Sample records for acrylic acid based

  1. Determination of selected fate and aquatic toxicity characteristics of acrylic acid and a series of acrylic esters.

    PubMed

    Staples, C A; Murphy, S R; McLaughlin, J E; Leung, H W; Cascieri, T C; Farr, C H

    2000-01-01

    Acrylic acid, methyl acrylate, ethyl acrylate, and butyl acrylate are commercially important and widely used materials. This paper reports the results of a series of fate and aquatic toxicity studies. The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day). Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic MATC for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.

  2. Mucoadhesive ocular insert based on thiolated poly(acrylic acid): development and in vivo evaluation in humans.

    PubMed

    Hornof, Margit; Weyenberg, Wim; Ludwig, Annick; Bernkop-Schnürch, Andreas

    2003-05-20

    The aim of the study was to develop a mucoadhesive ocular insert for the controlled delivery of ophthalmic drugs and to evaluate its efficacy in vivo. The inserts tested were based either on unmodified or thiolated poly(acrylic acid). Water uptake and swelling behavior of the inserts as well as the drug release rates of the model drugs fluorescein and two diclofenac salts with different solubility properties were evaluated in vitro. Fluorescein was used as fluorescent tracer to study the drug release from the insert in humans. The mean fluorescein concentration in the cornea/tearfilm compartment as a function of time was determined after application of aqueous eye drops and inserts composed of unmodified and of thiolated poly(acrylic acid). The acceptability of the inserts by the volunteers was also evaluated. Inserts based on thiolated poly(acrylic acid) were not soluble and had good cohesive properties. A controlled release was achieved for the incorporated model drugs. The in vivo study showed that inserts based on thiolated poly(acrylic acid) provide a fluorescein concentration on the eye surface for more than 8 h, whereas the fluorescein concentration rapidly decreased after application of aqueous eye drops or inserts based on unmodified poly(acrylic acid). Moreover, these inserts were well accepted by the volunteers. The present study indicates that ocular inserts based on thiolated poly(acrylic acid) are promising new solid devices for ocular drug delivery.

  3. Acrylic acid removal by acrylic acid utilizing bacteria from acrylonitrile-butadiene-styrene resin manufactured wastewater treatment system.

    PubMed

    Wang, C C; Lee, C M

    2006-01-01

    The aim of this study is to isolate the acrylic acid utilizing bacteria from the ABS resin manufactured wastewater treatment system. The bacteria should have the ability to remove acrylic acid and tolerate the acrylonitrile and acrylamide toxicity. The aim is also to understand the performance of isolated pure strain for treating different initial acrylic acid concentrations from synthetic wastewater. The results are: twenty strains were isolated from the ABS resin manufactured wastewater treatment system and twelve of them could utilize 600 mg/l acrylic acid for growth. Seven of twelve strains could tolerate the acrylonitrile and acrylamide toxicity, when the concentration was below 300 mg/l. Bacillus thuringiensis was one of the seven strains and the optimum growth temperature was 32 degrees C. Bacillus thuringiensis could utilize acrylic acid for growth, when the initial acrylic acid concentration was below 1,690.4 mg/l. Besides this, when the initial acrylic acid concentration was below 606.8 mg/l, the acrylic acid removal efficiency exceeded 96.3%. Bacillus thuringiensis could tolerate 295.7 mg/l acrylamide and 198.4 mg/l acrylonitrile toxicity but could not tolerate 297.3 mg/l epsilon-caprolactam.

  4. Interactions between Therapeutic Proteins and Acrylic Acid Leachable.

    PubMed

    Liu, Dengfeng; Nashed-Samuel, Yasser; Bondarenko, Pavel V; Brems, David N; Ren, Da

    2012-01-01

    Leachables are chemical compounds that migrate from manufacturing equipment, primary containers and closure systems, and packaging components into biopharmaceutical and pharmaceutical products. Acrylic acid (at concentration around 5 μg/mL) was detected as leachable in syringes from one of the potential vendors (X syringes). In order to evaluate the potential impact of acrylic acid on therapeutic proteins, an IgG 2 molecule was filled into a sterilized X syringe and then incubated at 45 °C for 45 days in a pH 5 acetate buffer. We discovered that acrylic acid can interact with proteins at three different sites: (1) the lysine side chain, (2) the N-terminus, and (3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed. Even thought a small amount (from 0.02% to 0.3%) of protein was found to be modified by acrylic acid, the modified protein can potentially be harmful due to the toxicity of acrylic acid. After being modified by acrylic acid, the properties of the therapeutic protein may change due to charge and hydrophobicity variations. Acrylic acid was detected to migrate from syringes (Vendor X) into a therapeutic protein solution (at a concentration around 5 μg/mL). In this study, we discovered that acrylic acid can modify proteins at three different sites: (1) the lysine side chain, 2) the N-terminus, and 3) the histidine side chain, by the Michael reaction. In this report, the direct interactions between acrylic acid leachable and a biopharmaceutical product were demonstrated and the reaction mechanism was proposed.

  5. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  6. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be safely...

  7. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573...

  8. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573...

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573...

  11. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573...

  12. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in producing...

  13. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in producing...

  14. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  15. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  16. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under this...

  17. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under this...

  18. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under this...

  19. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under this...

  20. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under this...

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  2. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... this section are not applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicable to ethylene-acrylic acid copolymers used in food-packaging adhesives complying with § 175.105 of... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section 177.1310 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES...

  5. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting under...

  6. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting under...

  7. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting under...

  8. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting under...

  9. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting under...

  10. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  11. Extraction of domoic acid from seawater and urine using a resin based on 2-(trifluoromethyl)acrylic acid.

    PubMed

    Piletska, Elena V; Villoslada, Fernando Navarro; Chianella, Iva; Bossi, Alessandra; Karim, Kal; Whitcombe, Michael J; Piletsky, Sergey A; Doucette, Gregory J; Ramsdell, John S

    2008-03-03

    A new solid-phase extraction (SPE) matrix with high affinity for the neurotoxin domoic acid (DA) was designed and tested. A computational modelling study led to the selection of 2-(trifluoromethyl)acrylic acid (TFMAA) as a functional monomer capable of imparting affinity towards domoic acid. Polymeric adsorbents containing TFMAA were synthesised and tested in high ionic strength solutions such as urine and seawater. The TFMAA-based polymers demonstrated excellent performance in solid-phase extraction of domoic acid, retaining the toxin while salts and other interfering compounds such as aspartic and glutamic acids were removed by washing and selective elution. It was shown that the TFMAA-based polymer provided the level of purification of domoic acid from urine and seawater acceptable for its quantification by high performance liquid chromatography-mass spectrometry (HPLC-MS) and enzyme-linked immunosorbent assay (ELISA) without any additional pre-concentration and purification steps.

  12. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  13. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  14. Preparation and characterization of poly(acrylic acid)-hydroxyethyl cellulose graft copolymer.

    PubMed

    Abdel-Halim, E S

    2012-10-01

    Poly(acrylic acid) hydroxyethyl cellulose [poly(AA)-HEC] graft copolymer was prepared by polymerizing acrylic acid (AA) with hydroxyethyl cellulose (HEC) using potassium bromate/thiourea dioxide (KBrO(3)/TUD) as redox initiation system. The polymerization reaction was carried out under a variety of conditions including concentrations of AA, KBrO(3) and TUD, material to liquor ratio and polymerization temperature. The polymerization reaction was monitored by withdrawing samples from the reaction medium and measuring the total conversion. The rheological properties of the poly(AA)-HEC graft copolymer were investigated. The total conversion and rheological properties of the graft copolymer depended on the ratio of KBrO(3) to TUD and on acrylic acid concentration as well as temperature and material to liquor ratio. Optimum conditions of the graft copolymer preparation were 30 mmol KBrO(3) and 30 mmol TUD/100g HEC, 100% AA (based on weight of HEC), duration 2h at temperature 50 °C using a material to liquor ratio of 1:10. Copyright © 2012. Published by Elsevier Ltd.

  15. A study on the effect of the concentration of N,N-methylenebisacrylamide and acrylic acid toward the properties of Dioscorea hispida-starch-based hydrogel

    NASA Astrophysics Data System (ADS)

    Ashri, Airul; Lazim, Azwan

    2014-09-01

    The research investigated the effects of acrylic acid (monomer) and N,N,-methylenebisacrylamide, MBA (crosslinker) toward the percentage of gel content, swelling ratio and ionic strength of a starch-based hydrogel. Starch grafted on poly (sodium acrylate), St-g-PAANa hydrogel was prepared by incorporating starch extracted from Dioscorea hispida in NaOH/aqueous solution using different composition of acrylic acid (AA) and N,N-methylenebisacrylamide (MBA) in the presence of potassium persulfate (KPS) as chemical initiator. The highest gel content was observed at 1:30 ratio of starch to AA and 0.10 M of MBA. Results showed the highest swelling ratio was observed at 1:15 ratio of starch to acrylic acid and 0.02 M of MBA solution. The same results also gave the highest swelling ratio for the ionic strength study. The FTIR analysis was also conducted in order to confirm the grafting of AA onto starch backbone.

  16. Hydroxyapatite crystals biologically inspired on titanium by using an organic template based on the copolymer of acrylic acid and itaconic acid.

    PubMed

    Zhang, Chao; Li, Zhi-An; Cheng, Xiang-Rong; Xiao, Qun; Li, Hong-Bo

    2010-01-01

    Hydroxyapatite coating on metal implants is an effective method to enhance bioactive properties of the metal surface. We report here a method to coat the Ti-6Al-4V alloy with hydroxyapatite crystals. After alkaline/heat treatment, the spontaneous growth of organoapatite on titanium alloy surface involves sequential preadsorption of titanium isopropoxide (TIPO) and the copolymer of acrylic acid and itaconic acid on the metal, followed by exposure to simulated body fluid (SBF). The organoapatite characterization of the coating was carried out by scanning electron microscopy, energy dispersive spectrometer, and X-ray diffraction. The copolymer of acrylic acid and itaconic acid overlayer which is rich of carboxylate groups can lead to the deposition of needle-like and homogeneous HA on the surface after immersion in SBF.

  17. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  18. Multiplex Immunoassay Platforms Based on Shape-Coded Poly(ethylene glycol) Hydrogel Microparticles Incorporating Acrylic Acid

    PubMed Central

    Park, Saemi; Lee, Hyun Jong; Koh, Won-Gun

    2012-01-01

    A suspension protein microarray was developed using shape-coded poly(ethylene glycol) (PEG) hydrogel microparticles for potential applications in multiplex and high-throughput immunoassays. A simple photopatterning process produced various shapes of hydrogel micropatterns that were weakly bound to poly(dimethylsiloxane) (PDMS)-coated substrates. These micropatterns were easily detached from substrates during the washing process and were collected as non-spherical microparticles. Acrylic acids were incorporated into hydrogels, which could covalently immobilize proteins onto their surfaces due to the presence of carboxyl groups. The amount of immobilized protein increased with the amount of acrylic acid due to more available carboxyl groups. Saturation was reached at 25% v/v of acrylic acid. Immunoassays with IgG and IgM immobilized onto hydrogel microparticles were successfully performed with a linear concentration range from 0 to 500 ng/mL of anti-IgG and anti-IgM, respectively. Finally, a mixture of two different shapes of hydrogel microparticles immobilizing IgG (circle) and IgM (square) was prepared and it was demonstrated that simultaneous detection of two different target proteins was possible without cross-talk using same fluorescence indicator because each immunoassay was easily identified by the shapes of hydrogel microparticles. PMID:22969408

  19. Graft Polymerization of Acrylic Acid on a Polytetrafluoroethylene Panel by an Inductively Coupled Plasma

    NASA Astrophysics Data System (ADS)

    Lan, Yan; You, Qingliang; Cheng, Cheng; Zhang, Suzhen; Ni, Guohua; Nagatsu, M.; Meng, Yuedong

    2011-02-01

    Surface modification on a polytetrafluoroethylene (PTFE) panel was performed with sequential nitrogen plasma treatments and surface-initiated polymerization. By introducing COO- groups to the surface of the PTFE panel through grafting polymerization of acrylic acid (AA), a transparent poly (acrylic acid) (PAA) membrane was achieved from acrylic acid solution. Grafting polymerization initiating from the active groups was achieved on the PTFE panel surface after the nitrogen plasma treatment. Utilizing the acrylic acid as monomers, with COO- groups as cross link sites to form reticulation structure, a transparent poly (acrylic acid) membrane with arborescent macromolecular structure was formed on the PTFE panel surface. Analysis methods, such as fourier transform infrared spectroscopy (FTIR), microscopy and X-ray photoelectron spectroscopy (XPS), were utilized to characterize the structures of the macromolecule membrane on the PTFE panel surface. A contact angle measurement was performed to characterize the modified PTFE panels. The surface hydrophilicities of modified PTFE panels were significantly enhanced after the plasma treatment. It was shown that the grafting rate is related to the treating time and the power of plasma.

  20. Diffusion of uncharged probe reveals structural changes in polyacids initiated by their neutralization: poly(acrylic acids).

    PubMed

    Hyk, Wojciech; Masiak, Michal; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2005-03-17

    The diffusion studies of the uncharged probe (1,1'-ferrocenedimethanol) have been successfully applied for the evaluation of the changes in the three-dimensional structure of poly(acrylic acids) of various molecular weights (ranging from 2000 to 4,000,000 g/mol) during their neutralization with a strong base. The qualitative picture of the macromolecule arrangement during the titration of the polyacids has been obtained from the conductometric measurements. The characteristic changes in the poly(acrylic acid) conductivity are practically the same for all polyacids examined and are in a very good agreement with the predictions of our theoretical model of the polyelectrolyte conductance. The transformation of the polyelectrolyte solution into the gel-like or gel phase has been investigated more quantitatively by tracing the changes in the diffusion coefficient of the uncharged probe redox system. The probe diffusivities, D, were determined using steady-state voltammetry at microelectrodes for a wide range of neutralization degree, alpha, of the polyacids tested. The dependencies of D versus alpha are of similar shape for all poly(acrylic acids). The first parts of the dependencies reflect a rapid increase in D (up to neutralization degree of either 45% for the lowest molecular-weight poly(acrylic acid) or 75-80% for other polyacids). They are followed by the parts of a slight drop in the diffusion coefficient. The changes in the probe diffusivity become stronger as the molecular weight of poly(acrylic acid) increases. The maximum probe diffusion coefficients are greater than the initial values in the pure polyacid solutions by 14, 24, 19, 30, and 28% for poly(acrylic acid) of molecular weights of 2000, 450,000, 1,250,000, 3,000,000, and 4,000,000 g/mol, respectively. The variation in the probe diffusion coefficient qualitatively follows the line of the changes in the macroscopic viscosity of the polyelectrolyte system. This is in contrast to the predictions of the

  1. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizingmore » propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.« less

  2. Acrylates and Methacrylates,

    DTIC Science & Technology

    1987-09-15

    and methacrylic acids and especially their esters. Acrylic and methacrylic monomers can be polymerized and copolymerized with other vinyl monomers by...contributed to reduction in the cost/value of these monomers and to expansion of the market for sale. For the first time acrylic acid was obtained in...a-dibromopropionic acid . In the Soviet Union for the development of the method of * production of acrylates the synthesis of methylacrylate began in

  3. pH dependence of the properties of waterborne pressure-sensitive adhesives containing acrylic acid.

    PubMed

    Wang, Tao; Canetta, Elisabetta; Weerakkody, Tecla G; Keddie, Joseph L; Rivas, Urko

    2009-03-01

    Polymer colloids are often copolymerized with acrylic acid monomers in order to impart colloidal stability. Here, the effects of the pH on the nanoscale and macroscopic adhesive properties of waterborne poly(butyl acrylate-co-acrylic acid) films are reported. In films cast from acidic colloidal dispersions, hydrogen bonding between carboxylic acid groups dominates the particle-particle interactions, whereas ionic dipolar interactions are dominant in films cast from basic dispersions. Force spectroscopy using an atomic force microscope and macroscale mechanical measurements show that latex films with hydrogen-bonding interactions have lower elastic moduli and are more deformable. They yield higher adhesion energies. On the other hand, in basic latex, ionic dipolar interactions increase the moduli of the dried films. These materials are stiffer and less deformable and, consequently, exhibit lower adhesion energies. The rate of water loss from acidic latex is slower, perhaps because of hydrogen bonding with the water. Therefore, although acid latex offers greater adhesion, there is a limitation in the film formation.

  4. Adsorption of Copper Ion using Acrylic Acid-g-Polyaniline in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Kamarudin, Sabariah; Mohammad, Masita

    2018-04-01

    A conductive polymer, polyaniline (PANI) has unique electrical behaviour, stable in the environment, easy synthesis and have wide application in various fields. Modification of PANI in order to improve its adsorption capacity has been done. In this study, the polyaniline-grafted acrylic acid has been prepared and followed by adsorption of copper ion in aqueous solution. Acrylic acid, PANI and acrylic acid-g-polyaniline (Aag-PANI) were characterized by FTIR and SEM to determine its characteristic. The adsorption capacity was investigated to study the removal capacity of Cu ion from aqueous solution. Two parameters were selected which are pH (2, 4 and 6) and initial metal ion concentration (50 mg/L, 100 mg/L and 200 mg/L). The maximum adsorption capacity for PANI and Aag-PANI are 1.7 mg/g and 64.6 mg/g, respectively, at an initial concentration of 100 mg/L. The Langmuir adsorption isotherm model and Freundlich adsorption isotherm model have been used and showed that it is heterolayer adsorption by follows the Freundlich isotherm model.

  5. Determination of acrylamide and acrylic acid by isocratic liquid chromatography with pulsed electrochemical detection.

