtained by MoM (method of moments) and the MoM current distributions were used to explain the loss mechanisms of antennas. A directive, undistorted and smooth radiation can be achieved only choosing small undulated antennas whose peak-to-peak amplitude to period ratio κ is smaller than 0.4 (κ < 0.4). It is shown that wavelength of broadside radiation is not equal to antenna period for all antennas, except for very small undulated antennas (κ < 0.2). This antenna type can be used as a frequency-scan antenna for millimeter wave radars.

  17. Millimeter-wave Driven Shock Wave for a Pulsed Detonation Microwave Rocket

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Toshikazu; Komatsu, Reiji; Fukunari, Masafumi; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Sakamoto, Keishi

    2011-11-01

    A shock wave driven by millimeter wave ionization can be applied into a pulsed detonation engine as a Microwave Rocket. A high pressure induced inside the thruster generates the thrust, thus the shock wave propagation driven by the plasma is important. In this study, to obtain a different propagating structure, the beam profile was transformed from a Gaussian into a Ring and a Flat-top profile by using a pair of phase correcting mirrors. As a result, the shape of the propagating plasma was changed into a no-center shape in case of the Ring beam, and it was changed to a wider shape in case of the Flat-top beam. The propagating velocity of the ionization front of the Flat-top beam was much lower than that of the Gaussian due to the lower peak power density, and a higher plateau pressure and higher thrust impulse were generated by the Flat-top beam.

  18. Millimeter-Wave Imaging Technology Advancements for Plasma Diagnostics Applications

    NASA Astrophysics Data System (ADS)

    Kong, Xiangyu

    To realize fusion plant, the very first step is to understand the fundamental physics of materials under fusion conditions, i.e. to understand fusion plasmas. Our research group, Plasma Diagnostics Group, focuses on developing advanced tools for physicists to extract as much information as possible from fusion plasmas at millions degrees. The Electron Cyclotron Emission Imaging (ECEI) diagnostics is a very useful tool invented in this group to study fusion plasma electron temperature and it fluctuations. This dissertation presents millimeter wave imaging technology advances recently developed in this group to improve the ECEI system. New technologies made it more powerful to image and visualize magneto-hydrodynamics (MHD) activities and micro-turbulence in fusion plasmas. Topics of particular emphasis start from development of miniaturized elliptical substrate lens array. This novel substrate lens array replaces the previous generation substrate lens, hyper-hemispherical substrate lens, in terms of geometry. From the optical performance perspective, this substitution not only significantly simplifies the optical system with improved optical coupling, but also enhances the RF/LO coupling efficiency. By the benefit of the mini lens focusing properties, a wideband dual-dipole antenna array is carefully designed and developed. The new antenna array is optimized simultaneously for receiving both RF and LO, with sharp radiation patterns, low side-lobe levels, and less crosstalk between adjacent antennas. In addition, a high frequency antenna is also developed, which extends the frequency limit from 145 GHz to 220 GHz. This type of antenna will be used on high field operation tokamaks with toroidal fields in excess of 3 Tesla. Another important technology advance is so-called extended bandwidth double down-conversion electronics. This new electronics extends the instantaneous IF coverage from 2 to 9.2 GHz to 2 to 16.4 GHz. From the plasma point of view, it means that the

  19. Ferromagnetic Resonance of Micro- and Nano-sized Hexagonal Ferrite Powders at Millimeter Waves

    SciTech Connect

    Korolev, Konstantin A.; McCloy, John S.; Afsar, Mohammed N.

    2012-02-22

    Complex magnetic permeability and dielectric permittivity of micro- and nano-sized powdered barium (BaFe{sub 12}O{sub 19}) and strontium (SrFe{sub 12}O{sub 19}) hexaferrites have been studied in a broadband millimeter wave frequency range (30-120 GHz). Transmittance measurements have been performed using a free space quasi-optical millimeter wave spectrometer, equipped with a set of high power backward wave oscillators. Real and imaginary parts of dielectric permittivity for both types of micro- and nanoferrites have been calculated using analysis of recorded high precision transmittance spectra. Frequency dependences of the magnetic permeability have been obtained from Schloemann's equation for partially magnetized ferrites. These materials show promise as tunable millimeter wave absorber, based on their size-dependent absorption.

  20. Two-way interconversion of millimeter-wave and optical fields in Rydberg gases

    NASA Astrophysics Data System (ADS)

    Kiffner, Martin; Feizpour, Amir; Kaczmarek, Krzysztof T.; Jaksch, Dieter; Nunn, Joshua

    2016-09-01

    We show that cold Rydberg gases enable an efficient six-wave mixing process where terahertz or microwave fields are coherently converted into optical fields and vice versa. This process is made possible by the long lifetime of Rydberg states, the strong coupling of millimeter waves to Rydberg transitions and by a quantum interference effect related to electromagnetically induced transparency. Our frequency conversion scheme applies to a broad spectrum of millimeter waves due to the abundance of transitions within the Rydberg manifold, and we discuss two possible implementations based on focussed terahertz beams and millimeter wave fields confined by a waveguide, respectively. We analyse a realistic example for the interconversion of terahertz and optical fields in rubidium atoms and find that the conversion efficiency can in principle exceed 90%.

  1. Power and polarization monitor development for high power millimeter-wave

    SciTech Connect

    Makino, R. Kobayashi, K.; Kubo, S.; Kobayashi, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takahashi, H.; Mutoh, T.

    2014-11-15

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  2. Power and polarization monitor development for high power millimeter-wave.

    PubMed

    Makino, R; Kubo, S; Kobayashi, K; Kobayashi, S; Shimozuma, T; Yoshimura, Y; Igami, H; Takahashi, H; Mutoh, T

    2014-11-01

    A new type monitor of power and polarization states of millimeter-waves has been developed to be installed at a miter-bend, which is a part of transmission lines of millimeter-waves, for electron cyclotron resonance heating on the Large Helical Device. The monitor measures amplitudes and phase difference of the electric field of the two orthogonal polarizations which are needed for calculation of the power and polarization states of waves. The power and phase differences of two orthogonal polarizations were successfully detected simultaneously.

  3. Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.

  4. The effect of millimeter waves at the yeast Saccharomyces cerevisiae during heliogeophysical disturbances

    NASA Astrophysics Data System (ADS)

    Rogacheva, Svetlana M.; Babaeva, Milena I.

    2013-02-01

    The isolated and combined effect of heliogeophysical factors and low intensive electromagnetic radiation of millimeter diapason at the metachromasia reaction of the yeast Saccharomyces cerevisiae was studied. It was established that longterm influence of EMR 65 GHz induced changes in the response of cells towards heliogeomagnetic disturbance. On our opinion millimeter waves may reduce the effect of heliogeophysical factors on living organisms because of destabilization of the intracellular water structure.

  5. Optical generation of tunable microwave and millimeter waves by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser

    NASA Astrophysics Data System (ADS)

    Chen, Cong; Wang, Meng; Li, Qi; Huang, Kaiqiang; Chen, Haiyan

    2014-10-01

    In this presentation, we propose and experimentally demonstrate a novel optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity fiber laser, dual-wavelength emission can be achieved with wavelength separation of 0.68nm corresponding to the millimeter wave signal at 85GHz. By appropriately adjusting the operation temperature of intracavity fiber Bragg grating, the frequency of millimeter wave signal generated can be tunable. Our experimental results demonstrate the new concept of optical generation of microwave and millimeter wave signals by using asymmetric fiber Bragg grating Fabry-Perot cavity dual-wavelength fiber laser and the technical feasibility.

  6. Millimeter wave case study of operational deployments: retail, airport, military, courthouse, and customs

    NASA Astrophysics Data System (ADS)

    Tryon, Gary V.

    2008-04-01

    In the wake of the September 11, 2001 terrorist attack on America, our security and defense industry was instantly tasked with delivering technologies that could be used to help prevent future terrorist activities. The general public world wide is asking for solutions that will foster a safe society and travel environment. Our best defenses rest in our talents within a free open society to prevent dangerous individuals from boarding planes, entering buildings, courthouses, transportations hubs and military bases with weapons capable of causing damage and bodily harm in the first place. Passive millimeter wave (PMMW) whole body imaging systems are based upon the principle that every physical entity emits, reflects, and/or absorbs electromagnetic energy. The term "passive" means that this approach does not bombard the test subject with energy radiation to further induce the discovery of hidden objects. PMMW whole body imaging systems focus on the human body's natural emission and reflection of millimeter wavelength energy. In physics, "millimeter waves" (MMW) are defined as extremely high-frequency (30-300 GHz) electromagnetic oscillations. On the electromagnetic spectrum these waves are just larger than infrared waves, but smaller than radio waves. The wavelength of a MMW is between 1 millimeter and 10 millimeters. That is approximately the thickness of a large paperclip up to the diameter of an "AAA" battery.

  7. A 35 GHz wireless millimeter-wave power sensor based on GaAs micromachining technology

    NASA Astrophysics Data System (ADS)

    Wang, De-bo; Liao, Xiao-ping

    2012-06-01

    A novel MEMS wireless millimeter-wave power sensor based on GaAs MMIC technology is presented in this paper. The principle of this wireless millimeter-wave power sensor is explained. It is designed and fabricated using MEMS technology and the GaAs MMIC process. With the millimeter-wave power range from 0.1 to 80 mW, the sensitivity of the wireless millimeter-wave power sensor is about 0.246 mV mW-1 at 35 GHz. In order to verify the power detection capability, this wireless power sensor is mounted on a PCB which influences the microwave performance of the CPW-fed antenna including the return loss and the radiation pattern. The frequency-dependent characteristic and the degree-dependent characteristic of this wireless power sensor are researched. Furthermore, in addition to the combination of the advantages of CPW-fed antenna with the advantages of the thermoelectric power sensor, another significant advantage of this wireless millimeter-wave power sensor is that it can be integrated with MMICs and other planar connecting circuit structures with zero dc power consumption. These features make it suitable for various applications ranging from the environment or space radiation detection systems to radar receiver and transmitter systems.

  8. Multimode waveguide components for millimeter-wave integrated circuits

    NASA Astrophysics Data System (ADS)

    Bhooshan, S.; Mittra, R.

    1980-01-01

    In this paper, we report the results of an investigation of multimode, planar dielectric waveguides for integrated circuit application at millimeter wavelengths. Two multimode devices have been fabricated and tested using the inverted strip guide (ISG), and a comparison between the theoretical and experimental results is given.

  9. Millimeter wave satellite concepts. Volume 2: Technical report

    NASA Technical Reports Server (NTRS)

    Hilsen, N. B.; Holland, L. D.; Wallace, R. W.; Kelly, D. L.; Thomas, R. R.; Vogler, F. H.

    1979-01-01

    Identification of technologies for millimeter satellite communication systems, and assessment of the relative risks of these technologies, were accomplished through subsystem modeling and link optimization for both point-to-point and broadcast applications. The results, in terms of annual cost per channel to the user from a commercial view point, are described.

  10. ACRF Archive User Meeting Summary

    SciTech Connect

    SA Edgerton; RA McCord; DP Kaiser

    2007-10-30

    On October 30, 2007, the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) sponsored an all-day workshop to assess the status of the ACRF Archive. Focus areas included usability of current functions, plans for revised functions, proposals for new functions, and an overarching discussion of new ideas. Although 13 scientists familiar with ACRF and the ARM Program were invited to the workshop, only 10 scientists were available to attend the workshop. ACRF consists of the infrastructure that was developed to support the ARM Program and includes the ACRF Archive (previously called the ARM Archive). The scientists who participated in the meeting ranged from those who used the Archive frequently to those who seldom or never had accessed the Archive. The group was spread across disciplines, i.e. modelers, conservationists, and others from universities and government laboratories. A few of the participants were funded by the ARM Program, but most were not funded currently by ARM. During the past year, several improvements were made to the ACRF Archive to link it with the ARM/ACRF web pages, add a shopping cart feature, and expand on search parameters. Additional modifications have been proposed and prototypes of these proposals were made available for the participants. The participants were given several exercises to do before the meeting, and their feedback was requested to help identify potential problems and shortcomings with the existing structure and to recommend improvements.

  11. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna.

    PubMed

    Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal; Elder, Delwin L; Dalton, Larry R; Hafner, Christian; Leuthold, Juerg

    2015-12-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain.

  12. Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser.

    PubMed

    Shee, Y G; Al-Mansoori, M H; Yaakob, S; Man, A; Zamzuri, A K; Adikan, F R Mahamd; Mahdi, M A

    2012-06-01

    An all-optical generation of a millimeter wave carrier from a multiwavelength Brillouin-erbium fiber laser is presented. Four-channel output with spacing of about 21.5 GHz is generated from the fiber laser by controlling the gain in the cavity. A dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained by suppressing the two channels at the middle. Heterodyning these signals at the high-speed photodetector produces a millimeter wave carrier at 64.17 GHz. Temperature dependence characteristic of Brillouin frequency shift realize the flexibility of generated millimeter wave frequency to be tuned at 6.6 MHz/ °C.

  13. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    NASA Technical Reports Server (NTRS)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system and market studies to develop 30/20 GHz satellite system concepts that have commercial potential for the period 1980-2000. The results of the market studies to-date focusing on the overall demand forecasts and distributions by geographic location, distance, and user category are discussed. Tables are presented indicating baseline market forecast voice and video services, data service category, impacted baseline forecast, and traffic/distance distribution voice services. It is concluded that the total market and system activity will be influential in determining the potential role of millimeter wave systems in the overall transmission needs of the nation, and the amount of the total forecasted traffic suitable for millimeter wave systems.

  14. Millimeter-wave interferometric radiometry for the detection and geolocation of low-power signals

    NASA Astrophysics Data System (ADS)

    Dowgiallo, David J.; Twarog, Elizabeth M.; Rauen, Steve; Peters, Wendy M.; Lazio, T. Joseph; McGlothlin, Norman R.; Helmboldt, Joseph F.; Gaiser, Peter W.

    2011-05-01

    Millimeter wave detection and imaging is becoming increasingly important with the proliferation of hostile, mobile millimeter wave threats from both weapons systems and communication links. Improved force protection, surveillance, and targeting will rely increasingly on the interception, detection, geo-sorting, and the identification of sources, such as point-to point communication systems, missile seekers, precision guided munitions, and fire control radar systems. This paper describes the Naval Research Laboratory's (NRL) demonstration broadband passive millimeter wave (mmW) interferometric imaging system. This Ka-band system will provide a capability for meter-precision geolocation for imaged objects. The interferometer uses a distributed array of 12 antenna elements to synthesize a large aperture. Each antenna is packaged into an individual receiver, from which a baseband signal is recorded. The correlator is software-based, utilizing signal processing techniques for visibilities, and image formation via beamforming methods. This paper presents first results from an interferometer flight campaign.

  15. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna

    PubMed Central

    2015-01-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35 000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain. PMID:26570995

  16. Implementation of CMOS Millimeter-Wave Devices for Rotational Spectroscopy

    NASA Astrophysics Data System (ADS)

    Drouin, Brian; Tang, Adrian; Schlecht, Erich T.; Daly, Adam M.; Brageot, Emily; Gu, Qun Jane; Ye, Yu; Shu, Ran; Chang, M.-C. Frank; Kim, Rod M.

    2015-06-01

    The extension of radio-frequency CMOS circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now exploring the use of CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in-situ detection of gas composition during space missions. This effort focuses on the development of a semi-confocal Fabry-Perot cavity with mm-wavelength CMOS transmitter and receiver attached directly to a cavity coupler. Placement of the devices within the cavity structure bypasses problems encountered with signal injection and extraction in traditional cavity designs and simultaneously takes full advantage of the miniaturized form of the CMOS hardware. The presentation will provide an overview of the project and details of the accomplishments thus far, including the development and testing of a pulse modulated 83-98 GHz transmitter.

  17. High power millimeter and submillimeter wave lasers and gyrotrons

    NASA Astrophysics Data System (ADS)

    Temkin, R. J.; Cohn, D. R.; Danly, B. G.; Kreischer, K. E.; Woskoboinikow, P.

    1985-10-01

    High power sources of coherent radiation in the millimeter and submillimeter wavelength range are useful in a number of applications, including plasma heating, plasma diagnostics, radar and communications. Two of the most important sources in this wavelength range are the optically pumped laser and the gyrotron. Major recent advances in both laser and gyrotron research are described. Possible techniques for improving the efficiency and operating characteristics of these devices are also reviewed.

  18. Millimeter And Submillimeter-Wave Integrated Circuits On Quartz

    NASA Technical Reports Server (NTRS)

    Mehdi, Imran; Mazed, Mohammad; Siegel, Peter; Smith, R. Peter

    1995-01-01

    Proposed Quartz substrate Upside-down Integrated Device (QUID) relies on UV-curable adhesive to bond semiconductor with quartz. Integrated circuits including planar GaAs Schottky diodes and passive circuit elements (such as bandpass filters) fabricated on quartz substrates. Circuits designed to operate as mixers in waveguide circuit at millimeter and submillimeter wavelengths. Integrated circuits mechanically more robust, larger, and easier to handle than planar Schottky diode chips. Quartz substrate more suitable for waveguide circuits than GaAs substrate.

  19. Combined Illumination Cylindrical Millimeter-Wave Imaging Technique for Concealed Weapon Detection

    SciTech Connect

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-04-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30-300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3-D images of the person. After reconstruction, the images are combined into a single high-resolution three-dimensional image of the person under surveillance. This combined image is then rendered using 3-D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operator will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration (FAA).

  20. Combined illumination cylindrical millimeter-wave imaging technique for concealed weapon detection

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Hall, Thomas E.

    2000-07-01

    A novel millimeter-wave imaging technique has been developed for personnel surveillance applications, including the detection of concealed weapons, explosives, drugs, and other contraband material. Millimeter-waves are high-frequency radio waves in the frequency band of 30 - 300 GHz, and pose no health threat to humans at moderate power levels. These waves readily penetrate common clothing materials, and are reflected by the human body and by concealed items. The combined illumination cylindrical imaging concept consists of a vertical, high-resolution, millimeter-wave array of antennas which is scanned in a cylindrical manner about the person under surveillance. Using a computer, the data from this scan is mathematically reconstructed into a series of focused 3D images of the person. After reconstruction, the images are combined into a single high-resolution 3D image of the person under surveillance. This combined image is then rendered using 3D computer graphics techniques. The combined cylindrical illumination is critical as it allows the display of information from all angles. This is necessary because millimeter-waves do not penetrate the body. Ultimately, the images displayed to the operate will be icon-based to protect the privacy of the person being screened. Novel aspects of this technique include the cylindrical scanning concept and the image reconstruction algorithm, which was developed specifically for this imaging system. An engineering prototype based on this cylindrical imaging technique has been fabricated and tested. This work has been sponsored by the Federal Aviation Administration.

  1. Millimeter wave complex dielectric permittivity and complex magnetic permeability measurements of absorbing materials

    NASA Astrophysics Data System (ADS)

    Tkachov, Igor Ivanovich

    2000-09-01

    This dissertation presents new methods for characterization of materials in the millimeter wave range. Historically, this has been the most difficult part of the electromagnetic spectrum for accurate measurements of material properties. New instrumentation has now been developed for operation in this frequency band. The new techniques developed in the course of this work allowed precise measurement of dielectric properties as well as the separation of magnetic properties from dielectric in the millimeter wave range. A new quasi-optical spectrometer with a waveguide reference channel has been designed and built for the precision measurement of the real part of dielectric permittivity of medium and highly absorbing materials over an extended W-band frequency range (70-118 GHz). A new method of phase measurement with this unique unbalanced quasi-optical waveguide bridge spectrometer has been developed. The phase of the electromagnetic wave transmitted through the specimen can be measured accurately, leading to the determination of the real part of the complex dielectric permittivity of moderate and highly absorbing dielectric materials with high precision. A simple quasi-optical transmission configuration of the spectrometer, a single free space channel provides the transmittance data with a high resolution from which the spectra of the imaginary part of dielectric permittivity of materials are evaluated accurately. A backward wave oscillator (BWO) is used as the source of tunable coherent radiation for the spectrometer. The high output power of the BWO and the high sensitivity of the receiver system, which employs a specially constructed liquid helium cooled InSb detector, enable adequate sensitivity in transmission for highly absorbing materials. Systematic study of dielectric and magnetic properties of various materials has been performed with the quasi-optical free space method in the millimeter wave range from 34GHz to 117GHz for the first time. Specific results

  2. Suppression of chaos in integrated twin DFB lasers for millimeter-wave generation.

    PubMed

    Liu, Dong; Sun, Changzheng; Xiong, Bing; Luo, Yi

    2013-01-28

    A novel and simple method for high frequency millimeter-wave signal generation with integrated twin DFB lasers is proposed and demonstrated. Both theoretical simulation and experimental results confirm that chaos induced by large-signal direct modulation of a solitary laser diode can be suppressed by introducing adequate optical coupling from another dc biased laser diode. Frequency multiplication has been demonstrated employing such chaos suppression scheme using monolithically integrated twin DFB lasers, and low phase noise millimeter wave carrier ten times the modulation frequency is generated.

  3. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J. (Compiler)

    1975-01-01

    The ATS-6 millimeter wave experiment, provided the first direct measurements of 20 and 30 GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20 and 30 GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment from the major participating organizations are presented.

  4. Threat detection in desert environment with passive millimeter-wave sensor

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Martin, Richard D.; Dillon, Thomas E.; Murakowski, Maciej; Prather, Dennis W.

    2011-06-01

    A new technique for improvised explosive device (IED) creation uses an explosive device buried in foam and covered in a layer of dirt. These devices are difficult to detect visually, however, their material characteristics make them detectable by passive millimeter-wave (pmmW) sensors. Results are presented from a test using a mock IED and an outdoor set-up consisting of two mock IEDs on a dirt background. The results show that the mock IEDs produces a millimeter-wave signature which is distinguishable from the background surrounding the mock IEDs. Simulations based on the measured data are presented and a design for a future vehicle mounted sensor is shown.

  5. THE MEASURED PERFORMANCE OF A MILLIMETER WAVE BEAM SPLITTER

    SciTech Connect

    C.P. MOELLER; J. LOHR; J.L. DOANE

    2002-09-01

    An essential component of any high power transmission system is a directional coupler that provides a sample of the forward and reflected power when this power is being delivered to the intended load. In the case of millimeter power delivered through a highly oversized corrugated waveguide, there is the much more complex issue of mode purity. It is possible to design an effective mode selective branch guide directional coupler in smooth wall overmoded waveguide. In the typical highly overmoded corrugated waveguide propagating the HE{sub 11} mode, however, obtaining an adequate coupling factor can be difficult, and branch guide attenuation and phase velocity matching over several meters become concerns. A more practical approach for large diameter corrugated waveguide is to obtain a sample of the propagating beam at a miter bend mirror. At low power, the mirror could be a thin metal screen. At the megawatt level, however, heat removal must be considered. For example, at 110 GHz at 1 MW, taking the surface resistance of copper to be 0.10 {Omega}, the dissipation on a 45{sup o} copper mirror would be 750 W or 1500 W for H or E plane reflection, respectively. With a peak to average power ratio of 3.7 for the circular HE{sub 11} mode, in 31.75 cm diameter corrugated waveguide the peak dissipation can be as high as 500 W/cm{sup 2} at the center of the mirror. An edge cooled thin metal screen is not therefore practical, but a thick plate containing a single narrow channel, at the bottom of which is a row of holes in the remaining thin wall, can be adequately water-cooled on its face. To maintain vacuum and focus the radiation from the holes, the narrow channel is filled by a fused quartz plate, the shape of which is a 45{sup o} sector of a circle having a truncated apex at the coupling holes. These are being used as power monitors on the DIII-D ECH system and on other systems. Since this single row of holes samples only part of the wave field, however, interference among

  6. A high power Ka band millimeter wave generator with low guiding magnetic field

    SciTech Connect

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai

    2010-08-15

    A slow wave type gigawatt millimeter wave generator is proposed in this paper. In order to increase power capacity, overmoded slow wave structures (SWSs) with larger diameter have been used. Taking advantage of the ''surface wave'' property of overmoded SWSs, the TM{sub 01} mode can be selected to be the operating mode. Calculations have also been carried out to choose a proper low operating magnetic field strength, and it agrees with particle in cell (PIC) simulations. Main structure parameters of the device are optimized by PIC simulations. A typical simulation result is that, at the beam parameters of 600 keV and 5.05 kA, and guiding magnetic field of 0.85 T, a Ka band millimeter wave with an output power of 1.05 GW is generated, yielding a conversion efficiency of about 35%.

  7. Photonic generation of high frequency millimeter-wave and transmission over optical fiber.

    PubMed

    Kumar, Amitesh; Priye, Vishnu

    2016-08-01

    A novel technique of photonic generation of millimeter-waves beyond the presently reported 120 GHz and with a wider tunability (∼240  GHz) is proposed and demonstrated through a simulation experiment. The scheme consists of generating 24 times the frequency of a conventional low frequency microwave source using a combination of a LiNbO3 Mach-Zehnder modulator and four-wave mixing in a semiconductor optical amplifier. The filtering of a high frequency sideband and the suppression of a carrier are achieved by incorporating an optical band pass and fiber Bragg grating filters, respectively. Next, the spectral purity of the generated millimeter-wave parameters is evaluated after propagation through a conventional fiber of different lengths by digitally modulating it at 2.5 Gbps and generating an eye diagram. The constraints on the selection of the frequency of the millimeter-wave and length of fiber are discussed. The present method of millimeter-wave generation and distribution will find applications in photonic up/down conversion, phase-array antennas, photonic sensors, radars, and terahertz applications.

  8. Photonic generation of high frequency millimeter-wave and transmission over optical fiber.

    PubMed

    Kumar, Amitesh; Priye, Vishnu

    2016-08-01

    A novel technique of photonic generation of millimeter-waves beyond the presently reported 120 GHz and with a wider tunability (∼240  GHz) is proposed and demonstrated through a simulation experiment. The scheme consists of generating 24 times the frequency of a conventional low frequency microwave source using a combination of a LiNbO3 Mach-Zehnder modulator and four-wave mixing in a semiconductor optical amplifier. The filtering of a high frequency sideband and the suppression of a carrier are achieved by incorporating an optical band pass and fiber Bragg grating filters, respectively. Next, the spectral purity of the generated millimeter-wave parameters is evaluated after propagation through a conventional fiber of different lengths by digitally modulating it at 2.5 Gbps and generating an eye diagram. The constraints on the selection of the frequency of the millimeter-wave and length of fiber are discussed. The present method of millimeter-wave generation and distribution will find applications in photonic up/down conversion, phase-array antennas, photonic sensors, radars, and terahertz applications. PMID:27505360

  9. Active millimeter-wave imaging system for material analysis and object detection

    NASA Astrophysics Data System (ADS)

    Zech, Christian; Hülsmann, Axel; Kallfass, Ingmar; Tessmann, Axel; Zink, Martin; Schlechtweg, Michael; Leuther, Arnulf; Ambacher, Oliver

    2011-11-01

    The use of millimeter-waves for imaging purposes is becoming increasingly important, as millimeter-waves can penetrate most clothing and packaging materials, so that the detector does not require physical contact with the object. This will offer a view to the hidden content of e.g. packets or bags without the need to open them, whereby packaging and content will not be damaged. Nowadays X-ray is used, but as the millimeter-wave quantum energy is far below the ionization energy, it is less harmful for the human health. In this paper we report an active millimeter-wave imaging tomograph for material analysis and concealed object detection purposes. The system is build using in-house W-band components. The object is illuminated with low-power millimeter-waves in the frequency range between 89 and 96GHz; mirrors are used to guide and focus the beam. The object is moved through the focus point to scan the object pixel by pixel. Depending on the actual material some parts of the waves are reflected, the other parts penetrate the object. A single-antenna transmit and receive module is used for illumination and measurement of the material-specific reflected power. A second receiver module is used to measure the transmitted wave. All information is processed for amplitude and phase images by a computer algorithm. The system can be used for security, such as detecting concealed weapons, explosives or contrabands at airports and other safety areas, but also quality assurance applications, e.g. during production to detect defects. Some imaging results will be presented in this paper.

  10. A Simple Closed-form Formula for Backward-Wave Start-Oscillation Condition for Millimeter-Wave Helix TWTs

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2008-06-01

    An accurate and simple closed-form formula, for backward-wave start-oscillation condition for a millimeter-wave helix traveling-wave tube amplifier was developed, using an artificial neural network (ANN) algorithm. The analysis considers the effects of circuit loss and also the variation of electron beam diameter corresponding to beam filling. The formula is simple and amenable to easy computation, even using a scientific calculator, and without resorting to exhaustive numerical iterative search followed in conventional analyses and, at the same time, without sacrificing the accuracy in results. The formula was validated against published results, and excellent accuracy was observed. The analysis has been further used for inferring some physical interpretations on the effects of beam-filling factor and circuit loss on the start-oscillation condition of a typical millimeter-wave helix traveling-wave tube.

  11. An application of wavelet transform for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1994-08-01

    Millimeter-wave technique, based on rotational energy transitions of molecules, holds promise for remote monitoring of environmentally hazardous effluents from processes. Argonne National Laboratory is developing a millimeter-wave sensor based on active swept-frequency radar technique in the frequency range of 220-320 GHz. Because the line widths of millimeter-wave spectra of molecules at atmospheric pressure are broad ({approximately} 4 GHz half-width at half height), the composite spectrum of multicomponent mixtures of chemicals is generally complex and overlapping. This paper presents an application of discrete wavelet transform for efficient representation and decomposition of millimeter-wave spectral data. A two-layer back propagation neural network is trained using multifrequency wavelet coefficients of the signals as input features and the known composition of different chemicals in the mixture as target output vectors. After training, composition of an unknown mixture of the base chemicals is determined using the wavelet representation of its absorption spectra. Simulated and experimental spectral data were used to test the wavelet transform technique. Accurate values of individual chemical compositions resulted for noise-free laboratory data. In addition, the technique showed more robustness than conventional multivariate techniques under noisy conditions.

  12. Continuous millimeter-wave radiation has no effect on lipid peroxidation in liposomes

    SciTech Connect

    Logani, M.K.; Ziskin, M.C.

    1996-02-01

    The effect of millimeter waves on lipid peroxidation was studied in the presence and absence of melanin. Irradiation of liposomes with continuous millimeter electromagnetic waves at frequencies of 53.6, 61.2 and 78.2 GHz and incident power densities of 10, 1 and 500 mW/cm{sup 2}, respectively, did not show an enhancement in the formation of lipid peroxides compared to unirradiated samples. Liposomes exposed to 254 nm UVC radiation at 0.32 mW/cm{sup 2} and 302 nm UVB radiation at 1.12 mW/cm{sup 2} served as positive controls. No increment in the formation of lipid peroxides was observed when irradiation of liposomes was carried out in the presence of ADP-Fe{sup +3} and EDTA-Fe{sup +3}. Direct irradiation of melanin with millimeter waves did not exhibit an increased formation of superoxide or hydrogen peroxide. The present results indicate that millimeter waves of the above frequencies and intensities do not cause lipid peroxidation in liposomal membranes. 19 refs., 2 figs., 1 tab.

  13. Infrared/millimeter wave mirror array beam combiner design and analysis.

    PubMed

    Tian, Yi; Sun, Gang; Li, Fan; Yan, Hui; Zhang, Li; Li, Zhuo

    2014-06-20

    The design method of an infrared/millimeter wave mirror array type of beam combiner was investigated. The beam combiner was composed of a support plate, air gap, and mirror array. It had two advantages: one was that the size of the beam combiner could be extended by splicing more mirrors; the other was that the millimeter wave passband could be tuned by adjusting the thickness of the air gap. The millimeter wave and infrared structure was designed by using transmission line theory and optimized by a simplex Nelder-Mead method. In order to analyze the influence of deformation on performance, the mechanical characteristics of the mirrors and support plate were analyzed by the finite element method. The relationship between the millimeter wave transmission characteristics and the air gap was also analyzed by transmission line theory. The scattered field caused by pillars was computed by the multilevel fast multipole method. In addition, the effect of edge diffraction on the near field uniformity was analyzed by the aperture field integration method. In order to validate the mirror array splicing principle and the infrared imaging performance, a prototype of the mirror array was fabricated and tested. Finally, the infrared images reflected by the mirror array were obtained and analyzed. The simulation and experiment results validated the feasibility of the mirror array beam combiner.

