Science.gov

Sample records for acrylic acid acrylamide

  1. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  2. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  3. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  4. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  5. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  7. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  8. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  9. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  10. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  11. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  12. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  13. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  14. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  15. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  16. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  17. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  18. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  19. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  20. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  1. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  2. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  3. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  4. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...

  5. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical...

  6. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection.

    PubMed

    Casella, Innocenzo G; Pierri, Marianna; Contursi, Michela

    2006-02-24

    The electrochemical behaviour of the polycrystalline platinum electrode towards the oxidation/reduction of short-chain unsaturated aliphatic molecules such as acrylamide and acrylic acid was investigated in acidic solutions. Analytes were separated by reverse phase liquid chromatographic and quantified using a pulsed amperometric detection. A new two-step waveform, is introduced for detection of acrylamide and acrylic acid. Detection limits (LOD) of 20 nM (1. 4 microg/kg) and 45 nM (3.2 microg/kg) were determined in water solutions containing acrylamide and acrylic acid, respectively. Compared to the classical three-step waveform, the proposed two-step waveform shows favourable analytical performance in terms of LOD, linear range, precision and improved long-term reproducibility. The proposed analytical method combined with clean-up procedure accomplished by Carrez clearing reagent and subsequent extraction with a strong cation exchanger cartridges (SPE), was successfully used for the quantification of low concentrations of acrylamide in foodstuffs such as coffee and potato fries. PMID:16426623

  7. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  8. Preparation of thermosensitive membranes by radiation grafting of acrylic acid/ N-isopropyl acrylamide binary mixture on PET fabric

    NASA Astrophysics Data System (ADS)

    Gupta, Bhuvanesh; Mishra, Swaiti; Saxena, Shalini

    2008-05-01

    Thermosensitive membranes were prepared by radiation-induced graft copolymerization of monomers on PET fabrics. A binary mixture of N-isopropyl acrylamide (NIPAAm) and acrylic acid (AA) was grafted on polyester fabric as a base material to introduce thermosensitive poly( N-isopropyl acrylamide) pendant chains having LCST slightly higher than 37 °C in the membrane. The influence of ferrous sulfate, radiation dose and monomer composition on the degree of grafting was studied. The structure of the grafted fabric was characterized by thermogravimetric analysis, differential scanning calorimetry and scanning electron microscopy. The thermosensitive nature of the fabric was monitored by swelling at different temperatures. The graft copolymerization of AA with NIPAAm enhanced the LCST of the resultant membrane to ˜37 °C. The moisture vapor transmission rate (MVTR) and air permeability of the fabric decreased slightly, may be due to the slight blocking of the fabric pores. The immobilization of tetracycline hydrochloride as the model drug and its release characteristics at different temperatures were monitored.

  9. Preparation and dielectric analysis of microphase-separated poly(acrylonitrile-co-acrylamide-co-acrylic acid) hydrogels

    SciTech Connect

    Hu, D.Shiaw-Guang; Lin, Yow-Shi

    1993-12-31

    The acidic hydrolysis of polyacrylonitrile was carried out to yield a variety of terpolymers made up of nitriles, amides and acids. The formation of block structure was shown to follow a ripper mechanism occurring to acrylamide groups, that is more pronounced for a certain range of acrylamide content, evidenced by the composition analysis using {sup 1}H-NMR and base titration. The rates of formation of acrylamide fraction and acid fraction in the consecutive mode are approximately the same, yielding the content of ionic groups from 0.8 to 2.2. mole percent, dependent on the time of hydrolysis. The dielectric relaxation measurement on swollen gels shows three relaxation transitions, {alpha}, {beta}, {gamma}, over -150{degrees}C to 0{degrees}C, as influenced by the chemical composition and water absorption. The {beta} and {gamma} are associated with the polymer-water interaction and short-range motion of polymers and water.

  10. Poly (Acrylamide-co-Acrylic Acid) Hydrogel Induced by Glow-Discharge Electrolysis Plasma and Its Adsorption Properties for Cationic Dyes

    NASA Astrophysics Data System (ADS)

    Yu, Jie; Yang, Gege; Pan, Yuanpei; Lu, Quanfang; Yang, Wu; Gao, Jinzhang

    2014-08-01

    In this paper, poly (acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel was prepared in an aqueous solution by using glow-discharge electrolysis plasma (GDEP) induced copolymerization of acrylamide (AM) and acrylic acid (AA), in which N,N'-methylenebisacrylamide (MBA) was used as a crosslinker. A mechanism for the synthesis of P(AM-co-AA) hydrogel was proposed. To optimize the synthesis condition, the following parameters were examined in detail: the discharge voltage, discharge time, the content of the crosslinker, and the mass ratio of AM to AA. The results showed that the optimum pH range for cationic dyes removal was found to be 5.0-10.0. The P(AM-co-AA) hydrogel exhibits a very high adsorption potential and the experimental adsorption capacities for Crystal violet (CV) and Methylene blue (MB) were 2974.3 mg/g and 2303.6 mg/g, respectively. The adsorption process follows a pseudo-second-order kinetic model. In addition, the adsorption mechanism of P(AM-co-AA) hydrogel for cationic dyes was also discussed.

  11. Water-soluble polymeric chemosensor for selective detection of Hg(2+) in aqueous solution using rhodamine-based modified poly(acrylamide-acrylic acid).

    PubMed

    Geng, Tong-Mou; Wu, Da-Yu

    2015-12-01

    We report the fabrication of a novel easily available turn-on fluorescent water-soluble polymeric chemosensor for Hg(2+) ions that was simply prepared by micellar free radical polymerization of a water-insoluble organic rhodamine-based Hg(2+)-recognizing monomer (GR6GH), with hydrophilic monomers acrylamide (AM) and acrylic acid (AA). The chemical structure of the polymeric sensor was characterized by FT-IR and (1)H NMR spectroscopy. The apparent viscosity average molecular weight Mη of poly(acrylamide-acrylic acid) [poly(AM-NaAA)] and the water-soluble polymeric chemosensor poly(AM-NaAA-GR6GH) were 1.76 × 10(6) and 6.84 × 10(4) g/mol, respectively. Because of its amphiphilic property, the water-soluble polymeric chemosensor can be used as a chemosensor in aqueous media. Upon addition of Hg(2+) ions to an aqueous solution of poly(AM-NaAA-GR6GH), fluorescence enhancements were observed instantly. Moreover, other metal ions did not induce obvious changes to the fluorescence spectra. This approach may provide an easily measurable and inherently sensitive method for Hg(2+) ion detection in environmental and biological applications. PMID:25808221

  12. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  13. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  14. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). PMID:24681378

  15. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.

    PubMed

    Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib

    2015-01-01

    Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. PMID:25224290

  16. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  17. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  18. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  19. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  20. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    SciTech Connect

    Barleany, Dhena Ria Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty; Heriyanto, Heri; Erizal

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  1. COMPARISON OF SUBCHRONIC NEUROTOXICITY OF 2-HYDROXYETHYL ACRYLATE AND ACRYLAMIDE IN RATS

    EPA Science Inventory

    The comparative neurotoxicity of subchronic exposure to 2 hydroxyethyl acrylate (HEA) and acrylamide (ACR) was evaluated using a functional observational battery (FOB) and neurohistology. hree dose levels of each compound (HEA: 3, 20, 60 mg/kg; ACR: I, 4, 12 mg/kg) were administe...

  2. Pathogenesis of neurotoxicity of acrylates acrylonitrile and acrylamide: from cell to organism.

    PubMed

    Tarskikh, M M; Klimatskaya, L G; Kolesnikov, S I

    2013-08-01

    The incubation of 10 mM acrylamide (in vitro) with rat brain homogenate was followed by a decrease in catalase activity by 48% as soon as 5 min after addition of acrylate to the incubation medium. Activity of this enzyme remained low 30 min after the start of the experiment. Acute poisoning with this acrylate was accompanied by LPO activation in rat brain 24 h after injection. Exposure to acrylonitrile during occupational contacts with this monomer was followed by accumulation of adducts of acrylate with erythrocytic hemoglobin in human blood. In accordance with previously observed data, modern scheme of neurotropic effects of acrylonitrile and acrylamide was proposed. This scheme explained specific features of clinical syndromes induced by acute and chronic exposure to these toxic agents. PMID:24143365

  3. Effects of Lipoic Acid on Acrylamide Induced Testicular Damage

    PubMed Central

    Lebda, Mohamed; Gad, Shereen; Gaafar, Hossam

    2014-01-01

    Introduction: Acrylamide is very toxic to various organs and associated with significant increase of oxidative stress and depletion of antioxidants. Alpha-lipoic acid enhances cellular antioxidant defense capacity, thereby protecting cells from oxidative stress. Aim of the study: This study aimed to evaluate the protective role of alpha-lipoic acid on the oxidative damage induced by acrylamide in testicular and epididymal tissues. Material and methods: Forty adult male rats were divided into four groups (10 rats each). Control group; acrylamide treated group administered acrylamide 0.05% (w/v) in drinking water for 21 days; alpha-lipoic acid group received basal diet supplemented with 1% alpha-lipoic acid and forth group was exposed to acrylamide and treated with alpha-lipoic acid at the same doses and treatment regimen mentioned before. Results: The administration of acrylamide resulted in significant elevation in testicular and epididymal malondialdehyde level (MDA) and significant reduction in the level of reduced glutathione (GSH) and the activities of glutathione-S-transferase (GST), glutathione peroxidase (GPX) and glutathione reductase (GR). Also, acrylamide significantly reduced serum total testosterone and progesterone but increased estradiol (E2) levels. Treatment with alpha-lipoic acid prior to acrylamide induced protective effects and attenuated these biochemical changes. Conclusion: Alpha-lipoic acid has been shown to possess antioxidant properties offering promising efficacy against oxidative stress induced by acrylamide administration. PMID:25126019

  4. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    NASA Astrophysics Data System (ADS)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  5. Acrylamide

    Integrated Risk Information System (IRIS)

    Acrylamide ; CASRN 79 - 06 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  6. Crystal structure of glycidamide: the mutagenic and genotoxic metabolite of acryl-amide.

    PubMed

    Hemgesberg, Melanie N; Bonck, Thorsten; Merz, Karl-Heinz; Sun, Yu; Schrenk, Dieter

    2016-08-01

    The title compound, glycidamide (systematic name: oxirane-2-carboxamide), C3H5NO2, is the mutagenic and genotoxic metabolite of acryl-amide, a food contaminant and industrial chemical that has been classified as being probably carcinogenic to humans. Synthesized via the reaction of acrylo-nitrile and hydrogen peroxide, it crystallizes with both enanti-omers occurring as two crystallographically independent mol-ecules (A and B) in the asymmetric unit. They have similar conformations with an r.m.s. deviation of 0.0809 Å for mol-ecule B inverted on mol-ecule A. In the crystal, mol-ecules are linked by N-H⋯O hydrogen bonds, which lead to the formation of β-sheet structures enclosing R 2 (2)(8) and R 4 (2)(8) loops. The β-sheets are linked by weaker C-H⋯O hydrogen bonds, forming a supra-molecular three-dimensional structure. PMID:27536408

  7. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  8. SOURCE ASSESSMENT: ACRYLIC ACID MANUFACTURE; STATE-OF-THE-ART

    EPA Science Inventory

    This report summarizes data on air emissions from the production of acrylic acid. Hydrocarbons, carbon monoxide, and nitrogen oxide are emitted from various operations. Hydrocarbon emissions consist of acetaldehyde, acetic acid, acetone acrolein, acrylic acid, benzene, phenol, pr...

  9. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria.

    PubMed

    Oksińska, Małgorzata P; Magnucka, Elżbieta G; Lejcuś, Krzysztof; Pietr, Stanisław J

    2016-03-01

    Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively. PMID:26817471

  10. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  14. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties

    PubMed Central

    Aydogan Ayaz, Elif; Durkan, Rukiye

    2013-01-01

    The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n=10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (−5), 10% (−10), 15% (−15) and 20% (−20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal–Wallis test (α=0.05) to determine significant differences between the groups. The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 °C⋅min−1 from 35 °C to 600 °C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P<0.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P<0.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P<0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P<0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm. PMID:24030556

  15. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... specifications: (1) A minimum molecular weight of 3 million. (2) Viscosity range: 3,000 to 6,000 centipoises...

  16. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  17. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  18. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  19. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  20. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN P... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide,...

  1. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN P... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide,...

  2. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel.

    PubMed

    Zhang, Mingyue; Cheng, Zhiqiang; Zhao, Tianqi; Liu, Mengzhu; Hu, Meijuan; Li, Junfeng

    2014-09-01

    A novel composite hydrogel was prepared via UV irradiation copolymerization of acrylic acid and maize bran (MB) in the presence of composite initiator (2,2-dimethoxy-2-phenylacetophenone and ammonium persulfate) and cross-linker (N,N'-methylenebis(acrylamide)). Under the optimized conditions, maize bran-poly(acrylic acid) was obtained (2507 g g(-1) in distilled water and 658 g g(-1) in 0.9 wt % NaCl solution). Effects of granularity, salt concentration, and various cations and anions on water absorbency were investigated. It was found that swelling was extremely sensitive to the ionic strength and cation and anion type. Swelling kinetics and water diffusion mechanism in distilled water were also discussed. Moreover, the product showed excellent water retention capability under the condition of high temperature or high pressure. The salt sensitivity, good water absorbency, and excellent water retention capability of the hydrogels give this intelligentized polymer wide potential applications. PMID:25133321

  3. Drilling fluids containing amps, acrylic acid, itaconic acid polymer

    SciTech Connect

    Bardoliwalla, D.F.

    1987-10-13

    This patent describes an aqueous drilling fluid having present in an amount sufficient to reduce fluid loss of the drilling fluid, at least one polymer of (1) from about 5% to about 50% by weight of 2-acrylamido-2-methylpropane sulfonic acid and (2) from about 95% to about 50% by weight of a second component, there being from 100% to about 80% by weight of acrylic acid and from 0% by weight to about 20% by weight of itaconic acid in the second component. The polymer has a weight average molecular weight of between about 50,000 to about 1,000,000 being in its free acid or partially or completely neutralized form and being at least water dispersible. A method is described of drilling a well into a subterranean formation in which an aqueous drilling fluid is circulated into the well. The step of circulating the drilling fluid contains in an amount sufficient to reduce fluid loss of the drilling fluid, at least one polymer of (1) from about 5% to about 50% by weight of 2-acrylamido-2-methylpropane sulfonic acid and (2) from about 95% to about 50% by weight of a second component. There is from 100% to about 80% by weight of acrylic acid and from 0% by weight to about 20% by weight of itaconic acid in the second component. The polymer has weight average molecular weight of between about 50,000 to about 1,000,000 in its free acid or partially or completely neutralized form and is at least water dispersible.

  4. Behaviors of acrylamide/itaconic acid hydrogels in uptake of uranyl ions from aqueous solutions

    SciTech Connect

    Karadag, E.; Saraydin, D.; Gueven, O.

    1995-12-01

    In this study, adsorptions of uranyl ions from two different aqueous uranyl solutions by acrylamide-itaconic acid hydrogels were investigated by a spectroscopic method. The hydrogels were prepared by irradiating with {gamma}-radiation. In the experiment of uranyl ions adsorption, Type II adsorption was found. One gram of acrylamide-itaconic acid hydrogels sorbed 178-219 mg uranyl ions from the solutions of uranyl acetate, 42-76 mg uranyl ions from the aqueous solutions of uranyl nitrate, while acrylamide hydrogel did not sorb any uranyl ion. For the hydrogel containing 40 mg of itaconic acid and irradiated to 3.73 kGy, swelling of the hydrogels was observed in water (1660%), in the aqueous solution of uranyl acetate (730%), and in the aqueous solution of uranyl nitrate (580%). Diffusions of water onto hydrogels were a non-Fickian type of diffusion, whereas diffusions of uranyl ions were a Fickian type of diffusion.

  5. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  6. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  7. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  8. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  9. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  10. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic). 721.10702 Section 721.10702 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific...

  11. Investigations on the effect of amino acids on acrylamide, pyrazines, and Michael addition products in model systems.

    PubMed

    Koutsidis, Georgios; Simons, Sandra P J; Thong, Yeong H; Haldoupis, Yannis; Mojica-Lazaro, Jonas; Wedzicha, Bronislaw L; Mottram, Donald S

    2009-10-14

    Acrylamide and pyrazine formation, as influenced by the incorporation of different amino acids, was investigated in sealed low-moisture asparagine-glucose model systems. Added amino acids, with the exception of glycine and cysteine and at an equimolar concentration to asparagine, increased the rate of acrylamide formation. The strong correlation between the unsubstituted pyrazine and acrylamide suggests the promotion of the formation of Maillard reaction intermediates, and in particular glyoxal, as the determining mode of action. At increased amino acid concentrations, diverse effects were observed. The initial rates of acrylamide formation remained high for valine, alanine, phenylalanine, tryptophan, glutamine, and leucine, while a significant mitigating effect, as evident from the acrylamide yields after 60 min of heating at 160 degrees C, was observed for proline, tryptophan, glycine, and cysteine. The secondary amine containing amino acids, proline and tryptophan, had the most profound mitigating effect on acrylamide after 60 min of heating. The relative importance of the competing effect of added amino acids for alpha-dicarbonyls and acrylamide-amino acid alkylation reactions is discussed and accompanied by data on the relative formation rates of selected amino acid-AA adducts. PMID:19739658

  12. Production of 3-hydroxypropionic acid from acrylic acid by newly isolated rhodococcus erythropolis LG12.

    PubMed

    Lee, Sang-Hyun; Park, Si Jae; Park, Oh-Jin; Cho, Junhyeong; Rhee, Joo Won

    2009-05-01

    A novel microorganism, designated as LG12, was isolated from soil based on its ability to use acrylic acid as the sole carbon source. An electron microscopic analysis of its morphological characteristics and phylogenetic classification by 16S rRNA homology showed that the LG12 strain belongs to Rhodococcus erythropolis. R. erythropolis LG12 was able to metabolize a high concentration of acrylic acid (up to 40 g/l). In addition, R. erythropolis LG12 exhibited the highest acrylic acid-degrading activity among the tested microorganisms, including R. rhodochrous, R. equi, R. rubber, Candida rugosa, and Bacillus cereus. The effect of the culture conditions of R. erythropolis LG12 on the production of 3-hydroxypropionic acid (3HP) from acrylic acid was also examined. To enhance the production of 3HP, acrylic acid-assimilating activity was induced by adding 1 mM acrylic acid to the culture medium when the cell density reached an OD600 of 5. Further cultivation of R. erythropolis LG12 with 40 g/l of acrylic acid resulted in the production of 17.5 g/l of 3HP with a molar conversion yield of 44% and productivity of 0.22 g/I/h at 30 degrees after 72 h. PMID:19494695

  13. A New Process for Acrylic Acid Synthesis by Fermentative Process

    NASA Astrophysics Data System (ADS)

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  14. Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli.

    PubMed

    Tong, Wenhua; Xu, Ying; Xian, Mo; Niu, Wei; Guo, Jiantao; Liu, Huizhou; Zhao, Guang

    2016-06-01

    Acrylic acid is an important industrial feedstock. In this study, a de novo acrylate biosynthetic pathway from inexpensive carbon source glycerol was constructed in Escherichia coli. The acrylic acid was produced from glycerol via 3-hydroxypropionaldehyde, 3-hydroxypropionyl-CoA, and acrylyl-CoA. The acrylate production was improved by screening and site-directed mutagenesis of key enzyme enoyl-CoA hydratase and chromosomal integration of some exogenous genes. Finally, our recombinant strain produced 37.7 mg/L acrylic acid under shaking flask conditions. Although the acrylate production is low, our study shows feasibility of engineering an acrylate biosynthetic pathway from inexpensive carbon source. Furthermore, the reasons for limited acrylate production and further strain optimization that should be performed in the future were also discussed. PMID:26782744

  15. Preparation of silver-poly(acrylamide-co-methacrylic acid) composite microspheres with patterned surface structures.

    PubMed

    Xia, Huiyun; Zhang, Ying; Peng, Junxia; Fang, Yu; Gu, Zhongze

    2006-01-01

    Acrylamide (AM) and methacrylic acid (MAA) copolymer microgels were prepared by a reverse suspension polymerization technique. The microgels were used as templates for the preparation of silver-poly(acrylamide-co-methacrylic acid) [Ag-P(AM-co-MAA)] composite microspheres. The surface structures of the microspheres prepared in this way are characterized by zigzag-like structures. It was found that the composition of the microgels, the nature and dosage of surfactants, the quantity of the metal, and even the reduction methods employed have a significant effect upon the surface structures of the microspheres. X-ray diffraction analysis confirmed that Ag formed during the process is in a crystal state of a face-centered cubic structure. PMID:24058232

  16. Evidence for the complex relationship between free amino acid and sugar concentrations and acrylamide-forming potential in potato

    PubMed Central

    Muttucumaru, N; Powers, SJ; Elmore, JS; Briddon, A; Mottram, DS; Halford, NG

    2014-01-01

    Free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results not only in the formation of colour, aroma and flavour compounds, but also undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the reaction is asparagine. In this study, tubers of 13 varieties of potato (Solanum tuberosum), which had been produced in a field trial in 2010 and sampled immediately after harvest or after storage for 6 months, were analysed to show the relationship between the concentrations of free asparagine, other free amino acids, sugars and acrylamide-forming potential. The varieties comprised five that are normally used for crisping, seven that are used for French fry production and one that is used for boiling. Acrylamide formation was measured in heated flour, and correlated with glucose and fructose concentration. In French fry varieties, which contain higher concentrations of sugars, acrylamide formation also correlated with free asparagine concentration, demonstrating the complex relationship between precursor concentration and acrylamide-forming potential in potato. Storage of the potatoes for 6 months at 9°C had a significant, variety-dependent impact on sugar and amino acid concentrations and acrylamide-forming potential. PMID:25540460

  17. Effect of ascorbic acid on the properties of ammonia caramel colorant additives and acrylamide formation.

    PubMed

    Chen, Hongxing; Gu, Zhengbiao

    2014-09-01

    Ammonia caramels are among the most widely used colorant additives in the food industry. They are commonly prepared through the Maillard reaction and caramelization of mixtures of reducing sugars with ammonia or ammonium salts. Antioxidants are known to inhibit acrylamide formation during the Maillard reaction, and they may affect the properties of the ammonia caramel products. Thus, the objective of this study was to investigate the effect of the antioxidant ascorbic acid on the properties of ammonia caramel. A mixture of glucose and ammonia was allowed to react at 120 °C for 60 min in the presence of ascorbic acid at final concentrations of 0 to 0.08 M. The ammonia caramels obtained from these reactions were all positively charged. As the concentration of ascorbic acid increased, the color intensity of the ammonia caramel showed a decreasing trend, while the intensity of the fluorescence and total amount of pyrazines in the volatiles showed a tendency to increase. The addition of ascorbic acid did not result in obvious changes in the UV-visible spectra of the ammonia caramels and the types of pyrazines in the volatiles were also unchanged. It is noteworthy that the addition of 0.02 to 0.08 M ascorbic acid did reduce the formation of the by-product acrylamide, a harmful substance in food. When the concentration of ascorbic acid added reached 0.04 M, the content of acrylamide in the ammonia caramel was 20.53 μg/L, which was approximately 44% lower than that without ascorbic acid. As a result, ascorbic acid can be considered to improve the quality and safety of ammonia caramels. PMID:25204396

  18. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.

    PubMed

    Dong, Rong; Krishnan, Sitaraman; Baird, Barbara A; Lindau, Manfred; Ober, Christopher K

    2007-10-01

    Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regions were back-filled with an initiator for surface-initiated atom transfer radical polymerization (ATRP). ATRP of sodium acrylate was readily achieved at room temperature in an aqueous medium. Protonation of the polymer resulted in patterned poly(acrylic acid) (PAA) brushes. A variety of biomolecules containing amino groups could be covalently tethered to the dense carboxyl groups of the brush, under relatively mild conditions. The PEG regions surrounding the PAA brush greatly reduced nonspecific adsorption. Avidin was covalently attached to PAA brushes, and biotin-tagged proteins could be immobilized through avidin-biotin interaction. Such an immobilization method, which is based on specific interactions, is expected to better retain protein functionality than direct covalent binding. Using biotin-tagged bovine serum albumin (BSA) as a model, a simple strategy was developed for immobilization of small biological molecules using BSA as linkages, while BSA can simultaneously block nonspecific interactions. PMID:17880179

  19. Effects of nitrogen and sulfur fertilization on free amino acids, sugars, and acrylamide-forming potential in potato.

    PubMed

    Muttucumaru, Nira; Powers, Stephen J; Elmore, J Stephen; Mottram, Donald S; Halford, Nigel G

    2013-07-10

    Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes. PMID:23768004

  20. Effects of Nitrogen and Sulfur Fertilization on Free Amino Acids, Sugars, and Acrylamide-Forming Potential in Potato

    PubMed Central

    2013-01-01

    Nitrogen (N) fertilizer is used routinely in potato (Solanum tuberosum) cultivation to maximize yield. However, it also affects sugar and free amino acid concentrations in potato tubers, and this has potential implications for food quality and safety because free amino acids and reducing sugars participate in the Maillard reaction during high-temperature cooking and processing. This results in the formation of color, aroma, and flavor compounds, but also some undesirable contaminants, including acrylamide, which forms when the amino acid that participates in the final stages of the reaction is asparagine. Another mineral, sulfur (S), also has profound effects on tuber composition. In this study, 13 varieties of potato were grown in a field trial in 2010 and treated with different combinations of N and S. Potatoes were analyzed immediately after harvest to show the effect of N and S fertilization on concentrations of free asparagine, other free amino acids, sugars, and acrylamide-forming potential. The study showed that N application can affect acrylamide-forming potential in potatoes but that the effect is type- (French fry, chipping, and boiling) and variety-dependent, with most varieties showing an increase in acrylamide formation in response to increased N but two showing a decrease. S application reduced glucose concentrations and mitigated the effect of high N application on the acrylamide-forming potential of some of the French fry-type potatoes. PMID:23768004

  1. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.

  2. Radiation curing of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Janowska, G.

    Polyester resin containing acrylic acid or its salts was cured with γ 60Co radiation. The course of curing was examined, the gel content and polymerization shrinkage were measured and also thermographic and IR absorption analyses were carried out. It was found that manganese, iron and copper acrylates inhibited the curing of resin while the remaining additives showed a slightly stimulating action. All the additives decreased the polymerization shrinkage by a factor of 2-3 and iron acrylate by as much as 8 times (up to 1%). They also increased the activation energy of the thermal decomposition of resin, and calcium, barium and copper acrylates increased the thermal stability of resin by 20 K. IR absorption spectra showed that acrylic acid and its salts reacted mainly with the monomeric component of the resin (styrene) whereas iron and copper acrylates first attacked the unsaturated bonds of the oligoester.

  3. Radiation grafting studies of acrylic acid onto cellulose triacetate membranes

    NASA Astrophysics Data System (ADS)

    Mazzei, R. O.; Smolko, E.; Torres, A.; Tadey, D.; Rocco, C.; Gizzi, L.; Strangis, S.

    2002-05-01

    Polymer surface modifications were obtained by the application of radiation treatments, etching and grafting of acrylic acid monomers on different membranes of cellulose triacetate materials. Cellulose triacetate foils from pellet dissolution and commercial cellulose triacetate solid state nuclear track detector membranes were assayed. Irradiation with fission fragments from Cf-252 source to obtain a porous structure, 25 MeV proton beam and Co-60 γ-source to produce peroxides were employed in the experiments. The present work gives the grafting yield of AAc monomer onto CTA membranes as a function of diverse variables including irradiation parameters ( γ-dose, Cf-252 ff irradiation time, proton fluency and electronic energy loss (d E/d x) e), structural parameters (pore diameter and pore density, etching time and etching temperature) and grafting parameters (monomer and Mohr salt concentration, grafting time and grafting temperature).

  4. Water-soluble polymers 60. Synthesis and solution behavior of terpolymers of acrylic arid, acrylamide, and the zwitterionic monomer 3-[(2-acrylamido-2-methylpropyl)dimethylammonio]-1-propanesulfonate

    SciTech Connect

    Kathmann, E.E.L.; Davis, D.D.; McCormick, C.L. . Dept. of Polymer Science)

    1994-06-06

    Terpolymers of acrylic acid (AA), acrylamide (AM), and the zwitterionic monomer 3-[(2-acrylamido-2-methylpropyl) dimethylammonio]-1-propanesulfonate (AMPDAPS) have been prepared by the free-radical polymerization in a 0.5 M NaCl aqueous solution using potassium persulfate as the initiator. The feed ratio of AMPDAPS:AA:AM was varied from 5:5:90 to 40:20:20 mol%, with the total monomer concentration held constant at 0.45 M. Terpolymer compositions were obtained by [sup 13]C NMR. Low-angle laser light scattering provided molecular weights and second virial coefficients which varied from (3.0 to 7.9) [times] 10[sup 6] and (2.23 to 2.95) [times] 10[sup [minus]4] ml mol g[sup [minus]2], respectively. The solubilities of the resulting terpolymers are dependent on pH as well as the amount of AMPDAPS and AA present in the feed. At pH 4 and for higher incorporation of AA and AMPDAPS in the feed (>25 mol %), the terpolymers are insoluble in deionized water and 0.25 M NaCl. At pH 8, all terpolymers are soluble in deionized water and salt solutions. The dilute and semidilute solution behavior f the terpolymers were studied as a function of composition and added electrolytes. Polyelectrolyte behavior was observed for all terpolymers at pH 8 as evidenced by a viscosity decrease in the presence of added electrolytes. The terpolymers exhibit higher viscosities in the presence of NaSCN versus NaCl. Comparison of the solution behavior of the terpolymers to copolymers of AM and AA as well as copolymers of AMPDAPS and AM has been made.

  5. Adsorptions of some heavy metal ions in aqueous solutions by acrylamide/maleic acid hydrogels

    SciTech Connect

    Saraydin, D.; Karadag, E.; Gueven, O.

    1995-10-01

    In this study, acrylamide-maleic acid (AAm/MA) hydrogels in the form of rod have been prepared by {gamma}-radiation. They have been used for adsorption of some heavy metal ions such as uranium, iron, and copper. For the hydrogel containing 40 mg of maleic acid and irradiated at 3.73 kGy, maximum and minimum swellings in the aqueous solutions of the heavy metal ions have been observed with water (1480%) and the aqueous solution of iron(III) nitrate (410%), respectively. Diffusions of water and heavy metal ions onto hydrogels have been found to be of the non-Fickian type of diffusion. In experiments of uranyl ions adsorption, Type II adsorption has been found. One gram of AAa/MA hydrogels sorbed 14-86 mg uranyl ions from solutions of uranyl acetate, 14-90 mg uranyl ions from solutions of uranyl nitrate, 16-39 mg iron ions from solutions of iron(IV) nitrate, and 28-81 mg copper ions from solutions of copper acetate, while acrylamide hydrogel did not sorb any heavy metals ions.

  6. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  7. Effect of lactic acid fermentation of lupine wholemeal on acrylamide content and quality characteristics of wheat-lupine bread.

    PubMed

    Bartkiene, Elena; Jakobsone, Ida; Juodeikiene, Grazina; Vidmantiene, Daiva; Pugajeva, Iveta; Bartkevics, Vadims

    2013-11-01

    The effect of supplementing wheat flour at a level of 15% with lupine (Lupinus angustifolius L.) wholemeal fermented by different lactic acid bacteria on acrylamide content in bread crumb as well as on bread texture and sensory characteristics was analysed. The use of fermented lupine resulted in a lower specific volume and crumb porosity of bread on an average by 14.1% and 10.5%, respectively, while untreated lupine lowered the latter parameters at a higher level (30.8% and 20.7%, respectively). The addition of lupine resulted in a higher by 43.3% acrylamide content compared to wheat bread (19.4 µg/kg dry weight (d.w.)). Results showed that acrylamide was significantly reduced using proteolytic Lactobacillus sakei and Pediococcus pentosaceus 10 strains for lupine fermentation. Although the bread supplemented with lupine spontaneous sourdough had the lowest level of acrylamide (15.6 µg/kg d.w.), it had the malodorous flavour and was unacceptable to the consumers. The lactofermentation could increase the potential use of lupine as a food ingredient while reducing acrylamide formation and enriching bread with high quality proteins. PMID:23763660

  8. Simultaneous Separation of Acidic and Basic Isoperoxidases in Wounded Potato Tissue by Acrylamide Gel Electrophoresis 1

    PubMed Central

    Borchert, Rolf; Decedue, Charles J.

    1978-01-01

    Preparation and use of a newly developed pH 4.3 horizontal thin layer acrylamide gel which permits the simultaneous separation of acidic and basic isoperoxidases in up to 30 samples is described. Use of cytochrome c, horseradish peroxidase, and a purified potato isoperoxidase as internal standards for a range in isoelectric points of peroxidases from pH 3 to 11 is introduced to facilitate comparison of results obtained with different materials and different methods. Distribution of tissue-specific isoperoxidases in different cell layers of wounded potato (Solanum tuberosum L.) tissue is shown and their purification described. Evidence for the in vitro degradation of basic potato isoperoxidases resulting in more acidic forms similar to isoperoxidases occurring in wounded potato tissue is presented. The significance of this observation for the postulated differential function of different isoperoxidases is discussed. ImagesFig. 1-3 PMID:16660608

  9. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  10. A review of acrylamide: an industry perspective on research, analysis, formation, and control.

    PubMed

    Taeymans, Dominique; Wood, John; Ashby, Peter; Blank, Imre; Studer, Alfred; Stadler, Richard H; Gondé, Pierre; Van Eijck, Paul; Lalljie, Sam; Lingnert, Hans; Lindblom, Marianne; Matissek, Reinhard; Müller, Detflef; Tallmadge, Dan; O'Brien, John; Thompson, Sara; Silvani, David; Whitmore, Tricia

    2004-01-01

    Acrylamide is a synthetic monomer with a wide scope of industrial applications, mainly as a precursor in the production of several polymers, such as polyacrylamide. The main uses of polyacrylamides are in water and wastewater treatment processes, pulp and paper processing, and mining and mineral processing. The announcement by the Swedish National Food Administration in April 2002 of the presence of acrylamide predominantly in heat-treated carbohydrate-rich foods sparked intensive investigations into acrylamide, encompassing the occurrence, chemistry, agricultural practices, and toxicology, in order to establish if there is a potential risk to human health from the presence of this contaminant in the human diet. The link of acrylamide in foods to the Maillard reaction and, in particular, to the amino acid asparagine has been a major step forward in elucidating the first feasible chemical route of formation during the preparation and processing of food. Other probably minor pathways have also been proposed, including acrolein and acrylic acid. This review addresses the analytical and mechanistic aspects of the acrylamide issue and summarizes the progress made to date by the European food industries in these key areas. Essentially, it presents experimental results generated under laboratory model conditions, as well as under actual food processing conditions covering different food categories, such as potatoes, biscuits, cereals, and coffee. Since acrylamide formation is closely linked to food composition, factors such as the presence of sugars and availability of free amino acids are also considered. Many new findings that contribute towards a better understanding of the formation and presence of acrylamide in foods are presented. Many national authorities across the world are assessing the dietary exposure of consumers to acrylamide, and scientific projects have commenced to gather new information about the toxicology of acrylamide. These are expected to provide

  11. Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid)

    SciTech Connect

    Li, Zicheng; Ono, Robert J.; Wu, Zong-Quan; Bielawski, Christopher W.

    2011-01-01

    A modular and convenient synthesis of ethynyl end functionalized poly(3-hexylthiophene) in high purity is reported; this material facilitated access to poly(3-hexylthiophene)-block-poly(acrylic acid) which self-assembled into hierarchical structures.

  12. Synthesis and characterization of amylose grafted poly(acrylic acid) and its application in ammonia adsorption.

    PubMed

    Chen, Qing; Yu, Haojie; Wang, Li; Abdin, Zain-Ul; Yang, Xinpeng; Wang, Junhua; Zhou, Weidong; Zhang, Hongtao; Chen, Xiao

    2016-11-20

    Amylose grafted poly(acrylic acid) (Am-g-PAA) was synthesized by graft copolymerization of amylose with acrylic acid. The structure of Am-g-PAA was confirmed by (1)H NMR and FT-IR spectra. The morphology, crystallinity and thermal properties of amylose and Am-g-PAA were investigated by SEM, XRD and TGA, respectively. The highest degree of substitution (DS) of carboxyl group was 1.96 which was obtained after reacted for 1h at 60°C. Acrylic acid to anhydroglucose mole ratio for DS was 19.81. It was found that a large number of carboxyl groups were grafted on the backbone of amylose. It was also found that ammonia adsorption capacity of amylose increased by grafting poly(acrylic acid) on the backbone of amylose. PMID:27561514

  13. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity.

    PubMed

    Vasantha, Vivek Arjunan; Junhui, Chen; Ying, Tay Boon; Parthiban, Anbanandam

    2015-10-13

    Metal nanoparticles (MNps) tend to be influenced by environmental factors such as pH, ionic strength, and temperature, thereby leading to aggregation. Forming stable aqueous dispersions could be one way of addressing the environmental toxicity of MNps. In contrast to the electrolyte-induced aggregation of MNps, novel zwitterionic sulfabetaine polymers reported here act as stabilizers of MNps even under high salinity. Polysulfabetaines exhibited unique solubility and swelling tendencies in brine and deionized water, respectively. The polysulfabetaines derived from methacrylate (PSBMA) and methacrylamide (PSBMAm) also showed reversible salt-responsive and thermoresponsive behaviors as confirmed by cloud-point titration, transmittance, and dynamic light scattering studies. The brine soluble nature was explored for its ability to be used as a capping agents to form metal nanoparticles using formic acid as a reducing agent. Thus, silver and noble metal (gold and palladium) nanoparticles were synthesized. The nanoparticles formed were characterized by UV-vis, XRD, TEM, EDX, and DLS studies. The size of the nanoparticles remained more or less the same even after 2 months of storage in 2 M sodium chloride solution under ambient conditions and also at elevated temperatures as confirmed by light-scattering measurements. The tunable, stimuli-responsive polysulfabetaine-capped stable MNp formed under low (hyposalinity) and hypersalinity could find potential applications in a variety of areas. PMID:26394088

  14. Interaction of photosensitive surfactant with DNA and poly acrylic acid.

    PubMed

    Zakrevskyy, Yuriy; Cywinski, Piotr; Cywinska, Magdalena; Paasche, Jens; Lomadze, Nino; Reich, Oliver; Löhmannsröben, Hans-Gerd; Santer, Svetlana

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes' properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate - for the first time - complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules. PMID:25669583

  15. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  16. Urinary mercapturic acids and a hemoglobin adduct for the dosimetry of acrylamide exposure in smokers and nonsmokers.

    PubMed

    Urban, Michael; Kavvadias, Dominique; Riedel, Kirsten; Scherer, Gerhard; Tricker, Anthony R

    2006-09-01

    Acrylamide, used in the manufacture of polyacrylamide and grouting agents, is also present in the diet and tobacco smoke. It is a neurotoxin and a probable human carcinogen. Analytical methods were established to determine the mercapturic acids of acrylamide (N-acetyl-S-(2-carbamoylethyl)-L-cysteine, AAMA) and its metabolite glycidamide (N-(R/S)-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine, GAMA) by high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS), as well as the N-terminal valine adduct of acrylamide (N-2-carbamoylethylvaline, AAVal) released by N-alkyl Edman degradation of hemoglobin by gas chromatography-mass spectrometry (GC-MS). Twenty-four-hour urine samples from 60 smokers and 60 nonsmokers were analyzed for AAMA and GAMA, and blood samples were analyzed for AAVal. Smokers excreted 2.5-fold higher amounts of AAMA and 1.7-fold higher amounts of GAMA in their urine and had 3-fold higher levels of AAVal in their blood. All three biomarkers of acrylamide exposure were strongly correlated with the smoking dose as determined by the daily cigarette consumption, nicotine equivalents (the molar sum of nicotine, cotinine, trans-3'-hydroxycotinine, and their respective glucuronides) in urine, salivary cotinine, and carbon monoxide in expired breath. In nonsmokers, a weak but significant correlation between AAMA and the estimated dietary intake of acrylamide was found. It is concluded that all three biomarkers of acrylamide are suitable for the determination of exposure in both smokers and nonsmokers. PMID:16774873

  17. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  18. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing

    PubMed Central

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.

    2013-01-01

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces. PMID:24349719

  19. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing.

    PubMed

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J; Eckmann, David M

    2013-12-14

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces. PMID:24349719

  20. Enhancing antibiofouling performance of Polysulfone (PSf) membrane by photo-grafting of capsaicin derivative and acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Sun, Haijing; Gao, Xueli; Gao, Congjie

    2014-10-01

    Biofouling is a critical issue in membrane water and wastewater treatment. Herein, antibiofouling PSf membrane was prepared by UV-assisted graft polymerization of acrylic acid (AA) and a capsaicin derivative, N-(5-methyl-3-tert-butyl-2-hydroxy benzyl) acrylamide (MBHBA), on PSf membrane. AA and MBHBA were used as hydrophilic monomer and antibacterial monomer separately. The membranes were characterized by FTIR-ATR, contact angle, SEM, AFM, cross-flow filtration unit, antifouling and antibacterial measurements. Verification of MBHBA and AA that photo-chemically grafted onto the PSf membrane surface is confirmed by carbonyl stretching vibration at ∼1655 cm-1 and ∼1730 cm-1, separately. The increasing AA concentration accelerates the graft-polymerization of MBHBA and resulted in a more hydrophilic surface. Consequently, antifouling property of the membranes was improved on a large level. The flux recovery rate can achieve 100% during the cyclic test, which may be attributed to the more hydrophilic and smooth surface, as well as the decreased membrane pore size. Most importantly, the presence of AA in graft co-polymer does not affect the antibacterial activity of MBHBA. That may be induced by the increasing chain length and flexibility of the grafted polymer chains.

  1. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  2. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.

    PubMed

    Yang, Lianli; Ma, Xiaoyan; Guo, Naini; Zhang, Yang

    2014-05-25

    Sodium alginate/Na(+)rectorite-graft-itaconic acid/acrylamide (SA/Na(+)REC-g-IA/AM) hydrogel film was prepared via solution polymerization. The effect of Na(+)REC, KPS, and NMBA content and the ratio of IA to AM on graft ratio, graft efficiency and absorption of liquids were investigated. The structure and morphology were analyzed by FTIR, XRD, TEM and SEM. Results revealed that the optimal Na(+)REC, KPS, and NMBA content and the ratio of IA to AM were 2wt%, 0.8wt%, 0.38wt% and 4, respectively. The hydrogel film was found to exhibit an intercalative structure and coarse surface. The mechanism of graft copolymerization was discussed. A slower and more continuous release of salicylic acid for SA/Na(+)REC-g-IA/AM composite hydrogel film was shown in vitro drug-controlled release studies, in comparison with SA film. The salicylic acid release mechanism of SA/Na(+)REC-g-IA/AM hydrogel film followed Fickian diffusion. PMID:24708990

  3. Synthesis of radiation crosslinked poly(acrylic acid) in the presence of phenyltriethoxysilane

    NASA Astrophysics Data System (ADS)

    Hassan, Safia; Yasin, Tariq

    2014-04-01

    Acrylic acid based superabsorbent hydrogel was prepared using phenyltriethoxysilane (PTES) as polyfunctional monomer. Different amounts of PTES were incorporated in acrylic acid and irradiated at different doses upto maximum of 30 kGy. The crosslinked acrylic acid showed hydrogel properties and its swelling kinetics, gel fraction and equilibrium degree of swelling (EDS) were studied. It was found that the increased PTES concentration decreased the EDS of the hydrogels. Infrared spectroscopy confirmed the crosslinking reaction between the feed components and the existence of siloxane bond. Thermogravimetric analysis showed an increase in the stability of the hydrogels having high PTES content. The swelling of the hydrogel was affected by pH, ionic strength and temperature. These hydrogels showed low swelling in acidic and basic pH range and high swelling around neutral pH. This switchable pH response of these hydrogels can be exploited in environmental and biomedical applications.

  4. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  5. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation.