    PubMed

    Casella, Innocenzo G; Pierri, Marianna; Contursi, Michela

    2006-02-24

    The electrochemical behaviour of the polycrystalline platinum electrode towards the oxidation/reduction of short-chain unsaturated aliphatic molecules such as acrylamide and acrylic acid was investigated in acidic solutions. Analytes were separated by reverse phase liquid chromatographic and quantified using a pulsed amperometric detection. A new two-step waveform, is introduced for detection of acrylamide and acrylic acid. Detection limits (LOD) of 20 nM (1. 4 microg/kg) and 45 nM (3.2 microg/kg) were determined in water solutions containing acrylamide and acrylic acid, respectively. Compared to the classical three-step waveform, the proposed two-step waveform shows favourable analytical performance in terms of LOD, linear range, precision and improved long-term reproducibility. The proposed analytical method combined with clean-up procedure accomplished by Carrez clearing reagent and subsequent extraction with a strong cation exchanger cartridges (SPE), was successfully used for the quantification of low concentrations of acrylamide in foodstuffs such as coffee and potato fries.

  6. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  7. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone.

    PubMed

    Sun, Hui; Wirsén, Anders; Albertsson, Ann-Christine

    2004-01-01

    Electron beam- (EB-) induced graft polymerization of acrylic acid and the subsequent immobilization of arginine-glycine-aspartic acid (RGD) peptide onto nanopatterned polycaprolactone with parallel grooves is reported. A high concentration of carboxylic groups was introduced onto the polymer substrate by EB-induced polymerization of acrylic acid. In the coupling of the RGD peptide to the carboxylated polymer surface, a three-step peptide immobilization process was used. This process included the activation of surface carboxylic acid into an active ester intermediate by use of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), the introduction of disulfide groups by use of 2-(2-pyridinyldithio)ethanamine hydrochloride (PDEA), and final immobilization of the peptide via a thiol-disulfide exchange reaction. The extent of coupling was measured by UV spectroscopy. A preliminary study of the in vitro behavior of keratinocytes (NCTC 2544) cultured on the acrylic acid-grafted and RGD peptide-coupled surface showed that most cells grown on the coupled samples had a spread-rounded appearance, while the majority of cells tended to be elongated along the grooves on uncoupled substrates.

  8. Synthesis and luminescent properties of the novel poly(ethylene-co-acrylic acid) films based on surface modification with lanthanide (Eu3+, Tb3+) complexes

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Chu, Yang; Yu, Zhenjiang; Hao, Haixia; Wu, Qingyao; Xie, Hongde

    2017-10-01

    Two kinds of novel fluorescent films have been successfully synthesized by surface modification on the poly(ethylene-co-acrylic acid) films using the lanthanide (Eu3+, Tb3+) complexes. The process consists of three steps: conversion of carboxylic acid groups on the surface of the poly(ethylene-co-acrylic acid) films to acid chloride groups, synthesis of the lanthanide complexes bearing amino groups, and amidation to form the modified films. To characterize the modified films, Fourier transform infrared, thermogravimetric analysis, static water contact angle measurements and photoluminescence tests have been employed. Fourier transform infrared verifies the successful preparation of the lanthanide complexes and the modified poly(ethylene-co-acrylic acid) films. These films can emit strong characteristic red and green light under UV light excitation. In addition, the films both have short lifetime (1.14 ms and 1.21 ms), high thermal stability (Td = 408 °C and 411 °C) and, compared with unmodified ones, increased hydrophilicity. All these results suggest that the modified films have potential application as luminescent materials under high temperature.

  9. Screening of Catalyst and Important Variable for The Esterification of Acrylic Acid with 2 Ethylhexanol

    NASA Astrophysics Data System (ADS)

    Ahmad, M. A. A.; Chin, S. Y.

    2017-06-01

    The global demand of 2-ethylhexyl acrylate (2EHA) market has witnessed a significant growth in the past few years and this growth is anticipated to increase in the coming years. 2EHA is one of the basic organic building blocks that mainly used in the production of coatings, adhesives, superabsorbents, thickeners and plastic additives. Homogenous acid-catalysed esterification of acrylic acid (AA) with 2-ethylhexanol (2EH) is commonly used for the production of 2EHA. The homogeneous catalysts such as sulfuric and para-toluene sulfonic acid have resulted the costly and complicated downstream process that generates acidic, corrosive and non-environmental friendly waste. Therefore, it is importance to develop a cheaper process that employing heterogeneous catalysts and alternative raw material from wastewater containing acrylic acid. In this research, the study for the esterification of AA with 2EH catalysed by ion-exchange resin was conducted. The best sulfonic acid functional cation-exchange resin among SK104, SK1B, PK208, PK216, PK228, RCP145, and RCP160 was screened. PK208 outperformed the other resins and it was used subsequently in the parametric studies. The effect of important parameters (initial concentration of acrylic acid (AA), temperature, molar ratio of reactant (AA and 2EH), catalyst loading, and polymerisation inhibitor loading) was studied using 2 factorial design to determine the significant parameters to the esterification. It was found that the initial concentration of AA and temperature were most significantly affecting the esterification of AA with 2EH.

  10. Hierarchically organized architecture of potassium hydrogen phthalate and poly(acrylic acid): toward a general strategy for biomimetic crystal design.

    PubMed

    Oaki, Yuya; Imai, Hiroaki

    2005-12-28

    A hierarchically organized architecture in multiple scales was generated from potassium hydrogen phthalate crystals and poly(acrylic acid) based on our novel biomimetic approach with an exquisite association of polymers on crystallization.

  11. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  12. Development of thiolated poly(acrylic acid) microparticles for the nasal administration of exenatide.

    PubMed

    Millotti, Gioconda; Vetter, Anja; Leithner, Katharina; Sarti, Federica; Shahnaz Bano, Gul; Augustijns, Patrick; Bernkop-Schnürch, Andreas

    2014-12-01

    The purpose of this study was to develop a microparticulate formulation for nasal delivery of exenatide utilizing a thiolated polymer. Poly(acrylic acid)-cysteine (PAA-cys) and unmodified PAA microparticles loaded with exenatide were prepared via coprecipitation of the drug and the polymer followed by micronization. Particle size, drug load and release of incorporated exenatide were evaluated. Permeation enhancing properties of the formulations were investigated on excised porcine respiratory mucosa. The viability of the mucosa was investigated by histological studies. Furthermore, ciliary beat frequency (CBF) studies were performed. Microparticles displayed a mean size of 70-80 µm. Drug encapsulation was ∼80% for both thiolated and non-thiolated microparticles. Exenatide was released from both thiolated and non-thiolated particles in comparison to exenatide in buffer only within 40 min. As compared to exenatide dissolved in buffer only, non-thiolated and thiolated microparticles resulted in a 2.6- and 4.7-fold uptake, respectively. Histological studies performed before and after permeation studies showed that the mucosa is not damaged during permeation studies. CBF studies showed that the formulations were cilio-friendly. Based on these results, poly(acrylic acid)-cysteine-based microparticles seem to be a promising approach starting point for the nasal delivery of exenatide.

  13. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin.

    PubMed

    Ekren, Orhun; Ozkomur, Ahmet

    2016-08-01

    The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials.

  14. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance...

  15. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment

    PubMed Central

    Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar

    2014-01-01

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975

  16. Allergic contact dermatitis caused by acrylic-based medical dressings and adhesives.

    PubMed

    Mestach, Lien; Huygens, Sara; Goossens, An; Gilissen, Liesbeth

    2018-06-11

    Acrylates and methacrylates are acrylic resin monomers that are known to induce skin sensitization as a result of their presence in different materials, such as nail cosmetics, dental materials, printing inks, and adhesives. Allergic contact dermatitis resulting from the use of modern wound dressings containing them has only rarely been reported. To describe 2 patients who developed allergic contact dermatitis caused by acrylic-based modern medical dressings and/or adhesives. The medical charts of patients observed since 1990 were retrospectively reviewed for (meth)acrylate allergy resulting from contact with such materials, and their demographic characteristics and patch test results were analysed. Two patients were observed in 2014 and 2016 who had presented with positive patch test reactions to several acrylic-based dressings and/or adhesive materials, and to several (meth)acrylates, that is, hydroxyethyl acrylate, hydroxyethyl methacrylate, ethyleneglycol dimethacrylate, bisphenol A-glycidyl methacrylate/epoxy-acrylate, urethane diacrylate, and/or penta-erythritol acrylate. Allergic contact dermatitis needs to be considered in patients with eczematous reactions or delayed healing following the use of acrylic-based modern dressings or adhesives. However, identification of the culprit allergen is hampered by poor cooperation from the producers, so adequate labelling of medical devices is an urgent necessity. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Acrylic acid plasma polymerization for biomedical use

    NASA Astrophysics Data System (ADS)

    Bitar, Rim; Cools, Pieter; De Geyter, Nathalie; Morent, Rino

    2018-08-01

    Since a few decades, polymeric materials have played a central role in regenerative medicine and tissue engineering as artificial tissue replacements and organ transplantation devices. Chemical and topographical surface modifications of biomaterials are often required to achieve an overall better biocompatibility. Non-thermal plasma is a non-invasive, solvent-free alternative for modifying polymeric surface properties without affecting the bulk of the material. Plasma polymerization of organic compounds has proven to be an effective tool for thin film production with specific surface chemistries, useful for biomedical applications. These polymer layers have received a growing interest in tissue regeneration and biomolecules immobilization processes. Many different types of chemical functional groups can be introduced, but the focus of this review will be on carboxylic acid groups. Thin films consisting of carboxylic acid functional groups are considered attractive for biomedical applications since these are known for stimulating the adhesion and proliferation of fibroblasts and other kind of cells. Therefore, an overview on the use of acrylic acid (AAc) as a precursor or for the plasma-assisted deposition of carboxylic-group containing-films in bio-interface research activities, will be described in this review. The review will specifically focus on plasma polymerized acrylic acid (PPAA) coatings that are obtained using a variety of plasma deposition techniques. Moreover, the influence of plasma parameters on surface properties such as wettability, surface topography and chemical composition will be discussed in detail. The correlation between different parameters will be studied and a general recipe leading to the successful deposition of COOH-rich stable coatings will be extracted and linked to their ability to improve cell growth, proliferation and differentiation, all leading to the further progress in the biomedical field. A lot of publications claim to have

  19. Effect of surface treatments on the bond strength of soft denture lining materials to an acrylic resin denture base.

    PubMed

    Gundogdu, Mustafa; Yesil Duymus, Zeynep; Alkurt, Murat

    2014-10-01

    Adhesive failure between acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to evaluate the effect of different surface treatments on the bond strength of 2 different resilient lining materials to an acrylic resin denture base. Ninety-six dumbbell-shaped specimens were fabricated from heat-polymerized acrylic resin, and 3 mm of the material was cut from the thin midsection. The specimens were divided into 6 groups according to their surface treatments: no surface treatment (control group), 36% phosphoric acid etching (acid group), erbium:yttrium-aluminum-garnet (Er:YAG) laser (laser group), airborne-particle abrasion with 50-μm Al2O3 particles (abrasion group), an acid+laser group, and an abrasion+laser group. The specimens in each group were divided into 2 subgroups according to the resilient lining material used: heat-polymerized silicone based resilient liner (Molloplast B) and autopolymerized silicone-based resilient liner (Ufi Gel P). After all of the specimens had been polymerized, they were stored in distilled water at 37°C for 1 week. A tensile bond strength test was then performed. Data were analyzed with a 2-way ANOVA, and the Sidak multiple comparison test was used to identify significant differences (α=.05). The effects of the surface treatments and resilient lining materials on the surface of the denture base resin were examined with scanning electron microscopy. The tensile bond strength was significantly different between Molloplast B and Ufi Gel P (P<.001). The specimens of the acid group had the highest tensile bond strength, whereas those of the abrasion group had the lowest tensile bond strength. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the denture base resin. Molloplast B exhibited significantly higher bond strength than Ufi Gel P. Altering the surface of the acrylic resin denture base with 36

  20. Changes in compressive strength on ageing in glass polyalkenoate (glass-ionomer) cements prepared from acrylic/maleic acid copolymers.

    PubMed

    Nicholson, J W; Abiden, F

    1997-01-01

    Previous studies have shown that glass-ionomers made from acrylic/maleic copolymers stored in water reach a maximum strength at about 1 week, and after 4 months have become significantly weaker. This finding, which contrasts with the behaviour of glass-ionomers based on poly(acrylic acid), was originally attributed to hydrolytic instability. This interpretation has been tested in the current work. Specimens of glass-ionomer prepared from acrylic/maleic acid copolymer have been stored for up to 4 months in different media, namely deionized water, dry air and vegetable oil, then tested for compressive strength. Specimens were in the form of cylinders of dimensions 6 mm high x 4 mm diameter, and storage temperature was 37 degrees C. Data were analysed using two-way analysis of variance (ANOVA) and in all three media specimens became weaker at 4 months than they had been at 1 week (P < 0.05). However, for the specimens stored in dry air and in water, the 1-week values were not the maximum. The fact that there was a loss of strength under all conditions led to the conclusion that it is not, after all, due to hydrolysis.

  1. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified...

  2. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...

  3. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...

  4. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...

  5. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...

  6. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626) is...

  7. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals

    PubMed Central

    Lim, Lim Sze; Rosli, Noor Afizah; Ahmad, Ishak; Mat Lazim, Azwan; Mohd Amin, Mohd Cairul Iqbal

    2017-01-01

    pH-sensitive poly(acrylic acid) (PAA) hydrogel reinforced with cellulose nanocrystals (CNC) was prepared. Acrylic acid (AA) was subjected to chemical cross-linking using the cross-linking agent MBA (N,N-methylenebisacrylamide) with CNC entrapped in the PAA matrix. The quantity of CNC was varied between 0, 5, 10, 15, 20, and 25 wt %. X-ray diffraction (XRD) data showed an increase in crystallinity with the addition of CNC, while rheology tests demonstrated a significant increase in the storage modulus of the hydrogel with an increase in CNC content. It was found that the hydrogel reached maximum swelling at pH 7. The potential of the resulting hydrogels to act as drug carriers was then evaluated by means of the drug encapsulation efficiency test using theophylline as a model drug. It was observed that 15% CNC/PAA hydrogel showed the potential to be used as drug carrier system. PMID:29156613

  9. Mitochondrial biotransformation of ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids: A prodrug strategy for targeting cytoprotective antioxidants to mitochondria

    PubMed Central

    Roser, Kurt S.; Brookes, Paul S.; Wojtovich, Andrew P.; Olson, Leif P.; Shojaie, Jalil; Parton, Richard L.; Anders, M. W.

    2010-01-01

    Mitochondrial reactive oxygen species (ROS) generation and the attendant mitochondrial dysfunction are implicated in a range of disease states. The objective of the present studies was to test the hypothesis that the mitochondrial β-oxidation pathway could be exploited to deliver and biotransform the prodrugs ω-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and ω-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids to the corresponding phenolic antioxidants or methimazole. 3 -and 5-(Phenoxy)alkanoic acids and methyl-substituted analogs were biotransformed to phenols; rates of biotransformation decreased markedly with methyl-group substitution on the phenoxy moiety. 2,6-Dimethylphenol formation from the analogs 3-([2,6-dimethylphenoxy]methylthio)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid was greater than that observed with ω-(2,6-dimethylphenoxy)alkanoic acids. 3- and 5-(1-Methyl-1H-imidazol-2-ylthio)alkanoic acids were rapidly biotransformed to the antioxidant methimazole and conferred significant cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. Both 3-(2,6-dimethylphenoxy)propanoic acid and 3-(2,6-dimethylphenoxy)acrylic acid also afforded cytoprotection against hypoxia-reoxygenation injury in isolated cardiomyocytes. These results demonstrate that mitochondrial β-oxidation is a potentially useful delivery system for targeting antioxidants to mitochondria. PMID:20129794

  10. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  11. Phase Transition of Poly(acrylic acid-co-N-isopropylacrylamide) Core-shell Nanogels

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-bing; Zhou, Jian-feng; Ye, Xiao-dong

    2012-08-01

    A series of poly(acrylic acid) macromolecular chain transfer agents with different molecular weights were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and characterized by 1H NMR and gel permeation chromatography. Multiresponsive core-shell nanogels were prepared by dispersion polymerization of N-isopropylacrylamide in water using these poly(potassium acrylate) macro-RAFT agents as the electrosteric stabilizer. The size of the nanogels decreases with the amount of the macro-RAFT agent, indicating that the surface area occupied by per polyelectrolyte group is a critical parameter for stabilizing the nanogels. The volume phase transition and the zeta potentials of the nanogels in aqueous solutions were studied by dynamic light scattering and zetasizer analyzer, respectively.

  12. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho, E-mail: youk@inha.ac.kr

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs basedmore » on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.« less

  13. Preparation of Caco-2 cell sheets using plasma polymerised acrylic acid as a weak boundary layer.

    PubMed

    Majani, Ruby; Zelzer, Mischa; Gadegaard, Nikolaj; Rose, Felicity R; Alexander, Morgan R

    2010-09-01

    The use of cell sheets for tissue engineering applications has considerable advantages over single cell seeding techniques. So far, only thermoresponsive surfaces have been used to manufacture cell sheets without chemically disrupting the cell-surface interactions. Here, we present a new and facile technique to prepare sheets of epithelial cells using plasma polymerised acrylic acid films. The cell sheets are harvested by gentle agitation of the media without the need of any additional external stimulus. We demonstrate that the plasma polymer deposition conditions affect the viability and metabolic activity of the cells in the sheet and relate these effects to the different surface properties of the plasma polymerised acrylic acid films. Based on surface analysis data, a first attempt is made to explain the mechanism behind the cell sheet formation. The advantage of the epithelial cell sheets generated here over single cell suspensions to seed a PLGA scaffold is presented. The scaffold itself, prepared using a mould fabricated via photolithography, exhibits a unique architecture that mimics closely the dimensions of the native tissue (mouse intestine). Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    PubMed

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  15. Pharmacokinetics of an oral extended-release formulation of doxycycline hyclate containing acrylic acid and polymethacrylate in dogs.