  14. Millimeter-Wave Measurement of Frozen Hydrometeors during the 2003 Wakasa Bay Field Experiment

    NASA Technical Reports Server (NTRS)

    Kim, Min-Jeong; Chang, Dong-Eon; Weinman, James A.; Wang, J. R.; Tanelli, Simone; Roman, J.; Sekelsky, S.

    2004-01-01

    This study analyzes the millimeter-wave radiometric measurements of frozen hydrometeors during the field experiment that was held in Wakasa bay of Japan in January 29, 2003. The MM5 cloud simulation is employed to provide temperature and humidity profiles for the radiative transfer calculations.

  15. Note: three-dimensional stereolithography for millimeter wave and terahertz applications.

    PubMed

    Macor, A; de Rijk, E; Alberti, S; Goodman, T; Ansermet, J-Ph

    2012-04-01

    Metal-coated polymers shaped by 3D stereolithography are introduced as a new manufacturing method for passive components for millimeter to terahertz electromagnetic waves. This concept offers increased design capabilities and flexibilities while shortening the manufacturing process of complex shapes, e.g., corrugated horns, mirrors, etc. Tests at 92.5, 140, and 170 GHz are reported.

  16. New Measurements and Assignments in the Millimeter-Wave Spectrum of CD 3OH

    NASA Astrophysics Data System (ADS)

    Predoi-Cross, Adriana; Xu, Li-Hong; Walsh, Matthew S.; Lees, Ronald M.; Winnewisser, Manfred; Lichau, Holger

    1998-03-01

    The ground state rotational spectrum of CD3OH has been revisited in the millimeter-wave range. A total of 216 transition frequencies have been measured and assigned in the 117-179 GHz spectral range, including about 40 transitions previously reported. The spectrum was recorded at the Justus-Liebig University in Gießen, Germany using a frequency modulated millimeter-wave spectrometer. The assignments for the CD3OH transitions were predicted based on energy levels calculated using preliminary results of the global fit of microwave, millimeter-wave, and far-infrared data of Walshet al.(Paper FC04 presented at the 52nd International Symposium of Molecular Spectroscopy, Columbus, OH, 1997). The new measurements have substantially enlarged the accurate millimeter-wave component of the data set available for the global fit and have allowed Walshet al.to obtain significant improvement in the CD3OH molecular parameters (J. Mol. Spectrosc.188,85-93, 1998). The low residuals between observed and calculated frequencies highlight the quality of the global fit results.

  17. Millimeter-Wave Thermal Analysis Development and Application to GEN IV Reactor Materials

    SciTech Connect

    Wosko, Paul; Sundram, S. K.

    2012-10-16

    New millimeter-wave thermal analysis instrumentation has been developed and studied for characterization of materials required for diverse fuel and structural needs in high temperature reactor environments such as the Next Generation Nuclear Plant (NGNP). A two-receiver 137 GHz system with orthogonal polarizations for anisotropic resolution of material properties has been implemented at MIT. The system was tested with graphite and silicon carbide specimens at temperatures up to 1300 ºC inside an electric furnace. The analytic and hardware basis for active millimeter-wave radiometry of reactor materials at high temperature has been established. Real-time, non contact measurement sensitivity to anisotropic surface emissivity and submillimeter surface displacement was demonstrated. The 137 GHz emissivity of reactor grade graphite (NBG17) from SGL Group was found to be low, ~ 5 %, in the 500 – 1200 °C range and increases by a factor of 2 to 4 with small linear grooves simulating fracturing. The low graphite emissivity would make millimeter-wave active radiometry a sensitive diagnostic of graphite changes due to environmentally induced stress fracturing, swelling, or corrosion. The silicon carbide tested from Ortek, Inc. was found to have a much higher emissivity at 137 GHz of ~90% Thin coatings of silicon carbide on reactor grade graphite supplied by SGL Group were found to be mostly transparent to millimeter-waves, increasing the 137 GHz emissivity of the coated reactor grade graphite to about ~14% at 1250 ºC.

  18. Concealed weapons detection with an improved passive millimeter-wave imager

    NASA Astrophysics Data System (ADS)

    Martin, Christopher A.; Kolinko, Vladimir G.

    2004-08-01

    Trex Enterprises has developed a second-generation passive millimeter-wave imaging system for detection of concealed weapons and explosives at standoff ranges. Passive millimeter-wave sensors form an image from naturally emitted blackbody radiation in the millimeter-wave portion of the electromagnetic spectrum. Radiation at this wavelength passes through most types of clothing, allowing the user to acquire an image of any articles on a suspect"s person that differ significantly from the human body in their reflectivity or radiometric temperature at millimeter-wave wavelengths. Trex Enterprises previously demonstrated a first-generation concealed weapon detection system with the ability to detect handguns and knives under heavy clothing at a range of 27". The second-generation imager, while similar in concept, has an improved field-of-view and a much reduced size and weight. The imager is to be put through a battery of tests by both Trex Enterprises and the National Institute Of Justice to determine its ability to detect both metallic and non-metallic knives and handguns as well as various types of explosive devices. The tests will be conducted indoors and outdoors at various ranges.

  19. Millimeter wave satellite communication studies. Results of the 1981 propagation modeling effort

    NASA Technical Reports Server (NTRS)

    Stutzman, W. L.; Tsolakis, A.; Dishman, W. K.

    1982-01-01

    Theoretical modeling associated with rain effects on millimeter wave propagation is detailed. Three areas of work are discussed. A simple model for prediction of rain attenuation is developed and evaluated. A method for computing scattering from single rain drops is presented. A complete multiple scattering model is described which permits accurate calculation of the effects on dual polarized signals passing through rain.

  20. Questions of the analysis of millimeter-wave frequency converters on diodes with a Schottky barrier

    NASA Technical Reports Server (NTRS)

    Bordonskiy, G. S.

    1977-01-01

    Millimeter-wave frequency converters on a diode with a Schottky barrier were analyzed. The analysis includes investigation of the effect of the variable capacitance of the diode's elements on the frequency converters. Specifically, the transmission, impedance, and noise characteristics of the frequency converters were examined.

  1. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37-43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  2. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  3. Multi-Tone Millimeter-Wave Frequency Synthesizer for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a multi-tone millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator is presented. The intended applications of the synthesizer is in a space-borne transmitter for radio wave atmospheric studies at Q-band (37 to 43 GHz). These studies would enable the design of robust high data rate space-to-ground satellite communication links.

  4. Design of a Dielectric Rod Waveguide Antenna Array for Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Rivera-Lavado, Alejandro; García-Muñoz, Luis-Enrique; Generalov, Andrey; Lioubtchenko, Dmitri; Abdalmalak, Kerlos-Atia; Llorente-Romano, Sergio; García-Lampérez, Alejandro; Segovia-Vargas, Daniel; Räisänen, Antti V.

    2016-09-01

    In this manuscript, the use of dielectric rod waveguide (DRW) antennas in the millimeter and sub-millimeter wave range is presented as a solution for covering two issues: getting more radiated power and filling a technological gap problem in the terahertz band, namely a fully electronic beam steering. A 4x4 element array working at 100 GHz fed by a rectangular waveguide is manufactured and measured for showing its capabilities. This topology can be used as a cost-affordable alternative to dielectric lenses in photomixer-based terahertz sources.

  5. Study and interpretation of the millimeter-wave spectrum of Venus

    NASA Technical Reports Server (NTRS)

    Fahd, Antoine K.; Steffes, Paul G.

    1992-01-01

    The effects of the Venus atmospheric constituents on its millimeter wavelength emission are investigated. Specifically, this research describes the methodology and the results of laboratory measurements which are used to calculate the opacity of some of the major absorbers in the Venus atmosphere. The pressure broadened absorption of gaseous SO2/CO2 and gaseous H2SO4/CO2 has been measured at millimeter wavelengths. We have also developed new formalisms for computing the absorptivities of these gases based on our laboratory work. The complex dielectric constant of liquid sulfuric acid has been measured and the expected opacity from the liquid sulfuric acid cloud layer found in the atmosphere of Venus has been evaluated. The partial pressure of gaseous H2SO4 has been measured which results in a more accurate estimate of the dissociation factor of H2SO4. A radiative transfer model has been developed in order to understand how each atmospheric constituent affects the millimeter wave emissions from Venus. Our results from the radiative transfer model are compared with recent observations of the micro-wave and millimeter wave emissions from Venus. Our main conclusion from this work is that gaseous H2SO4 is the most likely cause of the variation in the observed emission from Venus at 112 GHz.

  6. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    SciTech Connect

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus_minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker`s theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  7. Quantum-limited detection of millimeter waves using superconducting tunnel junctions

    SciTech Connect

    Mears, C.A.

    1991-09-01

    The quasiparticle tunneling current in a superconductor-insulator- superconductor (SIS) tunnel junction is highly nonlinear. Such a nonlinearity can be used to mix two millimeter wave signals to produce a signal at a much lower intermediate frequency. We have constructed several millimeter and sub-millimeter wave SIS mixers in order to study high frequency response of the quasiparticle tunneling current and the physics of high frequency mixing. We have made the first measurement of the out-of-phase tunneling currents in an SIS tunnel junction. We have developed a method that allows us to determine the parameters of the high frequency embedding circuit by studying the details of the pumped I-V curve. We have constructed a 80--110 GHz waveguide-based mixer test apparatus that allows us to accurately measure the gain and added noise of the SIS mixer under test. Using extremely high quality tunnel junctions, we have measured an added mixer noise of 0.61 {plus minus} 0.36 quanta, which is within 25 percent of the quantum limit imposed by the Heisenberg uncertainty principle. This measured performance is in excellent agreement with that predicted by Tucker's theory of quantum mixing. We have also studied quasioptically coupled millimeter- and submillimeter-wave mixers using several types of integrated tuning elements. 83 refs.

  8. An adjustable RF tuning element for microwave, millimeter wave, and submillimeter wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Lubecke, Victor M.; Mcgrath, William R.; Rutledge, David B.

    1991-01-01

    Planar RF circuits are used in a wide range of applications from 1 GHz to 300 GHz, including radar, communications, commercial RF test instruments, and remote sensing radiometers. These circuits, however, provide only fixed tuning elements. This lack of adjustability puts severe demands on circuit design procedures and materials parameters. We have developed a novel tuning element which can be incorporated into the design of a planar circuit in order to allow active, post-fabrication tuning by varying the electrical length of a coplanar strip transmission line. It consists of a series of thin plates which can slide in unison along the transmission line, and the size and spacing of the plates are designed to provide a large reflection of RF power over a useful frequency bandwidth. Tests of this structure at 1 GHz to 3 Ghz showed that it produced a reflection coefficient greater than 0.90 over a 20 percent bandwidth. A 2 GHz circuit incorporating this tuning element was also tested to demonstrate practical tuning ranges. This structure can be fabricated for frequencies as high as 1000 GHz using existing micromachining techniques. Many commercial applications can benefit from this micromechanical RF tuning element, as it will aid in extending microwave integrated circuit technology into the high millimeter wave and submillimeter wave bands by easing constraints on circuit technology.

  9. Millimeter-Wave Evolution for 5G Cellular Networks

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Kei; Tran, Gia Khanh; Shimodaira, Hidekazu; Nanba, Shinobu; Sakurai, Toshiaki; Takinami, Koji; Siaud, Isabelle; Strinati, Emilio Calvanese; Capone, Antonio; Karls, Ingolf; Arefi, Reza; Haustein, Thomas

    Triggered by the explosion of mobile traffic, 5G (5th Generation) cellular network requires evolution to increase the system rate 1000 times higher than the current systems in 10 years. Motivated by this common problem, there are several studies to integrate mm-wave access into current cellular networks as multi-band heterogeneous networks to exploit the ultra-wideband aspect of the mm-wave band. The authors of this paper have proposed comprehensive architecture of cellular networks with mm-wave access, where mm-wave small cell basestations and a conventional macro basestation are connected to Centralized-RAN (C-RAN) to effectively operate the system by enabling power efficient seamless handover as well as centralized resource control including dynamic cell structuring to match the limited coverage of mm-wave access with high traffic user locations via user-plane/control-plane splitting. In this paper, to prove the effectiveness of the proposed 5G cellular networks with mm-wave access, system level simulation is conducted by introducing an expected future traffic model, a measurement based mm-wave propagation model, and a centralized cell association algorithm by exploiting the C-RAN architecture. The numerical results show the effectiveness of the proposed network to realize 1000 times higher system rate than the current network in 10 years which is not achieved by the small cells using commonly considered 3.5 GHz band. Furthermore, the paper also gives latest status of mm-wave devices and regulations to show the feasibility of using mm-wave in the 5G systems.

  10. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    The design and test results of a novel waveguide multimode directional coupler for a CW millimeter-wave satellite beacon source are presented. The coupler separates the second harmonic power from the fundamental output power of a traveling-wave tube amplifier. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and VW-band (71 to 76 GHz) satellite-to-ground signals.

  11. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37-42 GHz) and V/W-band (71- 76 GHz) satellite-to-ground signals.

  12. Traveling-Wave Tube Amplifier Second Harmonic as Millimeter-Wave Beacon Source for Atmospheric Propagation Studies

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2014-01-01

    This paper presents the design and test results of a CW millimeter-wave satellite beacon source, based on the second harmonic from a traveling-wave tube amplifier and utilizes a novel waveguide multimode directional coupler. A potential application of the beacon source is for investigating the atmospheric effects on Q-band (37 to 42 GHz) and V/W-band (71 to 76 GHz) satellite-to-ground signals.

  13. Ultra-wide Bandwidth Inter-Chip Interconnects for Heterogeneous Millimeter-Wave and THz Circuits

    NASA Astrophysics Data System (ADS)

    Fay, Patrick; Bernstein, Gary H.; Lu, Tian; Kulick, Jason M.

    2016-09-01

    Heterogeneous chip-to-chip interconnects with low loss and ultra-wide bandwidths have been demonstrated. Coplanar waveguide-based interconnects between GaAs and Si die have been fabricated and characterized and the results compared to expectations from full-wave electromagnetic simulation. Broadband transmission characteristics were obtained, with insertion losses below 0.3 dB at 100 GHz and below 0.8 dB at frequencies up to 220 GHz demonstrated experimentally. The measured return loss exceeded 11.5 dB at all frequencies up to 220 GHz. The interconnects offer low latency, with a measured group delay of 0.69 ps. The measured results are in good agreement with full-wave simulations, indicating that the measured results do not suffer from significant impairments compared to theoretical predictions. The demonstrated interconnects offer an alternative to conventional approaches to millimeter-wave circuit and system integration, by enabling the compact realization of circuits in the microwave, millimeter-wave, sub-millimeter-wave, and THz frequency regimes in heterogeneous device technologies with very low chip-to-chip insertion loss.

  14. Analysis of π-mode Stopband in an Asymmetric Millimeter-Wave Helical Slow-Wave Structure

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2008-11-01

    A simple closed form formula for the estimation of π-mode stopband in an azimuthally asymmetric helical slow-wave structure (SWS) was developed following coupled-mode analysis of multiple reflections of the degenerate space-harmonic modes from the support rod discontinuities. The method incorporates the effects of circuit loss, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The formula is simple and amenable to easy computation, even using a scientific calculator, and without resorting to exhaustive and time-intensive numerical computation, and at the same time, without sacrificing the accuracy in results. The analysis was benchmarked against published results and excellent agreement observed. The analysis was further used for demonstrating the stopband phenomenon for a typical millimeter-wave helical slow-wave structure. Compared to low frequency structures, the stopband phenomenon for a millimeter-wave structure was found to be more pronounced, and an interesting inference was drawn as to how asymmetry induced stopband might be made to advantage in combating π-mode instabilities in a millimeter-wave traveling-wave tube.

  15. Polarimetric passive millimeter-wave imagery from a sensor based on an optical up-conversion architecture

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Schuetz, Christopher A.; Dillon, Thomas E.; Martin, Richard D.; Prather, Dennis W.

    2012-06-01

    A passive millimeter-wave sensor based on optical up-conversion that is sensitive to the polarization state of incident radiation is described. This system up-converts incident millimeter-wave radiation to an optical frequency and then recreates the polarization state of the millimeter-wave radiation in the optical signal. A division of time approach is then used to extract the Stokes information from the signal using optical techniques. Results are shown which verify the feasibility of this approach and demonstrate the ability to control the phase of the signal to enable the measurement of Stokes information.

  16. Application of frustrated total internal reflection of millimeter waves for detection and evaluation of disbonds in dielectric joints

    NASA Astrophysics Data System (ADS)

    Kharkovsky, Sergey; Nanni, Emilio; Zoughi, Reza

    2008-03-01

    Millimeter waves penetrate inside of low loss dielectric materials and they are sensitive to the presence of internal interfaces and nonuniformities. This allows millimeter wave nondestructive inspection techniques to be utilized for inspecting dielectric composite structures. A disbond (a thin and extended airgap) in structures possessing adhesively bonded joints with complex geometries is commonly difficult to inspect. In this letter, we demonstrate the operational principle and the useful features of a millimeter wave technique, employing a frustrated total internal reflection of signals transmitted and received by dielectric waveguide probes for detecting and evaluating disbonds in such joints.

  17. A tunable microplasma gradient-index lens for millimeter waves

    SciTech Connect

    Venkattraman, Ayyaswamy

    2015-10-15

    This work presents proof of concept of a novel application of field emission assisted (FEA) microplasmas that exploits the relatively high plasma number densities encountered in these devices. We hypothesize that the number density gradients and the resulting gradient in the microplasma relative permittivity/refractive index can be utilized as a tunable diverging lens with on/off ability to defocus waves in the Terahertz regime. Electron number density profiles obtained from one-dimensional particle-in-cell with Monte Carlo collisions simulations for a typical FEA microplasma are used to determine the relative permittivity and conductivity profiles. Frequency domain wave propagation simulations using these profiles show that sub-mm waves can be controlled using the microplasma lens with the degree of defocusing depending on the wavelength. In spite of the non-zero conductivity, the medium is not significantly lossy at the frequencies considered.

  18. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  19. Advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Lovberg, John A.; Chou, Ri-Chee; Martin, Christopher A.; Galliano, Joseph A., Jr.

    1995-06-01

    Millimeter-wave imaging has advantages over conventional visible or infrared imaging for many applications because millimeter-wave signals can travel through fog, snow, dust, and clouds with much less attenuation than infrared or visible light waves. Additionally, passive imaging systems avoid many problems associated with active radar imaging systems, such as radar clutter, glint, and multi-path return. ThermoTrex Corporation previously reported on its development of a passive imaging radiometer that uses an array of frequency-scanned antennas coupled to a multichannel acousto-optic spectrum analyzer (Bragg-cell) to form visible images of a scene through the acquisition of thermal blackbody radiation in the millimeter-wave spectrum. The output from the Bragg cell is imaged by a standard video camera and passed to a computer for normalization and display at real-time frame rates. An application of this system is its incorporation as part of an enhanced vision system to provide pilots with a synthetic view of a runway in fog and during other adverse weather conditions. Ongoing improvements to a 94 GHz imaging system and examples of recent images taken with this system will be presented. Additionally, the development of dielectric antennas and an electro- optic-based processor for improved system performance, and the development of an `ultra- compact' 220 GHz imaging system will be discussed.

  20. Millimeter-wave drivers for future linear colliders

    SciTech Connect

    Whittum, D.H.

    1998-04-01

    The challenges for high-gradient mm-wave drive colliders are reviewed. Requirements on power sources are examined, and a particular tube is considered for illustration. Research topics relevant to a compact 1 GeV linac are noted throughout.

  1. STUDIES OF MILLIMETER-WAVE ATMOSPHERIC NOISE ABOVE MAUNA KEA

    SciTech Connect

    Sayers, J.; Bock, J. J.; Goldin, A.; Nguyen, H. T.; Golwala, S. R.; Edgington, S. F.; Lange, A. E.; Rossinot, P.; Ade, P. A. R.; Aguirre, J. E.; Haig, D.; Mauskopf, P. D.; Glenn, J.; Laurent, G. T.; Schlaerth, J.

    2010-01-10

    We report measurements of the fluctuations in atmospheric emission (atmospheric noise) above Mauna Kea recorded with Bolocam at 143 and 268 GHz from the Caltech Submillimeter Observatory. The 143 GHz data were collected during a 40 night observing run in late 2003, and the 268 GHz observations were made in early 2004 and early 2005 over a total of 60 nights. Below approx =0.5 Hz, the data time-streams are dominated by atmospheric noise in all observing conditions. The atmospheric noise data are consistent with a Kolmogorov-Taylor turbulence model for a thin wind-driven screen, and the median amplitude of the fluctuations is 280 mK{sup 2} rad{sup -5/3} at 143 GHz and 4000 mK{sup 2} rad{sup -5/3} at 268 GHz. Comparing our results with previous ACBAR data, we find that the normalization of the power spectrum of the atmospheric noise fluctuations is a factor of approx =80 larger above Mauna Kea than above the South Pole at millimeter wavelengths. Most of this difference is due to the fact that the atmosphere above the South Pole is much drier than the atmosphere above Mauna Kea. However, the atmosphere above the South Pole is slightly more stable as well: the fractional fluctuations in the column depth of precipitable water vapor are a factor of approx =sq root2 smaller at the South Pole compared to Mauna Kea. Based on our atmospheric modeling, we developed several algorithms to remove the atmospheric noise, and the best results were achieved when we described the fluctuations using a low-order polynomial in detector position over the 8' field of view. However, even with these algorithms, we were not able to reach photon-background-limited instrument photometer performance at frequencies below approx =0.5 Hz in any observing conditions. We also observed an excess low-frequency noise that is highly correlated between detectors separated by approx<(f/number sign)lambda; this noise appears to be caused by atmospheric fluctuations, but we do not have an adequate model to

  2. The Bolocam Lockman Hole millimeter-wave galaxy survey

    NASA Astrophysics Data System (ADS)

    Laurent, G. T.

    2006-06-01

    This work presents results of a new deep (s 1.1mm ~= 1.4 mJy beam -1 ) 1.1 mm submillimeter galaxy survey using Bolocam, a millimeter-wavelength bolometer array camera designed for mapping large fields at fast scan rates, without chopping. A map, galaxy candidate list, and derived number counts are presented. The data were reduced using a custom software pipeline to remove correlated sky and instrument noise via a principal component analysis. Extensive simulations and jackknife tests were performed to confirm the robustness of our source candidates and estimate the effects of false detections, bias, and completeness. In total, 17 source candidates were detected at a significance > 3.0 s, with six expected false detections. From both our observed number counts and a fluctuation analysis, we estimate the underlying differential number count distribution of submillimeter galaxies and find it to be in general agreement with previous surveys. This work also presents 350 mm photometry of all 17 galaxy candidates detected in the Lockman Hole survey. Nine of the Bolocam galaxy candidates were detected at 350 mm and two new candidates were serendipitously detected at 350 mm (bringing the total in the literature detected in this way to three). Five of the galaxies have published spectroscopic redshifts, enabling investigation of the implied temperature ranges and a comparison of photometric redshift techniques. Because l = 350 mm lies near the spectral energy distribution peak for z [approximate] 2.5 thermally emitting galaxies, luminosities can be measured without extrapolating to the peak from detection wavelengths of l >= 850 mm. Characteristically, the galaxy luminosities lie in the range 1.0--1.2 × 10 13 [Special characters omitted.] , with dust temperatures in the range of 40 K to 70 K, depending on the choice of spectral index and wavelength of unit optical depth. The implied dust masses are 3--5 × 10 8 [Special characters omitted.] . We find that the far

  3. NIKA: A millimeter-wave kinetic inductance camera

    NASA Astrophysics Data System (ADS)

    Monfardini, A.; Swenson, L. J.; Bideaud, A.; Désert, F. X.; Yates, S. J. C.; Benoit, A.; Baryshev, A. M.; Baselmans, J. J. A.; Doyle, S.; Klein, B.; Roesch, M.; Tucker, C.; Ade, P.; Calvo, M.; Camus, P.; Giordano, C.; Guesten, R.; Hoffmann, C.; Leclercq, S.; Mauskopf, P.; Schuster, K. F.

    2010-10-01

    Context. Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. These instruments typically employ multiplexing ratios well below a hundred. To achieve multiplexing ratios greater than a thousand, it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One possible solution is the kinetic inductance detector (KID). To assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Néel IRAM KID Array (NIKA), it has recently been tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-m telescope at Pico Veleta, Spain. Aims: There were four principle research objectives: to determine the practicality of developing a giant array instrument based on KIDs, to measure current in-situ pixel sensitivities, to identify limiting noise sources, and to image both calibration and scientifically-relevant astronomical sources. Methods: The detectors consisted of arrays of high-quality superconducting resonators electromagnetically coupled to a transmission line and operated at ~100 mK. The impedance of the resonators was modulated by incident radiation; two separate arrays were tested to evaluate the efficiency of two unique optical-coupling strategies. The first array consisted of lumped element kinetic inductance detectors (LEKIDs), which have a fully planar design properly shaped to enable direct absorbtion. The second array consisted of antenna-coupled KIDs with individual sapphire microlenses aligned with planar slot antennas. Both detectors utilized a single transmission line along with suitable room-temperature digital electronics for continuous readout. Results: NIKA was successfully tested in October 2009, performing in line with expectations. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars

  4. Sideband-Separating, Millimeter-Wave Heterodyne Receiver

    NASA Technical Reports Server (NTRS)

    Ward, John S.; Bumble, Bruce; Lee, Karen A.; Kawamura, Jonathan H.; Chattopadhyay, Goutam; Stek, paul; Stek, Paul

    2010-01-01

    Researchers have demonstrated a submillimeter-wave spectrometer that combines extremely broad bandwidth with extremely high sensitivity and spectral resolution to enable future spacecraft to measure the composition of the Earth s troposphere in three dimensions many times per day at spatial resolutions as high as a few kilometers. Microwave limb sounding is a proven remote-sensing technique that measures thermal emission spectra from molecular gases along limb views of the Earth s atmosphere against a cold space background.

  5. Microwave and Millimeter Wave Near-Field Methods for Evaluation of Radome Composites

    NASA Astrophysics Data System (ADS)

    Ravuri, M.; Abou-Khousa, M.; Kharkovsky, S.; Zoughi, R.; Austin, R.

    2008-02-01

    Radomes are used to protect critical communications and radar hardware from exposure to adverse environmental conditions while providing the necessary aerodynamic characteristics for airborne systems. Near-field microwave and millimeter wave nondestructive evaluation methods are well-suited for inspecting these structures since signals at these frequencies readily penetrate through these structures and reflect from different interior boundaries revealing the presence of a wide range of defects such as disbond, delamination, moisture and oil intrusion, impact damage, etc. This paper presents the results of a comprehensive experimental effort using near-field imaging techniques (producing images with high spatial resolutions) at several frequency bands in the microwave and millimeter wave regions as well as electromagnetic simulations for detecting and evaluating the presence of disbonds in such structures.

  6. Observation of plasma array dynamics in 110 GHz millimeter-wave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-10-15

    We present dynamical measurements of self-organizing arrays of plasma structures in air induced by a 110 GHz millimeter-wave beam with linear or circular polarization. The formation of the individual plasmas and the growth of the array pattern are studied using a fast-gated (5-10 ns) intensified camera. We measure the time-dependent speed at which the array pattern propagates in discrete steps toward the millimeter-wave source, observing a peak speed greater than 100 km/s. We observe the expansion of an initially spherical plasma into a disk or an elongated filament, depending on the polarization of the incident beam. The results show good agreement with one-dimensional ionization-diffusion theory and two-dimensional simulations.

  7. Simulation of millimeter-wave body images and its application to biometric recognition

    NASA Astrophysics Data System (ADS)

    Moreno-Moreno, Miriam; Fierrez, Julian; Vera-Rodriguez, Ruben; Parron, Josep

    2012-06-01

    One of the emerging applications of the millimeter-wave imaging technology is its use in biometric recognition. This is mainly due to some properties of the millimeter-waves such as their ability to penetrate through clothing and other occlusions, their low obtrusiveness when collecting the image and the fact that they are harmless to health. In this work we first describe the generation of a database comprising 1200 synthetic images at 94 GHz obtained from the body of 50 people. Then we extract a small set of distance-based features from each image and select the best feature subsets for person recognition using the SFFS feature selection algorithm. Finally these features are used in body geometry authentication obtaining promising results.

  8. Automatic detection of hidden threats in the TeraSCREEN passive millimeter-wave imaging subsystem

    NASA Astrophysics Data System (ADS)

    Madhogaria, Satish; Schikora, Marek

    2015-05-01

    Passive millimeter-wave imaging systems can play a significant role in security applications. Especially, the detection of hidden threats for border security is a growing field. In this paper we propose a novel approach for automatic threat detection using multiple 94 GHz passive millimeter-wave images. Herein, we discuss four steps essential to solving the task: pre-processing, region-of-interest extraction, threat extraction in each frame and, finally, intelligent fusion of the results from all frames. Besides, showing that the proposed method works reliably for the data-set at hand, we also discuss the advantages of using this method in contrast to state-of-the-art methods.

  9. Benzocyclobutene as Substrate Material for Planar Millimeter-Wave Structures: Dielectric Characterization and Application

    NASA Astrophysics Data System (ADS)

    Costanzo, Sandra; Venneri, Ignazio; di Massa, Giuseppe; Borgia, Antonio

    2010-01-01

    The application of benzocyclobutene (BCB) polymer as dielectric substrate material for millimeter-wave microstrip structures is investigated in this paper to face the problem of large losses due to standard dielectrics in the high microwave range. Dielectric properties of BCB are characterized from S-parameter measurements on a conductor-backed coplanar waveguide (CBCPW) using the polymer as substrate material. Excellent features, with a low loss tangent and a stable dielectric constant, are demonstrated within the measurement range from 11 GHz to 65 GHz. As a validation of BCB high frequency performances, the design and experimental characterization of a V-band array on BCB substrate is presented. Measurement results on both matching and radiation characteristics of the millimeter-wave array are discussed.

  10. Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.

    PubMed

    Moulder, John E

    2012-06-01

    Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.

  11. More advances in real-time millimeter-wave imaging radiometers for avionic synthetic vision

    NASA Astrophysics Data System (ADS)

    Chou, Ri-Chee; Lovberg, John A.; Martin, Christopher A.

    1997-06-01

    Millimeter-wave thermal imaging provides a unique autonomous capability for aircraft landing in adverse weather, giving a pilot a comprehensive view of runway location and availability in real time with high fidelity. ThermoTrex Corporation has reported previous results from a passive millimeter-wave camera demonstration device. The addition of W-band low-noise amplifiers into the front end of this sparse phased-array thermal imaging camera has improved system thermal sensitivity by 5 dB over that previously reported. Processing upgrades have increased system frame update rate to about 1 Hz, and remote site field testing has established phenomenology relevant to aircraft landing guidance applications. Next-generation hardware design has addressed the issue of aircraft integration using an innovative lightweight, X-band antenna for 89 GHz thermal imaging. A flightworthy demonstration imager using this antenna is currently under construction for 10 Hz operation.

  12. Photonic generation of frequency-quadrupling millimeter-wave signals using polarization property

    NASA Astrophysics Data System (ADS)

    Zhu, Min; Tang, Xianfeng; Xi, Lixia; Zhang, Wenbo; Zhang, Xiaoguang

    2016-03-01

    We propose and analyze a photonic method of generating frequency-quadrupling millimeter-wave signal. This scheme is realized by using a single LiNbO3 intensity modulator (IM) and a Faraday mirror based transverse-electrical and transverse-magnetic mode converter in a Sagnac loop without using an optical filter or an electrical microwave phase shifter. Making use of the intrinsic polarization dependence and the velocity phenomenon of the IM, a special double sideband modulation is implemented, which ensures that the optical carrier can be effectively cancelled employing polarization manipulation. A linear polarizer is used as the polarization selection element to choose the second-order sidebands from the modulated light. After beating at the photodiode, a frequency-quadrupled millimeter-wave signal with >30 dB radio frequency spurious suppression ratio is generated. The imperfection of the devices is considered when estimating the system performance.

  13. Ground station hardware for the ATS-F millimeter wave experiment

    NASA Technical Reports Server (NTRS)

    Duffield, T. L.

    1973-01-01

    The results are presented of a program to design, fabricate, test, and install a primary ATS-F millimeter wave ground receiving station. Propagation parameters at millimeter waves are discussed along with the objective of the overall experiment. A general description is given of the receiving system and its function in the experiment. Typical receiver characteristics are presented which show that the experiment is entirely feasible from a link SNR standpoint. The receiving system hardware designs are discussed with separate treatment given to the propagation and the radiometer receiver designs. The modification and relocation are described of an existing 15-ft antenna to meet the ATS-F requirements. The design of a dual frequency feed subsystem and self calibration equipment is included.