    PubMed

    Abeer, Muhammad Mustafa; Amin, Mohd Cairul Iqbal Mohd; Lazim, Azwan Mat; Pandey, Manisha; Martin, Claire

    2014-09-22

    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications. PMID:24906785

  6. The regioselective synthesis of spirooxindolo pyrrolidines and pyrrolizidines via three-component reactions of acrylamides and aroylacrylic acids with isatins and α-amino acids.

    PubMed

    Pavlovskaya, Tatyana L; Yaremenko, Fedor G; Lipson, Victoria V; Shishkina, Svetlana V; Shishkin, Oleg V; Musatov, Vladimir I; Karpenko, Alexander S

    2014-01-01

    The regioselective three-component condensation of azomethine ylides derived from isatins and α-amino acids with acrylamides or aroylacrylic acids as dipolarophiles has been realized through a one-pot 1,3-dipolar cycloaddition protocol. Decarboxylation of 2'-aroyl-2-oxo-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizine]-1'-carboxylic acids is accompanied by cyclative rearrangement with formation of dihydropyrrolizinyl indolones. PMID:24454564

  7. The regioselective synthesis of spirooxindolo pyrrolidines and pyrrolizidines via three-component reactions of acrylamides and aroylacrylic acids with isatins and α-amino acids

    PubMed Central

    Pavlovskaya, Tatyana L; Yaremenko, Fedor G; Shishkina, Svetlana V; Shishkin, Oleg V; Musatov, Vladimir I; Karpenko, Alexander S

    2014-01-01

    Summary The regioselective three-component condensation of azomethine ylides derived from isatins and α-amino acids with acrylamides or aroylacrylic acids as dipolarophiles has been realized through a one-pot 1,3-dipolar cycloaddition protocol. Decarboxylation of 2'-aroyl-2-oxo-1,1',2,2',5',6',7',7a'-octahydrospiro[indole-3,3'-pyrrolizine]-1'-carboxylic acids is accompanied by cyclative rearrangement with formation of dihydropyrrolizinyl indolones. PMID:24454564

  8. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  9. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  10. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  11. Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems

    DOEpatents

    McCormick, Charles L.; Blackmon, Kenneth P.

    1986-01-01

    A water-soluble ionically-charged random copolymer of acrylamide and an alkaline or alkali metal 3-acrylamido-3-methylbutanoate having an average molecular weight of greater than about 50,000 has been found to maintain unusually stable and effective viscosities in the presence of salts such as NaCl and CaCl.sub.2 when added to water in minor amounts, thus making it a highly effective mobility control agent for secondary and tertiary oil recovery methods. Also within the scope of the invention are terpolymers which additionally contain olefinically unsaturated monomers such as acrylic acid or sodium acrylate.

  12. Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems

    DOEpatents

    McCormick, C.L.; Blackmon, K.P.

    1986-04-22

    A water-soluble ionically-charged random copolymer of acrylamide and an alkaline or alkali metal 3-acrylamido-3-methylbutanoate having an average molecular weight of greater than about 50,000 has been found to maintain unusually stable and effective viscosities in the presence of salts such as NaCl and CaCl[sub 2] when added to water in minor amounts, thus making it a highly effective mobility control agent for secondary and tertiary oil recovery methods. Also within the scope of the invention are terpolymers which additionally contain olefinically unsaturated monomers such as acrylic acid or sodium acrylate.

  13. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis.

    PubMed

    Gamage, Pubudu; Basel, Matthew T; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael; Bossmann, Stefan H

    2009-09-17

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8+/-4.4 nm for P[(NIPAM)(95.5)-co-(AA)(4.5)] (PDI (polydispersity index)=1.55) and 21.8+/-4.2 nm for P[(NIPAM)(95.3)-co-(AA)(4.7)] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)(95)-co-(AA)(2.8)-AAC(8)F(17 2.2)] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8+/-7.1 nm, with a depth of only 2 nm. PMID:20161351

  14. Synthesis and application of novel EB curable polyester urethane acrylate modified by linseed oil fatty acid

    NASA Astrophysics Data System (ADS)

    Jun, Li; Xuecheng, Ju; Min, Yi; Jinshan, Wei; Hongfei, Ha

    1999-06-01

    A novel polyester urethane acrylate resin modified by linseed oil fatty acid (LFA) was synthesized and EB curing coating was formulated in this work. When the coating cured by EB radiation on the timber, the cured coating was possessed of good performances.

  15. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  16. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  17. Synthesis of nanosilver loaded chitosan/poly(acrylamide-co-itaconic acid) based inter-polyelectrolyte complex films for antimicrobial applications.

    PubMed

    Bajpai, S K; Jyotishi, Pooja; Bajpai, M

    2016-12-10

    In the present work, AgNPs loaded chitosan/poly(acrylamide-co-itaconic acid) inter-polyelectrolyte complex (IPC) films have been prepared for antimicrobial applications. The AgNPs-loaded IPC films have been characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy (SEM), Thermogravimetric analysis (TGA) and Surface plasmon resonance (SPR). Particle size of synthesized AgNPs was found to be in the range 10-30nm. These films exhibited a remarkable antibacterial property against strong pathogen E.Coli, thus offering their candidature for antimicrobial applications. PMID:27577913

  18. Monitoring urinary mercapturic acids as biomarkers of human dietary exposure to acrylamide in combination with acrylamide uptake assessment based on duplicate diets.

    PubMed

    Ruenz, Meike; Bakuradze, Tamara; Eisenbrand, Gerhard; Richling, Elke

    2016-04-01

    The present human intervention study investigated the relation between the intake of acrylamide (AA) in diets with minimized, low, and high AA contents and the levels of urinary exposure biomarkers. As biomarkers, the mercapturic acids, N-acetyl-S-(carbamoylethyl)-L-cysteine (AAMA), and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA) were monitored. The study was performed with 14 healthy male volunteers over a period of 9 days, under controlled conditions excluding any inadvertent AA exposure. Dietary exposure to AA was measured by determining AA contents in duplicates of all meals consumed by the volunteers. The study design included an initial washout period of 3 days on AA-minimized diet, resulting in dietary AA exposure not exceeding 41 ng/kg bw/d. Identical washout periods of 2 days each followed the AA exposure days (day 4, low exposure, and day 7, high exposure). At the respective AA intake days, volunteers ingested 0.6-0.8 (low exposure) or 1.3-1.8 (high exposure) μg AA/kg bw/d with their food. Both low and high AA intakes resulted in an AAMA output within 72 h corresponding to 58 % of the respective AA intake. At the end of the initial 3-day washout period, an AAMA baseline level of 93 ± 31 nmol/d was recorded, suggestive for an assumed net AA baseline exposure level of 0.2-0.3 μg AA/kg bw/d. PMID:25757395

  19. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites.

    PubMed

    Guo, Zhen; Theng, De Sheng; Tang, Karen Yuanting; Zhang, Lili; Huang, Lin; Borgna, Armando; Wang, Chuan

    2016-09-14

    Lanthanum phosphate (LaP) nano-rods were synthesized using n-butylamine as a shape-directing agent (SDA). The resulting catalysts were applied in the dehydration of lactic acid to acrylic acid. Aiming to understand the nature of the active sites, the chemical and physical properties of LaP materials were studied using a variety of characterization techniques. This study showed that the SDA not only affected the porosity of the LaP materials but also modified the acid-base properties. Clearly, the modification of the acid-base properties played a more critical role in determining the catalytic performance than porosity. An optimized catalytic performance was obtained on the LaP catalyst with a higher concentration of Lewis acid sites. Basic sites showed negative effects on the stability of the catalysts. Good stability was achieved when the catalyst was prepared using the appropriate SDA/La ratio. PMID:27514871

  20. Rapid and cost-effective determination of acrylamide in coffee by planar chromatography and fluorescence detection after derivatization with dansulfinic acid.

    PubMed

    Alpmann, Alexander; Morlock, Gertrud

    2009-01-01

    A new method has been developed for the determination of acrylamide in ground coffee by planar chromatography using prechromatographic in situ derivatization with dansulfinic acid. After pressurized fluid extraction of acrylamide from the coffee samples, the extracts were passed through activated carbon and concentrated. These extracts were applied onto a silica gel 60 HPTLC plate and oversprayed with dansulfinic acid. By heating the plate, acrylamide was derivatized into the fluorescent product dansylpropanamide. The chromatographic separation with ethyl acetate-tert.-butyl methyl ether (8 + 2, v/v) mobile phase was followed by densitometric quantification at 254/>400 nm using a 4 point calibration via the standard addition method over the whole system for which acrylamide was added at different concentrations at the beginning of the extraction process. The method was validated for commercial coffee. The linearity over the whole procedure showed determination coefficients between 0.9995 and 0.9825 (n = 6). Limit of quantitation at a signal-to-noise ratio of 10 was determined to be 48 microg/kg. The within-run precision (relative standard deviation, n = 6) of the chromatographic method was 3%. Commercial coffee samples analyzed showed acrylamide contents between 52 and 191 microg/kg, which was in correlation with amounts reported in previous publications. PMID:19610360

  1. Determination of acrylamide and methacrylamide by normal phase high performance liquid chromatography and UV detection.

    PubMed

    Paleologos, E K; Kontominas, M G

    2005-06-10

    A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature. PMID:16001548

  2. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  3. Modification of silicon nitride slip properties by poly(acrylic acid)

    SciTech Connect

    Hackley, V.A.; Maglhan, S.G.

    1996-06-01

    Acrylic-acid based polyelectrolytes are used for dispersion and rheology control of ceramic powder slips. This study focuses on the Si{sub 3}N4/H{sub 2}O/poly(acrylic acid) (PAA) system, with the goal of improving our basic understanding of the mechanisms which may significantly affect slip properties during processing. A variety of experimental techniques were employed, including potentiometric titration, electroacoustic analysis, adsorption isotherms, and controlled-stress rheology. The slips exhibited complex behavior over a wide range of conditions in which solids concentration, PAA molecular weight and concentration, and pH were varied. Polymer charge and conformation were found to have significant impact on the flow properties. Pseudoplastic behavior was attributed to the presence of free polymer. The flow properties were also found to be highly pH dependent.

  4. Preparation of poly(acrylic acid) particles by dispersion polymerization in an ionic liquid.

    PubMed

    Minami, Hideto; Kimura, Akira; Kinoshita, Keigo; Okubo, Masayoshi

    2010-05-01

    Poly(acrylic acid) (PAA) particles were successfully prepared by dispersion polymerization of acrylic acid in ionic liquid, N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoro-methanesulfonyl)amide ([DEME][TFSA]) at 70 degrees C with low hydrolysis grade (35.4%) poly(vinyl alcohol) as stabilizer. Interestingly, the PAA particles were easily extracted as particle state with water. Thus, the PAA particles had a cross-linked structure during the polymerization without cross-linker. Moreover, it was also noted that the cross-linking density of the PAA particles could be controlled by thermal treatment at various temperatures in [DEME][TFSA] utilizing the advantages of nonvolatility and high thermal stability of the ionic liquid. PMID:20043688

  5. Semiconductor nanoparticles in poly((2-dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers

    NASA Astrophysics Data System (ADS)

    Trandafilović, L. V.; Bibić, N.; Georges, M. K.; Blanuša, J.; Radhakrishnan, T.; Djoković, V.

    2013-11-01

    Nanostructured cadmium selenide (CdSe) and lead sulfide (PbS) semiconductors were prepared in a poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) matrix. The obtained nanoparticles were characterized by using optical and structural methods. Co-polymers were synthesized in two different molar ratios of pDMAEMA:acrylic acid monomer units (1:2, 1:1). Transmission electron microscopy analysis confirmed the presence of nano-sized CdSe and PbS particles. In the case of CdSe, a shift of the onset of the optical absorption toward lower wavelengths was observed. X-ray diffraction analysis revealed that both CdSe and PbS nanoparticles have cubic crystal structure.

  6. Preparation of poly (styrene)-b-poly (acrylic acid)/γ-Fe 2O 3 composites

    NASA Astrophysics Data System (ADS)

    Zhang, L. D.; Liu, W. L.; Xiao, C. L.; Yao, J. S.; Fan, Z. P.; Sun, X. L.; Zhang, X.; Wang, L.; Wang, X. Q.

    2011-12-01

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified γ-Fe2O3, and subsequently the magnetic nanocomposite was achieved. The products were characterized by 1H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately.

  7. Ultrafine metal particles immobilized on styrene/acrylic acid copolymer particles

    SciTech Connect

    Tamai, Hisashi; Hamamoto, Shiro; Nishiyama, Fumitaka; Yasuda, Hajime

    1995-04-01

    Ultrafine metal particles immobilized on styrene/acrylic acid copolymer fine particles were produced by reducing the copolymer particles-metal ion complexes or refluxing an ethanol solution of metal ions in the presence of copolymer particles. The size of metal particles formed by reduction of the complex is smaller than that by reflux of the metal ion solution and depends on the amount of metal ions immobilized.

  8. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  9. 2-Fatty acrylic acids: new highly derivatizable lipophilic platform molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the incorporation of an alpha-methylene unit into fatty acid skeletons. Since the new olefin is conjugated with the carboxylate, it is susceptible to 1,4- (Michael) additions. We have used multifunctional thiols and amines for additions at the methylene. The resulting products ...

  10. A density functional study on dielectric properties of acrylic acid grafted polypropylene

    NASA Astrophysics Data System (ADS)

    Ruuska, Henna; Arola, Eero; Kortelainen, Tommi; Rantala, Tapio T.; Kannus, Kari; Valkealahti, Seppo

    2011-04-01

    Influence of acrylic acid grafting of isotactic polypropylene on the dielectric properties of the polymer is investigated using density functional theory (DFT) calculations, both in the molecular modeling and three-dimensional (3D) bulk periodic system frameworks. In our molecular modeling calculations, polarizability volume, and polarizability volume per mass which reflects the permittivity of the polymer, as well as the HOMO-LUMO gap, one of the important measures indicating the electrical breakdown voltage strength, were examined for oligomers with various chain lengths and carboxyl mixture ratios. When a polypropylene oligomer is grafted with carboxyl groups (cf. acrylic acid), our calculations show that the increase of the polarizability volume α' of the oligomer is proportional to the increase of its mass m, while the ratio {{α^ ' } { α^ ' } m} decreases from the value of a pure polymer when increasing the mixture ratio. The decreasing ratio of {{α^ ' } {α^ ' } m} under carboxyl grafting indicates that the material permittivity might also decrease if the mass density of the material remains constant. Furthermore, our calculations show that the HOMO-LUMO gap energy decreases by only about 15% in grafting, but this decrease seems to be independent on the mixture ratio of carboxyl. This indicates that by doping polymers with additives better dielectric properties can be tailored. Finally, using the first-principles molecular DFT results for polarizability volume per mass in connection with the classical Clausius-Mossotti relation, we have estimated static permittivity for acrylic acid grafted polypropylene, assuming the structural density keeping constant under grafting. The computed permittivity values are in a qualitative agreement with the recent experiments, showing increasing tendency of the permittivity as a function of the grafting composition. In order to validate our molecular DFT based approach, we have also carried out extensive three

  11. A density functional study on dielectric properties of acrylic acid grafted polypropylene.

    PubMed

    Ruuska, Henna; Arola, Eero; Kortelainen, Tommi; Rantala, Tapio T; Kannus, Kari; Valkealahti, Seppo

    2011-04-01

    Influence of acrylic acid grafting of isotactic polypropylene on the dielectric properties of the polymer is investigated using density functional theory (DFT) calculations, both in the molecular modeling and three-dimensional (3D) bulk periodic system frameworks. In our molecular modeling calculations, polarizability volume, and polarizability volume per mass which reflects the permittivity of the polymer, as well as the HOMO-LUMO gap, one of the important measures indicating the electrical breakdown voltage strength, were examined for oligomers with various chain lengths and carboxyl mixture ratios. When a polypropylene oligomer is grafted with carboxyl groups (cf. acrylic acid), our calculations show that the increase of the polarizability volume α' of the oligomer is proportional to the increase of its mass m, while the ratio α'/m decreases from the value of a pure polymer when increasing the mixture ratio. The decreasing ratio of α'/m under carboxyl grafting indicates that the material permittivity might also decrease if the mass density of the material remains constant. Furthermore, our calculations show that the HOMO-LUMO gap energy decreases by only about 15% in grafting, but this decrease seems to be independent on the mixture ratio of carboxyl. This indicates that by doping polymers with additives better dielectric properties can be tailored. Finally, using the first-principles molecular DFT results for polarizability volume per mass in connection with the classical Clausius-Mossotti relation, we have estimated static permittivity for acrylic acid grafted polypropylene, assuming the structural density keeping constant under grafting. The computed permittivity values are in a qualitative agreement with the recent experiments, showing increasing tendency of the permittivity as a function of the grafting composition. In order to validate our molecular DFT based approach, we have also carried out extensive three-dimensional bulk periodic first

  12. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. PMID:23008096

  13. Radiation synthesis of eco-friendly water reducing sulfonated starch/acrylic acid hydrogel designed for cement industry

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, El-Sayed A.; Diaa, D. A.

    2013-04-01

    Starch was treated with chlorosulfonic acid to obtain sulfonated starch. Acrylic acid/sulfonated starch semi-interpenetrated network IPN of different compositions was prepared using ionizing radiation. Swelling of prepared IPNs at different environmental conditions was studied. The possible use of sulfonated starch/acrylic acid IPN as a water-retarding agent in the cement industry was investigated. ζ-potential measurements were used to determine the stability of the colloidal cement—SS/AA and cement -poly-naphthalene sulfonic acid (SNF) water retarding mixtures. Sulfonated starch/acrylic acid water-retarding property was influenced by hydrogel concentration and composition. Sulfonated starch/acrylic acid IPN admixture has a great effect on the cement initial setting time. Using 2% of SS/AA or SNF resulted in an increase in initial setting time by 2 and 1 h respectively, if compared with native cement initial setting time. The results showed that the synthetic commercial super-plasticizers could be replaced by an eco-friendly water-retarding sulfonated starch/acrylic acid IPN in the cement industry.

  14. Polymerization of acrylamide at acid pH using uranyl nitrate

    SciTech Connect

    Deshpande, V.V.; Bodhe, A.M.; Pawar, H.S.; Vartak, H.G.

    1986-03-01

    A new photopolymerizing reagent, uranyl nitrate, is used for the polymerization of acrylamide gels at low pH. The amount of uranyl nitrate (0.2 mg/ml) required for the polymerization of gels at pH 3.0 is considerably less than that of persulfate (7 mg/ml). Use of this reagent obviates the need for the removal of excess of persulfate by preelectrophoresis. The electrophoretic separation of basic proteins in uranium-polymerized gels showed faster movement and better resolution of proteins and proved the gels to be versatile, uniform, and reproducible. Electrophoresis of trypsin in these gels does not affect the enzymatic activity. The catalyst can also be used for the polymerization of gels containing 3 M urea.

  15. Synthesis of carboxymethylcellulose/acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Superabsorbent hydrogels were prepared by gamma irradiation from aqueous solutions of carboxymethylcellulose (CMC) and acrylic acid (AAc) with varying CMC:AAc ratio. By partially replacing the CMC with AAc the gelation increased and led to a higher gel fraction and lower water uptake. Moreover, the gelation required significantly milder synthesis conditions. Decreasing both the dose and the solute concentration in the presence of AAc led to gels with higher gel fraction and higher degree of swelling compared to pure CMC gels. Increasing the AAc content up to 10% proved to be very effective, while very high AAc content (over 50%) hindered the gelation process.

  16. Antimicrobial effects of esters and amides of 3-(5-nitro-2-furyl)acrylic acid.

    PubMed

    Kellová, G; Sturdík, E; Stibrányi, L; Drobnica, L; Augustín, J

    1984-01-01

    The effect of 18 newly synthesized esters and amides of 3-(5-nitro-2-furyl)acrylic acid on bacteria (Escherichia coli, Staphylococcus aureus), yeasts (Saccharomyces cerevisiae, Candida albicans), molds (Aspergillus niger, Penicillium cyclopium, Rhizopus oryzae) and algae (Chlorella pyrenoidosa, Euglena gracilis, Scenedesmus obliquus) was investigated. The MIC values revealed antimycotic, antialgal and antibacterial activity of the studied derivatives. The antimycotic activity was found to decrease with increasing the length of the alkyl chain of esters and after introduction of amino nitrogen into the furylethylene backbone. The inhibitory effect on growth is caused by blocking bioenergetic processes, glycolysis in particular. PMID:6714854

  17. Ferromagnetic resonance spectroscopy of carboxylated cobalt-containing nanocomposite ethyl methacrylate/acrylic acid copolymers

    NASA Astrophysics Data System (ADS)

    Voytsihovskaya, S. A.; Sokolov, M. E.; Panyushkin, V. T.; Gromov, P. Yu.; Shcherbina, A. A.; Matveev, V. V.

    2013-01-01

    We have used ferromagnetic resonance spectroscopy to study the effect of the concentration of cobalt nanoparticles (5-9 nm) incorporated into ethyl methacrylate/acrylic acid copolymers (monomer ratios 100:1 and 10:1) on the magnitude of the resonant field in ferromagnetic resonance and on the effective magnetization of thin-film samples of these nanocomposite polymer materials. The cobalt nanoparticles were obtained by thermolysis of Co2(CO)8 in 5% solutions of the indicated copolymers in toluene. From the solutions obtained, we prepared films of thickness 1 μm on aluminum substrates.

  18. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  19. Stabilization of mid-sized silicon nanoparticles by functionalization with acrylic acid

    NASA Astrophysics Data System (ADS)

    Bywalez, Robert; Karacuban, Hatice; Nienhaus, Hermann; Schulz, Christof; Wiggers, Hartmut

    2012-01-01

    We present an enhanced method to form stable dispersions of medium-sized silicon nanoparticles for solar cell applications by thermally induced grafting of acrylic acid to the nanoparticle surface. In order to confirm their covalent attachment on the silicon nanoparticles and to assess the quality of the functionalization, X-ray photoelectron spectroscopy and diffuse reflectance infrared Fourier spectroscopy measurements were carried out. The stability of the dispersion was elucidated by dynamic light scattering and Zeta-potential measurements, showing no sign of degradation for months.

  20. Pharmacokinetics of copolymers of N-vinylpyrrolidone with acrylic acid. Article 1

    SciTech Connect

    Rafikov, R.Z.; Sakhibov, A.D.; Akhmedzhanov, R.I.; Aliev, K.U.

    1987-01-01

    The authors studied the pharmacokinetics of the copolymers of n-vinyl-pyrrolidone (I) with acrylic acid (II) (copolymer III) using the radioactive isotope /sup 125/I. In experiments on mice, they studied the distribution of a copolymer of I with II (/sup 125/I-III) in the organism of the animals. The content of /sup 125/I-III and its possible radioactive metabolites in the blood and organs of mice after a single intravenous administration of the given preparation is shown. The radioactivity of organs after butanol extraction is presented.

  1. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage. PMID:26070329

  2. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  3. Chitosan-poly(acrylic) acid polyionic complex: in vivo study to demonstrate prolonged gastric retention.

    PubMed

    Torrado, Susana; Prada, Pablo; de la Torre, Paloma M; Torrado, Santiago

    2004-02-01

    The aim of this study was to develop a chitosan-poly(acrylic) acid based controlled drug release system for gastric antibiotic delivery. Different mixtures of amoxicillin (A), chitosan (CS), and poly(acrylic) acid (PAA) were employed to obtain these polyionic complexes. A non-invasive method was employed for determining the gastric residence time of the formulations. It was studied the swelling behavior and drug release from these complexes. Gastric emptying rate study was performed by means of the [13C]octanoic acid breath test. The gastric emptying rates of two different formulations (conventional and gastric retentive system) were studied. Swelling studies indicated that the extent of swelling was greater in the polyionic complexes than in the single chitosan formulations. The amoxicillin diffusion from the hydrogels was controlled by the polymer/drug interaction. The property of these complexes to control the solute diffusion depends on the network mesh size, which is a significant factor in the overall behavior of the hydrogels. The gastric half-emptying time of the polyionic complex was significantly delayed compared to the reference formulation, showing mean values of 164.32+/-26.72 and 65.06+/-11.50min, respectively (P<0.01). The results of this study suggest that, these polyionic complexes are good systems for specific gastric drug delivery. PMID:14609680

  4. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers. PMID:24243816

  5. Acrylic-acid-functionalized PolyHIPE scaffolds for use in 3D cell culture.

    PubMed

    Hayward, Adam S; Sano, Naoko; Przyborski, Stefan A; Cameron, Neil R

    2013-12-01

    This study describes the development of a functional porous polymer for use as a scaffold to support 3D hepatocyte culture. A high internal phase emulsion (HIPE) is prepared containing the monomers styrene (STY), divinylbenzene (DVB), and 2-ethylhexyl acrylate (EHA) in the external oil phase and the monomer acrylic acid (Aa) in the internal aqueous phase. Upon thermal polymerization with azobisisobutyronitrile (AIBN), the resulting porous polymer (polyHIPE) is found to have an open-cell morphology and a porosity of 89%, both suitable characteristics for 3D cell scaffold applications. X-ray photo-electron spectroscopy reveals that the polyHIPE surface contained 7.5% carboxylic acid functionality, providing a useful substrate for subsequent surface modifications and bio-conjugations. Initial bio-compatibility assessments with human hepatocytes show that the acid functionality does not have any detrimental effect on cell adhesion. It is therefore believed that this material can be a useful precursor scaffold towards 3D substrates that offer tailored surface functionality for enhanced cell adhesion. PMID:24243821

  6. Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems

    DOEpatents

    McCormick, C.L.; Blackmon, K.P.

    1987-03-10

    A water-soluble, charged, random copolymer of acrylamide and an alkali metal salt of an acrylamido-alkanoic acid such as alkali metal 3-acrylamido-3-methylbutanoate, having an average molecular weight of greater than about 50,000, has been found to maintain unusually stable and effective viscosities in the presence of salts such as NaCl and CaCl[sub 2] when added to water in minor amounts, thus making it a highly effective mobility control agent for secondary and tertiary oil recovery methods. Also within the scope of the invention are the acid form of the polymer, as well as terpolymers which additionally contain olefinically unsaturated monomers such as acrylic acid or sodium acrylate.

  7. Calcium-tolerant N-substituted acrylamides as thickeners for aqueous systems

    DOEpatents

    McCormick, Charles L.; Blackmon, Kenneth P.

    1987-01-01

    A water-soluble, charged, random copolymer of acrylamide and an alkali metal salt of an acrylamido-alkanoic acid such as alkali metal 3-acrylamido-3-methylbutanoate, having an average molecular weight of greater than about 50,000, has been found to maintain unusually stable and effective viscosities in the presence of salts such as NaCl and CaCl.sub.2 when added to water in minor amounts, thus making it a highly effective mobility control agent for secondary and tertiary oil recovery methods. Also within the scope of the invention are the acid form of the polymer, as well as terpolymers which additionally contain olefinically unsaturated monomers such as acrylic acid or sodium acrylate.

  8. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; García-González, Ester; Puglia, Giuseppe; Basile, Francesco; Concepción, Patricia; Bandinelli, Claudia; López Nieto, José M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51 % are reported. PMID:25488515

  9. Determination of acrylamide during roasting of coffee.

    PubMed

    Bagdonaite, Kristina; Derler, Karin; Murkovic, Michael

    2008-08-13

    In this study different Arabica and Robusta coffee beans from different regions of the world were analyzed for acrylamide after roasting in a laboratory roaster. Due to the complex matrix and the comparably low selectivity of the LC-MS at m/ z 72, acrylamide was analyzed after derivatization with 2-mercaptobenzoic acid at m/ z 226. Additionally, the potential precursors of acrylamide (3-aminopropionamide, carbohydrates, and amino acids) were studied. The highest amounts of acrylamide formed in coffee were found during the first minutes of the roasting process [3800 ng/g in Robusta ( Coffea canephora robusta) and 500 ng/g in Arabica ( Coffea arabica)]. When the roasting time was increased, the concentration of acrylamide decreased. It was shown that especially the roasting time and temperature, species of coffee, and amount of precursors in raw material had an influence on acrylamide formation. Robusta coffee contained significantly larger amounts of acrylamide (mean = 708 ng/g) than Arabica coffee (mean = 374 ng/g). Asparagine is the limiting factor for acrylamide formation in coffee. 3-Aminopropionamide formation was observed in a dry model system with mixtures of asparagine with sugars (sucrose, glucose). Thermal decarboxylation and elimination of the alpha-amino group of asparagine at high temperatures (>220 degrees C) led to a measurable but low formation of acrylamide. PMID:18624446

  10. Topological characterization of a bacterial cellulose-acrylic acid polymeric matrix.

    PubMed

    Halib, N; Mohd Amin, M C I; Ahmad, I; Abrami, M; Fiorentino, S; Farra, R; Grassi, G; Musiani, F; Lapasin, R; Grassi, M

    2014-10-01

    This paper focuses on the micro- and nano-topological organization of a hydrogel, constituted by a mixture of bacterial cellulose and acrylic acid, and intended for biomedical applications. The presence of acrylic acid promotes the formation of two interpenetrated continuous phases: the primary "pores phase" (PP) containing only water and the secondary "polymeric network phase" (PNP) constituted by the polymeric network swollen by the water. Low field Nuclear Magnetic Resonance (LF NMR), rheology, Scanning Electron Microscopy (SEM) and release tests were used to determine the characteristics of the two phases. In particular, we found that this system is a strong hydrogel constituted by 81% (v/v) of PP phase the remaining part being occupied by the PNP phase. Pores diameters span in the range 10-100 μm, the majority of them (85%) falling in the range 30-90 μm. The high PP phase tortuosity indicates that big pores are not directly connected to each other, but their connection is realized by a series of interconnected small pores that rend the drug path tortuous. The PNP is characterized by a polymer volume fraction around 0.73 while mesh size is around 3 nm. The theoretical interpretation of the experimental data coming from the techniques panel adopted, yielded to the micro- and nano-organization of our hydrogel. PMID:24932712

  11. Controlled release of anti-diabetic drug Gliclazide from poly(caprolactone)/poly(acrylic acid) hydrogels.

    PubMed

    Bajpai, S K; Chand, Navin; Soni, Shweta

    2015-01-01

    Drug Gliclazide (Glz) has limited solubility and low bioavailability. In order to obtain a controlled release of this drug and to improve its bioavailability, the drug has been loaded into poly(caprolactone) (PCL)/poly(acrylic acid) (PAAc) hydrogels, prepared by free radical polymerization of acrylic acid in the presence of poly(caprolactone) in acetone medium using azo-isobutyronitrile as initiator and N,N' methylene bisacrylamide as cross-linking agent. The swelling behaviour of these hydrogels has been investigated in the physiological gastric and intestinal fluids to obtain an optimum composition suitable for delivery of a biologically active compound. The gels were loaded with anti-diabetic drug Glz and a detailed investigation of release of drug has been carried out. Various kinetic models have been applied on the release data. Finally, the Albino wistar rats were treated for Streptozotocin plus nicotinamide - induced diabetes using a Glz-loaded PCL/PAAc hydrogel. The results indicated a fair reduction in the glucose level of rats. PMID:26135033

  12. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  13. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  14. Precipitation-Redispersion of Cerium Oxide Nanoparticles with Poly(acrylic acid): Toward Stable Dispersions

    SciTech Connect

    Sehgal,A.; Lalatonne, Y.; Berret, J.; Morvan, M.

    2005-01-01

    We exploit a precipitation-redispersion mechanism for complexation of short chain polyelectrolytes with cerium oxide nanoparticles to extend their stability ranges. As synthesized, cerium oxide sols at pH 1.4 consist of monodisperse cationic nanocrystalline particles having a hydrodynamic diameter of 10 nm and a molecular weight of 400 000 g mol{sup -1}. We show that short chain uncharged poly(acrylic acid) at low pH when added to a cerium oxide sols leads to macroscopic precipitation. As the pH is increased, the solution spontaneously redisperses into a clear solution of single particles with an anionic poly(acrylic acid) corona. The structure and dynamics of cerium oxide nanosols and their hybrid polymer-inorganic complexes in solution are investigated by static and dynamic light scattering, X-ray scattering, and chemical analysis. Quantitative analysis of the redispersed sol gives rise to an estimate of 40-50 polymer chains per particle for stable suspension. This amount represents 20% of the mass of the polymer-nanoparticle complexes. This complexation adds utility to the otherwise unstable cerium oxide dispersions by extending the range of stability of the sols in terms of pH, ionic strength, and concentration.

  15. Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid.

    PubMed

    Arjunan, V; Remya, P; Sathish, U; Rani, T; Mohan, S

    2014-08-14

    The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. (1)H and (13)C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated. PMID:24755636

  16. Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Remya, P.; Sathish, U.; Rani, T.; Mohan, S.

    2014-08-01

    The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G** and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO’s of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated.

  17. Water absorption and moisture permeation properties of chitosan/poly(acrylamide-co-itaconic acid) IPC films.

    PubMed

    Bajpai, M; Bajpai, S K; Jyotishi, Pooja

    2016-03-01

    In this work, aqueous solutions of chitosan (Ch) and [poly(acrylamide(AAm)-co-itaconicacid(IA)] have been mixed to yield Ch/poly(AAm-co-IA) Inter-polyelectrolyte complex (IPC) films. The films were characterized by FTIR, X-ray diffraction (XRD) and thermo gravimetric analysis (TGA). There was remarkable increase in the crystalline nature of IPC films. The films were investigated for their water absorption capacity in the physiological fluid (PF) of pH 7.4 at 37 °C. The amount of IA present in the film forming solutions affected the water absorption behavior of the resulting films. The dynamic water uptake data were interpreted by various kinetic models. The effect of pH on the swelling ratio (SR) indicated that the films showed highest swelling in lower as well as higher pH media. The water vapor transmission rates (WVTR) were obtained in the range of 6000-6645 g/m(2)/day. PMID:26658228

  18. Urinary acrylamide metabolites as biomarkers for short-term dietary exposure to acrylamide.

    PubMed

    Bjellaas, Thomas; Stølen, Linn Helene; Haugen, Margaretha; Paulsen, Jan Erik; Alexander, Jan; Lundanes, Elsa; Becher, Georg

    2007-06-01

    It has previously been reported that heat-treated carbohydrate rich foods may contain high levels of acrylamide resulting in consumers being inadvertently exposed to acrylamide. Acrylamide is mainly excreted in the urine as mercapturic acid derivatives of acrylamide and glycidamide. In a clinical study comprising of 53 subjects, the urinary excretion of these metabolites was determined using solid-phase extraction and liquid chromatography with positive electrospray MS/MS detection. The median (range) total excretion of acrylamide in urine during 24 h was 16 (7-47) microg acrylamide for non-smokers and 74 (38-106) microg acrylamide for smokers, respectively. It was found that the median intake estimate in the study based on 24 h dietary recall was 21 (13-178) and 26 (12-67) for non-smokers and smokers, respectively. The median dietary exposure to acrylamide was estimated to be 0.47 (range 0.17-1.16) microg/kg body weight per day. In a multiple linear regression analysis, the urinary excretion of acrylamide metabolites correlated statistically significant with intake of aspartic acid, protein, starch and coffee. Consumption of citrus fruits correlated negatively with excretion of acrylamide metabolites. PMID:17258374

  19. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate. PMID:20361751

  20. Electron-beam induced RAFT-graft polymerization of poly(acrylic acid) onto PVDF

    NASA Astrophysics Data System (ADS)

    Grasselli, M.; Betz, N.

    2005-07-01

    This paper explores for the first time the post-radiation-induced-graft polymerization on solid substrate using reversible addition-fragmentation transfer (RAFT) mechanism. Radiation-induced graft polymerization onto polymers is a potentially interesting technique to create easily new materials from highly resistant polymers, e.g. surface graft polymerization of acrylic acid (AA) onto poly(vinylidene difluoride) (PVDF) improves its surface properties without losing its excellent mechanical properties. As a consequence of the radical nature of the polymerization processes it is difficult to control molecular weight of grafted chains, and therefore design and standardize the properties of the final product. RAFT polymerization is a suitable method to obtain monodisperse polymers. The ability of the RAFT agents to control the polymer chain length could be an interesting approach to improve the grafted polymers obtained by post-radiation-induced-graft polymerization technique. In this way, graft polymerization of AA onto electron-beam irradiated α-PVDF was performed using trithiocarbonic acid bis(1-phenylethyl) ester as a RAFT agent to control the radical polymerization. We studied several grafting parameters such as solvent, monomer concentration and grafting time in order to achieve a poly(acrylic acid) (PAA) layer onto PVDF surface. Acetic acid was found to be the best solvent for many reasons, as to drive graft polymerization mainly to the polymer surface, complete solubility and stability of all reactants. Hydrolysis of PAA chains was also studied in order to remove the trithiocarbonate functionality from the grafted polymer. A mild chemical condition was achieved in order to have thiol groups that were detected onto the modified PVDF by specific enzymatic reaction.

  1. Poly(acrylic acid)-grafted fluoropolymer films for highly sensitive fluorescent bioassays.

    PubMed

    Jung, Chan-Hee; Hwang, In-Tae; Kuk, In-Seol; Choi, Jae-Hak; Oh, Byung-Keun; Lee, Young-Moo

    2013-03-01

    In this study, a facile and effective method for the surface functionalization of inert fluoropolymer substrates using surface grafting was demonstrated for the preparation of a new platform for fluorescence-based bioassays. The surface of perfluorinated poly(ethylene-co-propylene) (FEP) films was functionalized using a 150 keV ion implantation, followed by the graft polymerization of acrylic acid, to generate a high density of carboxylic acid groups on the implanted surface. The resulting functionalized surface was investigated in terms of the surface density of carboxylic acid, wettability, chemical structure, surface morphology, and surface chemical composition. These results revealed that poly(acrylic acid) (PAA) was successfully grafted onto the implanted FEP surface and its relative amount depended on the fluence. To demonstrate the usefulness of this method for the fabrication of bioassays, the PAA-grafted FEP films were utilized for the immobilization of probe DNA for anthrax toxin, followed by hybridization with Cy3-labeled target DNA. Liver cancer-specific α-feto-protein (AFP) antigen was also immobilized on the PAA-grafted FEP films. Texas Red-labeled secondary antibody was reacted with AFP-specific primary antibody prebound to the AFP antigen using an immunoassay method. The results revealed that the fluorescence intensity clearly depended on the concentration of the target DNA hybridized to the probe DNA and the AFP antigen immobilized on the FEP films. The lowest detectable concentrations of the target DNA and the AFP antigen were 10 fg/mL and 10 pg/mL, respectively, with the FEP films prepared at a fluence of 3 × 10(14) ions/cm(2). PMID:23452270

  2. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension using hydrophobically modified poly(acrylic acid).

    PubMed

    Chen, J; Chen, M C

    2011-01-01

    A series of hydrophobically modified poly(acrylic acid) (PAA), poly(2-phenoxyethyl acrylate-co-acrylic acid) (poly(PHEA-co-AA)), have been synthesized and characterized by Ubbelohde type viscometry, Nuclear Magnetic Resonance (1H NMR) spectrometry and Differential Scanning Calorimetry (DSC). The shear thinning Non-Newtonian fluid behavior of their aqueous solution and the dependence on pH and hydrophobic group contents were found through apparent viscosity and rheological property investigating. Decolourization performance in C. I. Vat Yellow 1 aqueous suspension was evaluated through visible absorbance data. Decolourization performance of hydrophobically associated polymer indicates two times better than that of PAA. The quantitative relationship was mainly studied. PMID:21866762

  3. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  4. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  5. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  6. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives' Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps.

    PubMed

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  7. Acylation of Antioxidant of Bamboo Leaves with Fatty Acids by Lipase and the Acylated Derivatives’ Efficiency in the Inhibition of Acrylamide Formation in Fried Potato Crisps

    PubMed Central

    Ma, Xiang; Wang, Erpei; Lu, Yuyun; Wang, Yong; Ou, Shiyi; Yan, Rian

    2015-01-01

    This study selectively acylated the primary hydroxyl groups on flavonoids in antioxidant of bamboo leaves (AOB) using lauric acid with Candida antarctica lipase B in tert-amyl-alcohol. The separation and isolation of acylated derivatives were performed using silica gel column chromatography with a mixture of dichloromethane/diethyl ether/methanol as eluents. Both thin layer chromatography and high-performance liquid chromatography analyses confirmed the high efficiency of the isolation process with the purified orientin-6″-laurate, isoorientin-6″-laurate, vitexin-6″-laurate, and isovitexin-6″-laurate that were obtained. The addition of AOB and acylated AOB reduced acrylamide formation in fried potato crisps. Results showed that 0.05% AOB and 0.05% and 0.1% acylated AOB groups significantly (p < 0.05) reduced the content of acrylamide in potato crisps by 30.7%, 44.5%, and 46.9%, respectively. PMID:26098744

  8. Novel one-dimensional lanthanide acrylic acid complexes: an alternative chain constructed by hydrogen bonding

    SciTech Connect

    Li Hui . E-mail: lihui@bit.edu.cn; Hu Changwen

    2004-12-01

    Novel one-dimensional (1D) chains of three lanthanide complexes La(L{sup 1}){sub 3}(CH{sub 3}OH)].CH{sub 3}OH (L{sup 1}=(E)-3-(2-hydroxyl-phenyl)-acrylic acid) 1, La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].2.75H{sub 2}O (L{sup 2}=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) 2, and La(L{sup 3}){sub 3}(CH{sub 3}OH){sub 2}(H{sub 2}O)].CH{sub 3}OH (L{sup 3}=(E)-3-(4-hydroxyl-phenyl)-acrylic acid) 3 are reported. The crystal structure data are as follows for 1: C{sub 29}H{sub 29}LaO{sub 11}, monoclinic, P2{sub 1}/n, a=15.4289(12)A, b=7.9585(6)A, c=23.041(2)A, {beta}=99.657(2){sup o}, Z=4, R{sub 1}=0.0637, wR{sub 2}=0.0919; for 2: C{sub 27}H{sub 30.50}LaO{sub 13.75}, triclinic, P-1, a=8.4719(17)A, b=13.719(3)A, c=14.570(3)A, {alpha}=62.19(3){sup o}, {beta}=99.657(2){sup o}, {gamma}=78.22(3){sup o}, Z=2, R{sub 1}=0.0384, wR{sub 2}=0.0820; and for 3: C{sub 30}H{sub 35}LaO{sub 13}, monoclinic, P2(1)/c, a=9.5667(6)A, b=24.3911(15)A, c=14.0448(9)A, {beta}=109.245(2){sup o}, Z=4, R{sub 1}=0.0374, wR{sub 2}=0.0630. All the three structure data were collected using graphite monochromated molybdenum K{alpha} radiation and refined using full-matrix least-squares techniques on F{sup 2}. These structures show that four kinds of the carboxylato bridge modes are included in these chains to link the La(III) ions. It is the first time that it has been found that the intra-chain hydrogen bonding can construct an alternative chain even, when the coordination bridge mode is the same along the chain (complex 2). There are 2D and 3D hydrogen bonding in the crystal lattices of complexes 1-3.

  9. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-01

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  10. Ex vivo bioadhesion and in vivo testosterone bioavailability study of different bioadhesive formulations based on starch-g-poly(acrylic acid) copolymers and starch/poly(acrylic acid) mixtures.