    PubMed

    Ruiz, Sara Melisa Arciniegas; Olvera, Lilia Gutiérrez; Chacón, Sara del Carmen Caballero; Estrada, Dinorah Vargas

    2015-04-01

    To determine the pharmacokinetics of doxycycline hyclate administered orally in the form of experimental formulations with different proportions of acrylic acid-polymethacrylate-based matrices. 30 healthy adult dogs. In a crossover study, dogs were randomly assigned (in groups of 10) to receive a single oral dose (20 mg/kg) of doxycycline hyclate without excipients (control) or extended-release formulations (ERFs) containing doxycycline, acrylic acid polymer, and polymethacrylate in the following proportions: 1:0.5:0.0075 (ERF1) or 1:1:0.015 (ERF2). Serum concentrations of doxycycline were determined for pharmacokinetic analysis before and at several intervals after each treatment. Following oral administration to the study dogs, each ERF resulted in therapeutic serum doxycycline concentrations for 48 hours, whereas the control treatment resulted in therapeutic serum doxycycline concentrations for only 24 hours. All pharmacokinetic parameters for ERF1 and ERF2 were significantly different; however, findings for ERF1 did not differ significantly from those for the control treatment. Results indicated that both ERFs containing doxycycline, acrylic acid polymer, and polymethacrylate had an adequate pharmacokinetic-pharmacodynamic relationship for a time-dependent drug and a longer release time than doxycycline alone following oral administration in dogs. Given the minimum effective serum doxycycline concentration of 0.26 μg/mL, a dose interval of 48 hours can be achieved for each tested ERF. This minimum inhibitory concentration has the potential to be effective against several susceptible bacteria involved in important infections in dogs. Treatment of dogs with either ERF may have several benefits over treatment with doxycycline alone.

  16. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  17. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells.

    PubMed

    Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod

    2014-07-15

    The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed

  18. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new uses...

  19. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new uses...

  20. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new uses...

  1. Poly(meth)acrylate-based coatings.

    PubMed

    Nollenberger, Kathrin; Albers, Jessica

    2013-12-05

    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Direct observation of spherulitic growth stages of CaCO 3 in a poly(acrylic acid)-chitosan system: In situ SPM study

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Butler, M. F.; Heppenstall-Butler, M.; Singleton, S.; Miles, M. J.

    2007-09-01

    Crystallization of a CaCO 3 thin film from supersaturated solution on chitosan in the presence of poly-acrylic acid was investigated by in situ AFM and SNOM. It was directly observed that crystallization proceeds through characteristic stages consistent with the theory of spherulitic growth: development of individual branches, build-up of larger scale "lobe" features, followed by overgrowth and ripening. We propose that crystallization of CaCO 3 on chitosan in the presence of poly(acrylic acid) (PAA) proceeds in a gelatinous matrix formed by PAA stabilized amorphous CaCO 3; the spherulitic character of crystallization is initiated by the high viscosity of gel and presence of PAA impurities. Characteristic sizes of spherulite features deviate significantly from the prediction based on diffusivity of PAA in water due to low diffusivity of PAA in gel.

  3. Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field

    NASA Astrophysics Data System (ADS)

    Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.

    2007-10-01

    A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).

  4. An Electrochemical DNA Microbiosensor Based on Succinimide-Modified Acrylic Microspheres

    PubMed Central

    Ulianas, Alizar; Heng, Lee Yook; Hanifah, Sharina Abu; Ling, Tan Ling

    2012-01-01

    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10−16 and 1.0 × 10−8 M with a lower limit of detection (LOD) of 9.46 × 10−17 M (R2 = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices. PMID:22778594

  5. Dermal oncogenicity bioassays of monofunctional and multifunctional acrylates and acrylate-based oligomers.

    PubMed

    DePass, L R; Maronpot, R R; Weil, C S

    1985-01-01

    Several important components of photocurable coatings were studied for dermal tumorigenic activity by repeated application to the skin of mice. The substances tested were 2-ethylhexyl acrylate (EHA) and methylcarbamoyloxyethyl acrylate (MCEA) (monomers); neopentyl glycol diacrylate (NPGDA), esterdiol-204-diacrylate (EDDA), and pentaerythritol tri(tetra)acrylate (PETA) (cross-linkers); and three acrylated urethane oligomers. For each bioassay, 40 C3H/HeJ male mice were dosed 3 times weekly on the dorsal skin for their lifetime with the highest dose of the test agent that caused no local irritation or reduction in body weight gain. Two negative control groups received acetone (diluent) only. A positive control group received 0.2% methylcholanthrene (MC). NPGDA and EHA had significant tumorigenic activity with tumor yields of eight and six tumor-bearing mice (three and two malignancies), respectively. The MC group had 34 mice with carcinomas and 1 additional mouse with a papilloma. MCEA had no dermal tumorigenic activity but resulted in early mortality. No skin tumors in the treatment area were observed in the other groups. Additional studies will be necessary to elucidate possible relationships between structure and tumorigenic activity for the acrylates.

  6. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  7. Rheology and adhesion of poly(acrylic acid)/laponite nanocomposite hydrogels as biocompatible adhesives.

    PubMed

    Shen, Muxian; Li, Li; Sun, Yimin; Xu, Jun; Guo, Xuhong; Prud'homme, Robert K

    2014-02-18

    Biocompatible nanocomposite hydrogels (NC gels) consisting of poly(acrylic acid) (PAA) and nanosized clay (Laponite) were successfully synthesized by in situ free-radical polymerization of acrylic acid (AA) in aqueous solutions of Laponite. The obtained NC gels were uniform and transparent. Their viscosity, storage modulus G', and loss modulus G″ increased significantly upon increasing the content of Laponite and the dose of AA, while exhibiting a maximum with increasing the neutralization degree of AA. They showed tunable adhesion by changing the dose of Laponite and monomer as well as the neutralization degree of AA, as determined by 180° peel strength measurement. The maximal adhesion was shown when reaching a balance between cohesion and fluidity. A homemade Johnson-Kendall-Roberts (JKR) instrument was employed to study the surface adhesion behavior of the NC gels. The combination of peel strength, rheology, and JKR measurements offers the opportunity of insight into the mechanism of adhesion of hydrogels. The NC gels with tunable adhesion should be ideal candidates for dental adhesive, wound dressing, and tissue engineering.

  8. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    USDA-ARS?s Scientific Manuscript database

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  9. Purification and preliminary characterization of (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid synthase, an enzyme involved in biosynthesis of the antitumor agent sparsomycin.

    PubMed

    Parry, R J; Hoyt, J C

    1997-02-01

    Sparsomycin is an antitumor antibiotic produced by Streptomyces sparsogenes. Biosynthetic experiments have previously demonstrated that one component of sparsomycin is derived from L-tryptophan via the intermediacy of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid and (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid. An enzyme which catalyzes the conversion of (E)-3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid to (E)-3-(2,4-dioxo-6-methyl-5-pyrimidinyl)acrylic acid has been purified 740-fold to homogeneity from S. sparsogenes. The molecular mass of the native and denatured enzyme was 87 kDa, indicating that the native enzyme is monomeric. The enzyme required NAD+ for activity but lacked rigid substrate specificity, since analogs of both NAD+ and 3-(4-oxo-6-methyl-5-pyrimidinyl)acrylic acid could serve as substrates. The enzyme was very weakly inhibited by mycophenolic acid. Monovalent cations were required for activity, with potassium ions being the most effective. The enzyme exhibited sensitivity toward diethylpyrocarbonate and some thiol-directed reagents, and it was irreversibly inhibited by 6-chloropurine. The properties of the enzyme suggest it is mechanistically related to inosine-5'-monophosphate dehydrogenase.

  10. Advances in acrylic-alkyd hybrid synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  11. Radiolysis of poly(acrylic acid) in aqueous solution

    NASA Astrophysics Data System (ADS)

    Ulanski, Piotr; Bothe, Eberhard; Hildenbrand, Knut; Rosiak, Janusz M.; von Sonntag, Clemens

    1995-02-01

    Poly(acrylic acid), PAA, reacts with OH-radicals yielding -CHCH(CO 2H)- (β-radicals) and -CH 2C(CO 2H)- (α-radicals) in a ratio of approximately 2:1. This estimate is based on pulse radiolysis data where the absorption spectrum of the PAA-radicals was compared with the spectra of α-radicals from model systems. The β-radicals convert slowly into α-radicals ( k = 0.7 s -1 at pH 10). This process has also been observed by ESR. At PAA-concentrations of 10 -2 mol dm -3 chain scission dominates over other competing reactions except at low pH. The rate of chain scission was followed by pulse conductometry and in the pH range 7-9 k = 4 × 10 -2s -1 was observed. Oxygen reacts with PAA-radicals with k = 3.1 × 10 8 dm 3 mol -1 s -1 at pH 3.5 and k = 1.0 × 10 8 dm 3 mol -1 s -1 at pH 10. The corresponding peroxyl radicals undergo slow intramolecular H-transfer yielding a UV-absorbing product whose properties are that of 1,3-diketones.

  12. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-basedmore » compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.« less

  13. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  14. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen

    2015-07-15

    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  15. Degradation Behaviour of Gamma Irradiated Poly(Acrylic Acid)-graft-Chitosan Superabsorbent Hydrogel

    NASA Astrophysics Data System (ADS)

    Ria Barleany, Dhena; Ilhami, Alpin; Yusuf Yudanto, Dea; Erizal

    2018-03-01

    A series of superabsorbent hydrogels were prepared from chitosan and partially neutralized acrylic acid at room temperature by gamma irradiation technique. The effect of irradiation and chitosan addition to the degradation behaviour of polymer were investigated. The gel content, swelling capacity, Equillibrium Degree of Swelling (EDS), Fourier Transform Infra Red (FTIR), and Scanning Electron Microscopy (SEM) study were also performed. Natural degradation in soil and thermal degradation by using of TGA analysis were observed. The variation of chitosan compositions were 0.5, 1, 1.5, and 2 g and the total irradiation doses were 5, 10, 15, and 20 kGy. The highest water capacity of 583.3 g water/g dry hydrogel was resulted from 5 kGy total irradiation dose and 0,5 g addition of chitosan. From the thermal degradation evaluation by using of TGA analysis showed that irradiation dose did not give a significant influence to the degradation rate. The rate of thermal degradation was ranged between 2.42 to 2.55 mg/min. In the natural test of degradation behaviour by using of soil medium, the hydrogel product with chitosan addition was found to have better degradability compared with the poly(acrylic acid) polymer without chitosan.

  16. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  17. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  18. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  19. Structure-toxicity relationships of acrylic monomers.

    PubMed

    Autian, J

    1975-06-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population.

  20. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Spectroscopic and density functional theory studies of trans-3-(trans-4-imidazolyl)acrylic acid.

    PubMed

    Arjunan, V; Remya, P; Sathish, U; Rani, T; Mohan, S

    2014-08-14

    The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry of trans-3-(trans-4-imidazolyl)acrylic acid have been determined from B3LYP methods with 6-311++G(**) and cc-pVTZ basis sets. The effects of substituents (acrylyl group) on the imidazole vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of trans-3-(trans-4-imidazolyl)acrylic acid have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. (1)H and (13)C NMR isotropic chemical shifts are calculated and the assignments made are compared with the experimental values. The energies of important MO's of the compound are also determined from DFT method. The total electron density and electrostatic potential of the compound are determined by natural bond orbital analysis. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities employing natural population analysis (NPA) are calculated. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries.

    PubMed

    Ma, Yue; Ma, Jun; Chai, Jingchao; Liu, Zhihong; Ding, Guoliang; Xu, Gaojie; Liu, Haisheng; Chen, Bingbing; Zhou, Xinhong; Cui, Guanglei; Chen, Liquan

    2017-11-29

    Electrochemical performance of high-voltage lithium batteries with high energy density is limited because of the electrolyte instability and the electrode/electrolyte interfacial reactivity. Hence, a cross-linking polymer network of poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) (PAMM)-based electrolyte was introduced via in situ polymerization inspired by "shuangjian hebi", which is a statement in a traditional Chinese Kungfu story similar to the synergetic effect of 1 + 1 > 2. A poly(acrylic anhydride) and poly(methyl methacrylate)-based system is very promising as electrolyte materials for lithium-ion batteries, in which the anhydride and acrylate groups can provide high voltage resistance and fast ionic conductivity, respectively. As a result, the cross-linking PAMM-based electrolyte possesses a significant comprehensive enhancement, including electrochemical stability window exceeding 5 V vs Li + /Li, an ionic conductivity of 6.79 × 10 -4 S cm -1 at room temperature, high mechanical strength (27.5 MPa), good flame resistance, and excellent interface compatibility with Li metal. It is also demonstrated that this gel polymer electrolyte suppresses the negative effect resulting from dissolution of Mn 2+ ions at 25 and 55 °C. Thus, the LiNi 0.5 Mn 1.5 O 4 /Li and LiNi 0.5 Mn 1.5 O 4 /Li 4 Ti 5 O 12 cells using the optimized in situ polymerized cross-linking PAMM-based gel polymer electrolyte deliver stable charging/discharging profiles and excellent rate performance at room temperature and even at 55 °C. These findings suggest that the cross-linking PAMM is an intriguing candidate for 5 V class high-voltage gel polymer electrolyte toward high-energy lithium-on batteries.

  3. Osmotic Engine: Translating Osmotic Pressure into Macroscopic Mechanical Force via Poly(Acrylic Acid) Based Hydrogels

    PubMed Central

    Arens, Lukas; Weißenfeld, Felix; Klein, Christopher O.; Schlag, Karin

    2017-01-01

    Poly(acrylic acid)‐based hydrogels can swell up to 100–1000 times their own weight in desalinated water due to osmotic forces. As the swelling is about a factor of 2–12 lower in seawater‐like saline solutions (4.3 wt% NaCl) than in deionized water, cyclic swelling, and shrinking can potentially be used to move a piston in an osmotic motor. Consequently, chemical energy is translated into mechanical energy. This conversion is driven by differences in chemical potential and by changes in entropy. This is special, as most thermodynamic engines rely instead on the conversion of heat into mechanical energy. To optimize the efficiency of this process, the degree of neutralization, the degree of crosslinking, and the particle size of the hydrogels are varied. Additionally, different osmotic engine prototypes are constructed. The maximum mean power of 0.23 W kg−1 dry hydrogel is found by using an external load of 6 kPa, a polymer with 1.7 mol% crosslinking, a degree of neutralization of 10 mol%, and a particle size of 370–670 µm. As this is achieved only in the first round of optimization, higher values of the maximum power average over one cycle seem realistic. PMID:28932675

  4. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials

    PubMed Central

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-01-01

    Statement of the Problem: Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. Purpose: The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Materials and Method: Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer’s instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×108 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Results: Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×103) comparing to injection molding acrylic resins (6×103) were statistically significant (p<0.001). Conclusion: Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis. PMID:28280761

  5. Comparison of Candida Albicans Adherence to Conventional Acrylic Denture Base Materials and Injection Molding Acrylic Materials.

    PubMed

    Aslanimehr, Masoomeh; Rezvani, Shirin; Mahmoudi, Ali; Moosavi, Najmeh

    2017-03-01

    Candida species are believed to play an important role in initiation and progression of denture stomatitis. The type of the denture material also influences the adhesion of candida and development of stomatitis. The aim of this study was comparing the adherence of candida albicans to the conventional and injection molding acrylic denture base materials. Twenty injection molding and 20 conventional pressure pack acrylic discs (10×10×2 mm) were prepared according to their manufacturer's instructions. Immediately before the study, samples were placed in sterile water for 3 days to remove residual monomers. The samples were then sterilized using an ultraviolet light unit for 10 minutes. 1×10 8 Cfu/ml suspension of candida albicans ATCC-10231 was prepared from 48 h cultured organism on sabouraud dextrose agar plates incubated at 37oC. 100 μL of this suspension was placed on the surface of each disk. After being incubated at 37oC for 1 hour, the samples were washed with normal saline to remove non-adherent cells. Attached cells were counted using the colony count method after shaking at 3000 rmp for 20 seconds. Finally, each group was tested for 108 times and the data were statistically analyzed by t-test. Quantitative analysis revealed that differences in colony count average of candida albicans adherence to conventional acrylic materials (8.3×10 3 ) comparing to injection molding acrylic resins (6×10 3 ) were statistically significant ( p <0.001). Significant reduction of candida albicans adherence to the injection acrylic resin materials makes them valuable for patients with high risk of denture stomatitis.

  6. Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp

    PubMed Central

    Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki

    1993-01-01

    Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751

  7. Corrosion resistant properties of polyaniline acrylic coating on magnesium alloy

    NASA Astrophysics Data System (ADS)

    Sathiyanarayanan, S.; Azim, S. Syed; Venkatachari, G.

    2006-12-01

    The performance of the paint coating based on acrylic-polyaniline on magnesium alloy ZM 21 has been studied by electrochemical impedance spectroscopy in 0.5% NaCl solution. The polyaniline was prepared by chemical oxidative method of aniline with ammonium persulphate in phosphoric acid medium. The phosphate-doped polyaniline was characterized by FTIR and XRD methods. Acrylic paint containing the phosphate-doped polyaniline was prepared and coated on magnesium ZM 21 alloy. The coating was able to protect the magnesium alloy and no base metal dissolution was noted even after 75 days exposure to sodium chloride solution.

  8. All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties

    DOE PAGES

    Lu, Wei; Wang, Yangyang; Wang, Weiyu; ...