  14. 36th Annual International Conference on Infrared Millimeter and Terahertz Waves

    SciTech Connect

    Mittleman, Daniel M.

    2011-12-31

    The Major Topic List of the 2011 conference featured a category entitled “IR, millimeter-wave, and THz spectroscopy,” another entitled “Gyro-Oscillators and Amplifiers, Plasma Diagnostics,” and a third called “Free Electron Lasers and Synchrotron Radiation.” Topical areas of interest to meeting participants include millimeter-wave electronics, high-power sources, high-frequency communications systems, and terahertz sensing and imaging, all of which are prominent in the research portfolios of the DOE. The development and study of new materials, components, and systems for use in the IR, THz, and MMW regions of the spectrum are of significant interest as well. a series of technical sessions were organized on the following topics: terahertz metamaterials and plasmonics; imaging techniques and applications; graphene spectroscopy; waveguide concepts; gyrotron science and technology; ultrafast terahertz measurements; and quantum cascade lasers.

  15. Toward the development of an image quality tool for active millimeter wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Weatherall, James C.; Greca, Joseph; Smith, Barry T.

    2015-05-01

    Preliminary design considerations for an image quality tool to complement millimeter wave imaging systems are presented. The tool is planned for use in confirming operating parameters; confirmation of continuity for imaging component design changes, and analysis of new components and detection algorithms. Potential embodiments of an image quality tool may contain materials that mimic human skin in order to provide a realistic signal return for testing, which may also help reduce or eliminate the need for mock passengers for developmental testing. Two candidate materials, a dielectric liquid and an iron-loaded epoxy, have been identified and reflection measurements have been performed using laboratory systems in the range 18 - 40 GHz. Results show good agreement with both laboratory and literature data on human skin, particularly in the range of operation of two commercially available millimeter wave imaging systems. Issues related to the practical use of liquids and magnetic materials for image quality tools are discussed.

  16. ATS-6 - Millimeter Wave Propagation and Communications Experiments at 20 and 30 GHz

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1975-01-01

    The Applications Technology Satellite (ATS-6) Millimeter Wave Experiment, developed and implemented by the NASA Goddard Space Flight Center, has provided the first direct measurements of 20- and 30-GHz earth-space links from an orbiting satellite. Studies at eleven locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques. In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gauges, and radiometers were developed and compared with the directly measured attenuation. This paper presents a review of the major results of the first year of measurements with ATS-6, with emphasis on the impact of the measurements on millimeter wave space systems design.

  17. Glass Melt Emissivity, Viscosity, and Foaming Monitoring with Millimeter-Waves

    SciTech Connect

    Woskov, Paul P.; Sundaram, S.K.; Daniel, William E.; Hadidi, Kamal; Bromberg, Leslie; Miller, Don; Rogers, L.A.

    2003-09-10

    Nuclear waste glass processing efficiencies, improved melter control to anomalies such as foaming, and environmental compliance would be facilitated by the availability of on-line monitoring technologies. It has been shown that the millimeter-wave (MMW) range of the electromagnetic spectrum (0.3-10 mm) is ideally suited to hot melter environments by having wavelengths long enough to penetrate optically obscure views yet short enough to provide spatial resolution with reliable refractory quasi-optical components. A thermal return reflection (TRR) method has been developed that allows a millimeter-wave pyrometer to determine emissivity by returning a portion of the thermal emission as a probe. Melt glass viscosities in the range 20 -2000 Poise and specific gravities have been measured by rates of flow and displacements inside hollow MMW ceramic waveguides immersed into the melts. Glass foaming has been observed by detecting the melt surface swelling followed by the increase in surface emissivity after gases break the surface.

  18. Monolithic watt-level millimeter-wave diode-grid frequency tripler array

    NASA Technical Reports Server (NTRS)

    Hwu, R. J.; Luhmann, N. C., Jr.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.

    1988-01-01

    In order to provide watt-level CW output power throughout the millimeter and submillimeter wave region, thousands of solid-state diodes have been monolithically integrated using a metal grid to produce a highly efficient frequency multiplier. Devices considered include GaAs Schottky diodes, thin MOS diodes, and GaAs Barrier-Intrinsic-N(+)diodes. The performance of the present compact low-cost device has been theoretically and experimentally validated.

  19. On-Wafer Characterization of Millimeter-Wave Antennas for Wireless Applications

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Lee, Richard Q.

    1998-01-01

    The paper demonstrates a de-embedding technique and a direct on-substrate measurement technique for fast and inexpensive characterization of miniature antennas for wireless applications at millimeter-wave frequencies. The technique is demonstrated by measurements on a tapered slot antenna (TSA). The measured results at Ka-Band frequencies include input impedance, mutual coupling between two TSAs and absolute gain of TSA.

  20. Millimeter-wave imaging radiometer data processing and development of water vapor retrieval algorithms

    NASA Technical Reports Server (NTRS)

    Chang, L. Aron

    1995-01-01

    This document describes the current status of Millimeter-wave Imaging Radiometer (MIR) data processing and the technical development of the first version of a water vapor retrieval algorithm. The algorithm is being used by NASA/GSFC Microwave Sensors Branch, Laboratory for Hydrospheric Processes. It is capable of a three dimensional mapping of moisture fields using microwave data from airborne sensor of MIR and spaceborne instrument of Special Sensor Microwave/T-2 (SSM/T-2).

  1. The Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J. R.; Manning, W.; Wang, J. R.; Racette, P.; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Results of the first science flight of the airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA ER-2 is discussed. Imagery collected from the flight demonstrates CoSMIR's unique conical/cross-track imaging mode and provides comparison of CoSMIR measurements to those of the Special Sensor Microwave/Temperature-2 (SSM/T-2) satellite radiometer.

  2. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  3. High-speed microwave photonic switch for millimeter-wave ultra-wideband signal generation.

    PubMed

    Wang, Li Xian; Li, Wei; Zheng, Jian Yu; Wang, Hui; Liu, Jian Guo; Zhu, Ning Hua

    2013-02-15

    We propose a scheme for generating millimeter-wave (MMW) ultra-wideband (UWB) signal that is free from low-frequency components and a residual local oscillator. The system consists of two cascaded polarization modulators and is equivalent to a high-speed microwave photonic switch, which truncates a sinusoidal MMW into short pulses. The polarity switchability of the generated MMW-UWB pulse is also demonstrated.

  4. Photonic vector signal generation at microwave/millimeter-wave bands employing an optical frequency quadrupling scheme.

    PubMed

    Lin, Chun-Ting; Shih, Po-Tsung; Jiang, Wen-Jr; Wong, Er-Zih; Chen, Jason Jyehong; Chi, Sien

    2009-07-15

    To the best of our knowledge, a novel photonic architecture to generate vector signals at microwave/millimeter-wave bands employing an optical frequency quadrupling technique based on an external dual-parallel modulator is proposed for the first time. A 312.5 MSym/s quadruple phase-shift keying signal at 25 GHz is experimentally demonstrated using properly precoding driving signal at 6.25 GHz, and optical power penalty is negligible following 50 km single-mode fiber transmission.

  5. Millimeter wave radiometer installation in Río Gallegos, southern Argentina

    NASA Astrophysics Data System (ADS)

    Orte, P. F.; Salvador, J.; Wolfram, E.; D'Elia, R.; Nagahama, T.; Kojima, Y.; Tanada, R.; Kuwahara, T.; Morihira, A.; Quel, E.; Mizuno, A.

    2011-05-01

    With the aim of contribution to the study of atmospheric ozone layer, a new sensitive radiometer for atmospheric minor constituents has been installed in the Observatorio Atmosférico de la Patagonia Austral, División LIDAR, CEILAP (CITEDEF-CONICET), in October 2010. This observatory is established in the city of Rio Gallegos (51° 36' S, 69° 19' W), Argentina, close to the spring ozone hole. The millimeter wave radiometer was developed in STEL (Solar Terrestrial Environment Laboratory), Nagoya University, Japan. This passive remote sensing instrument is able to measure the ozone (O3) amount in the high stratosphere and mesosphere continuously and automatically with a high time resolution. The millimeter wave radiometer ozone profiles will be supplemented with the ozone profiles obtained from the DIAL system existent in the observatory. The millimeter wave radiometer is based on the spectral signal detection from the atmosphere due to the molecular rotational transition of molecules under study. The operation is based on a superheterodyne system which uses a Superconductor-Insulator-Superconductor (SIS) mixer receiver operating at 203.6GHz. The SIS mixer junction consists of a sandwich structure of Nb/AlOx/Nb, and is cooled to 4.2K with a closed cycle He-gas refrigerator. Two additional heterodyne-mixed stages are realized with the aim to shift the measured spectral line until a frequency around of 500 MHz. A FFT (Fast Fourier Transform) spectrometer system is used as a back end. The aims of this work are to show the potential of the millimeter wave radiometer installed in the subpolar latitudes close to the polar ozone hole and to present the preliminary result of the first measurements.

  6. Acute ocular injuries caused by 60-Ghz millimeter-wave exposure.

    PubMed

    Kojima, Masami; Hanazawa, Masahiro; Yamashiro, Yoko; Sasaki, Hiroshi; Watanabe, Soichi; Taki, Masao; Suzuki, Yukihisa; Hirata, Akimasa; Kamimura, Yoshitsugu; Sasaki, Kazuyuki

    2009-09-01

    The goal of this study was to examine the clinical course of 60-GHz millimeter-wave induced damages to the rabbit eye and to report experimental conditions that allow reproducible induction of these injuries. The eyes of pigmented rabbits (total number was 40) were irradiated with 60-GHz millimeter-waves using either a horn antenna or one of two lens antennas (6 and 9 mm diameter; phi6, phi9) Morphological changes were assessed by slit-lamp microscopy. Additional assessments included corneal fluorescein staining, iris fluorescein angiography, and lens epithelium light microscopy. Under the standardized eye-antenna positioning, the three antennas caused varying damages to the eyelids or eyeglobes. The most reproducible injuries without concurrent eyelid edema and corneal desiccation were achieved using the phi6 lens antenna: irradiation for 6 min led to an elevation of the corneal surface temperature (reaching 54.2 +/- 0.9 degrees C) plus corneal edema and epithelial cell loss. Furthermore, mitotic cells appeared in the pupillary area of the lens epithelium. Anterior uveitis also occurred resulting in acute miosis (from 6.6 +/- 1.4 to 2.2 +/- 1.4 mm), an increase in flares (from 6.7 +/- 0.9 to 334.3 +/- 130.8 photons per second), and iris vasodilation or vessel leakage. These findings indicate that the three types of millimeter-wave antennas can cause thermal injuries of varying types and levels. The thermal effects induced by millimeter-waves can apparently penetrate below the surface of the eye.

  7. Millimeter-wave interferometry: an attractive technique for fast and accurate sensing of civil and mechanical structures

    NASA Astrophysics Data System (ADS)

    Kim, Seoktae; Nguyen, Cam

    2014-04-01

    This paper discusses the RF interferometry at millimeter-wave frequencies for sensing applications and reports the development of a millimeter-wave interferometric sensor operating around 35 GHz. The sensor is completely realized using microwave integrated circuits (MICs) and microwave monolithic integrated circuits (MMICs). It has been used for various sensing including displacement and velocity measurement. The sensor achieves a resolution and maximum error of only 10 μm and 27 μm, respectively, for displacement sensing and can measure velocity as low as 27.7 mm/s with a resolution about 2.7mm/s. Quick response and accurate sensing, as demonstrated by the developed millimeter-wave interferometric sensor, make the millimeter-wave interferometry attractive for sensing of various civil and mechanical structures.

  8. Broadband millimeter-wave electro-optic modulator using multi-patch antennas for pico-cell radar networks

    NASA Astrophysics Data System (ADS)

    Wijayanto, Yusuf Nur; Kanno, Atsushi; Kawanishi, Tetsuya

    2015-01-01

    An electro-optic (EO) modulator using multi patch antennas is proposed for broadband millimeter-wave bands in pico-cell radar networks. The proposed device is composed of multi patch antennas with a gap fabricated on a LiNbO3 crystal bonded with a low-k dielectric material. Multiple millimeter-wave operational frequencies can be received by the multi patch antennas and converting directly to lightwave signals through the Pockel effects of the LiNbO3 crystal. By adjusting the metal patch size for receiving with relatively close millimeter-wave frequencies, the bandwidth of the EO modulator can be enlarged. Based on that, bandwidth of over 30% in millimeter-wave bands can be achieved using the proposed device.

  9. Millimeter-wave propagation measurements at the Ballistic Research Laboratory

    NASA Astrophysics Data System (ADS)

    Wallace, H. Bruce

    1988-05-01

    Results of measurements made with radars from 35 to 217 GHz of near-earth propagation in rain, fog, snow, and humidity are presented. The effects of water vapor are characterized by an attenuation coefficient that is a function of vapor pressure or absolute humidity. Backscatter contributes significantly to the adverse effect of rain on mm-wave radars because the droplet sizes become comparable to signal wavelengths. Path losses from fogs, haze, or clouds, are caused by both absorption and scattering by water droplets. Attenuation due to falling snow is difficult to link to and single characteristics.

  10. Millimeter-Wave Wireless Power Transfer Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville

    2008-01-01

    In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.

  11. Polarizer design for millimeter-wave plasma diagnostics

    SciTech Connect

    Leipold, F.; Salewski, M.; Jacobsen, A. S.; Jessen, M.; Korsholm, S. B.; Michelsen, P. K.; Nielsen, S. K.; Stejner, M.

    2013-08-15

    Radiation from magnetized plasmas is in general elliptically polarized. In order to convert the elliptical polarization to linear polarization, mirrors with grooved surfaces are currently employed in our collective Thomson scattering diagnostic at ASDEX Upgrade. If these mirrors can be substituted by birefringent windows, the microwave receivers can be designed to be more compact at lower cost. Sapphire windows (a-cut) as well as grooved high density polyethylene windows can serve this purpose. The sapphire window can be designed such that the calculated transmission of the wave energy is better than 99%, and that of the high density polyethylene can be better than 97%.

  12. Weapon detection using a wideband millimeter-wave linear array imaging technique

    NASA Astrophysics Data System (ADS)

    Sheen, David M.; McMakin, Douglas L.; Collins, H. D.; Hall, Thomas E.

    1994-03-01

    A wideband millimeter-wave imaging technique has been developed by the Pacific Northwest Laboratory (PNL) for the detection of concealed weapons carried by personnel through high- security areas, such as airports. A practical airport system based on this technique should be capable of real-time image frame rate of 10 to 30 frames per second. This technique, similar to an extremely high-resolution radar system, actively probes the target with millimeter-waves and reconstructs an image from the backscattered phase and amplitude data. The primary goal of the system is the detection of weapons and the placement of the detected weapon on the body. An important additional goal is the identification of detected items, which requires a high resolution imaging technique. An experimental system has been developed at PNL which has gathered millimeter wave imagery from clothed mannequins and human beings carrying concealed weapons. This system is capable of forming images in excess of 1 meter by 2 meters at resolutions on the order of 1 cm, and is capable of scanning in less than 5 seconds. This experimental system could be enhanced to function in real time by eliminating the relatively slow mechanical scan. A sequentially switched linear array of transceiver antennas would allow real-time gathering of the imaging information, since the data would be electronically scanned in the lateral direction and electronically swept in frequency. This allows formation of a 2D image from a 1D array of transceiver antennas.

  13. System-in-package LTCC platform for 3D RF to millimeter wave

    NASA Astrophysics Data System (ADS)

    Vähä-Heikkilä, T.; Lahti, M.

    2011-04-01

    This presentation shows recent trends and results in 3D Low Temperature Co-Fired Ceramics (LTCC) modules in applications from RF to millimeter waves. The system-in-package LTCC platform is a true three dimensional module technology. LTCC is a lightweight multi-layer technology having typically 6-20 ceramic layers and metallizations between. The metallization levels i.e different metal layers can be patterned and connected together with metal vias. Passive devices can also be fabricated on LTCC while active devices and other chips are connected with flip-chip, wire bonding or soldering. In addition to passives directly fabricated to LTCC, several different technologies/ chips can be hybrid integrated to the same module. LTCC platform is also well suited for the realization of antenna arrays for microwave and millimeter wave applications. Potential applications are ranging from short range communications to space and radars. VTT has designed, fabricated and characterized microwave and millimeter wave packages for Radio Frequency (RF) Micro Electro Mechanical Systems (MEMS) as well as active devices. Also, several types of system-in-package modules have been realized containing hybrid integrated CMOS and GaAs MMICs and antenna arrays.

  14. Development and Testing of a Refractory Millimeter-Wave Absorbent Heat Exchanger

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Myrabo, Leik; Murakami, David; Parkin, Kevin

    2014-01-01

    Central to the Millimeter-Wave Thermal Launch System (MTLS) is the millimeter-wave absorbent heat exchanger. We have developed metallic and ceramic variants, with the key challenge being the millimeter-wave absorbent coatings for each. The ceramic heat exchanger came to fruition first, demonstrating for the first time 1800 K peak surface temperatures under illumination by a 110 GHz Gaussian beam. Absorption efficiencies of up to 80 are calculated for mullite heat exchanger tubes and up to 50 are calculated for alumina tubes. These are compared with estimates based on stratified layer and finite element analyses. The problem of how to connect the 1800 K end of the ceramic tubes to a graphite outlet manifold and nozzle is solved by press fitting, or by threading the ends of the ceramic tubes and screwing them into place. The problem of how to connect the ceramic tubes to a metallic or nylon inlet pipe is solved by using soft compliant PTFE and PVC tubes that accommodate thermal deformations of the ceramic tubes during startup and operation. We show the resulting heat exchangers in static tests using argon and helium as propellants.

  15. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network

    PubMed Central

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  16. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network.

    PubMed

    Lin, Kai; Wang, Di; Hu, Long

    2016-01-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods. PMID:27376302

  17. Infrastructure for the design and fabrication of MEMS for RF/microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Nerguizian, Vahe; Rafaf, Mustapha

    2004-08-01

    This article describes and provides valuable information for companies and universities with strategies to start fabricating MEMS for RF/Microwave and millimeter wave applications. The present work shows the infrastructure developed for RF/Microwave and millimeter wave MEMS platforms, which helps the identification, evaluation and selection of design tools and fabrication foundries taking into account packaging and testing. The selected and implemented simple infrastructure models, based on surface and bulk micromachining, yield inexpensive and innovative approaches for distributed choices of MEMS operating tools. With different educational or industrial institution needs, these models may be modified for specific resource changes using a careful analyzed iteration process. The inputs of the project are evaluation selection criteria and information sources such as financial, technical, availability, accessibility, simplicity, versatility and practical considerations. The outputs of the project are the selection of different MEMS design tools or software (solid modeling, electrostatic/electromagnetic and others, compatible with existing standard RF/Microwave design tools) and different MEMS manufacturing foundries. Typical RF/Microwave and millimeter wave MEMS solutions are introduced on the platform during the evaluation and development phases of the project for the validation of realistic results and operational decision making choices. The encountered challenges during the investigation and the development steps are identified and the dynamic behavior of the infrastructure is emphasized. The inputs (resources) and the outputs (demonstrated solutions) are presented in tables and flow chart mode diagrams.

  18. Comparative study of millimeter wave propagation at 30 GHz and 60 GHz in indoor environment

    NASA Astrophysics Data System (ADS)

    Polydorou, A.; Stratakos, G.; Capsalis, C.; Uzunoglu, N.

    1995-10-01

    The millimeter wave band appears to be a favourable choice for personal wireless communication systems for indoor environment, as it meets the requirements for sufficient bandwidth, small terminal dimensions and sporadic usage for commercial applications. In this paper measurements of millimeter wave propagation in both 30 GHz and 60 GHz bands, are presented in a comparative way. The topology of measurements covers both a line-of-sight situation and also a case where a direct path between transmitter and receiver does not exist. Although the second case does not seem obvious for outdoor applications in these frequencies, in indoor environment the multipath signals produced by objects like walls, doors, furniture etc., can be utilised in order to overcome the man-made shadowing. Both slow and fast fading characteristics of the received signal are studied and the measurements are modelled by the conventional Rician and Rayleigh distributions. Both frequency bands offer advantages for usage in in-house wireless communication systems. Although in 30 GHz band the coverage area is bigger than in 60 GHz (with the same transmitting power), frequency reuse is easier in 60 GHz band. because even if millimeter waves ‘escape’ through ‘windows’, the specific attenuation due to atmospheric oxygen (15 dB/km) at 60 GHz eliminates the interference between communication channels in neighbouring buildings.

  19. Millimeter wave ferromagnetic resonance in gallium-substituted ε-iron oxide

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2014-05-01

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe12O19) and strontium ferrite (SrFe12O19), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ɛ-iron oxides (ɛ-GaxFe2-xO3) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz-150 GHz. The ɛ-GaxFe2-xO3 is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ɛ-GaxFe2-xO3 particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ɛ-GaxFe2-xO3 are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  20. Content-Based Multi-Channel Network Coding Algorithm in the Millimeter-Wave Sensor Network.

    PubMed

    Lin, Kai; Wang, Di; Hu, Long

    2016-07-01

    With the development of wireless technology, the widespread use of 5G is already an irreversible trend, and millimeter-wave sensor networks are becoming more and more common. However, due to the high degree of complexity and bandwidth bottlenecks, the millimeter-wave sensor network still faces numerous problems. In this paper, we propose a novel content-based multi-channel network coding algorithm, which uses the functions of data fusion, multi-channel and network coding to improve the data transmission; the algorithm is referred to as content-based multi-channel network coding (CMNC). The CMNC algorithm provides a fusion-driven model based on the Dempster-Shafer (D-S) evidence theory to classify the sensor nodes into different classes according to the data content. By using the result of the classification, the CMNC algorithm also provides the channel assignment strategy and uses network coding to further improve the quality of data transmission in the millimeter-wave sensor network. Extensive simulations are carried out and compared to other methods. Our simulation results show that the proposed CMNC algorithm can effectively improve the quality of data transmission and has better performance than the compared methods.

  1. Analysis of millimeter-wave imaging and detection

    NASA Astrophysics Data System (ADS)

    Lanigan, W.; Butler, E.; Duffy, E.; Mc Auley, I.; Young, L.; Gradziel, M.; O'Sullivan, C.; Murphy, J. A.; May, R.; Trappe, N.

    2007-02-01

    The properties of terahertz (THz) radiation potentially make it ideal for medical imaging but the difficulty of producing laboratory sources and detectors has meant that it is the last unexplored part of the electromagnetic spectrum. In this paper we report on near-field reflection and absorption measurements of biological samples at 0.1THz as a first step towards developing THz and millimetre-wave imaging schemes. Variation of the absorption and reflection of THz in these samples is investigated as a means of determining information about the sample structure. Operating at 100 GHz with standard detecting devices we illustrate preliminary results in imaging (transmission and reflection) measurements of meat samples using various optical configurations and draw conclusions on the scope of the techniques. Some encouraging provisional results are discussed as well as limitations in "intensity only" measurements due, primarily, to standing waves and a lack of dynamic range. These experiments were performed as part of a Masters thesis. A discussion on a variety of absorbing materials utilized to reduce reflected radiation from surrounding optical components is also given. In addition we report on initial trials in extracting information about an object's size by sparsely measuring points in the equivalent Fourier plane in a simple optical setup, thus avoiding the need for time consuming raster scanning. This technique has many potential applications in detecting and scanning systems. Here the background theory and preliminary results are presented.

  2. Experimental validation of a millimeter wave radar technique to remotely sense atmospheric pressure at the Earth's surface

    NASA Technical Reports Server (NTRS)

    Flower, D. A.; Peckham, G. E.; Bradford, W. J.

    1984-01-01

    Experiments with a millimeter wave radar operating on the NASA CV-990 aircraft which validate the technique for remotely sensing atmospheric pressure at the Earth's surface are described. Measurements show that the precise millimeter wave observations needed to deduce pressure from space with an accuracy of 1 mb are possible, that sea surface reflection properties agree with theory and that the measured variation of differential absorption with altitude corresponds to that expected from spectroscopic models.

  3. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms

    SciTech Connect

    Gordon, Joshua A. Holloway, Christopher L.; Schwarzkopf, Andrew; Anderson, Dave A.; Miller, Stephanie; Thaicharoen, Nithiwadee; Raithel, Georg

    2014-07-14

    In this paper, we demonstrate the detection of millimeter waves via Autler-Townes splitting in {sup 85}Rb Rydberg atoms. This method may provide an independent, atom-based, SI-traceable method for measuring mm-wave electric fields, which addresses a gap in current calibration techniques in the mm-wave regime. The electric-field amplitude within a rubidium vapor cell in the WR-10 wave guide band is measured for frequencies of 93.71 GHz and 104.77 GHz. Relevant aspects of Autler-Townes splitting originating from a four-level electromagnetically induced transparency scheme are discussed. We measured the E-field generated by an open-ended waveguide using this technique. Experimental results are compared to a full-wave finite element simulation.

  4. Injection-locked fiber laser for tunable millimeter-wave generation.

    PubMed

    Pan, Shilong; Tang, Zhenzhou; Zhu, Dan; Ben, De; Yao, Jianping

    2011-12-15

    A dual-ring injection-locked fiber laser consisting of a ring of optoelectronic oscillator (OEO) and a ring of fiber laser is proposed and demonstrated for tunable millimeter-wave (mm-wave) generation. The approach combines the advantages of mm-wave generation based on OEOs and fiber lasers, which can generate a high-frequency, low-phase-noise, and a mode-hopping-free mm-wave signal with a large tuning range. A low-phase-noise mm-wave signal with a tunable frequency of 30-50 GHz and a tuning step of 10 GHz is obtained in a proof-of-concept experiment. The tuning range can be as large as 140 GHz if a high bandwidth photodetector is applied.

  5. Development and testing of a fast Fourier transform high dynamic-range spectral diagnostics for millimeter wave characterization.

    PubMed

    Thoen, D J; Bongers, W A; Westerhof, E; Oosterbeek, J W; de Baar, M R; van den Berg, M A; van Beveren, V; Bürger, A; Goede, A P H; Graswinckel, M F; Hennen, B A; Schüller, F C

    2009-10-01

    A fast Fourier transform (FFT) based wide range millimeter wave diagnostics for spectral characterization of scattered millimeter waves in plasmas has been successfully brought into operation. The scattered millimeter waves are heterodyne downconverted and directly digitized using a fast analog-digital converter and a compact peripheral component interconnect computer. Frequency spectra are obtained by FFT in the time domain of the intermediate frequency signal. The scattered millimeter waves are generated during high power electron cyclotron resonance heating experiments on the TEXTOR tokamak and demonstrate the performance of the diagnostics and, in particular, the usability of direct digitizing and Fourier transformation of millimeter wave signals. The diagnostics is able to acquire 4 GHz wide spectra of signals in the range of 136-140 GHz. The rate of spectra is tunable and has been tested between 200,000 spectra/s with a frequency resolution of 100 MHz and 120 spectra/s with a frequency resolution of 25 kHz. The respective dynamic ranges are 52 and 88 dB. Major benefits of the new diagnostics are a tunable time and frequency resolution due to postdetection, near-real time processing of the acquired data. This diagnostics has a wider application in astrophysics, earth observation, plasma physics, and molecular spectroscopy for the detection and analysis of millimeter wave radiation, providing high-resolution spectra at high temporal resolution and large dynamic range. PMID:19895061

  6. Hybrid modes, substrate leakage, and losses of slotline at millimeter-wave frequencies

    NASA Astrophysics Data System (ADS)

    Rozzi, Tullio; Moglie, Franco; Morini, Antonio; Marchionna, Emilio; Politi, Marco

    1990-08-01

    Guided hybrid propagation in a slotline at microwave and millimeter-wave frequencies is discussed. The analysis is carried out rigorously in the space domain, involving the variational solution of a singular integral equation for an E, field tangential to the slot. Data are obtained for field distributions, dispersion, and characteristic impedance, and are compared with data available in the literature. Results are reported on power lost by the propagation mode in the conductors and in the dielectric substrate. The analysis highlights the onset of leakage into a sufficiently thick substrate due the excitation of a transverse magnetic surface wave. This sets a high-frequency limit for lossless operation.

  7. Properties of barium strontium titanate at millimeter wave frequencies

    SciTech Connect

    Osman, Nurul; Free, Charles

    2015-04-24

    The trend towards using higher millimetre-wave frequencies for communication systems has created a need for accurate characterization of materials to be used at these frequencies. Barium Strontium Titanate (BST) is a ferroelectric material whose permittivity is known to change as a function of applied electric field and have found varieties of application in electronic and communication field. In this work, new data on the properties of BST characterize using the free space technique at frequencies between 145 GHz and 155 GHz for both thick film and bulk samples are presented. The measurement data provided useful information on effective permittivity and loss tangent for all the BST samples. Data on the material transmission, reflection properties as well as loss will also be presented. The outcome of the work shows through practical measurement, that BST has a high permittivity with moderate losses and the results also shows that BST has suitable properties to be used as RAM for high frequency application.

  8. Carbon loaded Teflon (CLT): a power density meter for biological experiments using millimeter waves.

    PubMed

    Allen, Stewart J; Ross, James A

    2007-01-01

    The standard technique for measurement of millimeter wave fields utilizes an open-ended waveguide attached to a HP power meter. The alignment of the waveguide with the propagation (K) vector is critical to making accurate measurements. Using this technique, it is difficult and time consuming to make a detailed map of average incident power density over areas of biological interest and the spatial resolution of this instrument does not allow accurate measurements in non-uniform fields. For biological experiments, it is important to know the center field average incident power density and the distribution over the exposed area. Two 4 ft x 4 ft x 1/32 inch sheets of carbon loaded Teflon (CLT) (one 15% carbon and one 25% carbon) were procured and a series of tests to determine the usefulness of CLT in defining fields in the millimeter wavelength range was initiated. Since the CLT was to be used both in the laboratory, where the environment was well controlled, and in the field, where the environment could not be controlled, tests were made to determine effects of change in environmental conditions on ability to use CLT as a millimeter wave dosimeter. The empirical results of this study indicate CLT to be an effective dosimeter for biological experiments both in the laboratory and in the field.

  9. THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION

    SciTech Connect

    De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro

    2013-01-10

    We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimeter wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.

  10. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular

    PubMed Central

    Okasaka, Shozo; Weiler, Richard J.; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  11. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access.

  12. Proof-of-Concept of a Millimeter-Wave Integrated Heterogeneous Network for 5G Cellular.

    PubMed

    Okasaka, Shozo; Weiler, Richard J; Keusgen, Wilhelm; Pudeyev, Andrey; Maltsev, Alexander; Karls, Ingolf; Sakaguchi, Kei

    2016-01-01

    The fifth-generation mobile networks (5G) will not only enhance mobile broadband services, but also enable connectivity for a massive number of Internet-of-Things devices, such as wireless sensors, meters or actuators. Thus, 5G is expected to achieve a 1000-fold or more increase in capacity over 4G. The use of the millimeter-wave (mmWave) spectrum is a key enabler to allowing 5G to achieve such enhancement in capacity. To fully utilize the mmWave spectrum, 5G is expected to adopt a heterogeneous network (HetNet) architecture, wherein mmWave small cells are overlaid onto a conventional macro-cellular network. In the mmWave-integrated HetNet, splitting of the control plane (CP) and user plane (UP) will allow continuous connectivity and increase the capacity of the mmWave small cells. mmWave communication can be used not only for access linking, but also for wireless backhaul linking, which will facilitate the installation of mmWave small cells. In this study, a proof-of-concept (PoC) was conducted to demonstrate the practicality of a prototype mmWave-integrated HetNet, using mmWave technologies for both backhaul and access. PMID:27571074

  13. Analysis of a Chiral Dielectric Supported Broadband Helix Slow-Wave Structure for Millimeter-Wave TWTs

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Jayashree, E. V.; Veena, S. D.; Kumar, Lalit

    2007-09-01

    A novel technique of broadbanding a helical slow-wave structure through negative dispersion shaping is proposed. The model considers a simple continuous chiral dielectric support for the helix inside a metallic barrel, unlike conventional helix slow-wave structures with three discrete dielectric supports at 1200 apart. The dispersion relation of the slow-wave structure was derived following sheath-helix abstraction, suitably benchmarked for special cases, and was used for analyzing the dispersion behavior of a typical slow-wave structure. Chiral dielectric loading could easily provide negative dispersion characteristics (required for broadband operation) by merely controlling the chirality parameter alone. The scheme with its simple geometric configuration is expected to be useful for millimeter-wave devices providing better thermal management.