    PubMed

    Ameye, D; Voorspoels, J; Foreman, P; Tsai, J; Richardson, P; Geresh, S; Remon, J P

    2002-02-19

    Starch-g-poly(acrylic acid) copolymers or grafted starches synthesized by 60Co irradiation or chemical modification and co-freeze-dried starch/poly(acrylic acid) mixtures were evaluated on their ex vivo bioadhesion capacity. The buccal absorption of testosterone from a bioadhesive tablet formulated with the grafted starches or starch/poly(acrylic acid) mixtures was investigated. The results were compared to a reference formulation (physical mixture of 5% Carbopol 974P and 95% Drum Dried Waxy Maize). Rice starch-based irradiated grafted starches showed the best bioadhesion results. Partial neutralization of the acrylic acid with Ca(2+) ions resulted in significantly higher bioadhesion values compared to the reference. Ca(2+) and Mg(2+) partially neutralized maltodextrin-based irradiated grafted starches showed significantly higher bioadhesion values compared to the reference formulation. The chemically modified grafted starches showed significantly higher adhesion force values than for the reference tablet. None of the co-freeze-dried starch/poly(acrylic acid) mixtures showed significantly higher bioadhesion results than the reference (Bonferroni test, P<0.05). A chemically modified grafted starch could sustain the 3 ng/ml plasma testosterone target concentration during +/- 8 h (T(>3 ng/ml)). By lyophilization of a partially neutralized irradiated grafted starch, the in vivo adhesion time (22.0 +/- 7.2 h) and the T(>3 ng/ml) (13.5 +/- 1.3 h) could be increased. The absolute bioavailability of the lyophilized formulation approached the reference formulation. Some of the grafted starches showed to be promising buccal bioadhesive drug carriers for systemic delivery. PMID:11853929

  11. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. PMID:25475759

  12. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  13. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  14. REACTIVITIES OF ACRYLIC AND METHACRYLIC ACIDS IN A NUCLEOPHILIC ADDITION MODEL OF THEIR BIOLOGICAL ACTIVITY (JOURNAL VERSION)

    EPA Science Inventory

    The reactivities of derivatives of acrylic and methacrylic acid (AA and MAA) in Michael reactions of nucleophilic addition that have been proposed as the underlying mechanisms for the toxicity of such compounds are evaluated from a study of the mechanism of addition of a nucleoph...

  15. A facile one pot strategy for the synthesis of well-defined polyacrylates from acrylic acid via RAFT polymerization.

    PubMed

    Li, Qianbiao; Wang, Taisheng; Dai, Jingwen; Ma, Chao; Jin, Bangkun; Bai, Ruke

    2014-03-28

    A facile one pot strategy for the preparation of linear and hyperbranched polyacrylates has been successfully developed by the combination of in situ esterification of acrylic acid with halogenated compounds promoted by 1,1,3,3-tetramethylguanidine (TMG) and RAFT polymerization. PMID:24534953

  16. Introduction of poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid)] branches onto starch for cotton warp sizing.

    PubMed

    Shen, Shiqi; Zhu, Zhifeng; Liu, Fengdan

    2016-03-15

    An attempt has been made to reveal the effect of amphoteric poly(2-acryloyloxyethyl trimethyl ammonium chloride-co-acrylic acid) [P(ATAC-co-AA)] branches grafted onto the backbones of starch upon the adhesion-to-cotton, film properties, and desizability of maize starch for cotton warp sizing. Starch-g-poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid) [S-g-P(ATAC-co-AA)] was prepared by the graft copolymerization of 2-acryloyloxyethyl trimethyl ammonium chloride (ATAC) and acrylic acid (AA) with acid-converted starch (ACS) in aqueous medium using Fe(2+)-H2O2 initiator. The adhesion was evaluated in term of bonding strength according to the FZ/T 15001-2008 whereas the film properties considered included tensile strength, work and percentage elongation at break. The evaluation was undertaken through the comparison of S-g-P(ATAC-co-AA) with ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride). It was found that the amphoteric branch was able to significantly improve the adhesion and mitigate the brittleness of starch film. Zeta potential of cooked S-g-P(ATAC-co-AA) paste, depending on the mole ratio of ATAC to AA units on P(ATAC-co-AA) branches, had substantial effect on the adhesion and desizability. Increasing the mole ratio raised the potential, which favored the adhesion but disfavored the removal of S-g-P(ATAC-co-AA) from sized cotton warps. Electroneutral S-g-P(ATAC-co-AA) was superior to negatively grafted starch in adhesion and to positively grafted starch in desizability. Generally, it showed better sizing property than ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride), and had potential in the application of cotton warp sizing. PMID:26794764

  17. Terpolymers of ethyl acrylate/methacrylic acid/unsaturated acid ester of alcohols and acids as anti-settling agents in coal water slurries

    SciTech Connect

    Savoly, A.; Villa, J.L.; Grinstein, R.H.; Nachfolger, S.J.

    1988-05-17

    This patent describes a pumpable stabilized coal water slurry, having a coal content of at least about 50% by weight wherein at least 80% of the coal particles are about 200 mesh or finer, containing from about 0.01% to about 1% by weight of the slurry of a water soluble terpolymer of ethylacrylate (A), metacrylic acid (B) and a third monomer (C) selected from the group consisting of an unsaturated carboxylic acid ester of an alcohol and an ethoxylated carboxylic acid. The unsaturated carboxylic acid is a mono- or di- basic unsaturated carboxylic acid of 3 to 10 carbon atoms selected from the group consisting of acrylic acid, methacrylic acid, itaconic acid, fumaric acid, and maleic acid.

  18. Cascade enzymatic catalysis in poly(acrylic acid) brushes-nanospherical silica for glucose detection.

    PubMed

    Zhao, Yan; Wang, Ying; Zhang, Xiaobin; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-08-01

    The ultrasensitive monitoring of glucose with a fast and accurate method is significant in potential therapeutics and optimizes protein biosynthesis. Incorporation of enzyme into matrix is considered as promising candidates for constructing highly sensitive glucose-responsive systems. In this study, three-dimensional poly(acrylic acid) brushes-nanospherical silica (PAA-nano silica) with high amplification capability and stability were used to covalently immobilize bienzymes for cascade enzymatic catalysis. The major advantages of PAA-nano silica-bienzyme co-incorporation is that the enzymes are proximity distribution, and such close confinement both minimized the diffusion of intermediates among the enzymes in the consecutive reaction and improve the utilization efficiency of enzymes, thereby enhancing the overall reaction efficiency and specificity. Thus, this present bienzymatic biosensor shows robust signal amplification and ultrasensitivity of glucose-responsive properties with a detection limit of 0.04μM. PMID:27216683

  19. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  20. Amylopectin grafted with poly (acrylic acid): development and application of a high performance flocculant.

    PubMed

    Sarkar, Amit Kumar; Mandre, N R; Panda, A B; Pal, Sagar

    2013-06-20

    In recent years, wastewater treatment, especially for wastewaters which are not suitably recycled by conventional or normal biological processes, is getting more importance. Of late, natural biopolymer based flocculants are extensively used for wastewater treatment because of low cost, environment-friendly and easily availablility from reproducible farm and forest resources. This article introduces the development of a natural polymer based flocculant [amylopectin grafted with poly (acrylic acid) - AP-g-PAA] for treatment of synthetic effluent as well as mining industry wastewater. The graft copolymer based flocculants have been developed under optimum conditions and characterized using viscometry, (13)C NMR, SEM, TGA, rheological characteristics, determination of hydrodynamic radius and CHN analysis. The flocculation characteristics of grafted and ungrafted polysaccharide have been evaluated in synthetic effluents (as Fe-ore, kaolin, Mn ore suspensions) as well as in mining industry wastewater. PMID:23648038

  1. Electrophoretic Mobility of Poly(acrylic acid)-Coated Alumina Particles

    SciTech Connect

    Bhosale, Prasad S.; Chun, Jaehun; Berg, John C.

    2011-06-01

    The effect of poly (acrylic acid) (PAA) adsorption on the electrokinetic behavior of alumina dispersions under high pH conditions was investigated as a function of polymer concentration and molecular weight as well as the presence, concentration and ion type of background electrolyte. Systems of this type are relevant to nuclear waste treatment, in which PAA is known to be an effective rheology modifier. The presence of all but the lowest molecular weight PAA studied (1800) led to decreases in dynamic electrophoretic mobility at low polymer concentrations, attributable to bridging flocculation, as verified by measurements of particle size distribution. Bridging effects increased with polymer molecular weight, and decreased with polymer concentration. Increases in background electrolyte concentration enhanced dynamic electrophoretic mobility as the polymer layers were compressed and bridging was reduced. Such enhancements were reduced as the cation was changed from Na+ to K+ to Cs+.

  2. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  3. Water dispersible polytetrafluoroethylene microparticles prepared by grafting of poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Yang, Changqiao; Xu, Lu; Zeng, Hongyan; Tang, Zhongfeng; Zhong, Lei; Wu, Guozhong

    2014-10-01

    Due to the hydrophobic nature and high gravimetric density, it is very difficult to obtain water dispersible polytetrafluoroethylene (PTFE) powder. In this work, hydrophilic PTFE microparticles were successfully prepared by grafting of poly(acrylic acid) onto PTFE micropowder via a pre-irradiation method. The as-obtained hydrophilic PTFE microparticles were analyzed by FT-IR, 1H NMR, CA, SEM and TGA. After neutralization by sodium hydroxide, the water contact angle decreased from 145.69° for pristine PTFE to 63.38° for PTFE-g-NaAA. The obtained micropowder can be easily dispersed in water to form a dispersion with very high stability. Furthermore, the presence of grafted PAA shows no obvious influence on degradation temperature of PTFE backbones.

  4. Scaffolds of Hyaluronic Acid-Poly(Ethyl Acrylate) Interpenetrating Networks: Characterization and In Vitro Studies.

    PubMed

    Rodríguez-Pérez, E; Lloret Compañ, A; Monleón Pradas, M; Martínez-Ramos, C

    2016-08-01

    Hyaluronic acid (HA) provides many advantages to regenerative implants through its bioactive properties, but it also has many limitations as a biomaterial if it is not chemically modified. In order to overcome some of these limitations, HA has been combined with poly(ethyl acrylate) in the form of interpenetrating polymeric networks (IPNs), in which the HA network is crosslinked with divinyl sulfone. Scaffolds of this IPN have been produced through a template-leaching methodology, and their properties have been compared with those of single-network scaffolds made of either PEA or crosslinked HA. A fibroblast cell line has been used to assess the in vitro performance of the scaffolds, revealing good cell response and a differentiated behavior on the IPN surface when compared to the individual polymers. Altogether, the results confirm that this type of material offers an interesting microenvironment for cells, which can be further improved toward its potential use in medical implants. PMID:27072058

  5. Acrylic acid grafted guargum-nanosilica membranes for transdermal diclofenac delivery.

    PubMed

    Giri, Arindam; Bhunia, Tridib; Mishra, Samir Ranjan; Goswami, Luna; Panda, Asit Baran; Pal, Sagar; Bandyopadhyay, Abhijit

    2013-01-16

    Green, hydrophobic device for controlled transdermal release of diclofenac sodium was designed from in situ nanosilica/acrylic acid grafted guargum membranes. Best grafting condition was assigned and nanocomposites were formed in situ using varying proportions of aqueous nanosilica sol. Nanocomposite/drug conjugates were formed by bringing down the medium pH from 9.0 to 7.0. The conjugates were characterized through infrared and solid state NMR spectroscopy, electron microscopy, hydro-swelling, surface contact angle, viscometry and biocompatibility. Most balanced property was exhibited by the membrane containing 1wt% nanosilica. It also had shown the highest encapsulation efficacy vis-à-vis slowest release as compared to others during experimentation in a Franz diffusion cell. PMID:23121937

  6. Surface Modification of PET Fabric by Graft Copolymerization with Acrylic Acid and Its Antibacterial Properties

    PubMed Central

    Abdolahifard, M.; Bahrami, S. Hajir; Malek, R. M. A.

    2011-01-01

    Graft copolymerization of acrylic acid (AA) onto Poly(ethylene terephthalate) (PET) fabrics with the aid of benzoyl peroxide was carried out. The effect of polymerization parameters on the graft yield was studied. Percent grafting was enhanced significantly by increasing benzoyl peroxide (BP) concentrations up to 3.84 g/lit and then decreased upon further increase in initiator concentration. Preswelling of PET leads to changes in its sorption-diffusion properties and favors an increase in the degree of grafting. The antibiotics treated grafted fabrics showed antibacterial properties towards gram-positive and gram-negative microorganisms. FTIR and SEM were used to characterize AA-grafted polyester fabrics. PMID:24052819

  7. Characterization of new acrylic bone cements prepared with oleic acid derivatives.

    PubMed

    Vázquez, Blanca; Deb, Sanjukta; Bonfield, William; Román, Julio San

    2002-01-01

    Acrylic bone-cement formulations were prepared with the use of a new tertiary aromatic amine derived from oleic acid, and also by incorporating an acrylic monomer derived from the same acid with the aim of reducing the leaching of toxic residuals and improving mechanical properties. 4-N,N dimethylaminobenzyl oleate (DMAO) was used as an activator in the benzoyl-peroxide radical cold curing of polymethyl methacrylate. Cements that contained DMAO exhibited much lower polymerization exotherm values, ranging between 55 and 62 C, with a setting time around 16--17 min, depending on the amine/BPO molar ratio of the formulation. On curing a commercial bone cement, Palacosreg R with DMAO, a decrease of 20 C in peak temperature and an increase in setting time of 7 min were obtained, the curing parameters remaining well within limits permitted by the standards. In a second stage, partial substitution of MMA by oleyloxyethyl methacrylate (OMA) in the acrylic formulations was performed, the polymerization being initiated with the DMAO/BPO redox system. These formulations exhibited longer setting times and lower peak temperatures with respect to those based on PMMA. The glass transition temperature of the experimental cements were lower than that of PMMA cement because of the presence of long aliphatic chains of both activator and monomer in the cement matrix. Number average molecular weights of the cured cements were in the range of 1.2x10(5). PMMA cements cured with DMAO/BPO revealed a significant (p<0.001) increase in the strain to failure and a significant (p<0.001) decrease in Young's modulus in comparison to Palacosreg R, whereas ultimate tensile strength remained unchanged. When the monomer OMA was incorporated, low concentrations of OMA provided a significant increase in tensile strength and elastic modulus without impairing the strain to failure. The results demonstrate that the experimental cements based on DMAO and OMA have excellent promise for use as orthopaedic and

  8. Self-assembly and the hemolysis effect of monodisperse N,N-diethylacrylamide/acrylic acid nanogels with high contents of acrylic acid.

    PubMed

    Li, Xueting; Zhao, Di; Shi, Xiaodi; Qiu, Gao; Lu, Xihua

    2016-09-21

    Monodisperse temperature/pH sensitive poly(N,N-diethylacrylamide/acrylic acid) (P(DEA/AAc)) nanogels with high contents of AAc up to 40 wt% have been prepared. In this study, it was unexpectedly found that the polydispersity of the nanogels with 40 wt% AAc strongly depended on the initiator concentration. Monodisperse P(DEA/AA) nanogels were synthesized only at a very low concentration of initiator. The phase transition behavior of the nanogels in water can be tuned by pH and temperature. Due to low polydispersity, the nanogels self-assembled into colloidal crystals at different temperatures below the volume phase transition temperature (VPTT). The sharp Bragg peaks of the crystals were significantly blue-shifted as the concentration of the nanogels was increased. In contrast, the condensed suspensions without crystals still exhibited clear colours resulting from a short-range order structure. The reflection spectra of the coloured suspensions showed that the peak wavelength became a bit longer and much broader. And the reflection intensity of the coloured suspensions was much weaker. Elastic and coloured crosslinked nanogel networks prepared by a one-pot and rapid light-initiated crosslinking method showed responses to pH and temperature. Furthermore, the interaction between the nanogels and peptide melittin was investigated. The results showed that an increasing AAc composition led to more efficient inhibition of the hemolytic activity of melittin. The nanogels with 40 wt% AAc composition completely inhibited hemolytic activity at a nanogel concentration of 400 µg ml(-1). Thus, monodisperse P(DEA/AAc) nanogels of high AAc composition may be developed as efficient substitutes for antibody-based antidotes. Owing to the combined influence of the periodic structure of the crystals of the nanogels and an efficient neutralization effect, the P(DEA/AAc) nanogels show promise to become an integral step for preparing valuable naked-eye biosensors as simple, cheap and

  9. Corrosion Inhibitive Evaluation of an Environmentally Friendly Water-Base Acrylic Terpolymer on Mild Steel in Hydrochloric Acid Media

    NASA Astrophysics Data System (ADS)

    Azghandi, Mojtaba Vakili; Davoodi, Ali; Farzi, Gholam Ali; Kosari, Ali

    2013-12-01

    The corrosion inhibitive performance of an environmentally friendly water-base acrylic terpolymer [methyl methacrylate/Butyl Acrylate/Acrylic acid (ATP)] on mild steel in 1 M HCl was investigated by alternating current and direct current electrochemical techniques and the quantum chemical method. An efficiency of more than 97 pct was obtained with 0.8 mmol/L ATP. The increase in inhibitor concentration and immersion time has a positive effect, while the temperature influence is negligible on the inhibitor efficiency. The present terpolymer obeys the Langmuir isotherm, and thermodynamic calculation reveals a chemisorption type on the surface. Density functional calculations showed that the lone pairs of electrons of oxygen in the structure of three monomers are suitable sites to adsorb onto the metal surface. Finally, in the presence of ATP, a decrease in surface roughness and corrosion attacks was demonstrated by atomic force microscopy and optical microscopy examinations, respectively.

  10. Thiomers: Influence of molecular mass and thiol group content of poly(acrylic acid) on efflux pump inhibition.

    PubMed

    Grabovac, Vjera; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-09-30

    The aim of the present study was to investigate the influence of molecular mass and thiol group content of poly(acrylic acid)-cysteine conjugates on the permeation of sulforhodamine 101 and penicillin G. acting as substrates for multidrug resistance-associated protein 2 efflux pump. Poly(acrylic acids) of 2 kDa, 100 kDa, 250 kDa, 450 kDa and 3000 kDa were conjugated with cysteine. The thiol group content of all these polymers was in the range from 343.3 ± 48.4 μmol/g to 450.3 ± 76.1 μmol/g. Transport studies were performed on rat small intestine mounted in Ussing-type chambers. Since 250 kDa poly(acrylic acid) showed the highest permeation enhancing effect, additionally thiolated 250 kDa polyacrylates displaying 157.2 μmol/g, 223.0 ± 18.1 and 355.9 μmol/g thiol groups were synthesized in order to investigate the influence of thiol group content on the permeation enhancement. The permeation of sulforhodamine was 3.93- and 3.85-fold improved using 250 kDa poly(acrylic acid)-cysteine conjugate exhibiting 355.9 ± 39.5 μmol/g and 223.0 ± 18.1 μmol/g thiol groups. Using the same conjugates the permeation of penicillin G was 1.70- and 1.59-fold improved, respectively. The study demonstrates that thiolated poly(acrylic acid) inhibits Mrp2 mediated transport and that the extent of inhibition depends on the molecular mass and degree of thiolation of the polymer. PMID:26238816

  11. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.

    PubMed

    Xu, Ming; Zhu, Jianqiang; Wang, Fanfan; Xiong, Yunjing; Wu, Yakun; Wang, Qiuquan; Weng, Jian; Zhang, Zhihong; Chen, Wei; Liu, Sijin

    2016-03-22

    The unique physicochemical properties of two-dimensional (2D) graphene oxide (GO) could greatly benefit the biomedical field; however, recent research demonstrated that GO could induce in vitro and in vivo toxicity. We determined the mechanism of GO induced toxicity, and our in vitro experiments revealed that pristine GO could impair cell membrane integrity and functions including regulation of membrane- and cytoskeleton-associated genes, membrane permeability, fluidity and ion channels. Furthermore, GO induced platelet depletion, pro-inflammatory response and pathological changes of lung and liver in mice. To improve the biocompatibility of pristine GO, we prepared a series of GO derivatives including aminated GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and poly(ethylene glycol)-functionalized GO (GO-PEG), and compared their toxicity with pristine GO in vitro and in vivo. Among these GO derivatives, GO-PEG and GO-PAA induced less toxicity than pristine GO, and GO-PAA was the most biocompatible one in vitro and in vivo. The differences in biocompatibility were due to the differential compositions of protein corona, especially immunoglobulin G (IgG), formed on their surfaces that determine their cell membrane interaction and cellular uptake, the extent of platelet depletion in blood, thrombus formation under short-term exposure and the pro-inflammatory effects under long-term exposure. Overall, our combined data delineated the key molecular mechanisms underlying the in vivo and in vitro biological behaviors and toxicity of pristine GO, and identified a safer GO derivative that could be used for future applications. PMID:26855010

  12. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    NASA Astrophysics Data System (ADS)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2015-12-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  13. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  14. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  15. Rapid and sensitive determination of acrylamide in drinking water by planar chromatography and fluorescence detection after derivatization with dansulfinic acid.

    PubMed

    Alpmann, Alexander; Morlock, Gertrud

    2008-01-01

    On the basis of a novel derivatization, a new planar chromatographic method has been developed for the determination of acrylamide (AA) in drinking water at the ultra-trace level. After SPE, the water extracts were oversprayed on a high-performance thin-layer chromatography (HPTLC) silica gel plate with the derivatization agent dansulfinic acid and derivatized in situ. Chromatography was performed with ethyl acetate and the fluorescent product was quantified at 366/>400 nm. Verification was based on HPTLC-ESI/MS, HPTLC-direct analysis in real-time (DART)-TOF/MS and NMR. The routine HPTLC-fluorescence detection (FLD) method was validated for spiked drinking water. The regression analysis was linear (r >0.9918) in the range of 0.1-0.4 microg/L. LOD was calculated to be 0.025 microg/L and experimentally proved for spiked samples at levels down to 0.05 microg/L (S/N = 6) which was suited for monitoring the EU limit value of 0.1 microg/L in drinking water (0.5 microg/L demanded by World Health Organization (WHO)/US Environmental Protection Agency (EPA)). Within-run precision and the mean between-run precision (RSD, n = 3, three concentration levels each) were evaluated to be 4.8 and 11.0%, respectively. The mean recovery (0.1, 0.2, and 0.3 microg/L) was 96% corrected by the internal standard. The method, in comparison with HPLC-MS/MS showed comparable results and demonstrated the accuracy of the method. PMID:18058860

  16. The effect of unsaturated fatty acid and triglyceride oil addition on the mechanical and antibacterial properties of acrylic bone cements.

    PubMed

    Persson, Cecilia; Robert, Elise; Carlsson, Elin; Robo, Céline; López, Alejandro; Godoy-Gallardo, Maria; Ginebra, Maria-Pau; Engqvist, Håkan

    2015-09-01

    Acrylic bone cements have an elastic modulus several times higher than the surrounding trabecular bone. This has been hypothesized to contribute to certain clinical complications. There are indications that the addition of specific fatty acids and triglyceride oils may reduce the elastic modulus of these types of cements. Some of these additives also appear to have inherent antibiotic properties, although this has never been evaluated in bone cements. In this study, several types of fatty acids and triglyceride oils were evaluated for use in acrylic bone cements. Their mechanical properties were evaluated under uniaxial compression testing and selected cements were then further characterized in terms of microstructure, handling and antibacterial properties using scanning electron microscopy, polymerization temperature measurements, agar diffusion tests and bactericidal activity assays of cement extracts. It was found that any of the evaluated fatty acids or triglyceride oils could be used to tailor the stiffness of acrylic bone cements, although at varying concentrations, which also depended on the type of commercial base cement used. In particular, the addition of very small amounts of linoleic acid (<2.0 wt%) resulted in Young's moduli and compressive strengths in the range of human trabecular bone, while maintaining a similar setting time. Further, the addition of 12.6 wt% ricinoleic acid to Osteopal V cement was found to have a significant antibacterial effect, inhibiting growth of Staphylococcus aureus in an agar diffusion test as well as demonstrating 100% bactericidal activity against the same strain. PMID:25876889

  17. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. PMID:24907758

  18. Homo- and co-polymerization of polysytrene-block-poly(acrylic acid)-coated metal nanoparticles.

    PubMed

    Wang, Hong; Song, Xiaohui; Liu, Cuicui; He, Jiating; Chong, Wen Han; Chen, Hongyu

    2014-08-26

    Amphiphilic block copolymers such as polystyrene-block-poly(acrylic acid) (PSPAA) give micelles that are known to undergo sphere-to-cylinder shape transformation. Exploiting this polymer property, core-shell nanoparticles coated in PSPAA can be "polymerized" into long chains following the chain-growth polymerization mode. This method is now extended to include a variety of different nanoparticles. A case study on the assembly process was carried out to understand the influence of the PAA block length, the surface ligand, and the size and morphology of the monomer nanoparticles. Shortening the PAA block promotes the reorganization of the amphiphilic copolymer in the micelles, which is essential for assembling large Au nanoparticles. Small Au nanoparticles can be directly "copolymerized" with empty PSPAA micelles into chains. The reaction time, acid quantity, and the [Au nanoparticles]/[PSPAA micelles] concentration ratio played important roles in controlling the sphere-cylinder-vesicle conversion of the PSPAA micelles, giving rise to different kinds of random "copolymers". With this knowledge, a general method is then developed to synthesize homo, random, and block "copolymers", where the basic units include small Au nanoparticles (d = 16 nm), large Au nanoparticles (d = 32 nm), Au nanorods, Te nanowires, and carbon nanotubes. Given the lack of means for assembling nanoparticles, advancing synthetic capabilities is of crucial importance. Our work provides convenient routes for combining nanoparticles into long-chain structures, facilitating rational design of complex nanostructures in the future. PMID:25000121

  19. SCRI acrylamide project update

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The US potato industry, with $3.5 billion in raw product value, identified acrylamide as its number one research funding priority in 2010 because of potential health concerns related to the presence of acrylamide in potato products. Acrylamide is present in much carbohydrate rich foods processed at ...

  20. Nanoparticle Formation from Hybrid, Multiblock Copolymers of Poly(Acrylic Acid) and VPGVG Peptide

    PubMed Central

    Grieshaber, Sarah E.; Paik, Bradford A.; Bai, Shi; Kiick, Kristi L.; Jia, Xinqiao

    2012-01-01

    Elastin-mimetic hybrid copolymers with an alternating molecular architecture were synthesized via the step growth polymerization of azide-functionalized, telechelic poly(tert-butyl acrylate) (PtBA) and an alkyne-terminated, valine and glycine-rich peptide with a sequence of (VPGVG)2 (VG2). The resultant hybrid copolymer, [PtBA-VG2]n, contains up to six constituent building blocks and has a polydispersity index (PDI) of ~1.9. Trifluoroacetic acid (TFA) treatment of [PtBA-VG2]n gave rise to an alternating copolymer of poly(acrylic acid) (PAA) and VG2 ([PAA-VG2]n). The modular design permits facile adjustment of the copolymer composition by varying the molecular weight of PAA (22 and 63 repeat units). Characterization by dynamic light scattering indicated that the multiblock copolymers formed discrete nanoparticles at room temperature in aqueous solution at pH 3.8, with an average diameter of 250-270 nm and a particle size distribution of 0.34 for multiblock copolymers containing PAA22 and 0.17 for those containing PAA63. Upon increasing the pH to 7.4, both types of particles were able to swell without being disintegrated, reaching an average diameter of 285-300 nm for [PAA22-VG2]n and 330-350 nm for [PAA63-VG2]n, respectively. The nanoparticles were not dissociated upon the addition of urea, further confirming their unusual stability. The nanoparticles were capable of sequestering a hydrophobic fluorescent dye (pyrene), and the critical aggregation concentration (CAC) was determined to be 1.09 × 10-2 or 1.05 × 10-2 mg/mL for [PAA22-VG2]n and [PAA63-VG2]n, respectively. We suggest that the multiblock copolymers form through collective H-bonding and hydrophobic interactions between the PAA and VG2 peptide units, and that the unusual stability of the multiblock nanoparticles is conferred by the multiblock architecture. These hybrid multiblock copolymers are potentially useful as pH-responsive drug delivery vehicles, with the possibility of drug loading through

  1. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  2. Lactic acid conversion to 2,3-pentanedione and acrylic acid over silica-supported sodium nitrate: Reaction optimization and identification of sodium lactate as the active catalyst

    SciTech Connect

    Wadley, D.C.; Tam, M.S.; Miller, D.J.

    1997-01-15

    Lactic acid is converted to 2,3-pentanedione, acrylic acid, and other products in vapor-phase reactions over silica-supported sodium lactate formed from sodium nitrate. Multiparameter optimization of reaction conditions using a Box-Benkhen experimental design shows that the highest yield and selectivity to 2,3-pentanedione are achieved at low temperature, elevated pressure, and long contact time, while yield and selectivity to acrylic acid are most favorable at high temperature, low pressure, and short contact time. Post-reaction Fourier transform infrared spectroscopic analyses of the catalyst indicate that sodium nitrate as the initial catalyst material is transformed to sodium lactate at the onset of reaction via proton transfer from lactic acid to nitrate. The resultant nitric acid vaporizes as it is formed, leaving sodium lactate as the sole sodium-bearing species on the catalyst during reaction. 19 refs., 8 figs., 5 tabs.

  3. Rapid 3D Patterning of Poly(acrylic acid) Ionic Hydrogel for Miniature pH Sensors.

    PubMed

    Yin, Ming-Jie; Yao, Mian; Gao, Shaorui; Zhang, A Ping; Tam, Hwa-Yaw; Wai, Ping-Kong A

    2016-02-17

    Poly(acrylic acid) (PAA), as a highly ionic conductive hydrogel, can reversibly swell/deswell according to the surrounding pH conditions. An optical maskless -stereolithography technology is presented to rapidly 3D pattern PAA for device fabrication. A highly sensitive miniature pH sensor is demonstrated by in situ printing of periodic PAA micropads on a tapered optical microfiber. PMID:26643765

  4. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. PMID:27370745

  5. Investigation of electrochemical properties of a poly(vinyl alcohol)/poly(acrylic acid) polymer blend

    SciTech Connect

    DeSantis, C.O.; Seliskar, C.; Heineman, W.R.

    1995-12-31

    Chemical sensors have wide applications in medicine, environmental monitoring, industrial applications, and others because of their versatility, ruggedness, sensitivity, selectivity, and economy. Electrochemical sensors are constructed by using a conducting medium, in this case graphite, and applying a constant potential while measuring changes in the current. Polymers are used for electrochemical sensors to exclude interferents from the electrode surface, to preconcentrate the analyte near the electrode, and in some cases to provide a matrix for the immobilization of analytes, such as enzymes. These functions of the polymer can serve to improve the detection limit of the sensor. This project involves the evaluation of a new polymer for electrode modification. The poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) polymer was originally developed as an ion exchanger for use in space batteries. It has also been used in wastewater cleanup because it will concentrate heavy metals in the presence of calcium ion. This polymer is also optically clear, so it can potentially be used for an optical sensor. We are interested in investigating the ion exchange properties of the PVA/PAA polymer, as well as the ability of this polymer to preconcentrate and exclude analytes on the basis of size, charge, and hydrophilic/hydrophobic interactions.

  6. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  7. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  8. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  9. Preparation and Biophysical Characterization of Poly(amidoamine) Dendrimer-Poly(acrylic acid) Graft.

    PubMed

    Dung, Tran Huu; Do, Le Thanh; Loan, Ta Thi; Yoo, Hoon

    2015-01-01

    A series of PAMAM dendrimer generation 5-poly(acrylic acid) grafts were prepared to evaluate the potential use of dendritic grafts as a drug encapsulated nanocarrier. The structural features of the synthesized polymer graft were identified by FT-IR and 1H-NMR spectra and the biophysical properties were characterized by measuring its particle size and zeta potential. The prepared dendrimer G5-PAA grafts had particle size in the range of 600 to 900 nm and the size increased proportionally with the number of PAA on dendrimer surface. The electrostatic property of the dendrimer G5-PAA, carried out by HPLC reversed phase column analysis and the measurement of zeta potential, revealed that both migration time and zeta potential were dependent on the number of grafted PAA. The number of free amino groups on dendrimer G5-PAA, determined quantitatively by fluorescamine assay, was in a reverse order with the reaction mole ratio of dendrimer to PAA. In addition, dendrimer G5-PAA showed a pH-dependent solubility in aqueous solution with characteristic pH region of solubility, depending on the dendrimer generation. The observed biophysical properties indicate that PAMAM dendrimer G5-PAA is promising as a drug encapsulated nanocarrier. PMID:26328427

  10. Adsorption of poly acrylic acid onto the surface of calcite: an experimental and simulation study.

    PubMed

    Sparks, David J; Romero-González, Maria E; El-Taboni, Elfateh; Freeman, Colin L; Hall, Shaun A; Kakonyi, Gabriella; Swanson, Linda; Banwart, Steven A; Harding, John H

    2015-11-01

    Macromolecular binding to minerals is of great importance in the formation of biofilms, and carboxylate functional groups have been found to play a pivotal role in the functioning of these macromolecules. Here we present both fluorescence time-resolved anisotropy measurements and simulation data on the conformational behaviour and binding of a poly acrylic acid polymer. In solution the polymer exhibits a pH dependent behaviour, with a coiled conformation at a low pH and extended conformation at higher pH values. The polymer is readily adsorbed on the surface of calcite, preferring to bind in an extended conformation, with the strength of the adsorption dependent on the pH and presence of counter ions. We discuss the reasons why the calculated adsorption free energy differs from that obtained from a Langmuir isotherm analysis, showing that they refer to different quantities. The enhanced binding of the extended conformations shows the importance of flexibility in the binding of macromolecules. PMID:26418100

  11. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  12. Mechanically stable thermally crosslinked poly(acrylic acid)/reduced graphene oxide aerogels.

    PubMed

    Ha, Heonjoo; Shanmuganathan, Kadhiravan; Ellison, Christopher J

    2015-03-25

    Graphene oxide (GO) aerogels, high porosity (>99%) low density (∼3-10 mg cm(-3)) porous materials with GO pore walls, are particularly attractive due to their lightweight, high surface area, and potential use in environmental remediation, superhydrophobic and superoleophilic materials, energy storage, etc. However, pure GO aerogels are generally weak and delicate which complicates their handling and potentially limits their commercial implementation. The focus of this work was to synthesize highly elastic, mechanically stable aerogels that are robust and easy to handle without substantially sacrificing their high porosity or low density. To overcome this challenge, a small amount of readily available and thermally cross-linkable poly(acrylic acid) (PAA) was intermixed with GO to enhance the mechanical integrity of the aerogel without disrupting other desirable characteristic properties. This method is a simple straightforward procedure that does not include multistep or complicated chemical reactions, and it produces aerogels with mass densities of about 4-6 mg cm(-3) and >99.6% porosity that can reversibly support up to 10,000 times their weight with full recovery of their original volume. Finally, pressure sensing capabilities were demonstrated and their oil absorption capacities were measured to be around 120 g oil per g aerogel(-1) which highlights their potential use in practical applications. PMID:25714662

  13. Preparation and properties of poly(acrylic acid) oligomer stabilized superparamagnetic ferrofluid.

    PubMed

    Lin, Chia-Lung; Lee, Chia-Fen; Chiu, Wen-Yen

    2005-11-15

    Ferrofluids, which are stable dispersions of magnetic particles, behave as liquids that have strong magnetic properties. Nanoparticles of magnetite with a mean diameter of 10-15 nm, which are in the range of superparamagnetism, are usually prepared by the traditional method of co-precipitation from ferrous and ferric electrolyte solution. When diluted, the ferrofluid dispersions are not stable if anionic or cationic surfactants are used as the stabilizer. This work presents an efficient way to prepare a stable aqueous nanomagnetite dispersion. A stable ferrofluid containing Fe3O4 nanoparticles was synthesized via co-precipitation in the presence of poly(acrylic acid) oligomer. The mechanism, microstructure, and properties of the ferrofluid were investigated. The results indicate that the PAA oligomers promoted the nucleation and inhibited the growth of the magnetic iron oxide, and the average diameter of each individual Fe3O4 particle was smaller than 10 nm. In addition, the PAA oligomers provided both electrostatic and steric repulsion against particle aggregation, and the stability of dispersions could be controlled by adjusting the pH value of solution. A small amount of Fe2O3 was found in the nanoparticles but the superparamagnetic behavior of the nanoparticles was not affected. PMID:16009367

  14. Synthesis, structure and phase transition property of acrylic acid grafted paraffin

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaowen; Liu, Pengfei; Ye, Lin

    2014-05-01

    Polar monomer acrylic acid (AA) was used to modify paraffin in order to improve the latent heat of paraffin as phase change materials. The composition and sequence structure of the grafted products were characterized by FTIR, 13C NMR, 1H NMR and GPC analysis, and the thermal properties of paraffin-g-AA were investigated. It was found that AA was confirmed to be grafted onto the molecular chain of paraffin successfully. The mechanism of free radical grafting of AA may be only monomeric grafts. At low grafting ratio, the structure B can be mainly formed as a result of the radical coupling termination; while at the high grafting ratio, structure A was the primary structure as a result of the radical chain growth process. The number-average molecular weight of the grafted samples increased at first but leveled off with increasing grafting ratio, while the weight-average molecular weight increased gradually. The latent heat capacity of the grafted paraffin can be improved obviously at low grafting ratio due to the formation of structure B.

  15. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  16. Synthesis and Development of Poly(N-Hydroxyethyl Acrylamide)-Ran-3-Acrylamidophenylboronic Acid Polymer Fluid for Potential Application in Affinity Sensing of Glucose

    PubMed Central

    Li, Siqi; Davis, Erin N; Huang, Xian; Song, Bing; Peltzman, Rebecca; Sims, David M; Lin, Qiao; Wang, Qian

    2011-01-01

    Background In previous work, we described viscosity and permittivity microelectromechanical systems (MEMS) sensors for continuous glucose monitoring (CGM) using poly[acrylamide-ran-3-acrylamidophenylboronic acid (PAA-ran-PAAPBA). In order to enhance our MEMS device antifouling properties, a novel, more hydrophilic polymer-sensing fluid was developed. Method To optimize sensing performance, we synthesized biocompatible copolymers poly(N-hydroxyethyl acrylamide)-ran-3-acrylamidophenylboronic acid (PHEAA-ran-PAAPBA) and developed its sensing fluid for viscosity-based glucose sensing. Key factors such as polymer composition and molecular weight were investigated in order to optimize viscometric responses. Results Compared with PAA-ran-PAAPBA fluid of a similar binding moiety percentage, PHEAA-ran-PAAPBA showed comparable high binding specificity to glucose in a reversible manner and even better performance in glucose sensing in terms of glucose sensing range (27–468 mg/ml) and sensitivity (within 3% standard error of estimate). Preliminary experiment on a MEMS viscometer demonstrated that the polymer fluid was able to sense the glucose concentration. Conclusions Our MEMS systems using PHEAA-ran-PAAPBA will possess enhanced implantable traits necessary to enable CGM in subcutaneous tissues. PMID:22027298

  17. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  18. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel

    NASA Astrophysics Data System (ADS)

    Ashri, Airul; Lazim, Azwan

    2014-09-01

    The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.

  19. The C-F...F-C short contacts in the metal complexes of fluoro-phenyl-acrylic acids

    SciTech Connect

    Liu Guilei; Liu CaiMing; Li Hui

    2011-03-15

    Four new complexes of fluoro-phenyl-acrylic acids (E)-3-(3-fluoro-phenyl)-acrylic acid (L1) [Mn{sub 3}(L1){sub 6}(L2){sub 2}].H{sub 2}O.CH{sub 3}CN (1), [Zn{sub 2}(L1){sub 4}(L3)]{sub n} (2), [Mn(L1){sub 2}(H{sub 2}O){sub 2}]{sub n} (3) and [Co(L1){sub 2}(H{sub 2}O){sub 2}]{sub n} (4) (L2=1,10-phenanthroline, L3=4,4'-bipy) have been synthesized based on the molecular design and research of halogen-halogen interactions (especially fluoro-fluoro contact). The structure analyses reveal that complex 1 is a trinuclear complex, which is blocked by L2. Complex 2 is a 1D chain bridged through L3. Complexes 3 and 4 exhibit 2D grid like metal-organic framework structures through carboxylato bridge ligand. Variable-temperature magnetic measurements showed an antiferromagnetic interaction between Mn(II) ions and between Co(II) ions in complexes 3 and 4, respectively. A short C-F...F-C contact with a distance of 2.953 A was found between the trinuclear coordination compound 1. -- Graphical Abstract: The short distance between F...F (2.953 A) was found in the complex of [Mn{sub 3}(L1){sub 6}(L2){sub 2}].H{sub 2}O.CH{sub 3}CN (L1=(E)-3-(3-fluoro-phenyl)-acrylic acid, L2=1,-10-phenanthroline). Display Omitted Research highlights: > Four new complexes of fluoro-phenyl-acrylic acids (E)-3-(3-fluoro-phenyl)-acrylic acid (L1) [Mn{sub 3}(L1){sub 6}(L2){sub 2}].H{sub 2}O.CH{sub 3}CN (1), [Zn{sub 2}(L1){sub 4}(L3)]{sub n} (2), [Mn(L1){sub 2}(H{sub 2}O){sub 2}]{sub n} (3) and [Co(L1){sub 2}(H{sub 2}O){sub 2}]{sub n} (4) (L2=1,10-phenanthroline, L3=4,4'-bipy) have been synthesized based on the molecular design and research of halogen-halogen interactions (especially fluoro-fluoro contact). > A short C-F...F-C contact with a distance of 2.953 A was found between the trinuclear coordination compound 1. > Variable-temperature magnetic measurements showed an antiferromagnetic interaction between Mn(II) ions and between Co(II) ions in complexes 3 and 4, respectively.

  20. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  1. Synthesis and characterization of poly(acrylic acid) stabilized cadmium sulfide quantum dots.

    PubMed

    Celebi, Serdar; Erdamar, A Koray; Sennaroglu, Alphan; Kurt, Adnan; Acar, Havva Yagci

    2007-11-01

    Cadmium sulfide (CdS) nanoparticles (NPs) capped with poly(acrylic acid) (PAA) were prepared in aqueous solutions from Cd(NO3)2 and Na2S. Influence of the COOH/Cd ratio (0.8-12.5), reaction pH (5.5 and 7.5), and PAA molecular weight (2100 and 5100 g/mol) on the particle size, colloidal stability, and photoluminescence were investigated. A Cd/S ratio of <1 causes ineffective passivization of the surface with the carboxylate and therefore results in a red shift of the absorption band and a significant drop in photoluminescence. Therefore, the Cd/S ratio was fixed at 1.1 for all experiments studying the mentioned variables. PAA coating provided excellent colloidal stability at a COOH/Cd ratio above 1. Absorption edges of PAA-coated CdS NPs are in the range of 460-508 nm. The size of the NPs increases slightly with increasing PAA molecular weight and COOH/Cd ratio at pH 7.5. It is demonstrated that there is a critical COOH/Cd ratio (1.5-2) that maximizes the photoluminescence intensity and quantum yield (QY, 17%). Above this critical ratio, which corresponds to smaller crystal sizes (3.7-4.1 nm) for each reaction set, the quantum yield decreases and the crystal size increases. Moreover, CdS NPs prepared at pH 7.5 have significantly higher QY and absorb at lower wavelengths in comparison with those prepared at pH 5.5. Luminescence quenching has not been observed over 8 months. PMID:17929960

  2. Anelastic and thermal properties of ethylene/acrylic acid copolymers partially ionized with transition metals

    SciTech Connect

    Hoffman, D.M.; Matthews, F.M.; Riley, M.O.; Walkup, C.M.

    1988-01-01

    Ionomers of five 3d series transition metals (Mn, Fe, Co, Ni, and Cu), two Lanthanide series transition metals (Ce, Sm) and the IV and V series metals (Pb, Bi) were prepared by reaction with 25% solids dispersion of poly (ethylene-co-acrylic acid), EAA, in aqueous ammonia. The unreacted copolymer showed two mechanical relaxations, the glass transition at about 5C and a low temperature secondary relaxation at about -140C with 230 +- 10 kJ/mol and 50+-8 kJ/mol apparent activation energies, respectively. Typically three weight percent of the metal nitrate or acetate was reacted with the copolymer dispersion. After precipitation, drying and molding, the ionomers showed three mechanical relaxations. The low temperature ..gamma..-relaxation was quite strong and shifted about 5C higher compared to the EAA copolymer. The ..beta..-relaxation was extremely weak occurring at -62+-5C in the loss tangent at 1.0 Hz. The ..cap alpha..-relaxation or glass transition for 3% transition metal ionomers occurred at about 26+-3C for +3 oxidation states and Cu/sup +2/, but significantly higher for other +2 oxidation states (48 +- 2C for Co, Ni and 35C for Mn) based on G'' maxima at 1.0 Hz and the apparent activation energy was 220+-30kJ/mol. The two group IV and V metal ionomers were much higher loadings and had a much broader and stronger (..beta..') relaxation occurring at -6 +- 4C with 130+-10 kJ/mol activation energies. The lead ionomers were clear but the bismuth ionomer showed macroscopic phase separation. The 3d transition metal ionomers were clear and nicely colored characteristic of their ionization state except for iron which was somewhat cloudy. The Lanthanide ionomers were clear (Ce) or pale yellow (Sm) and also reasonably transparent. (16 refs., 12 figs., 5 tabs.)