    2017-08-25

    All acrylic-based thermoplastic elastomers (TPEs) offer potential alternatives to the widely-used styrenic TPEs. However, the high entanglement molecular weight ( M e) of polyacrylates, as compared to polydienes, leads to “disappointing” mechanical performance as compared to styrenic TPEs. In this study, triblock copolymers composed of alkyl acrylates with different pendant groups and different glass transition temperatures ( T gs), i.e. 1-adamatyl acrylate (AdA) and tetrahydrofurfuryl acrylate (THFA), were synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization. Thermal characterization of the resulting polymers was performed using differential scanning calorimetry (DSC), and the T gs of both segments were observed for themore » block copolymers. This indication of microphase separation behavior was further demonstrated using atomic-force microscopy (AFM) and small angle X-ray scattering (SAXS). Dynamic mechanical analysis (DMA) showed that the softening temperature of the PAdA domains is 123 °C, which is higher than that of both styrenic TPEs and commercial acrylic based TPEs with poly(methyl methacrylate) (PMMA) hard block. Here, the resulting triblock copolymers also exhibited stress–strain behavior superior to that of conventional all acrylic-based TPEs composed of PMMA and poly( n-butyl acrylate) (PBA) made by controlled radical processes, while the tensile strength was lower than for products made by living anionic polymerization.« less

  9. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  10. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.

    PubMed

    Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya

    2016-09-13

    In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.

  11. High-impact strength acrylic denture base material processed by autoclave.

    PubMed

    Abdulwahhab, Salwan Sami

    2013-10-01

    To investigate the effect of two different cycles of autoclave processing on the transverse strength, impact strength, surface hardness and the porosity of high-impact strength acrylic denture base material. High Impact Acryl was the heat-cured acrylic denture base material included in the study. A total of 120 specimens were prepared, the specimens were grouped into: control groups in which high-impact strength acrylic resins processed by conventional water-bath processing technique (74°C for 1.5 h then boil for 30 min) and experimental groups in which high-impact strength acrylic resins processed by autoclave at 121°C, 210 kPa .The experimental groups were divided into (fast) groups for 15 min, and (slow) groups for 30 min. To study the effect of the autoclave processing (Tuttnauer 2540EA), four tests were conducted transverse strength (Instron universal testing machine), impact strength (Charpy tester), surface hardness (shore D), and porosity test. The results were analyzed to ANOVA and LSD test. In ANOVA test, there were highly significant differences between the results of the processing techniques in transverse, impact, hardness, and porosity test. The LSD test showed a significant difference between control and fast groups in transverse and hardness tests and a non-significant difference in impact test and a highly significant difference in porosity test; while, there were a highly significant differences between control and slow groups in all examined tests; finally, there were a non-significant difference between fast and slow groups in transverse and porosity tests and a highly significant difference in impact and hardness tests. In the autoclave processing technique, the slow (long) curing cycle improved the tested physical and mechanical properties as compared with the fast (short) curing cycle. The autoclave processing technique improved the tested physical and mechanical properties of High Impact Acryl. Copyright © 2013 Japan Prosthodontic Society

  12. Preparation of poly(acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies.

    PubMed

    Mittal, H; Mishra, Shivani B; Mishra, A K; Kaith, B S; Jindal, R; Kalia, S

    2013-10-15

    Biodegradation studies of Gum ghatti (Gg) and acrylamide-co-acrylic acid based flocculants [Gg-cl-poly(AAm-co-AA)] have been reported using the soil composting method. Gg-cl-poly(AAm-co-AA) was found to degrade 89.76% within 60 days. The progress of biodegradation at each stage was monitored through FT-IR and SEM. Polymer was synthesized under pressure using potassium persulphate-ascorbic acid as a redox initiator and N,N'-methylene-bis-acrylamide as a crosslinker. Synthesized polymer was found to show pH, temperature and ionic strength of the cations dependent swelling behavior. Gg-cl-poly(AAm-co-AA) was utilized for the selective absorption of saline from different petroleum fraction-saline emulsions. The flocculation efficiency of the polymer was studied as a function of polymer dose, temperature and pH of the solution. Gg-cl-poly(AAm-co-AA) showed maximum flocculation efficiency with 20 mol L(-1) polymer dose in acidic medium at 50 °C. Copyright © 2013. Published by Elsevier Ltd.

  13. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts.

    PubMed

    Chen, Hong; Hsieh, You-Lo

    2005-05-20

    Ultrafine cellulose fiber (diameter 200-400 nm) surfaces were grafted with polyacrylic acid (PAA) via either ceric ion initiated polymerization or methacrylation of cellulose with methacrylate chloride (MACl) and subsequent free-radical polymerization of acrylic acid. PAA grafts by ceric ion initiated polymerization increased with increasing reaction time (2-24 h), monomer (0.3-2.4 M), and initiator (1-10 mM) concentrations, and spanned a broad range from 5.5-850%. PAA grafts on the methacrylated cellulose fibers also increased with increasing molar ratios of MACl to cellulosic hydroxyl groups (MACl/OH, 2-6.4) and monomer acrylic acid (AA) to initiator potassium persulfate (KPS) ratios ([AA]/[KPS], 1.5-6), and were in a much narrower range between 12.8% and 29.4%. The adsorption of lipase (at 1 mg/ml lipase and pH 7) and the activity of adsorbed lipase (pH 8.5, 30 degrees C), in both cases decreased with increasing PAA grafts. The highest adsorption and activity of the lipase on the ceric ion initiated grafted fibers were 1.28 g/g PAA and 4.3 U/mg lipase, respectively, at the lowest grafting level of 5.5% PAA, whereas they were 0.33 g/g PAA and 7.1 U/mg lipase, respectively, at 12.8% PAA grafts on the methacrylated and grafted fibers. The properties of the grafted fibers and the absorption behavior and activity of lipase suggest that the PAA grafts are gel-like by ceric-initiated reaction and brush-like by methacrylation and polymerization. The adsorbed lipase on the ceric ion-initiated grafted surface possessed greatly improved organic solvent stability over the crude lipase. The adsorbed lipases exhibited 0.5 and 0.3 of the initial activity in the second and third assay cycles, respectively. (c) 2004 Wiley Periodicals, Inc.

  14. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film

    NASA Astrophysics Data System (ADS)

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M.; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-01

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO - NA + ) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  15. The effect of extended polymer chains on the properties of transparent multi-walled carbon nanotubes/poly(methyl methacrylate/acrylic acid) film.

    PubMed

    Huang, Yuan-Li; Tien, Hsi-Wen; Ma, Chen-Chi M; Yu, Yi-Hsiuan; Yang, Shin-Yi; Wei, Ming-Hsiung; Wu, Sheng-Yen

    2010-05-07

    Optically transparent and electrically conductive thin films composed of multi-walled carbon nanotube (MWCNT) reinforced polymethyl methacrylate/acrylic acid (PMMA/AA) were fabricated using a wire coating technique. Poly(acrylic acid) controls the level of MWCNT dispersion in aqueous mixtures and retains the well-dispersed state in the polymer matrix after solidification resulting from extended polymer chains by adjusting the pH value. The exfoliating the MWCNT bundles by extended polymer chains results in the excellent dispersion of MWCNT. It causes a lower surface electrical resistance at the same MWCNT content. The hydrophilic functional groups (-COO( - )NA( + )) also caused a decrease in the crystallization of PMMA and led to an increase in the transmittance.

  16. Comparative analysis of skin sensitization potency of acrylates (methyl acrylate, ethyl acrylate, butyl acrylate, and ethylhexyl acrylate) using the local lymph node assay.

    PubMed

    Dearman, Rebecca J; Betts, Catherine J; Farr, Craig; McLaughlin, James; Berdasco, Nancy; Wiench, Karin; Kimber, Ian

    2007-10-01

    There are currently available no systematic experimental data on the skin sensitizing properties of acrylates that are of relevance in occupational settings. Limited information from previous guinea-pig tests or from the local lymph node assay (LLNA) is available; however, these data are incomplete and somewhat contradictory. For those reasons, we have examined in the LLNA 4 acrylates: butyl acrylate (BA), ethyl acrylate (EA), methyl acrylate (MA), and ethylhexyl acrylate (EHA). The LLNA data indicated that all 4 compounds have some potential to cause skin sensitization. In addition, the relative potencies of these acrylates were measured by derivation from LLNA dose-response analyses of EC3 values (the effective concentration of chemical required to induce a threefold increase in proliferation of draining lymph node cells compared with control values). On the basis of 1 scheme for the categorization of skin sensitization potency, BA, EA, and MA were each classified as weak sensitizers. Using the same scheme, EHA was considered a moderate sensitizer. However, it must be emphasized that the EC3 value for this chemical of 9.7% is on the borderline between moderate (<10%) and weak (>10%) categories. Thus, the judicious view is that all 4 chemicals possess relatively weak skin sensitizing potential.

  17. Chemical modification of magnetite nanoparticles and preparation of acrylic-base magnetic nanocomposite particles via miniemulsion polymerization

    NASA Astrophysics Data System (ADS)

    Mahdieh, Athar; Mahdavian, Ali Reza; Salehi-Mobarakeh, Hamid

    2017-03-01

    Nowadays, magnetic nanocomposite particles have attracted many interests because of their versatile applications. A new method for chemical modification of Fe3O4 nanoparticles with polymerizable groups is presented here. After synthesis of Fe3O4 nanoparticles by co-precipitation method, they were modified sequentially with 3-aminopropyl triethoxysilane (APTES), acryloyl chloride (AC) and benzoyl chloride (BC) and all were characterized by FTIR, XRD, SEM and TGA analyses. Then the modified magnetite nanoparticles with unsaturated acrylic groups were copolymerized with methyl methacrylate (MMA), butyl acrylate (BA) and acrylic acid (AA) through miniemulsion polymerization. Although several reports exist on preparation of magnetite-base polymer particles, but the efficiency of magnetite encapsulationwith reasonable content and obtaining final stable latexes with limited aggregation ofFe3O4 are still important issues. These were considered here by controlling reaction parameters. Hence, a seriesofmagneticnanocomposites latex particlescontaining different amounts of Fe3O4 nanoparticles (0-10 wt%) were prepared with core-shell morphology and diameter below 200 nm and were characterized by FT-IR, DSC and TGA analyses. Their morphology and size distribution were studied by SEM, TEM and DLS analyses too. Magnetic properties of all products were also measuredby VSM analysis and the results revealed almost superparamagnetic properties for the obtained nanocomposite particles.

  18. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: an attractive technology.

    PubMed

    Ladner, Y; Cretier, G; Faure, K

    2015-01-01

    Electrochromatography (EC) on a porous monolithic stationary phase prepared within the channels of a microsystem is an attractive alternative for on-chip separation. It combines the separation mechanisms of electrophoresis and liquid chromatography. Moreover, the porous polymer monolithic materials have become popular as stationary phase due to the ease and rapidity of fabrication via free radical photopolymerization. Here, we describe a hexyl acrylate (HA)-based porous monolith which is simultaneously in situ synthesized and anchored to the inner walls of the channel of a cyclic olefin copolymer (COC) device in only 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is realized.

  19. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process.

  20. New regioselective derivatives of sucrose with amino acid and acrylic groups.

    PubMed

    Anders, Jan; Buczys, Rachel; Lampe, Elmar; Walter, Martin; Yaacoub, Emile; Buchholz, Klaus

    2006-02-27

    We report here a range of new sucrose derivatives obtained from '3-ketosucrose' in aqueous medium with few reaction steps. As an intermediate, 3-amino-3-deoxy-alpha-D-allopyranosyl beta-D-fructofuranoside (1) was obtained via the classical route of reductive amination with much improved yield and high stereoselectivity. Building blocks for polymerization were synthesized by introduction of acrylic-type side chains, for example, with methacrylic anhydride. Corresponding polymers were synthesized. Aminoacyl and peptide conjugates were obtained through conventional peptide synthesis with activated and protected amino acids. Deprotection yielded new glycoderivatives having an unconventional substitution pattern, namely 3-(aminoacylamino) allosaccharides. Both mono- and di-peptide conjugates of allosucrose have been synthesized.

  1. Synthesis of porous poly(styrene-co-acrylic acid) microspheres through one-step soap-free emulsion polymerization: whys and wherefores.

    PubMed

    Yan, Rui; Zhang, Yaoyao; Wang, Xiaohui; Xu, Jianxiong; Wang, Da; Zhang, Wangqing

    2012-02-15

    Synthesis of porous poly(styrene-co-acrylic acid) (PS-co-PAA) microspheres through one-step soap-free emulsion polymerization is reported. Various porous PS-co-PAA microspheres with the particle size ranging from 150 to 240 nm and with the pore size ranging from 4 to 25 nm are fabricated. The porous structure of the microspheres is confirmed by the transmission electron microscopy measurement and Brunauer-Emmett-Teller (BET) analysis. The reason for synthesis of the porous PS-co-PAA microspheres is discussed, and the phase separation between the encapsulated hydrophilic poly(acrylic acid) segment and the hydrophobic polystyrene domain within the PS-co-PAA microspheres is ascribed to the pore formation. The present synthesis of the porous PS-co-PAA microspheres is anticipated to be a new and convenient way to fabricate porous polymeric particles. Copyright © 2011 Elsevier Inc. All rights reserved.

  2. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing

    2013-04-01

    Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.

  3. Effect of long-term water immersion or thermal shock on mechanical properties of high-impact acrylic denture base resins.

    PubMed

    Sasaki, Hirono; Hamanaka, Ippei; Takahashi, Yutaka; Kawaguchi, Tomohiro

    2016-01-01

    The purpose of this study was to investigate the effect of long-term water immersion or thermal shock on the mechanical properties of high-impact acrylic denture base resins. Two high-impact acrylic denture base resins were selected for the study. Specimens of each denture base material tested were fabricated according to the manufacturers' instructions (n=10). The flexural strength at the proportional limit, the elastic modulus and the impact strength of the specimens were evaluated. The flexural strength at the proportional limit of the high-impact acrylic denture base resins did not change after six months' water immersion or thermocycling 50,000 times. The elastic moduli of the high-impact acrylic denture base resins significantly increased after six months' water immersion or thermocycling 50,000 times. The impact strengths of the high-impact acrylic denture base resins significantly decreased after water immersion or thermocycling as described above.

  4. Effect of beverages on the hardness and tensile bond strength of temporary acrylic soft liners to acrylic resin denture base.

    PubMed

    Safari, A; Vojdani, M; Mogharrabi, S; Iraji Nasrabadi, N; Derafshi, R

    2013-12-01

    Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials. The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin. For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm) were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers' instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm) were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10) and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37(o)C for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA. There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748) and bond strength (p= 0.902). There were statistically significant differences between all drinks for both hardness (p< 0.001) and bond strength (p< 0.05). Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary acrylic soft liners.

  5. The controlled preparation of polypyrrole nanostructures via tuning the concentration of acrylic acid.

    PubMed

    Wang, Yujie; Zhong, Wenbin; Ning, Xutao; Li, Yuntao; Chen, Xiaohua; Wang, Yongxin; Yang, Wantai

    2013-03-01

    Two types of nanostructures, nanowires and nanoribbons were prepared with polypyrrole (PPy) by controlling the concentration of acrylic acid (AA) in systems containing cationic surfactant, cetyltrimethylammonium bromide (CTAB) at about 12 degrees C. The effect of reaction conditions involving the concentration of AA, CTAB, pyrrole as well as the reaction temperature was systematically studied on the final structures of prepared PPy. The results revealed that the polymerization of AA, resulting in PAA, played a key role in the evolution of PPy nanostructures. A possible mechanism was briefly discussed on the formation of these two nanostructures, nanowires and nanoribbons.

  6. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 32 2013-07-01 2013-07-01 false 2-Propenoic acid, 2-methyl-, 2...

  7. 40 CFR 721.10526 - 2-Propenoic acid, 2-methyl-, 2-hydroxyethyl ester, telomers with C18-26-alkyl acrylate, 1...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate and vinylidene chloride, 2...-alkyl acrylate, 1-dodecanethiol, N-(hydroxymethyl)-2-methyl-2-propenamide, polyfluorooctyl methacrylate... 40 Protection of Environment 31 2014-07-01 2014-07-01 false 2-Propenoic acid, 2-methyl-, 2...

  8. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography.

    PubMed

    Horie, Kanta; Ikegami, Tohru; Hosoya, Ken; Saad, Nabil; Fiehn, Oliver; Tanaka, Nobuo

    2007-09-14

    Monolithic silica capillary columns for hydrophilic interaction liquid chromatography (HILIC) were prepared by on-column polymerization of acrylic acid on monolithic silica in a fused silica capillary modified with anchor groups. The products maintained the high permeability (K=5 x 10(-14)m(2)) and provided a plate height (H) of less than 10 microm at optimum linear velocity (u) and H below 20 microm at u=6mm/s for polar solutes including nucleosides and carbohydrates. The HILIC mode monolithic silica capillary column was able to produce 10000 theoretical plates (N) with column dead time (t(0)) of 20s at a pressure drop of 20 MPa or lower. The total performance was much higher than conventional particle-packed HILIC columns currently available. The gradient separations of peptides by a capillary LC-electrospray mass spectrometry system resulted in very different retention selectivity between reversed-phase mode separations and the HILIC mode separations with a peak capacity of ca. 100 in a 10 min gradient time in either mode. The high performance observed with the monolithic silica capillary column modified with poly(acrylic acid) suggests that the HILIC mode can be an alternative to the reversed-phase mode for a wide range of compounds, especially for those of high polarity in isocratic as well as gradient elution.

  9. Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions

    PubMed Central

    Prabhu, Rupal; Altman, Elliot

    2012-01-01

    The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753

  10. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Biocatalytic synthesis of maltodextrin-based acrylates from starch and α-cyclodextrin.