  14. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    NASA Technical Reports Server (NTRS)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  15. Photonic generation of frequency quadrupling signal for millimeter-wave communication

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Jin, Xiaofeng; Yang, Bo; Zhou, Jianhai; Zhang, Xianmin; Zheng, Shilie; Chi, Hao

    2013-09-01

    We propose and demonstrate a photonic method of generating frequency quadrupling signal for millimeter-wave (mm-wave) wireless communication system. The frequency quadrupling scheme is based on carriers cancellation within an integrated dual-parallel Mach-Zehnder modulator (DPMZM), thus avoiding the use of an optical filter or an electrical phase shifter. The effects of modulation-depth on the power level of generated mm-wave signal as well as on the system performance of wireless transmission are analyzed theoretically and measured experimentally. In the experiment, transmission of 155 Mbps OOK baseband data on a photonic-generated 40 GHz mm-wave over a length of 25 km standard single-mode fiber (SMF) and 20 m wireless distance with error free is successfully demonstrated.

  16. Photonic integrated circuit for all-optical millimeter-wave signal generation

    SciTech Connect

    Vawter, G.A.; Mar, A.; Zolper, J.; Hietala, V.

    1997-03-01

    Generation of millimeter-wave electronic signals and power is required for high-frequency communication links, RADAR, remote sensing and other applications. However, in the 30 to 300 GHz mm-wave regime, signal sources are bulky and inefficient. All-optical generation of mm-wave signals promises to improve efficiency to as much as 30 to 50 percent with output power as high as 100 mW. All of this may be achieved while taking advantage of the benefits of monolithic integration to reduce the overall size to that of a single semiconductor chip only a fraction of a square centimeter in size. This report summarizes the development of the first monolithically integrated all-optical mm-wave signal generator ever built. The design integrates a mode-locked semiconductor ring diode laser with an optical amplifier and high-speed photodetector into a single optical integrated circuit. Frequency generation is demonstrated at 30, 60 and 90 Ghz.

  17. Nanosecond near millimeter waves. Final report 21 Jul 80-1 Oct 81

    SciTech Connect

    DeTemple, T.A.

    1981-10-01

    The primary goals of this study were directed at theoretical and experimental aspects of the use of mode-locked carbon dioxide lasers as a means of generating temporally short near millimeter (NMM) wavelengths in the range 100 micrometers to 3 millimeters by optical pumping of light molecules. Both aspects of the work were quite successful in that mode-locked trains of NMM waves were generated, sometimes with a high conversion efficiency, and the overall space-time evolution and conversion predicted by the modeling was in accord with the experimental observation. The main implications of this work are that pulses shorter than the inverse bandwidth can be produced but that the overall pulse evolution occurs on a longer spatial scale than for bandwidth limited pulses. The role of cooperative phenomena such as superradiance and multiphoton effects such as stimulated Raman emission were seen to be important in explaining the evolution of the pulses.

  18. Reflection imaging in the millimeter-wave range using a video-rate terahertz camera

    NASA Astrophysics Data System (ADS)

    Marchese, Linda E.; Terroux, Marc; Doucet, Michel; Blanchard, Nathalie; Pancrati, Ovidiu; Dufour, Denis; Bergeron, Alain

    2016-05-01

    The ability of millimeter waves (1-10 mm, or 30-300 GHz) to penetrate through dense materials, such as leather, wool, wood and gyprock, and to also transmit over long distances due to low atmospheric absorption, makes them ideal for numerous applications, such as body scanning, building inspection and seeing in degraded visual environments. Current drawbacks of millimeter wave imaging systems are they use single detector or linear arrays that require scanning or the two dimensional arrays are bulky, often consisting of rather large antenna-couple focal plane arrays (FPAs). Previous work from INO has demonstrated the capability of its compact lightweight camera, based on a 384 x 288 microbolometer pixel FPA with custom optics for active video-rate imaging at wavelengths of 118 μm (2.54 THz), 432 μm (0.69 THz), 663 μm (0.45 THz), and 750 μm (0.4 THz). Most of the work focused on transmission imaging, as a first step, but some preliminary demonstrations of reflection imaging at these were also reported. In addition, previous work also showed that the broadband FPA remains sensitive to wavelengths at least up to 3.2 mm (94 GHz). The work presented here demonstrates the ability of the INO terahertz camera for reflection imaging at millimeter wavelengths. Snapshots taken at video rates of objects show the excellent quality of the images. In addition, a description of the imaging system that includes the terahertz camera and different millimeter sources is provided.

  19. A novel optical millimeter-wave signal generation approach to overcome chromatic dispersion

    NASA Astrophysics Data System (ADS)

    Liang, Dong; Jiang, Wei; Tan, Qinggui; Zhu, Zhongbo; Liu, Feng

    2014-06-01

    In this paper, a novel frequency octupling approach for optical millimeter-wave signal generation to overcome chromatic dispersion is proposed and demonstrated. The frequency octupling mm-wave with the baseband signal carried only by -4th order sideband is generated by properly adjusting a series of parameters, which are the modulation constant, the gain of baseband signal, the direct current bias and the different phase of the modulation arms. As the optical millimeter-wave signal is transmitted along the fiber, there is no time shift caused by chromatic dispersion. Theoretical analyses and simulated results show that when the optical mm-wave carrying 2.5 Gbps baseband signal transmits a distance of over 110 km, the eye diagram still keeps open and clear. The power penalty is about 0.4 dB after the optical signal transmits over 40 km. In additions, given the +4th order sideband carries no data, a full-duplex RoF link based on wavelength reuse is built for the uplink. The bidirectional 2.5 Gbps baseband signal could successfully transmit over 40 km with about 0.8 dB power penalty in the simulation. Both theoretical analyses and simulation results show that the full-duplex RoF link has good performance.

  20. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  1. Characterization and Applications of Micro- and Nano- Ferrites at Microwave and Millimeter Waves

    NASA Astrophysics Data System (ADS)

    Chao, Liu

    Ferrite materials are one of the most widely used magnetic materials in microwave and millimeter wave applications such as radar, wireless communication. They provide unique properties for microwave and millimeter wave devices especially non-reciprocal devices. Some ferrite materials with strong magnetocrystalline anisotropy fields can extend these applications to tens of GHz range while reducing the size, weight and cost. This thesis focuses on characterization of such ferrite materials as micro- and nano-powder and the fabrication of the devices. The ferrite materials with strong magnetocrystalline anisotropy field are metal/non-metal substituted iron oxides oriented in low crystal symmetry. The ferrite materials characterized in this thesis include M-type hexagonal ferrites such as barium ferrite (BaFe12O19), strontium ferrite (SrFe12O19), epsilon phase iron oxide (epsilon-Fe 2O3), substituted epsilon phase iron oxide (epsilon-Ga xFe2-xO3, epsilon-AlxFe2-xO 3). These ferrites exhibit great anisotropic magnetic fields. A transmission-reflection based in-waveguide technique that employs a vector network analyzer was used to determine the scattering parameters for each sample in the microwave bands (8.2--40 GHz). From the S-parameters, complex dielectric permittivity and complex magnetic permeability are evaluated by an improved algorithm. The millimeter wave measurement is based on a free space quasi-optical spectrometer. Initially precise transmittance spectra over a broad millimeter wave frequency range from 40 GHz to 120 GHz are acquired. Later the transmittance spectra are converted into complex permittivity and permeability spectra. These ferrite powder materials are further characterized by x-ray diffraction (XRD) to understand the crystalline structure relating to the strength and the shift of the ferromagnetic resonance affected by the particle size. A Y-junction circulator working in the 60 GHz frequency band is designed based on characterized M

  2. Diagnosis and Treatment of Neurological Disorders by Millimeter-Wave Stimulation

    NASA Technical Reports Server (NTRS)

    Siegel, Peter H.; Pikov, Victor

    2011-01-01

    Increasingly, millimeter waves are being employed for telecomm, radar, and imaging applications. To date in the U.S, however, very few investigations on the impact of this radiation on biological systems at the cellular level have been undertaken. In the beginning, to examine the impact of millimeter waves on cellular processes, researchers discovered that cell membrane depolarization may be triggered by low levels of integrated power at these high frequencies. Such a situation could be used to advantage in the direct stimulation of neuronal cells for applications in neuroprosthetics and diagnosing or treating neurological disorders. An experimental system was set up to directly monitor cell response on exposure to continuous-wave, fixed-frequency, millimeter-wave radiation at low and modest power levels (0.1 to 100 safe exposure standards) between 50 and 100 GHz. Two immortalized cell lines derived from lung and neuronal tissue were transfected with green fluorescent protein (GFP) that locates on the inside of the cell membrane lipid bi-layer. Oxonol dye was added to the cell medium. When membrane depolarization occurs, the oxonal bound to the outer wall of the lipid bi-layer can penetrate close to the inner wall where the GFP resides. Under fluorescent excitation (488 nm), the normally green GFP (520 nm) optical signal quenches and gives rise to a red output when the oxonol comes close enough to the GFP to excite a fluorescence resonance energy transfer (FRET) with an output at 620 nm. The presence of a strong FRET signature upon exposures of 30 seconds to 2 minutes at 5-10 milliwatts per square centimeter RF power at 50 GHz, followed by a return to the normal 520-nm GFP signal after a few minutes indicating repolarization of the membrane, indicates that low levels of RF energy may be able to trigger non-destructive membrane depolarization without direct cell contact. Such a mechanism could be used to stimulate neuronal cells in the cortex without the need for

  3. Multi-Band Multi-Tone Tunable Millimeter-Wave Frequency Synthesizer For Satellite Beacon Transmitter

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Wintucky, Edwin G.

    2016-01-01

    This paper presents the design and test results of a multi-band multi-tone tunable millimeter-wave frequency synthesizer, based on a solid-state frequency comb generator. The intended application of the synthesizer is in a satellite beacon transmitter for radio wave propagation studies at K-band (18 to 26.5 GHz), Q-band (37 to 42 GHz), and E-band (71 to 76 GHz). In addition, the architecture for a compact beacon transmitter, which includes the multi-tone synthesizer, polarizer, horn antenna, and power/control electronics, has been investigated for a notional space-to-ground radio wave propagation experiment payload on a small satellite. The above studies would enable the design of robust high throughput multi-Gbps data rate future space-to-ground satellite communication links.

  4. Optical generation of millimeter-wave signals via frequency 16-tupling without an optical filter

    NASA Astrophysics Data System (ADS)

    Zhu, Zihang; Zhao, Shanghong; Chu, Xingchun; Dong, Yi

    2015-11-01

    Microwave frequency multiplication using two cascaded dual-parallel Mach-Zehnder modulators (DP-MZMs) to generate an optical millimeter-wave (mm-wave) with 16-tupling of the radio frequency (RF) driving signal frequency is proposed. A theoretical analysis leading to the optimum operating conditions including the direct current (dc) bias points, the modulation index, and the phase difference between RF driving signals is developed and demonstrated. A 160 GHz mm-wave with an optical sideband suppression ratio (OSSR) of 21.5 dB and a radio frequency spurious suppression ratio (RFSSR) of 38 dB is generated from a 10 GHz RF driving signal, which largely reduce the frequency of electrical driving signal and electrooptic devices. Since no optical filter is employed to suppress the undesired optical sidebands, the system exhibits the advantage of large frequency tunable range.

  5. Modeling of Millimeter-Wave Modulation Characteristics of Semiconductor Lasers under Strong Optical Feedback

    PubMed Central

    Bakry, Ahmed

    2014-01-01

    This paper presents modeling and simulation on the characteristics of semiconductor laser modulated within a strong optical feedback (OFB-)induced photon-photon resonance over a passband of millimeter (mm) frequencies. Continuous wave (CW) operation of the laser under strong OFB is required to achieve the photon-photon resonance in the mm-wave band. The simulated time-domain characteristics of modulation include the waveforms of the intensity and frequency chirp as well as the associated distortions of the modulated mm-wave signal. The frequency domain characteristics include the intensity modulation (IM) and frequency modulation (FM) responses in addition to the associated relative intensity noise (RIN). The signal characteristics under modulations with both single and two mm-frequencies are considered. The harmonic distortion and the third order intermodulation distortion (IMD3) are examined and the spurious free dynamic range (SFDR) is calculated. PMID:25383381

  6. Module integration and amplifier design optimization for optically enabled passive millimeter-wave imaging

    NASA Astrophysics Data System (ADS)

    Wright, Andrew A.; Martin, Richard D.; Schuetz, Christopher A.; Shi, Shouyuan; Zhang, Yifei; Yao, Peng; Shreve, Kevin P.; Dillon, Thomas E.; Mackrides, Daniel G.; Harrity, Charles E.; Prather, Dennis W.

    2016-05-01

    This paper will discuss the development of a millimeter-wave (mm-wave) receiver module used in a sparse array passive imaging system. Using liquid crystal polymer (LCP) technology and low power InP low noise amplifiers (LNA), enables the integration of the digital circuitry along with the RF components onto a single substrate significantly improves the size, weight, power, and cost (SWaP-C) of the mm-wave receiver module compared to previous iterations of the module. Also comparing with previous generation modules, the operating frequency has been pushed from 77 GHz to 95 GHz in order to improve the resolution of the captured image from the sparse array imaging system.

  7. High power water load for microwave and millimeter-wave radio frequency sources

    DOEpatents

    Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.

    1999-01-01

    A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.

  8. Millimeter Wave Synthetic Aperture Imaging System with a Unique Rotary Scanning System

    NASA Technical Reports Server (NTRS)

    Ghasr, M. T.; Pommerenke, D.; Case, J. T.; McClanahan, A. D.; Afaki-Beni, A.; Abou-Khousa, M.; Guinn, K.; DePaulis, F.; Kharkovsky, S.; Zoughi, R.

    2008-01-01

    In recent years, millimeter wave imaging techniques, using synthetic aperture focusing and holographical approaches, have shown tremendous potential for nondestructive testing applications, involving materials and structures used in space vehicles, including the space shuttle external fuel tank spray on foam insulation and its acreage heat tiles. The ability of signals at millimeter wave frequencies (30 - 300 GHz) to easily penetrate inside of low loss dielectric materials, their relatively small wavelengths, and the possibility of detecting coherent (magnitude and phase) reflections make them suitable for high resolution synthetic aperture focused imaging the interior of such materials and structures. To accommodate imaging requirements, commonly a scanning system is employed that provides for a raster scan of the desired structure. However, most such scanners, although simple in design and construction, are inherently slow primarily due to the need to stop and start at the beginning and end of each scan line. To this end, a millimeter wave synthetic aperture focusing system including a custom-designed transceiver operating at 35 - 45 GHz (Q-band) and unique and complex rotary scanner was designed and developed. The rotary scanner is capable of scanning an area with approximately 80 cm in diameter in less than 10 minutes at step sizes of 3 mm and smaller. The transceiver is capable of producing accurate magnitude and phase of reflected signal from the structure under test. Finally, a synthetic aperture focusing algorithm was developed that translates this rotary-obtained magnitude and phase into a synthetic aperture focusing image of inspected structures. This paper presents the design of the transceiver and the rotary scanning system along with showing several images obtained with this system from various complicated structures.

  9. Millimeter wave ferromagnetic resonance in gallium-substituted ε-iron oxide

    SciTech Connect

    Chao, Liu Afsar, Mohammed N.; Ohkoshi, Shin-ichi

    2014-05-07

    In millimeter wave frequency range, hexagonal ferrites with high uniaxial anisotropic magnetic fields are used as absorbers. These ferrites include M-type barium ferrite (BaFe{sub 12}O{sub 19}) and strontium ferrite (SrFe{sub 12}O{sub 19}), which have natural ferromagnetic resonant frequency range from 40 GHz to 60 GHz. However, the higher frequency range lacks suitable materials that support the higher frequency ferromagnetic resonance. A new series of gallium-substituted ε-iron oxides (ε-Ga{sub x}Fe{sub 2−x}O{sub 3}) are synthesized which have ferromagnetic resonant frequencies appearing over the frequency range 30 GHz–150 GHz. The ε-Ga{sub x}Fe{sub 2−x}O{sub 3} is synthesized by the combination of reverse micelle and sol-gel techniques or the sol-gel method only. The particle sizes are observed to be smaller than 100 nm. In this paper, the free space magneto-optical approach has been employed to study these newly developed ε-Ga{sub x}Fe{sub 2−x}O{sub 3} particles in millimeter waves. This technique enables to obtain precise transmission spectra to determine the dielectric and magnetic properties of both isotropic and anisotropic ferrites in the millimeter wave frequency range from a single set of direct measurements. The transmittance and absorbance spectra of ε-Ga{sub x}Fe{sub 2−x}O{sub 3} are shown in this paper. Strong ferromagnetic resonances at different frequencies determined by the x parameter are found.

  10. Determining bonding quality in polymer composites with a millimeter wave sensor

    SciTech Connect

    Bakhtiari, S.; Gopalsami, N.; Raptis, A.C.

    1996-12-01

    Microwave nondestructive testing (NDT) techniques offer alternative solutions to other conventional NDT methods. Microwave/millimeter wave (determined roughly to cover 0.3 to 300 GHz) techniques are particularly useful for examination of dielectric composite materials that their low dielectric losses provide good depth of penetration of electromagnetic radiation in this band. Limitations associated with conventional NDT techniques such as high frequency ultrasonic testing (UT), namely, large variations in elastic properties of low density composite materials cause interpretation of complex UT signals difficult. Further, criticality of coupling of transducer to the sample surface limits the use of such techniques for on-line applications. High frequency microwave (millimeter waves, 30--300 GHz) systems compared to their low frequency counterparts offer higher resolution and sensitivity to variations in dielectric properties of low-loss composites. Further, higher frequencies render utilization of more compact systems which are often important for practical applications. A millimeter wave sensor is described in this work which can be utilized for non-contact NDT of a wide range of thin-sheet dielectric composite materials either as a laboratory-based instrument or for on-line quality control applications. Experimental results are presented on noncontact measurement of bonding quality in polyethylene/carbon composite samples. The w-band monostatic sensor operates based on measurement of the reflection properties of the material under test, which are then used to determine the volumetric uniformity of the joint area. Preliminary experimental results indicate the potential for the use of this sensor in fabrication process control of low-loss dielectric composite materials.

  11. Millimeter- and submillimeter-wave nanoscience : LDRD project 122359 final report.

    SciTech Connect

    Lee, Mark

    2008-09-01

    LDRD Project 122359 was a nine-month, late-start effort that pursued initial experiments studying the fundamental electrodynamic response properties of various nanomaterials from millimeter-wave (above roughly 30 GHz) up to submillimeter-wave (above roughly 0.1 THz) frequencies. The nine months of this project's duration produced two main empirical findings. First, Fourier transform reflectance spectroscopy on SrTiO{sub 3} nanocrystals from 0.2 to 10 THz frequency showed signatures of two optical phonons that correspond to known optical modes in bulk crystal SrTiO{sub 3}. However, quantitative differences between the nanoparticle and bulk spectra suggest that one or both of these phonons may shift frequency and weaken in nanoparticles relative to bulk crystal. Second, heavily doped n-type GaAs nanowires were synthesized for the purpose of creating high frequency diodes to study non-linear frequency conversion properties of compound semiconductor nanowires. It was found that incorporation of a heavy concentration of dopants interferes with the growth of these nanowires. While DC measurements showed reasonable diode-like current-voltage properties, the current state-of-the-art material properties of these nanowires are still unsuitable for millimeter-wave testing and applications.

  12. A high-sensitivity 135 GHz millimeter-wave imager by compact split-ring-resonator in 65-nm CMOS

    NASA Astrophysics Data System (ADS)

    Li, Nan; Yu, Hao; Yang, Chang; Shang, Yang; Li, Xiuping; Liu, Xiong

    2015-11-01

    A high-sensitivity 135 GHz millimeter-wave imager is demonstrated in 65 nm CMOS by on-chip metamaterial resonator: a differential transmission-line (T-line) loaded with split-ring-resonator (DTL-SRR). Due to sharp stop-band introduced by the metamaterial load, high-Q oscillatory amplification can be achieved with high sensitivity when utilizing DTL-SRR as quench-controlled oscillator to provide regenerative detection. The developed 135 GHz mm-wave imager pixel has a compact core chip area of 0.0085 mm2 with measured power consumption of 6.2 mW, sensitivity of -76.8 dBm, noise figure of 9.7 dB, and noise equivalent power of 0.9 fW/√{HZ } Hz. Millimeter-wave images has been demonstrated with millimeter-wave imager integrated with antenna array.

  13. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    SciTech Connect

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai; Fan Yuwei

    2011-05-15

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM{sub 01} mode.

  14. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging.

  15. Target identification and navigation performance modeling of a passive millimeter wave imager.

    PubMed

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions. PMID:20648126

  16. Measurement of the lowest millimeter-wave transition frequency of the CH radical

    SciTech Connect

    Truppe, S.; Hendricks, R. J.; Hinds, E. A.; Tarbutt, M. R.

    2014-01-01

    The CH radical offers a sensitive way to test the hypothesis that fundamental constants measured on Earth may differ from those observed in other parts of the universe. The starting point for such a comparison is to have accurate laboratory frequencies. Here, we measure the frequency of the lowest millimeter-wave transition of CH, near 535 GHz, with an accuracy of 0.6 kHz. This improves the uncertainty by roughly two orders of magnitude over previous determinations and opens the way for sensitive new tests of varying constants.

  17. Target identification and navigation performance modeling of a passive millimeter wave imager.

    PubMed

    Jacobs, Eddie L; Furxhi, Orges

    2010-07-01

    Human task performance using a passive interferometric millimeter wave imaging sensor is modeled using a task performance modeling approach developed by the U.S. Army Night Vision and Electronic Sensors Directorate. The techniques used are illustrated for an imaging system composed of an interferometric antenna array, optical upconversion, and image formation using a shortwave infrared focal plane array. Two tasks, target identification and pilotage, are modeled. The effects of sparse antenna arrays on task performance are considered. Applications of this model include system trade studies for concealed weapon identification, navigation in fog, and brownout conditions.

  18. Measured comparison of contrast and crossover periods for passive millimeter-wave polarimetric imagery.

    PubMed

    Wilson, John P; Schuetz, Christopher A; Harrity, Charles E; Kozacik, Stephen; Eng, David L K; Prather, Dennis W

    2013-05-20

    Several targets are set-up outside and imaged by a passive millimeter-wave sensor over a 24 hour period. The sensor is capable of measuring two linear polarization states simultaneously and the contrasts of the targets are compared for the different polarizations. The choice of polarization is shown to have an impact on the contrast of different targets throughout the day. In an extreme case the contrast of a target experiences a crossover event and disappears for one polarization while it presents a strong contrast (9 K) with the other polarization. Experimental results are shown along with a simulation of the scene using a ray tracing program.

  19. Simulations of polarization dependent contrast during the diurnal heating cycle for passive millimeter-wave imagery

    NASA Astrophysics Data System (ADS)

    Wilson, John P.; Murakowski, Maciej; Schuetz, Christopher A.; Prather, Dennis W.

    2013-09-01

    Passive millimeter-wave (mmW) sensors are especially suited to persistent surveillance applications due to their ability to operate during day/night conditions and through transient atmospheric obscurants such as clouds, rain and fog. The contrast of targets will change throughout a diurnal heating cycle and this change will be polarization dependent. Simulations are presented from a ray tracing program developed for the mmW regime that has been modified to account for polarization information. Results are shown demonstrating periods during the day when the contrast of certain targets drop to zero for a linear polarization state while the orthogonal state still maintains a high contrast.

  20. Dielectric Properties of Nanoporous Metal-Organic Framework Materials in the Millimeter-Wave Band

    NASA Astrophysics Data System (ADS)

    Meriakri, V. V.; Nikitin, I. P.; Parkhomenko, M. P.; Fedoseev, N. A.; Lu, Kuang-Lieh

    2013-05-01

    Complex dielectric permittivity of eight nanoporous metal-organic frameworks (MOFs) is measured for the first time in the short-wavelength region of the millimeter-wave band. The measurements show that these nanoporous materials exhibit either a Debye-type or a damped resonance dispersion. It is established that the dielectric characteristics of the MOFs are significantly changed when the materials are placed in a humid environment. This fact can be used to design sensors to monitor the composition of the surrounding atmosphere.

  1. An Airborne Conical Scanning Millimeter-Wave Imaging Radiometer (CoSMIR)

    NASA Technical Reports Server (NTRS)

    Piepmeier, J.; Racette, P.; Wang, J.; Crites, A.; Doiron, T.; Engler, C.; Lecha, J.; Powers, M.; Simon, E.; Triesky, M.; Krebs, Carolyn A. (Technical Monitor)

    2001-01-01

    An airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA Research Aircraft (ER-2) is discussed. The primary application of the CoSMIR is water vapor profile remote sensing. Four radiometers operating at 50 (three channels), 92, 150, and 183 (three channels) GHz provide spectral coverage identical to nine of the Special Sensor Microwave Imager/Sounder (SSMIS) high-frequency channels. Constant polarization-basis conical and cross-track scanning capabilities are achieved using an elevation-under-azimuth two-axis gimbals.

  2. High-performance packaging for monolithic microwave and millimeter-wave integrated circuits

    NASA Technical Reports Server (NTRS)

    Shalkhauser, K. A.; Li, K.; Shih, Y. C.

    1992-01-01

    Packaging schemes are developed that provide low-loss, hermetic enclosure for enhanced monolithic microwave and millimeter-wave integrated circuits. These package schemes are based on a fused quartz substrate material offering improved RF performance through 44 GHz. The small size and weight of the packages make them useful for a number of applications, including phased array antenna systems. As part of the packaging effort, a test fixture was developed to interface the single chip packages to conventional laboratory instrumentation for characterization of the packaged devices.

  3. Influence of Millimeter Electromagnetic Waves on Fluorescence of Water-Saline Solutions of Human Serum Albumin

    NASA Astrophysics Data System (ADS)

    Vardevanyan, P. O.; Antonyan, A. P.; Shahinyan, M. A.; Mikaelyan, M. S.

    2016-07-01

    The effect of electromagnetic waves of the millimeter region on the conformation and fluorescence characteristics of human serum albumin was studied. It is shown that the irradiation of the albumin solution leads to an increase of the fluorescence intensity depending on the duration of irradiation. At an irradiation frequency of 48 GHz the fluorescence intensity of albumin hardly changes at all, while at 41.8 and 51.8 GHz it increases. It is also shown that when the irradiation frequency is 51.8 GHz, the intensity of the albumin solution fluorescence increases with increase of the irradiation time.

  4. Characterization of delamination and disbonding in stratified dielectric composites by millimeter wave imaging

    SciTech Connect

    Bakhtiari, S.; Gopalsami, N.; Raptis, A.C.

    1995-04-01

    Electromagnetic radiation at microwave frequencies has been in use for nondestructive evaluation (NDE) of various low-loss and generally lossy dielectric materials. A monostatic backscatter millimeter wave imaging system was utilized for non-destructive characterization of defects in low-loss composites of Kevlar/epoxy. Defects consisting of subsurface delamination and disbonding defects were successfully detected and characterized. Images are constructed by measuring the relative amplitude and phase of the reflected radiation. The results clearly indicate the potential of such high-frequency systems for nondestructive characterization of small defects in low-loss dielectric composite materials.

  5. Millimeter-wave imaging radiometer for cloud, precipitation and atmospheric water vapor studies

    NASA Technical Reports Server (NTRS)

    Racette, P. E.; Dod, L. R.; Shiue, J. C.; Adler, R. F.; Jackson, D. M.; Gasiewski, A. J.; Zacharias, D. S.

    1992-01-01

    A millimeter-wave imaging radiometer (MIR) developed by NASA Goddard Space Flight Center is described. The MIR is a nine-channel total power radiometer developed for atmospheric research. Three dual-pass band channels are centered about the strongly opaque 183-GHz water vapor absorption line; the frequencies are 183 +/- 1, +/- 3, and +/- 7 GHz. Another channel is located on the wing of this band at 150 GHz. These four channels have varying degrees of opacity from which the water vapor profile can be inferred. The design and salient characteristics of this instrument are discussed, together with its expected benefits.

  6. Three-dimensional passive millimeter-wave imaging and depth estimation

    NASA Astrophysics Data System (ADS)

    Yeom, Seokwon; Lee, Dong-Su; Lee, Hyoung; Son, Jung-Young; Guschin, Vladimir P.

    2010-04-01

    We address three-dimensional passive millimeter-wave imaging (MMW) and depth estimation for remote objects. The MMW imaging is very useful for the harsh environment such as fog, smoke, snow, sandstorm, and drizzle. Its penetrating property into clothing provides a great advantage to security and defense systems. In this paper, the featurebased passive MMW stereo-matching process is proposed to estimate the distance of the concealed object under clothing. It will be shown that the proposed method can estimate the distance of the concealed object.

  7. Telecommunication service markets through the year 2000 in relation to millimeter wave satellite systems

    NASA Technical Reports Server (NTRS)

    Stevenson, S. M.

    1979-01-01

    NASA is currently conducting a series of millimeter wave satellite system market studies to develop 30/20 GHz satellite system concepts that have commercial potential. Four contractual efforts were undertaken: two parallel and independent system studies and two parallel and independent market studies. The marketing efforts are focused on forecasting the total domestic demand for long haul telecommunications services for the 1980-2000 period. Work completed to date and reported in this paper include projections of: geographical distribution of traffic; traffic volume as a function of urban area size; and user identification and forecasted demand.

  8. Limitations on millimeter-wave power generation with spiraling electron beams.

    NASA Technical Reports Server (NTRS)

    Kulke, B.

    1972-01-01

    A study is made of the suitability of the interaction between a thin, solid, spiraling electron beam of 5-15-kV energy and a microwave cavity, for the purpose of generating watts of CW millimeter-wave power. The effect of finite energy spread in the electron beam is considered both theoretically and experimentally. Measured results are given for a prototype device operating at 9.4 GHz. Power outputs of 5 W and electronic efficiencies near 2% have been obtained. The data agree well with the theory, subject to some ambiguity in the energy-distribution parameters. The performance is strongly limited by the energy spread in the beam.

  9. Human Skin as Arrays of Helical Antennas in the Millimeter and Submillimeter Wave Range

    NASA Astrophysics Data System (ADS)

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Agranat, Aharon J.

    2008-03-01

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. A computer simulation study of these structures in millimeter and submillimeter wave bands show that the human skin functions as an array of low-Q helical antennas. Experimental evidence is presented that the spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure.

  10. The ethical dimension of terahertz and millimeter-wave imaging technologies: security, privacy, and acceptability

    NASA Astrophysics Data System (ADS)

    Ammicht Quinn, R.; Rampp, B.

    2009-05-01

    Terahertz and millimeter-wave imaging technologies, wherever they are applied to human beings, generate problems with the "naked" body. Security issues thus inevitably lead to ethical questions of privacy and intimacy. Less apparent but no less important are other issues such as discrimination and the question of reducing this problem through post processing of data; scalability; questions of controlling the controllers; questions of proliferation. Ethical research alone can not provide acceptability. However, ultimately innovative technologies will not achieve widespread and sustainable acceptance without a fundamental clarification of the ethically relevant issues.

  11. Millimeter Wave Nondestructive Evaluation of Corrosion Under Paint in Steel Structures

    SciTech Connect

    Kharkovsky, S.; Zoughi, R.

    2006-03-06

    Millimeter wave nondestructive evaluation techniques have shown great potential for detection of corrosion under paint in steel structures. They may also provide for detection of other anomalies associated with the corrosion process such as precursor pitting. This paper presents the results of an extensive investigation spanning a frequency range of 30-100 GHz and using magnitude- and phase-sensitive reflectometers. Using 2D automated scanning mechanisms, raster images of two corrosion patches are produced showing the spatial resolution capabilities of these systems as well as their potential for evaluating localized corrosion severity.

  12. Review of data analysis procedures for the ATS-6 millimeter wave experiment

    NASA Technical Reports Server (NTRS)

    Meneghini, R.

    1975-01-01

    Predictions of satellite downlink attenuation through the use of ground based measurements form a substantial part of the ATS-6 millimeter wave experiment (MWE). At the downlink frequencies (20 and 30 GHz), the major causes of attenuation are the density and the size distribution of rain drops along the propagation path. Ground station data, which include radar and rain gauge records, measure quantities related to the meteorological parameters of interest and thereby provide a prediction of downlink attenuation with which the measured attenuation can be compared. The calibration and data analysis procedures used in the MWE are reviewed with the object of improving the accuracy of such ground based predictions.