  3. Production of dimethylsulfide and acrylic acid from dimethylsulfoniopropionate during growth of three marine microalgae

    NASA Astrophysics Data System (ADS)

    Liu, Chunying; Gao, Caixia; Zhang, Haibo; Chen, Shuo; Deng, Ping; Yue, Xin'an; Guo, Xiaoyi

    2014-07-01

    We measured the concentrations of dimethylsulfide (DMS), acrylic acid (AA), and dimethylsulfoniopropionate (DMSP) during growth of three microalgae: Prorocentrum micans, Gephyrocapsa oceanica, and Platymonas subcordiformis. The DMSP, AA, and DMS concentrations in culture media varied significantly among algal growth stages, with the highest concentrations in the late stationary growth stage or the senescent stage. In the stationary growth stage, the average DMSP concentration per cell in P. mican s (0.066 5 pmol/cell) was 1.3 times that in G. oceanica (0.049 5 pmol/cell) and 20.2 times that in P. subcordiformi s (0.003 29 pmol/cell). The average concentrations of AA were 0.044 6, 0.026 9, and 0.003 05 pmol/cell in P. micans, G. oceanica, and P. subcordiformi s, respectively, higher than the concentrations of DMS (0.272, 0.497, and 0.086 2 fmol/cell, respectively). There were significant positive correlations between cell density and AA, DMSP, and DMS concentrations. The ratios of DMS /AA and AA /(DMSP+AA) in the three algae differed significantly over the growth cycle. In all three microalgae, the DMS/AA ratios were less than 25% during the growth period, suggesting that the enzymatic cleavage pathway, which generates DMS, was not the main DMSP degradation pathway. The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence. In all three microalgae, the AA /(DMSP+AA) ratio (degradation ratio of DMSP) decreased during the exponential growth phase, and then increased. The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.

  4. Production of dimethylsulfide and acrylic acid from dimethylsulfoniopropionate during growth of three marine microalgae

    NASA Astrophysics Data System (ADS)

    Liu, Chunying; Gao, Caixia; Zhang, Haibo; Chen, Shuo; Deng, Ping; Yue, Xin'an; Guo, Xiaoyi

    2014-11-01

    We measured the concentrations of dimethylsulfide (DMS), acrylic acid (AA), and dimethylsulfoniopropionate (DMSP) during growth of three microalgae: Prorocentrum micans, Gephyrocapsa oceanica, and Platymonas subcordiformis. The DMSP, AA, and DMS concentrations in culture media varied significantly among algal growth stages, with the highest concentrations in the late stationary growth stage or the senescent stage. In the stationary growth stage, the average DMSP concentration per cell in P. micans (0.066 5 pmol/cell) was 1.3 times that in G. oceanica (0.049 5 pmol/cell) and 20.2 times that in P. subcordiformis (0.003 29 pmol/cell). The average concentrations of AA were 0.044 6, 0.026 9, and 0.003 05 pmol/cell in P. micans, G. oceanica, and P. subcordiformi s, respectively, higher than the concentrations of DMS (0.272, 0.497, and 0.086 2 fmol/cell, respectively). There were significant positive correlations between cell density and AA, DMSP, and DMS concentrations. The ratios of DMS/AA and AA/(DMSP+AA) in the three algae differed significantly over the growth cycle. In all three microalgae, the DMS/AA ratios were less than 25% during the growth period, suggesting that the enzymatic cleavage pathway, which generates DMS, was not the main DMSP degradation pathway. The changes in the DMS/AA ratio indicated that there was a higher rate of enzymatic breakdown of DMSP in the early growth period and a lower rate during senescence. In all three microalgae, the AA/(DMSP+AA) ratio (degradation ratio of DMSP) decreased during the exponential growth phase, and then increased. The variations in these ratios can approximately indicate the cleavage mechanism of DMSP at different stages of algal growth.

  5. Comprehensive profiling of mercapturic acid metabolites from dietary acrylamide as short-term exposure biomarkers for evaluation of toxicokinetics in rats and daily internal exposure in humans using isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry.

    PubMed

    Zhang, Yu; Wang, Qiao; Cheng, Jun; Zhang, Jingshun; Xu, Jiaojiao; Ren, Yiping

    2015-09-24

    Mercapturic acid metabolites from dietary acrylamide are important short-term exposure biomarkers for evaluating the in vivo toxicity of acrylamide. Most of studies have focused on the measurement of two metabolites, N-acetyl-S-(2-carbamoylethyl)-L-cysteine (AAMA) and N-acetyl-S-(2-carbamoyl-2-hydroxyethyl)-L-cysteine (GAMA). Thus, the comprehensive profile of acrylamide urinary metabolites cannot be fully understood. We developed an isotope dilution ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of all four mercapturic acid adducts of acrylamide and its primary metabolite glycidamide under the electroscopy ionization negative (ESI-) mode in the present study. The limit of detection (LOD) and limit of quantification (LOQ) of the analytes ranged 0.1-0.3 ng/mL and 0.4-1.0 ng/mL, respectively. The recovery rates with low, intermediate and high spiking levels were calculated as 95.5%-105.4%, 98.2%-114.0% and 92.2%-108.9%, respectively. Acceptable within-laboratory reproducibility (RSD<7.0%) substantially supported the use of current method for robust analysis. Rapid pretreatment procedures and short run time (8 min per sample) ensured good efficiency of metabolism profiling, indicating a wide application for investigating short-term internal exposure of dietary acrylamide. Our proposed UHPLC-MS/MS method was successfully applied to the toxicokinetic study of acrylamide in rats. Meanwhile, results of human urine analysis indicated that the levels of N-acetyl-S-(2-carbamoylethyl)-L-cysteine-sulfoxide (AAMA-sul), which did not appear in the mercapturic acid metabolites in rodents, were more than the sum of GAMA and N-acetyl-S-(1-carbamoyl-2-hydroxyethyl)-L-cysteine (iso-GAMA). Thus, AAMA-sul may alternatively become a specific biomarker for investigating the acrylamide exposure in humans. Current proposed method provides a substantial methodology support for comprehensive profiling of

  6. Synthesis and physicochemical properties of organofluorine esters of acrylic, methacrylic, and maleic acids

    SciTech Connect

    Gol'din, G.S.; Averbakh, K.O.; Lavygin, I.A.; Nekrasova, L.A.

    1985-12-01

    The authors synthesize and study the physicochemical properties of organofluorine acrylates, methacrylates, and maleates. The organofluorine esters are colorless liquids; their composition and structure were confirmed by elemental analysis and IR spectra. The results of studies of the dependence of the density, surface tension, and viscosity of these compounds on temperature are presented. The results revealed the influence of the length of the fluorocarbon chain on the combination of the physicochemical properties of organofluorine acrylates, methacrylates, and maleates, and also provided a method for estimating certain thermophysical characteristics of such compounds without recourse to experimental measurements.

  7. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  8. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  9. Poly(ethylene glycol)-co-methacrylamide-co-acrylic acid based nanogels for delivery of doxorubicin.

    PubMed

    Kumar, Parveen; Behl, Gautam; Sikka, Manisha; Chhikara, Aruna; Chopra, Madhu

    2016-10-01

    Polymeric nanogels have been widely explored for their potential application as delivery carriers for cancer therapeutics. The ability of nanogels to encapsulate therapeutics by simple diffusion mechanism and the ease of their fabrication to impart target specificity in addition to their ability to get internalized into target cells make them good candidates for drug delivery. The present study aims to investigate the applicability of poly(ethylene glycol)-co-methacrylamide-co-acrylic acid (PMA)-based nanogels as a viable option for the delivery of doxorubicin (DOX). The nanogels were synthesized by free radical polymerization in an inverse mini-emulsion and characterized by nuclear magnetic resonance spectroscopy ((1)H NMR), Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy (TEM), X-ray diffraction and differential scanning calorimetry. DOX was physically incorporated into the nanogels (PMA-DOX) and the mechanism of its in vitro release was studied. TEM experiment revealed spherical morphology of nanogels and the hydrodynamic diameter of the neat nanogels was in the range of 160 ± 46.95 nm. The size of the nanogels increased from 235.1 ± 28.46 to 403.7 ± 89.89 nm with the increase in drug loading capacity from 4.68 ± 0.03 to 13.71 ± 0.01%. The sustained release of DOX was observed upto 80 h and the release rate decreased with increased loading capacity following anomalous release mechanism as indicated by the value of diffusion exponent (n = 0.64-0.75) obtained from Korsmeyer-Peppas equation. Further, cytotoxicity evaluation of PMA-DOX nanogels on HeLa cells resulted in relatively higher efficacy (IC50~5.88 μg/mL) as compared to free DOX (IC50~7.24 μg/mL) thus demonstrating that the preparation is potentially a promising drug delivery carrier. PMID:27383582

  10. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic) Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    PubMed Central

    Ansari, Mahvash; Khan, Ikram Ullah

    2013-01-01

    We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic) acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA) and benzyl peroxide (BPO) as cross-linker and initiator, respectively. Effect of acrylic acid (AA), polyvinylsulfonic acid (PVSA), and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA) hydrogels was non-Fickian and that the mechanism was diffusion-controlled. PMID:24250265

  11. Acrylamide reduction in processed foods.

    PubMed

    Hanley, A B; Offen, C; Clarke, M; Ing, B; Roberts, M; Burch, R

    2005-01-01

    The discovery of the formation of acrylamide in fried and baked foods containing high levels of starch and the amino acid asparagine, prompted widespread concern. Both processed and home cooked foods are affected and this has led to the increased study of variations in cooking and processing conditions to minimize formation. While changes in cooking protocols have been in part successful, particularly when lower frying and baking temperatures are used, pretreatments to reduce levels of acrylamide by prevention of formation or acceleration of destruction have been investigated. In this study, a range of pretreatments of grilled potato were investigated and compared with surface washing to remove asparagine and reducing sugars. Synergies were observed between different treatments, and reductions of up to 40% were achieved in a non-optimized system. PMID:16438313

  12. Dietary Acrylamide and Human Cancer: A Systematic Review of Literature

    PubMed Central

    Nagy, Tim R.; Barnes, Stephen; Groopman, John

    2014-01-01

    Cancer remains the second leading cause of death in the United States, and the numbers of cases are expected to continue to rise worldwide. Cancer prevention strategies are crucial for reducing the cancer burden. The carcinogenic potential of dietary acrylamide exposure from cooked foods is unknown. Acrylamide is a by-product of the common Maillard reaction where reducing sugars (i.e., fructose and glucose) react with the amino acid, asparagine. Based on the evidence of acrylamide carcinogenicity in animals, the International Agency for Research on Cancer has classified acrylamide as a group 2A carcinogen for humans. Since the discovery of acrylamide in foods in 2002, a number of studies have explored its potential as a human carcinogen. This paper outlines a systematic review of dietary acrylamide and human cancer, acrylamide exposure and internal dose, exposure assessment methods in the epidemiologic studies, existing data gaps, and future directions. A majority of the studies reported no statistically significant association between dietary acrylamide intake and various cancers, and few studies reported increased risk for renal, endometrial, and ovarian cancers; however, the exposure assessment has been inadequate leading to potential misclassification or underestimation of exposure. Future studies with improved dietary acrylamide exposure assessment are encouraged. PMID:24875401

  13. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA.

  14. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries.

    PubMed

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  15. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  16. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE PAGESBeta

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  17. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    NASA Astrophysics Data System (ADS)

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-01

    We investigate poly(N -isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. Specifically, we see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. We analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.

  18. Thermoresponsive hyperbranched copolymer with multi acrylate functionality for in situ cross-linkable hyaluronic acid composite semi-IPN hydrogel.

    PubMed

    Dong, Yixiao; Hassan, Waqar; Zheng, Yu; Saeed, Aram Omer; Cao, Hongliang; Tai, Hongyun; Pandit, Abhay; Wang, Wenxin

    2012-01-01

    Thermoresponsive polymers have been widely used for in situ formed hydrogels in drug delivery and tissue engineering as they are easy to handle and their shape can easily conform to tissue defects. However, non-covalent bonding and mechanical weakness of these hydrogels limit their applications. In this study, a physically and chemically in situ cross-linkable hydrogel system was developed from a novel thermoresponsive hyperbranched PEG based copolymer with multi acrylate functionality, which was synthesized via an 'one pot and one step' in situ deactivation enhanced atom transfer radical co-polymerization of poly(ethylene glycol) diacrylate (PEGDA, M(n) = 258 g mol(-1)), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, M(n )= 475 g mol(-1)) and (2-methoxyethoxy) ethyl methacrylate (MEO(2)MA). This hyperbranched copolymer was tailored to have the lower critical solution temperature to form physical gelation around 37°C. Meanwhile, with high level of acrylate functionalities, a chemically cross-linked gel was formed from this copolymer using thiol functional cross-linker of pentaerythritol tetrakis (3-mercaptopropionate) (QT) via thiol-ene Michael addition reaction. Furthermore, a semi-interpenetrated polymer networks (semi-IPN) structure was developed by combining this polymer with hyaluronic acid (HA), leading to an in situ cross-linkable hydrogel with significantly increased porosity, enhanced swelling behavior and improved cell adhesion and viability both in 2D and 3D cell culture models. PMID:22143908

  19. Superparamagnetic Fe3O4/Poly(N-isopropyl acrylamide) Nanocomposites Synthesized in Inverse Miniemulsions: Magnetic and Particle Properties.

    PubMed

    Cui, Qinmin; Zhu, Shudi; Yan, Yingjie; Ye, Quanlin; Ziener, Ulrich; Cao, Zhihai

    2015-06-01

    In the present study, superparamagnetic Fe3O4/poly(N-isopropyl acrylamide) nanocomposites were synthesized by one-step inverse miniemulsion copolymerization of N-isopropyl acrylamide and N,N'-methylene diacrylamide. The loading of Fe3O4 nanoparticles in the nanocomposites was 27 wt%, and the saturation moment of the nanocomposites was 12.4 emu x g(-1). Fe3O4 nanoparticles were prepared through a coprecipitation method. The amount of stabilizer (poly(acrylic acid)) significantly influenced the size and size distribution of the Fe3O4 nanoparticles, and, therefore, their magnetic properties. Superparamagnetism of the Fe3O4 nanoparticles was preserved in the nanocomposites. The effects of synthetic parameters on the particle properties, namely surfactant loading, concentration of ferrofluid, type of lipophobe and initiator, and amount of cross-linker were investigated. Nanocomposites of Fe3O4/poly(N-isopropyl acrylamide) displayed a guava-like morphology, which they could retain after being redispersed in polar solvents. PMID:26369088

  20. Acrylamide in Austrian foods.

    PubMed

    Murkovic, M

    2004-10-29

    Acrylamide is known for its potential health hazards. Recently acrylamide was found in starch containing heated foods in high concentrations which lead to the assumption that a cancer risk could be associated with the uptake of foods containing high amounts of acrylamide. This study focuses on the analysis of acrylamide in foods potentially containing this substance which is formed from natural ingredients. The highest concentrations were found in potato crisps with concentrations of above 1500 ng/g (median: 499 ng/g). Other food groups contained lower amounts: cookies with a median of 99 ng/g; crisp bread with a median of 69 ng/g; breakfast cereals with a median of 0 ng/g; popcorn and rice products with a median of 97 ng/g; potato chips with a median of 161 ng/g and coffee with a median of 169 ng/g. PMID:15560932

  1. Flame retardant brominated styrene-based polymers. V. Synthesis and characterization of dibromostyrene and butyl acrylate latices with and without itaconic acid

    SciTech Connect

    Wang, J.L.; Favstritsky, N.A.; Hemmerly, D.M.

    1995-12-01

    Dibranostyrene and butyl acrylate lattices with and without itaconic acid having desirable physical properties in combination with flame retardancy are prepared by an emulsion polymerization techniques Both lattices were characterized in terms of glass transition temperature (Tg), residual monomer, solids, Brookfield viscosity, UV stability and flame retardancy.

  2. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2,2'- hydrochloride (1:2)-initiated (generic). 721.10526 Section 721.10526...

  3. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2,2'- hydrochloride (1:2)-initiated (generic). 721.10526 Section 721.10526...

  4. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  5. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  6. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  7. Complex Formation Between Lysozyme and Stabilized Micelles with a Mixed Poly(ethylene oxide)/Poly(acrylic acid) Shell.

    PubMed

    Karayianni, Maria; Gancheva, Valeria; Pispas, Stergios; Petrov, Petar

    2016-03-10

    The electrostatic complexation between lysozyme and stabilized polymeric micelles (SPMs) with a poly(acrylic acid) (PAA) or a mixed poly(ethylene oxide)/poly(acrylic acid) (PEO/PAA) shell (SPMs with a mixed shell, SPMMS) and a temperature-responsive poly(propylene oxide) (PPO) core was investigated by means of dynamic, static, and electrophoretic light scattering. The SPMs and different types of SPMMS used resulted from the self-assembly of PAA-PPO-PAA triblock copolymer chains, or PAA-PPO-PAA and PEO-PPO-PEO triblock copolymer chain mixtures (with varying chain lengths and molar ratios) in aqueous solutions at pH 10 and the subsequent cross-linking of their PPO cores via loading and photo-cross-linking of pentaerythritol tetraacrylate (PETA). The solution behavior, structure and properties of the formed complexes at pH 7 and 0.01 M ionic strength, were studied as a function of the protein concentration in the solution (the concentration of the stabilized micelles was kept constant) or equivalently the ratio of the two components. The complexation process and properties of the complexes proved to be dependent on the protein concentration, while of particular interest was the effect of the structure of the shell of the SPMs on the stability/solubility of the complexes. Finally, the fluorescence and mid infrared spectroscopic investigation of the structure of the complexed protein showed that, although a small stretching of the protein molecules occurred in some cases, no protein denaturation takes place upon complexation. PMID:26881445

  8. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  9. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  10. Acrylamide in processed potato products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trace amounts of acrylamide are found in many foods cooked at high temperatures. Acrylamide in processed potato products is formed from reducing sugars and asparagine and is a product of the Maillard reaction. Processed potato products including fries and chips are relatively high in acrylamide comp...

  11. Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 1. Experiment

    SciTech Connect

    Wu,T.; Gong, P.; Szleifer, I.; Vicek, P.; Subr, V.; Genzer, J.

    2007-01-01

    We describe experiments pertaining to the formation of surface-anchored poly(acrylic acid) (PAA) brushes with a gradual variation of the PAA grafting densities on flat surfaces and provide detailed analysis of their properties. The PAA brush gradients are generated by first covering the substrate with a molecular gradient of the polymerization initiator, followed by the 'grafting from' polymerization of tert-butyl acrylate (tBA) from these substrate-bound initiator centers, and finally converting the PtBA into PAA. We use spectroscopic ellipsometry to measure the wet thickness of the grafted PAA chains in aqueous solutions at three different pH values (4, 5.8, and 10) and a series of ionic strengths (IS). Our measurements reveal that at low grafting densities, s, the wet thickness of the PAA brush (H) remains relatively constant, the polymers are in the mushroom regime. Beyond a certain value of s, the macromolecules enter the brush regime, where H increases with increasing s. For a given s, H exhibits a nonmonotonic behavior as a function of the IS. At large IS, the H is small because the charges along PAA are completely screened by the excess of the external salt. As IS decreases, the PAA enters the so-called salt brush (SB) regime, where H increases. At a certain value of IS, H reaches a maximum and then decreases again. The latter is a typical brush behavior in so-called osmotic brush (OB) regime. We provide detailed discussion of the behavior of the grafted PAA chains in the SB and OB regimes.

  12. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    PubMed

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. PMID:25706199

  13. Fluorescent Ag nanoclusters prepared in aqueous poly(acrylic acid-co-maleic acid) solutions: a spectroscopic study of their excited state dynamics, size and local environment.

    PubMed

    Dandapat, Manika; Mandal, Debabrata

    2016-01-28

    Stable, fluorescent Ag nanoclusters were prepared in aqueous solutions of Na(+) salt of the carboxylate-rich polymer poly(acrylic acid-co-maleic acid) under brief spells of UV irradiation. The nanoclusters were nearly spherical, with diameters within 1.90 ± 0.50 nm, but displayed a prominent red edge excitation shift (REES) of fluorescence upon exciting within the visible absorption band, indicating heterogeneity of energy level distributions. Spectroscopic studies revealed that irrespective of whether the nanoclusters are excited in their UV or visible absorption bands, their fluorescence always ensues from the same manifold of emissive states, with a broad range of fluorescence lifetimes from ∼150 fs to 1 ns. PMID:26700465

  14. Estimation of exposure to dietary acrylamide based on mercapturic acids level in urine of Polish women post partum and an assessment of health risk.

    PubMed

    Mojska, Hanna; Gielecińska, Iwona; Zielińska, Aleksandra; Winiarek, Joanna; Sawicki, Włodzimierz

    2016-05-01

    We determined metabolites of acrylamide and glycidamide concentrations (AAMA and GAMA, respectively) in urine of 93 women within the first days after delivery, using LC-MS/MS. The median AAMA and GAMA levels in urine were 20.9 μg/l (2.3÷399.0 μg/l) and 8.6 μg/l (1.3÷85.0 μg/l), respectively. In smokers we found significantly (P<0.01) higher levels of metabolites in comparison with the non-smoking women. As demonstrated by the 24-h dietary recall, acrylamide intake was low (median: 7.04 μg/day). Estimated exposure to acrylamide based on AAMA and GAMA levels in the whole group of women was 0.16 μg/kg b.w./day (1.15 μg/kg b.w./day, P95). We found significantly (P<0.05) higher exposure in women who consumed higher amount of acrylamide in the diet (≥10 μg/day vs <10 μg/day). A weak but significant positive correlation between acrylamide intake calculated on the basis of urinary levels of AAMA and GAMA and estimated on the basis of 24-h dietary recall (r=0.26, P<0.05) was found. The estimated margin of exposure values were below 10 000 and ranged from 156 for 95th percentile to 1938 for median acrylamide intake. Our results have shown that even a low dietary acrylamide intake may be associated with health risk. PMID:25827310

  15. Molecular Dynamics Study of Interaction between Acrylamide Copolymers and Alumina Crystal

    NASA Astrophysics Data System (ADS)

    Wang, Feng-he; Wang, Feng-yun; Gong, Xue-dong

    2012-10-01

    Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic polyacrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacrylamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants with the (012) surface of alumina crystal (Al2O3) have been simulated by molecular dynamics method. All the polymers can bind tightly with Al2O3 crystal, the interaction between the O of polymers and Al of the (012) surface of Al2O3 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analysis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the Al atoms of Al2O3. The polymers' structures deform when they combine with Al2O3 crystal, but the deformation energies are low and far less than non-bonding energies. Flocculation experiments in suspension medium of 1%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), which is in excellent agreement with the simulation results of binding energy.

  16. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  17. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  18. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics. PMID:16078853

  19. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  20. Rheology and interfacial properties of aqueous solutions of the diblock polyelectrolyte poly(styrene-block-acrylic acid)

    NASA Astrophysics Data System (ADS)

    Kimerling, Abigail

    In aqueous solutions diblock polyelectrolytes with amphiphilic character form aggregate structures, which affect physical properties such as viscosity, elasticity, surface tension, and film hydrophilicity. Potential applications for diblock polyelectrolyte solutions include coatings, inks, oil recovery agents, personal care products, and biomaterials. By varying the diblock polyelectrolyte and solution properties, the solutions can be tuned to meet the needs of particular applications. The research objective was to identify the influences of block length, pH, and ionic strength on the rheological and interfacial properties of poly(styrene- b-acrylic acid) (PS-PAA) solutions. Six polymers with varied PS and PAA block lengths were examined, all at 1.0 wt% in aqueous solutions. The hydrophobicity of the PS block causes the formation of spherical micelles in aqueous solutions. Increasing the solution pH ionizes the PAA block, which leads to an increase in micelle corona thickness due to repulsions between chains. Major trends observed in the rheological and interfacial properties can be understood in terms of expected changes in the micelle size and interfacial self-assembly with pH, ionic strength, and block length. Addition of NaOH was found to increase the solution pH and initially led to increases in solution viscosity, elasticity, surface tension, and film hydrophilicity. This effect was attributed to creation of larger micelles and greater inter-micellar repulsions as the PAA chain became more fully charged. However, when the concentration of NaOH exceeded a critical value, the solution viscosity, elasticity, and film hydrophilicity decreased. It is believed this was due to charge shielding by excess sodium ions, leading to shrinkage of the micelle corona and smaller micelles. Increasing the PS-PAA solution ionic strength by adding NaCl also provided charge shielding, as observed by decreases in solution viscosity and elasticity. Increasing the length of either

  1. Acrylamide formation in different foods and potential strategies for reduction.

    PubMed

    Stadler, Richard H

    2005-01-01

    This paper summarizes the progress made to date on acrylamide research pertaining to analytical methods, mechanisms of formation, and mitigation research in the major food categories. Initial difficulties with the establishment of reliable analytical methods have today in most cases been overcome, but challenges still remain in terms of the needs to develop simple and rapid test methods. Several researchers have identified that the main pathway of formation of acrylamide in foods is linked to the Maillard reaction and in particular the amino acid asparagine. Decarboxylation of the resulting Schiff base is a key step, and the reaction product may either furnish acrylamide directly or via 3-aminopropionamide. An alternative proposal is that the corresponding decarboxylated Amadori compound may release acrylamide by a beta-elimination reaction. Many experimental trials have been conducted in different foods, and a number of possible measures identified to relatively lower the amounts of acrylamide in food. The validity of laboratory trials must, however, be assessed under actual food processing conditions. Some progress in relatively lowering acrylamide in certain food categories has been achieved, but can at this stage be considered marginal. However, any options that are chosen to reduce acrylamide must be technologically feasible and also not negatively impact the quality and safety of the final product. PMID:16438297

  2. Investigation of the reactions of acrylamide during in vitro multistep enzymatic digestion of thermally processed foods.

    PubMed

    Hamzalıoğlu, Aytül; Gökmen, Vural

    2015-01-01

    This study investigated the fate of acrylamide in thermally processed foods after ingestion. An in vitro multistep enzymatic digestion system simulating gastric, duodenal and colon phases was used to understand the fate of acrylamide in bakery and fried potato products. Acrylamide levels gradually decreased through gastric, duodenal and colon phases during in vitro digestion of biscuits. At the end of digestion, acrylamide reduction was between 49.2% and 73.4% in biscuits. Binary model systems composed of acrylamide and amino acids were used to understand the mechanism of acrylamide reduction. High-resolution mass spectrometry analyses confirmed Michael addition of amino acids to acrylamide during digestion. In contrast to bakery products, acrylamide levels increased significantly during gastric digestion of fried potatoes. The Schiff base formed between reducing sugars and asparagine disappeared rapidly, whereas the acrylamide level increased during the gastric phase. This suggests that intermediates like the Schiff base that accumulate in potatoes during frying are potential precursors of acrylamide under gastric conditions. PMID:25468219

  3. Preparation and optical properties of CdS nanoparticles dispersed in poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) co-polymers

    NASA Astrophysics Data System (ADS)

    Trandafilović, L. V.; Djoković, V.; Bibić, N.; Georges, M. K.; Radhakrishnan, T.

    2008-03-01

    CdS/poly(2-(dimethylamino)ethyl methacrylate-co-acrylic acid) nanocomposites were prepared and characterized using structural, optical and thermal methods. Co-polymers used as the matrices were synthesized by radical polymerization of the co-monomers in different mol ratios (1:1, 2:1 and 1:2, DMAEMA:acrylic acid). The presence of the nanostructured CdS was confirmed by TEM analysis as well as by the shift of the onset of the optical absorption towards lower wavelengths. XRD spectra showed the cubic crystal phase of the obtained CdS nanoparticles. TGA measurements revealed improved thermal stability of the nanocomposite with respect to pure co-polymer matrix.

  4. Characterization and antimicrobial property of poly(acrylic acid) nanogel containing silver particle prepared by electron beam.

    PubMed

    Choi, Jong-Bae; Park, Jong-Seok; Khil, Myung-Seob; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Nho, Young-Chang

    2013-01-01

    In this study, we developed a one step process to synthesize nanogel containing silver nanoparticles involving electron beam irradiation. Water-soluble silver nitrate powder is dissolved in the distilled water and then poly(acrylic acid) (PAAc) and hexane are put into this silver nitrate solution. These samples are irradiated by an electron beam to make the PAAc nanogels containing silver nanoparticles (Ag/PAAc nanogels). The nanoparticles were characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). In addition, the particle size and zeta-potential were confirmed by a particle size analyzer (PSA). The antibacterial properties of the nanogels were evaluated by paper diffusion test. The Ag/PAAc nanogels had an antibacterial effect against Escherichia coli and Staphylococcus aureus. The nanogels also demonstrated a good healing effect against diabetic ulcer. The size of the Ag/PAAc nanogels decreased with increasing irradiation doses, and the absolute value of the zeta potential increased with increasing irradiation doses. Also, the Ag/PAAc nanogels exhibited good antibacterial activity against both Gram-negative and Gram-positive bacteria. In in vivo wound healing, the Ag/PAAc nanogels have a good healing effect. PMID:23708101

  5. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples. PMID:26342574

  6. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  7. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  8. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    PubMed

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  9. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency.

    PubMed

    Zhong, Ming; Liu, Yi-Tao; Liu, Xiao-Ying; Shi, Fu-Kuan; Zhang, Li-Qin; Zhu, Mei-Fang; Xie, Xu-Ming

    2016-06-28

    Poly(acrylic acid) (PAA) hydrogels with superior mechanical properties, based on a single network structure with dual cross-linking, are prepared by one-pot free radical polymerization. The network structure of the PAA hydrogels is composed of dual cross-linking: a dynamic and reversible ionic cross-linking among the PAA chains enabled by Fe(3+) ions, and a sparse covalent cross-linking enabled by a covalent cross-linker (Bis). Under deformation, the covalently cross-linked PAA chains remain intact to maintain their original configuration, while the Fe(3+)-enabled ionic cross-linking among the PAA chains is broken to dissipate energy and then recombined. It is found that the mechanical properties of the PAA hydrogels are significantly influenced by the contents of covalent cross-linkers, Fe(3+) ions and water, which can be adjusted within a substantial range and thus broaden the applications of the hydrogels. Meanwhile, the PAA hydrogels have excellent recoverability based on the dynamic and reversible ionic cross-linking enabled by Fe(3+) ions. Moreover, the swelling capacity of the PAA hydrogels is as high as 1800 times in deionized water due to the synergistic effects of ionic and covalent cross-linkings. The combination of balanced mechanical properties, efficient recoverability, high swelling capacity and facile preparation provides a new method to obtain high-performance hydrogels. PMID:27230478

  10. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    SciTech Connect

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan; Yi, Dong Kee; An, Jeong Ho

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  11. Capture of Tumor Cells on Anti-EpCAM-Functionalized Poly(acrylic acid)-Coated Surfaces.

    PubMed

    Andree, Kiki C; Barradas, Ana M C; Nguyen, Ai T; Mentink, Anouk; Stojanovic, Ivan; Baggerman, Jacob; van Dalum, Joost; van Rijn, Cees J M; Terstappen, Leon W M M

    2016-06-15

    The presence of tumor cells in blood is predictive of short survival in several cancers and their isolation and characterization can guide toward the use of more effective treatments. These circulating tumor cells (CTC) are, however, extremely rare and require a technology that is sufficiently sensitive and specific to identify CTC against a background of billions of blood cells. Immuno-capture of cells expressing the epithelial cell adhesion molecule (EpCAM) are frequently used to enrich CTC from blood. The choice of bio conjugation strategy and antibody clone is crucial for adequate cell capture but is poorly understood. In this study, we determined the binding affinity constants and epitope binding of the EpCAM antibodies VU1D-9, HO-3, EpAb3-5, and MJ-37 by surface plasmon resonance imaging (SPRi). Glass surfaces were coated using a poly(acrylic acid) based coating and functionalized with anti-EpCAM antibodies. Binding of cells from the breast carcinoma cell line (SKBR-3) to the functionalized surfaces were compared. Although EpAb3-5 displayed the highest binding affinity HO-3 captured the highest amount of cells. Hence we report differences in the performance of the different antibodies and more importantly that the choice of antibody to capture CTC should be based on multiple assays. PMID:27187784

  12. Response of Swelling Behavior of Weak Branched Poly(ethylene imine)/Poly(acrylic acid) Polyelectrolyte Multilayers to Thermal Treatment.

    PubMed

    Gu, Yuanqing; Weinheimer, Emily K; Ji, Xiang; Wiener, Clinton G; Zacharia, Nicole S

    2016-06-21

    Weak polyelectrolyte multilayers (PEMs) prepared by the layer-by-layer technique have attracted a great deal of attention as smart responsive materials for biological and other applications in aqueous medium, but their dynamic behavior as a function of exposure to a wide temperature range is still not well understood. In this work, the thermally dependent swelling behavior of PEMs consisting of branched poly(ethylenimine) and poly(acrylic acid) is studied by temperature controlled in situ spectroscopic ellipsometry. Because of diffusion and interpenetration of polyelectrolytes during film deposition, the PEMs densify with increasing bilayer number, which further affects their water uptake behavior. Upon heating to temperatures below 60 °C, the worsened solvent quality of the PEM in water causes deswelling of the PEMs. However, once heated above this critical temperature, the hydrogen bonds within the PEMs are weakened, which allows for chain rearrangement within the film upon cooling, resulting in enhanced water uptake and increased film thickness. The current work provides fundamental insight into the unique dynamic behavior of weak polyelectrolyte multilayers in water at elevated temperatures. PMID:27232180

  13. Preparation and swelling behavior of a novel self-assembled β-cyclodextrin/acrylic acid/sodium alginate hydrogel.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Zhang, Bin; Wu, Qinglin

    2014-11-26

    A novel biodegradable β-cyclodextrin/acrylic acid/sodium alginate (CSA) hydrogel with a three-dimensional network structure was self-assembled by inverse suspension copolymerization. The CSA resin was pH sensitive and had good water absorption properties in pH 6-8 buffer solutions. At a β-CD:AA:SA mass ratio of 1:9:3 the CSA water absorbency was found to be 1403 g/g and the CSA hydrogel strength was 4.968 N. In 0.005-0.1 mol/L chloride salt and sulfate salt solutions the CSA water absorbencies increased as follows: NaCl>KCl>MgCl2>CaCl2>FeCl3, and Na2SO4>K2SO4>FeSO4>Al2(SO4)3, respectively. The release of water from the CSA hydrogel occurred slowly over 120 h. The biodegradation efficiency of the resin reached 85.3% for Lentinula edodes. The super water absorbency, good salt resistance and excellent water retention properties of CSA make it suitable for application as an agricultural water retention agent in saline soils. PMID:25256504

  14. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    PubMed

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-13

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes. PMID:26979270

  15. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.

    2016-09-01

    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  16. Synthesis of bioadhesive poly(acrylic acid) nano- and microparticles using an inverse emulsion polymerization method for the entrapment of hydrophilic drug candidates.

    PubMed

    Kriwet, B; Walter, E; Kissel, T

    1998-12-01

    Bioadhesive latices of water-swollen poly(acrylic acid) nano-and microparticles were synthesized using an inverse (W/O) emulsion polymerization method. They are stabilized by a co-emulsifier system consisting of SpanTM 80 and TweenTM 80 dispersed in aliphatic hydrocarbons. The initial polymerization medium contains emulsion droplets and inverse micelles which solubilize a part of the monomer solution. The polymerization is initiated by free radicals, and particle dispersions with a narrow size distribution are obtained. The particle size is dependent on the type of radical initiator used. With water-soluble initiators, for example ammonium persulfate, microparticles were obtained in the size range of 1 to 10 micrometer indicating that these microparticles originate from the emulsion droplets since the droplet sizes of the W/O emulsion show similar distribution. When lipophilic radical initiators, such as azobis-isobutyronitrile, are used, almost exclusively nanoparticles are generated with diameters in the range of 80 to 150 nm, due to the limited solubility of oligomeric poly(acrylic acid) chains in the lipophilic continuous phase. These poly(acrylic acid) micro- and nanoparticles yielded excellent bioadhesive properties in an in-vitro assay and may, therefore, be suitable for the encapsulation of peptides and other hydrophilic drugs. PMID:9801438

  17. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  18. Synthesis of Gold Nanoflowers Encapsulated with Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels.

    PubMed

    Bae, Saet-Byeol; Lee, Sang-Wha

    2015-10-01

    In this work, hydrogel-coated gold nanoflowers (AuNFs@hydrogel) were facilely prepared. First, gold nanoflowers (AuNFs) were synthesized by reducing gold acid with ascorbic acid in the presence of chitosan biopolymers, and the chitosan-mediated AuNFs were subsequently conjugated with oleic acid with carboxylate groups. Finally, the olefin-conjugated AuNFs were encapsulated with P(NIPAM-co-AAC) hydrogels via a radical polymerization reaction with co-monomer ratio of [NIPAM:AAc = 91:9 wt%]. The encapsulated hydrogels had a lower critical solution temperature (LCST) slightly above the physiological temperature and demonstrated a thermo-sensitive variation of particle size. The hydrogel-coated AuNFs can be utilized as a promising thermo-responsive drug delivery system with a unique optical property. As-prepared samples were characterized by DLS, SEM, TEM, UV-vis and Zeta potential meter. PMID:26726447

  19. Aza-Michael Mono-addition Using Acidic Alumina under Solventless Conditions.

    PubMed

    Bosica, Giovanna; Abdilla, Roderick

    2016-01-01

    Aza-Michael reactions between primary aliphatic and aromatic amines and various Michael acceptors have been performed under environmentally-friendly solventless conditions using acidic alumina as a heterogeneous catalyst to selectively obtain the corresponding mono-adducts in high yields. Ethyl acrylate was the main acceptor used, although others such as acrylonitrile, methyl acrylate and acrylamide were also utilized successfully. Bi-functional amines also gave the mono-adducts in good to excellent yields. Such compounds can serve as intermediates for the synthesis of anti-cancer and antibiotic drugs. PMID:27338336

  20. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  1. Polymeric cationic substituted acrylamide surfactants

    SciTech Connect

    Nieh, E.C.Y.

    1983-11-15

    A new composition of matter comprises a copolymer of a surface active quaternary ammonium monomer salt and from 50 to 97% by wt of acrylamide. The new copolymers can have molecular weights substantially greater than 10,000 and still remain water soluble and surface active. Copolymers are prepared by polymerization techniques known in the art. The quaternary ammonium monomer is dispersed under inert atmosphere in aqueous solution which may additionally contain dissolved therein a low molecular weight alcohol such as ethanol, isopropanol, and the like. Acidic polymerization initiator such as the azo initiators, organic peroxides, or redox initiators such as the sulfite- persulfate system is then added in an amount calculated to yield a polymer product of desired molecular weight. (14 claims.

  2. Investigation of acrylamide in curries made from coconut milk.

    PubMed

    Na Jom, Kriskamol; Jamnong, Pimon; Lertsiri, Sittiwat

    2008-01-01

    Acrylamide in Thai curry cooked in coconut milk was investigated using ion trap LC-ESI-MS/MS. The transitions of m/z 72 > 55 and 86 > 58 were monitored in multiple reaction monitoring mode for identification and quantification. A linear response was found for the acrylamide standard in the range of 400-30,000 pg, with correlation coefficients (r) greater than 0.99. The limit of detection (s/n = 3) and limit of quantification (s/n = 9) were 400 and 1200 pg, respectively. Sample preparation was performed by means of solvent extraction, giving recovery of 92-108% with relative standard deviation less than 10%. Thirty Thai curry samples were analyzed and found acrylamide at concentration in the range of less than 60-606 ng/g dry weight. Acrylamide was formed in solely heated coconut milk at 121 degrees C. Changes in 5-(hydroxymethyl)-2-furfuraldehyde, fructose, glucose and glutamic acid contents in coconut milk during heat treatment were observed as progress parameters for the Maillard reaction. Moreover, acrylamide was determined in equimolar model system of glutamic acid with glucose or fructose (1mM), and yielded acrylamide, approximately 0.1% and 0.06% (w/w), respectively. PMID:18029078

  3. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  4. Self-assembled poly(ethylene glycol)-co-acrylic acid microgels to inhibit bacterial colonization of synthetic surfaces.

    PubMed

    Wang, Qichen; Uzunoglu, Emel; Wu, Yong; Libera, Matthew

    2012-05-01

    We explored the use of self-assembled microgels to inhibit the bacterial colonization of synthetic surfaces both by modulating surface cell adhesiveness at length scales comparable to bacterial dimensions (∼1 μm) and by locally storing/releasing an antimicrobial. Poly(ethylene glycol) [PEG] and poly(ethylene glycol)-co-acrylic acid [PEG-AA] microgels were synthesized by suspension photopolymerization. Consistent with macroscopic gels, a pH dependence of both zeta potential and hydrodynamic diameter was observed in AA-containing microgels but not in pure PEG microgels. The microgels were electrostatically deposited onto poly(l-lysine) (PLL) primed silicon to form submonolayer surface coatings. The microgel surface density could be controlled via the deposition time and the microgel concentration in the parent suspension. In addition to their intrinsic antifouling properties, after deposition, the microgels could be loaded with a cationic antimicrobial peptide (L5) because of favorable electrostatic interactions. Loading was significantly higher in PEG-AA microgels than in pure PEG microgels. The modification of PLL-primed Si by unloaded PEG-AA microgels reduced the short-term (6 h) S. epidermidis surface colonization by a factor of 2, and the degree of inhibition increased when the average spacing between microgels was reduced. Postdeposition L5 peptide loading into microgels further reduced bacterial colonization to the extent that, after 10 h of S. epidermidis culture in tryptic soy broth, the colonization of L5-loaded PEG-AA microgel-modified Si was comparable to the very small level of colonization observed on macroscopic PEG gel controls. The fact that these microgels can be deposited by a nonline-of-sight self-assembly process and hinder bacterial colonization opens the possibility of modifying the surfaces of topographically complex biomedical devices and reduces the rate of biomaterial-associated infection. PMID:22519439

  5. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  6. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  7. Nanoclays reinforced glass ionomer cements: dispersion and interaction of polymer grade (PG) montmorillonite with poly(acrylic acid).

    PubMed

    Fareed, Muhammad A; Stamboulis, Artemis

    2014-01-01

    Montmorillonite nanoclays (PGV and PGN) were dispersed in poly(acrylic acid) (PAA) for utilization as reinforcing filler in glass ionomer cements (GICs). Chemical and physical interaction of PAA and nanoclay (PGV and PGN) was studied. PAA–PGV and PAA–PGN solutions were prepared in different weight percent loadings of PGV and PGN nanoclay (0.5-8.0 wt%) via exfoliation-adsorption method. Characterization was carried out by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and fourier transform infrared (FTIR) spectroscopy. XRD results of PAA–PGN demonstrated that the interlayer space expanded from 12.83 to 16.03 Å indicating intercalation whereas the absence of the peak at d(001) in PAA–PGV indicated exfoliation. XPS scans of PGV and PGN nanoclays depicted the main peak of O 1s photoelectron due to Si–O–M (M = Mg, Al, Fe) whereas, Si–O–Al linkages were identified by Si 2p or Si 2s and Al 2p or Al 2s peaks. The disappearance of the Na peak confirmed that PAA molecules exchanged sodium ions present on surface of silicate layers and significantly reduced the electrostatic van-der-Waals forces between silicate plates resulting in intercalation or exfoliation. FTIR spectra of PAA–nanoclay suspensions demonstrated the presence of a new peak at 1,019 cm(-1) associated with Si–O– stretching vibrations which increased with increasing nanoclays concentration. Information concerning the dispersion of nanoclay in PAA aqueous solutions, chemical reaction and increase interlayer space in montmorillonite nanoclay is particularly useful regarding dispersion and reinforcement of nanoclay in PAA. PMID:24077996

  8. The Chemical and Physical Properties of Poly(ε-caprolactone) Scaffolds Functionalised with Poly(vinyl phosphonic acid-co-acrylic acid).