    PubMed

    Kloosterman, Wouter M J; Spoelstra-van Dijk, Gerda; Loos, Katja

    2014-09-01

    Novel 2-(β-maltooligooxy)-ethyl (meth)acrylate monomers are successfully synthesized by CGTase from Bacillus macerans catalyzed coupling of 2-(β-glucosyloxy)-ethyl acrylate and methacrylate with α-cyclodextrin or starch. HPLC-UV analysis shows that the CGTase catalyzed reaction yields 2-(β-maltooligooxy)-ethyl acrylates with 1 to 15 glucopyranosyl units. (1) H NMR spectroscopy reveals that the β-linkage in the acceptor molecule is preserved during the CGTase catalyzed coupling reaction, whereas the newly introduced glucose units are attached by α-(1,4)-glycosidic linkages. The synthesized 2-(β-maltooligooxy)-ethyl acrylate monomers are successfully polymerized by aqueous free radical polymerization to yield the comb-shaped glycopolymer poly(2-(β-maltooligooxy)-ethyl acrylate). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fast microwave-assisted green synthesis of xanthan gum grafted acrylic acid for enhanced methylene blue dye removal from aqueous solution.

    PubMed

    Makhado, Edwin; Pandey, Sadanand; Nomngongo, Philiswa N; Ramontja, James

    2017-11-15

    In the present project, graft polymerization was employed to synthesis a novel adsorbent using acrylic acid (AA) and xanthan gum (XG) for cationic methylene dye (MB + ) removal from aqueous solution. The XG was rapidly grafted with acrylic acid (CH 2 =CHCOOH) under microwave heating. Fourier-transform infrared spectroscopy (FTIR), Proton Nuclear magnetic resonance spectroscopy ( 1 H NMR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Thermal gravimetric analysis (TGA) techniques were used to verify the adsorbent formed under optimized reaction conditions. Optimum reaction conditions [AA (0.4M), APS (0.05M), XG (2gL -1 ), MW power (100%), MW time (80s)] offer maximum %G and %GE of 484 and 78.3, respectively. The removal ratio of adsorbent to MB + reached to 92.8% at 100mgL -1 . Equilibrium and kinetic adsorptions of dyes were better explained by the Langmuir isotherm and pseudo second-order kinetic model respectively. The results demonstrate xanthan gum grafted polyacrylic acid (mw XG-g-PAA) absorbent had the universality for removal of dyes through the chemical adsorption mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  14. Two decades of occupational (meth)acrylate patch test results and focus on isobornyl acrylate.

    PubMed

    Christoffers, Wietske A; Coenraads, Pieter-Jan; Schuttelaar, Marie-Louise A

    2013-08-01

    Acrylates constitute an important cause of occupational contact dermatitis. Isobornyl acrylate sensitization has been reported in only 2 cases. We encountered an industrial process operator with occupational contact dermatitis caused by isobornyl acrylate. (i) To investigate whether it is relevant to add isobornyl acrylate to the (meth)acrylate test series. (ii) To report patients with (meth)acrylate contact allergy at an occupational dermatology clinic. Our patch test database was screened for positive reactions to (meth)acrylates between 1993 and 2012. A selected group of 14 patients was tested with an isobornyl acrylate dilution series: 0.3%, 0.1%, 0.033%, and 0.01%. Readings were performed on D2, D3, and D7. One hundred and fifty-one patients were tested with our (meth)acrylate series; 24 had positive reactions. Most positive reactions were to 2-hydroxypropyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, and diethyleneglycol diacrylate. Hypothetical screening with 2-hydroxypropyl acrylate, ethyleneglycol dimethacrylate, ethoxylated bisphenol A glycol dimethacrylate and trimethylolpropane triacrylate identified 91.7% of the 24 patients. No positive reactions were observed in 14 acrylate-positive patients tested with the isobornyl acrylate dilution series. The 0.3% isobornyl acrylate concentration induced irritant reactions in 3 patients. We report a rare case of allergic contact dermatitis caused by isobornyl acrylate. However, this study provides insufficient support for isobornyl acrylate to be added to a (meth)acrylate series. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. New hybrid latexes from a soybean oil-based waterborne polyurethane and acrylics via emulsion polymerization.

    PubMed

    Lu, Yongshang; Larock, Richard C

    2007-10-01

    A series of new waterborne polyurethane (PU)/acrylic hybrid latexes have been successfully synthesized by the emulsion polymerization of acrylic monomers (butyl acrylate and methyl methacrylate) in the presence of a soybean oil-based waterborne PU dispersion using potassium persulfate as an initiator. The waterborne PU dispersion has been synthesized by a polyaddition reaction of toluene 2,4-diisocyanate and a soybean oil-based polyol (SOL). The resulting hybrid latexes, containing 15-60 wt % SOL as a renewable resource, are very stable and exhibit uniform particle sizes of 125 +/- 20 nm as determined by transmittance electronic microscopy. The structure, thermal, and mechanical properties of the resulting hybrid latex films have been investigated by Fourier transform infrared spectroscopy, solid state 13C NMR spectroscopy, dynamic mechanical analysis, extraction, and mechanical testing. Grafting copolymerization of the acrylic monomers onto the PU network occurs during the emulsion polymerization, leading to a significant increase in the thermal and mechanical properties of the resulting hybrid latexes. This work provides a new way of utilizing renewable resources to prepare environmentally friendly hybrid latexes with high performance for coating applications.

  16. Potassium fulvate-modified graft copolymer of acrylic acid onto cellulose as efficient chelating polymeric sorbent.

    PubMed

    Mohamed, Magdy F; Essawy, Hisham A; Ammar, Nabila S; Ibrahim, Hanan S

    2017-01-01

    Acrylic acid (AA) was graft copolymerized from cellulose (Cell) in presence of potassium fulvate (KF) in order to enhance the chemical activity of the resulting chelating polymer and the handling as well. Fourier transform infrared (FTIR) proved that KF was efficiently inserted and became a permanent part of the network structure of the sorbent in parallel during the grafting copolymerization. Scanning electron microscopy (SEM) revealed intact homogeneous structure with uniform surface. This indicates improvement of the handling, however, it was not the case for the graft copolymer of acrylic acid onto cellulose in absence of KF, which is known to be brittle and lacks mechanical integrity. Effective insertion of this co-interpenetrating agent provided more functional groups, such as OH and COOH, which improved the chelating power of the produced sorbent as found for the removal of Cu 2+ ions from its aqueous solutions (the removal efficiency reached ∼98.9%). Different models were used to express the experimental data. The results corroborated conformity of the pseudo-second order kinetic model and Langmuir isotherm model to the sorption process, which translates into dominance of the chemisorption. Regeneration of the chelating polymers under harsh conditions did not affect the efficiency of copper ions uptake up to three successive cycles. A thermodynamic investigation ensured exothermic nature of the adsorption process that became less favourable at higher temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Curcumin delivery from poly(acrylic acid-co-methyl methacrylate) hollow microparticles prevents dopamine-induced toxicity in rat brain synaptosomes.

    PubMed

    Yoncheva, Krassimira; Kondeva-Burdina, Magdalena; Tzankova, Virginia; Petrov, Petar; Laouani, Mohamed; Halacheva, Silvia S

    2015-01-01

    The potential of poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) copolymers to form hollow particles and their further formulation as curcumin delivery system have been explored. The particles were functionalized by crosslinking the acrylic acid groups via bis-amide formation with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP) which simultaneously incorporated reversibility due to the presence of disulfide bonds within the crosslinker. Optical micrographs showed the formation of spherical hollow microparticles with a size ranging from 1 to 7 μm. Curcumin was loaded by incubation of its ethanol solution with aqueous dispersions of the cross-linked particles and subsequent evaporation of the ethanol. Higher loading was observed in the microparticles with higher content of hydrophobic PMMA units indicating its influence upon the loading of hydrophobic molecules such as curcumin. The in vitro release studies in a phosphate buffer showed no initial burst effect and sustained release of curcumin that correlated with the swelling of the particles under these conditions. The capacity of encapsulated and free curcumin to protect rat brain synaptosomes against dopamine-induced neurotoxicity was examined. The encapsulated curcumin showed greater protective effects in rat brain synaptosomes as measured by synaptosomal viability and increased intracellular levels of glutathione. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.

    PubMed

    Ni, Zhihui; Wang, Zhihua; Sun, Lei; Li, Binjie; Zhao, Yanbao

    2014-08-01

    Poly acrylic acid modified silver (Ag/PAA) nanoparticles (NPs) have been successfully synthesized in the aqueous solution by using tannic acid as a reductant. The structure, morphology and composition of Ag/PAA NPs were characterized by various techniques such as X-ray powder diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible absorption spectroscopy (UV-vis) and thermogravimetry analysis (TGA). The results show that PAA/Ag NPs have a quasi-ball shape with an average diameter of 10 nm and exhibit well crystalline, and the reaction conditions have some effect on products morphology and size distribution. In addition, the as-synthesized Ag/PAA NPs antimicrobial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) were evaluated by the methods of broth dilution, cup diffusion, optical density (OD600) and electron microscopy observation. The as-synthesized Ag/PAA NPs exhibit excellent antibacterial activity. The antimicrobial mechanism may be attributed to the damaging of bacterial cell membrane and causing leakage of cytoplasm. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Radiation-induced controlled polymerization of acrylic acid by RAFT and RAFT-MADIX methods in protic solvents

    NASA Astrophysics Data System (ADS)

    Sütekin, S. Duygu; Güven, Olgun

    2018-01-01

    The kinetic investigation of one-pot synthesis of poly(acrylic acid) (PAA) prepared via gamma radiation induced controlled polymerization was reported. PAA homopolymers were prepared by Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization in the presence of trithiocarbonate-based chain transfer agent (CTA) 2-(Dodecylthiocarbonothioylthio)-2-methylpropionic acid (DDMAT) and also by Reversible Addition-Fragmentation/Macromolecular Design by Inter-change of Xanthates (RAFT/MADIX) polymerization in the presence of a xanthate based CTA O-ethyl-S-(1-methoxycarbonyl) ethyl dithiocarbonate (RA1). The polymerizations were performed at room temperature by the virtue of ionizing radiation. Protic solvents were used for the RAFT polymerization of AA considering environmental profits. The linear first-order kinetic plot, close control of molecular weight by the monomer/CTA molar ratio supported that the polymerization proceeds in a living fashion. The linear increase in molecular weight with conversion monitored by Size Exclusion Chromatography (SEC) is another proof of controlling of polymerization. [Monomer]/[RAFT] ratio and conversion was controlled to obtain PAA in the molecular weight range of 6900-35,800 with narrow molecular weight distributions. Reaction kinetics and effect of the amount of RAFT agent were investigated in detail. Between two different types of CTA, trithiocarbonate based DDMAT was found to be more efficient in terms of low dispersity (Đ) and linear first-order kinetic behavior for the radiation induced controlled synthesis of PAA homopolymers.

  20. Preparation, thermal property and morphology analysis of waterborne polyurethane-acrylate

    NASA Astrophysics Data System (ADS)

    Zhao, Zhenyu; Jing, Zefeng; Qiu, Fengxian; Dai, Yuting; Xu, Jicheng; Yu, Zongping; Yang, Pengfei

    2017-01-01

    A series of waterborne polyurethane-acrylate (WPUA) dispersions were prepared with isophorone diisocyanate (IPDI), polyether polyol (NJ-210), dimethylol propionic acid (DMPA), hydroxyethyl methyl acrylate (HEMA), different proportions of methyl methacrylate (MMA) and ethyl acrylate (MMA and EA) and initiating agent by the emulsion co-polymerization. The structures, thermal properties and morphology of WPUA films were characterized with FT-IR, DSC, SEM and AFM. Performances of the dispersions and films were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The obtained WPUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.

  1. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  2. Dimensional changes of acrylic resin denture bases: conventional versus injection-molding technique.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-07-01

    Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding.

  3. Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Ortega, Alejandra; Lazo, Luz M.; Burillo, Guillermina

    2014-09-01

    Two novel comb-type hydrogels based on pH-sensitive monomers (acrylic acid (AAc) and 4-vinylpyridine (4VP) were synthesized by gamma radiation. The systems were as follows: a) comb-type hydrogels of an AAc network followed by grafting of 4VP ((net-PAAc)-g-4VP) and b) comb-type hydrogels of an AAc network grafted onto polypropylene (PP) followed by grafting of 4VP (net-(PP-g-AAc)-g-4VP). The equilibrium isotherms and kinetics were evaluated for copper and zinc ions in aqueous solutions. The Zn(II) retention obtained was 480 mg g-1 and 1086 mg g-1 for (net-PAAc)-g-4VP and net-(PP-g-AAc)-g-4VP, respectively. At concentrations as low as ppm, retention efficiencies of approximately 90% were achieved for Cu(II) on (net-PAAc)-g-4VP and for Zn(II) on net-(PP-g-AAc)-g-4VP. Desorption of the hydrogels was also studied, and the results indicated that they can be used repeatedly in aqueous solutions. For both systems, the adsorption of Cu(II) and Zn(II) obeyed the Freundlich model, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The sorption process follows a pseudo-second-order model.

  4. 3D hierarchical Ag nanostructures formed on poly(acrylic acid) brushes grafted graphene oxide as promising SERS substrates

    NASA Astrophysics Data System (ADS)

    Xing, Guoke; Wang, Ke; Li, Ping; Wang, Wenqin; Chen, Tao

    2018-03-01

    In this study, in situ generation of Ag nanostructures with various morphology on poly(acrylic acid) (PAA) brushes grafted onto graphene oxide (GO), for use as substrates for surface-enhanced Raman scattering (SERS), is demonstrated. The overall synthetic strategy involves the loading of Ag precursor ions ((Ag+ and [Ag(NH3)2]+) onto PAA brush-grafted GO, followed by their in situ reduction to Ag nanostructures of various morphology using a reducing agent (NaBH4 or ascorbic acid). Novel 3D hierarchical flowerlike Ag nanostructures were obtained by using AgNO3 as precursor and ascorbic acid as reducing agent. Using 4-aminothiophenol as probe molecules, the as-prepared hierarchical Ag nanostructures exhibited excellent SERS performance, providing enhancement factors of ˜107.

  5. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The effect of mechanical and chemical polishing techniques on the surface roughness of denture base acrylic resins.

    PubMed

    Al-Rifaiy, Mohammed Q

    2010-01-01

    Smooth polished surface of dental prostheses is important to prevent bacterial colonization and plaque accumulation. The acrylic base of prosthodontic appliances needs to be adjusted by grinding which often alters the surface of the denture base. It is therefore important to know how different polishing techniques affect surface roughness of acrylic resin. The aim of this study was to evaluate the effect of mechanical polishing (MP) and chemical polishing (CP) on the surface roughness of heat cured (HC) and auto cured (AC) denture base acrylic resins. Sixty acrylic resin specimens (30 × 15 × 3 mm) were made for each of the two types of acrylic resins. Thirty HC specimens received mechanical conventional lathe polishing using cone with pumice slurry and soft brush with chalk powder. The other thirty HC specimens received chemical polishing by immersing in methyl-methacrylate monomer heated to 75 °C ± 1 °C for 10 s. The sixty AC specimens received mechanical and chemical polishing in the same manner. Surface roughness was measured using surface analyzing instrument in microns. The data were statistically analyzed by two-way analysis of variance (ANOVA) followed by post hoc Tukey's test (α = 0.05). THE SURFACE ROUGHNESS MEAN IN MICRONS IN ORDER OF DECREASING VALUES WERE: CP-HC: 1.4132 μm; CP-AC: 1.3494 μm; MP-AC: 0.7364 μm and MP-HC: 0.6333 μm. Two-way ANOVA revealed that the MP-HC was significantly different from CP-HC and CP-AC (P < 0.05). The MP-AC is also significantly different from CP-HC and CP-AC (P < 0.05). There was no significant difference between MP and CP of HC and AC acrylic resin groups. It can be concluded that MP produced significantly smoother surfaces than CP. The surface roughness obtained by MP was not influenced by acrylic resin type where as this was not true for CP.

  8. Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly(acrylic acid) in poly(vinyl alcohol)

    Treesearch

    Craig Clemons; Julia Sedlmair; Barbara Illman; Rebecca Ibach; Carol Hirschmugl

    2013-01-01

    The distribution of poly(acrylic acid) (PAA) in model laminates of nanocellulose and poly(vinyl alcohol) (PVOH) was investigated by FTIR chemical imaging. The method was effective in spatially discerning the three components of the composite. PAA can potentially improve the performance of nanocellulose reinforced PVOH by not only crosslinking the PVOH matrix but also...

  9. [Contact dermatitis caused by acrylates among 8 workers in an elevator factory].

    PubMed

    Pérez-Formoso, J L; de Anca-Fernández, J; Maraví-Cecilia, R; Díaz-Torres, J M

    2010-05-01

    Acrylates are widely used low-molecular-weight substances, initially introduced in industry in the 1930s and subsequently applied also in medicine and the home. One of their main features is the ability to undergo polymerization. The most commonly used acrylic compounds are cyanoacrylates, methacrylates, and acrylates. To confirm suspicion of occupational disease in a group of workers in an elevator factory. We studied 8 patients with dermatitis of the hands and finger pads. In their work, the patients came into contact with acrylates. Patch testing was applied with an acrylate panel (BIAL-Aristegui, Bilbao, Spain). Seven of the patients (87. 5%) had a positive result with 1% ethylene glycol dimethacrylate. Positive were also observed for 2% hydroxyethyl methacrylate (5 patients, 62. 5%), 1% triethylene glycol dimethacrylate (4 patients, 50%), 10% ethyl methacrylate monomer (3 patients, 37. 5%), 10% methyl methacrylate monomer (2 patients, 25%), 1% ethyl acrylate (1 patient, 12. 5%), and 0. 1% acrylic acid (1 patient, 12. 5%). We highlight the strong sensitizing capacity of acrylates and the importance of taking all necessary preventive measures in industries where these substances are used. Such measures should include avoidance of contact with the product in cases where sensitization has been confirmed.

  10. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  11. Methyl 2-(1,3-dioxoisoindolin-2-yl)acrylate

    PubMed Central

    Wang, Ya-Wen; Peng, Yu

    2008-01-01

    In the title compound, C12H9NO4, an important dehydro­amino acid, the acrylate C=C double bond is not parallel to the adjacent carbonyl group and an s-trans configuration is also observed. PMID:21200860

  12. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  13. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in a sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed of...