  13. Millimeter-wave imaging with slab focusing lens made of electromagnetic-induction materials.

    PubMed

    Yang, Kui; Wang, Jinbang; Zhao, Lu; Liu, Zhiguo; Zhang, Tao

    2016-01-11

    A slab focusing lens in this work has been designed, which consists of electromagnetic-induction materials (cage-shaped granules of conductor materials) and polymethyl methacrylate (PMMA) materials. A compound lens with a thickness of 32 mm is composed of two slab focusing lenses, and has a refractive index of 1.41 at 35 GHz. Millimeter-wave (MMW) images of metallic objects have been obtained with the compound lens. The image quality has been compared by means of the compound lens and the polyethylene lens. The experimental results show good feasibility of the compound lens in MMW imaging. PMID:26832287

  14. Second generation of AVTIS FMCW millimeter wave radars for mapping volcanic terrain

    NASA Astrophysics Data System (ADS)

    Macfarlane, David G.; Robertson, Duncan A.; Cassidy, Scott L.

    2016-05-01

    The second generation AVTIS ground-based millimeter wave instruments designed for monitoring topography of volcanic lava domes are solid state 94 GHz FMCW rastered, real beam radars operating at ranges of up to ~7 km with a range resolution of ~2.5 m. Operating ten times faster than the prototype with reduced power consumption suitable for battery powered portable use as well as installation at a telemetered site under solar power, we examine their performance as tools for monitoring topography over time and report on the operational statistics both as a radar sensor and as a means of generating digital elevation maps.

  15. Human skin as arrays of helical antennas in the millimeter and submillimeter wave range.

    PubMed

    Feldman, Yuri; Puzenko, Alexander; Ben Ishai, Paul; Caduff, Andreas; Agranat, Aharon J

    2008-03-28

    Recent studies of the minute morphology of the skin by optical coherence tomography showed that the sweat ducts in human skin are helically shaped tubes, filled with a conductive aqueous solution. A computer simulation study of these structures in millimeter and submillimeter wave bands show that the human skin functions as an array of low-Q helical antennas. Experimental evidence is presented that the spectral response in the sub-Terahertz region is governed by the level of activity of the perspiration system. It is also correlated to physiological stress as manifested by the pulse rate and the systolic blood pressure. PMID:18517913

  16. An application of wavelet transforms and neural networks for decomposition of millimeter-wave spectroscopic signals

    SciTech Connect

    Gopalan, K.; Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1995-07-01

    This paper reports on wavelet-based decomposition methods and neural networks for remote monitoring of airborne chemicals using millimeter wave spectroscopy. Because of instrumentation noise and the presence of untargeted chemicals, direct decomposition of the spectra requires a large number of training data and yields low accuracy. A neural network trained with features obtained from a discrete wavelet transform is demonstrated to have better decomposition with faster training time. Results based on simulated and experimental spectra are presented to show the efficacy of the wavelet-based methods.

  17. Effect of millimeter waves on survival of UVC-exposed Escherichia coli.

    PubMed

    Rojavin, M A; Ziskin, M C

    1995-01-01

    Bacterial cells of the strain Escherichia coli K12 were exposed to millimeter electromagnetic waves (mm waves) with and without additional exposure to ultraviolet light lambda = 254 nm (UVC). The mm waves were produced by a medical microwave generator emitting a 4-GHz-wide band around a 61 GHz center frequency and delivering an irradiation of 1 mW/cm2 and a standard absorption rate (SAR) of 84 W/kg to the bacteria. Exposure to the mm waves alone for up to 39 minutes did not change the survival rate of bacteria. Exposure to mm waves followed by UVC irradiation also did not alter the number of surviving E. coli cells in comparison to UVC-treated controls. When mm waves were applied after the UVC exposure, a dose-dependent increase of up to 30% in the survival of E. coli was observed compared to UVC + sham-irradiated bacteria. Because sham controls and experimental samples were maintained under the same thermal conditions, the effect is not likely to be due to heating, although the possibility of nonuniform distribution of microwave heating in different layers of irradiated bacterial suspension cannot be ruled out. The mechanism for this effect appears to involve certain DNA repair systems that act as cellular targets for mm waves.

  18. Wide-Field-of-View Millimeter-Wave Telescope Design with Ultra-Low Cross-Polarization

    SciTech Connect

    Bernacki, Bruce E.; Kelly, James F.; Sheen, David M.; Hatchell, Brian K.; Valdez, Patrick LJ; Tedeschi, Jonathan R.; Hall, Thomas E.; McMakin, Douglas L.

    2012-05-01

    As millimeter-wave arrays become available, off-axis imaging performance of the fore optics increases in importance due to the relatively large physical extent of the arrays. Typically, simple optical telescope designs are adapted to millimeter-wave imaging but single-mirror spherical or classic conic designs cannot deliver adequate image quality except near the optical axis. Since most millimeter-wave designs are quasi-optical, optical ray tracing and commercial design software can be used to optimize designs to improve off-axis imaging as well as minimize cross-polarization. Methods that obey the Dragone-Mizuguchi condition for the design of reflective millimeter-wave telescopes with low cross-polarization also provide additional degrees of freedom that offer larger fields of view than possible with single-reflector designs. Dragone’s graphical design method does not lend itself readily to computer-based optical design approaches, but subsequent authors expanded on Dragone’s geometric design approach with analytic expressions that describe the location, shape, off-axis height and tilt of the telescope elements that satisfy Dragone’s design rules and can be used as a first-order design for subsequent computer-based design and optimization. We investigate two design variants that obey the Dragone-Mizuguchi conditions that exhibit ultra-low polarization crosstalk and a large diffraction-limited field of view well suited to millimeter-wave imaging arrays.

  19. Broadband millimeter-wave spectroscopic study of Nearby (U)LIRGs

    NASA Astrophysics Data System (ADS)

    Inami, Hanae; Nakagawa, Takao; Shirahata, Mai

    We present the recent results of millimeter-wave spectroscopic observations of dusty (U)LIRGs which harbor AGN and/or obscured starburst cores. We then discuss the nature of (U)LIRGs by comparing with the near and mid-infrared spectra available so far which are taken with Spitzer and AKARI. In this study, we use 1-1.5mm spectra obtained with Z-Spec's, which is a millimeter broadband spectrometer covering 1mm atmospheric transmission window with a resolving power of 250- 350. It has 160 silicon nitride micro-mesh bolometers constructed in array and are cooled down below 100mK to achieve the background limited performance. This wide bandwidth make it possible to detect multiple lines at once and to do unbiased line surveys. It has been installed at Caltech Submillimeter Observatory (CSO) at Mauna Kea. Thanks to its compact size, lighttight, no moving parts and so on; it is an ideal candidate for future far-infrared spectrometer on board a cold telescope in space (e.g. BLISS on SPICA, Bradford et al.). In the present work, by using this unique Z-Spec features, we aim to investigate the nature of dusty (U)LIRGs, which are very luminous in infrared (Lir > 1012 Lsun ). Since energetic cores in the center of the (U)LIRGs are thought to be buried within the thick dust and thus not easy to be observed at optical, observation at longer wavelength is essential to study them. Z-Spec can detect millimeter-wave emission lines without suffering from the dust obscuration, such as 12 CO, 13 CO, HCO+ , HCN, HNC, CS which trace molecular gas, and the continuum emission from thermal dust emission at higher frequencies and the free-free emission at lower frequencies. Also AKARI and Spitzer are capable of observing the nearand mid-infrared spectral features in absorption (9.7µm Silicate dust, 3.4µm Carbonaceous dust, H2 O, CO) or PAH emissions. We will also examine the relation between the infrared and millimeter-wave spectral aspects from the present data taken with Z-Spec, AKARI and

  20. The Effect of Clouds on Water Vapor Profiling from the Millimeter-Wave Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Spinhirne, J. D.; Racette, P.; Chang, L. A.; Hart, W.

    1997-01-01

    Simultaneous measurements with the millimeter-wave imaging radiometer (MIR), cloud lidar system (CLS), and the MODIS airborne simulator (MAS) were made aboard the NASA ER-2 aircraft over the western Pacific Ocean on 17-18 January 1993. These measurements were used to study the effects of clouds on water vapor profile retrievals based on millimeter-wave radiometer measurements. The CLS backscatter measurements (at 0.532 and 1.064 am) provided information on the heights and a detailed structure of cloud layers; the types of clouds could be positively identified. All 12 MAS channels (0.6-13 Am) essentially respond to all types of clouds, while the six MIR channels (89-220 GHz) show little sensitivity to cirrus clouds. The radiances from the 12-/Am and 0.875-gm channels of the MAS and the 89-GHz channel of the MIR were used to gauge the performance of the retrieval of water vapor profiles from the MIR observations under cloudy conditions. It was found that, for cirrus and absorptive (liquid) clouds, better than 80% of the retrieval was convergent when one of the three criteria was satisfied; that is, the radiance at 0.875 Am is less than 100 W/cm.sr, or the brightness at 12 Am is greater than 260 K, or brightness at 89 GHz is less than 270 K (equivalent to cloud liquid water of less than 0.04 g/cm). The range of these radiances for convergent retrieval increases markedly when the condition for convergent retrieval was somewhat relaxed. The algorithm of water vapor profiling from the MIR measurements could not perform adequately over the areas of storm-related clouds that scatter radiation at millimeter wavelengths.

  1. Millimeter-wave ozone measurements for the network for the detection of stratospheric change

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Parrish, Alan

    1990-01-01

    The primary research objective is to initiate long-term monitoring of stratospheric ozone with a ground-based millimeter-wave spectrometer, the first of several such instruments projected to be part of the Network for the Detection of Stratospheric Change. The ultimate goal of this monitoring is twofold. First, to detect any secular trend in stratospheric ozone abundance, whether of natural or anthropogenic origin and, second, to provide ground-truth validation for existing and future satellite measurements of ozone. With this goal in mind, a more immediate objective is to validate the millimeter-wave measurements by tests of the instrument, internal consistency tests on the data, and most importantly, by intercomparison with all other available ozone measurements. The validation process is expected to lead to refinements in the instrument and its operating procedures and in the data analysis. The final objective is to perform short-term scientific studies with the data, including studies of the ozone diurnal and seasonal variations, and comparison of ozone variations with changes in other geophysical parameters, notably temperature and water vapor. Routine observations are now ongoing; these will allow continuing intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE II) and one of the lidars, which is permanently on site. The experience gained during the Stratospheric Ozone Intercomparison (STOIC) caused us to refine our calibration procedures and identify the need for internal shielding of the millimeter receiver from radio frequency interference. Installation of this shielding is planned for the near future and should allow improvements in the instrument calibration and a higher signal-to-noise ratio, both of which will result in improved measurement precision.

  2. An Overview of Signal Processing Techniques for Millimeter Wave MIMO Systems

    NASA Astrophysics Data System (ADS)

    Heath, Robert W.; Gonzalez-Prelcic, Nuria; Rangan, Sundeep; Roh, Wonil; Sayeed, Akbar M.

    2016-04-01

    Communication at millimeter wave (mmWave) frequencies is defining a new era of wireless communication. The mmWave band offers higher bandwidth communication channels versus those presently used in commercial wireless systems. The applications of mmWave are immense: wireless local and personal area networks in the unlicensed band, 5G cellular systems, not to mention vehicular area networks, ad hoc networks, and wearables. Signal processing is critical for enabling the next generation of mmWave communication. Due to the use of large antenna arrays at the transmitter and receiver, combined with radio frequency and mixed signal power constraints, new multiple-input multiple-output (MIMO) communication signal processing techniques are needed. Because of the wide bandwidths, low complexity transceiver algorithms become important. There are opportunities to exploit techniques like compressed sensing for channel estimation and beamforming. This article provides an overview of signal processing challenges in mmWave wireless systems, with an emphasis on those faced by using MIMO communication at higher carrier frequencies.

  3. The AzTEC millimeter-wave camera: Design, integration, performance, and the characterization of the (sub-)millimeter galaxy population

    NASA Astrophysics Data System (ADS)

    Austermann, Jason Edward

    One of the primary drivers in the development of large format millimeter detector arrays is the study of sub-millimeter galaxies (SMGs) - a population of very luminous high-redshift dust-obscured starbursts that are widely believed to be the dominant contributor to the Far-Infrared Background (FIB). The characterization of such a population requires the ability to map large patches of the (sub-)millimeter sky to high sensitivity within a feasible amount of time. I present this dissertation on the design, integration, and characterization of the 144-pixel AzTEC millimeter-wave camera and its application to the study of the sub-millimeter galaxy population. In particular, I present an unprecedented characterization of the "blank-field" (fields with no known mass bias) SMG number counts by mapping over 0.5 deg^2 to 1.1mm depths of ~1mJy - a previously unattained depth on these scales. This survey provides the tightest SMG number counts available, particularly for the brightest and rarest SMGs that require large survey areas for a significant number of detections. These counts are compared to the predictions of various models of the evolving mm/sub-mm source population, providing important constraints for the ongoing refinement of semi-analytic and hydrodynamical models of galaxy formation. I also present the results of an AzTEC 0.15 deg^2 survey of the COSMOS field, which uncovers a significant over-density of bright SMGs that are spatially correlated to foreground mass structures, presumably as a result of gravitational lensing. Finally, I compare the results of the available SMG surveys completed to date and explore the effects of cosmic variance on the interpretation of individual surveys.

  4. The general optics structure of millimeter-wave imaging diagnostic on TOKAMAK

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Xie, J.; Liu, W. D.; Luo, C.; Zhao, Z.; Chen, D.; Domier, C. W.; Luhmann, N. C., Jr.; Chen, M.; Hu, X.

    2016-01-01

    Advanced imaging optics techniques have significantly improved the performance of millimeter-wave imaging diagnostics, such as Electron Cyclotron Emission imaging and Microwave Imaging of Reflectometry. The fundamental functions of millimeter-wave imaging optics are focusing, collecting the emission or reflected microwave signal from the target area in the plasma and focusing the emitted (reflected) signal on the detector array. The location of the observation area can be changed using the focus lens. Another important function of the imaging optics is zooming. The size of the observation area in poloidal direction can be adjusted by the zoom lenses and the poloidal spatial resolution is determined by the level of zoom. The field curvature adjustment lenses are employed to adjust the shape of the image plane in the poloidal direction to reduce crosstalk between neighboring channels. The incident angle on each channel is controlled using the specific surface type of the front-side lenses to increase the signal-to-noise ratio. All functions are decoupled with the minimum number of lenses. Successful applications are given.

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  6. Calibration, Reconstruction, and Rendering of Cylindrical Millimeter-Wave Image Data

    SciTech Connect

    Sheen, David M.; Hall, Thomas E.

    2011-05-25

    Cylindrical millimeter-wave imaging systems and technology have been under development at the Pacific Northwest National Laboratory for many years. This technology has been commercialized, and systems are currently being deployed widely across the United States and internationally. These systems are effective at screening for concealed items of all types, however, new sensor designs, image reconstruction techniques, and image rendering algorithms, could potentially improve performance. At PNNL, a number of specific techniques have been developed recently to improve cylindrical imaging methods including wideband techniques, combining data from full 360 degree scans, polarimetric imaging techniques, calibration methods, and 3-D data visualization techniques. Many of these techniques exploit the three-dimensionality of the cylindrical imaging technique by optimizing the depth resolution of the system and using this information to enhance detection. Other techniques, such as polarimetric methods, exploit scattering physics of the millimeter-wave interaction with concealed targets on the body. In this paper, calibration, reconstruction, and three-dimensional rendering techniques will be described that optimize the depth information in these images and the display of the images to the operator.

  7. High-K ZST material for microwave and millimeter wave applications

    NASA Astrophysics Data System (ADS)

    Ioachim, A.; Ramer, R.; Toacsan, M. I.; Banciu, M. G.; Nedelcu, L.; Ghetu, D.; Stoica, G.; Annino, G.; Cassettari, M.; Martinelli, M.

    2004-02-01

    Wireless communications systems require new materials with special properties in specific frequency bands. The investigations on ZST type ceramics, (Zr0.8Sn0.2)TiO4, presented in this paper, recommend this materials for applications in microwaves and millimeter waves. The ZST materials were prepared using a standard solid-state reaction technology. The samples morphology, phase-composition and microstructure investigations were performed by using the scanning electron microscopy (SEM), and energy-disperse X-ray spectrometry (EDX). The crystalline phases were identified by X-ray diffractometry (XRD). The electromagnetic properties were investigated on ZST resonators by using a Computer Aided Measurement (CAM) in microwaves, combining a HP 8757C network analyzer and a HP 8350B sweep oscillator. The dielectric characteristics at millimeter waves were analyzed by investigation of the Whispering Gallery Modes on ZST disks. The low level NiO doping provides ZST materials with temperature coefficient τf in the range (-2 - +4) ppm/°C and decreases the dielectric loss. Materials with high values of the Qf product up to 50,000 and a dielectric constant about 36 at microwave frequencies were obtained. ZST dielectric resonators and substrates for hybrid integrated circuits with dimensions 1" x 1" and thickness in the range 0.6 - 1 mm were manufactured.

  8. Electromagnetic millimeter wave induced hypoalgesia: frequency dependence and involvement of endogenous opioids.

    PubMed

    Radzievsky, A A; Gordiienko, O V; Alekseev, S; Szabo, I; Cowan, A; Ziskin, M C

    2008-05-01

    Millimeter wave treatment (MMWT) is based on the systemic biological effects that develop following local skin exposure to low power electromagnetic waves in the millimeter range. In the present set of experiments, the hypoalgesic effect of this treatment was analyzed in mice. The murine nose area was exposed to MMW of "therapeutic" frequencies: 42.25, 53.57, and 61.22 GHz. MMWT-induced hypoalgesia was shown to be frequency dependent in two experimental models: (1) the cold water tail-flick test (chronic non-neuropathic pain), and (2) the wire surface test (chronic neuropathic pain following unilateral constriction injury to the sciatic nerve). Maximum hypoalgesic effect was obtained when the frequency was 61.22 GHz. Other exposure parameters were: incident power density = 13.3 mW/cm(2), duration of each exposure = 15 min. Involvement of delta and kappa endogenous opioids in the MMWT-induced hypoalgesia was demonstrated using selective blockers of delta- and kappa-opioid receptors and the direct ELISA measurement of endogenous opioids in CNS tissue. Possible mechanisms of the effect and the perspectives of the clinical application of MMWT are discussed.

  9. Precipitating Snow Retrievals from Combined Airborne Cloud Radar and Millimeter-Wave Radiometer Observations

    NASA Technical Reports Server (NTRS)

    Grecu, Mircea; Olson, William S.

    2008-01-01

    An algorithm for retrieving snow over oceans from combined cloud radar and millimeter-wave radiometer observations is developed. The algorithm involves the use of physical models to simulate cloud radar and millimeter-wave radiometer observations from basic atmospheric variables such as hydrometeor content, temperature, and relative humidity profiles and is based on an optimal estimation technique to retrieve these variables from actual observations. A high-resolution simulation of a lake-effect snowstorm by a cloud-resolving model is used to test the algorithm. That is, synthetic observations are generated from the output of the cloud numerical model, and the retrieval algorithm is applied to the synthetic data. The algorithm performance is assessed by comparing the retrievals with the reference variables used in synthesizing the observations. The synthetic observation experiment indicates good performance of the retrieval algorithm. The algorithm is also applied to real observations from the Wakasa Bay field experiment that took place over the Sea of Japan in January and February 2003. The application of the retrieval algorithm to data from the field experiment yields snow estimates that are consistent with both the cloud radar and radiometer observations.

  10. A tunable millimeter-wave phase shifter driven by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Araromi, O. A.; Romano, P.; Rosset, S.; Perruisseau-Carrier, J.; Shea, H. R.

    2014-03-01

    We present the successful operation of the first dielectric elastomer actuator (DEA) driven tunable millimeter-wave phase shifter. The development of dynamically reconfigurable microwave/millimeter-wave (MW/MMW) antenna devices is becoming a prime need in the field of telecommunications and sensing. The real time updating of antenna characteristics such as coverage or operation frequency is particularly desired. However, in many circumstances currently available technologies suffer from high EM losses, increased complexity and cost. Conversely, reconfigurable devices based on DEAs offer low complexity, low electromagnetic (EM) losses and analogue operation. Our tunable phase shifter consists of metallic strips suspended a fixed distance above a coplanar waveguide (CPW) by planar DEAs. The planar actuators displace the metallic strips (10 mm in length) in-plane by 500 μm, modifying the EM field distribution, resulting in the desired phase shift. The demanding spacing (50 +/-5 μm between CPW and metallic strips) and parallel alignment criteria required for optimal device operation are successfully met in our device design and validated using bespoke methods. Our current device, approximately 60 mm x 60 mm in planar dimensions, meets the displacement requirements and we observe a considerable phase shift (~95° at 25 GHz) closely matching numerical simulations. Moreover, our device achieves state of the art performance in terms of phase shift per EM loss ~235°/dB (35 GHz), significantly out performing other phase shifter technologies, such as MMIC phase shifters.

  11. First Results of two Optical Millimeter-wave Scintillometer Systems during LITFASS2009

    NASA Astrophysics Data System (ADS)

    Hartogensis, O. K.; Weisensee, U.; Evans, J.; van Kesteren, A. J. H.; Beyrich, F.

    2010-09-01

    Scintillometry has become a generally accepted technique to obtain area-averaged turbulent fluxes at the 0.1 - 10 km scale. Optical large aperture scintillometers (LAS) that yield the sensible heat flux (H) have been tested under a wide range of circumstances (De Bruin, 2002) and are commercially available. With a LAS in combination with a millimeter-wave scintillometer (MWS) the evapotranspiration (LvE) can be determined. Our aim is to develop such a combined Optical Millimeter Wave Scintillometer (OMS) system for operational use. In this study we will present results of the two OMS systems that were operated in the summer of 2009 as part of the LITFASS2009 campaign at the Meteorological Observatory Lindenberg, Germany. Although the final goal of the OMS system is to obtain LvE, first a number of instrumental issues have to be dealt with, such as scintillations caused by water vapor absorption, direct observation of the correlation between atmospheric temperature and humidity fluctuations, saturation of the LAS signal for long paths and the sensitivity of the OMS to mast vibrations. To this end all raw signals of the scintillometers were measured and stored at 500Hz, providing maximum freedom in the data processing, e.g. allowing spectral filtering. In addition, 2D-acceloremeter measurements were taken on the sensors to evaluate the impact of mast-vibration.

  12. Planar Schottky varactor diode and corresponding large signal model for millimeter-wave applications

    NASA Astrophysics Data System (ADS)

    Jie, Huang; Qian, Zhao; Hao, Yang; Junrong, Dong; Haiying, Zhang

    2014-05-01

    A GaAs-based planar Schottky varactor diode (PSVD) is successfully developed to meet the demand of millimeter-wave harmonic generation. Based on the measured S-parameter, I-V and C-V characteristics, an accurate and reliable extraction method of the millimeter-wave large signal equivalent circuit model of the PSVD is proposed and used to extract the model parameters of two PSVDs with Schottky contact areas of 160 μm2 and 49 μm2, respectively. The simulated S-parameter, I-V and C-V performances of the proposed physics-based model are in good agreement with the measured one over the frequency range from 0.1 to 40 GHz for wide operation bias range from -10 to 0.6 V for these two PSVDs. The proposed equivalent large signal circuit model of this PSVD has been proven to be reliable and can potentially be used to design microwave circuits., planar Schottky varactor diode

  13. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.

    PubMed

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity. PMID:27399715

  14. Research and development project for millimeter-wave premises communication systems

    NASA Astrophysics Data System (ADS)

    Ihara, Toshio; Sugimoto, Yuji; Fujita, Masaharu

    1995-09-01

    There is a growing need for high-speed wireless communication systems such as the wireless LAN's used in the premises environment. In Japan, wireless LAN systems at 2.4 GHz and 19 GHz bands have recently been put into practical use and have been gaining popularity. Although these systems have the capability of handling data rates up to about 10 Mbps which are compatible with the wired Ethernet system, the increasing computational and data-handling capacities of personal computers and workstations are pressing the development of more broadband and higher data rate wireless communication systems towards the multimedia era. The millimeter-wave band is promising for this field of application because of its wide frequency spectrum, compactness and light weight of equipment, and the ease of configuring systems which are free from interference. From this background, the Communications Research Laboratory has commenced a research and development program for millimeter-wave premises communication systems. The present paper introduces the outline of this program.

  15. Passive, real-time millimeter wave imaging for degraded visual environment mitigation

    NASA Astrophysics Data System (ADS)

    Dillon, Thomas E.; Schuetz, Christopher A.; Martin, Richard D.; Mackrides, Daniel G.; Shi, Shouyuan; Yao, Peng; Shreve, Kevin; Harrity, Charles; Prather, Dennis W.

    2015-05-01

    Degraded visual environments create dangerous conditions for aircraft pilots due to loss of situational awareness and/or ground reference, which can result in accidents during navigation or landing. Imaging in millimeter wave spectral bands offers the ability to maintain pilot's situational awareness despite DVE with a "see-through" imaging modality. Millimeter waves exhibit low atmospheric attenuation as well as low scattering loss from airborne particulates, e.g. blowing sand, dust, fog, and other visual obscurants. As such, Phase Sensitive Innovations (PSI) has developed a passive, real-time mmW imager to mitigate brownout dangers for rotorcraft. The imager consists of a distributed aperture array with conversion of detected mmW signals to optical frequencies for processing and image formation. Recently we performed operationally representative flight testing of our sensor while imaging various natural and manmade objects. Here we present imagery collected during these tests as it confirms the performance of the sensor technology and illustrates phenomenology encountered in the mmW spectrum.

  16. Millimeter and submillimeter-wave spectrum of CHCl 3. Determination of the h3 splitting constant

    NASA Astrophysics Data System (ADS)

    Cazzoli, G.; Cotti, G.; Dore, L.

    1993-02-01

    The millimeter and submillimeter-wave spectrum of the ground state of CH 35Cl 3 has been observed and analyzed up to J=106. The resulting spectroscopic constants are (in MHz): B0=3302.07587(12), DJ=1.511716(66) × 10 -3, DJK=-2.51757(20) × 10 -3, HJJJ=0.1268(12) × 10 -8, HJJK=-0.5000(30) × 10 -8, HKKJ=0.652(11) × 10 -8, LJ=-0.178(55) × 10 -14. The millimeter-wave spectrum of CH 37Cl 3 has also been observed and analyzed providing the following values of the rotational constants (in MHz): B0=3129.61007(57), DJ=1.36571(64) × 10 -3, DJK=-2.2769(51) × 10 -3, HJJJ=0.135(20) × 10 -8, HJJK=-0.78(18) × 10 -8, HKKJ=0.283(49) × 10 -7. The splitting of the K=3 ground state lines of CH 35Cl 3 has been observed starting from the J=46-45 transition and the value of the splitting constatnt h3 is determined to be 0.15007(25) × 10 -9 MHz.

  17. Applications of holography in the millimeter-wave and terahertz region

    NASA Astrophysics Data System (ADS)

    McAuley, I.; Murphy, J. A.; Trappe, N.; Mahon, R.; McCarthy, D.; McLaughlin, P.

    2011-02-01

    In this paper we report on the improvements in holographic techniques developed for applications in the millimeter-wave and terahertz range of the electromagnetic spectrum. An experimental arrangement, adapted from off-axis near-field holography at visible wavelengths, was employed that utilizes a raster scanning detector to record the holograms digitally. The object and reference fields were based on the beams from a pair of radiating antennas fed by a single coherent source via a cross-guide coupler. Using phase retrieval methods, the recorded holographic interference pattern can be used to determine the effective phase centers of radiating feed antennas, including non standard radiators such as planar lens antennas. By numerically propagating the recovered object beam back to the source plane the object beam in the vicinity of the waist (the effective phase center) can be recovered. Among the issues investigated was improvement in the accuracy of the phase retrieval process by taking account of the non-perfect reference beam. The technique has also been applied to the investigation of increased co-polarisation levels in the scattering of radiation from surface features of dielectric materials on millimeter-wave radiation.

  18. A framework of passive millimeter-wave imaging simulation for typical ground scenes

    NASA Astrophysics Data System (ADS)

    Yan, Luxin; Ge, Rui; Zhong, Sheng

    2009-10-01

    Passive millimeter-wave (PMMW) imaging offers advantages over visible and IR imaging in having better all weather performance. However the PMMW imaging sensors are state-of-the-art to date, sometimes it is required to predict and evaluate the performance of a PMMW sensor under a variety of weather, terrain and sensor operational conditions. The PMMW scene simulation is an efficient way. This paper proposes a framework of the PMMW simulation for ground scenes. Commercial scene modeling software, Multigen and Vega, are used to generate the multi-viewpoint and multi-scale description for natural ground scenes with visible images. The background and objects in the scene are classified based on perceptive color clusters and mapped with different materials. Further, the radiometric temperature images of the scene are calculated according to millimeter wave phenomenology: atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Finally, the simulated output PMMW images are generated by applying the sensor characteristics such as the aperture size, data sample scheme and system noise. Tentative results show the simulation framework can provide reasonable scene's PMMW image with high fidelity.

  19. Characteristics of ocular temperature elevations after exposure to quasi- and millimeter waves (18-40 GHz)

    NASA Astrophysics Data System (ADS)

    Kojima, Masami; Suzuki, Yukihisa; Tsai, Cheng-Yu; Sasaki, Kensuke; Wake, Kanako; Watanabe, Soichi; Taki, Masao; Kamimura, Yoshitsugu; Hirata, Akimasa; Sasaki, Kazuyuki; Sasaki, Hiroshi

    2015-04-01

    In order to investigate changes in ocular temperature in rabbit eyes exposed to different frequencies (18 to 40 GHz) of quasi-millimeter waves, and millimeter waves (MMW). Pigmented rabbits were anesthetized with both general and topical anesthesia, and thermometer probes (0.5 mm in diameter) were inserted into their cornea (stroma), lens (nucleus) and vitreous (center of vitreous). The eyes were exposed unilaterally to 200 mW/cm2 by horn antenna for 3 min at 18, 22 and 26.5 GHz using a K band exposure system or 26.5, 35 and 40 GHz using a Ka band exposure system. Changes in temperature of the cornea, lens and vitreous were measured with a fluoroptic thermometer. Since the ocular temperatures after exposure to 26.5 GHz generated by the K band and Ka band systems were similar, we assumed that experimental data from these 2 exposure systems were comparable. The highest ocular temperature was induced by 40 GHz MMW, followed by 35 GHz. The 26.5 and 22 GHz corneal temperatures were almost the same. The lowest temperature was recorded at 18 GHz. The elevation in ocular temperature in response to exposure to 200 mW/cm2 MMW is dependent on MMW frequency. MMW exposure induced heat is conveyed not only to the cornea but also the crystalline lens.

  20. Microwave and Millimeter Wave Imaging Using Synthetic Aperture Focusing and Holographical Techniques

    NASA Technical Reports Server (NTRS)

    Case, Joseph Tobias

    2005-01-01

    Microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods have shown great potential for determining material composition in composite structures, determining material thickness or debond thickness between two layers, and determining the location and size of flaws, defects, and anomalies. The same testing methods have also shown great potential to produce relatively high-resolution images of voids inside Spray On Foam Insulation (SOFI) test panels using real focused methods employing lens antennas. An alternative to real focusing methods are synthetic focusing methods. The essence of synthetic focusing is to match the phase of the scattered signal to measured points spaced regularly on a plane. Many variations of synthetic focusing methods have already been developed for radars, ultrasonic testing applications, and microwave concealed weapon detection. Two synthetic focusing methods were investigated; namely, a) frequency-domain synthetic aperture focusing technique (FDSAFT), and b) wide-band microwave holography. These methods were applied towards materials whose defects were of low dielectric contrast like air void in SOFI. It is important to note that this investigation used relatively low frequencies from 8.2 GHz to 26.5 GHz that are not conducive for direct imaging of the SOFI. The ultimate goal of this work has been to demonstrate the capability of these methods before they are applied to much higher frequencies such as the millimeter wave frequency spectrum (e.g., 30-300 GHz).