    PubMed

    Bassi, A K; Gough, J E; Zakikhani, M; Downes, S

    2011-01-01

    There is a clinical need for a synthetic alternative to bone graft substitute (BGS) derived from demineralised bone matrix. We report the electrospinning of Poly(ε-caprolactone) (PCL) to form a 3-dimensional scaffold for use as a synthetic BGS. Additionally, we have used Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA) to improve bone formation. Fibres were formed using a 10% w/v PCL/acetone solution. Infrared spectroscopy confirmed that the electrospinning process had no effect on the functional groups present in the resulting structure. The electrospun scaffolds were coated with PVPA (PCL/PVPA), and characterised. The stability of the PVPA coating after immersion in culture medium was assessed over 21 days. There was rapid release of the coating until day 2, after which the coating became stable. The wettability of the PCL scaffolds improved significantly, from 123.3 ± 10.8° to 43.3 ± 1.2° after functionalisation with PVPA. The compressive strength of the PCL/PVPA scaffolds (72 MPa) was significantly higher to that of the PCL scaffold (14 MPa), and an intermediate between trabecular and cortical bone (7 MPa and 170 MPa, resp.). The study has demonstrated that the PCL/PVPA scaffold has the desired chemical and biomechanical characteristics required for a material designed to be used as a BGS. PMID:22073379

  9. The Chemical and Physical Properties of Poly(ε-caprolactone) Scaffolds Functionalised with Poly(vinyl phosphonic acid-co-acrylic acid)

    PubMed Central

    Bassi, A. K.; Gough, J. E.; Zakikhani, M.; Downes, S.

    2011-01-01

    There is a clinical need for a synthetic alternative to bone graft substitute (BGS) derived from demineralised bone matrix. We report the electrospinning of Poly(ε-caprolactone) (PCL) to form a 3-dimensional scaffold for use as a synthetic BGS. Additionally, we have used Poly(vinyl phosphonic acid-co-acrylic acid) (PVPA) to improve bone formation. Fibres were formed using a 10% w/v PCL/acetone solution. Infrared spectroscopy confirmed that the electrospinning process had no effect on the functional groups present in the resulting structure. The electrospun scaffolds were coated with PVPA (PCL/PVPA), and characterised. The stability of the PVPA coating after immersion in culture medium was assessed over 21 days. There was rapid release of the coating until day 2, after which the coating became stable. The wettability of the PCL scaffolds improved significantly, from 123.3 ± 10.8° to 43.3 ± 1.2° after functionalisation with PVPA. The compressive strength of the PCL/PVPA scaffolds (72 MPa) was significantly higher to that of the PCL scaffold (14 MPa), and an intermediate between trabecular and cortical bone (7 MPa and 170 MPa, resp.). The study has demonstrated that the PCL/PVPA scaffold has the desired chemical and biomechanical characteristics required for a material designed to be used as a BGS. PMID:22073379

  10. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature. PMID:26355463

  11. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

    PubMed

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future. PMID:26895081

  12. Self-healing multilayer polyelectrolyte composite film with chitosan and poly(acrylic acid).

    PubMed

    Zhu, Yanxi; Xuan, Hongyun; Ren, Jiaoyu; Ge, Liqin

    2015-11-21

    If self-healing materials can be prepared via simple technology and methods using nontoxic materials, this would be a great step forward in the creation of environmentally friendly self-healing materials. In this paper, the specific structural parameters of the various hydrogen bonds between chitosan (CS) and polyacrylic acid (PAA) were calculated. Then, multilayer polyelectrolyte films were fabricated with CS and PAA based on layer-by-layer (LbL) self-assembly technology at different pH values. The possible influence of pH on the (CS/PAA) × 30 multilayer polyelectrolyte film was investigated. The results show that the interactions between CS and PAA, swelling capacity, microstructure, wettability, and self-healing ability are all governed by the pH of the CS solution. When the pH value of the CS solution is 3.0, the prepared multilayer polyelectrolyte film (CS3.0/PAA2.8) × 30 has fine-tuned interactions, a network-like structure, good swelling ability, good hydrophilicity, and excellent self-healing ability. This promises to greatly widen the future applications of environmentally friendly materials and bio-materials. PMID:26364567

  13. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  14. Extending framework based on the linear coordination polymers: Alternative chains containing lanthanum ion and acrylic acid ligand

    SciTech Connect

    Li Hui . E-mail: lihui@bit.edu.cn; Guo Ming; Tian Hong; He Feiyue; Lee, G.-H.; Peng, S.-M.

    2006-11-15

    One-dimensional alternative chains of two lanthanum complexes: [La(L{sup 1}){sub 3}(CH{sub 3}OH)(H{sub 2}O){sub 2}].5H{sub 2}O (L{sup 1}=anion of {alpha}-cyano-4-hydroxycinnamic acid ) 1 and [La(L{sup 2}){sub 3}(H{sub 2}O){sub 2}].3H{sub 2}O (L{sup 2}=anion of trans-3-(4-methyl-benzoyl)-acrylic acid) 2 were synthesized and structurally characterized by single-crystal X-ray diffraction, element analysis, IR and thermogravimetric analysis. The crystal structure data are as follows for 1: C{sub 31}H{sub 36}LaN{sub 3}O{sub 17}, triclinic, P-1, a=9.8279(4)A, b=11.8278(5)A, c=17.8730(7)A, {alpha}=72.7960(10){sup o}, {beta}=83.3820(10){sup o}, {gamma}=67.1650(10)-bar , Z=2, R{sub 1}=0.0377, wR{sub 2}=0.0746; for 2: C{sub 33}H{sub 37}LaO{sub 14}, triclinic, P-1, a=8.7174(5)A, b=9.9377(5)A, c=21.153(2)A, {alpha}=81.145(2){sup o}, {beta}=87.591(2){sup o}, {gamma}=67.345(5){sup o}, Z=2, R{sub 1}=0.0869, wR{sub 2}=0.220. 1 is a rare example of the alternative chain constructed by syn-syn and anti-syn coordination mode of carboxylato ligand arranged along the chain alternatively. La(III) ions in 2 are linked by two {eta}{sup 3}-O bridges and four bridges (two {eta}{sup 2}-O and two {eta}{sup 3}-O) alternatively. Both of the linear coordination polymers grow into two- and three-dimensional networks by packing through extending hydrogen-bond network directed by ligands.

  15. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  16. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells

    PubMed Central

    2014-01-01

    Background The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). Results In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Conclusions Results showed that curcumin entrapped folate conjugated cross-linked acrylic

  17. TiO2 supported over porous silica photocatalysts for pesticide degradation using solar light: Part 2. Silica prepared using acrylic acid emulsion.

    PubMed

    Sharma, Mangalampalli V Phanikrishna; Kumari, Valluri Durga; Subrahmanyam, Machiraju

    2010-03-15

    An acrylic acid emulsion mixture is used for synthesis of novel porous silica (E-Si) material. The photocatalytic activity of TiO2 under solar light irradiation for isoproturon (herbicide) degradation is drastically increased when dispersed over E-Si support using solid state dispersion (SSD) technique. The composite material is characterized by XRD, nitrogen adsorption-desorption isotherms, UV-vis DRS, SEM and TEM measurements. The photocatalytic activities of the composite catalysts are evaluated for different parameters. The 5 wt% TiO2/E-Si is found to be highly active for isoproturon degradation. PMID:19962829

  18. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  19. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn starch hydrolyzate....

  20. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (a) (1) of this section is used as a flocculent in the clarification of beet sugar juice and liquor or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per... mineral scale in beet sugar juice and liquor or cane sugar juice and liquor in an amount not to exceed...

  1. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. PMID:25839414

  2. Synthesis of comb type and semi-interpenetrating networks of acryloyl- L-proline methyl ester and poly (acrylic acid) for Cu (II) immobilization

    NASA Astrophysics Data System (ADS)

    González, Giovanni; Burillo, Guillermina

    2010-08-01

    Graft copolymer hydrogels and semi-interpenetrating networks (s-IPN) of acryloyl- L-proline methyl ester (A-ProOMe) and poly (acrylic acid) (PAAc) were synthesized in methanol solutions, by ionizing radiation (γ rays from a Co 60 source at room temperature). These systems are thermo and pH-sensitive and the pH sensitivity increases from acidic to basic solutions. The Lower Critical Solution Temperature (LCST), due to presence of poly (acryloyl- L-proline methyl ester) (PA-ProOMe) has been found between 18 and 20 °C and an unexpected Upper Critical Solution Temperature (UCST) due to poly acrylic acid (PAAc) has been found between 21 and 22 °C. Preliminary studies on the immobilization of Cu 2+ for both hydrogels were done at several pH values at room temperature. Other techniques employed to characterize the comb type hydrogels and sIPN included scanning electronic microscopy (SEM) and infrared (FTIR-ATR).

  3. Plasma copolymer surfaces of acrylic acid/1,7 octadiene: surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells.

    PubMed

    Daw, R; Candan, S; Beck, A J; Devlin, A J; Brook, I M; MacNeil, S; Dawson, R A; Short, R D

    1998-10-01

    The purpose of this study was: (a) to examine the effect of plasma-gas composition on plasma polymer oxygen/carbon (O/C) ratio, functional group composition and stability in water, and then (b) to examine cell attachment to surfaces containing different concentrations of O/C and functional groups. Oxygen-functionalised surfaces were deposited by means of the plasma copolymerisation of acrylic acid/1,7-octadiene. The use of a diluent hydrocarbon allowed the deposition of surfaces with a range of O/C concentrations. Plasma copolymer surfaces were characterised by X-ray photoelectron spectroscopy (XPS). Changes in functional group composition with % acrylic acid monomer and the non-dispersive and dispersive parts of the surface energy of these plasma copolymers were measured. The solubility of the plasma copolymers was assessed by means of XPS. The degree of attachment of ROS 17/2.8 osteoblast-like cells to plasma copolymer surfaces deemed to be 'stable' in aqueous medium was measured. Tissue culture polystyrene (TCPS) was included as a control. Attachment was found to be greatest to the plasma copolymer surface with an O/C of 0.11. This surface had a carboxylic acid concentration of ca. 3%. Attachment did not correlate with increased surface wettability (i.e. the non-dispersive component of the surface energy). PMID:9856582

  4. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C). PMID:25469674

  5. Synthesis and characterization of antigenic influenza A M2e protein peptide-poly(acrylic) acid bioconjugate and determination of toxicity in vitro

    PubMed Central

    Kilinc, Yasemin Budama; Akdeste, Zeynep Mustafaeva; Koc, Rabia Cakir; Bagirova, Melahat; Allahverdiyev, Adil

    2014-01-01

    The influenza A virus is a critical public health problem that causes epidemics and pandemics, and occurs widely all over the world. Various vaccines against the virus have not provided a solution to the problem. Different approaches, particularly M2e peptide–based vaccines, are available for developing universal vaccines against influenza A. However, it is important to select a suitable carrier to obtain an effective vaccine. Accordingly, studies on the usage of various carriers are ongoing. Particularly, polymer-based carriers have gained importance due to both drug delivery and adjuvant effects. Therefore, bioconjugate of the M2e protein peptide from the influenza A virus covalent bonded with poly(acrylic) acid was synthesized in our study for the first time. The characterization was performed using size-exclusion chromatography and fluorescence spectroscopy; subsequently, it was found that the bioconjugate of the examined lower doses (0.05 and 0.5 mg/ml) have no toxic effects on human cell lines. These results suggest that, in the future, the poly(acrylic) acid bioconjugate of the M2e peptide should be studied in vivo for universal vaccine development against the influenza A virus. PMID:25482080

  6. Synthesis and characterization of antigenic influenza A M2e protein peptide-poly(acrylic) acid bioconjugate and determination of toxicity in vitro.

    PubMed

    Kilinc, Yasemin Budama; Akdeste, Zeynep Mustafaeva; Koc, Rabia Cakir; Bagirova, Melahat; Allahverdiyev, Adil

    2014-01-01

    The influenza A virus is a critical public health problem that causes epidemics and pandemics, and occurs widely all over the world. Various vaccines against the virus have not provided a solution to the problem. Different approaches, particularly M2e peptide-based vaccines, are available for developing universal vaccines against influenza A. However, it is important to select a suitable carrier to obtain an effective vaccine. Accordingly, studies on the usage of various carriers are ongoing. Particularly, polymer-based carriers have gained importance due to both drug delivery and adjuvant effects. Therefore, bioconjugate of the M2e protein peptide from the influenza A virus covalent bonded with poly(acrylic) acid was synthesized in our study for the first time. The characterization was performed using size-exclusion chromatography and fluorescence spectroscopy; subsequently, it was found that the bioconjugate of the examined lower doses (0.05 and 0.5 mg/ml) have no toxic effects on human cell lines. These results suggest that, in the future, the poly(acrylic) acid bioconjugate of the M2e peptide should be studied in vivo for universal vaccine development against the influenza A virus. PMID:25482080

  7. Spray-dried powders of starch and crosslinked poly(acrylic acid) as carriers for nasal delivery of inactivated influenza vaccine.

    PubMed

    Coucke, D; Schotsaert, M; Libert, C; Pringels, E; Vervaet, C; Foreman, P; Saelens, X; Remon, J P

    2009-02-18

    Mucosal vaccination has several advantages over parenteral vaccination. In this study, viscosity-enhancing mucosal delivery systems for the induction of an adaptive immune response against viral antigen were investigated. Powder formulations based on spray-dried mixtures of starch (Amioca)/poly(acrylic acid) (Carbopol 974P) in different ratios were used as carriers of the viral antigen. A comparison of these formulations for intranasal delivery of heat-inactivated influenza virus combined with LTR192G adjuvant was made in vivo in a rabbit model. Individual rabbit sera were tested for seroconversion against hemagglutinin (HA), the major surface antigen of influenza. The powder vaccine formulations were able to induce systemic anti-HA IgG responses. The presence of Carbopol 974P improved the kinetics of the immune responses and the level of IgG titers in a dose-dependent way which was correlated with moderately irritating capacities of the formulation. In contrast, mucosal IgA responses were not detected. In conclusion, it was demonstrated that the use of bioadhesive carriers based on Amioca starch and poly(acrylic acid) facilitates the induction of a systemic anti-HA antibody response after intranasal vaccination with a whole virus influenza vaccine. PMID:19114075

  8. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.

    PubMed

    Ying, L; Yu, W H; Kang, E T; Neoh, K G

    2004-07-01

    Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media. PMID:16459627

  9. Magnetic Solid-Phase Extraction Based on β-Cyclodextrins/Acrylic Acid Modified Magnetic Gelatin for Determination of Moxidectin in Milk Samples

    PubMed Central

    Shang, Yinzhu; Wang, Peng; Zhao, Xiaoya; Ye, Cheng; Guo, Shaofei

    2016-01-01

    β-Cyclodextrins/acrylic acid modified magnetic gelatin was prepared and then employed as the magnetic solid-phase extraction (MSPE) sorbent for extraction of moxidectin in milk samples. Due to the rigidity of hydrophobic cavity of β-cyclodextrins and carboxyl groups of acrylic acid, magnetic composites are prepared to form a complex with target molecules through various kinds of chemical reactions and then showed excellent extraction performance. This method exhibits the advantages of simplicity of implementation, short extraction time (5 min), low solvent consumption, and high extraction efficiency. A rapid, simple, and effective method for the analysis of moxidectin in milk samples was established by MSPE coupled with liquid chromatography-fluorescence detection. The limit of detection was 0.1 ng·mL−1 and the recoveries from milk samples were in the range of 93.8%–112.5%. The relative standard deviation was not higher than 6.4%. In conclusion, magnetic solid-phase extraction is a simple and robust preconcentration technique that can be coupled to other analytical methods for the quantitative determination of target molecules in complex samples. PMID:27437160

  10. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment

    PubMed Central

    Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar

    2014-01-01

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975

  11. Copolymeric hexyl acrylate-methacrylic acid microspheres - surface vs. bulk reactive carboxyl groups. Coulometric and colorimetric determination and analytical applications for heterogeneous microtitration.

    PubMed

    Stelmach, Emilia; Maksymiuk, Krzysztof; Michalska, Agata

    2016-10-01

    Copolymeric acrylate microspheres were prepared from hexyl acrylate using different amounts of methacrylic acid, resulting in a series of microspheres of gradually changing properties. The distribution of carboxyl groups - between surface and bulk of microspheres was evaluated. Bulk reactive carboxyl groups were determined using reverse coulometric titration with H(+) ions, following hydroxide ions have been generated and allowed to react with microspheres in the first step. It was found that the number of reactive carboxyl groups available in copolymeric microspheres is lower compared to number of methacrylic acid units used for polymerization process. Moreover, there is correlation between the number of groups introduced and found to be reactive in microspheres. On the other hand, the number of surface reactive groups was proportional to the number of groups introduced in course of polymerization. Thus, the surface reactive groups can be used as reagent, in novel heterogeneous microtitration procedure, in which a constant number of microspheres of different carboxyl groups contents is introduced to the sample to react with the analyte. The applicability of novel proposed method was tested on the example of Ni(2+) determination. PMID:27474305

  12. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    SciTech Connect

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, we analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.

  13. Processing treatments for mitigating acrylamide formation in sweetpotato French fries.

    PubMed

    Truong, Van-Den; Pascua, Yvette T; Reynolds, Rong; Thompson, Roger L; Palazoğlu, T Koray; Mogol, Burce Atac; Gökmen, Vural

    2014-01-01

    Acrylamide formation in sweetpotato French fries (SPFF) is likely a potential health concern as there is an increasing demand for good-quality fries from carotene-rich sweetpotatoes (SP). This is the first report on acrylamide formation in SPFF as affected by processing methods. Acrylamide levels in SPFF from untreated SP strips fried at 165 °C for 2, 3, and 5 min were 124.9, 255.5, and 452.0 ng/g fresh weight, which were reduced by about 7 times to 16.3, 36.9, and 58.3 ng/g, respectively, when the strips were subjected to processing that included water blanching and soaking in 0.5% sodium acid pyrophosphate before frying. An additional step of strip soaking in 0.4% calcium chloride solution before par-frying increased the calcium content from 0.2 to 0.8 mg/g and decreased the acrylamide levels to 6.3, 17.6, and 35.4 ng/g, respectively. SPFF with acrylamide level of <100 ng/g or several times lower than that of white potato French fries can be obtained by integrating processing treatments commonly used in the food industry. PMID:24328312

  14. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  15. Graft copolymerization of acrylic acid to cassava starch--evaluation of the influences of process parameters by an experimental design method.

    PubMed

    Witono, J R; Noordergraaf, I W; Heeres, H J; Janssen, L P B M

    2012-11-01

    The graft copolymerization of cassava starch with acrylic acid was investigated using a free radical initiator system (Fe(2+)/H(2)O(2) redox system) in water. A comprehensive understanding of the important variables and their interaction has been obtained by applying an experimental design method. In this approach, two ('high' and 'low') values of selected variables are considered. Important result parameters are add-on and the grafting efficiency. Out of eight reaction variables, it was found that only temperature, starch concentration and the starch to monomer ratio have a pronounced influence on these response parameters. Moderate reaction temperature (40 °C) and high starch concentration (10%) give relatively good results of add-on and grafting efficiency. A low starch to monomer ratio favors add-on but decreases grafting efficiency. These findings can be used to optimize the production of cassava starch-acrylate copolymers and to gain insight in the process-product property interactions, for various applications. PMID:22944411

  16. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    PubMed

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation. PMID:23732867

  17. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... Glyceryl monostearate Methyl cellulose Mineral oil Paraffin wax Potassium hydroxide Potassium...

  18. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    PubMed

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed. PMID:27040191

  19. Surfactant mediated synthesis of poly(acrylic acid) grafted xanthan gum and its efficient role in adsorption of soluble inorganic mercury from water.

    PubMed

    Pal, Abhijit; Majumder, Kunal; Bandyopadhyay, Abhijit

    2016-11-01

    Noble copolymers from xanthan gum (XG) and poly(acrylic acid) (PAA) were synthesised through surfactant mediated graft copolymerization. The copolymers were applied as a biosorbent for inorganic Hg(II) at higher concentration level (300ppm). The copolymers were characterized using different analytical techniques which showed, the grafting principally occurred across the amorphous region of XG. Measurement of zeta potential and hydrodynamic size indicated, the copolymers were strong polyanion and possessed greater hydrodynamic size (almost in all cases) than XG, despite a strong molecular degradation that took place simultaneously during grafting. In the dispersed form, all grades of the copolymer displayed higher adsorption capability than XG, however, the grade with maximum grafting produced the highest efficiency (68.03%). Manipulation produced further improvement in efficiency to 72.17% with the same copolymer after 75min at a pH of 5.0. The allowable biosorbent dose, however, was 1000ppm as determined from the experimental evidences. PMID:27516248

  20. Dynamics of the layer-by-layer assembly of a poly(acrylic acid)-lanthanide complex colloid and poly(diallyldimethyl ammonium).

    PubMed

    Xu, Jiali; Wang, Zhiliang; Wen, Lingang; Zhou, Xianju; Xu, Jian; Yang, Shuguang

    2016-01-21

    Poly(acrylic acid) (PAA) and lanthanide (Ln) ions, such as Ce(3+), Eu(3+), and Tb(3+), were prepared as dispersed complex colloidal particles through three different protocols with rigorous control of the pH value and mixing ratio. The negatively charged PAA-Ln complex particles were layer-by-layer (LbL) assembled with positively charged poly(diallyldimethyl ammonium) (PDDA) to prepare a thin film. The film thickness growth is much quicker than PDDA/PAA film. Due to the incorporation of Ln(3+) ions, the film exhibits fluorescence. During LbL assembly, PDDA-PAA association based on electrostatic force and PAA-Ce association based on coordination are in competition, which leads to the LbL assembly of PDDA and PAA-Ln complex colloidal particles being a complicated dynamic process. PMID:26549538

  1. A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand

    NASA Astrophysics Data System (ADS)

    Oanh, Vuong Thi Kim; Lam, Tran Dai; Thu, Vu Thi; Lu, Le Trong; Nam, Pham Hong; Tam, Le The; Manh, Do Hung; Phuc, Nguyen Xuan

    2016-08-01

    Highly stable Fe3O4 liquid was synthesized by thermal decomposition using poly(acrylic acid) (PAA) as a phase transfer ligand. The crystalline structure, morphology, and magnetic properties of the as-prepared samples were thoroughly characterized. Results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with a spinel single-phase structure, average size of 8-13 nm, and high saturation magnetization (up to 75 emu/g). The PAA-capped Fe3O4 nanoparticles displayed high stability over a wide pH range (from 4 to 7) in 300 mM salt solution. More importantly, the heat-generating capacity of the nanoparticle systems was quantified at a specific absorption rate (SAR) of 70.22 W/g, which is 35% higher than magnetic nanoparticles coated with sodium dodecyl sulfate (SDS). These findings suggest the potential application of PAA-coated magnetic nanoparticles in magnetic hyperthermia.

  2. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  3. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  4. Reusable nanocomposite of CoFe2O4/chitosan-graft-poly(acrylic acid) for removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Cuong; Huynh, Thi Kim Ngoc

    2014-06-01

    In this paper, CoFe2O4/chitosan-graft-poly(acrylic acid) (CoFe2O4/CS-graft-PAA) nanocomposites were prepared successfully by coprecipitation of the compounds in alkaline solution and were used for removal of nickel (II) ions from aqueous solution. The sorption rate was affected significantly by the initial concentration of the solution, sorbent amount, and pH value of the solution. Batch experiments were conducted to investigate the adsorption capacity under different initial concentration (ranging from 25 to 150 mg L-1), solution pH (4.1, 5.3, 6.4 and 7.6), and contact time. These nanocomposites can be recycled conveniently from water with the assistance of an external magnet because of their exceptional properties. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA).

  5. A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand

    NASA Astrophysics Data System (ADS)

    Oanh, Vuong Thi Kim; Lam, Tran Dai; Thu, Vu Thi; Lu, Le Trong; Nam, Pham Hong; Tam, Le The; Manh, Do Hung; Phuc, Nguyen Xuan

    2016-05-01

    Highly stable Fe3O4 liquid was synthesized by thermal decomposition using poly(acrylic acid) (PAA) as a phase transfer ligand. The crystalline structure, morphology, and magnetic properties of the as-prepared samples were thoroughly characterized. Results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with a spinel single-phase structure, average size of 8-13 nm, and high saturation magnetization (up to 75 emu/g). The PAA-capped Fe3O4 nanoparticles displayed high stability over a wide pH range (from 4 to 7) in 300 mM salt solution. More importantly, the heat-generating capacity of the nanoparticle systems was quantified at a specific absorption rate (SAR) of 70.22 W/g, which is 35% higher than magnetic nanoparticles coated with sodium dodecyl sulfate (SDS). These findings suggest the potential application of PAA-coated magnetic nanoparticles in magnetic hyperthermia.

  6. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    PubMed

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  7. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents. PMID:17613025

  8. Patterned Poly(acrylic acid) Brushes Containing Gold Nanoparticles for Peptide Detection by Surface-Assisted Laser Desorption/Ionization Mass Spectrometry.

    PubMed

    Sangsuwan, Arunee; Narupai, Benjaporn; Sae-ung, Pornpen; Rodtamai, Sasithon; Rodthongkum, Nadnudda; Hoven, Voravee P

    2015-11-01

    Patterned poly(acrylic acid) (PAA) brushes was successfully generated via photolithography and surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylic acid as verified by water contact angle measurements and FT-IR analysis. The carboxyl groups of PAA brushes can act as reducing moieties for in situ synthesis of gold nanoparticles (AuNPs), without the use of additional reducing agent. The formation of AuNPs was confirmed by transmission electron microscopy and X-ray photoelectron spectroscopy. The glass surface-modified by PAA brushes and immobilized with AuNPs (AuNPs-PAA) can be used as a substrate for SALDI-MS analysis, which is capable of detecting both small peptides having m/z ≤ 600 (glutathione) and large peptides having m/z ≥ 1000 (bradykinin, ICNKQDCPILE) without the interference from matrix signal suggesting that AuNPs were stably trapped within the PAA brushes and the carboxyl groups of PAA can serve as internal proton source. By employing AuNPs as the capture probe, the AuNPs-PAA substrate can selectively identify thiol-containing peptides from the peptide mixtures with LOD as low as 0.1 and 0.05 nM for glutathione and ICNKQDCPILE, respectively. An ability to selectively detect ICNKQDCPILE in a diluted human serum is also demonstrated. The patterned format together with its high sensitivity and selectivity render this newly developed substrate a potential platform for high-throughput analysis of other biomarkers, especially those with low molecular weight in complex biological samples. PMID:26434604

  9. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  10. Mesoporous silica nanoparticles with bilayer coating of poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA): A pH-sensitive carrier for gemcitabine delivery.

    PubMed

    Pourjavadi, Ali; Tehrani, Zahra Mazaheri

    2016-04-01

    Novel bilayer coated mesoporous silica nanoparticle (MCM-41) based on pH sensitive poly(acrylic acid-co-itaconic acid) and human serum albumin (HSA) was designed for controlled delivery of gemcitabine (anticancer drug) to cancer cells. The shell around the mesoporous silica has bilayer structure. Poly(acrylic acid-co-itaconic acid) was used as pH-sensitive inner shell and human serum albumin, HSA, was used as outer shell. The core-shell structure was formed due to electrostatic interaction between ammonium groups of modified MCM-41 and carboxylate groups of copolymer. Also, the albumin layer was wrapped around the copolymer coated nanoparticle by electrostatic interaction between ammonium groups from protein and carboxylate ions of copolymer shell. Moreover, the maximum release occurred at pH 5.5 (pH of endosomes) because the bilayer shell collapsed at this pH. The drug nanocarrier would be a good candidate for tumor therapy due to its biocompatibility, controlled release and pH responsive behavior. PMID:26838909

  11. In vivo biocompatibility of radiation crosslinked acrylamide copolymers

    NASA Astrophysics Data System (ADS)

    Saraydın, Dursun; Ünver-Saraydın, Serpil; Karadağ, Erdener; Koptagel, Emel; Güven, Olgun

    2004-04-01

    In vitro swelling and in vivo biocompatibility of radiation crosslinked acrylamide copolymers such as acrylamide/crotonic acid (AAm/CA) and acrylamide/itaconic acid (AAm/IA) were studied. The swelling kinetics of acrylamide copolymers were performed in distilled water, human serum and some simulated physiological fluids such as phosphate buffer, pH 7.4, glycine-HCl buffer, pH 1.1, physiological saline solution, and some swelling and diffusion parameters have been calculated. AAm/CA and AAm/IA hydrogels were subcutaneously implanted in rats for up to 10 weeks and the immediate short- and long-term tissue response to these implants were investigated. Histological analysis indicated that tissue reaction at the implant site progressed from an initial acute inflammatory response. No necrosis, tumorigenesis or infection was observed at the implant site up to 10 weeks. The radiation crosslinked AAm/CA and AAm/IA copolymers were found well tolerated, non-toxic and highly biocompatible. However, AAm/IA copolymer was not found to be compatible biomaterials, because one of the AAm/IA samples was disintegrated into small pieces in the rat.

  12. Dietary intake of acrylamide in Sweden.

    PubMed

    Svensson, K; Abramsson, L; Becker, W; Glynn, A; Hellenäs, K-E; Lind, Y; Rosén, J

    2003-11-01

    High levels of acrylamide have been found in foods heated at high temperatures, especially in carbohydrate rich foods. Several kinds of foods (industrially produced) representing different food/product groups available on the Swedish market have been analysed for acrylamide. A considerable variation in levels of acrylamide between single foodstuffs (different brands) within food categories were found, which also applies for levels in different food categories. Using recent Swedish food consumption data the dietary intake of acrylamide for the Swedish adult population was assessed based on foodstuffs with low to high levels of acrylamide (<30-2300 microg/kg), such as processed potato products, bread, breakfast cereals, biscuits, cookies, snacks and coffee. The estimated dietary intake of acrylamide per person (total population) given as the 5th, 50th and 95th percentile were 9.1, 27 and 62 microg/day respectively, from those food/product groups (mean 31 microg/day). No acrylamide was found in many other foodstuffs analysed and those were therefore not included in the dietary intake assessment of acrylamide. However, an additional minor contribution of a few microg/day of acrylamide from foods/products like poultry, meat, fish, cocoa powder and chocolates cannot be excluded. An average daily intake of 35 microg corresponds to 0.5 microg per kg body weight and day (body weight 70 kg). Risk assessments of acrylamide, made by US EPA and WHO, imply that this dietary intake of acrylamide could be associated with potential health risks. PMID:12963011

  13. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  14. Minireview on the toxicity of dietary acrylamide.

    PubMed

    Parzefall, Wolfram

    2008-04-01

    Acrylamide is a commodity chemical with many industrial and laboratory uses. It is also formed from carbohydrate and amino acid containing food by heating (primarily in fried potato products, bread, coffee). Neurotoxicity was detected as the primary toxic effect after occupational exposure. In rats and mice AA is toxic for reproduction and development and to male germ cells, is genotoxic through a reactive metabolite, glycidamide, and carcinogenic to several organs. Epidemiological studies did not point to an association between either occupational or dietary exposure and an excess of cancer incidence. Health risks of the general population are based on an average exposure to 1 microg/kg bw/day increasing for high consumers to 4 microg/kg bw/day. For average consumers a margin of exposure of 200 for neurotoxicity can be regarded as sufficiently protective. However, a margin of 300 for carcinogenic risks appears not sufficient when applying a precautionary principle. This is also illustrated when the benchmark dose lower confidence limit for cancer is divided by an uncertainty factor of 300, which arrives at a tolerable daily intake of 1 microg/kg bw/day, and thus is in the range of average consumption. Further measures to minimize acrylamide formation in food should therefore be explored to reduce human exposure. PMID:17905504

  15. Influence of processing conditions on acrylamide content in black ripe olives.

    PubMed

    Casado, Francisco J; Montaño, Alfredo

    2008-03-26

    The presence of acrylamide was investigated in different presentations of commercial black ripe olives, a well-known sterilized alkali-treated product. The analysis was performed by gas chromatography-mass spectrometry (GC-MS) after bromination of acrylamide, using (13C3)acrylamide as internal standard. In-house validation data for commercial ripe olives showed good precision and accuracy of the method, with repeatability below 3% and recoveries between 94 and 105%. Acrylamide was detected in all samples, but its concentration varied significantly from 176 to 1578 microg/kg of pulp. The effects of different processing conditions (two preservation methods and three darkening methods), cultivar (Hojiblanca or Manzanilla), and presentation form (pitted or sliced olives) on acrylamide content were evaluated in experiments performed in an olive-processing plant. All canned samples were sterilized at 121 degrees C for 30 min. Statistical analysis of the data indicated that the effects of darkening method and olive cultivar were the most pronounced. Acrylamide contents did not significantly differ after 6 months of storage. The small amounts of free amino acids and reducing sugars found in olives before sterilization did not significantly correlate with the acrylamide formed. PMID:18303816

  16. Acrylamide: update on selected research activities conducted by the European food and drink industry.

    PubMed

    Taeymans, Dominique; Andersson, Anders; Ashby, Peter; Blank, Imre; Gondé, Pierre; van Eijck, Paul; Faivre, Virginie; Lalljie, Sam P D; Lingnert, Hans; Lindblom, Marianne; Matissek, Reinhard; Müller, Detflef; Stadler, Richard H; Studer, Alfred; Silvani, David; Tallmadge, Dan; Thompson, Geoff; Whitmore, Tricia; Wood, John; Zyzak, David

    2005-01-01

    This paper reviews the progress made by the European food and drink industry (CIAA) on acrylamide with regard to analytical methods, mechanisms of formation, and mitigation research in the major food categories. It is an update on the first CIAA review paper, "A Review of Acrylamide: An Industry Perspective on Research, Analysis, Formation and Control." Initial difficulties with the establishment of reliable analytical methods, in most cases, have now been overcome, but challenges remain in terms of the need to develop simple and rapid test methods and certified reference materials. Many trials have been conducted under laboratory and experimental conditions in a variety of foods, and a number of possible measures have been identified to relatively lower the amounts of acrylamide in food. Promising applications were studied in reconstituted potato models by addition of amino acids or use of asparaginase. In bakery wares, predictive models have been established to determine the role of ammonium carbonate and invert sugar in acrylamide formation. Studies in several commercial foods showed that acrylamide is not stable over time in roasted and ground coffee. Some progress in relatively lowering acrylamide in certain food categories has been achieved, but at this stage can only be considered marginal. Any options that are chosen to reduce acrylamide in commercial products must be technologically feasible and must not adversely affect the quality and safety of the final product. PMID:15759746

  17. Effect of chitosan on the formation of acrylamide and hydroxymethylfurfural in model, biscuit and crust systems.

    PubMed

    Mogol, Burçe Ataç; Gökmen, Vural

    2016-08-10

    Chitosan has been popular as a natural food preservative due to its antibacterial and antifungal activities. It may be used in thermally processed foods such as bread to delay staling and improve the microbial stability during the shelf-life. However, the thermal process could lead to the formation of harmful compounds in bakery products through chemical reactions, in which chitosan could take part. Therefore, this study aims to investigate the effect of chitosan on the formation of acrylamide and hydroxymethylfurfural (HMF) in different model systems. Addition of acid to the asparagine-glucose model system decreased the initial rate of acrylamide formation to approx. 4-times. The chitosan included model system contained higher acrylamide than the asparagine-glucose-acid model but still lower than the asparagine-glucose model system. The HMF content was decreased in the presence of acid due to acid-catalyzed degradation. Additionally, HMF is a potent carbonyl source and utilized in the Maillard reaction. In biscuit samples, addition of acid or chitosan solution to the dough did not significantly affect the acrylamide formation (p > 0.05), however addition of acid increased the formed HMF. In crust samples, acrylamide formation was decreased by acid, while chitosan showed no additional decrease. No interaction was found between HMF and chitosan. The results suggest that the effect of chitosan should be carefully evaluated apart from the effect of acid, in which chitosan was solubilized. PMID:27406058

  18. Microwave-assisted synthesis of biocompatible europium-doped calcium hydroxyapatite and fluoroapatite luminescent nanospindles functionalized with poly(acrylic acid).

    PubMed

    Escudero, Alberto; Calvo, Mauricio E; Rivera-Fernández, Sara; de la Fuente, Jesús M; Ocaña, Manuel

    2013-02-12

    Europium-doped calcium hydroxyapatite and fluoroapatite nanophosphors functionalized with poly(acrylic acid) (PAA) have been synthesized through a one-pot microwave-assisted hydrothermal method from aqueous basic solutions containing calcium nitrate, sodium phosphate monobasic, and PAA, as well as sodium fluoride in the case of the fluoroapatite particles. In both cases a spindlelike morphology was obtained, resulting from an aggregation process of smaller subunits which also gave rise to high specific surface area. The size of the nanospindles was 191 (32) × 40 (5) nm for calcium hydroxyapatite and 152 (24) × 38 (6) nm for calcium fluoroapatite. The luminescent nanoparticles showed the typical red luminescence of Eu(3+), which was more efficient for the fluoroapatite particles than for the hydroxyapatite. This is attributed to the presence of OH(-) quenchers in the latter. The nanophosphors showed negligible toxicity for Vero cells. Both PAA-functionalized nanophosphors showed a very high (up to at least 1 week) colloidal stability in 2-(N-morpholino)ethanesulfonic acid (MES) at pH 6.5, which is a commonly used buffer for physiological pH. All these features make both kinds of apatite-based nanoparticles promising tools for biomedical applications, such as luminescent biolabels and tracking devices in drug delivery systems. PMID:23317411

  19. A novel pulsatile drug delivery system based on the physiochemical reaction between acrylic copolymer and organic acid: in vitro and in vivo evaluation.

    PubMed

    Zhang, Ziwei; Qi, Xiaole; Li, Xiangbo; Xing, Jiayu; Zhu, Xuehua; Wu, Zhenghong

    2014-02-28

    Multilayer-coating technology is the traditional method to achieve pulsatile drug release with the drawbacks of time consuming, more materials demanding and lack of efficiency. The purpose of this study was to design a novel pulsatile drug delivery system based on the physiochemical interaction between acrylic copolymer and organic acid with relatively simpler formulation and manufacturing process. The Enalapril Maleate (EM) pulsatile release pellets were prepared using extruding granulation, spheronization and fluid-bed coating technology. The ion-exchange experiment, hydration study and determination of glass transition temperature were conducted to explore the related drug release mechanism. Bioavailability experiment was carried out by administering the pulsatile release pellets to rats compared with marketed rapid release tablets Yisu. An obvious 4h lag time period and rapid drug release was observed from in vitro dissolution profiles. The release mechanism was a combination of both disassociated and undisassociated forms of succinic acid physiochemically interacting with Eudragit RS. The AUC0-τ of the EM pulsatile pellets and the market tablets was 702.384 ± 96.89 1 hn g/mL and 810.817 ± 67.712 h ng/mL, while the relative bioavailability was 86.62%. These studies demonstrate this novel pulsatile release concept may be a promising strategy for oral pulsatile delivery system. PMID:24368107

  20. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, David; Hill, David J. T.; Rasoul, Firas; Whittaker, Andrew K.

    2011-02-01

    Hydrogels were prepared from poly(acrylic acid-co-N-vinyl pyrrolidone), poly(AA-co-VP) and mixtures of poly(AA-co-VP) and poly(ethylene oxide), PEO, by gamma radiolysis of aqueous solutions of the AA and VP monomers containing ethylene glycol dimethacrylate, EGDMA, as crosslinker and PEO. The AA/VP composition range of the poly(AA-co-VP) was XAA 0.7-0.9. The swelling behaviours of the hydrogels from the dry state were investigated in water (pH 6.5) and 50 mM 4-(2-hydroxyethyl)piperazine-1-ethylsulfonic acid buffer, HEPES buffer, at pH 7.4 and 295 K. The effects of poly(AA-co-VP) composition, crosslinker mole fraction and the presence of PEO on the equilibrium swelling ratio for the gels was examined. The kinetics of the release of a model protein, horseradish peroxidase, HRP, from the hydrogels in water were also studied at 295 K.

  1. Reducing acrylamide precursors in raw materials derived from wheat and potato.

    PubMed

    Muttucumaru, Nira; Elmore, J Stephen; Curtis, Tanya; Mottram, Donald S; Parry, Martin A J; Halford, Nigel G

    2008-08-13

    A review of agronomic and genetic approaches as strategies for the mitigation of acrylamide risk in wheat and potato is presented. Acrylamide is formed through the Maillard reaction during high-temperature cooking, such as frying, roasting, or baking, and the main precursors are free asparagine and reducing sugars. In wheat flour, acrylamide formation is determined by asparagine levels and asparagine accumulation increases dramatically in response to sulfur deprivation and, to a much lesser extent, with nitrogen feeding. In potatoes, in which sugar concentrations are much lower, the relationships between acrylamide and its precursors are more complex. Much attention has been focused on reducing the levels of sugars in potatoes as a means of reducing acrylamide risk. However, the level of asparagine as a proportion of the total free amino acid pool has been shown to be a key parameter, indicating that when sugar levels are limiting, competition between asparagine and the other amino acids for participation in the Maillard reaction determines acrylamide formation. Genetic approaches to reducing acrylamide risk include the identification of cultivars and other germplasm in which free asparagine and/or sugar levels are low and the manipulation of genes involved in sugar and amino acid metabolism and signaling. These approaches are made more difficult by genotype/environment interactions that can result in a genotype being "good" in one environment but "poor" in another. Another important consideration is the effect that any change could have on flavor in the cooked product. Nevertheless, as both wheat and potato are regarded as of relatively high acrylamide risk compared with, for example, maize and rice, it is essential that changes are achieved that mitigate the problem. PMID:18624429

  2. Phytoremediation potential of Arabidopsis with reference to acrylamide and microarray analysis of acrylamide-response genes.

    PubMed

    Gao, Jian-Jie; Peng, Ri-He; Zhu, Bo; Wang, Bo; Wang, Li-Juan; Xu, Jing; Sun, Miao; Yao, Quan-Hong

    2015-10-01

    Acrylamide (ACR) is a widely used industrial chemical. However, it is a dangerous compound because it showed neurotoxic effects in humans and act as reproductive toxicant and carcinogen in many animal species. In the environment, acrylamide has high soil mobility and may travel via groundwater. Phytoremediation is an effective method to remove the environmental pollutants, but the mechanism of plant response to acrylamide remains unknown. With the purpose of assessing remediation potentials of plants for acrylamide, we have examined acrylamide uptake by the model plant Arabidopsis grown on contaminated substrates with high performance liquid chromatography (HPLC) analysis. The result revealed that acrylamide could be absorbed and degraded by Arabidopsis. Further microarray analysis showed that 527 transcripts were up-regulated within 2-days under acrylamide exposure condition. We have found many potential acrylamide-induced genes playing a major role in plant metabolism and phytoremediation. PMID:26112177

  3. Acrylamide and 5-hydroxymethylfurfural formation during baking of biscuits: Part I: Effects of sugar type.

    PubMed

    Nguyen, Ha T; Van der Fels-Klerx, H J Ine; Peters, Ruud J B; Van Boekel, Martinus A J S

    2016-02-01

    This study aimed to investigate the effects of sugar type on the reaction mechanism for formation of acrylamide and 5-hydroxymethylfurfural (HMF) during the baking of biscuits at 200°C using multiresponse modelling. Four types of biscuits were prepared: (1) with sucrose, (2) with glucose and fructose, (3) with fructose only and (4) with glucose only. Experimental data showed that HMF concentration was highest in biscuits with glucose and fructose, whereas acrylamide concentration was highest in biscuits with glucose, also having the highest asparagine concentration. Proposed mechanistic models suggested that HMF is formed via caramelisation and that acrylamide formation follows the specific amino acid route, i.e., reducing sugars react with asparagine to form the Schiff base before decarboxylation, to generate acrylamide without the Amadori rearrangement product and sugar fragmentation. Study results contribute to understanding chemical reaction pathways in real food products. PMID:26304386

  4. The use of asparaginase to reduce acrylamide levels in cooked food.

    PubMed

    Xu, Fei; Oruna-Concha, Maria-Jose; Elmore, J Stephen

    2016-11-01

    Strategies proposed for reducing the formation of the suspected carcinogen acrylamide in cooked foods often rely on a reduction in the extent of the Maillard reaction, in which acrylamide is formed from the reaction between asparagine and reducing sugars. However, the Maillard reaction also provides desirable sensory attributes of cooked foods. Mitigation procedures that modify the Maillard reaction may negatively affect flavour and colour. The use of asparaginase to convert asparagine to aspartic acid may provide a means to reduce acrylamide formation, while maintaining sensory quality. This review collates research on the use of enzymes, asparaginase in particular, to mitigate acrylamide formation. Asparaginase is a powerful tool for the food industry and it is likely that its use will increase. However, the potential adverse effects of asparaginase treatment on sensory properties of cooked foods and the need to achieve sufficient enzyme-substrate contact remain areas for future research. PMID:27211635

  5. Application of pH-responsive poly(2-dimethyl-aminoethylmethacrylate)-block-poly(acrylic acid) coatings for the open-tubular capillary electrochromatographic analysis of acidic and basic compounds.