  14. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in a sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed of...

  15. Synthesis of a proline-modified acrylic acid copolymer in supercritical CO2 for glass-ionomer dental cement applications.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-06-01

    Supercritical (sc-) fluids (such as sc-CO(2)) represent interesting media for the synthesis of polymers in dental and biomedical applications. Sc-CO(2) has several advantages for polymerization reactions in comparison to conventional organic solvents. It has several advantages in comparison to conventional polymerization solvents, such as enhanced kinetics, being less harmful to the environment and simplified solvent removal process. In our previous work, we synthesized poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP) terpolymers in a supercritical CO(2)/methanol mixture for applications in glass-ionomer dental cements. In this study, proline-containing acrylic acid copolymers were synthesized, in a supercritical CO(2) mixture or in water. Subsequently, the synthesized polymers were used in commercially available glass-ionomer cement formulations (Fuji IX commercial GIC). Mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting modified cements were evaluated. It was found that the polymerization reaction in an sc-CO(2)/methanol mixture was significantly faster than the corresponding polymerization reaction in water and the purification procedures were simpler for the former. Furthermore, glass-ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesized in water. The working properties of glass-ionomer formulations made in sc-CO(2)/methanol were comparable and better than the values of those for polymers synthesized in water.

  16. Controlled Transdermal Iontophoresis by Polypyrrole/Poly(Acrylic Acid) Hydrogel

    NASA Astrophysics Data System (ADS)

    Chansai, Phithupha; Sirivat, Anuvat

    2008-03-01

    Transdermal drug delivery system delivers a drug into a body at desired site and rate. The conductive polymer-hydrogel blend between polypyrrole (PPy) doped with anionic drug and poly(acrylic acid) (PAA) were developed as a matrix/carrier of drug for the transdermal drug delivery in which the characteristic releases depend on the electrical field applied. The PAA films and their blend films were prepared by solution casting using ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent. A mechanical blending of PPy particles and PAA matrix was then carried out. Drug diffusions in the blended PPy/PAA hydrogel and the non-blended one were investigated and determined by using a modified Franz-diffusion cell with an acetate buffer, pH 5.5, at 37 0C, for a period of 48 hours to determine the effects of crosslinking ratio and electric field strength. Amounts of the released drug were measured by UV-Visible spectrophotometry. The diffusion coefficient of drug was determined through the Higuchi equation via different conditions, with and without an electric field. Moreover, thermal properties and electrical conductivity of the polypyrrole and drug-loaded polypyrrole were investigated by means of the thermogravimetric analysis and by using a two-point probe meter, respectively.

  17. Removal of Pb(II) from aqueous solutions using waste textiles/poly(acrylic acid) composite synthesized by radical polymerization technique.

    PubMed

    Zhou, Tao; Xia, Fafa; Deng, Yue; Zhao, Youcai

    2018-05-01

    Waste textiles (WTs) are the inevitable outcome of human activity and should be separated and recycled in view of sustainable development. In this work, WT was modified through grafting with acrylic acid (AA) via radical polymerization process using ceric ammonium nitrate (CAN) as an initiator and microwave and/or UV irradiation as energy supply. The acrylic acid-grafted waste textiles (WT-g-AA) thus obtained was then used as an adsorbent to remove Pb(II) from Pb(II)-containing wastewater. The effects of pH, initial concentrations of Pb(II) and adsorbent dose were investigated, and around 95% Pb(II) can be removed from the aqueous solution containing 10mg/L at pH6.0-8.0. The experimental adsorption isotherm data was fitted to the Langmuir model with maximum adsorption capacity of 35.7mg Pb/g WT-g-AA. The Pb-absorbed WT-g-AA was stripped using dilute nitric acid solution and the adsorption capacity of Pb-free material decreased from 95.4% (cycle 1) to 91.1% (cycle 3). It was considered that the WT-g-AA adsorption for Pb(II) may be realized through the ion-exchange mechanism between COOH and Pb(II). The promising results manifested that WT-g-AA powder was an efficient, eco-friendly and reusable adsorbent for the removal of Pb(II) from wastewater. Copyright © 2017. Published by Elsevier B.V.

  18. Healable Antifouling Films Composed of Partially Hydrolyzed Poly(2-ethyl-2-oxazoline) and Poly(acrylic acid).

    PubMed

    Li, Yixuan; Pan, Tiezheng; Ma, Benhua; Liu, Junqiu; Sun, Junqi

    2017-04-26

    Antifouling polymeric films can prevent undesirable adhesion of bacteria but are prone to accidental scratches, leading to a loss of their antifouling functions. To solve this problem, we report the fabrication of healable antifouling polymeric films by layer-by-layer assembly of partially hydrolyzed poly(2-ethyl-2-oxazoline) (PEtOx-EI-7%) and poly(acrylic acid) (PAA) based on hydrogen-bonding interaction as the driving force. The thermally cross-linked (PAA/PEtOx-EI-7%)*100 films show strong resistance to adhesion of both Gram-negative Escherichia coli and Gram-positive Bacillus subtilis bacteria due to the high surface and bulk concentration of the antifouling polymer PEtOx-EI-7%. Meanwhile, the dynamic nature of the hydrogen-bonding interactions and the high mobility of the polymers in the presence of water enable repeated healing of cuts of several tens of micrometers wide in cross-linked (PAA/PEtOx-EI-7%)*100 films to fully restore their antifouling function.

  19. Development of Electrically Conductive Transparent Coatings for Acrylic Plastic

    DTIC Science & Technology

    1952-12-01

    after drying, but increased to 4,000 megoihms/square after 16 hours. 4. Polyacrylic-polyamine Cop-lyrrvrs Aqueous solutions of polymethacrylic acid ...methacrylic acid -methyl methaerylate copolymer re•I. The composite material, i. e., the acrylic and applied coating, retains essentially all the original...ation in 5%, NaOH solution for 5 minutes, rinsed in distilled water, immersed with agitation in 1516 nitric acid for 3 minutes and finally rinsed well

  20. Functional and surface-active membranes from poly(vinylidene fluoride)-graft-poly(acrylic acid) prepared via RAFT-mediated graft copolymerization.

    PubMed

    Ying, L; Yu, W H; Kang, E T; Neoh, K G

    2004-07-06

    Poly (vinylidene fluoride) (PVDF) with "living" poly (acrylic acid) (PAAc) side chains (PVDF-g-PAAc) was prepared by reversible addition-fragmentation chain transfer (RAFT)-mediated graft copolymerization of acrylic acid (AAc) with the ozone-pretreated PVDF. The chemical composition and structure of the copolymers were characterized by elemental analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The copolymer could be readily cast into pH-sensitive microfiltration (MF) membranes with enriched living PAAc graft chains on the surface (including the pore surfaces) by phase inversion in an aqueous medium. The surface composition of the membranes was determined by X-ray photoelectron spectroscopy. The morphology of the membranes was characterized by scanning electron microscopy. The pore size distribution of the membranes was found to be much more uniform than that of the corresponding membranes cast from PVDF-g-PAAc prepared by the "conventional" free-radical graft copolymerization process. Most important of all, the MF membranes with surface-tethered PAAc macro chain transfer agents, or the living membrane surfaces, could be further functionalized via surface-initiated block copolymerization with N-isopropylacrylamide (NIPAAM) to obtain the PVDF-g-PAAc-b-PNIPAAM MF membranes, which exhibited both pH- and temperature-dependent permeability to aqueous media.

  1. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking

    NASA Astrophysics Data System (ADS)

    Sheikh, N.; Jalili, L.; Anvari, F.

    2010-06-01

    Poly(acrylic acid) (PAA) hydrogels were prepared by using electron beam (EB) crosslinking of PAA homopolymer from its aqueous solutions. The swelling behavior of the hydrogels was studied as a function of the concentration of PAA solution, radiation dose, pH of the swelling medium and swelling time. Also the environmental pH effect on the water diffusion mode into hydrogels was investigated. These hydrogels clearly showed pH-sensitive swelling behavior with Fickian type of diffusion in the stomach-like pH medium (pH 1.3) and non-Fickian type in the intestine-like pH medium (pH 6.8).

  3. Radiation-induced synthesis of poly(acrylic acid) nanogels

    NASA Astrophysics Data System (ADS)

    Matusiak, Malgorzata; Kadlubowski, Slawomir; Ulanski, Piotr

    2018-01-01

    Nanogel is a two-component system of a diameter in the range of tens of nanometers, consisting of an intramolecularly crosslinked polymer chain and solvent, typically water, filling the space between segments of the macromolecule. Microgels are bigger than nanogels and their size range is between 100 nm to 100 μm. One of the methods used for synthesizing nanogels is linking the segments of a single macromolecule with the use of ionizing radiation, by intramolecular recombination of radiation-generated polymer radicals. The main advantage of this technique is absence of monomers, catalysts, surfactants or crosslinking agents. This method is an interesting alternative way of synthesizing polymeric carriers for biomedical applications. The aim of the study was radiation synthesis and characterization of poly(acrylic acid) - PAA - nanogels and microgels. The physico-chemical properties were described by determination of weight-average molecular weight and dimensions (radius of gyration, hydrodynamic radius) of the nanogels and microgels. Influence of polymer concentration and dose on these parameters was analyzed. Adjusting the PAA concentration and absorbed dose, one can control the molecular weight and dimensions of nanogels. The solutions of PAA were irradiated with two sources of ionizing radiation: γ-source and electron accelerator. The former method yields mainly microgels due to prevailing intermolecular crosslinking, while the latter promotes intramolecular recombination of PAA-derived radicals and in consequence formation of nanogels. In the future radiation-synthesized PAA nanogels, after functionalization, will be tested as carriers for delivering radionuclides to the tumor cells.

  4. Selection of anion exchangers for detoxification of dilute-acid hydrolysates from spruce.

    PubMed

    Horváth, Ilona Sárvári; Sjöde, Anders; Nilvebrant, Nils-Olof; Zagorodni, Andrei; Jönsson, Leif J

    2004-01-01

    Six anion-exchange resins with different properties were compared with respect to detoxification of a dilute-acid hydrolysate of spruce prior to ethanolic fermentation with Saccharomyces cerevisiae. The six resins encompassed strong and weak functional groups as well as styrene-, phenol-, and acrylic-based matrices. In an analytical experimental series, fractions from columns packed with the different resins were analyzed regarding pH, glucose, furfural, hydroxymethylfurfural, phenolic compounds, levulinic acid, acetic acid, formic acid, and sulfate. An initial adsorption of glucose occurred in the strong alkaline environment and led to glucose accumulation at a later stage. Acetic and levulinic acid passed through the column before formic acid, whereas sulfate had the strongest affinity. In a preparative experimental series, one fraction from each of six columns packed with the different resins was collected for assay of the fermentability and analysis of glucose, mannose, and fermentation inhibitors. The fractions collected from strong anion-exchange resins with styrene-based matrices displayed the best fermentability: a sevenfold enhancement of ethanol productivity compared with untreated hydrolysate. Fractions from a strong anion exchanger with acrylic-based matrix and a weak exchanger with phenol-based resin displayed an intermediate improvement in fermentability, a four- to fivefold increase in ethanol productivity. The fractions from two weak exchangers with styrene- and acrylic-based matrices displayed a twofold increase in ethanol productivity. Phenolic compounds were more efficiently removed by resins with styrene- and phenol-based matrices than by resins with acrylic-based matrices.

  5. Interaction between Al3+ and acrylic acid and polyacrylic acid in acidic aqueous solution: a model experiment for the behavior of Al3+ in acidified soil solution.

    PubMed

    Etou, Mayumi; Masaki, Yuka; Tsuji, Yutaka; Saito, Tomoyuki; Bai, Shuqin; Nishida, Ikuko; Okaue, Yoshihiro; Yokoyama, Takushi

    2011-01-01

    From the viewpoint of the phytotoxicity and mobility of Al(3+) released from soil minerals due to soil acidification, the interaction between Al(3+) and acrylic acid (AA) and polyacrylic acid (PAA) as a model compound of fulvic acid was investigated. The interaction was examined at pH 3 so as to avoid the hydrolysis of Al(3+). The interaction between Al(3+) and AA was weak. However, the interaction between Al(3+) and PAA was strong and depended on the initial (COOH in PAA)/Al molar ratio (R(P)) of the solution. For the range of 1/R(P), the interaction between Al(3+) and PAA can be divided into three categories: (1) 1:1 Al-PAA-complex (an Al(3+) combines to a carboxyl group), (2) intermolecular Al-PAA-complex (an Al(3+) combines to more than 2 carboxyl groups of other Al-PAA-complexes) in addition to the 1:1 Al-PAA-complex and (3) precipitation of intermolecular complexes. In conclusion, R(P) is an important factor affecting the behavior of Al(3+) in acidic soil solution.

  6. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... of the polymer and in the preparation and application of the emulsion may include substances named in... amount required as a preservative in emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde...

  7. Effects of the peracetic acid and sodium hypochlorite on the colour stability and surface roughness of the denture base acrylic resins polymerised by microwave and water bath methods.

    PubMed

    Fernandes, Flavio H C N; Orsi, Iara A; Villabona, Camilo A

    2013-03-01

    This study evaluated the surface roughness (Ra) and color stability of acrylic resin colors (Lucitone 550, QC-20 and Vipi-Wave) used for fabricating bases for complete, removable dentures, overdentures and prosthetic protocol after immersion in chemical disinfectants (1% sodium hypochlorite and 2% peracetic acid) for 30 and 60 minutes. Sixty specimens were made of each commercial brand of resin composite, and divided into 2 groups according to the chemical disinfectants. Specimens had undergone the finishing and polishing procedures, the initial color and roughness measurements were taken (t=0), and after this, ten test specimens of each commercial brand of resin composite were immersed in sodium hypochlorite and ten in peracetic acid, for 30 and 60 minutes, with measurements being taken after each immersion period. These data were submitted to statistical analysis. There was evidence of an increase in Ra after 30 minutes immersion in the disinfectants in all the resins, with QC-20 presenting the highest Ra values, and Vipi-Wave the lowest. After 60 minutes immersion in the disinfectants all the resins presented statistically significant color alteration. Disinfection with 1% sodium hypochlorite and peracetic acid altered the properties of roughness and color of the resins. © 2012 The Gerodontology Society and John Wiley & Sons A/S.

  8. Water-based acrylate copolymer/silica hybrids for facile preparation of robust and durable superhydrophobic coatings

    NASA Astrophysics Data System (ADS)

    Li, Meng; Li, Yu; Xue, Fang; Jing, Xinli

    2018-07-01

    Resin based superhydrophobic coatings are effective to construct robust superhydrophobic surfaces on large scale without limitation of substrates. However, for most of the common resin based superhydrophobic coatings, it is inevitable to deteriorate environmental or health problems due to release of a large amount volatile solvents. In this work, a kind of water-based organic/inorganic hybrid consisted of acrylate copolymers and superhydrophobic silica nanoparticles were synthesized. The highly water-repellent silica nanoparticles were successfully involved into the aqueous dispersion of acrylate copolymers without additional surfactants. The as-synthesized hybrids simultaneously retain the excellent film-forming property of acrylate resins and amplify the contributions of low surface energy nanoparticles to the superhydrophobicity. Robust superhydrophobic coatings (CA > 160°, CA < 7°) with high adhesion strength, good scratch-resistance and excellent abrasion-resistance were constructed using the synthesized hybrids with significantly reduced content of low surface energy particles and organic solvent. The hybrid coating can stand abrasion up to 300 cycles with a fine sand paper and up to 1200 cycles under rough sand paper abrasion. Benefited from its good water-repellence property, the hybrid coating with a water-based formula not only showed improved water-resistance in comparison with commercial products; but also displayed attractive performances in self-cleaning and oil/water separation processes.

  9. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE PAGES

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; ...

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  10. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Aquatic toxicity of acrylates and methacrylates: quantitative structure-activity relationships based on Kow and LC50

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinert, K.H.

    1987-12-01

    Recent EPA scrutiny of acrylate and methacrylate monomers has resulted in restrictive consent orders and Significant New Use Rules under the Toxic Substances Control Act, based on structure-activity relationships using mouse skin painting studies. The concern is centered on human health issues regarding worker and consumer exposure. Environmental issues, such as aquatic toxicity, are still of concern. Understanding the relationships and environmental risks to aquatic organisms may improve the understanding of the potential risks to human health. This study evaluates the quantitative structure-activity relationships from measured log Kow's and log LC50's for Pimephales promelas (fathead minnow) and Carassius auratus (goldfish).more » Scientific support of the current regulations is also addressed. Two monomer classes were designated: acrylates and methacrylates. Spearman rank correlation and linear regression were run. Based on this study, an ecotoxicological difference exists between acrylates and methacrylates. Regulatory activities and scientific study should reflect this difference.« less

  12. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  13. Effect of different solutions on color stability of acrylic resin-based dentures.

    PubMed

    Goiato, Marcelo Coelho; Nóbrega, Adhara Smith; dos Santos, Daniela Micheline; Andreotti, Agda Marobo; Moreno, Amália

    2014-01-01

    The aim of this study was to evaluate the effect of thermocycling and immersion in mouthwash or beverage solutions on the color stability of four different acrylic resin-based dentures (Onda Cryl, OC; QC20, QC; Classico, CL; and Lucitone, LU). The factors evaluated were type of acrylic resin, immersion time, and solution (mouthwash or beverage). A total of 224 denture samples were fabricated. For each type of resin, eight samples were immersed in mouthwashes (Plax-Colgate, PC; Listerine, LI; and Oral-B, OB), beverages (coffee, CP; cola, C; and wine, W), and artificial saliva (AS; control). The color change (DE) was evaluated before (baseline) and after thermocycling (T1), and after immersion in solution for 1 h (T2), 3 h (T3), 24 h (T4), 48 h (T5), and 96 h (T6). The CIE Lab system was used to determine the color changes. The thermocycling test was performed for 5000 cycles. Data were submitted to three-way repeated-measures analysis of variance and Tukey's test (p<0.05). When the samples were immersed in each mouthwash, all assessed factors, associated or not, significantly influenced the color change values, except there was no association between the mouthwash and acrylic resin. Similarly, when the samples were immersed in each beverage, all studied factors influenced the color change values. In general, regardless of the solution, LU exhibited the greatest DE values in the period from T1 to T5; and QC presented the greatest DE values at T6. Thus, thermocycling and immersion in the various solutions influenced the color stability of acrylic resins and QC showed the greatest color alteration.