  1. Millimeter Wave Detection of Localized Anomalies in the Space Shuttle External Fuel Tank Insulating Foam

    NASA Technical Reports Server (NTRS)

    Kharkovsky, S.; Case, J. T.; Abou-Khousa, M. A.; Zoughi, R.; Hepburn, F.

    2006-01-01

    The Space Shuttle Columbia's catastrophic accident emphasizes the growing need for developing and applying effective, robust and life-cycle oriented nondestructive testing (NDT) methods for inspecting the shuttle external fuel tank spray on foam insulation (SOFI). Millimeter wave NDT techniques were one of the methods chosen for evaluating their potential for inspecting these structures. Several panels with embedded anomalies (mainly voids) were produced and tested for this purpose. Near-field and far-field millimeter wave NDT methods were used for producing images of the anomalies in these panels. This paper presents the results of an investigation for the purpose of detecting localized anomalies in several SOFI panels. To this end, reflectometers at a relatively wide range of frequencies (Ka-band (26.5 - 40 GHz) to W-band (75 - 110 GHz)) and utilizing different types of radiators were employed. The resulting raw images revealed a significant amount of information about the interior of these panels. However, using simple image processing techniques the results were improved in particular as it relate s to detecting the smaller anomalies. This paper presents the results of this investigation and a discussion of these results.

  2. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands

    PubMed Central

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity. PMID:27399715

  3. Broadband Plasma-Sprayed Anti-reflection Coating for Millimeter-Wave Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Jeong, O.; Lee, A.; Raum, C.; Suzuki, A.

    2016-08-01

    We have developed a plasma-sprayed anti-reflection (AR) coating technology for millimeter-wave astrophysics experiments with cryogenic optics which achieves minimal dissipative loss and broad bandwidth and is easily and accurately applied. Plasma spraying is a coating process through which melted or heated materials are sprayed onto a substrate. The dielectric constants of the plasma-sprayed coatings were tuned between 2.7 and 7.9 by mixing hollow ceramic microspheres with alumina powder as the base material and varying the plasma energy of the spray. By spraying low loss ceramic materials with a tunable dielectric constant, we can apply multiple layers of AR coating for broadband millimeter-wave detection. At 300 K, we achieved a fractional bandwidth of 106 over 90% transmission using a three-layer AR coating. Applying ceramic coatings on ceramic lenses offers an additional benefit of preventing cryogenic delamination of the coatings. We report on methodology of coating application and measurement of uniformity, repeatability, transmission property, and cryogenic adhesion performance.

  4. System design development for microwave and millimeter-wave materials processing

    NASA Astrophysics Data System (ADS)

    Feher, Lambert; Thumm, Manfred

    2002-06-01

    The most notable effect in processing dielectrics with micro- and millimeter-waves is volumetric heating of these materials, offering the opportunity of very high heating rates for the samples. In comparison to conventional heating where the heat transfer is diffusive and depends on the thermal conductivity of the material, the microwave field penetrates the sample and acts as an instantaneous heat source at each point of the sample. By this unique property, microwave heating at 2.45 GHz and 915 MHz ISM (Industrial, Medical, Scientific) frequencies is established as an important industrial technology since more than 50 years ago. Successful application of microwaves in industries has been reported e.g. by food processing systems, domestic ovens, rubber industry, vacuum drying etc. The present paper shows some outlines of microwave system development at Forschungszentrum Karlsruhe, IHM by transferring properties from the higher frequency regime (millimeter-waves) to lower frequency applications. Anyway, the need for using higher frequencies like 24 GHz (ISM frequency) for industrial applications has to be carefully verified with respect to special physical/engineering advantages or to limits the standard microwave technology meets for the specific problem.

  5. First Eigenmode Transmission by High Efficient CSI Estimation for Multiuser Massive MIMO Using Millimeter Wave Bands.

    PubMed

    Maruta, Kazuki; Iwakuni, Tatsuhiko; Ohta, Atsushi; Arai, Takuto; Shirato, Yushi; Kurosaki, Satoshi; Iizuka, Masataka

    2016-01-01

    Drastic improvements in transmission rate and system capacity are required towards 5th generation mobile communications (5G). One promising approach, utilizing the millimeter wave band for its rich spectrum resources, suffers area coverage shortfalls due to its large propagation loss. Fortunately, massive multiple-input multiple-output (MIMO) can offset this shortfall as well as offer high order spatial multiplexing gain. Multiuser MIMO is also effective in further enhancing system capacity by multiplexing spatially de-correlated users. However, the transmission performance of multiuser MIMO is strongly degraded by channel time variation, which causes inter-user interference since null steering must be performed at the transmitter. This paper first addresses the effectiveness of multiuser massive MIMO transmission that exploits the first eigenmode for each user. In Line-of-Sight (LoS) dominant channel environments, the first eigenmode is chiefly formed by the LoS component, which is highly correlated with user movement. Therefore, the first eigenmode provided by a large antenna array can improve the robustness against the channel time variation. In addition, we propose a simplified beamforming scheme based on high efficient channel state information (CSI) estimation that extracts the LoS component. We also show that this approximate beamforming can achieve throughput performance comparable to that of the rigorous first eigenmode transmission. Our proposed multiuser massive MIMO scheme can open the door for practical millimeter wave communication with enhanced system capacity.

  6. Sensor fusion with passive millimeter-wave and laser radar for target detection

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Shin; Amphay, Sengvieng A.; Sundstrom, Bryce M.

    1999-07-01

    Advanced sensors and guidance techniques are required in killing mobile offensive and defensive systems. Many different sensors such as radar, video camera, laser radar (LADAR), millimeter wave systems, infrared imagers, acoustic sensors, etc. are available for such usage. However, no single sensor provides completely satisfactory capabilities. Since some sensors have complementary capabilities, integration of multiple sensors for kill can relax the task difficulty and provide more reliable results. The use of multiple sensors can also reduce the possibility of being defeated by countermeasures. In this study, we investigated the framework and investigated potential techniques for integration and fusion of information from passive millimeter wave (PMMW) and LADAR systems. The focus has been on target detection. The PMMW is used to detect metal objects and the LADAR examines those regions of interest for other evidence of existence of a target. Advances obtained by integrating these two sensors include reduction of task complexity and improvement of reliability, both due to efficient localization of regions of interest from the PMMW. Since PMMW possesses weather penetration capabilities through fog, cloud, smoke, etc., the combined system has a near-all-weather capability. A LADAR provides 3D information, and it should be used as the primary sensor for target acquisition upon target detection. The framework of the fusion is based on the Dempster-Shafer decision method. The fusion may be done in the algorithm level and sensor level. With the Dempster-Shafer method as the framework, new sensors or new decision components can be easily integrated.

  7. Comparison of methods for super-resolving passive millimeter wave images

    NASA Astrophysics Data System (ADS)

    Gleed, David G.; Lettington, Alan H.; Hong, Qi H.

    1996-11-01

    We present our results to date on the application of super- resolution techniques to passive millimeter-wave imagery and discuss the merits of both linear and non-linear methods giving an indication of the improvement which can be obtained. Passive millimeter-wave imagery is potentially useful where poor weather visibility is required. Its spatial resolution, however, is severely restricted due to the diffraction limit of the optics. Super-resolution methods may be used to increase this spatial resolution but often at the expense of processing time. Linear methods may be implemented in real time whereas non-linear methods which are required to restore images with lost spatial frequencies are more time consuming. There is clearly a trade-off between resolution and processing time. In order to make any useful comparisons it is necessary to quantify any improvements, we do this by investigating the resolution and spatial frequency content of the images. We have applied our super-resolution algorithms to conventional images as well as millimetric bar pattern images which were acquired at 94 and 140 GHz. These methods give excellent results, providing a significant quantifiable increase in spatial resolution with only a small reduction in the final signal to noise ratio. Comparisons will be made between the results obtained with various super-resolution algorithms.

  8. Printed circuit board impedance matching step for microwave (millimeter wave) devices

    SciTech Connect

    Pao, Hsueh-Yuan; Aguirre, Jerardo; Sargis, Paul

    2013-10-01

    An impedance matching ground plane step, in conjunction with a quarter wave transformer section, in a printed circuit board provides a broadband microwave matching transition from board connectors or other elements that require thin substrates to thick substrate (>quarter wavelength) broadband microwave (millimeter wave) devices. A method of constructing microwave and other high frequency electrical circuits on a substrate of uniform thickness, where the circuit is formed of a plurality of interconnected elements of different impedances that individually require substrates of different thicknesses, by providing a substrate of uniform thickness that is a composite or multilayered substrate; and forming a pattern of intermediate ground planes or impedance matching steps interconnected by vias located under various parts of the circuit where components of different impedances are located so that each part of the circuit has a ground plane substrate thickness that is optimum while the entire circuit is formed on a substrate of uniform thickness.

  9. Photonic methods of millimeter-wave generation based on Brillouin fiber laser

    NASA Astrophysics Data System (ADS)

    Al-Dabbagh, R. K.; Al-Raweshidy, H. S.

    2016-05-01

    In optical communication link, generation and delivering millimeter-wave (mm-waves) in radio over fiber (RoF) systems has limitation due to fiber non-linearity effects. To solve this problem, photonic methods of mm-wave generation based on characterizations of Brillouin fiber laser are proposed in this work for the first time. Three novel photonic approaches for mm-wave generation methods based on Brillouin fiber laser and phase modulator are proposed and demonstrated by simulation. According to our theoretical analysis and simulation, mm-waves with frequency up to 80 GHz and good signal to noise ratio (SNR) up to 90 dB are generated by new and cost effective methods of generation that make them suitable for applications of the fifth generation (5G) networks. The proposed configurations increase the stability and the quality of the mm-wave generation system by using a single laser source as a pump wave and the fiber non-linearity effects are reduced. A key advantage of this research is that proposed a number of very simple generation methods and cost effective which only use standard components of optical telecommunications. Stimulated Brillouin Scattering (SBS) effect that exists in the optical fiber is studied with the characterization of phase modulator. An all optically stable mm-wave carriers are achieved successfully in the three different methods with different frequencies from 20 GHz up to 80 GHz. Simulation results show that all these carriers have low phase noise, good SNR ranging between 60 and 90 dB and tuning capability in comparison with previous methods reported. This makes them suitable for mm-wave transmission in RoF systems to transmit data in the next generation networks.

  10. A millimeter/sub-millimeter-wave spectroscopic study of the FeCl radical (X 6Δ i)

    NASA Astrophysics Data System (ADS)

    Allen, M. D.; Li, B. Z.; Ziurys, L. M.

    1997-05-01

    Pure rotational spectroscopy of the FeCl radical (X 6Δ i) has been carried out using millimeter/sub-millimeter direct absorption techniques. The species was created by the reaction of chlorine with iron vapor. All six spin-orbit components were observed in the majority of the twenty-one rotational transition recorded. Chlorine hyperfine structure was resolved in the Ω = 9/2 and 7/2 components, and lambda-type doubling observed in the Ω = 3/21/2, and-1/2 ladders. The data were analyzed with a 6Δ Hamiltonian, and rotational, fine structure, lambda-doubling, and hyperfine parameters determined. The hyperfine and lambda-doubling interactions in FeCl appear to be different from those in the FeF radical.

  11. Comparison of Focused and Near-Field Imaging of Spray on Foam Insulation (SOFI) at Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Kharkovshy, S.; Zoughi, R.; Hepburn, F. L.

    2007-01-01

    Millimeter wave imaging techniques can provide high spatial-resolution images of various composites. Lens antennas may be incorporated into the imaging system to provide a small incident beam footprint. Another approach may involve the use of horn antennas, which if operating in their near-fields, images with reasonably high spatial-resolutions may also be obtained. This paper gives a comparison between such near-field and focused far-field imaging of the Space Shuttle Spray on Foam Insulation (SOFI) used in its external fuel tank at millimeter wave frequencies. Small horn antennas and lens antennas with relatively long depth of focus were used in this investigation.

  12. The Application of Millimeter Wave Spectroscopy to Ground-Based Remote Sensing of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.

    A new ground-based millimeter wave radiometer, SPEIR, was designed as part of an observation system to detect and monitor ozone-related trace gases in the Arctic stratosphere. SPEIR is designed to operate in the frequency range 265--280 GHz and measure the atmospheric spectra of ozone, nitrous oxide, nitric acid, and chlorine monoxide, from which vertical profiles of the gas concentrations can be retrieved. The observation system was characterised and simulated to determine its capability while operating at its intended location at Eureka, Nunavut (80°N). The altitude ranges and resolution of the retrieved profiles were determined, as well as the most significant sources of error in the profile of each gas. Optimal estimation statistics were compared to inversions of 500 simulated spectra. The results are in good agreement but showed that nonlinearities in the forward model, if not accounted for, can cause errors of 5--10% when constructing climatologies or analyzing trends with the trace gas profiles. A sensitivity study was performed to quantify the effects that uncertainties in the spectral parameters of molecules have on ground-based measurements at 265--280 GHz, and recommendations are made for new laboratory measurements. An inversion scheme was created to retrieve ozone profiles from measurements made by KIMRA (Kiruna Microwave Radiometer) and MIRA 2 (Millimeter Wave Radiometer 2), two ground-based millimeter wave radiometers in Kiruna, Sweden (68°N). The resulting profiles in winter/spring 2012/2013 were compared to each other, and to those from ozonesondes and the satellite instrument Aura MLS (Microwave Limb Sounder). The Kiruna instruments are biased low compared to the ozonesondes and generally agree with MLS. A significant oscillatory bias was found in KIMRA profiles and is attributed to standing wave features in the spectral measurements. Winter-time KIMRA ozone from 2008--2013 was used to investigate the natural variability of ozone above Kiruna. A

  13. The Application of Millimeter Wave Spectroscopy to Ground-Based Remote Sensing of the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ryan, Niall J.

    A new ground-based millimeter wave radiometer, SṔEIR, was designed as part of an observation system to detect and monitor ozone-related trace gases in the Arctic stratosphere. SṔEIR is designed to operate in the frequency range 265-280 GHz and measure the atmospheric spectra of ozone, nitrous oxide, nitric acid, and chlorine monoxide, from which vertical profiles of the gas concentrations can be retrieved. The observation system was characterised and simulated to determine its capability while operating at its intended location at Eureka, Nunavut (80°N). The altitude ranges and resolution of the retrieved profiles were determined, as well as the most significant sources of error in the profile of each gas. Optimal estimation statistics were compared to inversions of 500 simulated spectra. The results are in good agreement but showed that nonlinearities in the forward model, if not accounted for, can cause errors of 5- 10% when constructing climatologies or analyzing trends with the trace gas profiles. A sensitivity study was performed to quantify the effects that uncertainties in the spectral parameters of molecules have on ground-based measurements at 265-280 GHz, and recommendations are made for new laboratory measurements. An inversion scheme was created to retrieve ozone profiles from measurements made by KIMRA (Kiruna Microwave Radiometer) and MIRA 2 (Millimeter Wave Radiometer 2), two ground-based millimeter wave radiometers in Kiruna, Sweden (68°N). The resulting profiles in winter/spring 2012/2013 were compared to each other, and to those from ozonesondes and the satellite instrument Aura MLS (Microwave Limb Sounder). The Kiruna instruments are biased low compared to the ozonesondes and generally agree with MLS. A significant oscillatory bias was found in KIMRA profiles and is attributed to standing wave features in the spectral measurements. Winter-time KIMRA ozone from 2008-2013 was used to investigate the natural variability of ozone above Kiruna

  14. A Wing Pod-based Millimeter Wave Cloud Radar on HIAPER

    NASA Astrophysics Data System (ADS)

    Vivekanandan, Jothiram; Tsai, Peisang; Ellis, Scott; Loew, Eric; Lee, Wen-Chau; Emmett, Joanthan

    2014-05-01

    One of the attractive features of a millimeter wave radar system is its ability to detect micron-sized particles that constitute clouds with lower than 0.1 g m-3 liquid or ice water content. Scanning or vertically-pointing ground-based millimeter wavelength radars are used to study stratocumulus (Vali et al. 1998; Kollias and Albrecht 2000) and fair-weather cumulus (Kollias et al. 2001). Airborne millimeter wavelength radars have been used for atmospheric remote sensing since the early 1990s (Pazmany et al. 1995). Airborne millimeter wavelength radar systems, such as the University of Wyoming King Air Cloud Radar (WCR) and the NASA ER-2 Cloud Radar System (CRS), have added mobility to observe clouds in remote regions and over oceans. Scientific requirements of millimeter wavelength radar are mainly driven by climate and cloud initiation studies. Survey results from the cloud radar user community indicated a common preference for a narrow beam W-band radar with polarimetric and Doppler capabilities for airborne remote sensing of clouds. For detecting small amounts of liquid and ice, it is desired to have -30 dBZ sensitivity at a 10 km range. Additional desired capabilities included a second wavelength and/or dual-Doppler winds. Modern radar technology offers various options (e.g., dual-polarization and dual-wavelength). Even though a basic fixed beam Doppler radar system with a sensitivity of -30 dBZ at 10 km is capable of satisfying cloud detection requirements, the above-mentioned additional options, namely dual-wavelength, and dual-polarization, significantly extend the measurement capabilities to further reduce any uncertainty in radar-based retrievals of cloud properties. This paper describes a novel, airborne pod-based millimeter wave radar, preliminary radar measurements and corresponding derived scientific products. Since some of the primary engineering requirements of this millimeter wave radar are that it should be deployable on an airborne platform

  15. Millimeter wave promotes the synthesis of extracellular matrix and the proliferation of chondrocyte by regulating the voltage-gated K+ channel.

    PubMed

    Li, Xihai; Liu, Chao; Liang, Wenna; Ye, Hongzhi; Chen, Wenlie; Lin, Ruhui; Li, Zuanfang; Liu, Xianxiang; Wu, Mingxia

    2014-07-01

    Previously, we reported that millimeter wave promoted the chondrocyte proliferation by pushing cell cycle progression. Activation of K(+) channels plays an essential role in the stimulating of extracellular matrix (ECM) synthesis and the cell proliferation in chondrocytes. While it is unclear if millimeter wave enhances ECM synthesis and proliferation of chondrocytes by regulating K(+) channel activity, we here investigated the effects of millimeter waves on ECM synthesis, chondrocyte proliferation and ion channels in the primary chondrocyte culture. We found that millimeter waves led to the increase of chondrocyte viability, the morphological changes of chondrocyte, and the F-actin distortion and remodeling. Ultrastructural analysis showed that treated chondrocytes contained an expansion of mitochondria and granular endoplasmic reticulum, and a high number of cytoplasmic vesicles in the cytoplasm compared to untreated cells, suggesting millimeter waves increased the energy metabolism and protein synthesis of chondrocytes. The analysis of differential ion channels' genes expression further showed an obvious increase of Kcne1, Kcnj3 and Kcnq2. To determine the role of voltage-gated K(+) channel in chondrocyte, we blocked the voltage-gated K(+) channel with 10 mM tetraethylammonium (TEA) and treated chondrocytes with millimeter waves. The results indicated that TEA significantly negated the promotion of millimeter waves for the ECM synthesis and chondrocyte proliferation. Our results support the hypothesis that millimeter waves promote the synthesis of ECM and the proliferation of chondrocyte by regulating the voltage-gated K(+) channel.

  16. Efficient Preamble Design Technique for Millimeter-Wave Cellular Systems with Beamforming.

    PubMed

    Han, Dae Geun; Kim, Yeong Jun; Cho, Yong Soo

    2016-01-01

    The processing time for beam training in millimeter-wave (mmWave) cellular systems can be significantly reduced by a code division multiplexing (CDM)-based technique, where multiple beams are transmitted simultaneously with their corresponding Tx beam IDs (BIDs) in the preamble. However, mmWave cellular systems with CDM-based preambles require a large number of cell IDs (CIDs) and BIDs, and a high computational complexity for CID and BID (CBID) searches. In this paper, a new preamble design technique that can increase the number of CBIDs significantly is proposed, using a preamble sequence constructed by a combination of two Zadoff-Chu (ZC) sequences. An efficient technique for the CBID detection is also described for the proposed preamble. It is shown by simulations using a simple model of an mmWave cellular system that the proposed technique can obtain a significant reduction in the complexity of the CBID detection without a noticeable performance degradation, compared to the previous technique.

  17. Efficient Preamble Design Technique for Millimeter-Wave Cellular Systems with Beamforming

    PubMed Central

    Han, Dae Geun; Kim, Yeong Jun; Cho, Yong Soo

    2016-01-01

    The processing time for beam training in millimeter-wave (mmWave) cellular systems can be significantly reduced by a code division multiplexing (CDM)-based technique, where multiple beams are transmitted simultaneously with their corresponding Tx beam IDs (BIDs) in the preamble. However, mmWave cellular systems with CDM-based preambles require a large number of cell IDs (CIDs) and BIDs, and a high computational complexity for CID and BID (CBID) searches. In this paper, a new preamble design technique that can increase the number of CBIDs significantly is proposed, using a preamble sequence constructed by a combination of two Zadoff-Chu (ZC) sequences. An efficient technique for the CBID detection is also described for the proposed preamble. It is shown by simulations using a simple model of an mmWave cellular system that the proposed technique can obtain a significant reduction in the complexity of the CBID detection without a noticeable performance degradation, compared to the previous technique. PMID:27455260

  18. Analysis of the modulation impairments in optical sideband injection locking for millimeter-wave signal generation

    NASA Astrophysics Data System (ADS)

    Aldaya, Ivan; Campuzano, Gabriel; Castañón, Gerardo

    2014-03-01

    In optical sideband injection locking (OSBIL) transmitters, the millimeter-wave (mm-wave) signal is generated heterodyning the phase-correlated outputs of two lasers, resulting in mm-wave signals with high frequency purity. Additionally, OSBIL is a cost-effective mm-wave generation technique since it does not require any external broad-bandwidth optical modulator. However, the non-linear distortion and the noise of the directly modulated laser limit its performance. This paper studies for the first time, the modulation impairments in terms of the injection conditions considering the sideband asymmetry that persists in heterodyne generation techniques. Signal-to-noise ratio and nonlinear distortion are analyzed through simulations showing different performance for upper and lower modulation sidebands and its dependence on the intermediate frequency. We show that the noise spectral density is reduced setting up the injected laser at (i) low power injection ratios and using a low intermediate frequency or (ii) higher power injection ratios, a negative frequency detuning, and a higher intermediate frequency. Regarding nonlinearities, we show that its effect on the lower modulation sideband is less significant than in the upper sideband. This impairment analysis is used to optimize the generation of OFDM signals in the 60-GHz band, achieving 2.5 Gbps generation with a spectral efficiency of 3.4 bps/Hz.

  19. Photonic generation of linearly chirped millimeter wave based on comb-spacing tunable optical frequency comb

    NASA Astrophysics Data System (ADS)

    Xia, Zongyang; Xie, Weilin; Sun, Dongning; Shi, Hongxiao; Dong, Yi; Hu, Weisheng

    2013-12-01

    We demonstrated a photonic approach to generate a phase-continuous frequency-linear-chirped millimeter-wave (mm-wave) signal with high linearity based on continuous-wave phase modulated optical frequency comb and cascaded interleavers. Through linearly sweeping the frequency of the radio frequency (RF) driving signal, high-order frequency-linear-chirped optical comb lines are generated and then extracted by the cascaded interleavers. By beating the filtered high-order comb lines, center frequency and chirp range multiplied linear-chirp microwave signals are generated. Frequency doubled and quadrupled linear-chirp mm-wave signals of range 48.6 to 52.6 GHz and 97.2 to 105.2 GHz at chirp rates of 133.33 and 266.67 GHz/s are demonstrated with the ±1st and ±2nd optical comb lines, respectively, while the RF driving signal is of chirp range 24.3 to 26.3 GHz and chirp time 30 ms.

  20. A millimeter wave image fusion algorithm design and optimization based on CDF97 wavelet transform

    NASA Astrophysics Data System (ADS)

    Yu, Jian-cheng; Chen, Bo-yang; Xia, A.-lin; Liu, Xin-guang

    2011-08-01

    Millimeter wave imaging technology provides a new detection method for security, fast and safe. But the wave of the images is its own shortcomings, such as noise and low sensitivity. Systems used for security, since only the corresponding specific objects to retain the information, and other information missing, so the actual image is difficult to locate in the millimeter wave . Image fusion approach can be used to effectively solve this problem. People usually use visible and millimeter-wave image fusion. The use of visible image contains the visual information. The fused image can be more convenient site for the detection of concealed weapons and to provide accurate positioning. The integration of information from different detectors, and there are different between the two levels of signal to noise ratio and pixel resolution, so traditional pixel-level fusion methods often cannot satisfy the fusion. Many experts and scholars apply wavelet transform approach to deal with some remote sensing image fusion, and the performance has been greatly improved. Due to these wavelet transform algorithm with complexity and large amount of computation, many algorithms are still in research stage. In order to improve the fusion performance and gain the real-time image fusion, an Integer Wavelet Transform CDF97 based with regional energy enhancement fusion algorithm is proposed in this paper. First, this paper studies of choice of wavelet operator. The paper invites several characteristics to evaluate the performance of wavelet operator used in image fusion. Results show that CDF97 wavelet fusion performance is better than traditional wavelet wavelets such as db wavelet, the vanishing moment longer the better. CDF97 wavelet has good energy concentration characteristic. The low frequency region of the transformed image contains almost the whole image energy. The target in millimeter wave image often has the low-pass characteristics and with a higher energy compare to the ambient

  1. Determination of the Phase Centers of Millimeter-Wave Horn Antennas Using a Holographic Interference Technique

    NASA Astrophysics Data System (ADS)

    McAuley, Ian; Murphy, J. Anthony; McCarthy, Darragh; Gradziel, Marcin; Mahon, Ronan; O'Sullivan, Creidhe; Trappe, Neil

    2016-04-01

    In this paper, we discuss how a holographic interference technique can be applied in the experimental determination of the phase centers of non-standard horn antennas in the millimeter-waveband. The phase center is the point inside the horn from which the radiation appears to emanate when viewed from the far-field, and knowing its location is necessary for optimizing coupling efficiencies to quasi-optical systems. For non-standard horn designs, and other feed structures, the phase center may be difficult to reliably predict by simulation, in which case, before committing to antenna manufacture, there is a requirement for it to be determined experimentally. Although the phase center can be recovered by direct phase measurement of the far-field beam pattern, this usually involves expensive instrumentation such as a vector network analyzer for millimeter wave horn antennas. In this paper, we describe one inexpensive alternative, which is based on measuring the interference pattern in intensity between the radiation from the horn of interest and a reference beam derived from the same coherent source in an off-axis holography setup. The accuracy of the approach is improved by comparison with the interference pattern of a well-understood standard horn (such as a corrugated conical horn) in the same experimental setup. We present an example of the technique applied to a profiled smooth-walled horn antenna, which has been especially designed for cosmic microwave background (CMB) polarization experiments.

  2. Watt-level millimeter-wave monolithic diode-grid frequency multipliers

    NASA Technical Reports Server (NTRS)

    Hwu, J. R.; Jou, C. F.; Luhmann, N. C., Jr.; Lam, W. W.; Rutledge, D. B.; Hancock, B.; Lieneweg, U.; Maserjian, J.

    1988-01-01

    Wall-level CW solid-state sources in the millimeter-wave region are needed for plasma diagnostics. Monolithic metal-grid arrays containing in excess of 1000 Schottky diodes have produced watt-level output at 66 GHz in a doubler configuration, in excellent agreement with the large-signal predictions of the frequency multiplication. Current efforts are concentrated on fabricating and developing arrays of a novel barrier-intrinsic-N+ (BIN) diode which promise increased performance in a tripler configuration. Initial tests will be made for a configuration where a tripling efficiency of 35 percent at an output frequency of 100 GHz is predicted. Eventual goals are monolithic BIN diode grids operating at 1 THz.

  3. Millimeter-wave backscatter diagnostic for the study of short scale length plasma fluctuations (invited)

    SciTech Connect

    Rhodes, T. L.; Peebles, W. A.; Nguyen, X.; VanZeeland, M. A.; De Grassie, J. S.; Doyle, E. J.; Wang, G.; Zeng, L.

    2006-10-15

    The development, laboratory tests, and experimental results relating to a new high-k diagnostic technique for the study of short scale length turbulence are reported. The system is based on backscattering of a millimeter-wave (94 GHz) probe beam by density fluctuations within the plasma. This diagnostic has been fully integrated with an upgraded far-infrared forward scattering system on the DIII-D tokamak. The combined system monitors a broad turbulent spectral range from 0 to 40 cm{sup -1}. Short-scale (e.g., electron temperature gradient scale) modes as well as longer wavelength (e.g., ion temperature gradient and trapped electron mode scale) instabilities are simultaneously monitored to accurately characterize plasma turbulence. The backscattering geometry and innovative use of the second harmonic electron cyclotron resonance as an internal 'beam dump' allow detection of small level fluctuations at high k, while maximizing discrimination against the ubiquitous, larger level, low-k fluctuations.

  4. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz-30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  5. A model-based approach for detection of objects in low resolution passive millimeter wave images

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar; Tang, Yuan-Liang; Devadiga, Sadashiva

    1993-01-01

    A model-based vision system to assist the pilots in landing maneuvers under restricted visibility conditions is described. The system was designed to analyze image sequences obtained from a Passive Millimeter Wave (PMMW) imaging system mounted on the aircraft to delineate runways/taxiways, buildings, and other objects on or near runways. PMMW sensors have good response in a foggy atmosphere, but their spatial resolution is very low. However, additional data such as airport model and approximate position and orientation of aircraft are available. These data are exploited to guide our model-based system to locate objects in the low resolution image and generate warning signals to alert the pilots. Also analytical expressions were derived from the accuracy of the camera position estimate obtained by detecting the position of known objects in the image.

  6. Passive 77 GHz millimeter-wave sensor based on optical upconversion.

    PubMed

    Wilson, John P; Schuetz, Christopher A; Dillon, Thomas E; Yao, Peng; Harrity, Charles E; Prather, Dennis W

    2012-06-20

    A passive millimeter-wave (mmW) sensor operating at a frequency of 77 GHz is built and characterized. The sensor is a single pixel sensor that raster scans to create an image. Optical upconversion is used to convert the incident mmW signal into an optical signal for detection. Components were picked to be representative of a single element in a distributed aperture system. The performance of the system is analyzed, and the noise equivalent temperature difference is found to be 0.5 K (for a 1 s integration time) with a diffraction limited resolution of ~8 mrad. Representative images are shown that demonstrate the phenomenology associated with this spectrum.

  7. Real-time outdoor concealed-object detection with passive millimeter wave imaging.

    PubMed

    Yeom, Seokwon; Lee, Dong-Su; Son, Jung-Young; Jung, Min-Kyoo; Jang, YuShin; Jung, Sang-Won; Lee, Seok-Jae

    2011-01-31

    Millimeter wave imaging is finding rapid adoption in security applications such as the detection of objects concealed under clothing. A passive imaging system can be realized as a stand-off type sensor that can operate in open spaces, both indoors and outdoors. In this paper, we address real-time outdoor concealed-object detection and segmentation with a radiometric imaging system operating in the W-band. The imaging system is equipped with a dielectric lens and a receiver array operating at around 94 GHz. Images are analyzed by multilevel segmentation to identify a concealed object. Each level of segmentation comprises vector quantization, expectation-maximization, and Bayesian decision making to cluster pixels on the basis of a Gaussian mixture model. In addition, we describe a faster process that adopts only vector quantization for the first level segmentation. Experiments confirm that the proposed methods provide fast and reliable detection and segmentation for a moving human subject carrying a concealed gun.

  8. Thermo-optic design for microwave and millimeter-wave electromagnetic power microsensors.

    PubMed

    Grasso, Salvatore; Bellucci, Marco; Cocorullo, Giuseppe; Della Corte, Francesco G; Lodice, Mario; Rendina, Ivo

    2002-06-20

    Rendina et al. recently proposed the original configuration of an electromagnetic power sensor for microwaves and millimeter waves that is based on an optically interrogated all-silicon chip [Electron. Lett. 35, 1748 (1999)]. Here we theoretically analyze and discuss in detail the performances of such a new class of nonperturbing and wideband probe in terms of sensitivity, resolution, intrinsic detectivity, linearity, and response time. Good agreement between theory and experiments is demonstrated. In particular, minimum resolutions of approximately 1 mW/cm2 are obtained at frequencies beyond 10 GHz. The dependence of response on the geometrical and electromagnetic parameters of the sensing element is analyzed, and on this basis the possibility of achieving optimized configurations is discussed.