    PubMed

    Sepehrifar, Roshanak; Boysen, Reinhard I; Danylec, Basil; Yang, Yuanzhong; Saito, Kei; Hearn, Milton T W

    2016-04-21

    A new type of stimuli-responsive polymeric (SRP) coating has been prepared for use in open tubular capillary electrochromatography (OT-CEC), by grafting poly(2-dimethylaminoethylmethacrylate)-block-poly(acrylic acid) (PDMAEMA-b-PAA) as a Y-shaped block copolymer with two dissimilar chain compositions onto the inner walls of aminopropyl-modified silica capillaries. The grafting process introduced weakly charged functional groups from the PAA and PDMAEMA, enabling the generation of electroendosmotic flow with magnitude and direction adjustable by changing the pH of the running buffer electrolyte. This stimuli-responsive PDMAEMA-b-PAA block copolymer was found to provide excellent resolution of various acidic and basic compounds, leading to efficient analyte separation. When operated in the OT-CEC mode, separation selectivities could be readily manipulated via differential contributions from chromatographic and electrophoretic mechanisms, simply by changing the pH or the ionic strength of the running buffer electrolyte. PMID:27026608

  6. The influence of deep frying using various vegetable oils on acrylamide formation in sweet potato (Ipomoea batatas L. Lam) chips.

    PubMed

    Lim, P K; Jinap, S; Sanny, M; Tan, C P; Khatib, A

    2014-01-01

    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected. PMID:24344977

  7. Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2010-04-01

    A series of novel guar gum-g-poly(sodium acrylate-co-styrene)/muscovite (GG-g-P(NaA-co-St)/MVT) superabsorbent composites were prepared by free-radical grafting copolymerization of natural guar gum (GG), partially neutralized acrylic acid (NaA), styrene (St) and muscovite (MVT) using ammonium persulfate (APS) as the initiator and N,N-methylene-bis-acrylamide (MBA) as the crosslinker. Optical absorption spectra confirmed that NaA and St had been grafted onto the GG main chain and MVT participated in the polymerization reaction. The simultaneous introduction of St and MVT into the GG-g-PNaA matrix could clearly improve the surface morphologies of the composites, and MVT led to better dispersion in the polymeric matrix without agglomeration, as revealed by electron microscopy. The effects of St and MVT on the water absorption and swelling behavior in various saline solutions, aqueous solutions of hydrophilic organic solvents and surfactant solutions were investigated. Results indicated that the swelling rate and capabilities of the composites were markedly enhanced by the incorporation of the hydrophobic monomer St and inorganic MVT clay mineral. The superabsorbent composite showed a clearer deswelling characteristic in solutions of multivalent saline, acetone and ethanol, and cationic surfactant than that in the solutions of multivalent saline, methanol and anionic surfactant.

  8. Study of the adhesive properties versus stability/aging of hernia repair meshes after deposition of RF activated plasma polymerized acrylic acid coating.

    PubMed

    Rivolo, Paola; Nisticò, Roberto; Barone, Fabrizio; Faga, Maria Giulia; Duraccio, Donatella; Martorana, Selanna; Ricciardi, Serena; Magnacca, Giuliana

    2016-08-01

    In order to confer adhesive properties to commercial polypropylene (PP) meshes, a surface plasma-induced deposition of poly-(acrylic acid) (PPAA) is performed. Once biomaterials were functionalized, different post-deposition treatments (i.e. water washing and/or thermal treatments) were investigated with the aim of monitoring the coating degradation (and therefore the loss of adhesion) after 3months of aging in both humid/oxidant (air) and inert (nitrogen) atmospheres. A wide physicochemical characterization was carried out in order to evaluate the functionalization effectiveness and the adhesive coating homogeneity by means of static water drop shape analysis and several spectroscopies (namely, FTIR, UV-Visible and X-ray Photoemission Spectroscopy). The modification of the adhesion properties after post-deposition treatments as well as aging under different storage atmospheres were investigated by means of Atomic Force Microscopy (AFM) used in Force/Distance (F/D) mode. This technique confirms itself as a powerful tool for unveiling the surface adhesion capacity as well as the homogeneity of the functional coatings along the fibers. Results obtained evidenced that post-deposition treatments are mandatory in order to remove all oligomers produced during the plasma-treatment, whereas aging tests evidenced that these devices can be simply stored in presence of air for at least three months without a meaningful degradation of the original properties. PMID:27157754

  9. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu(2+) and Cd(2.).

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin

    2016-09-20

    A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. PMID:27261748

  10. Structural tailoring of hydrogen-bonded poly(acrylic acid)/poly(ethylene oxide) multilayer thin films for reduced gas permeability.

    PubMed

    Xiang, Fangming; Ward, Sarah M; Givens, Tara M; Grunlan, Jaime C

    2015-02-01

    Hydrogen bonded poly(acrylic acid) (PAA)/poly(ethylene oxide) (PEO) layer-by-layer assemblies are highly elastomeric, but more permeable than ionically bonded thin films. In order to expand the use of hydrogen-bonded assemblies to applications that require a better gas barrier, the effect of assembling pH on the oxygen permeability of PAA/PEO multilayer thin films was investigated. Altering the assembling pH leads to significant changes in phase morphology and bonding. The amount of intermolecular hydrogen bonding between PAA and PEO is found to increase with increasing pH due to reduction of COOH dimers between PAA chains. This improved bonding leads to smaller PEO domains and lower gas permeability. Further increasing the pH beyond 2.75 results in higher oxygen permeability due to partial deprotonation of PAA. By setting the assembling pH at 2.75, the negative impacts of COOH dimer formation and PAA ionization on intermolecular hydrogen bonding can be minimized, leading to a 50% reduction in the oxygen permeability of the PAA/PEO thin film. A 20 bilayer coating reduces the oxygen transmission rate of a 1.58 mm natural rubber substrate by 20 ×. These unique nanocoatings provide the opportunity to impart a gas barrier to elastomeric substrates without altering their mechanical behavior. PMID:25519816

  11. Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Ortega, Alejandra; Lazo, Luz M.; Burillo, Guillermina

    2014-09-01

    Two novel comb-type hydrogels based on pH-sensitive monomers (acrylic acid (AAc) and 4-vinylpyridine (4VP) were synthesized by gamma radiation. The systems were as follows: a) comb-type hydrogels of an AAc network followed by grafting of 4VP ((net-PAAc)-g-4VP) and b) comb-type hydrogels of an AAc network grafted onto polypropylene (PP) followed by grafting of 4VP (net-(PP-g-AAc)-g-4VP). The equilibrium isotherms and kinetics were evaluated for copper and zinc ions in aqueous solutions. The Zn(II) retention obtained was 480 mg g-1 and 1086 mg g-1 for (net-PAAc)-g-4VP and net-(PP-g-AAc)-g-4VP, respectively. At concentrations as low as ppm, retention efficiencies of approximately 90% were achieved for Cu(II) on (net-PAAc)-g-4VP and for Zn(II) on net-(PP-g-AAc)-g-4VP. Desorption of the hydrogels was also studied, and the results indicated that they can be used repeatedly in aqueous solutions. For both systems, the adsorption of Cu(II) and Zn(II) obeyed the Freundlich model, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The sorption process follows a pseudo-second-order model.

  12. Micron- and nano-sized poly(N-isopropylacrylamide-co-acrylic acid) latex syntheses and their applications for controlled drug release.

    PubMed

    Lue, Shingjiang Jessie; Chen, Bo-Wei; Shih, Chao-Ming; Chou, Feng-Yi; Lai, Jui-Yang; Chiu, Wen-Yen

    2013-08-01

    Thermo-sensitive poly(N-isopropylacrylamide-co-acrylic acid) (P(NIPAAm-co-AAc)) latex particles were prepared with and without sodium dodecyl sulfate (SDS) surfactant via an emulsion polymerization method. The P(NIPAAm-co-AAc) latex particle sizes were approximately 1.1 microm without SDS addition and the particle sizes were in the nanometer range (59 nm) with SDS at its critical micelle concentration (CMC) of 8 mM. We propose a scheme to demonstrate how the SDS concentration affects the synthesized latex particle size. The lower critical solution temperature (LCST) was hardly influenced by the SDS level but increased with the AAc concentration. The PNIPAAm-co-AAc latex particles were employed as thermo-sensitive drug carriers and 4-acetamidophenol was loaded to study the drug release rates from the nano-gels. The effective drug diffusion coefficients within the nano-gels varied as a function of particle size, AAc content, and temperature. The smaller or AAc-rich hydrogel particles provided sustainable drug release property and have potential use in biomedical applications. PMID:23882758

  13. “Stable-on-the-Table” Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity

    PubMed Central

    Ghimire, Ananta; Zore, Omkar V.; Thilakarathne, Vindya K.; Briand, Victoria A.; Lenehan, Patrick J.; Lei, Yu; Kasi, Rajeswari M.; Kumar, Challa V.

    2015-01-01

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, MW 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17–20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at −0.279 and −0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. PMID:26393601

  14. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  15. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study.

    PubMed

    Wang, Zhen-Gang; Ke, Bei-Bei; Xu, Zhi-Kang

    2007-07-01

    In this work, novel conductive composite nanofiber mesh possessing reactive groups was electrospun from solutions containing poly(acrylonitrile-co-acrylic acid) (PANCAA) and multi-walled carbon nanotubes (MWCNTs) for redoxase immobilization, assuming that the incorporated MWCNTs could behave as electrons transferor during enzyme catalysis. The covalent immobilization of catalase from bovine liver on the neat PANCAA nanofiber mesh or the composite one was processed in the presence of EDC/NHS. Results indicated that both the amount and activity retention of bound catalase on the composite nanofiber mesh were higher than those on the neat PANCAA nanofiber mesh, and the activity increased up to 42%. Kinetic parameters, K(m) and V(max), for the catalases immobilized on the composite nanofiber mesh were lower and higher than those on the neat one, respectively. This enhanced activity might be ascribed to either promoted electron transfer through charge-transfer complexes and the pi system of carbon nanotubes or rendered biocompatibility by modified MWCNTs. Furthermore, the immobilized catalases revealed much more stability after MWCNTs were incorporated into the polymer nanofiber mesh. However, there was no significant difference in optimum pH value and temperature, thermal stability and operational stability between these two immobilized preparations, while the two ones appeared more advantageous than the free in these properties. The effect of MWCNTs incorporation on another redox enzyme, peroxidase, was also studied and it was found that the activity increased by 68% in comparison of composite one with neat preparation. PMID:17171660

  16. Design, Synthesis and Biological Evaluation of N4-Sulfonamido-Succinamic, Phthalamic, Acrylic and Benzoyl Acetic Acid Derivatives as Potential DPP IV Inhibitors

    PubMed Central

    Khalaf, Reema Abu; Sheikha, Ghassan Abu; Al-Sha'er, Mahmoud; Taha, Mutasem

    2013-01-01

    As incidence rate of type II diabetes mellitus continues to rise, there is a growing need to identify novel therapeutic agents with improved efficacy and reduced side effects. Dipeptidyl peptidase IV (DPP IV) is a multifunctional protein involved in many physiological processes. It deactivates the natural hypoglycemic incretin hormone effect. Inhibition of this enzyme increases endogenous incretin level, incretin activity and should restore glucose homeostasis in type II diabetic patients making it an attractive target for the development of new antidiabetic drugs. One of the interesting reported anti- DPP IV hits is Gemifloxacin which is used as a lead compound for the development of new DPP IV inhibitors. In the current work, design and synthesis of a series of N4-sulfonamido-succinamic, phthalamic, acrylic and benzoyl acetic acid derivatives was carried out. The synthesized compounds were evaluated for their in vitro anti-DPP IV activity. Some of them have shown reasonable bioactivity, where the most active one 17 was found to have an IC50 of 33.5 μM. PMID:24358058

  17. Poly(acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and pH-triggered anticancer drug delivery.

    PubMed

    Kang, Xiao-Jiao; Dai, Yun-Lu; Ma, Ping-An; Yang, Dong-Mei; Li, Chun-Xia; Hou, Zhi-Yao; Cheng, Zi-Yong; Lin, Jun

    2012-12-01

    Monodisperse poly(acrylic acid)-modified Fe(3)O(4) (PAA@Fe(3)O(4)) hybrid microspheres with dual responses (magnetic field and pH) were successfully fabricated. The PAA polymer was encapsulated into the inner cavity of Fe(3)O(4) hollow spheres by a vacuum-casting route and photo-initiated polymerization. TEM images show that the samples consist of monodisperse porous spheres with a diameter around 200 nm. The Fe(3)O(4) spheres, after modification with the PAA polymer, still possess enough space to hold guest molecules. We selected doxorubicin (DOX) as a model drug to investigate the drug loading and release behavior of as-prepared composites. The release of DOX molecules was strongly dependent on the pH value due to the unique property of PAA. The HeLa cell-uptake process of DOX-loaded PAA@Fe(3)O(4) was observed by confocal laser scanning microscopy (CLSM). After being incubated with HeLa cells under magnet magnetically guided conditions, the cytotoxtic effects of DOX-loaded PAA@Fe(3)O(4) increased. These results indicate that pH-responsive magnetic PAA@Fe(3)O(4) spheres have the potential to be used as anticancer drug carriers. PMID:23080514

  18. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy. PMID:22196902

  19. Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Dai, Yunlu; Shang, Mengmeng; Cheng, Ziyong; Zhang, Xiao; Lian, Hongzhou; Ma, Ping'an; Lin, Jun

    2013-01-01

    In this study, multifunctional poly(acrylic acid) modified lanthanide-doped GdVO(4) nanocomposites [PAA@GdVO(4): Ln(3+) (Ln = Yb/Er, Yb/Ho, Yb/Tm)] were constructed by filling PAA hydrogel into GdVO(4) hollow spheres via photoinduced polymerization. The up-conversion (UC) emission colors (green, red and blue) can be tuned by changing the codopant compositions in the matrices. The composites have potential applications as bio-probes for cell imaging. Meanwhile, the hybrid spheres can act as T(1) contrast agents for magnetic resonance imaging (MRI) owing to the existence of Gd(3+) ions on the surface of composites. Due to the nature of PAA, DOX-loaded PAA@GdVO(4):Yb(3+)/Er(3+) system exhibits pH-dependent drug releasing kinetics. A lower pH offers a faster drug release rate. Such character makes the loaded DOX easily released at cancer cells. The cell uptake process of drug-loaded composites was observed by using confocal laser scanning microscopy (CLSM). The results indicate the potential application of the multifunctional composites as theragnostics (effective bimodal imaging probes and pH-responsive drug carriers). PMID:23154448

  20. Ultrasonic Velocity, Viscosity and Refractive Index Investigation on Interacting Blend Solutions of PAA (Poly Acrylic Acid) and PVA (Poly Vinyl Alcohol) in Solvent DMSO (Di methyl Sulphoxide)

    NASA Astrophysics Data System (ADS)

    Nagamani, Chakrala

    2010-11-01

    The present study provides a great insight into the major new research areas like Plasma research (which is yielding a greater understanding of the universe) and Nano Technology Research (which provides many practical uses like Drug Delivery System). The Ultrasonic Velocities, Viscosities and Refractive indices of Poly (Acrylic Acid) and Poly (Vinyl Alcohol) blends in DMSO solutions have been measured over a wide range of composition, concentration and at different temperatures. The variation of Ultrasonic Velocity, derived acoustical parameters, adiabatic compressibility, acoustic impedance, Rao number, molar compressibility and relaxation strength with composition of blend solution was found not linear. This non-linearity has been attributed to incompatibility in conformity with the earlier findings. This behavior was confirmed by Viscometric and interaction parameters studies, as well as by investigation of Refractive index studies. These investigations offer an entirely new and simple approach to the study of the compatibility of polymer blends which is in general obtained by sophisticated techniques of thermal dynamic mechanical and electron microscopic analysis.

  1. "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity.

    PubMed

    Ghimire, Ananta; Zore, Omkar V; Thilakarathne, Vindya K; Briand, Victoria A; Lenehan, Patrick J; Lei, Yu; Kasi, Rajeswari M; Kumar, Challa V

    2015-01-01

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, M(W) 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. PMID:26393601

  2. pH- and ionic-strength-induced structural changes in poly(acrylic acid)-lipid-based self-assembled materials.

    SciTech Connect

    Crisci, A.; Hay, D. N. T.; Seifert, S.; Firestone, M. A.

    2009-01-01

    The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8-11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.

  3. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure. PMID:27046699

  4. Phase-transfer behavior of cross-linked poly(acrylic acid) particles prepared by dispersion polymerization from ionic liquid to water.

    PubMed

    Minami, Hideto; Mizuta, Yusuke; Kimura, Akira

    2012-02-01

    The phase-transfer behavior of poly(acrylic acid) (PAA) particles from the hydrophobic ionic liquid N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)amide phase to the water phase in the particle state, which we reported previously, was examined in more detail. PAA particles were prepared in the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)amide ([Bmim][TFSA]) and the organic solvent chloroform and were extracted. The transfer of PAA particles to water in the particle state was also observed in [Bmim][TFSA] systems. In contrast, the transfer phenomenon was not observed in the chloroform system. It was clarified that water/oil interfacial tension γ(wo) is an important parameter in the extraction of PAA in the particle state from the viewpoint of free energy. When the cationic surfactant tetradecyltrimethylammonium bromide, aqueous solution was used as the extraction medium, the PAA particles were extracted in the particle state from chloroform to water, in which γ(wo) became as low as that of the ionic liquid. This suggests that the phase-transfer phenomenon of PAA particles in the particle state was induced by the ionic liquid's unique property of low interfacial tension with water despite its high hydrophobic character. PMID:22235893

  5. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  6. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  7. Sono-assisted photocatalytic degradation of styrene-acrylic acid copolymer in aqueous media with nano titania particles and kinetic studies.

    PubMed

    Saien, J; Delavari, H; Solymani, A R

    2010-05-15

    The ultrasonic irradiation (28 kHz, 50 W) in pre-cavitations regime was employed to enhance the degradation rate of styrene-acrylic acid copolymer in aqueous media with nano titania photocatalyst particles. A stainless steel cylindrical sono-photo reactor with capacity of about 1.25 L, equipped with a UV lamp (250 W) was used. The influence of operational parameters, i.e. catalyst concentration, pH and temperature was studied and the role of active species was also distinguished. For an initial substrate concentration of 30 mg L(-1), under mild applied conditions of 30 mg L(-1) of photocatalyst, 25 degrees C and natural pH, a degradation and mineralization conversion of 96% and 91%, respectively, was achieved using sono-assisted photocatalysis process in about only 60 min. These efficiencies are much higher than those obtained with only photocatalysis process. Meanwhile, the threshold of cavitations was found corresponded to catalyst concentration of about 70 mg L(-1). Kinetic studies based on Langmuir-Hinshelwood and power law models in addition to the results from radical scavenger usage revealed that for sono-assisted process, the substrate undergoes degradation mainly via electron-hole redox on the surface of titania particles. It is while for the only photocatalysis process, the reaction proceeds via hydroxyl radicals in the solution bulk. PMID:20092940

  8. Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer.

    PubMed

    Rong, Qinfeng; Feng, Feng; Ma, Zhanfang

    2016-01-15

    In this work, a one-pot method was designed to synthesize copper ions, cadmium ions, lead ions and zinc ions doped chitosan-poly(acrylic acid) nanospheres. Those nanospheres can not only produce independent electrochemical signals, but also react with glutaraldehyde (GA) to immobilize different labeled antibodies. Using the modified nanospheres as immunoprobes, a sandwich-type immunosensor was fabricated to simultaneous detection of four tumor markers (CEA, CA199, CA125 and CA242) of pancreatic cancer. This designed immunosensor exhibited good linear relationships in range from 0.1 to 100ng mL(-1) for CEA, 1 to 150UmL(-1) for CA199, CA125 and CA242, corresponding detection limits 0.02ng mL(-1), 0.4UmL(-1), 0.3UmL(-1) and 0.4UmL(-1), respectively. Meanwhile, the immunosensor was applied in analysis of clinical serum samples, whose results were well agreed with the enzyme-linked immunosorbent assay (ELISA), indicating that the proposed immunosensor gave a hope for the identification and validation of specific early cancer. PMID:26318783

  9. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  10. Palladium Nanoparticles Embedded in a Layer-by-Layer Nanoreactor Built with Poly(Acrylic Acid) Using "Electro-Click Chemistry".

    PubMed

    Villalba, Matias; Bossi, Mariano; Pozo, Maria Del; Calvo, Ernesto J

    2016-07-12

    Palladium nanoparticles (Pd NPs) were formed by electrochemical reduction of Pd(NH3)4(3+) ions entrapped by ion exchange in poly(acrylic acid) (PAA) multilayer films grown by the Sharpless "click reaction." The alkyne (PAAalk) and azide (PAAaz) groups were covalently bound to the PAA, and the catalyzed buildup of the multilayer film was performed by electrochemical reduction of Cu(2+) to Cu(+). The size of the Pd NPs formed in Au/(PAAalk)3(PAAaz)2 multilayer films by the click reaction, that is, 50 nm, is larger than that of similar Pd NPs formed in electrostatically bound Au/(PAA)3(PAH)2 nanoreactors, that is, 6-9 nm, under similar conditions. A combination of electrochemical methods and electrochemical quartz crystal microbalance, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), ellipsometry, and scanning electron microscopy has been used to follow these processes. Cyclic voltammetry of the resulting Pd NPs in a 0.1 M H2SO4 solution at 0.1 V·s(-1) shows the PdO reduction peak at the same potential as that on the clean Pd surface unlike the NPs formed in electrostatically self-assembled Au/(PAA)3(PAH)2 nanoreactors with a 0.2 V shift in the cathodic direction most probably because of the strong adsorption of amino groups on the Pd NP surfaces. PMID:27308840

  11. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    PubMed

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property. PMID:25203908

  12. Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Joshi, Akhilesh C.; Rufus, Appadurai L.; Suresh, Sumathi; Chandramohan, Palogi; Rangarajan, Srinivasan; Velmurugan, Sankaralingam

    2013-06-01

    On-line addition of polymeric dispersants, such as poly acrylic acid (PAA), to the steam generator (SG) results in the formation of a better protective inner oxide layer that reduces subsequent corrosion of structural materials. Its dispersive action inhibits the growth of a secondary oxide layer thereby facilitating their easy removal. This paper discusses the effect of PAA on the nature of oxides formed over the surfaces of SG. In the case of carbon steel, the inner oxide layer (magnetite) formed in the presence of PAA was protective. Electrochemical studies showed a minimum concentration of 350 ppb of PAA was found to be optimum. On the monel surface, in the absence of PAA, nickel ferrite was formed while in the presence of PAA, the oxide formed was a mixture of oxides of copper and nickel. A concentration of 700 ppb of PAA was found to be optimum for monel. In the case of incoloy, the effect of PAA was not discernible except for the size and morphology of the crystallites formed.

  13. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  14. Measurement of non-DLVO force on a silicon substrate coated with ammonium poly(acrylic acid) using scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Isobe, Toshihiro; Nakano, Yosuke; Kameshima, Yoshikazu; Nakajima, Akira; Okada, Kiyoshi

    2009-07-01

    The repulsive force originating from steric hindrance of polymers in aqueous solvent was investigated using scanning probe microscopy (SPM). The contact angle (CA) of ammonium poly(acrylic acid) (PAA) solution on the Si surface was measured to estimate the state of the Si substrate. Results of CA measurement show that the Si surface was fully covered with PAA at 0.1 mass% in aqueous solution. The interaction force between the Si tip and the wafer was estimated using the SPM force curve mode. The force curve measured in the ion-exchanged purified water showed the typical relation predicted by Derjaguin-Landau-Verway-Overbeek (DLVO) theory. However, the force curve shape in the 0.1 mass% PAA solution was significantly different. Only a repulsive force was observed at less than about 4 nm of separation distance between the Si wafer and cantilever tip. This distance originated from the steric repulsions of PAA adsorbed onto the Si wafer and cantilever tip.

  15. Radiation grafting of pH-sensitive acrylic acid and 4-vinyl pyridine onto nylon-6 using one- and two-step methods

    NASA Astrophysics Data System (ADS)

    Ortega, Alejandra; Alarcón, Darío; Muñoz-Muñoz, Franklin; Garzón-Fontecha, Angélica; Burillo, Guillermina

    2015-04-01

    Acrylic acid (AAc) and 4-vinyl pyridine (4VP) were γ-ray grafted onto nylon-6 (Ny6) films via pre-irradiation oxidative method. These monomers were grafted using a one-step method to render Ny6-g-(AAc/4VP). A two-step or sequential method was used to render (Ny6-g-AAc)-g-4VP. Random copolymer branches were obtained when the grafting was carried out via one-step method using the two monomers together. The two-step method was applied to graft chains of 4VP on both Ny6 substrate and previously grafted AAc chains (Ny6-g-AAc). The two types of binary copolymers synthesized were characterized to determine the amount of grafted polymers, the thermal behavior (DSC and TGA), the surface composition (XPS), and the pH responsiveness. In the two-step process, it is possible to achieve a higher graft yield, better control of the amount of each monomer, good reversibility in the swelling/deswelling process and shorter time to achieve equilibrium swelling.

  16. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator.

    PubMed

    Ma, Zhi-yuan; Jia, Xin; Zhang, Guo-xiang; Hu, Jia-mei; Zhang, Xiu-lan; Liu, Zhi-yong; Wang, He-yun; Zhou, Feng

    2013-06-12

    This work reports a polydopamine-graft-poly(acrylic acid) (Pdop-g-PAA)-coated controlled-release multi-element compound fertilizer with water-retention function by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) techniques for the first time. The morphology and composition of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and inductively coupled plasma (ICP) emission spectrometry. The results revealed that the stimuli-responsive layer formed by a Pdop inner layer and a PAA outer corona exhibit outstanding selective permeability to charged nutrients and the release rate of encapsulated elements can be tailored by the pH values. At low pH, the Pdop-g-PAA layer can reduce nutrient loss, and at high pH, the coating restrains transportation of negative nutrients but favors the release of cations. Moreover, PAA brushes provide good water-retention property. This Pdop-graft-polymer brushes coating will be effective and promising in the research and development of multi-functional controlled-release fertilizer. PMID:23692274

  17. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  18. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans.

    PubMed

    Friedman, Mendel

    2015-06-01

    Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health. PMID:25989363

  19. The pathways for the removal of acrylamide in model systems using glycine based on the identification of reaction products.

    PubMed

    Liu, Jie; Chen, Fang; Man, Yong; Dong, Jing; Hu, Xiaosong

    2011-09-15

    The reaction between acrylamide and glycine was studied in the aqueous model system heated at 150°C. The main reaction products were identified as C5H10N2O3, C8H15N3O4, C7H12N2O5 and C10H17N3O6 using HPLC-MS/MS, IT-TOF and NMR. Both of the critical intermediates were identified as glyoxylic acid and iminodiacetic acid. The pathways for the removal of acrylamide by glycine were proposed as the Michael addition between acrylamide and glycine with or without the initial oxidation of glycine. The changes in the contents of reactants and products provided quantitative evidence for the above pathways. The addition products between acrylamide and other 14 amino acids were identified by HPLC-MS/MS also. PMID:25212154

  20. [Acrylamide content in potato crisps in Poland].

    PubMed

    Mojska, Hanna; Gielecińska, Iwona; Szponar, Lucjan; Chajewska, Katarzyna

    2006-01-01

    The main source of acrylamide in the diet are thermally processed carbohydrate-rich products, mainly those obtained from potatoes. Acrylamide is a substance with neurotoxic, genotoxic and carcinogenic properties. The International Agency for Research on Cancer classified it as a potential human carcinogen in 1994. The purpose of this study was to assess acrylamide content in 24 samples of crisps randomly collected in Poland in 2004. Acrylamide was determined in the form of brominated derivatives by gas chromatography coupled with mass spectrometry. The average acrylamide content in the crisp samples examined was 998 mg/kg of the product, ranging from 352 to 3647 microg/kg, depending on the type of the crisps. The factor determining the differences in acrylamide content in the product was also the manufacturer. The average content of acrylamide in the crisps produced by three different manufacturers (manufacturers 1-3) was ca. 600-900 microg/kg, and in the crisps produced by manufacturer 4 was ca. 3 times higher. Moreover, substantial differences were found between the same types of crisps produced by the same manufacturers but originating from different manufacturing batches. The results obtained suggest the effects of various technological processes and raw material types on the level of acrylamide in crisps. PMID:17193744

  1. DETERMINATION OF HEMOGLOBIN ADDUCTS FOLLOWING ACRYLAMIDE EXPOSURE

    EPA Science Inventory

    The present project was undertaken to develop new methodologies for biological monitoring of exposure to the toxicant acrylamide in laboratory animals as well as humans. ethods were developed to measure the adducts of acrylamide and its epoxide metabolite glycinamide to cysteine ...

  2. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  3. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.323 Substituted acrylamide. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as substituted acrylamide (PMN P-90-1687)...

  4. Acrylamide encephaloneuropathy due to well water pollution.

    PubMed Central

    Igisu, H; Goto, I; Kawamura, Y; Kato, M; Izumi, K

    1975-01-01

    All five members of a family developed subacutely mental confusion and/or truncal ataxia. Symptoms and signs of polyneuropathy were seen later. The well water in the patients' home contained 400 ppm acrylamide. The present cases are unique in that they are cases of acrylamide poisoning induced by oral intake and percutaneous penetration, and that central nervous system symptoms were prominent. PMID:168322

  5. 40 CFR 721.323 - Substituted acrylamide.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamide. 721.323 Section 721.323 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.323 Substituted acrylamide....

  6. Properties and mechanisms of drug release from matrix tablets containing poly(ethylene oxide) and poly(acrylic acid) as release retardants.

    PubMed

    Zhang, Feng; Meng, Fan; Lubach, Joseph; Koleng, Joseph; Watson, N A

    2016-08-01

    The interactions between poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) in aqueous medium at pH 6.8 were investigated in the current study. We have also studied the effect of interpolymer interactions and various formulation variables, including the molecular weight of PEO, the ratio between PEO and PAA, the crystallinity of PEO, and the presence of an acidifying agent, on the release of theophylline from matrix tablets containing both PEO and PAA as release retardants. At pH 6.8, the synergy in solution viscosity between PEO and PAA as the result of ion-dipole interaction was observed in this study. The release of theophylline from the matrix tablets containing physical mixtures of PEO and PAA was found to be a function of dissolution medium pH because of the pH-dependent interactions between these two polymers. Because of the formation of water insoluble interpolymer complex between PEO and PAA in aqueous medium at pH below 4.0, the release of theophylline was independent of PEO molecular weight and was controlled by Fickian diffusion mechanism in 0.01N hydrochloric acid solution. In comparison, the drug release was a function of PEO molecular weight and followed the anomalous transport mechanism in phosphate buffer pH 6.8. The presence of PAA exerted opposite effects on the release of theophylline in phosphate buffer pH 6.8. In one aspect, theophylline release was accelerated because the erosion of PAA was much faster than that of PEO at pH6.8. On the opposite aspect, theophylline release was slowed down because of the formation of insoluble complex inside the gel layer as the result of the acidic microenvironment induced by PAA, and the increase in the viscosity of the gel layer as the result of the synergy between PEO and PAA. These two opposite effects offset each other. As a result, the release of theophylline remained statistically the same even when 75% PEO in the formulation was replaced with PAA. In phosphate buffer pH 6.8, the release of

  7. L-cysteine, N-acetyl-L-cysteine, and glutathione protect xenopus laevis embryos against acrylamide-induced malformations and mortality in the frog embryo teratogenesis assay (FETAX)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary acrylamide is largely derived from heat-induced reactions between the amino group of the free amino acid asparagine and carbonyl groups of glucose and fructose during heat processing (baking, frying) of plant-derived foods such as potato fries and cereals. After consumption, acrylamide is a...

  8. Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sekhosana, Kutloano Edward; Nyokong, Tebello

    2016-08-01

    Bis{23-(3,4-di-yloxybenzoic acid)-(2(3), 9(10), 16(17), 23(24)-(hexakis-pyridin-3-yloxy phthalocyaninato)} dineodymium (III) acetate (3) is linked to amino-functionalized multi-walled carbon nanotubes (MWCNT) to form 3-MWCNT. Z-scan technique was employed to experimentally determine the nonlinear absorption coefficient from the open-aperture data. The limiting threshold values as low as 0.045 J cm-2 were found in solution. The conjugate (3-MWCNT) gave better optical limiting behavior than complex 3 alone.

  9. Risk assessment of acrylamide in foods.

    PubMed

    Dybing, E; Sanner, T

    2003-09-01

    Daily mean intakes of acrylamide present in foods and coffee in a limited Norwegian exposure assessment study have been estimated to be 0.49 and 0.46 microg per kg body weight in males and females, respectively. Testicular mesotheliomas and mammary gland adenomas have consistently been found in 2-year drinking water rat cancer studies with acrylamide. Acrylamide also shows initiating activity in mouse skin after systemic administration. Since acrylamide is converted to the mutagenic metabolite glycidamide and forms adducts to hemoglobin in rodents and humans, the tumorigenic endpoints in rats were assumed to be an expression of acrylamide genotoxicity. Using the default linear extrapolation methods LED10 and T25, the lifetime cancer hazard after lifelong exposure to 1 microg acrylamide per kg body weight per day, scaled to humans, was calculated to be, on average, 1.3 x 10-3. Using this hazard level and correlating it with the exposure estimates, a lifetime cancer risk related to daily intake of acrylamide in foods for 70 years in males was calculated to be 0.6 x 10-3, implying that 6 out of 10,000 individuals may develop cancer due to acrylamide. For females, the risk values were slightly lower. It must be emphasized that this risk assessment is conservative. A number of processes may result in nonlinearity of the dose-response relationships for acrylamide carcinogenicity in the low-dose region, including detoxication reactions, cell cycle arrest, DNA repair, apoptosis, and immune surveillance. Thus, the true risk levels related to acrylamide intake may be considerably lower. PMID:12805639

  10. Poly (N-isopropylacrylamide)-co-(acrylic acid) microgel/Ag nanoparticle hybrids for the colorimetric sensing of H2O2

    NASA Astrophysics Data System (ADS)

    Han, De-Man; Matthew Zhang, Qiang; Serpe, Michael J.

    2015-01-01

    Poly (N-isopropylacrylamide)-co-(acrylic acid) (pNIPAm-co-AAc) microgels composed of Ag nanoparticles (Ag NPs) have been synthesized and employed for the colorimetric sensing of H2O2. Each pNIPAm-co-AAc microgel, which exhibited a diameter of ~800 nm, contained multiple Ag NPs (diameter of ~5 nm), and solutions of these hybrid materials showed a UV-vis absorption band at ~400 nm. This is due to the excitation of the Ag NP surface plasmon. We go on to show that the intensity of this absorption band is dependent on the concentration of H2O2 in solution. Specifically, in the presence of H2O2 the magnitude of the absorption peak dramatically decreases in a linear fashion over the concentration range of 0.30 to 3.00 μM H2O2 (r2 = 0.9918). We go on to show that the response is selective for H2O2 and can still function in complex mixtures, e.g., we showed that the response is still robust in milk samples. While Ag NPs themselves can exhibit similar responses, this system has many benefits including sample processing and long term stability - i.e., Ag NPs are destabilized in solutions of a certain pH, and aggregate readily. Our microgel/Ag NP hybrids have been shown to be extremely stable and are easily purified prior to use by simple centrifugation/washing protocols. This system is simple and straightforward to use, is low cost, and can be used in complex media, which makes it practical for analyzing complex biological and environmental samples.Poly (N-isopropylacrylamide)-co-(acrylic acid) (pNIPAm-co-AAc) microgels composed of Ag nanoparticles (Ag NPs) have been synthesized and employed for the colorimetric sensing of H2O2. Each pNIPAm-co-AAc microgel, which exhibited a diameter of ~800 nm, contained multiple Ag NPs (diameter of ~5 nm), and solutions of these hybrid materials showed a UV-vis absorption band at ~400 nm. This is due to the excitation of the Ag NP surface plasmon. We go on to show that the intensity of this absorption band is dependent on the concentration

  11. Genetic, Physiological, and Environmental Factors Affecting Acrylamide Concentration in Fried Potato Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The discovery of acrylamide in processed potato products has brought increased interest in the controlling Maillard reaction precursors (reducing sugars and amino acids) in potato tubers. Because of their effects on nonenzymatic browning of fried potato products, reducing sugars and amino acids have...

  12. Formation of High-Capacity Protein-Adsorbing Membranes Through Simple Adsorption of Poly(acrylic acid)-Containing Films at low pH

    PubMed Central

    Bhattacharjee, Somnath; Dong, Jinlan; Ma, Yiding; Hovde, Stacy; Geiger, James H; Baker, Gregory L.; Bruening, Merlin L.

    2012-01-01

    Layer-by-layer polyelectrolyte adsorption is a simple, convenient method for introducing ion-exchange sites in porous membranes. This study demonstrates that adsorption of poly(acrylic acid) (PAA)-containing films at pH 3 rather than pH 5 increases the protein-binding capacity of such polyelectrolyte-modified membranes 3- to 6-fold. The low adsorption pH generates a high density of –COOH groups that function as either ion-exchange sites or points for covalent immobilization of metal-ion complexes that selectively bind tagged proteins. When functionalized with nitrilotriacetate (NTA)-Ni2+ complexes, membranes containing PAA/polyethyleneimine (PEI)/PAA films bind 93 mg of histidine6-tagged (His-tagged) ubiquitin per cm3 of membrane. Additionally these membranes isolate His-tagged COP9 signalosome complex subunit 8 from cell extracts and show >90% recovery of His-tagged ubiquitin. Although modification with polyelectrolyte films occurs by simply passing polyelectrolyte solutions through the membrane for as little as 5 min, with low-pH deposition the protein binding capacities of such membranes are as high as for membranes modified with polymer brushes and 2–3 fold higher than for commercially available IMAC resins. Moreover, the buffer permeabilities of polyelectrolyte-modified membranes that bind His-tagged protein are ~30% of the corresponding permeabilities of unmodified membranes, so protein capture can occur rapidly with low pressure drops. Even at a solution linear velocity of 570 cm/h, membranes modified with PAA/PEI/PAA exhibit a lysozyme dynamic binding capacity (capacity at 10% breakthrough) of ~ 40 mg/cm3. Preliminary studies suggest that these membranes are stable under depyrogenation conditions (1 M NaOH). PMID:22468687

  13. Heterogeneously catalysed partial oxidation of acrolein to acrylic acid--structure, function and dynamics of the V-Mo-W mixed oxides.

    PubMed

    Kampe, Philip; Giebeler, Lars; Samuelis, Dominik; Kunert, Jan; Drochner, Alfons; Haass, Frank; Adams, Andreas H; Ott, Joerg; Endres, Silvia; Schimanke, Guido; Buhrmester, Thorsten; Martin, Manfred; Fuess, Hartmut; Vogel, Herbert

    2007-07-21

    The major objective of this research project was to reach a microscopic understanding of the structure, function and dynamics of V-Mo-(W) mixed oxides for the partial oxidation of acrolein to acrylic acid. Different model catalysts (from binary and ternary vanadium molybdenum oxides up to quaternary oxides with additional tungsten) were prepared via a solid state preparation route and hydrochemical preparation of precursors by spray-drying or crystallisation with subsequent calcination. The phase composition was investigated ex situ by XRD and HR-TEM. Solid state prepared samples are characterised by crystalline phases associated to suitable phase diagrams. Samples prepared from crystallised and spray-dried precursors show crystalline phases which are not part of the phase diagram. Amorphous or nanocrystalline structures are only found in tungsten doped samples. The kinetics of the partial oxidation as well as the catalysts' structure have been studied in situ by XAS, XRD, temperature programmed reaction and reduction as well as by a transient isotopic tracing technique (SSITKA). The reduction and re-oxidation kinetics of the bulk phase have been evaluated by XAS. A direct influence not only of the catalysts' composition but also of the preparation route is shown. Altogether correlations are drawn between structure, oxygen dynamics and the catalytic performance in terms of activity, selectivity and long-term stability. A model for the solid state behaviour under reaction conditions has been developed. Furthermore, isotope exchange experiments provided a closer image of the mechanism of the selective acrolein oxidation. Based on the in situ characterisation in combination with micro kinetic modelling a detailed reaction model which describes the oxygen exchange and the processes at the catalyst more precisely is discussed. PMID:17612723

  14. Electrospun Poly(acrylic acid)/Silica Hydrogel Nanofibers Scaffold for Highly Efficient Adsorption of Lanthanide Ions and Its Photoluminescence Performance.

    PubMed

    Wang, Min; Li, Xiong; Hua, Weikang; Shen, Lingdi; Yu, Xufeng; Wang, Xuefen

    2016-09-14

    Combined with the features of electrospun nanofibers and the nature of hydrogel, a novel choreographed poly(acrylic acid)-silica hydrogel nanofibers (PAA-S HNFs) scaffold with excellent rare earth elements (REEs) recovery performance was fabricated by a facile route consisting of colloid-electrospinning of PAA/SiO2 precursor solution, moderate thermal cross-linking of PAA-S nanofiber matrix, and full swelling in water. The resultant PAA-S HNFs with a loose and spongy porous network structure exhibited a remarkable adsorption capacity of lanthanide ions (Ln(3+)) triggered by the penetration of Ln(3+) from the nanofiber surface to interior through the abundant water channels, which took full advantage of the internal adsorption sites of nanofibers. The effects of initial solution pH, concentration, and contact time on adsorption of Ln(3+) have been investigated comprehensively. The maximum equilibrium adsorption capacities for La(3+), Eu(3+), and Tb(3+) were 232.6, 268.8, and 250.0 mg/g, respectively, at pH 6, and the adsorption data were well-fitted to the Langmuir isotherm and pseudo-second-order models. The resultant PAA-S HNFs scaffolds could be regenerated successfully. Furthermore, the proposed adsorption mechanism of Ln(3+) on PAA-S HNFs scaffolds was the formation of bidentate carboxylates between carboxyl groups and Ln(3+) confirmed by FT-IR and XPS analysis. The well-designed PAA-S HNFs scaffold can be used as a promising alternative for effective REEs recovery. Moreover, benefiting from the unique features of Ln(3+), the Ln-PAA-S HNFs simultaneously exhibited versatile advantages including good photoluminescent performance, tunable emission color, and excellent flexibility and processability, which also hold great potential for applications in luminescent patterning, underwater fluorescent devices, sensors, and biomaterials, among others. PMID:27537710

  15. Radiation-induced synthesis and swelling properties of p(2-hydroxyethyl methacrylate/itaconic acid/oligo (ethylene glycol) acrylate) terpolymeric hydrogels

    NASA Astrophysics Data System (ADS)

    Micic, M.; Stamenic, D.; Suljovrujic, E.