  14. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  15. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education

    NASA Astrophysics Data System (ADS)

    Michalovic, Mark Stephen

    A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to

  16. Color difference threshold determination for acrylic denture base resins.

    PubMed

    Ren, Jiabao; Lin, Hong; Huang, Qingmei; Liang, Qifan; Zheng, Gang

    2015-01-01

    This study aimed to set evaluation indicators, i.e., perceptibility and acceptability color difference thresholds, of color stability for acrylic denture base resins for a spectrophotometric assessing method, which offered an alternative to the visual method described in ISO 20795-1:2013. A total of 291 disk specimens 50±1 mm in diameter and 0.5±0.1 mm thick were prepared (ISO 20795-1:2013) and processed through radiation tests in an accelerated aging chamber (ISO 7491:2000) for increasing times of 0 to 42 hours. Color alterations were measured with a spectrophotometer and evaluated using the CIE L*a*b* colorimetric system. Color differences were calculated through the CIEDE2000 color difference formula. Thirty-two dental professionals without color vision deficiencies completed perceptibility and acceptability assessments under controlled conditions in vitro. An S-curve fitting procedure was used to analyze the 50:50% perceptibility and acceptability thresholds. Furthermore, perceptibility and acceptability against the differences of the three color attributes, lightness, chroma, and hue, were also investigated. According to the S-curve fitting procedure, the 50:50% perceptibility threshold was 1.71ΔE00 (r(2)=0.88) and the 50:50% acceptability threshold was 4.00 ΔE00 (r(2)=0.89). Within the limitations of this study, 1.71/4.00 ΔE00 could be used as perceptibility/acceptability thresholds for acrylic denture base resins.

  17. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery.

    PubMed

    Simões, M G; Alves, P; Carvalheiro, Manuela; Simões, P N

    2017-04-01

    The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO

  18. The effect of photo-activated glazes on the microhardness of acrylic baseplate resins.

    PubMed

    Emmanouil, J K; Kavouras, P; Kehagias, Th

    2002-01-01

    A comparative investigation of acrylic denture base surface microhardness, induced through glazing with different photo-activated liquids. Thermopolymerized acrylic resin Paladon 65 (Kulzer) was used for this study. The samples were mechanically thinned by silicon carbide grinding papers and finally, mechanically polished by alumina pastes. The samples were then glazed with Palaseal, Plaquit and Lightplast-Lack photo-activated liquids. Microhardness tests were carried out via a Zeiss optical microscope equipped with an Anton Paar microhardness tester fitted with a Knoop indenter. Microhardness testing performed on surfaces glazed by Plaquit, Lightplast-Lack, and Palaseal photo-activated liquids showed enhanced microhardness values compared to the mechanically polished acrylic resin denture base material. Comparative microhardness tests performed on acrylic base resin treated with photo-activated acrylic glazes showed that all increases the surface microhardness. The enhancement of surface microhardness of acrylic denture bases suggests that they are likely to resist wear during service.

  19. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  20. Graft polymerization of acrylic acid onto chitin nanofiber to improve dispersibility in basic water.

    PubMed

    Ifuku, Shinsuke; Iwasaki, Masayoshi; Morimoto, Minoru; Saimoto, Hiroyuki

    2012-09-01

    Graft copolymerization of acrylic acid (AA) on chitin nanofibers was carried out with potassium persulfate as a free radical initiator in an aqueous medium. The molar ratio of grafted AA increased with the AA concentration. The grafted chitin nanofibers were characterized by FT-IR, FE-SEM, UV-vis, XRD, and TGA. After polymerization, the characteristic morphology of chitin nanofibers was maintained. Chitin nanofibers grafted with AA were efficiently dissociated and dispersed homogeneously in basic water because of the electrostatic repulsion effect between nanofibers. AA was grafted on the surface and amorphous part of chitin nanofibers, and the original crystalline structure of α-chitin was maintained. At 330 °C, the weight residue of the graft copolymer increased with the grafted AA content. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Synthesis of acrylates and methacrylates from coal-derived syngas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spivey, J.J.; Gogate, M.R.; Jang, B.W.L.

    1995-12-31

    Acrylates and methacrylates are among the most widely used chemical intermediates in the world. One of the key chemicals of this type is methyl methacrylate. Of the 4 billion pounds produced each year, roughly 85% is made using the acetone-cyanohydrin process, which requires handling of large quantities of hydrogen cyanide and produces ammonium sulfate wastes that pose an environmental disposal challenge. The U.S. Department of Energy and Eastman Chemical Company are sharing the cost of research to develop an alternative process for the synthesis of methyl methacrylate from syngas. Research Triangle Institute is focusing on the synthesis and testing ofmore » active catalysts for the condensation reactions, and Bechtel is analyzing the costs to determine the competitiveness of several process alternatives. Results thus far show that the catalysts for the condensation of formaldehyde and the propionate are key to selectively producing the desired product, methacrylic acid, with a high yield. These condensation catalysts have both acid and base functions and the strength and distribution of these acid-base sites controls the product selectivity and yield.« less

  2. Synthesis and properties of hydroxy acrylic resin with high solid content

    NASA Astrophysics Data System (ADS)

    Yu, Zhen; Hu, Mingguang; Cui, Han; Xiao, Jijun

    2017-10-01

    Manufacturers of automotive repair finishes are tending to reduce more and more the level of volatile organic compounds in their paints in order to comply with increasingly strict environmental legislation. A high solid hydroxy acrylic resin was synthesised using CARDURA E10 and a type of hydroxyacrylic acid resin, its' acid value, hydroxylvalue, viscosity, structure, morphology was measured and film-forming properties after curing were characterised. The results show that the addition of CARDURA E10 in the copolymer composition significantly reduced the viscosity of the polymer system, improved the solid content of the resin and the physical properties of the coating. The hydroxyl acrylate resin with solid content of 90% and excellent comprehensive performance were successfully prepared by controlling the initiator dosage, polymerization temperature and monomer ratio.

  3. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  4. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  5. Preparation and characterization of poly(acrylic acid)—corn starch blend for use as chemical sand-fixing materials

    NASA Astrophysics Data System (ADS)

    Dang, Xugang; Chen, Hui; Shan, Zhihua

    2017-07-01

    One chemical sand-fixing materials based on poly(acrylic acid)-corn starch (PACS) blend was studied in this work. The PACS blend was prepared by solution mixing method between PA and CS. In order to prepare sand-fixing materials for environmental applications using the well-established method of spraying evenly PACS blend solution on the surfaces of fine sand. Fourier transform infrared spectroscopy (FT-IR) revealed the existence of the intermolecular interactions between the blend components. Scanning electron microscope (SEM) analysis showed a continuous phase of blend, and it also showed the good sand-fixing capacity. The test results of hygroscopicity and water retention experiments indicated that the blends had excellent water-absorbing and water-retention capacity. The results of contact angle measurements between the PACS solutions and fine sand showed that the PACS blend has a satisfactory effect on fine sand wetting. And the PACS, as a sand-fixation material, has excellent sand-fixation rate up to 99.5%.

  6. Microtensile bond strength of different acrylic teeth to high-impact denture base resins.

    PubMed

    Colebeck, Amanda C; Monaco, Edward A; Pusateri, Christopher R; Davis, Elaine L

    2015-01-01

    This study evaluated the effect of denture base acrylic, denture tooth composition, and ridge-lap surface treatment on the microtensile bond strength (μTBS) of three commercially available denture teeth and two injection denture processing systems. Sixteen experimental groups were formed (n = 3), according to denture tooth surface treatment (no treatment or surface treatment recommended by the manufacturer), denture base processing technique and acrylic (SR-Ivocap-Ivocap Plus or Success-Lucitone 199), and tooth type-composition at bonding interface (BlueLine DCL-PMMA, Portrait IPN-PMMA, Phonares II-PMMA, Phonares II-NHC). Rectangular bar specimens with a 1 mm(2) cross sectional area were fabricated and subsequently thermocycled at 10,000 cycles between 5°C and 55°C with a 15-second dwell time. Select specimens underwent μTBS testing in a universal testing machine with a 1 kN load cell at 0.5 mm/min crosshead speed. Data were analyzed statistically by two and three-way ANOVA and Tukey post hoc test (α = 0.05). Mean μTBS ranged between 56.2 ± 5.6 and 60.8 ± 5.0 N/mm(2) for the Ivocap Plus specimens and 13.3 ± 5.12 to 60.1 ± 6.0 N/mm(2) for the Lucitone 199 specimens. Among the Ivocap specimens, BlueLine DCL and Phonares II NHC had significantly higher μTBS than Portrait IPN to Ivocap Plus acrylic. There were no statistically significant differences among Blueline, Phonares II PMMA, and Phonares II NHC, or between Phonares II PMMA and Portrait IPN. Within the Luctione 199 specimens, there was a significantly higher μTBS for BlueLine DCL and Phonares II NHC denture teeth with the manufacturer-recommended surface treatment when compared to control surface. BlueLine, Portrait, and Phonares II PMMA groups achieved significantly higher mean μTBS than the Phonares II NHC group. There were no statistically significant differences among BlueLine, Portrait, and Phonares II PMMA groups. When evaluating the μTBS of PMMA and NHC denture teeth to base resins, a

  7. The actuation of a biomimetic poly(vinyl alcohol)poly(acrylic acid) gel.

    PubMed

    Marra, S P; Ramesh, K T; Douglas, A S

    2002-02-15

    Active polymer gels expand and contract in response to certain environmental stimuli, such as the application of an electric field or a change in the pH level of the surroundings. This ability to achieve large, reversible deformations with no external mechanical loading has generated much interest in the use of these gels as biomimetic actuators and "artificial muscles". In previous work, a thermodynamically consistent finite-elastic constitutive model has been developed to describe the mechanical and actuation behaviours of active polymer gels. The mechanical properties were characterized by a free-energy function, and the model uses an evolving internal variable to describe the actuation state. In this work, an evolution law for the internal variable is determined from free actuation experiments on a poly(vinyl alcohol)poly(acrylic acid) (PVAPAA) gel. The complete finite-elastic/evolution law constitutive model is then used to predict the response of the PVA-PAA gel to isotonic and isometric loading and actuation. The model is shown to give relatively good agreement with experimental results.

  8. Effect of potentially chromogenic beverages on shear bond strength of acrylic denture teeth to heat-polymerized denture base resins

    PubMed Central

    Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini; de Oliveira, Denise Gusmão; Porto, Vinícius Carvalho; Almilhatti, Hercules Jorge; Campanha, Nara Hellen

    2016-01-01

    Background: Detachment of denture acrylic resin artificial teeth from denture base resin is one of the most common problems presented by denture wearers. Purpose: This study investigated the shear bond strength (SBS) and fracture type of bonding interface of two commercial acrylic teeth (Vipi Dent Plus e Biolux) to two denture base resins (Vipi Cril e Lucitone 550) after immersion in potentially chromogenic beverages (coffee, cola soft drink, and red wine) or control solution (distilled water). Materials and Methods: Maxillary central incisor acrylic teeth were placed at 45° to denture base resin and submitted to short polymerization cycle according to manufacturers. Specimens were divided according to the combination tooth/resin/solution (n = 8) and submitted to bond strength tests in a universal testing machine MTS-810 (0.5 mm/min). Subsequently, fracture area was analyzed by stereomicroscope at a magnification of ×10 and categorized into adhesive, cohesive, or mixed failure. Results: The bond strength of teeth/denture base resins interface was not significantly affected by tested solutions (P > 0.087), except for Biolux teeth immersed in coffee (P < 0.01). In all conditions, the Vipi Dent Plus teeth showed higher bond strength to Lucitone and Vipi Cril resins when compared to Biolux teeth (P < 0.003). All specimens’ failure modes were cohesive. Conclusions: The SBS of acrylic teeth to denture base resins was not generally influenced by immersion in the tested staining beverages. PMID:27621547

  9. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution.

    PubMed

    Thongrakard, Ticha; Wiwatwarrapan, Chairat

    2016-08-01

    This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth.

  10. Large Amplitude Oscillatory Shear (LAOS) of Acrylic Emulsion-Based Pressure Sensitive Adhesives (PSAs)

    NASA Astrophysics Data System (ADS)

    Zhang, Sipei; Nakatani, Alan; Griffith, William

    Large Amplitude Oscillatory Shear (LAOS) testing has recently taken on renewed interest in the rheological community. It is a very useful tool to probe the viscoelastic response of materials in the non-linear regime. Much of the discussion on polymers in the LAOS field has focused on melts in or near the terminal flow regime. Here we present a LAOS study conducted on a commercial rheometer for acrylic emulsion-based pressure sensitive adhesive (PSA) films in the plateau regime. The films behaved qualitatively similar over an oscillation frequency range of 0.5-5 rad/s. From Fourier transform analysis, the fifth or even the seventh order harmonic could be observed at large applied strains. From stress decomposition analysis or Lissajous curves, inter-cycle elastic softening, or type I behavior, was observed for all films as the strain increases, while intra-cycle strain hardening occurred at strains in the LAOS regime. Overall, as acid content increases, it was found that the trend in elasticity under large applied strains agreed very well with the trend in cohesive strength of the films.

  11. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis.

    PubMed

    Gamage, Pubudu; Basel, Matthew T; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael; Bossmann, Stefan H

    2009-09-17

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8+/-4.4 nm for P[(NIPAM)(95.5)-co-(AA)(4.5)] (PDI (polydispersity index)=1.55) and 21.8+/-4.2 nm for P[(NIPAM)(95.3)-co-(AA)(4.7)] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)(95)-co-(AA)(2.8)-AAC(8)F(17 2.2)] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8+/-7.1 nm, with a depth of only 2 nm.

  12. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis

    PubMed Central

    Gamage, Pubudu; Basel, Matthew T.; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael

    2009-01-01

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8±4.4 nm for P[(NIPAM)95.5-co-(AA)4.5] (PDI (polydispersity index)=1.55) and 21.8±4.2 nm for P[(NIPAM)95.3-co-(AA)4.7] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)95-co-(AA)2.8-AAC8F17 2.2] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8±7.1 nm, with a depth of only 2 nm. PMID:20161351

  13. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  14. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    PubMed

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers.

  15. Fracture toughness of heat cured denture base acrylic resin modified with Chlorhexidine and Fluconazole as bioactive compounds.

    PubMed

    Al-Haddad, Alaa; Vahid Roudsari, Reza; Satterthwaite, Julian D

    2014-02-01

    This study investigated the impact of incorporating Chlorhexidine and Fluconazole as bioactive compounds on the fracture toughness of conventional heat cured denture base acrylic resin material (PMMA). 30 single edge-notched (SEN) samples were prepared and divided into three groups. 10% (mass) Chlorhexidine and 10% (mass) Diflucan powder (4.5% mass Fluconazole) were added to heat cured PMMA respectively to create the two study groups. A third group of conventional heat cured PMMA was prepared as the control group. Fracture toughness (3-point bending test) was carried out for each sample and critical force (Fc) and critical stress intensity factor (KIC) values measured. Data were subject to parametric statistical analysis using one-way ANOVA and Post hoc Bonferroni test (p=0.05). Fluconazole had no significant effect on the fracture toughness of the PMMA while Chlorhexidine significantly reduced the KIC and therefore affected the fracture toughness. When considering addition of a bioactive material to PMMA acrylic, Chlorhexidine will result in reduced fracture toughness of the acrylic base while Fluconazole has no effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Ethylene/acrylic elastomers (EAE): sealing application candidates for the automotive industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carr, J.; Ginn, A.

    1979-01-01

    EAE, based on experimental elastomers developed by Du Pont and called ''Vamac'' (formerly ''MPE''), are ethylene/methyl acrylate copolymers compounded with appropriate plasticizers, fillers, and other additives. They function satisfactorily at -54/sup 0/ to +177/sup 0/C and have excellent tensile strength, elongation, and resistance to compression set, corrosion, tear, and weathering. They show good resistance to automatic transmission fluids, engine oil, some gear lubricants and hydrocarbon greases, water, engine coolants, and dilute acids and bases, but should not be used with gasoline, concentrated acids, high-pressure steam, automotive brake fluids, phosphate ester-based hydraulic fluids, diester-based synthetic lubricants, or chlorinated hydrocarbons. They needmore » no solid-lubricant or antiwear additives, but special mold-release preparations are necessary. They should be useful as seals for the transmission front pump, the clutch, and the engine front crankshaft and possibly for other sealing and nonseal applications (e.g., spark-plug boots).« less

  17. Structure-function properties of starch graft poly(methyl acrylate)copolymers

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  18. Ultrasensitive Biosensor for the Detection of Vibrio cholerae DNA with Polystyrene-co-acrylic Acid Composite Nanospheres

    NASA Astrophysics Data System (ADS)

    Rahman, Mahbubur; Heng, Lee Yook; Futra, Dedi; Ling, Tan Ling

    2017-08-01

    An ultrasensitive electrochemical biosensor for the determination of pathogenic Vibrio cholerae ( V. cholerae) DNA was developed based on polystyrene-co-acrylic acid (PSA) latex nanospheres-gold nanoparticles composite (PSA-AuNPs) DNA carrier matrix. Differential pulse voltammetry (DPV) using an electroactive anthraquninone oligonucleotide label was used for measuring the biosensor response. Loading of gold nanoparticles (AuNPs) on the DNA-latex particle electrode has significantly amplified the faradaic current of DNA hybridisation. Together with the use of a reported probe, the biosensor has demonstrated high sensitivity. The DNA biosensor yielded a reproducible and wide linear response range to target DNA from 1.0 × 10-21 to 1.0 × 10-8 M (relative standard deviation, RSD = 4.5%, n = 5) with a limit of detection (LOD) of 1.0 × 10-21 M ( R 2 = 0.99). The biosensor obtained satisfactory recovery values between 91 and 109% ( n = 3) for the detection of V. cholerae DNA in spiked samples and could be reused for six consecutive DNA assays with a repeatability RSD value of 5% ( n = 5). The electrochemical biosensor response was stable and maintainable at 95% of its original response up to 58 days of storage period.