  9. Millimeter-wave center of curvature test for a fast paraboloid.

    PubMed

    Goldberg, Samuel; Padin, Stephen

    2012-01-20

    We describe a technique for measuring the surface profile of a radio telescope with a fast paraboloidal primary. The technique uses a sensor, at the center of curvature of the primary, consisting of a millimeter-wave source and an array of receivers to measure the field in the caustic. The sensor is mounted on the telescope enclosure and it moves with the telescope, so the measurements can be used for continuous, slow, closed-loop control of the surface. Sensor decenter and despace errors, due to wind buffeting and thermal deformation of the sensor support, do not compromise the surface measurements because they result in profile errors that are mainly translation, which has no effect on astronomical observations, or tilt and defocus, which can be measured using astronomical sources. If the position of the sensor is known to 20 μm rms, the surface can be measured to ~1  μm rms at λ=3 mm.

  10. Retrievals of Column Water Vapor Using Millimeter-Wave Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Wang, J. R.; Racette, P.; Triesky, M. E.; Manning, W.; Hildebrand, Peter H. (Technical Monitor)

    2001-01-01

    Water vapor is one of the most important atmospheric constituents that has a critical impact on cloud formation (ice or liquid). It is also a source that needs to be accounted for in remote measurements of surface parameters. In the high-latitude regions, e.g., Antarctica, monitoring of the state of water vapor and its transport into and out of these regions is important towards our understanding the state of balance of ice sheets and its effect on the global sea level. The technique of retrieving low amount of column water vapor using the millimeter-wave radiometric measurements, as presented in this paper, will be very useful for these regions, especially during winter times when the atmosphere is relatively dry.

  11. Passive millimeter-wave camera for vehicle guidance in low-visibility conditions

    NASA Astrophysics Data System (ADS)

    Shoucri, Merit; Dow, G. Samuel; Hauss, Bruce I.; Lee, Paul S.; Yujiri, Larry

    1995-06-01

    Passive millimeter wave (PMMW) imaging sensor technology has made significant advances in recent years to permit the development of manufacturable cameras which can be economically produced. In addition to its operation in adverse weather, the PMMW camera is non-emitting which makes it suitable for both military and civilian applications. For example, aircraft executing autonomous landing using GPS, need an all weather, real time, true image of the forward scene during the touch-down, roll-out, turn-off and taxi maneuvers. The PMMW camera not only provides such an image, but is easily implementable as a sensor for the pilot, and as a system which operates in an airport environment. We shall address these issues and discuss other applications of this new sensor technology.

  12. Definition Study for Space Shuttle Experiments Involving Large, Steerable Millimeter-Wave Antenna Arrays

    NASA Technical Reports Server (NTRS)

    Levis, C. A.

    1976-01-01

    The potential uses and techniques for the shuttle spacelab Millimeter Wave Large Aperture Antenna Experiment (MWLAE) are documented. Potential uses are identified: applications to radio astronomy, the sensing of atmospheric turbulence by its effect on water vapor line emissions, and the monitoring of oil spills by multifrequency radiometry. IF combining is preferable to RF combining with respect to signal to noise ratio for communications receiving antennas of the size proposed for MWLAE. A design approach using arrays of subapertures is proposed to reduce the number of phase shifters and mixers for uses which require a filled aperture. Correlation radiometry and a scheme utilizing synchronous Dicke switches and IF combining are proposed as potential solutions.

  13. Comparison of millimeter-wave cloud radar measurements for the Fall 1997 Cloud IOP

    SciTech Connect

    Sekelsky, S.M.; Li, L.; Galloway, J.; McIntosh, R.E.; Miller, M.A.; Clothiaux, E.E.; Haimov, S.; Mace, G.; Sassen, K.

    1998-05-01

    One of the primary objectives of the Fall 1997 IOP was to intercompare Ka-band (350Hz) and W-band (95GHz) cloud radar observations and verify system calibrations. During September 1997, several cloud radars were deployed at the Southern Great Plains (SOP) Cloud and Radiation Testbed (CART) site, including the full time operation 35 GHz CART Millimeter-wave Cloud Radar (MMCR), the University of Massachusetts (UMass) single antenna 33GHz/95 GHz Cloud Profiling Radar System (CPRS), the 95 GHz Wyoming Cloud Radar (WCR) flown on the University of Wyoming King Air, the University of Utah 95 GHz radar and the dual-antenna Pennsylvania State University 94 GHz radar. In this paper the authors discuss several issues relevant to comparison of ground-based radars, including the detection and filtering of insect returns. Preliminary comparisons of ground-based Ka-band radar reflectivity data and comparisons with airborne radar reflectivity measurements are also presented.

  14. High-power optical millimeter-wave signal generation with tunable frequency multiplication factor

    NASA Astrophysics Data System (ADS)

    Han, Yi-shi; Zheng, Zhenyu; Luo, Zhixiao; Min, Zhixuan; Xu, Ou; Liu, Jie

    2015-01-01

    This work demonstrates a simple and novel scheme for millimeter-wave (MMW) signal generation using optical multi-sidebands (OMSB) modulation. In the proposed methods, several pairs of optical sidebands can be generated by employing parallel phase modulators driven by a low frequency radio frequency (RF) signal. The optical sidebands will beat at a photodetector (PD) to generate high frequency MMW signal with tunable frequency multiplication factor, such as frequency octupling, 12-tupling, 16-tupling and 18-tupling. Since no optical filters or DC bias are used, the MMW signal has the evident character of high-power output. A generalized analytic expression and simulation verification for generating the frequency multi-tupling MMW signal are developed. The influences caused by non-ideal factors are discussed in detail, and undesired power ratios versus non-ideal factors are plotted and analyzed.

  15. A continuously tunable and filterless optical millimeter-wave generation via frequency octupling.

    PubMed

    Lin, Chun-Ting; Shih, Po-Tsung; Jiang, Wen-Jr; Chen, Jason Jyehong; Peng, Peng-Chun; Chi, Sien

    2009-10-26

    This work proposes a cost-effective, continuously tunable and filterless optical millimeter-wave (MMW) signal generation employing frequency octupling. Optical MMW signals with 30-dB undesired sideband suppression ratios can be obtained. Since no optical filtering is required, the proposed system can be readily implemented in wavelength-division-multiplexing (WDM) systems. V-band 60-GHz and W-band 80-GHz optical MMW signals are experimentally demonstrated. Because of the high undesired sideband suppression ratio, 60-GHz waveform with 50% duty cycle is observed. The single-sideband (SSB) phase noise of the generated 60-GHz signal is -73 dBc/Hz at 10 kHz. The proposed system is a viable solution for the future ultra-high frequency MMW applications up to 320 GHz using the external modulator with a limited bandwidth of 40 GHz.

  16. Photonic integrated circuit on InP for millimeter wave generation

    NASA Astrophysics Data System (ADS)

    van Dijk, Frederic; Lamponi, Marco; Chtioui, Mourad; Lelarge, François; Kervella, Gaël.; Rouvalis, Efthymios; Renaud, Cyril; Fice, Martyn; Carpintero, Guillermo

    2014-03-01

    Indium phosphide and associated epitaxially grown alloys is a material system of choice to make photonic integrated circuits for microwave to terahertz signal generation, processing and detection. Fabrication of laser emitters, high speed electro-optical modulators, passive waveguides and couplers, optical filters and high speed photodetectors is well mastered for discrete devices. But monolithic integration of them while maintaining good performances is a big challenge. We have demonstrated a fully integrated tunable heterodyne source designed for the generation and modulation of sub-Terahertz signals. This device is to be used for high data-rate wireless transmissions. DFB lasers, SOA amplifiers, passive waveguides, beam combiners, electro-optic modulators and high speed photodetectors have been integrated on the same InP-based platform. Millimeter wave generation at up to 120 GHz based on heterodyning the optical tones from two integrated lasers in an also integrated high bandwidth photodetector has been obtained.

  17. Palm-shaped spectrum generation for dual-band millimeter wave and baseband signals over fiber

    NASA Astrophysics Data System (ADS)

    Lin, R.; Feng, Z.; Tang, M.; Wang, R.; Fu, S.; Shum, P.; Liu, D.; Chen, J.

    2016-05-01

    In order to offer abundant available bandwidth for radio access networks satisfying future 5G requirements on capacity, this paper proposes a simple and cost-effective palm-shaped spectrum generation scheme that can be used for high capacity radio over fiber (RoF) system. The proposed scheme can simultaneously generate an optical carrier used for upstream and two bands of millimeter wave (MMW) that are capable of carrying different downstream data. The experiment results show that the proposed palm-shaped spectrum generation scheme outperforms optical frequency comb (OFC) based multi-band MMW generation in terms of upstream transmission performance. Furthermore, simulation is carried out with different dual-band MMW configurations to verify the feasibility of using the proposed spectrum generation scheme in the RoF system.

  18. All-Optical Generation and Switching of Few-Cycle Millimeter-Wave Pulses

    NASA Astrophysics Data System (ADS)

    Lin, Jim-Wein; Wun, Jhih-Min; Shi, Jin-Wei; Pan, Ci-Ling

    2014-10-01

    We conducted a comparative study of two schemes of photonic generation and switching of few-cycle sub-THz or millimeter wave (MMW) pulses by use of a photonic-transmitter-mixer (PTM) module with a broadband and high-power near-ballistic uni-traveling carrier photodiode (NBUTC-PD). In the first scheme, we performed all-optical ultra-fast switching (bias modulation) of the PTM injected with a 93 GHz optical local-oscillator signal. Sub-2-cycle short MMW pulses with central frequency at 93 GHz were generated. To compare, in scheme 2, we employed femtosecond optical short pulses to directly excite the PTM under a DC bias (optical modulation). The former approach is shown to be capable of providing much less signal distortion and much shorter pulse duration than the latter.

  19. Experimental Research on Passive Millimeter Wave Radiometric Stealth Technology of Metal Objects

    NASA Astrophysics Data System (ADS)

    Zhang, Guangfeng; Lou, Guowei; Li, Xingguo

    2012-12-01

    Working all day and all weather, a passive millimeter wave radiometer (PMMW) can be widely used in civil and military affairs. It can get some specific information about the material characteristics different from radar and infrared detectors. On basis of the radiometric operating range equation, the radiation cross section and stealth effect of metal objects are presented for the PMMW near-sensing application. The measurement experiments of metal solid models adopts 3 mm band Dicke radiometer with the outdoor calibration system. The sky temperature and other different surface metal objects are also measured as the contrastive experiments. The results show the radiometric temperature contrasts of solid models have remarkable difference in the bare and coated conditions, and the radiometric operating range can decrease to 60.8 %. In addition, the PMMW stealth methods through different surface treatment respectively reduce the radiometric antenna temperature contrast in some degree.

  20. Twenty and thirty GHz millimeter wave experiments with the ATS-6 satellite

    NASA Technical Reports Server (NTRS)

    Ippolito, L. J.

    1976-01-01

    Studies at 11 locations in the continental United States were directed at an evaluation of rain attenuation effects, scintillations, depolarization, site diversity, coherence bandwidth, and analog and digital communications techniques using the Applications Technology Satellite-6(ATS-6). In addition to direct measurements on the 20- and 30-GHz links, methods of attenuation prediction with radars, rain gages, and radiometers were developed and compared with the directly measured attenuation. Initial data results of the ATS-6 millimeter wave experiment were presented. The first section describes the experiment objectives, flight hardware, and modes of operation. The remaining six sections present papers prepared by the major participating organizations in the experiment. The papers present a comprehensive summary of the significant results of the initial 11 months of ATS-6 experiment measurements and related radiometric, radar, and radio-meteorology studies.

  1. THz Plasma Diagnostics: an evolution from FIR and Millimeter waves historical applications

    NASA Astrophysics Data System (ADS)

    Bombarda, F.; Doria, A.; Galatola Teka, G.; Giovenale, E.; Zerbini, M.

    2016-08-01

    Extremely broadband (100 GHz–30 THz) single cycle THz pulses are routinely generated with femtosecond laser for Time Domain Spectroscopy applications (TDS). The wide frequency range has an unquestionable diagnostic potential for Tokamak plasmas and not surprisingly THz TDS finds a natural field of application in this area, which is an evolution of the FIR and millimeter waves diagnostics, where ENEA Frascati holds historical expertise. By illuminating the plasma with a THz beam, phase, intensity and polarization of both reflected and transmitted beams can be detected, devising a single diagnostic instrument capable of measuring multiple plasma parameters. We will describe and discuss the laboratory work now in progress to realise a tailored THz-TDS spectrometer with design parameters optimised for the requirements of Tokamak plasmas and the tests of optical fibers and quasioptical couplers to optimise access to plasma. ENEA Frascati and the Photonics group of Physics Dept. of Oxford University are collaborating on this subject [1].

  2. Quasi-optical solid-state power combining for millimeter-wave active seeker applications

    SciTech Connect

    Halladay, R.H.; Terrill, S.D.; Bowling, D.R.; Gagnon, D.R. U.S. Navy, Naval Air Warfare Center, China Lake, CA )

    1992-05-01

    Consideration is given to quasi-optical power combining techniques, state-of-the-art demonstrated performance, and system issues as they apply to endoatmospheric homing seeker insertion. Quasi-optical power combining is based on combining microwave and millimeter-wave solid-state device power in space through the use of antennas and lenses. It is concluded that quasi-optical power combining meets the severe electrical requirements and packaging constraints of active MMW seekers for endoatmospheric hit-to-kill missiles. The approach provides the possibility of wafer-scale integration of major components for low cost production and offers high reliability. Critical issues include thermal loading and system integration, which must be resolved before the quasi-optical power combining technology will be applied to an active MMW seeker. 18 refs.

  3. A survey of the millimeter-wave spectrum of Sagittarius B2

    NASA Technical Reports Server (NTRS)

    Cummins, S. E.; Thaddeus, P.; Linke, R. A.

    1986-01-01

    More than 60 percent of the millimeter wave spectrum between 70 and 150 GHz of the giant Sgr B2 molecular cloud was surveyed with the Bell Laboratories 7 m telescope at a spectral resolution of 1 MHz. The observations and instrumentation are described, including beam efficiency and beamwidth as functions of frequency, frequency coverage, and rms noise. The catalog used to identify the 457 lines found is summarized, and the analysis of the data to determine column densities and rotational temperatures is discussed. The range of rotational temperatures obtained and their relation to the kinetic temperature, and their implications for the hydrogen density, are considered. More than 300 lines are transitions of 21 molecules, and the results for these are analyzed, giving excitation diagrams for most of them. A partly successful attempt is made to use ratios of the calculated abundances to predict abundances of as yet undetected species. Finally, the spectra for the entire survey are presented.

  4. Sparse Multi-Static Arrays for Near-Field Millimeter-Wave Imaging

    SciTech Connect

    Sheen, David M.

    2013-12-31

    This paper describes a novel design technique for sparse multi-static linear arrays. The methods described allow the development of densely sampled linear arrays suitable for high-resolution near-field imaging that require dramatically fewer antenna and switch elements than the previous state of the art. The techniques used are related to sparse array techniques used in radio astronomy applications, but differ significantly in design due to the transmit-receive nature of the arrays, and the application to linear arrays that achieve dense uniform sampling suitable for high-resolution near-field imaging. As many as 3 to 5 or more samples per antenna can be obtained, compared to 1 sample per antenna for the current state of the art. This could dramatically reduce cost and improve performance over current active millimeter-wave imaging systems.

  5. Application of Millimeter Wave, Eddy Current and Thermographic Methods for Detection of Corrosion in Aluminum Substrate

    SciTech Connect

    Ryley, A. C.; Ghasr, M. T.; Kharkovsky, S.; Zoughi, R.; Steffes, Gary

    2007-03-21

    Aluminum structures exposed to the elements are susceptible to corrosion. Corrosion may cause various mechanical and structural deficiencies such as material thinning. It is desirable to rapidly detect and evaluate the properties of an aluminum substrate early in the corrosion process to avoid costly maintenance actions later. There are several nondestructive testing methods for this purpose. To investigate capabilities of millimeter wave, conventional eddy current, and flash thermography techniques for detection of large corrosion areas in aluminum substrates, two corroded samples were inspected with and without dielectric coating (applique). This paper presents the results of the c-scan imaging of these samples using the methods mentioned above. The attributes of these methods for detection and evaluation of large, severe and non-uniform corrosion areas with and without a dielectric coating are discussed.

  6. Free-space optical mode division multiplexing for switching between millimeter-wave picocells

    NASA Astrophysics Data System (ADS)

    Amphawan, Angela; Chaudhary, Sushank

    2015-07-01

    For connectivity between millimeter-wave radio femtocells or picocells, a free-space optical link may be used in a ubiquitous radio-over-free-space-optics (Ro-FSO) platform. This work introduces a new optical Hermite-Gaussian mode division multiplexing scheme for multiplexing radio signals between different picocells in a Ro-FSO network using a spatial correlator. Distinct 2.5GHz 10GHz radio-modulated subcarrier data streams from two picocells over two 850nm optical Hermite-Gaussian mode carriers were successfully multiplexed to two picocells separated by 500 meters. At the receiver, the signals were retrieved on the two modes using nonintermetric decomposition and spatial correlation optical Hermite-Gaussian modes into linearly polarized modes. Optical signal-to-noise ratios, bit-error-rates and modal decomposition results demonstrate effective data transmission between the picocells.

  7. Fourier transform microwave and millimeter wave spectroscopy of quinazoline, quinoxaline, and phthalazine

    NASA Astrophysics Data System (ADS)

    McNaughton, Don; Godfrey, Peter D.; Jahn, Michaela K.; Dewald, David A.; Grabow, Jens-Uwe

    2011-04-01

    The pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam. The high spectral resolution of the FT-MW instrument provided an improved set of rotational and centrifugal distortion constants together with nitrogen quadrupole coupling constants for all three species. Density functional theory calculations at the B3LYP/6-311+G** level of theory closely predict rotational constants and are useful in predicting quadrupole coupling constants and dipole moments for such species.

  8. Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.

    PubMed

    Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A

    2016-02-01

    Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.

  9. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Fu, Enjin; Koomson, Valencia J.; Afsar, Mohammed N.

    2014-05-01

    Hexagonal ferrites, such as BaFe12O19 and SrFe12O19, have strong uniaxial anisotropic magnetic field and remanent magnetism. By employing these properties, magnetic devices, such as phase shifter, isolator and circulator, can work up to tens of GHz frequency range without strong external magnetic field or even self-biasing. As the monolithic microwave integrated circuit extends to higher millimeter wave frequencies, the demand for high performance integrated passive magnetic components is more and more eminent. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS circuits via post processing. A nano-ferrite circulator working at 60 GHz is designed, fabricated, and integrated into the CMOS front end for the first time.

  10. Millimeter wave complementary metal-oxide-semiconductor on-chip hexagonal nano-ferrite circulator

    NASA Astrophysics Data System (ADS)

    Chao, Liu; Oukacha, Hassan; Fu, Enjin; Koomson, Valencia Joyner; Afsar, Mohammed N.

    2015-05-01

    Hexagonal ferrites such as M-type BaFe12O19 and SrFe12O19 have strong uniaxial anisotropic magnetic field and remanent magnetism. The nano-sized ferrite powder exhibits high compatibility and processability in composite material. New magnetic devices using the M-type ferrite materials can work in the tens of GHz frequency range from microwave to millimeter wave without the application of strong external magnetic field. The micro- and nano-sized hexagonal ferrite can be conveniently utilized to fabricate magnetic components integrated in CMOS integrated circuits as thin as several micrometers. The micro-fabrication method of such nano ferrite device is presented in this paper. A circulator working at 60 GHz is designed and integrated into the commercial CMOS process. The circulator exhibits distinct circulation properties in the frequency range from 56 GHz to 58 GHz.

  11. Total power millimeter-wave spectrometer for measurements of dust opacity at cryogenic temperatures.

    PubMed

    Potapov, Alexey; Lewen, Frank; Mutschke, Harald; Mohr, Pierre; Schlemmer, Stephan

    2014-07-01

    A highly sensitive total power millimeter-wave spectrometer has been built to investigate the opacity of important interstellar-dust analogues in the 10-300 K temperature range. The key elements of the spectrometer are a frequency agile synthesizer followed by a microwave amplifier and a subsequent frequency multiplier. In a first step, the frequency range of 72-120 GHz is covered by the spectrometer, and a room temperature Schottky detector is employed as a detector. A newly developed two channel (sample/reference) copper sample holder is cryogenically cooled for the 10-300 K range. Here we present the technical details of the spectrometer including examples of the obtained results. The analysis of these results will be published elsewhere.

  12. Millimeter-wave center of curvature test for a fast paraboloid.

    PubMed

    Goldberg, Samuel; Padin, Stephen

    2012-01-20

    We describe a technique for measuring the surface profile of a radio telescope with a fast paraboloidal primary. The technique uses a sensor, at the center of curvature of the primary, consisting of a millimeter-wave source and an array of receivers to measure the field in the caustic. The sensor is mounted on the telescope enclosure and it moves with the telescope, so the measurements can be used for continuous, slow, closed-loop control of the surface. Sensor decenter and despace errors, due to wind buffeting and thermal deformation of the sensor support, do not compromise the surface measurements because they result in profile errors that are mainly translation, which has no effect on astronomical observations, or tilt and defocus, which can be measured using astronomical sources. If the position of the sensor is known to 20 μm rms, the surface can be measured to ~1  μm rms at λ=3 mm. PMID:22270658

  13. Design of an active millimeter-wave concealed-object imaging system

    NASA Astrophysics Data System (ADS)

    Paulter, Nicholas G.; Grossman, Erich N.; Stenbakken, G. N.; Waltrip, B. C.; Nolen, Shalva; Reintsema, Carl D.

    2001-08-01

    The research and design of an active millimeter-wave concealed object imaging system is described. Several illumination and detection methods were analyzed via computer simulation to assess the effects of system parameters on the signal-to-noise ratio of the detected signal. The results of many of these simulations were experimentally verified using either a 10 MHz or a 100 GHz measurement system. Based on this assessment, two design using pulsed illuminate with gated detection were selected for development. Pulsed illumination is provided using a pulsed broadband noise source. For detecting the reflected noise pulse, two methods were examined, one using micro bolometers and the other using electrooptics. Based on imaging system considerations, such as cost of manufacture, ruggedness, etc., and technical parameters, micro bolometer arrays were selected for further development. The electronics interface, including image display capability, was developed. We examined the absorption of some common clothing materials at 100 Ghz and compared this to results previously reported.

  14. Simulation of active and passive millimeter-wave (35 GHz) sensors by time series analysis

    NASA Astrophysics Data System (ADS)

    Strenzwilk, D. F.; Maruyama, R. T.

    1982-11-01

    Analog voltage signals from a millimeter-wave (MMW) radiometer (passive sensor) and radar (active sensor) were collected over varying grassy terrains at Aberdeen Proving Ground (APG), Maryland in July 1980. These measurements were made as part of continuing studies of MMW sensors for smart munitions. The signals were digitized at a rate of 2,000 observations per second and then analyzed by the Box and Jenkins time series approach. This analysis reports on the characterization of these data sets. The passive time series signals resulted in a simple autoregressive-moving average process, similar to a previous set of data taken at Rome Air Development Center in Rome, N.Y. by Ballistic Research Laboratory. On the other hand, the radar data (active sensor) required a data transformation to enhance the analysis. In both cases the signals were well characterized using the Box-Jenkins time series approach.

  15. Close-Packed Silicon Lens Antennas for Millimeter-Wave MKID Camera

    NASA Astrophysics Data System (ADS)

    Nitta, Tom; Karatsu, Kenichi; Sekimoto, Yutaro; Naruse, Masato; Sekine, Masakazu; Sekiguchi, Shigeyuki; Matsuo, Hiroshi; Noguchi, Takashi; Mitsui, Kenji; Okada, Norio; Seta, Masumichi; Nakai, Naomasa

    2014-09-01

    We have been developing a large-format millimeter-wave camera based on lens-antenna-coupled microwave kinetic inductance detectors (MKIDs) for a planned telescope at Dome Fuji (3810 m a.s.l.), Antarctica. Optical coupling to the MKID incorporates double-slot antennas and a silicon lens array. To realize a large-format camera (10,000 pixels), a highly integrated small-diameter lens array and fast optics are required. Lens diameters of 1.2, 2, and 3 times the target wavelength are investigated for the main beam symmetry, side-lobe level, cross-polarization level, and bandwidth, considering the effects of the surrounding lenses. In this study, we present the simulated beam pattern profiles of close-packed lens antenna and the effect of misalignment between the silicon lens and double-slot antenna. We also show the evaluations of the developed 721-pixel close-packed silicon lens array.

  16. The advanced cosmic microwave explorer - A millimeter-wave telescope and stabilized platform

    NASA Technical Reports Server (NTRS)

    Meinhold, P. R.; Chingcuanco, A. O.; Gundersen, J. O.; Schuster, J. A.; Seiffert, M. D.; Lubin, P. M.; Morris, D.; Villela, T.

    1993-01-01

    We have developed and flown a 1 m diameter Gregorian telescope system for measurements of anisotropy in the Cosmic Background Radiation (CBR). The telescope is incorporated in a balloon-borne stabilized platform with arcminute stabilization capability. To date, the system has flown four times and observed from the ground at the South Pole twice. The telescope has used both coherent and incoherent detectors. We describe the development of the telescope, pointing platform, and one of the receivers employed in making measurements of the CBR. Performance of the system during the first flight and operation on the ground at the South Pole are described, and the quality of the South Pole as a millimeter wave observing site is discussed.

  17. Improved Two-Dimensional Millimeter-Wave Imaging for Concealed Weapon Detection Through Partial Fourier Sampling

    NASA Astrophysics Data System (ADS)

    Farsaei, Amir Ashkan; Mokhtari-Koushyar, Farzad; Javad Seyed-Talebi, Seyed Mohammad; Kavehvash, Zahra; Shabany, Mahdi

    2016-03-01

    Active millimeter-wave imaging based on synthetic aperture focusing offers certain unique and practical advantages in nondestructive testing applications. Traditionally, the imaging for this purpose is performed through a long procedure of raster scanning with a single antenna across a two-dimensional grid, leading to a slow, bulky, and expensive scanning platform. In this paper, an improved bistatic structure based on radial compressive sensing is proposed, where one fixed transmitter antenna and a linear array of receiving antennas are used. The main contributions of this paper are (a) reducing the scanning time, (b) improving the output quality, and (c) designing an inexpensive setup. These improvements are the result of the underlying proposed simpler scanning structure and faster reconstruction process.

  18. Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review

    NASA Astrophysics Data System (ADS)

    Ramundo-Orlando, Alfonsina

    2010-12-01

    The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.

  19. Multimode fibers in millimeter-wave evolution for 5G cellular networks

    NASA Astrophysics Data System (ADS)

    Vázquez, C.; Montero, D. S.; Ponce, W.; Lallana, P. C.; Larrabeiti, D.; Montalvo, J.; Tapetado, A.; Pinzón, P. J.

    2016-02-01

    Small-cell and cloud-RAN systems along with the use of the millimeter-wave band have been considered as promising solutions to meet the capacity demand of the future wireless access networks. Radio over Multimode fibers (RoMMF) can play a role in the integrated optical-wireless access systems for next-generation wireless communications, mainly in within-building environments. The numerical results show the effectiveness of MMF to transmit at 60 GHz band with 7- GHz bandwidth for different link lengths and refractive index profiles under restricted mode launching and using narrow linewidth sources. The integration with optically powered remote antenna units is also proposed based on the large core effective area of MMF. Temperature impairments and graded index plastic optical fiber transmission are also discussed.

  20. Passive Millimeter-wave Signatures of Ice Particles in Hurricane Erin

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Holthaus, Eric; Albers, Cerese

    2005-01-01

    Observations of Hurricane Erin (2001) taken during the Fourth Convection and Moisture Experiment (CAMEX-Q) are used to elucidate relationships between measurements and models. Measurements include active and passive microwave sensors, and dropsondes. Models used in the analysis include radiative transfer (RT) models, mesoscale models (MM5), and particle parameterizations. Various combinations of the models and observational constraints are used in the RT model to provide calculated brightness temperatures to compare to the passive observations. In order to match the wide frequency range 10 to 183+/-10 GHg model modifications were needed. The 55.5 GHz channel provided insight to the tropospheric temperature profile, while the 10 GHz channel provided knowledge of (near) ocean surface conditions. The channels less than approx.90 GHz are mostly responsive to liquid in the cloud, while higher frequencies respond to ice particles in the cloud. Keywords-ice clouds, precipitation, millimeter-wave, retrievals.

  1. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-01-01

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  2. An Off-Grid Turbo Channel Estimation Algorithm for Millimeter Wave Communications.

    PubMed

    Han, Lingyi; Peng, Yuexing; Wang, Peng; Li, Yonghui

    2016-09-22

    The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave) frequency spectrum for future communication networks. To compensate for the severe propagation attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter and receiver to provide large array gains via directional beamforming. To achieve such array gains, channel estimation (CE) with high resolution and low latency is of great importance for mmWave communications. However, classic super-resolution subspace CE methods such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT) cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids with high probability, and it results in power leakage and severe reduction of the CE performance. A new model is first proposed to formulate the off-grid problem. The new model divides the continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively updates the soft information between the linear minimum mean square error (LMMSE) estimator and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of the proposed method, and the results show that it enhances the angle detection

  3. Photonic DPASK/QAM signal generation at microwave/millimeter-wave band based on an electro-optic phase modulator.

    PubMed

    Zhang, Ye; Xu, Kun; Zhu, Ran; Li, Jianqiang; Wu, Jian; Hong, Xiaobin; Lin, Jintong

    2008-10-15

    We have proposed and experimentally demonstrated two novel photonic architectures to generate differential-phase amplitude-shift keying and circular quadrature amplitude modulation signals at microwave/millimeter-wave band based on an electro-optic phase modulator. In our proposed schemes, the electronic driven circuits were greatly simplified by employing the photonic vector modulation technique.

  4. All optical millimeter-wave electrical signal generation using an integrated mode-locked semiconductor ring laser and photodiode

    SciTech Connect

    Vawter, G.A.; Mar, A.; Hietala, V.; Zolper, J.; Hohimer, J.

    1997-12-01

    The first monolithic photonic integrated circuit for all-optical generation of millimeter (mm)-wave electrical signals is reported. The design integrates a mode-locked semiconductor ring diode laser, an optical amplifier, and a high-speed photodetector into a single optical integrated circuit. Signal generation is demonstrated at frequencies of 30, 60, and 90 GHz.

  5. Sensor structure concepts for the analysis or local radiation exposure of biological samples at terahertz and millimeter wave frequencies

    NASA Astrophysics Data System (ADS)

    Dornuf, Fabian; Dörr, Roland; Lämmle, David; Schlaak, Helmut F.; Krozer, Viktor

    2016-03-01

    We have studied several sensor concepts for biomedical applications operating in the millimeter wave and terahertz range. On one hand, rectangular waveguide structure were designed and extended with microfluidic channels. In this way a simple analysis of aqueous solutions at various waveguide bands is possible. In our case, we focused on the frequency range between 75 GHz and 110 GHz. On the other hand, planar sensor structures for aqueous solutions have been developed based on coplanar waveguides. With these planar sensors it is possible to concentrate the interaction volume on small sensor areas, which achieve a local exposure of the radiation to the sample. When equipping the sensor with microfluidic structures the sample volume could be reduced significantly and enabled a localized interaction with the sensor areas. The sensors are designed to exhibit a broadband behavior up to 300 GHz. Narrow-band operation can also be achieved for potentially increased sensitivity by using resonant structures. Several tests with Glucose dissolved in water show promising results for the distinction of different glucose levels at millimeter wave frequencies. The planar structures can also be used for the exposure of biological cells or cell model systems like liposomes with electromagnetic radiation. Several studies are planned to distinguish on one hand the influence of millimeter wave exposure on biological systems and also to have a spectroscopic method which enables the analysis of cell processes, like membrane transport processes, with millimeter wave and terahertz frequencies by focusing the electric field directly on the analyzing sample.

  6. Effects of atmospheric turbulence on microwave and millimeter wave satellite communications systems. [attenuation statistics and antenna design

    NASA Technical Reports Server (NTRS)

    Devasirvatham, D. M. J.; Hodge, D. B.

    1981-01-01

    A model of the microwave and millimeter wave link in the presence of atmospheric turbulence is presented with emphasis on satellite communications systems. The analysis is based on standard methods of statistical theory. The results are directly usable by the design engineer.