    2012-09-01

    Since it is presumed that by incorporation of pH-responsive (IA) and temperature-responsive (OEGA) co-monomers, it is possible to prepare P(HEMA/IA/OEGA) hydrogels with dual (pH and thermo) responsiveness, the main purpose of our study is to investigate the influence of different mole fractions of IA and especially OEGA on the diversity of the swelling properties of the obtained hydrogels. For that reason, a series of terpolymeric hydrogels with different mole ratios of 2-hydroxyethyl methacrylate (HEMA), itaconic acid (IA) and oligo(ethylene glycol) acrylates (OEGA) was synthesised by gamma radiation. The obtained hydrogels were characterised by swelling studies in the wide pH (2.2-9.0) and temperature range (20-70 °C), confirming dual (pH and thermo) responsiveness and a large variation in the swelling capability. It was observed that the equilibrium swelling of P(HEMA/IA/OEGA) hydrogels, for a constant amount of IA, increased progressively with an increase in OEGA share. On the other hand, the dissociation of carboxyl groups from IA occurs at pH>4; therefore, small mole fractions of IA render good pH sensitivity and a large increase in the swelling capacity of these hydrogels at higher pH values. Additional characterisation of structure and properties was conducted by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and mechanical measurements, confirming that the inherent properties of P(HEMA/IA/OEGA) hydrogels can be significantly tuned by variation in their composition. According to all presented, it seems that the obtained hydrogels can be a beneficial synergetic combination for controlled delivery of bioactive molecules such as drugs, peptides, proteins, etc.

  16. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications. PMID:27172428

  17. Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks for improving optrode-neural tissue interface in optogenetics.

    PubMed

    Lu, Yi; Li, Yanling; Pan, Jianqing; Wei, Pengfei; Liu, Nan; Wu, Bifeng; Cheng, Jinbo; Lu, Caiyi; Wang, Liping

    2012-01-01

    The field of optogenetics has been successfully used to understand the mechanisms of neuropsychiatric diseases through the precise spatial and temporal control of specific groups of neurons in a neural circuitry. However, it remains a great challenge to integrate optogenetic modulation with electrophysiological and behavioral read out methods as a means to explore the causal, temporally precise, and behaviorally relevant interactions of neurons in the specific circuits of freely behaving animals. In this study, an eight-channel chronically implantable optrode array was fabricated and modified with poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)-poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PEDOT/PSS-PVA/PAA IPNs) for improving the optrode-neural tissue interface. The conducting polymer-hydrogel IPN films exhibited a significantly higher capacitance and lower electrochemical impedance at 1 kHz as compared to unmodified optrode sites and showed significantly improved mechanical and electrochemical stability as compared to pure conducting polymer films. The cell attachment and neurite outgrowth of rat pheochromocytoma (PC12) cells on the IPN films were clearly observed through calcein-AM staining. Furthermore, the optrode arrays were chronically implanted into the hippocampus of SD rats after the lentiviral expression of synapsin-ChR2-EYFP, and light-evoked, frequency-dependant action potentials were obtained in freely moving animals. The electrical recording results suggested that the modified optrode arrays showed significantly reduced impedance and RMS noise and an improved SNR as compared to unmodified sites, which may have benefited from the improved electrochemical performance and biocompatibility of the deposited IPN films. All these characteristics are greatly desired in optogenetic applications, and the fabrication method of conducting polymer-hydrogel IPNs can be easily integrated with other modification methods to build a

  18. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices. PMID:22453608

  19. Radiation-grafting of thermo- and pH-responsive poly(N-vinylcaprolactam-co-acrylic acid) onto silicone rubber and polypropylene films for biomedical purposes

    NASA Astrophysics Data System (ADS)

    Ferraz, Caroline C.; Varca, Gustavo H. C.; Ruiz, Juan-Carlos; Lopes, Patricia S.; Mathor, Monica B.; Lugão, Ademar B.; Bucio, Emilio

    2014-04-01

    This work focuses on the effects of gamma-ray irradiation conditions on the stimuli-responsiveness of polypropylene (PP) films and silicone (SR) rubber substrates grafted with N-vinylcaprolactam (NVCL) and acrylic acid (AAc). PP films and SR rubber were modified by simultaneous polymerization and grafting of NVCL and AAc, using pre-irradiation oxidative method at a dose rate of 12.23 kGy h-1 and doses ranging from 5 to 70 kGy. NVCL and AAc solutions (1/1, v/v) at 50% monomer concentration (v/v) in toluene were added to the sample substrates, degassed, sealed and heated at 60 and 70 °C for 12 h. After grafting, the samples were soaked in ethanol and distilled water for 24 h successively, followed by drying under vacuum. Samples were characterized by FTIR-ATR, DSC and swelling measurements. Critical points (pH critical or LCST) of grafts were obtained in a pH-environment (pH ranges from 2.2 to 9) and in a thermo-environment (temperature ranges from 22 to 50 °C). Cytotoxicity evaluation was performed using fibroblast BALB/c 3T3 cells. The relationship between NVCL-co-AAc grafting and radiation dose was different for each substrate, PP and SR. At 50% NVCL/AAc concentration in toluene, grafting values were higher for SR than for PP. Despite the fact that PP-g-(NVCL-co-AAc) membrane presented a cytotoxic profile at the highest experimental concentration assayed, cytotoxicity evaluation revealed noncytotoxic profiles for the membranes synthesized highlighting their applications for biomedical purposes.

  20. Hydrophilic surface modification of acrylate-based biomaterials.

    PubMed

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  1. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.

    PubMed

    Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou

    2014-05-15

    A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater. PMID:24681592

  2. Surface functionalisation of polypropylene hernia-repair meshes by RF-activated plasma polymerisation of acrylic acid and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nisticò, Roberto; Rosellini, Andrea; Rivolo, Paola; Faga, Maria Giulia; Lamberti, Roberta; Martorana, Selanna; Castellino, Micaela; Virga, Alessandro; Mandracci, Pietro; Malandrino, Mery; Magnacca, Giuliana

    2015-02-01

    Hernia diseases are among the most common and diffuse causes of surgical interventions. Unfortunately, still nowadays there are different phenomena which can cause the hernioplasty failure, for instance post-operative prostheses displacements and proliferation of bacteria in the surgical site. In order to limit these problems, commercial polypropylene (PP) and polypropylene/Teflon (PP/PTFE) bi-material meshes were surface functionalised to confer adhesive properties (and therefore reduce undesired displacements) using polyacrylic acid synthesized by plasma polymerisation (PPAA). A broad physico-chemical and morphological characterisation was carried out and adhesion properties were investigated by means of atomic force microscopy (AFM) used in force/distance (F/D) mode. Once biomedical devices surface was functionalised by PPAA coating, metallic silver nanoparticles (AgNPs) with antimicrobial properties were synthesised and loaded onto the polymeric prostheses. The effect of the PPAA, containing carboxylic functionalities, adhesive coating towards AgNPs loading capacity was verified by means of X-ray photoelectron spectroscopy (XPS). Preliminary measurement of the Ag loaded amount and release in water were also investigated via inductively coupled plasma atomic emission spectroscopy (ICP-AES). Promising results were obtained for the functionalised biomaterials, encouraging future in vitro and in vivo tests.

  3. Analytical investigations of poly(acrylic acid) coatings electrodeposited on titanium-based implants: a versatile approach to biocompatibility enhancement.

    PubMed

    De Giglio, E; Cometa, S; Cioffi, N; Torsi, L; Sabbatini, L

    2007-12-01

    A polyacrylic acid film was synthesized on titanium substrates from aqueous solutions via an electroreductive process for the first time. This work was done in order to develop a versatile coating for titanium-based orthopaedic implants that acts as both an effective bioactive surface and an effective anti-corrosion barrier. The chemical structure of the PAA coating was investigated by X-ray photoelectron spectroscopy (XPS). Scanning electron microscopy (SEM) was employed to evaluate the effect of annealing treatment on the morphology of the coatings in terms of their uniformity and porosity. Inductively coupled plasma mass spectrometry was used to measure ion concentrations in ion release tests performed on Ti-6Al-4V sheets modified with PAA coatings (annealed and unannealed). Results indicate that the annealing process produces coatings that possess considerable anti-corrosion performance. Moreover, the availability and the reactivity of the surface carboxylic groups were exploited in order to graft biological molecules onto the PAA-modified titanium implants. The feasibility of the grafting reaction was tested using a single aminoacid residue. A fluorinated aminoacid was selected, and the grafting reaction was monitored both by XPS, using fluorine as a marker element, and via quartz crystal microbalance (QCM) measurements. The success of the grafting reaction opens the door to the synthesis of a wide variety of PAA-based coatings that are functionalized with selected bioactive molecules and promote positive reactions with the biological system interfacing the implant while considerably reducing ion release into surrounding tissues. PMID:17516054

  4. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  5. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion.

    PubMed

    Guggi, Davide; Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2004-04-15

    This study examined the influence of the pH on the mucoadhesive and cohesive properties of polyarcylic acid (PAA) and thiolated PAA. The pH of PAA (molecular mass: 450 kDa) and of a corresponding PAA-cysteine conjugate was adjusted to 3, 4, 5, 6, 7 and 8. The amount of immobilised thiol groups and disulfide bonds was determined via Ellman's reagent. Tablets were compressed out of each pH-batch of both thiolated and unmodified PAA and the swelling behaviour, the disintegration time and the mucoadhesiveness were evaluated. The amount of thiol/disulfide groups per gram thiolated PAA of pH 3 and pH 8 was determined to be 332 +/- 94 micromol and 162 +/- 46 micromol, respectively. The thiolated PAA tablets displayed a minimum four-fold higher water uptake compared to unmodified PAA tablets. A faster and higher water uptake of both polymer types was observed above pH 5. Thiolated polymer tablets showed a 3-20-fold more prolonged disintegration time than unmodified PAA tablets. The cohesiveness of PAA-cysteine conjugate increased at higher pH, whereas the unmodified PAA behaved inversely. A 3-7-fold stronger mucoadhesiveness was observed for the PAA-cysteine conjugate tablets compared to unmodified PAA tablets. For both thiolated and unmodified polymer the mucoadhesiveness was 2-4-fold enhanced below pH 5. The difference in mucoadhesion between the two polymer types was most pronounced at these lower pH values. In this study substantial information regarding the pH-dependence of mucoadhesion and cohesion of unmodified polyacrylates and of thiolated polyacrylates is provided, representing helpful basic information for an ameliorated deployment of these polymers. PMID:15072786

  6. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  7. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  8. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil.

    PubMed

    Ranjha, Nazar M; Ayub, Gohar; Naseem, Shahzad; Ansari, Muhammad Tayyab

    2010-10-01

    In the present work crosslinked hydrogels based on chitosan (CS) and acrylic acid (AA) were prepared by free radical polymerization with various feed compositions using N,N methylenebisacrylamide (MBA) as crosslinking agent. Benzoyl peroxide was used as catalyst. Fourier transform infrared spectra (FTIR) confirmed the formation of the crosslinked hydrogels. This hydrogel is formed due to electrostatic interaction between cationic groups in CS and anionic groups in AA. Prepared hydrogels were used for dynamic and equilibrium swelling studies. For swelling behavior, effect of pH, polymeric and monomeric compositions and degree of crosslinking were investigated. Swelling studies were performed in USP phosphate buffer solutions of varying pH 1.2, 5.5, 6.5 and 7.5. Results showed that swelling increased by increasing AA contents in structure of hydrogels in solutions of higher pH values. This is due to the presence of more carboxylic groups available for ionization. On the other hand by increasing the chitosan content swelling increased in a solution of acidic pH, but this swelling was not significant and it is due to ionization of amine groups present in the structure of hydrogel. Swelling decreased with increase in crosslinking ratio owing to tighter hydrogel structure. Porosity and sol-gel fraction were also measured. With increase in CS and AA contents porosity and gel fraction increased, whereas by increasing MBA content porosity decreased and gel fraction increased. Furthermore, diffusion coefficient (D) and the network parameters i.e., the average molecular weight between crosslinks (M(c)), polymer volume fraction in swollen state (V(2s)), number of repeating units between crosslinks (M(r)) and crosslinking density (q) were calculated using Flory-Rehner theory. Selected samples were loaded with a model drug verapamil. Release of verapamil depends on the ratios of CS/AA, degree of crosslinking and pH of the medium. The release mechanisms were studied by fitting

  9. Crystal structures of (E)-3-(furan-2-yl)-2-phenyl-N-tosyl-acryl-amide and (E)-3-phenyl-2-(m-tol-yl)-N-tosyl-acryl-amide.

    PubMed

    Cheng, Dong; Meng, Xiangzhen; Sheng, Zeyuan; Wang, Shuangming; Duan, Yuanyuan; Li, Ziqian

    2016-06-01

    In the title N-tosyl-acryl-amide compounds, C20H17NO4S, (I), and C23H21NO3S, (II), the conformation about the C=C bond is E. The acryl-amide groups, [-NH-C(=O)-C=C-], are almost planar, with the N-C-C=C torsion angle being -170.18 (14)° in (I) and -168.01 (17)° in (II). In (I), the furan, phenyl and 4-methyl-benzene rings are inclined to the acryl-amide mean plane by 26.47 (11), 69.01 (8) and 82.49 (9)°, respectively. In (II), the phenyl, 3-methyl-benzene and 4-methyl-benzene rings are inclined to the acryl-amide mean plane by 11.61 (10), 78.44 (10) and 78.24 (10)°, respectively. There is an intra-molecular C-H⋯π inter-action present in compound (II). In the crystals of both compounds, mol-ecules are linked by pairs of N-H⋯O hydrogen bonds, forming inversion dimers with an R 2 (2)(8) ring motif. In (I), the dimers are reinforced by C-H⋯O hydrogen bonds and linked by C-H⋯π inter-actions, forming chains along [011]. In the crystal of (II), the dimers are linked via C-H⋯O hydrogen bonds, forming chains along [100]. The chains are further linked by C-H⋯π inter-actions, forming layers parallel to (010). PMID:27308045

  10. Antifouling foldable acrylic IOLs loaded with norfloxacin by aqueous soaking and by supercritical carbon dioxide technology.

    PubMed

    González-Chomón, Clara; Braga, Mara E M; de Sousa, Herminio C; Concheiro, Angel; Alvarez-Lorenzo, Carmen

    2012-10-01

    Cataracts treatment usually involves the extraction of the opaque crystalline lens and its replacement by an intraocular lens (IOL). A serious complication is the occurrence of endophthalmitis, a post-surgery infection mainly caused by Staphylococcus epidermidis, Staphylococcus aureus, and Pseudomonas aeruginosa. IOLs having the ability to load and to release norfloxacin in a controlled way and at efficient therapeutic levels may help to overcome these issues. In this work, acrylic hydrogels combining 2-hydroxyethyl methacrylate (HEMA) and 2-butoxyethyl methacrylate (BEM) at various ratios were prepared to attain biocompatible networks that can be foldable even in the dry state and thus insertable through minor ocular incision, and that load therapeutic amounts of norfloxacin. Acrylamide (AAm) and methacrylic acid (MAAc) were also incorporated as functional comonomers in small proportions. Water sorption, contact angle, protein adsorption, and optical properties of the networks were characterized. BEM notably decreased the T(g) of the networks, but also the loading by immersion in aqueous solution (presoaking). Then, a scCO(2)-based impregnation/deposition (SSI) method was implemented to improve the uptake of the drug. Loading capacities were discussed in terms of the comonomers composition and the employed method and operational conditions. The networks prepared with HEMA/BEM 20:80 vol/vol and processed with supercritical fluids combine adequate mechanical properties, biocompatibility and norfloxacin loading/release, and seem to be suitable for developing norfloxacin-eluting IOLs. PMID:22846620

  11. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA–MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA–MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA–DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  12. Thermo- and pH-sensitive gel membranes based on poly-(acryloyl- L-proline methyl ester)- graft-poly(acrylic acid) for selective permeation of metal ions

    NASA Astrophysics Data System (ADS)

    Hasegawa, Shin; Ohashi, Hitoshi; Maekawa, Yasunari; Katakai, Ryoichi; Yoshida, Masaru

    2005-04-01

    Thermo- and pH-responsive gel membranes were synthesized by γ-ray grafting of pH-responsive poly(acrylic acid) (AAc) onto thermo-responsive polymer gel of acryloyl- L-proline methyl ester (A-ProOMe). The gel membranes of poly(A-ProOMe) with 15 mol% graft chains of AAc exhibited both thermo- and pH-responses. Under the condition (pH 6.0, 30°C) in which the thermo-sensitive unit shrinks and the pH-sensitive unit swells, the selective permeation of Li ion over Co and Ni ions can be achieved.

  13. Dietary acrylamide and risk of prostate cancer.

    PubMed

    Wilson, Kathryn M; Giovannucci, Edward; Stampfer, Meir J; Mucci, Lorelei A

    2012-07-15

    Acrylamide has been designated by IARC as a "probable human carcinogen." High levels are formed during cooking of many commonly consumed foods including French fries, potato chips, breakfast cereal and coffee. Two prospective cohort studies and two case-control studies in Europe found no association between acrylamide intake and prostate cancer. We examined this association in a large prospective cohort of 47,896 US men in the Health Professionals' Follow-up Study, using updated dietary acrylamide intake from food frequency questionnaires in 1986, 1990, 1994, 1998 and 2002. From 1986 through 2006, we documented 5025 cases of prostate cancer, and 642 lethal cancers. We used Cox proportional hazards models to assess the association between acrylamide intake from diet and prostate cancer risk overall as well as risk of advanced or lethal cancer. Acrylamide intake ranged from a mean of 10.5 mcg/day in the lowest quintile to 40.1 mcg/day in the highest quintile; coffee and potato products were largest contributors to intake. The multivariate-adjusted relative risk of prostate cancer was 1.02 (95% confidence interval: 0.92-1.13) for the highest versus lowest quintile of acrylamide intake (p-value for trend = 0.90). Results were similar when restricted to never smokers and to men who had prostate-specific antigen (PSA) tests. There was no significant association for dietary acrylamide and risk of lethal, advanced or high-grade disease, or for different latency periods ranging from 0-4 years to 12-16 years. We found no evidence that acrylamide intake, within the range of US diets, is associated with increased risk of prostate cancer. PMID:21866549

  14. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  15. Acrylamide in Asian foods in Hong Kong.

    PubMed

    Leung, K S; Lin, A; Tsang, C K; Yeung, S T K

    2003-12-01

    About 400 food samples, mainly Asian foods available in Hong Kong, were tested for acrylamide by an LC-MS/MS method using [1, 2, 3-(13)C(3)]-acrylamide as surrogate. The acrylamide levels in the more commonly consumed food items in the food groups such as rice and rice products, noodles, bakery and batter-based products, were generally less than 60 microg kg(-1). Higher levels were found in the food groups such as biscuit-related products and crisps. The highest levels were detected in potato crisps (1500-1700 microg kg(-1)). Lower levels were found in rye flour-based crisps (440 microg kg(-1)), followed by corn-based (65 to 230 microg kg(-1)) and wheat flour-based crisps (61-200 microg kg(-1)), and then rice flour-based crisps (15-42 microg kg(-1)). The acrylamide formation during deep frying of a wheat flour-based product, Chinese fried fritter, was studied. Deep-frying at 170 degrees C resulted in gentle but steady rise in acrylamide content. A steep rise for frying at 210 degrees C was recorded. The moisture content of the product decreased with frying time, but the fat content increased. It is proposed that the reaction for the formation of acrylamide was initiated on the surface and then penetrated into the interior of the food matrix by heat transfer via radiation/conduction and diffusion of hot oil. PMID:14726273

  16. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  17. Preparation of lignosulfonate-acrylamide-chitosan ternary graft copolymer and its flocculation performance.

    PubMed

    He, Kunpeng; Lou, Tao; Wang, Xuejun; Zhao, Wenhua

    2015-11-01

    As flocculant plays an important role in wastewater treatment, searching for high efficient and cost-effective flocculants has always become the challenge in chemical industry. In the current work, lignosulfonate-acrylamide-chitosan ternary copolymer was designed and prepared as a new kind of flocculant. The elemental analysis and structure characterization of FTIR and XRD showed that acrylamide successfully grafted onto the two natural polymers and amorphous macromolecules were formed. The natural polymers-based flocculant was water soluble and pH independent. As it had multiple functional groups from the raw materials, the amphoteric flocculant showed high color removal efficiency to anionic (acid blue 113, >95%), neutral (reactive black 5, >95%) and cationic dyes (methyl orange, >50%) in a wide range of flocculant dosage and pH windows. The ternary flocculant, based on lignosulfonate, chitosan, and acrylamide, might be a promising material in practical applications from the perspective of cost, source and performance. PMID:26432366

  18. Acrylamide: Inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potentially toxic acrylamide is largely derived from the heat-unducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant derived foods including cereals, coffees, almonds, and potatoes. This review surveys and consolidates the followi...

  19. Improved homopolymer separation to enable the application of 1H NMR and HPLC for the determination of the reaction parameters of the graft copolymerization of acrylic acid onto starch.

    PubMed

    Witono, Judy R; Marsman, Jan Henk; Noordergraaf, Inge-Willem; Heeres, Hero J; Janssen, Leon P B M

    2013-04-01

    Graft copolymers of starch with acrylic acid are a promising green, bio based material with many potential applications. The grafting of acrylic acid onto cassava starch in an aqueous medium initiated by Fenton's reagent has been studied. Common grafting result parameters are add-on (yield) and graft efficiency (selectivity). However, the analysis of the reaction products and an accurate determination of these parameters stand or fall with a complete separation of the entangled but ungrafted homopolymer from the grafted product. Therefore, this separation is the core of the newly developed analytical procedure. An appropriate solvent has been selected with dedicated testing from the range methanol, ethanol, acetone, dioxane, 2-propanol, and 1-propanol. Acetone showed the best performance in many respects. It has a high dissolving power for the homopolymer, as well as the highest yield of precipitation for the starch derivatives and it is the most economical in use. After the successful separation, the precipitated graft copolymers could be analyzed quantitatively by nuclear magnetic resonance. The liquid with homopolymer and unreacted monomer was analyzed by high pressure liquid chromatography. Proof of grafting has been found by FTIR and TGA analyses. The mass balance calculation shows a systematic error which appears fairly consistent: 18.0±2.5 wt%. This was used as a correction factor in the calculation of the grafting parameters but more importantly, it means that the method we developed has a high level of repeatability, in the order of 97%. PMID:23435285

  20. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. PMID:25597658

  1. ANTIOXIDANT AND IMMUNOSTIMULANT EFFECT OF CARICA PAPAYA LINN. AQUEOUS EXTRACT IN ACRYLAMIDE INTOXICATED RATS

    PubMed Central

    Mohamed Sadek, Kadry

    2012-01-01

    Introduction: The present study was conducted to evaluate the antioxidant and immunostimulant effects of The Carica papaya fruit aqueous extract (CPF, Caricaceae) against acrylamide induced oxidative stress and improvement of Immune functions which affected by free radicals liberating acrylamide in rats. Material and methods: Sixty male wistar albino rats (195-230g) were assigned to four groups, (fifteen/group). The first group used as control group and received normal physiological saline orally daily. The second group was supplemented with acrylamide 0.05% in drinking water. The third group was gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The fourth group was supplemented with acrylamide 0.05% in drinking water and gastro-gavaged with 250 mg/kg of papaya fruit extract orally on daily basis. The chosen dose of papaya fruit extract was based on the active pharmacological dose range obtained from the orientation study earlier conducted. The experimental period was extended to forty day. At the expiration of the experimental period and night fasting, blood samples were collected from the orbital venous sinus. The sera were separated and used for determining of IgG and IgM and the stomach, liver and kidney homogenates for estimation of MDA, GSH level, SOD and CAT activity as a biomarker of lipid peroxidation and antioxidative stress. Results and discussion: The obtained results revealed that, acrylamide caused significant increases in MDA and decrease of GSH level, SOD and CAT activity due to the oxidative stress induced by acrylamide on membrane polyunsaturated fatty acids in rat’s stomach, liver and kidney while administration of CPF aqueous extract, was significantly ameliorated the increased levels of MDA and decline of GSH, SOD and CAT activity in the stomach, liver and kidney tissues caused by acrylamide toxicity. Meanwhile, CPF aqueous extract significantly increased immune functions (IgG and IgM) while acrylamide significantly

  2. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  3. Role of plant polyphenols in acrylamide formation and elimination.

    PubMed

    Liu, Yanbing; Wang, Pengpu; Chen, Fang; Yuan, Yuan; Zhu, Yuchen; Yan, Haiyang; Hu, Xiaosong

    2015-11-01

    Acrylamide found in thermal-treated foods has led to an intensive and persistent research effort, since it is a neurotoxic, genotoxic and probable carcinogenic compound to humans. Plant polyphenols are the most abundant antioxidants in human diet. Several researches indicated that the polyphenols affected the acrylamide formation during heating. However, the controversial effects of the polyphenols on acrylamide formation were related to their structure, concentrations, and antioxidant capacity, as well as reaction condition. Polyphenols can inhibit acrylamide formation through trapping of carbonyl compounds and preventing against lipid oxidation, while some special polyphenols can enhance the acrylamide content by providing carbonyl groups, accelerating the conversion from 3-aminopropionamide (3-APA) to acrylamide and inhibiting acrylamide elimination. This review concludes the effects of polyphenols in the Maillard reaction and food systems conducted so far, aimed to give an overview on the role of plant polyphenols in acrylamide formation and elimination. PMID:25976790

  4. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  5. 40 CFR 721.10073 - Modified alkyl acrylamide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified alkyl acrylamide (generic... Specific Chemical Substances § 721.10073 Modified alkyl acrylamide (generic). (a) Chemical substance and... acrylamide (PMN P-05-536) is subject to reporting under this section for the significant new uses...

  6. Assessing phytoremediation potentials of selected tropical plants for acrylamide

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In biotechnology, acrylamide is being used in DNA and RNA analysis using the polyacrylamide gel electrophoreses procedure. Polymerized acrylamide is degraded into acrylamide through time; it is converted into a hazardous contaminant that is carcinogenic and neurotoxic to animals and humans. Because ...

  7. Processing treatments for mitigating acrylamide formation in sweetpotato French fries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acrylamide formation in sweetpotato French fries (SPFF) is likely a potential health concern as there is an increasing demand for good-quality fries from carotene-rich sweetpotatoes (SP). This is the first report on acrylamide formation in SPFF as affected by processing methods. Acrylamide levels in...

  8. Development of a high-throughput enzyme-linked immunosorbent assay for the routine detection of the carcinogen acrylamide in food, via rapid derivatisation pre-analysis.

    PubMed

    Preston, Andrew; Fodey, Terence; Elliott, Christopher

    2008-02-11

    The spontaneous formation of the neurotoxic carcinogen acrylamide in a wide range of cooked foods has recently been discovered. These foods include bread and other bakery products, crisps, chips, breakfast cereals, and coffee. To date, the diminutive size of acrylamide (71.08 Da) has prevented the development of screening immunoassays for this chemical. In this study, a polyclonal antibody capable of binding the carcinogen was produced by the synthesis of an immunogen comprising acrylamide derivatised with 3-mercaptobenzoic acid (3-MBA), and its conjugation to the carrier protein bovine thyroglobulin. Antiserum from the immunised rabbit was harvested and fully characterised. It displayed no binding affinity for acrylamide or 3-MBA but had a high affinity for 3-MBA-derivitised acrylamide. The antisera produced was utilised in the development of an ELISA based detection system for acrylamide. Spiked water samples were assayed for acrylamide content using a previously published extraction method validated for coffee, crispbread, potato, milk chocolate and potato crisp matrices. Extracted acrylamide was then subjected to a rapid 1-h derivatisation with 3-MBA, pre-analysis. The ELISA was shown to have a high specificity for acrylamide, with a limit of detection in water samples of 65.7 microgkg(-1), i.e. potentially suitable for acrylamide detection in a wide range of food commodities. Future development of this assay will increase sensitivity further. This is the first report of an immunoassay capable of detecting the carcinogen, as its small size has necessitated current analytical detection via expensive, slower, physico-chemical techniques such as Gas or Liquid Chromatography coupled to Mass Spectrometry. PMID:18215649

  9. pH effect of coagulation bath on the characteristics of poly(acrylic acid)-grafted and poly(4-vinylpyridine)-grafted poly(vinylidene fluoride) microfiltration membranes.

    PubMed

    Ying, Lei; Zhai, Guangqun; Winata, A Y; Kang, E T; Neoh, K G

    2003-09-15

    The poly(acrylic acid)-graft-poly(vinylidene fluoride) (PAAc-g-PVDF) and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) (P4VP-g-PVDF) copolymers were obtained by thermally induced molecular graft copolymerization of acrylic acid (AAc) and 4-vinylpyridine (4VP), respectively, with the ozone-pretreated poly(vinylidene fluoride) (PVDF) in N-methyl-2-pyrrolidone (NMP) solution. Microfiltration (MF) membranes were prepared from the respective copolymers by phase inversion in aqueous media. The effects of pH of the coagulation bath on the physicochemical and morphological characteristics of the membranes were investigated. The surface compositions of the membranes were determined by X-ray photoelectron spectroscopy (XPS). The surface graft concentration of the AAc polymer for the PAAc-g-PVDF MF membrane increased with decreasing pH value of the coagulation bath. Completely opposite pH-dependent behavior was observed for the surface graft concentration of the 4VP polymer in the P4VP-g-PVDF MF membranes. A substantial increase in mean pore size was observed for the PAAc-g-PVDF MF membranes cast in basic coagulation baths of increasing pH. In the case of the P4VP-g-PVDF MF membranes, a substantial increase in mean pore size was observed for membranes cast in low pH (acidic) baths. The permeation rate of aqueous solutions through the PAAc-g-PVDF and P4VP-g-PVDF MF membranes exhibited a reversible dependence on the pH of the solution, with the membranes cast near the neutral pH exhibiting the highest sensitivity to changes in permeate pH. PMID:12962674

  10. Use of protein-acrylamide copolymer hydrogels for measuring protein concentration and activity.

    PubMed

    Brueggemeier, Shawn B; Kron, Stephen J; Palecek, Sean P

    2004-06-15

    We report the development and characterization of a polyacrylamide-based protein immobilization strategy for surface-bound protein assays, including concentration detection, binding affinity, and enzyme kinetics. Glutathione S-transferase (GST) fusion proteins have been labeled with an acrylic moiety and attached to acrylic-functionalized glass surfaces through copolymerization with acrylic monomer. The specific attachment of GST-green fluorescent protein (GFP) fusion protein was more than sevenfold greater than the nonspecific attachment of nonacrylic-labeled GST-GFP; 0.32 ng/mm(2) of surface-attached GST-GFP was detectable by direct measurement of GFP fluorescence and this lower detection limit was reduced to 0.080 ng/mm(2) using indirect antibody-based detection. The polyacrylamide-based surface attachment strategy was also used to measure the kinetics of substrate phosphorylation by the kinase c-Src. Michaelis-Menten kinetic constants for the reaction occurring in solution were K(m) = 2.7 +/- 1.0 microM and V(max) = 8.1 +/- 3.1 (arbitrary units). Kinetic values for the reaction utilizing surface-immobilized substrate were K(m) = 0.36 +/- 0.033 microM and V(max) = 9.7 +/- 0.63 and were found to be independent of the acrylamide concentration within the copolymer. Such a surface attachment strategy should be applicable to the proteomics field and addresses denaturation and dehydration problems associated with protein microarray development. PMID:15158476

  11. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  12. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  13. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds. PMID:25123942

  14. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: Evidence of cyclodextrins cavity dependent complex stoichiometry

    NASA Astrophysics Data System (ADS)

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-01

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions.

  15. Constrained photophysics of partially and fully encapsulated charge transfer probe (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester inside cyclodextrin nano-cavities: evidence of cyclodextrins cavity dependent complex stoichiometry.

    PubMed

    Ghosh, Shalini; Jana, Sankar; Guchhait, Nikhil

    2011-12-15

    The polarity sensitive intra-molecular charge transfer (ICT) emission from (E)-3-(4-Methylaminophenyl) acrylic acid methyl ester (MAPAME) is found to show distinct changes once introduced into the nano-cavities of cyclodextrins in aqueous environment. Movement of the molecule from the more polar aqueous environment to the less polar, hydrophobic cyclodextrin interior is marked by the blue shift of the CT emission band with simultaneous fluorescence intensity enhancement. The emission spectral changes on complexation with the α- and β-CD show different stoichiometries as observed from the Benesi-Hildebrand plots. Fluorescence anisotropy and lifetime measurements were performed to probe the different behaviors of MAPAME in aqueous α- and β-CD solutions. PMID:21996591

  16. A sensitive gas chromatographic-tandem mass spectrometric method for detection of alkylating agents in water: application to acrylamide in drinking water, coffee and snuff.

    PubMed

    Pérez, Hermes Licea; Osterman-Golkar, Siv

    2003-08-01

    A sensitive analytical method for the analysis of acrylamide and other electrophilic agents in water has been developed. The amino acid L-valine served as a nucleophilic trapping agent. The method was applied to the analysis of acrylamide in 0.2-1 mL samples of drinking water or Millipore-filtered water, brewed coffee, or water extracts of snuff. The reaction product, N-(2-carbamoylethyl)valine, was incubated with pentafluorophenyl isothiocyanate to give a pentafluorophenylthiohydantoin (PFPTH) derivative. This derivative was extracted with diethyl ether, separated from excess reagent and impurities by a simple extraction procedure, and analyzed by gas chromatography-tandem mass spectrometry. (2H3)Acrylamide, added before the reaction with L-valine, was used as internal standard. Acrylamide and the related compound, N-methylolacrylamide, gave the same PFPTH derivative. The concentrations of acrylamides were < or = 0.4 nmol L(-1) (< or = 0.03 microg acrylamide L(-1)) in water, 200 to 350 nmol L(-1) in brewed coffee, and 10 to 34 nmol g(-1) snuff in portion bags, respectively. The precision (the coefficient of variation was 5%) and accuracy of the method were good. The detection limit was considerably lower than that of previously published methods for the analysis of acrylamide. PMID:12964603

  17. Update on the National Acrylamide Project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acrylamide, a suspected human carcinogen that may delay fetal development, is a Maillard reaction product that forms when carbohydrate-rich foods are cooked at high temperatures. Processed potato products, including French fries and potato chips, make a substantial contribution to total dietary acry...

  18. Analysis of volatile flavour compounds and acrylamide in roasted Malaysian tropical almond (Terminalia catappa) nuts using supercritical fluid extraction.

    PubMed

    Lasekan, Ola; Abbas, Kassim

    2010-01-01

    Considering the importance of tropical almond nuts as a snack item, a study was conducted to identify the flavour volatiles and acrylamide generated during the roasting of the nuts. The supercritical fluid extracted flavour components revealed 74 aroma active compounds made up of 27 hydrocarbons, 12 aldehydes, 11 ketones, 7 acids, 4 esters, 3 alcohols, 5 furan derivatives a pyrazine, and 2 unknown compounds. While low levels of acrylamide (8-86 microg/kg) were obtained in the roasted nuts, significant (P<0.05) increases occurred in concentration with increased roasting temperature and time. Carboxylic acids were the most abundant volatiles in the roasted almond nuts and less significant (P>0.05) concentration of acrylamide was generated with mild roasting and shorter roasting period. PMID:20510332

  19. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process. PMID:22279908

  20. A review of the interactions between acrylamide, microorganisms and food components.

    PubMed

    Duda-Chodak, A; Wajda, Ł; Tarko, T; Sroka, P; Satora, P

    2016-03-01

    Acrylamide (AA) and its metabolites have been recognized as potential carcinogens, but also they can cause other negative symptoms in human or animal organisms and therefore this class of chemical compounds has attracted a lot of attention. These substances are usually formed when heating asparagine in the presence of compounds that have α-hydroxycarbonyl groups, α,β,γ,δ-diunsaturated carbonyl groups or α-dicarbonyl groups. The acrolein pathway and enzymatic decarboxylation of asparagine, as well as endogenic processes, are other alternative routes to AA formation. It has been demonstrated that the animal model used for examining AA toxicity may not be sufficient to investigate these changes in humans, therefore it is necessary to design an in vitro model, which could provide more accurate insights into the direction of these processes in human organisms. Acrylamide can be metabolized through both oxidative and reductive pathways; moreover, there is also a chance that some representatives of intestinal microbiota are able to transform acrylamide. It was shown that there are various microorganisms, mostly bacteria, that produce amidases, i.e. enzymes decomposing AA. Lactic acid bacteria also appear to demonstrate the ability to use acrylamide as a carbon source, but this still requires further investigation. Another way to prevent AA toxicity is related to the presence of some food compounds, such as certain proteins or polyphenols. There are still lot of gaps in the current knowledge related to AA toxicity, so future potential research directions are presented in this review as well. PMID:26830455

  1. Studies on the stability of acrylamide in food during storage.

    PubMed

    Hoenicke, Katrin; Gatermann, Robert

    2005-01-01

    Acrylamide levels in a variety of food samples were analyzed before and after 3 months of storage at 10 degrees-12 degrees C. The analysis was performed by liquid chromatography tandem mass spectrometry (LC/MS/MS) using deuterium-labeled acrylamide as internal standard. Acrylamide was stable in most matrixes (cookies, cornflakes, crispbread, raw sugar, potato crisps, peanuts) over time. However, slight decreases were determined for dietary biscuits (83-89%) and for licorice confection (82%). For coffee and cacao powder, a significant decrease occurred during storage for 3 or 6 months, respectively. Acrylamide concentrations dropped from 305 to 210 microg/kg in coffee and from 265 to 180 microg/kg in cacao powder. On the contrary, acrylamide remained stable in soluble coffee as well as in coffee substitutes. Reactions of acrylamide with SH group-containing substances were assumed as the cause for acrylamide degradation in coffee and cacao. Spiking experiments with acrylamide revealed that acrylamide concentrations remained stable in baby food, cola, and beer; however, recovery levels dropped in milk powder (71%), sulfurized apricot (53%), and cacao powder (17%). These observations suggest that variations in the acrylamide content of food, especially in coffee and cacao, can vary depending on the storage time because special food constituents and/or reaction products can affect the levels. PMID:15759751

  2. Dietary acrylamide and risk of renal cell cancer.

    PubMed

    Mucci, Lorelei A; Lindblad, Per; Steineck, Gunnar; Adami, Hans-Olov

    2004-05-01

    The detection of acrylamide, classified as a probable human carcinogen, in commonly consumed foods created public health alarm. Thus far, only 2 epidemiologic studies have examined the effect of dietary acrylamide on cancer risk. Presently, we reanalyzed data from a large population-based Swedish case-control study of renal cell cancer. Food frequency data were linked with national food databases on acrylamide content, and daily acrylamide intake was estimated for participants. The risk of renal cell cancer was evaluated for intake of food items with elevated acrylamide levels and for total daily acrylamide dose. Adjusting for potential confounders, there was no evidence that food items with elevated acrylamide, including coffee (OR(highest vs. lowest quartile) = 0.7; 95% CI = 0.4-1.1), crisp breads (OR(highest vs. lowest quartile) = 1.0; 95% CI = 0.6-1.6) and fried potatoes (OR(highest vs. lowest quartile) = 1.1; 95% CI = 0.7-1.7), were associated with a higher risk of renal cell cancer risk. Furthermore, there was no association between estimated daily acrylamide intake through diet and cancer risk (OR(highest vs. lowest quartile) = 1.1; 95% CI = 0.7-1.8; p for trend = 0.8). The results of this study are in line with the 2 previous studies examining dietary acrylamide and suggest there is no association between dietary acrylamide and risk of renal cell cancer. PMID:14999788

  3. Dietary acrylamide intake and risk of premenopausal breast cancer.

    PubMed

    Wilson, Kathryn M; Mucci, Lorelei A; Cho, Eunyoung; Hunter, David J; Chen, Wendy Y; Willett, Walter C

    2009-04-15

    Acrylamide, a probable human carcinogen, is formed during high-temperature cooking of many commonly consumed foods. It is widespread; approximately 30% of calories consumed in the United States are from foods containing acrylamide. In animal studies, acrylamide causes mammary tumors, but it is unknown whether the level of acrylamide in foods affects human breast cancer risk. The authors studied the association between acrylamide intake and breast cancer risk among 90,628 premenopausal women in the Nurses' Health Study II. They calculated acrylamide intake from food frequency questionnaires in 1991, 1995, 1999, and 2003. From 1991 through 2005, they documented 1,179 cases of invasive breast cancer. They used Cox proportional hazards models to assess the association between acrylamide and breast cancer risk. The multivariable-adjusted relative risk of premenopausal breast cancer was 0.92 (95% confidence interval: 0.76, 1.11) for the highest versus the lowest quintile of acrylamide intake (P(trend) = 0.61). Results were similar regardless of smoking status or estrogen and progesterone receptor status of the tumors. The authors found no associations between intakes of foods high in acrylamide, including French fries, coffee, cereal, potato chips, potatoes, and baked goods, and breast cancer risk. They found no evidence that acrylamide intake, within the range of US diets, is associated with increased risk of premenopausal breast cancer. PMID:19224978

  4. Effects of consumer food preparation on acrylamide formation.

    PubMed

    Jackson, Lauren S; Al-Taher, Fadwa

    2005-01-01

    Acrylamide is formed in high-carbohydrate foods during high temperature processes such as frying, baking, roasting and extrusion. Although acrylamide is known to form during industrial processing of food, high levels of the chemical have been found in home-cooked foods, mainly potato- and grain-based products. This chapter will focus on the effects of cooking conditions (e.g. time/temperature) on acrylamide formation in consumer-prepared foods, the use of surface color (browning) as an indicator of acrylamide levels in some foods, and methods for reducing acrylamide levels in home-prepared foods. As with commercially processed foods, acrylamide levels in home-prepared foods tend to increase with cooking time and temperature. In experiments conducted at the NCFST, we found that acrylamide levels in cooked food depended greatly on the cooking conditions and the degree of "doneness", as measured by the level of surface browning. For example, French fries fried at 150-190 degrees C for up to 10 min had acrylamide levels of 55 to 2130 microg/kg (wet weight), with the highest levels in the most processed (highest frying times/temperatures) and the most highly browned fries. Similarly, more acrylamide was formed in "dark" toasted bread slices (43.7-610.7 microg/kg wet weight), than "light" (8.27-217.5 microg/kg) or "medium" (10.9-213.7 microg/kg) toasted slices. Analysis of the surface color by colorimetry indicated that some components of surface color ("a" and "L" values) correlated highly with acrylamide levels. This indicates that the degree of surface browning could be used as an indicator of acrylamide formation during cooking. Soaking raw potato slices in water before frying was effective at reducing acrylamide levels in French fries. Additional studies are needed to develop practical methods for reducing acrylamide formation in home-prepared foods without changing the acceptability of these foods. PMID:16438318

  5. Swelling of radiation crosslinked acrylamide-based microgels and their potential applications

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.

    2005-10-01

    Crosslinked polyacrylamide PAAm and acrylamide-Na-acrylate P(AAm-Na-AAc) microgels were prepared by electron beam irradiation. It was found that the dose required for crosslinking depends on the polymer moisture content, so that the dose to obtain PAAm of maximum gel fraction was over 40 and 20 kGy for dry and moist PAAm, respectively. The structural changes in irradiated PAAm were investigated using FTIR and SEM. The swelling property of such microgels in distilled water and real urine solution was determined and crosslinked polymers reached their equilibrium swelling state in a few minutes. As the gel content and crosslinking density decrease, the swelling of the microgels increases. The ability of the microgels to absorb and retain large amount of solutions suggested their possible uses in horticulture and in hygienic products such as disposable diapers.

  6. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings

    NASA Technical Reports Server (NTRS)

    Myers, P. N.; Mitchell, C. A.

    1998-01-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation.

  7. Optimizing the calcium content of a copolymer acrylamide gel matrix for dark-grown seedlings.

    PubMed

    Myers, P N; Mitchell, C A

    1998-11-01

    A copolymer acrylamide acrylate gel was investigated as the sole root matrix for dark-grown seedlings of soybean (Glycine max Merr. 'Century 84'). Increasing Ca2+ in the hydrating solution of the hydrogel from 1 to 10 mM decreased its water-holding capacity from 97 to 46 mL g-1, yet water potential of the medium remained high, sufficient for normal plant growth at all Ca2+ concentrations tested. Elongation rate of dark-grown soybean seedlings over a 54-hour period was 0.9, 1.5, and 1.8 mm h-1 with 1.0, 2.5, or 5.0 mM Ca2+, respectively, but did not increase with further increases in Ca2+ concentration. Further study revealed that Na+ was released from the hydrogel medium and was taken up by the seedlings as Ca2+ increased in the medium. In dry hypocotyl tissue, sodium content correlated negatively with calcium content. Despite the presence of Na+ in the hydrogel, seedling growth was normal when adequate Ca2+ was added in the hydrating solution. Acrylamide hydrogels hold good potential as a sole growth matrix for short-term experiments with dark-grown seedlings without irrigation. PMID:11542673

  8. Modification of HTPB-based polyurethane with temperature-sensitive poly(N-isopropyl acrylamide) for biomaterial usage.

    PubMed

    Yang, Jen Ming; Yang, Shu Jyuan; Lin, Hao Tzu; Chen, Jan Kan

    2007-01-01

    Hydroxyl-terminated polybutadiene (HTPB)-based polyurethane with dimethyol propionic acid (DPA) as chain extender was synthesized by solution polymerization. The HTPB-based polyurethane was modified by UV radiation with N-isopropyl acrylamide monomer to get poly(N-isopropyl acrylamide)-modified polyurethane (PUDPANIPAAm). The cohesive energy (E(coh)), molar volume (V), solubility parameter (delta), molecular weight (W(M)), volume per gram (V(g)), and the density (1/V(g)) of PUDPANIPAAm were calculated by group contribution methods. To evaluate the application of PUDPANIPAAm for wound dressing and transplantation of cell sheet, the measurement of water content, water vapor transmission rate, and gas permeation on the PUDPANIPAAm membrane was evaluated. The biocompatibility of these membranes, cell adhesion, and proliferation assay were conducted in the cell culture. The effect of thermosensitivity of poly(N-isopropyl acrylamide) on cell detachment was also evaluated in the primary study. The results showed that these PUDPANIPAAm membranes are thermosensitive. The modification of PU with poly(N-isopropyl acrylamide) reduced the water vapor transmission rate and permeability of gas through PUDPANIPAAm membrane. PUDPANIPAAm membranes could support cell adhesion and growth. Owing to the thermosensitive nature of poly(N-isopropyl acrylamide), the relative cell numbers detached from PUDPANIPAAm membranes were larger than those detached from the polystyrene dish. PMID:16649182

  9. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide.

    PubMed

    Dange, C; Phan, T N T; André, V; Rieger, J; Persello, J; Foissy, A

    2007-11-01

    Adsorption on ZnO of sodium poly(acrylate) (PAA), sodium poly(styrene sulfonate) (PSS) and a monomer surfactant [hydroxyethylidene diphosphonate (HEDP)] was investigated in suspensions initially equilibrated at pH 7. Results demonstrate interplay in the adsorption mechanism between zinc complexation, salt precipitation, and ZnO dissolution. In the case of PAA, the adsorption isotherm exhibits a maximum attributed to the precipitation of zinc polyacrylate. PSS and HEDP formed high-affinity adsorption isotherms, but the plateau adsorption of HEDP was significantly lower than that of PSS. The adsorption isotherm of each additive is divided into two areas. At low additive concentration (high zinc/additive ratio), the total zinc concentration in the solution decreased and the pH increased upon addition. At a higher additive ratio, zinc concentration and pH increased with the organic concentration. The increase in pH is due to the displacement of hydroxyl ions from the surface and the increase in zinc concentration results from the dissolution of ZnO due to the complexation of zinc ions by the organics. The stability of the ZnO dispersions was investigated by measurement of the particle size distribution after addition of various amounts of polymers. The three additives stabilized the ZnO dispersions efficiently once full surface coverage was reached. PMID:17720181

  10. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  11. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  12. Advances in acrylic-alkyd hybrid synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  13. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  14. A new derivatization approach with D-cysteine for the sensitive and simple analysis of acrylamide in foods by liquid chromatography-tandem mass spectrometry.

    PubMed

    Lim, Hyun-Hee; Shin, Ho-Sang

    2014-09-26

    A liquid chromatography-tandem mass spectrometry method (LC-MS/MS) was developed in order to determine the amount of acrylamide in foods after derivatization with d-cysteine. The sulfhydryl group of d-cysteine was added at the β-site double bond of acrylamide to form 2-amino-3-(3-amino-3-oxo-propyl)sulfanyl-propanoic acid. Deuterated acrylamide (acrylamide-d3) was chosen as the internal standard (IS) for analyzing the food samples. Acrylamide was extracted from 2.0 g of food sample with 6 mL of methylene chloride, and the organic extract was diluted with 3 mL of hexane, and then the analyte was back-extracted with 0.5 mL of pure water. The derivatization of acrylamide was performed in the water extract. The best reaction conditions (3.0mg of d-cysteine, a pH 6.5, a reaction temperature of 90°C, and a heating time of 50 min) were established by the variation of parameters. The formed derivative was injected into the LC-MS/MS without further extraction or purification procedures. Separation and detection were improved with the use of an ion-pairing reagent of perfluorooctanoic acid. Under the established conditions, the limits of detection and the limits of quantification were 0.04 μg/kg and 0.14 μg/kg, respectively, and the inter-day relative standard deviation was less than 8% at concentrations of 20 and 100 μg/kg. The method was successfully applied to determine the amount of acrylamide in potato chips, French fries, and coffee. PMID:25130090

  15. Reversible abnormalities of the Hering Breuer reflex in acrylamide neuropathy.

    PubMed Central

    Satchell, P

    1985-01-01

    The sensitivity of the Hering Breuer reflex was compared in anaesthetised rabbits before, during and after the induction of acrylamide neuropathy, and was measured as the tracheal pressure which produced 30 seconds of apnoea. After four weeks of acrylamide (400 mg/kg total dose) there was ataxia and the conduction velocity of hindlimb motor nerves was significantly reduced. At this time there was a marked and reproducible reduction in the sensitivity of the Hering Breuer reflex. The ataxia resolved within a month of stopping acrylamide administration. Three months after the cessation of acrylamide the sensitivity of the Hering Breuer reflex had increased significantly but had not returned to normal. PMID:2993526

  16. Acrylamide catalytically inhibits topoisomerase II in V79 cells.

    PubMed

    Sciandrello, Giulia; Mauro, Maurizio; Caradonna, Fabio; Catanzaro, Irene; Saverini, Marghereth; Barbata, Giusi

    2010-04-01

    The vinyl monomer acrylamide is characterized by the presence of an alpha,beta-unsaturated carbonyl group that makes it reactive towards thiol, hydroxyl or amino groups and towards the nucleophilic centers in DNA. The ability of acrylamide to chemically modify protein thiols has prompted us to consider topoisomerase II as one possible target of acrylamide, since agents targeting protein sulfhydryl groups act as either catalytic inhibitors or poisons of topoisomerase II. Nuclear extracts from V79 Chinese hamster cells incubated with acrylamide reduced topoisomerase II activity as inferred by an inability to convert kinetoplast DNA to the decatenated form. Nuclear extracts incubated with acrylamide pre-incubated with DTT converted kinetoplast DNA to the decatenated form, suggesting that acrylamide influences topoisomerase II activity through reaction with sulfhydryl groups on the enzyme. Furthermore, acrylamide did not induce the pBR322 DNA cleavage, as assessed by cleavage assay; thus, it cannot be regarded as a poison of topoisomerase II. As a catalytic inhibitor, acrylamide antagonizes the effect of etoposide, a topoisomerase II poison, as determined by clonogenic assay in V79 cells. This antagonism is confirmed by band depletion assay, from which it can be inferred that acrylamide reduces the level of catalytically active cellular topoisomerase II available for the action of etoposide. PMID:20006698

  17. Estimation of the dietary acrylamide exposure of the Polish population.

    PubMed

    Mojska, Hanna; Gielecińska, Iwona; Szponar, Lucjan; Ołtarzewski, Maciej

    2010-01-01

    The objective of our study was to determine acrylamide content in the Polish foods and to assess the average dietary acrylamide exposure of the Polish population. We analysed the acrylamide content in Polish food using GCQ-MS/MS method. The daily dietary acrylamide exposure was computed using a probabilistic approach for the total Polish population (1-96 years) and for the following age groups: 1-6, 7-18 and 19-96, using Monte Carlo simulation technique. To assess the Polish population exposure to acrylamide present in food, food consumption data was taken from the 'Household Food Consumption and Anthropometric Survey in Poland'. The mean content of acrylamide in tested 225 samples of foodstuffs taken randomly all over Poland, ranged widely from 11 to 3647 microg/kg of product. For the total Polish population (1-96 years) the estimated acrylamide mean exposure is 0.43 microg/kg of body weight per day. The main sources of dietary acrylamide in Polish population were as follow: bread--supplied 45% of total dietary acrylamide intake, French fries and potato crisps--23%, roasted coffee--19%. PMID:20470853

  18. Multiplexing holograms in an acrylamide photopolymer

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Ortuño, Manuel; Márquez, Andrés; Gallego, Sergi; Pascual, Inmaculada

    2006-04-01

    A peristrophic multiplexing method is used to store various diffraction gratings at the same spot in the material. This material is formed of acrylamide photopolymers which are considered interesting materials for recording holographic memories. They have high diffraction efficiency (ratio between diffracted and incident beams), high energetic sensitivity and optical quality, and developing processes are not necessary. In this work, the photopolymer is composed of acrylamide (AA) as the polymerizable monomer, triethanolamine (TEA) as radical generator, N,N'methylene-bis-acrylamide (BMA) as crosslinker, yellowish eosin (YE) as sensitizer and a binder of polyvinyl alcohol (PVA). The layers of material obtained are approximately 1 mm thick. Using holographic recording schedules, the exposure energy each hologram should receive in order to achieve uniform diffraction efficiency is optimized. The purpose of these recording schedules is to enable full advantage to be taken of the whole dynamic range of the material and to share it between the individual holograms. The Scheduled Exposure Method (SEM) and the Incremental Exposure Method (IEM) are the two multiplexing schedules used to determine the recording times. Having determined these times, the results obtained with both methods are compared to ascertain which method enables the greatest number of holograms to be recorded with the highest, most uniform diffraction efficiencies.

  19. Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp

    PubMed Central

    Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki

    1993-01-01

    Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751

  20. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  1. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-01-01

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated. PMID:26248072

  2. A method for the determination of acrylamide in a broad variety of processed foods by GC-MS using xanthydrol derivatization.

    PubMed

    Yamazaki, Kumiko; Isagawa, Satoshi; Kibune, Nobuyuki; Urushiyama, Tetsuo

    2012-01-01

    A novel GC-MS method was developed for the determination of acrylamide, which is applicable to a variety of processed foods, including potato snacks, corn snacks, biscuits, instant noodles, coffee, soy sauces and miso (fermented soy bean paste). The method involves the derivatization of acrylamide with xanthydrol instead of a bromine compound. Isotopically labelled acrylamide (d₃-acrylamide) was used as the internal standard. The aqueous extract from samples was purified using Sep-Pak™ C₁₈ and Sep-Pak™ AC-2 columns. For amino acid-rich samples, such as miso or soy sauce, an Extrelut™ column was used for purification or extraction. After reaction with xanthydrol, the resultant N-xanthyl acrylamide was determined by GC-MS. The method was validated for various food matrices and showed good linearity, precision and trueness. The limit of detection and limit of quantification ranged 0.5-5 and 5-20 µg kg⁻¹), respectively. The developed method was applied as an exploratory survey of acrylamide in Japanese foods and the method was shown to be applicable for all samples tested. PMID:22257340

  3. Various difunctionalizations of acrylamide: an efficient approach to synthesize oxindoles.

    PubMed

    Li, Chen-Chen; Yang, Shang-Dong

    2016-05-11

    Various difunctionalizations of acrylamide can not only provide a simple approach to form a wide scope of functionalized oxindoles, but can also be applied and generated easily. This review concludes different difunctionalizations of acrylamide to synthesize oxindoles based on the mechanistic aspects. The goal is to encourage further mechanistic studies hopefully leading to an in-depth understanding of this strategy. PMID:27091597

  4. Assessment of acrylamide toxicity using a battery of standardised bioassays.

    PubMed

    Zovko, Mira; Vidaković-Cifrek, Željka; Cvetković, Želimira; Bošnir, Jasna; Šikić, Sandra

    2015-12-01

    Acrylamide is a monomer widely used as an intermediate in the production of organic chemicals, e.g. polyacrylamides (PAMs). Since PAMs are low cost chemicals with applications in various industries and waste- and drinking water treatment, a certain amount of non-polymerised acrylamide is expected to end up in waterways. PAMs are non-toxic but acrylamide induces neurotoxic effects in humans and genotoxic, reproductive, and carcinogenic effects in laboratory animals. In order to evaluate the effect of acrylamide on freshwater organisms, bioassays were conducted on four species: algae Desmodesmus subspicatus and Pseudokirchneriella subcapitata, duckweed Lemna minor and water flea Daphnia magna according to ISO (International Organization for Standardisation) standardised methods. This approach ensures the evaluation of acrylamide toxicity on organisms with different levels of organisation and the comparability of results, and it examines the value of using a battery of low-cost standardised bioassays in the monitoring of pollution and contamination of aquatic ecosystems. These results showed that EC50 values were lower for Desmodesmus subspicatus and Pseudokirchneriella subcapitata than for Daphnia magna and Lemna minor, which suggests an increased sensitivity of algae to acrylamide. According to the toxic unit approach, the values estimated by the Lemna minor and Daphnia magna bioassays, classify acrylamide as slightly toxic (TU=0-1; Class 1). The results obtained from algal bioassays (Desmodesmus subspicatus and Pseudokirchneriella subcapitata) revealed the toxic effect of acrylamide (TU=1-10; Class 2) on these organisms. PMID:26751864

  5. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  6. 40 CFR 721.320 - Acrylamide-substituted epoxy.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.320 Acrylamide-substituted epoxy. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylamide-substituted epoxy (PMN...

  7. The acrylamide problem: a plant and agronomic science issue.

    PubMed

    Halford, Nigel G; Curtis, Tanya Y; Muttucumaru, Nira; Postles, Jennifer; Elmore, J Stephen; Mottram, Donald S

    2012-05-01

    Acrylamide, a chemical that is probably carcinogenic in humans and has neurological and reproductive effects, forms from free asparagine and reducing sugars during high-temperature cooking and processing of common foods. Potato and cereal products are major contributors to dietary exposure to acrylamide and while the food industry reacted rapidly to the discovery of acrylamide in some of the most popular foods, the issue remains a difficult one for many sectors. Efforts to reduce acrylamide formation would be greatly facilitated by the development of crop varieties with lower concentrations of free asparagine and/or reducing sugars, and of best agronomic practice to ensure that concentrations are kept as low as possible. This review describes how acrylamide is formed, the factors affecting free asparagine and sugar concentrations in crop plants, and the sometimes complex relationship between precursor concentration and acrylamide-forming potential. It covers some of the strategies being used to reduce free asparagine and sugar concentrations through genetic modification and other genetic techniques, such as the identification of quantitative trait loci. The link between acrylamide formation, flavour, and colour is discussed, as well as the difficulty of balancing the unknown risk of exposure to acrylamide in the levels that are present in foods with the well-established health benefits of some of the foods concerned. PMID:22345642

  8. Acrylamide exposure impairs blood-cerebrospinal fluid barrier function

    PubMed Central

    Yao, Xue; Yan, Licheng; Yao, Lin; Guan, Weijun; Zeng, Fanxu; Cao, Fuyuan; Zhang, Yanshu

    2014-01-01

    Previous studies show that chronic acrylamide exposure leads to central and peripheral neu-ropathy. However, the underlying mechanisms remained unclear. In this study, we examined the permeability of the blood-cerebrospinal fluid barrier, and its ability to secrete transthyretin and transport leptin of rats exposed to acrylamide for 7, 14, 21 or 28 days. Transthyretin levels in cerebrospinal fluid began to decline on day 7 after acrylamide exposure. The sodium fluorescein level in cerebrospinal fluid was increased on day 14 after exposure. Evans blue concentration in cerebrospinal fluid was increased and the cerebrospinal fluid/serum leptin ratio was decreased on days 21 and 28 after exposure. In comparison, the cerebrospinal fluid/serum albumin ratio was increased on day 28 after exposure. Our findings show that acrylamide exposure damages the blood-cerebrospinal fluid barrier and impairs secretory and transport functions. These changes may underlie acrylamide-induced neurotoxicity. PMID:25206854

  9. Acrylamide exposure impairs blood-cerebrospinal fluid barrier function.

    PubMed

    Yao, Xue; Yan, Licheng; Yao, Lin; Guan, Weijun; Zeng, Fanxu; Cao, Fuyuan; Zhang, Yanshu

    2014-03-01

    Previous studies show that chronic acrylamide exposure leads to central and peripheral neu-ropathy. However, the underlying mechanisms remained unclear. In this study, we examined the permeability of the blood-cerebrospinal fluid barrier, and its ability to secrete transthyretin and transport leptin of rats exposed to acrylamide for 7, 14, 21 or 28 days. Transthyretin levels in cerebrospinal fluid began to decline on day 7 after acrylamide exposure. The sodium fluorescein level in cerebrospinal fluid was increased on day 14 after exposure. Evans blue concentration in cerebrospinal fluid was increased and the cerebrospinal fluid/serum leptin ratio was decreased on days 21 and 28 after exposure. In comparison, the cerebrospinal fluid/serum albumin ratio was increased on day 28 after exposure. Our findings show that acrylamide exposure damages the blood-cerebrospinal fluid barrier and impairs secretory and transport functions. These changes may underlie acrylamide-induced neurotoxicity. PMID:25206854

  10. Investigation of Changes in the Microscopic Structure of Anionic Poly(N-isopropylacrylamide-co-Acrylic acid) Microgels in the Presence of Cationic Organic Dyes toward Precisely Controlled Uptake/Release of Low-Molecular-Weight Chemical Compound.

    PubMed

    Kureha, Takuma; Shibamoto, Takahisa; Matsui, Shusuke; Sato, Takaaki; Suzuki, Daisuke

    2016-05-10

    Changes in a microscopic structure of an anionic poly(N-isopropylacrylamide-co-acrylic acid) microgel were investigated using small- and wide-angle X-ray scattering (SWAXS). The scattering profiles of the microgels were analyzed in a wide scattering vector (q) range of 0.07 ≤ q/nm(-1) ≤ 20. In particular, the microscopic structure of the microgel in the presence of a cationic dye rhodamine 6G (R6G) was characterized in terms of its correlation length (ξ), which represents the length scale of the spatial correlation of the network density fluctuations, and characteristic distance (d*), which originated from the local packing of isopropyl groups of two neighboring chains. In the presence of cationic R6G, ξ exhibited a divergent-like behavior, which was not seen in the absence of R6G, and d* was decreased with decreasing the volume of the microgel upon increasing temperature. At the same time, the amount of R6G adsorbed per unit mass of the microgel increased upon heating. These results suggested that a coil-to-globule transition of the poly(N-isopropylacrylamide) chains in the present anionic microgel occurred because of efficiently screened, thus, short ranged electrostatic repulsion between the charged groups, and hydrophobic interaction between the isopropyl groups in the presence of cationic R6G. The combination of hydrophobic and electrostatic interaction between the cationic dye and the microgel affected the separation and volume transition behavior of the microgel. PMID:27101468

  11. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media. PMID:26540539

  12. Investigations on the effect of antioxidant type and concentration and model system matrix on acrylamide formation in model Maillard reaction systems.

    PubMed

    Constantinou, Costas; Koutsidis, Georgios

    2016-04-15

    The formation of acrylamide in model Maillard reaction systems containing phenolic compounds was examined, with regards to phenolic type, concentration, and model system matrix. In dry glyoxal/asparagine waxy maize starch (WMS) systems, 9 out of 10 examined phenolics demonstrated an inhibiting effect, with the most significant reductions (55-60%) observed for caffeoylquinic acids. In WMS glucose/asparagine systems, examination of three different concentrations (0.1, 0.5 and 1 μmol/g WMS) suggested a 'minimum effective concentration' for epicatechin and caffeic acid, whilst addition of caffeoylquinic acids resulted in dose-dependent acrylamide reduction (25-75%). The discordant results of further studies utilising different matrices (dry and wet-to-dry) indicated that, apart from the nature and chemical reactivity, the matrix and the physical state of the reactants might be important for acrylamide formation. PMID:26617015

  13. A national effort to identify fry processing clones with low acrylamide-forming potential

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acrylamide is a suspected human carcinogen. Processed potato products, such as chips and fries, contribute to dietary intake of acrylamide. One of the most promising approaches to reducing acrylamide consumption is to develop and commercialize new potato varieties with low acrylamide-forming potenti...

  14. [Hydrodynamic properties of exopolysaccharide-acrylamide copolymer].

    PubMed

    Votselko, S K

    2000-01-01

    The method for producing copolymer EPAA of exopolysaccharide (EPS)--polyacrylamide (PAA) has been presented which was based on microbial exopolysaccharides (enposane, xampane), their mixture and model EPS (xanthane sigma, rodopol P-23). The copolymer was produced by acrylamide polymerization in 1-2% water solutions of polysaccharides, the concentration of acrylamide in the reaction mixture being 4.7-2% and that of polysaccharides 0.1-1% of the weight. Hydrodynamic parameters of the studied polymers have been determined, their heterogenity as to molecular-weight characteristics has been demonstrated. Molecular-weight distribution of copolymers showed that the content of low-molecular fractions decreased, thus the Mw values were (0.08-0.2) x 10(6) Da in contrast to that of exopolysaccharides possessing Mw (1.2-0.4) x 10(6) Da and of polyacrylamide possessing Mw within (2-30) x 10(6) Da. The value of efficient viscosity of copolymers ranged from 120 to 131 mPa.s that was lower than that of polyacrylamide (500 mPa.s), and higher than that of exopolysaccharides (42 mPa.s), and it depended on the sample, raw material, production conditions. A possibility has been shown to produce a new copolymer based on microbial polysaccharides enposane and xampane in the process of acrylamide polymerization. It has been found out that the studied copolymers EPAA differ from initial ones as to their hydrodynamical properties, which determines their preference: better solubility, good glueing properties, prolonged term of preservation, resistance to bacterial pollution. PMID:11300081

  15. Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions

    PubMed Central

    Prabhu, Rupal; Altman, Elliot

    2012-01-01

    The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753

  16. Effects of water-soluble spacers on the hydrophobic association of fluorocarbon-modified poly(acrylamide)

    SciTech Connect

    Hwang, F.S.; Hogen-Esch, T.E.

    1995-04-24

    A number of acrylamide-acrylate copolymers were synthesized in which the acrylate (CH{sub 2}{double_bond}CHCOO(CH{sub 2}CH{sub 2}O){sub n}R) is hydrophobic on account of the presence of a 1,1-dihydroperfluorooctyl group or a dodecyl group connected to the acrylate via a {minus}(CH{sub 2}CH{sub 2}O){sub n} hydrophilic spacer (n = 0--3). Copolymerization of these monomers was initiated by sodium metabisulfite and ammonium persulfate at 60 C in aqueous media in the presence of surfactants and acetone. The low shear viscosities of 0.5 wt % solutions of these copolymers as a function of comonomer molar content gave bell-shaped curves having maxima at 0.10--0.60 mol % comonomer, consistent with competitive inter- and intramolecular hydrophobic association. The copolymers having perfluorocarbon pendent groups gave higher viscosities at lower comonomer content. Furthermore, for both the hydrocarbon- and perfluorocarbon-containing copolymers the viscosities increased, and the comonomer content at the viscosity maximum decreased, with increasing spacer length. The increased effectiveness of the longer spacers is attributed to entropy effects in the formation of polymer assemblies.

  17. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    PubMed

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  18. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent. PMID:24106807

  19. Mutagenicity assessment of acrylate and methacrylate compounds and implications for regulatory toxicology requirements.

    PubMed

    Johannsen, F R; Vogt, Barbara; Waite, Maureen; Deskin, Randy

    2008-04-01

    Esters of acrylic acid and methacrylic acid, more commonly known as acrylates and methacrylates, respectively, are key raw materials in the coatings and printing industry, with several of its chemical class used in food packaging. The results of over 200 short-term in vitro and in vivo mutagenicity studies available in the open literature have been evaluated. Despite differences in acrylate or methacrylate functionality or in the number of functional groups, a consistent pattern of test response was seen in a typical regulatory battery of mutagenicity tests. No evidence of point mutations was observed when acrylic acid or over 60 acrylates and methacrylates were investigated in Salmonella bacterial tests or in hprt mutation tests mammalian cells, and no evidence of a mutagenic effect was seen when tested in whole animal clastogenicity and/or aneuploidy (chromosomal aberration/micronucleus) studies. Consistent with the in vivo testing results, acrylic acid exhibited no evidence of carcinogenicity in chronic rodent cancer bioassays. In contrast, acrylic acid and the entire acrylate and methacrylate chemical class produced a consistently positive response when tested in the mouse lymphoma assay and/or other in vitro mammalian cell assays designed to detect clastogenicity. The biological relevance of this in vitro response is questioned based on the non-concordance of in vitro results with those of in vivo studies addressing the same mutagenic endpoint (clastogenicity). Thus, in short-term mutagenicity tests, the acrylates and methacrylates behave as a single chemical category, and genotoxicity behavior of a similar chemical can be predicted with confidence by inclusion within this chemical class, thus avoiding unnecessary testing. PMID:18346829

  20. Effects of acrylamide on primary neonatal rat astrocyte functions.

    PubMed

    Aschner, Michael; Wu, Qi; Friedman, Marvin A

    2005-08-01

    The present study assessed biochemical endpoints indicative of acrylamide toxicity in astrocyte cultures derived from neonatal rat pups. Given earlier reports on the possible ability of acrylamide to induce astrocytomas in the Fischer 344 rat, we performed studies in neonatal rat astrocyte cultures from the Fischer 344 to assess the ability of acrylamide to induce astrocytic proliferation. Measurements on astrocytic proliferation included [3H]-leucine incorporation, [3H]-thymidine incorporation, and changes in proliferating cell nuclear antigen (PCNA). Although acrylamide (0.1 and 1 mM for 7, 11, 15, or 20 days) did not significantly (P > 0.05) affect [3H]-leucine or [3H]-thymidine incorporation, it significantly (P < 0.05) increased PCNA protein expression in astrocytes exposed to acrylamide for 15 and 20 days. Additional studies revealed that this effect on PCNA protein expression was not associated with activation of dopamine-2 (D2) receptors, given that quinpirole (10 microM added to cultures for the last hour of 7, 11, 15, or 20 days in culture), a selective D2 receptor agonist, did not produce results analogous to those seen with acrylamide treatment. Cotreatment of astrocytes with acrylamide (7, 11, 15, or 20 days) and the D2 receptor antagonist, sulpiride (1 microM for the last 6 h of exposure), also failed to reverse acrylamide's effect on PCNA protein induction. Taken together, these studies suggest that acrylamide promotes astrocytic cell proliferation in the CNS even though DNA synthesis did not appear stimulated. PMID:16179551

  1. Adamantyl-group containing mixed-mode acrylamide-based continuous beds for capillary electrochromatography. Part I: study of a synthesis procedure including solubilization of N-adamantyl-acrylamide via complex formation with a water-soluble cyclodextrin.

    PubMed

    Al-Massaedh, Ayat Allah; Pyell, Ute

    2013-04-19

    A new synthesis procedure for highly crosslinked macroporous amphiphilic N-adamantyl-functionalized mixed-mode acrylamide-based monolithic stationary phases for capillary electrochromatography (CEC) is investigated employing solubilization of the hydrophobic monomer by complexation with a cyclodextrin. N-(1-adamantyl)acrylamide is synthesized and characterized as a hydrophobic monomer forming a water soluble-inclusion complex with statistically methylated-β-cyclodextrin. The stoichiometry, the complex formation constant and the spatial arrangement of the formed complex are determined. Mixed-mode monolithic stationary phases are synthesized by in situ free radical copolymerization of cyclodextrin-solubilized N-adamantyl acrylamide, a water soluble crosslinker (piperazinediacrylamide), a hydrophilic monomer (methacrylamide), and a negatively charged monomer (vinylsulfonic acid) in aqueous medium in bind silane-pretreated fused silica capillaries. The synthesized monolithic stationary phases are amphiphilic and can be employed in the reversed- and in the normal-phase mode (depending on the composition of the mobile phase), which is demonstrated with polar and non-polar analytes. Observations made with polar analytes and polar mobile phase can only be explained by a mixed-mode retention mechanism. The influence of the total monomer concentration (%T) on the chromatographic properties, the electroosmotic mobility, and on the specific permeability is investigated. With a homologues series of alkylphenones it is confirmed that the hydrophobicity (methylene selectivity) of the stationary phase increases with increasing mass fraction of N-(1-adamantyl)acrylamide in the synthesis mixture. PMID:23489493

  2. Rapid mixed mode solid phase extraction method for the determination of acrylamide in roasted coffee by HPLC-MS/MS.

    PubMed

    Bortolomeazzi, Renzo; Munari, Marina; Anese, Monica; Verardo, Giancarlo

    2012-12-15

    In this work, a rapid and reliable purification method based on a single mixed solid phase extraction (SPE) column, for the determination of acrylamide in roasted coffee by liquid chromatography-tandem mass spectrometry, was developed. Deuterium labelled d(3)-acrylamide was used as internal standard. Acrylamide was extracted by 10 mL of water and the extract purified by a single SPE column consisting of 0.5 g of an in-house prepared mixture of C18, strong cation (SCX) and anion exchange (SAX) sorbents in the ratio 2/1.5/1.5 (w/w/w). The amount of the three sorbents was optimised in order to eliminate the main interfering compounds present in coffee extracts, such as melanoidins, trigonelline, chlorogenic acids and caffeine. The SPE procedure was very simple and consisted of pushing 1 mL of an aqueous coffee extract through the SPE column followed by 1 mL of water which was collected for the analysis. The method was tested on six samples of roasted coffee of different composition and roasting level. The repeatability of the method, expressed as relative standard deviation (n=6), was lower than 5%. The recovery of acrylamide at three spiked levels ranged from 92% to 95%. The limits of detection (LOD) and quantitation (LOQ) were 5 and 16 μg kg(-1), respectively. PMID:22980859

  3. Effect of Lactobacillus casei- casei and Lactobacillus reuteri on acrylamide formation in flat bread and Bread roll.

    PubMed

    Dastmalchi, Farnaz; Razavi, Seyed Hadi; Faraji, Mohammad; Labbafi, Mohsen

    2016-03-01

    The aim of this study was the evaluation of fermentation by lactic acid bacteria (LAB) contains lactobacillus (L.) casei- casei and L. reuteri on acrylamide formation and physicochemical properties of the Iranian flat bread named, Sangak, and Bread roll. Sangak and Bread roll were made with whole and white wheat flour, respectively. Whole-wheat flour had upper content of protein, sugar, ash, fiber, damaged starch and the activity of amylase than the white wheat flour. After 24 h of fermentation, the pH values of the sourdoughs made from whole-wheat flour (3.00, 2.90) were lower, in compared to sourdoughs prepared from white wheat flour (3.60, 3.58). In addition, in Sangak bread, glucose, and fructose were completely utilized after fermentation, but in bread roll, the reduced sugar levels increased after fermentation and baking that represent microorganisms cannot be activated and utilized sugars. Acrylamide formation was impacted by pH of sourdough and total reducing sugar (r = 0.915, r = 0.885 respectively). Bread roll and Sangak bread were fermented by L. casei- casei contained lowest acrylamide content, in two bread types (219.1, 104.3 μg/kg respectively). As an important result, the acrylamide content of Sangak bread in all cases was lower than in the Bread roll. PMID:27570278

  4. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  5. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. pH-dependent immobilization of proteins on surfaces functionalized by plasma-enhanced chemical vapor deposition of poly(acrylic acid)- and poly(ethylene oxide)-like films.

    PubMed

    Belegrinou, Serena; Mannelli, Ilaria; Lisboa, Patricia; Bretagnol, Frederic; Valsesia, Andrea; Ceccone, Giacomo; Colpo, Pascal; Rauscher, Hubert; Rossi, François

    2008-07-15

    The interaction of the proteins bovine serum albumin (BSA), lysozyme (Lys), lactoferrin (Lf), and fibronectin (Fn) with surfaces of protein-resistant poly(ethylene oxide) (PEO) and protein-adsorbing poly(acrylic acid) (PAA) fabricated by plasma-enhanced chemical vapor deposition has been studied with quartz crystal microbalance with dissipation monitoring (QCM-D). We focus on several parameters which are crucial for protein adsorption, i.e., the isoelectric point (pI) of the proteins, the pH of the solution, and the charge density of the sorbent surfaces, with the zeta-potential as a measure for the latter. The measurements reveal adsorption stages characterized by different segments in the plots of the dissipation vs frequency change. PEO remains protein-repellent for BSA, Lys, and Lf at pH 4-8.5, while weak adsorption of Fn was observed. On PAA, different stages of protein adsorption processes could be distinguished under most experimental conditions. BSA, Lys, Lf, and Fn generally exhibit a rapid initial adsorption phase on PAA, often followed by slower processes. The evaluation of the adsorption kinetics also reveals different adsorption stages, whereas the number of these stages does not always correspond to the structurally different phases as revealed by the D- f plots. The results presented here, together with information obtained in previous studies by other groups on the properties of these proteins and their interaction with surfaces, allow us to develop an adsorption scenario for each of these proteins, which takes into account electrostatic protein-surface and protein-protein interaction, but also the pH-dependent properties of the proteins, such as shape and exposure of specific domains. PMID:18549295

  7. The SCRI Acrylamide Project: Improved breeding and variety evaluation methods to reduce acrylamide content and increase quality in processed potato products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The highest priority of the US potato industry is the need to introduce new varieties that reduce the acrylamide content of processed products and minimize health concerns related to acrylamide consumption. The SCRI acrylamide project is a national, coordinated effort that addresses this need. Thi...

  8. Technology and the use of acrylics for provisional dentine protection.

    PubMed

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue. PMID:24566021

  9. HEALTH AND ENVIRONMENTAL EFFECTS PROFILE FOR ACRYLAMIDE (Final Report 1985)

    EPA Science Inventory

    The Health and Environmental Effects Profile for acrylamide was prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH for the Office of Solid Waste and Emergency Response to support listings of hazardous consti...

  10. Transparent acrylic enamel slide holograms

    NASA Astrophysics Data System (ADS)

    Ponce-Lee, E. L.; Olivares Pérez, A.; Ruiz-Limón, B.; Hernández-Garay, M. P.; Toxqui-López, S.

    2006-02-01

    We present holograms generated in a computer to an acrylic enamel slide (Comex (R)), getting phase holograms. The information in the mask is transferred to the material by temperature gradients generated by rubbing. The refraction index is transformed at each material point by the temperature changes, thus the film is recorded and developed by itself. this material can be used for soft lithography.

  11. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  12. Acrylamide-responsive genes in the nematode Caenorhabditis elegans.

    PubMed

    Hasegawa, Koichi; Miwa, Satsuki; Isomura, Kazunori; Tsutsumiuchi, Kaname; Taniguchi, Hajime; Miwa, Johji

    2008-02-01

    As acrylamide is a known neurotoxin for many animals and potential carcinogen for humans, it came as a surprise when the Swedish National Food Agency and Stockholm University reported in 2002 that it is formed during the frying or baking of foods. We report here genomic and proteomic analyses on genes and proteins of Caenorhabditis elegans exposed to 500 mg/l acrylamide. Of the 21,120 genes profiled, 409 genes were more than twofold upregulated and 111 genes were downregulated. Upregulated genes included many that encode detoxification enzymes such as glutathione S-transferases (GSTs), uridine diphosphate-glucuronosyl/glucosyl transferases, and short-chain type dehydrogenases but only one cytochrome P450. Subsequent proteomic analysis confirmed the heavy involvement of GSTs. Because of their high expression levels and central roles in acrylamide metabolism, we analyzed the in vivo expression patterns of eight gst genes. Although all encoded GST and were more than twofold upregulated by acrylamide treatment, their expression patterns were varied, and their regulation involved the transcription factor SKN-1 (a C. elegans homolog of Nuclear factor E2-related factors 1 and 2). We then selected the gst-4::gfp-transformed C. elegans to study the detoxification rate of acrylamide and its metabolite glycidimide in living animals. This animal detects acrylamide as a green fluorescence protein (GFP) expression signal in a dose- and time-dependent manner and may prove to be a useful tool not only for rapidly and inexpensively detecting acrylamide, a harmful substance in food, but also for analyzing mechanisms of GST induction by acrylamide and other inducers like oxidative stresses. PMID:17989133

  13. Acrylamide monitoring in Switzerland, 2007-2009: results and conclusions.

    PubMed

    Biedermann, M; Grundbock, F; Fiselier, K; Biedermann, S; Burgi, C; Grob, K

    2010-10-01

    Parallel to the European Union acrylamide monitoring for the years 2007-2009, Switzerland performed its own monitoring, covering the whole range of products that significantly contain acrylamide (almost 300 samples per year), but focusing on those products that may result in high exposure. As reducing sugars are critical for potato products, these were included. No significant change, particularly improvement, was noticed, especially regarding those products for which substantial potential for improvement is known. 'Western-style' French fries continued to contain some four times more reducing sugars than 'traditional' fries, with correspondingly higher acrylamide in the finished product. The supply of raw potatoes low in reducing sugars by retail shops needs improvement, but there seemed to be insufficient willingness on a voluntary basis. A foreign producer was successful in penetrating the Swiss market with special potato chips containing up to 7000 microg kg(-1) acrylamide and only harsh measures could stop this. Three of about 61 products in the group of bakery ware showed a marked improvement. But there was also a store brand cracker that competed with a leading brand which contained 15 times more acrylamide (845 microg kg(-1)). Cereals contained 1080 microg kg(-1) acrylamide and even a warning did not prompt the producer to sell substantially better products one year later. It seems that only measures by the authorities will achieve improvements. The following seem promising: a limit for reducing sugars in prefabricates for French fries; the improved supply of raw potatoes low in sugars for roasting and frying; a legal limit for acrylamide content in potato chips; a general provision that products must not contain substantially more acrylamide than achievable by good manufacturing practice; and fryers with a temperature profile from an initial high to a lower final value. PMID:20730646

  14. High thickness acrylamide photopolymer for peristrophic multiplexing

    NASA Astrophysics Data System (ADS)

    Ortuño, M.; Fernández, E.; Márquez, A.; Gallego, S.; Neipp, C.; Pascual, I.

    2006-05-01

    The acrylamide photolymers are considered interesting materials for holographic media. They have high diffraction efficiency (ratio of the intensities of the diffracted and the incident beams), an intermediate energetic sensitivity among other materials and post-processing steps are not necessary, therefore the media is not altered. The layers of these materials, about 1 mm thick, are a suitable media for recording many diffraction gratings in the same volume of photopolymer using peristrophic multiplexing technique, with great practical importance in the field of holographic memories type WORM (write once read many). In this work we study the recording of diffraction gratings by peristrophic multiplexing with axis of rotation perpendicular to the recording media. The photopolymer is composed of acrylamide as the polymerizable monomer, triethanolamine as radical generator, yellowish eosin as sensitizer and a binder of polyvinyl alcohol. We analyze the holographic behaviour of the material during recording and reconstruction of diffraction gratings using a continuous Nd:YAG laser (532 nm) at an intensity of 5 mW/cm2 as recording laser. The response of the material is monitored after recording with an He-Ne laser. We study the recording process of unslanted diffraction gratings of 1125 lines/mm. The diffraction efficiency of each hologram is seen to decrease as the number of holograms recorded increases, due to consumption of the available dynamic range, in a constant exposure scheduling. It can be seen that the photopolymer works well with high energy levels, without excessive dispersion of light by noise gratings. In order to homogenize the diffraction efficiency of each hologram we use the method proposed by Pu. This method is designed to share all or part of the avaliable dynamic range of the recording material among the holograms to be multiplexed. Using exposure schedules derived from this method we have used 3 scheduling recordings from the algorithm used

  15. Genotoxicity and carcinogenicity of acrylamide: a critical review.

    PubMed

    Carere, Angelo

    2006-01-01

    In 2002, public health concerns were raised by Swedish studies showing that relatively high levels of acrylamide were formed during the frying, roasting, or baking of a variety of foods, including potatoes, cereal products and coffee at temperatures above 120 degrees C. Acrylamide possesses a range of hazardous properties, the key effects being carcinogenicity, genotoxicity, neurotoxicity and reproductive toxicity. Acrylamide is clearly carcinogenic in studies in animals, in which it causes increased tumour incidence at a variety of sites. Although the mechanisms for tumour induction in experimental animals have not yet fully elucidated, the in vivo genotoxicity at gene and chromosome level in somatic and germ cells in rodents cannot be discounted from contributing to it. At this time, there is no information to indicate any significant difference between rodents and humans in sensitivity to cancer formation from acrylamide. The present available epidemiological studies of human industrial and accidental exposures have to be considered not suitable for use in the cancer risk assessment of acrylamide in food, due to several limitations. In reviewing the genotoxicity and carcinogenicity of acrylamide, the author has taken into account also the evaluations made by the IARC in 1994, the FAO/WHO in 2002 by the European Commission Scientific Committee on Food (SCF) in 2002 and by the Joint FAO/WHO Expert Committee on Food Additive (JECFA) in 2005. PMID:17033134

  16. Toward pH-responsive coating materials--high-throughput study of (meth)acrylic copolymers.

    PubMed

    Krieg, Andreas; Arici, Elif; Windhab, Norbert; Schattka, Jan Hendrik; Schubert, Stephanie; Schubert, Ulrich S

    2014-08-11

    The release behavior of a model compound (β-naphthol orange) encapsulated in (meth)acrylate-based statistical copolymers under different environmental conditions was investigated. From monomers of varying polarity (methyl acrylate, ethyl acrylate, tert-butyl acrylate, 2-ethylhexyl methacrylate, and benzyl methacrylate) in combination with methacrylic acid, five polymer series were synthesized by free radical polymerization. The pH-dependent release kinetics were investigated via UV-vis spectroscopy at pH 1.2 and 6.8, simulating physiological conditions in the stomach and intestines. Furthermore, the influence of different ethanol contents (0 and 40 vol %) in the acidic medium was investigated. The whole approach was designed to meet the requirements of a high-throughput experimentation workflow. PMID:24964068

  17. High viscosity acidic treating fluids and methods of forming and using the same

    SciTech Connect

    Harris, L.E.

    1982-02-02

    Acidizing and fracture acidizing procedures commonly are conducted in subterranean well formations to increase the recovery of hydrocarbons. High viscosity aqueous acid solutions prevent the acid from becoming prematurely spent and inactive and develops wider fractures so that live acid can be forced further into the formations. Acidic treating fluids are formed by combining a hydratable gelling agent capable of being cross-linked with metal ions and a zirconium cross-linking agent with an aqueous acid solution. When hydrated, the gelling agent increases the viscosity of the acid solution. The zirconium cross-linking agent cross-links the hydrated gelling agent thereby further increasing the viscosity and providing stability to the resulting viscous fluid. Hydratable gelling agents which are suitable for use are hydrophilic organic polymers having a high molecular weight and containing some carboxyl functionality whereby they can be cross-linked with metal ions. Examples of such polymers are substituted cellulose, substituted natural gums, acrylamides, methacrylamides, acrylates, methacrylates, maleic anhydrides, alkylvinyl ethers, vinyl alcohols and xanthan polymers. 14 claims.

  18. Chemical and biochemical activities of sonochemically synthesized poly(N-isopropyl acrylamide)/silica nanocomposite

    NASA Astrophysics Data System (ADS)

    Chowdhury, Pranesh; Saha, Swadhin Kr; Guha, Arun; Saha, Samar Kr

    2012-11-01

    Poly(N-isopropyl acrylamide) (PNIPA) grafted mesoporous silica nanoparticles (MPSNP) leading to novel inorganic/organic core-shell nanocomposite has been synthesized sonochemically in an aqueous medium without additives like cross-linker, hydrophobic agent, organic solvent. The colloidal stability of MPSNP is enhanced significantly due to encapsulation of the polymer. The composites are characterized by TEM, FTIR and TGA. The chemical and biochemical activities of the sonochemically synthesized materials have been studied in the light of reaction with acid-base, protein adsorption, antimicrobial activity, biocompatibility and nonthrombogenic property. Advantages of sonochemical synthesis compared to other techniques have been evaluated.

  19. Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells.

    PubMed

    Chen, Jong-Hang; Chou, Chin-Cheng

    2015-08-01

    This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling. PMID:25959841

  20. Electrochemical characterization of aminated acrylic conducting polymer

    NASA Astrophysics Data System (ADS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.