  7. Generation and distribution of a wide-band continuously tunable millimeter-wave signal with an optical external modulation technique

    NASA Astrophysics Data System (ADS)

    Qi, Guohua; Yao, Jianping; Seregelyi, J.; Paquet, S.; Belisle, C.

    2005-10-01

    A new technique to generate and distribute a wide-band continuously tunable millimeter-wave signal using an optical external modulator and a wavelength-fixed optical notch filter is proposed. The optical intensity modulator is biased to suppress the odd-order optical sidebands. The wavelength-fixed optical notch filter is then used to filter out the optical carrier. Two second-order optical sidebands are obtained at the output of the notch filter. A millimeter-wave signal that has four times the frequency of the microwave drive signal is generated by beating the two second-order optical sidebands at a photodetector. Since no tunable optical filter is used, the system is easy to implement. A system using an LiNbO3 intensity modulator and a fiber Bragg grating filter is built. A stable and high spectral purity millimeter-wave signal tunable from 32 to 50 GHz is obtained by tuning the microwave drive signal from 8 to 12.5 GHz. The integrity of the generated millimeter-wave signal is maintained after transmission over a 25-km standard single-mode fiber. Theoretical analysis on the harmonic suppression with different modulation depths and filter attenuations is also discussed.

  8. Millimeter-wave imaging diagnostics systems on the EAST tokamak (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Y. L.; Xie, J. L.; Yu, C. X.; Zhao, Z. L.; Gao, B. X.; Chen, D. X.; Liu, W. D.; Liao, W.; Qu, C. M.; Luo, C.; Hu, X.; Spear, A. G.; Luhmann, N. C.; Domier, C. W.; Chen, M.; Ren, X.; Tobias, B. J.

    2016-11-01

    Millimeter-wave imaging diagnostics, with large poloidal span and wide radial range, have been developed on the EAST tokamak for visualization of 2D electron temperature and density fluctuations. A 384 channel (24 poloidal × 16 radial) Electron Cyclotron Emission Imaging (ECEI) system in F-band (90-140 GHz) was installed on the EAST tokamak in 2012 to provide 2D electron temperature fluctuation images with high spatial and temporal resolution. A co-located Microwave Imaging Reflectometry (MIR) will be installed for imaging of density fluctuations by December 2016. This "4th generation" MIR system has eight independent frequency illumination beams in W-band (75-110 GHz) driven by fast tuning synthesizers and active multipliers. Both of these advanced millimeter-wave imaging diagnostic systems have applied the latest techniques. A novel design philosophy "general optics structure" has been employed for the design of the ECEI and MIR receiver optics with large aperture. The extended radial and poloidal coverage of ECEI on EAST is made possible by innovations in the design of front-end optics. The front-end optical structures of the two imaging diagnostics, ECEI and MIR, have been integrated into a compact system, including the ECEI receiver and MIR transmitter and receiver. Two imaging systems share the same mid-plane port for simultaneous, co-located 2D fluctuation measurements of electron density and temperature. An intelligent remote-control is utilized in the MIR electronics systems to maintain focusing at the desired radial region even with density variations by remotely tuning the probe frequencies in about 200 μs. A similar intelligent technique has also been applied on the ECEI IF system, with remote configuration of the attenuations for each channel.

  9. High Resolution Millimeter Wave Inspecting of the Orbiter Acreage Heat Tiles of the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Case, J. T.; Khakovsky, S.; Zoughi, r.; Hepburn, F.

    2007-01-01

    Presence of defects such as disbonds, delaminations, impact damage, in thermal protection systems can significantly reduce safety of the Space Shuttle and its crew. The physical cause of Space Shuttle Columbia's catastrophic failure was a breach in its thermal protection system, caused by a piece of external tank insulating foam separating from the external tank and striking the leading edge of the left wing of the orbiter. There is an urgent need for a rapid, robust and life-circle oriented nondestructive testing (NDT) technique capable of inspecting the external tank insulating foam as well as the orbiter's protective (acreage) heat tiles and its fuselage prior and subsequent to a launch. Such a comprehensive inspection technique enables NASA to perform life-cycle inspection on critical components of the orbiter and its supporting hardware. Consequently, NASA Marshall Space Flight Center initiated an investigation into several potentially viable NDT techniques for this purpose. Microwave and millimeter wave NDT methods have shown great potential to achieve these goals. These methods have been successfully used to produce images of the interior of various complex, thick and thin external tank insulating foam structures for real focused reflectometer at operating frequency from 50-100 GHz and for synthetic aperture techniques at Ku-band (12-18 GHz) and K-band (18-26 GHz). Preliminary results of inspecting heat tile specimens show that increasing resolution of the measurement system is an important issue. This paper presents recent results of an investigation for the purpose of detecting anomalies such as debonds and corrosion in metal substrate in complex multi-sectioned protective heat tile specimens using a real focused 150 GHz (D-band) reflectometer and wide-band millimeter wave holography at 33-50, GHz (Q-band).

  10. Framework of passive millimeter-wave scene simulation based on material classification

    NASA Astrophysics Data System (ADS)

    Park, Hyuk; Kim, Sung-Hyun; Lee, Ho-Jin; Kim, Yong-Hoon; Ki, Jae-Sug; Yoon, In-Bok; Lee, Jung-Min; Park, Soon-Jun

    2006-05-01

    Over the past few decades, passive millimeter-wave (PMMW) sensors have emerged as useful implements in transportation and military applications such as autonomous flight-landing system, smart weapons, night- and all weather vision system. As an efficient way to predict the performance of a PMMW sensor and apply it to system, it is required to test in SoftWare-In-the-Loop (SWIL). The PMMW scene simulation is a key component for implementation of this simulator. However, there is no commercial on-the-shelf available to construct the PMMW scene simulation; only there have been a few studies on this technology. We have studied the PMMW scene simulation method to develop the PMMW sensor SWIL simulator. This paper describes the framework of the PMMW scene simulation and the tentative results. The purpose of the PMMW scene simulation is to generate sensor outputs (or image) from a visible image and environmental conditions. We organize it into four parts; material classification mapping, PMMW environmental setting, PMMW scene forming, and millimeter-wave (MMW) sensorworks. The background and the objects in the scene are classified based on properties related with MMW radiation and reflectivity. The environmental setting part calculates the following PMMW phenomenology; atmospheric propagation and emission including sky temperature, weather conditions, and physical temperature. Then, PMMW raw images are formed with surface geometry. Finally, PMMW sensor outputs are generated from PMMW raw images by applying the sensor characteristics such as an aperture size and noise level. Through the simulation process, PMMW phenomenology and sensor characteristics are simulated on the output scene. We have finished the design of framework of the simulator, and are working on implementation in detail. As a tentative result, the flight observation was simulated in specific conditions. After implementation details, we plan to increase the reliability of the simulation by data collecting

  11. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.

    PubMed

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621

  12. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul.

    PubMed

    Alavi, S E; Soltanian, M R K; Amiri, I S; Khalily, M; Supa'at, A S M; Ahmad, H

    2016-01-27

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  13. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    NASA Astrophysics Data System (ADS)

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’At, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.

  14. Towards 5G: A Photonic Based Millimeter Wave Signal Generation for Applying in 5G Access Fronthaul

    PubMed Central

    Alavi, S. E.; Soltanian, M. R. K.; Amiri, I. S.; Khalily, M.; Supa’at, A. S. M.; Ahmad, H.

    2016-01-01

    5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated. PMID:26814621

  15. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas.

    PubMed

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-01-01

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time. PMID:25988501

  16. Simplified optical millimeter-wave generation configuration based on frequency octupling

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Sun, Junqiang; Du, Mingdi; Liao, Jianfei

    2014-03-01

    In this paper, a tunable, wideband, with simple configuration to generate frequency octupled millimeter (mm)-wave signal for radio-over-fiber systems is theoretically analyzed and experimentally demonstrated. The proposed system consists of two cascaded Mach-Zehnder modulators (MZMs). The first one is working at optical carrier suppression modulation that is used for the first-order optical harmonic generation. The second one is dual-parallel MZM which utilized the first-order optical harmonic to generate frequency octupled mm-wave signal. The experiments show that without any filter, a wideband frequency octupled optical mm-wave signals with the frequency varying from 4 to 80 GHz and the undesired sideband suppression ratios of higher than 34 dB can be obtained. The phase noise performance and the transmission performance of the radio-over-fiber downlink system are also demonstrated. The single-sideband phase noise of the generated 80 GHz signal is -88 dBc/Hz at 10 kHz offset. The power penalty is less than 3 dB at the bit error rate of 10-10 after 50 km single-mode fiber transmission. Furthermore, it is proved to be valid that the proposed scheme is insensitive to the RF signal phase drift and the MZM bias drift, which demonstrates a relatively higher stability.

  17. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas

    PubMed Central

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-01-01

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time. PMID:25988501

  18. Electromagnetic design of an all-diffractive millimeter-wave imaging system.

    PubMed

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W

    2004-04-20

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/- 15 degrees. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  19. Electromagnetic Design of an All-Diffractive Millimeter-Wave Imaging System

    NASA Astrophysics Data System (ADS)

    Chen, Caihua; Shi, Shouyan; Prather, Dennis W.

    2004-04-01

    We present the design and electromagnetic analysis of an all-diffractive millimeter-wave imaging system having a field of view of +/-15°. This system consists of two 16-level diffractive lenses, with the stop in contact with the first lens. By considering the Seidel aberrations for a diffractive lens and applying the corresponding stop shift formula, we established the expressions of third-order wave aberrations for this system. By setting all primary Seidel aberrations to zero and solving the corresponding system of equations, we obtained two sets of solutions for this two-element all-diffractive system, which totally compensate for all Seidel aberrations. To assess image system performance, we apply the finite-difference time-domain technique and a vector plane-wave spectrum method, in combination, to validate the performance of the system. To reduce the computational cost and thereby enable the complete electromagnetic analysis of the system, a four-step analysis procedure has been developed and applied as an electromagnetic system model.

  20. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas.

    PubMed

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-05-19

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time.

  1. Multiplexed Millimeter Wave Communication with Dual Orbital Angular Momentum (OAM) Mode Antennas

    NASA Astrophysics Data System (ADS)

    Hui, Xiaonan; Zheng, Shilie; Chen, Yiling; Hu, Yiping; Jin, Xiaofeng; Chi, Hao; Zhang, Xianmin

    2015-05-01

    Communications using the orbital angular momentum (OAM) of radio waves have attracted much attention in recent years. In this paper, a novel millimeter-wave dual OAM mode antenna is cleverly designed, using which a 60 GHz wireless communication link with two separate OAM channels is experimentally demonstrated. The main body of the dual OAM antenna is a traveling-wave ring resonator using two feeding ports fed by a 90° hybrid coupler. A parabolic reflector is used to focus the beams. All the antenna components are fabricated by 3D printing technique and the electro-less copper plating surface treatment process. The performances of the antenna, such as S-parameters, near-fields, directivity, and isolation between the two OAM modes are measured. Experimental results show that this antenna can radiate two coaxially propagating OAM modes beams simultaneously. The multiplexing and de-multiplexing are easily realized in the antennas themselves. The two OAM mode channels have good isolation of more than 20 dB, thus ensuring the reliable transmission links at the same time.

  2. National Radio Astronomy Observatory Announces Closure of Millimeter-Wave Telescope

    NASA Astrophysics Data System (ADS)

    2000-02-01

    The National Radio Astronomy Observatory (NRAO) will close down its millimeter-wavelength telescope on Kitt Peak, Arizona, in July 2000, Director Paul Vanden Bout announced today. The closure will affect the activities of 24 NRAO employees. The Arizona telescope, known as the 12 Meter Telescope because of the diameter of its dish antenna, is the only millimeter-wavelength instrument in the U.S. that is operated full-time as a national facility, open to all scientists. The action was made necessary by the current and anticipated budget for the Observatory, Vanden Bout said. "We are forced to reduce the scope of our activities," Vanden Bout said. The NRAO also operates the Very Large Array and Very Long Baseline Array from its facilities in New Mexico and is completing construction of the Green Bank Telescope in West Virginia. The 12 Meter Telescope is used to observe electromagnetic radiation with wavelengths of a few millimeters down to one millimeter, a region that lies between what is traditionally considered radio waves and infrared radiation. The NRAO is currently participating in an international partnership to develop the Atacama Large Millimeter Array (ALMA), an array of 64 antennas to observe at millimeter wavelengths from a 16,500-foot-high location in northern Chile. "We understood that ALMA eventually would replace the 12 Meter Telescope, but we had hoped to continue operating the 12 Meter until ALMA began interim operations, probably sometime in 2005. That is not possible, and we are forced to close the 12 Meter this year," Vanden Bout said. More than 150 scientists use the 12 Meter Telescope for their research every year. The NRAO's Tucson-based employees have been notified of the Observatory's decision. Some of the NRAO employees in Tucson already are working on the ALMA project. Over the next few months, the NRAO will seek to transfer 12 Meter staff to the ALMA project or to other positions within the Observatory, where that is possible. Where

  3. Development and Short-Range Testing of a 100 kW Side-Illuminated Millimeter-Wave Thermal Rocket

    NASA Technical Reports Server (NTRS)

    Bruccoleri, Alexander; Eilers, James A.; Lambot, Thomas; Parkin, Kevin

    2015-01-01

    The objective of the phase described here of the Millimeter-Wave Thermal Launch System (MTLS) Project was to launch a small thermal rocket into the air using millimeter waves. The preliminary results of the first MTLS flight vehicle launches are presented in this work. The design and construction of a small thermal rocket with a planar ceramic heat exchanger mounted along the axis of the rocket is described. The heat exchanger was illuminated from the side by a millimeter-wave beam and fed propellant from above via a small tank containing high pressure argon or nitrogen. Short-range tests where the rocket was launched, tracked, and heated with the beam are described. The rockets were approximately 1.5 meters in length and 65 millimeters in diameter, with a liftoff mass of 1.8 kilograms. The rocket airframes were coated in aluminum and had a parachute recovery system activated via a timer and Pyrodex. At the rocket heat exchanger, the beam distance was 40 meters with a peak power intensity of 77 watts per square centimeter. and a total power of 32 kilowatts in a 30 centimeter diameter circle. An altitude of approximately 10 meters was achieved. Recommendations for improvements are discussed.

  4. A Simple and Accurate Analysis of Conductivity Loss in Millimeter-Wave Helical Slow-Wave Structures

    NASA Astrophysics Data System (ADS)

    Datta, S. K.; Kumar, Lalit; Basu, B. N.

    2009-04-01

    Electromagnetic field analysis of a helix slow-wave structure was carried out and a closed form expression was derived for the inductance per unit length of the transmission-line equivalent circuit of the structure, taking into account the actual helix tape dimensions and surface current on the helix over the actual metallic area of the tape. The expression of the inductance per unit length, thus obtained, was used for estimating the increment in the inductance per unit length caused due to penetration of the magnetic flux into the conducting surfaces following Wheeler’s incremental inductance rule, which was subsequently interpreted for the attenuation constant of the propagating structure. The analysis was computationally simple and accurate, and accrues the accuracy of 3D electromagnetic analysis by allowing the use of dispersion characteristics obtainable from any standard electromagnetic modeling. The approach was benchmarked against measurement for two practical structures, and excellent agreement was observed. The analysis was subsequently applied to demonstrate the effects of conductivity on the attenuation constant of a typical broadband millimeter-wave helical slow-wave structure with respect to helix materials and copper plating on the helix, surface finish of the helix, dielectric loading effect and effect of high temperature operation - a comparative study of various such aspects are covered.

  5. Built-in self-test (BIST) techniques for millimeter wave CMOS transceivers

    NASA Astrophysics Data System (ADS)

    Mahzabeen, Tabassum

    The seamless integration of complementary metal oxide semiconductor (CMOS) transceivers with a digital CMOS process enhances on-chip testability, thus reducing production and testing costs. Built in self testability also improves yield by offering on-chip compensation. This work focuses on built in self test techniques for CMOS based millimeter wave (mm-wave) transceivers. Built-in-self-test (BIST) using the loopback method is one cost-effective method for testing these transceivers. Since the loopback switch is always present during the normal operation of the transceiver, the requirement of the switch is different than for a conventional switch. The switch needs to have high isolation and high impedance during its OFF period. Two 80 GHz single pole single throw (SPST) switches have been designed, fabricated in standard CMOS process, and measured to connect the loopback path for BIST applications. The loopback switches in this work provide the required criteria for loopback BIST. A stand alone 80 GHz low noise amplifier (LNA) and the same LNA integrated with one of the loopback switches have been fabricated, and measured to observe the difference in performance when the loopback switch is present. Besides the loopback switch, substrate leakage also forms a path between the transmitter and receiver. Substrate leakage has been characterized as a function of distance between the transmitter and receiver for consideration in using the BIST method. A BIST algorithm has been developed to estimate the process variation in device sizes by probing a low frequency ring oscillator to estimate the device variation and map this variation to the 80 GHz LNA. Probing a low frequency circuit is cheaper compared to the probing of a millimeter wave circuit and reduces the testing costs. The performance of the LNA degrades due to variation in device size. Once the shift in the device size is being estimated (from the ring oscillator's shifted frequency), the LNA's performance can be

  6. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  7. Optimization of kinetic inductance detectors for millimeter and submillimeter wave detection

    NASA Astrophysics Data System (ADS)

    Coiffard, G.; Schuster, K. F.; Monfardini, A.; Adane, A.; Barbier, B.; Boucher, C.; Calvo, M.; Goupy, J.; Leclercq, S.; Pignard, S.

    2014-07-01

    We present the latest improvements of lumped element kinetic inductance detectors (LEKIDs) for the NIKA camera at the 30-m telescope of IRAM at Pico Veleta (Spain) [1]. LEKIDs are direct absorption detectors for millimeter wavelength and represent a particularly efficient concept of planar array continuum detectors for the millimeter and submillimeter wavelength range. To improve the detector radiation coupling over a wider frequency range, a combination of backplane reflector and a supplementary layer of dielectric between silicon substrate and backplane has been successfully explored. To this end we apply deep silicon etching to the substrate in order to decrease its effective dielectric constant in an intermediate layer. In the first generation of LEKIDs array, the response is disturbed by the presence of slot-modes in the frequency multiplexing coplanar feed/readout line, an effect which was reduced when applying wire bonding across the readout line. Superconducting air-bridges can be integrated into the array fabrication process. The suppression of slot-modes also reduces undesired cross-talk between pixels. Our current KID detectors are made of very thin aluminum films, but with a thickness of less than 20 nm we have reached some limitations concerning the layout and material processing. Following the results from Leduc et al. [2], we developed non-stoichiometric titanium nitride (TiN) at IRAM as an alternative material. We focus on the work done to achieve reproducible and homogenous films with the required transition temperature for mm-wave detection. We present characterization techniques that allow room temperature measurements to be correlated to the transition temperature of TiNx and first measurements on a test sample.

  8. Development of a Millimeter-Wave Beam Position and Profile Monitor for Transmission Efficiency Improvement in an ECRH System

    NASA Astrophysics Data System (ADS)

    Shimozuma, T.; Kobayashi, S.; Ito, S.; Ito, Y.; Kubo, S.; Yoshimura, Y.; Nishiura, M.; Igami, H.; Takahashi, H.; Mizuno, Y.; Okada, K.; Mutoh, T.

    2015-03-01

    In a high power Electron Cyclotron Resonance Heating (ECRH) system, a long-distance and low-loss transmission system is required to realize effective heating of nuclear fusion-relevant plasmas. A millimeter-wave beam position and profile monitor, which can be used in a high-power, evacuated, and cooled transmission line, is proposed, designed, manufactured, and tested. The beam monitor consists of a reflector, Peltier-device array and a heat-sink. It was tested using simulated electric heater power or gyrotron output power. The data obtained from the monitor were well agreed with the heat source position and profile. The methods of data analysis and mode-content analysis of a propagating millimeter-wave in the corrugated wave-guide are proposed.

  9. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    NASA Astrophysics Data System (ADS)

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  10. Millimeter-Wave Absorption as a Quality Control Tool for M-Type Hexaferrite Nanopowders

    SciTech Connect

    McCloy, John S.; Korolev, Konstantin A.; Crum, Jarrod V.; Afsar, Mohammed N.

    2013-01-01

    Millimeter wave (MMW) absorption measurements have been conducted on commercial samples of large (micrometer-sized) and small (nanometer-sized) particles of BaFe12O19 and SrFe12O19 using a quasi-optical MMW spectrometer and a series of backwards wave oscillators encompassing the 30-120 GHz range. Effective anisotropy of the particles calculated from the resonant absorption frequency indicates lower overall anisotropy in the nano-particles. Due to their high magnetocrystalline anisotropy, both BaFe12O19 and SrFe12O19 are expected to have spin resonances in the 45-55 GHz range. Several of the sampled BaFe12O19 powders did not have MMW absorptions, so they were further investigated by DC magnetization and x-ray diffraction to assess magnetic behavior and structure. The samples with absent MMW absorption contained primarily iron oxides, suggesting that MMW absorption could be used for quality control in hexaferrite powder manufacture.

  11. Electron Density Measurements on LTX Using Microwave and Millimeter-Wave Diagnostics

    NASA Astrophysics Data System (ADS)

    Kubota, S.; Nguyen, X. V.; Peebles, W. A.; Boyle, D. P.; Kaita, R.; Kozub, T.; Majeski, R.; Merino, E.; Schmitt, J. C.

    2015-11-01

    The dynamic evolution of the electron density profile is tracked using microwave and millimeter-wave diagnostics on LTX. The 296 GHz (λ =1 mm) interferometer provides a radial line density measurement at the midplane, while an FMCW (frequency-modulated continuous-wave) reflectometer (13.5 -33 GHz, or O-mode 0 . 2 - 1 . 3 ×1013 cm-3) provides density profile measurements for the low-field side. Data taken during FY2015 will be compared with measurements from Thomson scattering and estimates of the plasma position from LRDFIT. Measurements of density fluctuations due to low-frequency (<100 kHz) MHD instabilities will also be shown. Future plans include the installation of a correlation reflectomter (Ka-band, 27-40 GHz) with dual tuneable sources and a frequency bandwidth of up to 5 MHz. This system will utilize the same antennas as the profile reflectometer to provide radial and/or toroidal/poloidal correlations. Further diagnostic details will be presented at the meeting. Supported by U.S. DoE Grants DE-FG02-99ER54527 and DE-AC02-09CH11466.

  12. Millimeter waves thermally alter the firing rate of the Lymnaea pacemaker neuron

    SciTech Connect

    Alekseev, S.I.; Kochetkova, N.V.; Ziskin, M.C.; Bolshakov, M.A.

    1997-05-01

    The effects of millimeter waves (mm-waves, 75 GHz) and temperature elevation on the firing rate of the BP-4 pacemaker neuron of the pond snail Lymnaea stagnalis were studied by using microelectrode techniques. The open end of a rectangular waveguide covered with a thin Teflon film served as a radiator. Specific absorption rates (SARs), measured in physiological solution at the radiator outlet, ranged from 600 to 4,200 W/kg, causing temperature rises from 0.3 to 2.2 C, respectively. Irradiation at an SAR of 4,200 W/kg caused a biphasic change in the firing rate, i.e., a transient decrease in the firing rate followed by a gradual increase to a new level that was 68 {+-} 21% above control. The biphasic changes in the firing rate were reproduced by heating under the condition that the magnitude (2 C) and the rate of temperature rise were equal to those produced by the irradiation. The addition of 0.05 mM of ouabain caused the disappearance of transient responses of the neuron to the irradiation. It was shown that the rate of temperature rise played an important role in the development of a transient neuronal response. The threshold stimulus for a transient response of the BP-4 neutron found in warming experiments was a temperature rise of 0.0025 C/s.

  13. A high-temperature superconducting millimeter wave detecting system based on pulse tube cryocooler

    NASA Astrophysics Data System (ADS)

    Chen, Jian; Wu, Peiheng; Nakajima, Kensuke; Yamashita, Tsutomu

    2004-10-01

    A millimeter (mm) wave broadband video detecting system using high temperature superconducting (HTS) junction and compact pulse tube cryocooler (PTC) has been studied. The lowest attainable temperature of the PTC is 42K and the operating temperature (T) can be adjusted by changing the pressure difference in the compressor. By measuring the linewidth of the Josephson oscillation as well as the dynamic range of the Josephson detector, it is found that the PTC has no excess noise compared with other kinds of cryostats such as liquid helium cryostats, and is very suitable for the applications in the mm wave detecting system. Furthermore, to improve the sensitivity of the system, the coupling efficiency of the system has been studied in detail. It is found that the coupling efficiency increases with the increase of RN linearly, and is better than 1% for RN of 1.7 Ohm. A sensitivity of about 318V/W has been obtained for the system based on the PTC and a junction with RN=1.7 Ohm and ICRN =1mV.

  14. FGG-NUFFT-Based Method for Near-Field 3-D Imaging Using Millimeter Waves

    PubMed Central

    Kan, Yingzhi; Zhu, Yongfeng; Tang, Liang; Fu, Qiang; Pei, Hucheng

    2016-01-01

    In this paper, to deal with the concealed target detection problem, an accurate and efficient algorithm for near-field millimeter wave three-dimensional (3-D) imaging is proposed that uses a two-dimensional (2-D) plane antenna array. First, a two-dimensional fast Fourier transform (FFT) is performed on the scattered data along the antenna array plane. Then, a phase shift is performed to compensate for the spherical wave effect. Finally, fast Gaussian gridding based nonuniform FFT (FGG-NUFFT) combined with 2-D inverse FFT (IFFT) is performed on the nonuniform 3-D spatial spectrum in the frequency wavenumber domain to achieve 3-D imaging. The conventional method for near-field 3-D imaging uses Stolt interpolation to obtain uniform spatial spectrum samples and performs 3-D IFFT to reconstruct a 3-D image. Compared with the conventional method, our FGG-NUFFT based method is comparable in both efficiency and accuracy in the full sampled case and can obtain more accurate images with less clutter and fewer noisy artifacts in the down-sampled case, which are good properties for practical applications. Both simulation and experimental results demonstrate that the FGG-NUFFT-based near-field 3-D imaging algorithm can have better imaging performance than the conventional method for down-sampled measurements. PMID:27657066

  15. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system.

    PubMed

    Takahashi, K; Kajiwara, K; Oda, Y; Kasugai, A; Kobayashi, N; Sakamoto, K; Doane, J; Olstad, R; Henderson, M

    2011-06-01

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20°-40° from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  16. An algorithm for power line detection and warning based on a millimeter-wave radar video.

    PubMed

    Ma, Qirong; Goshi, Darren S; Shih, Yi-Chi; Sun, Ming-Ting

    2011-12-01

    Power-line-strike accident is a major safety threat for low-flying aircrafts such as helicopters, thus an automatic warning system to power lines is highly desirable. In this paper we propose an algorithm for detecting power lines from radar videos from an active millimeter-wave sensor. Hough Transform is employed to detect candidate lines. The major challenge is that the radar videos are very noisy due to ground return. The noise points could fall on the same line which results in signal peaks after Hough Transform similar to the actual cable lines. To differentiate the cable lines from the noise lines, we train a Support Vector Machine to perform the classification. We exploit the Bragg pattern, which is due to the diffraction of electromagnetic wave on the periodic surface of power lines. We propose a set of features to represent the Bragg pattern for the classifier. We also propose a slice-processing algorithm which supports parallel processing, and improves the detection of cables in a cluttered background. Lastly, an adaptive algorithm is proposed to integrate the detection results from individual frames into a reliable video detection decision, in which temporal correlation of the cable pattern across frames is used to make the detection more robust. Extensive experiments with real-world data validated the effectiveness of our cable detection algorithm.

  17. Selective Heating of Ceramic Joints using an 83 GHz Millimeter-wave Beam

    NASA Astrophysics Data System (ADS)

    Fliflet, Arne W.; Lewis, David, III; Gold, Steven H.; Fischer, Richard P.; Kinkead, Allen K.; Miserendino, Scott; Imam, M. A.

    2001-10-01

    The high power millimeter-wave beams produced by CW gyrotrons represent a promising new energy source for high-temperature processing of materials. An experimental facility based on an 83-GHz, 15-kW CW Gycom, Ltd. gyrotron has been set up at the Naval Research Laboratory to investigate novel mm-wave-beam-based approaches to processing ceramic materials, especially nanocrystalline materials which are especially suited to rapid processing. Available microwave power densities of >1 kW/cm^2 enable rapid, localized heating of ceramics for sintering, coating and joining applications. Current experimental and theoretical studies are investigating the formation of strong joints between ceramics and between ceramics and metals using rapid, selective heating of the joint region. This paper describes theoretical and experimental studies of microwave beam coupling to and propagation in multi-component ceramic systems and the dielectric properties of these systems. Examples of these systems include reactive metal brazes (mixtures of ceramic and metal powders), used in joints and coatings. The calculation of microwave absorption in joints based on the dielectric slab waveguide model and the Effective Medium Approximation for nonhomogeneous dielectric mixtures will be discussed, as will the results of high-temperature joining experiments.

  18. High power millimeter wave experiment of ITER relevant electron cyclotron heating and current drive system

    SciTech Connect

    Takahashi, K.; Kajiwara, K.; Oda, Y.; Kasugai, A.; Kobayashi, N.; Sakamoto, K.; Doane, J.; Olstad, R.; Henderson, M.

    2011-06-15

    High power, long pulse millimeter (mm) wave experiments of the RF test stand (RFTS) of Japan Atomic Energy Agency (JAEA) were performed. The system consists of a 1 MW/170 GHz gyrotron, a long and short distance transmission line (TL), and an equatorial launcher (EL) mock-up. The RFTS has an ITER-relevant configuration, i.e., consisted by a 1 MW-170 GHz gyrotron, a mm wave TL, and an EL mock-up. The TL is composed of a matching optics unit, evacuated circular corrugated waveguides, 6-miter bends, an in-line waveguide switch, and an isolation valve. The EL-mock-up is fabricated according to the current design of the ITER launcher. The Gaussian-like beam radiation with the steering capability of 20 deg. - 40 deg. from the EL mock-up was also successfully proved. The high power, long pulse power transmission test was conducted with the metallic load replaced by the EL mock-up, and the transmission of 1 MW/800 s and 0.5 MW/1000 s was successfully demonstrated with no arcing and no damages. The transmission efficiency of the TL was 96%. The results prove the feasibility of the ITER electron cyclotron heating and current drive system.

  19. Microwave and Millimeter Wave Testing for the Inspection of the Space Shuttle Spray on Foam Insulations (SOFI) and the Acreage Heat Tiles

    NASA Technical Reports Server (NTRS)

    Zoughi, R.; Kharkovsky, S.; Hepburn, F. L.

    2005-01-01

    The utility of microwave and millimeter wave nondestructive testing and evaluation (NDT&E) methods, for testing the Space Shuttle's external he1 tank spray on foam insulation (SOFI) and the acreage heat tiles has been investigated during the past two years. Millimeter wave NDE techniques are capable of producing internal images of SOFI. This paper presents the results of testing several diverse panels with embedded voids and debonds at millimeter wave frequencies. Additionally, the results of testing a set of heat tiles are also presented. Finally, the attributes of these methods as well as the advantageous features associated with these systems are also provided.

  20. Design and development of high linearity millimeter wave traveling-wave tube for satellite communications

    NASA Astrophysics Data System (ADS)

    He, Jun; Huang, Ming-Guang; Li, Xian-Xia; Li, Hai-Qiang; Zhao, Lei; Zhao, Jian-Dong; Li, Yue; Zhao, Shi-Lei

    2015-10-01

    The linearity of the traveling-wave tube is a very important characteristic for a modern communication system. To improve the linearity of the traveling-wave tube at no expense of the saturated output power and overall efficiency, a modified pitch profile combined with a small adjustment of operating parameters is proposed. The optimal design of the helix circuit is evaluated theoretically by a large signal analysis, and the experimental test is also carried out to make a comparison of performance between the novel and original designed traveling-wave tubes. The experiments show that the saturated output powers and efficiencies of these two tubes are close to each other, while the linearity of the traveling-wave tube is obviously improved. The total phase shift and AM/PM conversion at saturation of the novel tube, averaged over the operating band, are only 30.6°/dB and 2.5°/dB, respectively, which are 20.1°/dB and 1.6°/dB lower than those of the original tube, respectively. Moreover, the third-order intermodulation of the novel tube is up to 2.2 dBc lower than that of the original tube. Project supported by the National Natural Science Foundation of China (Grant No. 61401430).