  19. Duty cycle dependent chemical structure and wettability of RF pulsed plasma copolymers of acrylic acid and octafluorocyclobutane

    NASA Astrophysics Data System (ADS)

    Muzammil, I.; Li, Y. P.; Li, X. Y.; Lei, M. K.

    2018-04-01

    Octafluorocyclobutane and acrylic acid (C4F8-co-AA) plasma copolymer coatings are deposited using a pulsed wave (PW) radio frequency (RF) plasma on low density polyethylene (LDPE). The influence of duty cycle in pulsed process with the monomer feed rate on the surface chemistry and wettability of C4F8-co-AA plasma polymer coatings is studied. The concentration of the carboxylic acid (hydrophilic) groups increase, and that of fluorocarbon (hydrophobic) groups decrease by lowering the duty cycle. The combined effect of surface chemistry and surface morphology of the RF pulsed plasma copolymer coatings causes tunable surface wettability and surface adhesion. The gradual emergence of hydrophilic contents leads to surface heterogeneity by lowering duty cycle causing an increased surface adhesion in hydrophobic coatings. The C4F8-co-AA plasma polymer coatings on the nanotextured surfaces are tuned from repulsive superhydrophobicity to adhesive superhydrophobicity, and further to superhydrophilicity by adjusting the duty cycles with the monomer feed rates.

  20. Nanopatterned polystyrene-b-poly(acrylic acid) surfaces to modulate cell-material interaction.

    PubMed

    Lizundia, Erlantz; Sáenz-Pérez, Míriam; Patrocinio, David; Aurrekoetxea, Iskander; dM Vivanco, Maria; Vilas, José Luis

    2017-06-01

    In this work we explore the effect of surface nanoarchitecture of polystyrene (PS) and polystyrene-b-poly(acrylic acid) (PS-b-PAA) diblock copolymer films on cell viability. PS and PS-b-PAA have been nanopatterned at temperatures of 110, 120 and 140°C using nanoporous aluminium oxide membranes (AAO) as a template. Surface architecture strongly depends on the infiltration temperature and the nature of the infiltrated polymer. High patterning temperatures yield hollow fibre shape architecture at the nanoscale level, which substantially modifies the surface hydrophobicity of the resulting materials. Up to date very scarce reports could be found in the literature dealing with the interaction of microstructured/nanostructured polymeric surfaces with cancer cells. Therefore, MCF-7 breast cancer cells have been selected as a model to conduct cell viability assays. The findings reveal that the fine-tuning of the surface nanoarchitecture contributes to the modification of its biocompatibility. Overall, this study highlights the potential of AAO membranes to obtain well-defined tailored morphologies at nanoscale level and its importance to develop novel soft functional surfaces to be used in the biomedical field. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate...

  2. Relationships Between Base-Catalyzed Hydrolysis Rates or Glutathione Reactivity for Acrylates and Methacrylates and Their NMR Spectra or Heat of Formation

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    The NMR chemical shift, i.e., the π-electron density of the double bond, of acrylates and methacrylates is related to the reactivity of their monomers. We investigated quantitative structure-property relationships (QSPRs) between the base-catalyzed hydrolysis rate constants (k1) or the rate constant with glutathione (GSH) (log kGSH) for acrylates and methacrylates and the 13C NMR chemical shifts of their α,β-unsaturated carbonyl groups (δCα and δCβ) or heat of formation (Hf) calculated by the semi-empirical MO method. Reported data for the independent variables were employed. A significant linear relationship between k1 and δCβ, but not δCα, was obtained for methacrylates (r2 = 0.93), but not for acrylates. Also, a significant relationship between k1 and Hf was obtained for both acrylates and methacrylates (r2 = 0.89). By contrast, log kGSH for acrylates and methacrylates was linearly related to their δCβ (r2 = 0.99), but not to Hf. These findings indicate that the 13C NMR chemical shifts and calculated Hf values for acrylates and methacrylates could be valuable for estimating the hydrolysis rate constants and GSH reactivity of these compounds. Also, these data for monomers may be an important tool for examining mechanisms of reactivity. PMID:22754331

  3. Preparation of Paraffin@Poly(styrene-co-acrylic acid) Phase Change Nanocapsules via Combined Miniemulsion/Emulsion Polymerization.

    PubMed

    Zhang, Feng; Liu, Tian-Yu; Hou, Gui-Hua; Guan, Rong-Feng; Zhang, Jun-Hao

    2018-06-01

    The fast development of solid-liquid phase change materials calls for nanomaterials with large specific surface area for rapid heat transfer and encapsulation of phase change materials to prevent potential leakage. Here we report a combined miniemulsion/emulsion polymerization method to prepare poly(styrene-co-acrylic acid)-encapsulated paraffin (paraffin@P(St-co-AA)) nanocapsules. The method could suppress the shortcomings of common miniemulsion polymerization (such as evaporation of monomer and decomposition of initiator during ultrasonication). The paraffin@P(St-co-AA) nanocapsules are uniform in size and the polymer shell can be controlled by the weight ratio of St to paraffin. The phase change behavior of the nanocapsules is similar to that of pure paraffin. We believe our method can also be utilized to synthesize other core-shell phase change materials.

  4. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyether acrylate. 721.405 Section... § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject to...

  5. Structure-function properties of starch spherulites grafted with poly(methyl acrylate)

    USDA-ARS?s Scientific Manuscript database

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  6. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  7. Nanosized amorphous calcium carbonate stabilized by poly(ethylene oxide)-b-poly(acrylic acid) block copolymers.

    PubMed

    Guillemet, Baptiste; Faatz, Michael; Gröhn, Franziska; Wegner, Gerhard; Gnanou, Yves

    2006-02-14

    Particles of amorphous calcium carbonate (ACC), formed in situ from calcium chloride by the slow release of carbon dioxide by alkaline hydrolysis of dimethyl carbonate in water, are stabilized against coalescence in the presence of very small amounts of double hydrophilic block copolymers (DHBCs) composed of poly(ethylene oxide) (PEO) and poly(acrylic acid) (PAA) blocks. Under optimized conditions, spherical particles of ACC with diameters less than 100 nm and narrow size distribution are obtained at a concentration of only 3 ppm of PEO-b-PAA as additive. Equivalent triblock or star DHBCs are compared to diblock copolymers. The results are interpreted assuming an interaction of the PAA blocks with the surface of the liquid droplets of the concentrated CaCO3 phase, formed by phase separation from the initially homogeneous reaction mixture. The adsorption layer of the block copolymer protects the liquid precursor of ACC from coalescence and/or coagulation.

  8. Influence of EDTA in poly(acrylic acid) binder for enhancing electrochemical performance and thermal stability of silicon anode

    NASA Astrophysics Data System (ADS)

    Lee, Sun-Young; Choi, Yunju; Hong, Kyong-Soo; Lee, Jung Kyoo; Kim, Ju-Young; Bae, Jong-Seong; Jeong, Euh Duck

    2018-07-01

    The crucial roles of ethylenediaminetetraacetic acid (EDTA) in the poly(acrylic acid) (PAA)-binder system were investigated for the high electrochemical performance silicon anode in lithium-ion batteries. The EDTA supports the construction of a mechanically robust network through the formation of sbndCOOH linkage with the SiO2 layer of the Si nanoparticles. The mixture of the PAA/EDTA binder and the conductive agent exhibited an improved elastic modulus and peeling strength. The creation of hydrogen fluoride (HF) was effectively suppressed through the elimination of the H2O. An H2O-phosphorous pentafluoride (PF5) reaction, which is known for its use in the etching of metal oxides including its creation of the solid electrolyte interphase (SEI) layer, generates the HF. A remarkably sound cyclability with a discharge capacity of 2540 mA h g-1 was achieved as a result of the synergistic effect between robust mechanical properties and suppression of the HF creation for the stability of the SEI layer.

  9. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  10. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  11. Surface monolayers of well-defined amphiphilic block copolymer composed of poly(acrylic acid) or poly(oxyethylene) and poly(styrene). Interpolymer complexation at the air-water interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niwa, Masazo; Hayashi, Takehiro; Higashi, Nobuyuki

    1990-01-01

    Amphiphilic block polymers (2,3) composed of poly(acrylic acid) (PAA) or poly(oxyethylene) (POE) and chain length controlled poly(styrene) (PSt) have been prepared by using a catalytic system of tribromomethyl-terminated oligomer and manganese carbonyl. All the amphiphilic materials formed well-behaved surface monolayers, and the II-A curves for them expanded systematically with an increase of the PSt chain length.

  12. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  13. Nanocapsule of cationic liposomes obtained using "in situ" acrylic acid polymerization: stability, surface charge and biocompatibility.

    PubMed

    Scarioti, Giovana Danieli; Lubambo, Adriana; Feitosa, Judith P A; Sierakowski, Maria Rita; Bresolin, Tania M B; de Freitas, Rilton Alves

    2011-10-15

    In this work, didecyldimethylammonium bromide (DDAB) and 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) (2.5:1) were used to prepare liposomes coated with polyacrylic acid (PAA) using "in situ" polymerization with 2.5, 5 and 25 mM of acrylic acid (AA). The PAA concentrations were chosen to achieve partially to fully covered capsules, and the polymerization reaction was observed with real-time monitoring using dynamic light scattering (NanoDLS). The DDAB:DOPE liposomes showed stability in the tested temperature range (25-70°C), whereas the results confirmed the success of the polymerization according to superficial charge (zeta potential of +66.7±1.2 mV) results and AFM images. For the liposomes that were fully coated with PAA (zeta potential of +0.3±3.9 mV), cytotoxicity was independent of the concentration of albumin. Cationic liposomes and nanocapsules of the stable liposomes coated with PAA were obtained by controlling the surface charge, which was the most important factor related to cytotoxicity. Thus, a potential, safe drug nanocarrier was successfully developed in this work. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Synthesis, characterization, swelling and dye adsorption properties of starch incorporated acrylic gels.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2015-11-01

    Several hydrogels were prepared by a free radical polymerization of acrylic acid (AA), sodium acrylate (SA) and AA/hydroxy ethyl methacrylate (HEMA) in the presence of starch in water. These starch incorporated acrylic gels were prepared by varying the concentration of the initiator, monomer, crosslinker and the starch. The resulting gels were characterized by FTIR, SEM, XRD, DTA-TGA, pH at point zero charge (PZC), swelling and the diffusion in water. The gels showed high adsorption and removal% of Safranine T (ST) and Brilliant Cresyl Blue (BCB) dyes from water. The swelling and the adsorption data were fitted to different kinetic models and isotherms. Amongst the three kinds of gels, the starch incorporated sodium polyacrylate gel showed the highest adsorption of 9.7-85.3mg/L (97-61% removal) of BCB dye and 9.1-83mg/L (91-60% removal) of ST dye for a feed dye concentration of 10-140mg/L. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  16. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane acrylate...

  17. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.

    PubMed

    Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi

    2014-02-01

    The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Superabsorbent nanocomposite synthesis of cellulose from rice husk grafted poly(acrylate acid-co-acrylamide)/bentonite

    NASA Astrophysics Data System (ADS)

    Helmiyati; Abbas, G. H.; Kurniawan, S.

    2017-04-01

    Superabsorbent nanocomposite synthesis of cellulose rice husk as the backbone with free radical polymerization method in copolymerization grafted with acrylic acid and acrylamide monomer. The cellulose was isolated from rice husk with mixture of toluene and ethanol and then hemicellulose and lignin were removed by using potassium hydroxide 4% and hydrogen peroxide 2%. The obtained cellulose rendement was 37.85%. The functional group of lignin analyzed by FTIR spectra was disappeared at wavenumber 1724 cm-1. Crystal size of the obtained isolated cellulose analyzed by XRD diffraction pattern was 34.6 nm, indicated the nanocrystal structure. Copolymerization was performed at temperature of 70°C with flow nitrogen gas. Initiator and crosslinking agent used were potassium persulfate and N‧N-methylene-bis-acrylamide. The swelling capacity of water and urea showed the results was quite satisfactory, the maximum swelling capacity in urea and water were 611.700 g/g and 451.303 g/g, respectively, and can be applied in agriculture to absorb water and urea fertilizer.

  19. Electron-beam-induced post-grafting polymerization of acrylic acid onto the surface of Kevlar fibers

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Hu, Jiangtao; Ma, Hongjuan; Wu, Guozhong

    2018-04-01

    The surface of Kevlar fibers was successfully modified by electron beam (EB)-induced post-grafting of acrylic acid (AA). The generation of radicals in the fibers was confirmed by electron spin resonance (ESR) measurements, and the concentration of radicals was shown to increase as the absorbed dose increased, but decrease with increasing temperature. The influence of the synthesis conditions on the degree of grafting was also investigated. The surface microstructure and chemical composition of the modified Kevlar fibers were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed that the surface of the grafted fibers was rougher than those of the pristine and irradiated fibers. XPS analysis confirmed an increase in C(O)OH groups on the surface of the Kevlar fibers, suggesting successful grafting of AA. These results indicate that EB-induced post-grafting polymerization is effective for modifying the surface properties of Kevlar fibers.

  20. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer.

    PubMed

    Young, Christopher R; Dietzsch, Caroline; Cerea, Matteo; Farrell, Thomas; Fegely, Kurt A; Rajabi-Siahboomi, Ali; McGinity, James W

    2005-09-14

    The purpose of the current study was to investigate the physicochemical properties of melt-extruded dosage forms based on Acryl-EZE and to determine the influence of gelling agents on the mechanisms and kinetics of drug release from thermally processed matrices. Acryl-EZE is a pre-mixed excipient blend based on a methacrylic acid copolymer that is optimized for film-coating applications. Powder blends containing theophylline, Acryl-EZE, triethyl citrate and an optional gelling agent, Methocel K4M Premium (hydroxypropyl methylcellulose, HPMC, hypromellose 2208) or Carbopol 974P (carbomer), were thermally processed using a Randcastle single-screw extruder. The physical and chemical stability of materials during processing was determined using thermal gravimetric analysis and HPLC. The mechanism of drug release was determined using the Korsmeyer-Peppas model and the hydration and erosion of tablets during the dissolution studies were investigated. The excipient blends were physically and chemically stable during processing, and the resulting dosage forms exhibited pH-dependent dissolution properties. Extrusion of blends containing HPMC or carbomer changed the mechanism and kinetics of drug release from the thermally processed dosage forms. At concentrations of 5% or below, carbomer was more effective than HPMC at extending the duration of theophylline release from matrix tablets. Furthermore, carbomer containing tablets were stable upon storage for 3 months at 40 degrees C/75% RH. Thus, hot-melt extrusion was an effective process for the preparation of controlled release matrix systems based on Acryl-EZE.

  1. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  2. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  3. Acrylic Resin Molding Based Head Fixation Technique in Rodents.

    PubMed

    Roh, Mootaek; Lee, Kyungmin; Jang, Il-Sung; Suk, Kyoungho; Lee, Maan-Gee

    2016-01-12

    Head fixation is a technique of immobilizing animal's head by attaching a head-post on the skull for rigid clamping. Traditional head fixation requires surgical attachment of metallic frames on the skull. The attached frames are then clamped to a stationary platform resulting in immobilization of the head. However, metallic frames for head fixation have been technically difficult to design and implement in general laboratory environment. In this study, we provide a novel head fixation method. Using a custom-made head fixation bar, head mounter is constructed during implantation surgery. After the application of acrylic resin for affixing implants such as electrodes and cannula on the skull, additional resins applied on top of that to build a mold matching to the port of the fixation bar. The molded head mounter serves as a guide rails, investigators conveniently fixate the animal's head by inserting the head mounter into the port of the fixation bar. This method could be easily applicable if implantation surgery using dental acrylics is necessary and might be useful for laboratories that cannot easily fabricate CNC machined metal head-posts.

  4. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...

  5. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...

  6. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...

  7. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting under...

  8. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors.

    PubMed

    Lee, Seung-Woo; Takahara, Naoki; Korposh, Sergiy; Yang, Do-Hyeon; Toko, Kiyoshi; Kunitake, Toyoki

    2010-03-15

    Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG). The thickness of the poly(acrylic acid) (PAA) layer is dependent on its molecular weight, showing different thicknesses of approximately 0.4 nm for PAA(25) (Mw 250,000) and 0.6-0.8 nm for PAA(400) (Mw 4,000,000). The QCM sensors showed a linear response to ammonia in the concentration range 0.3-15 ppm, depending on the deposition cycle of the alternate TiO(2)/PAA layer. The ammonia binding is based on the acid-base interaction to the free carboxylic acid groups of PAA and the limit of detection (LOD) of the 20-cycle TiO(2)/PAA(400) film was estimated to be 0.1 ppm when exposed to ammonia. The sensor response was very fast and stable in a wide relative humidity (rH) range of 30-70%, showing almost the same frequency changes at a given concentration of ammonia. Sensitivity to n-butylamine and ammonia was higher than to pyridine, which is owing to the difference of molecular weight and basicity of the amine analytes. The alternate TiO(2)/PAA(400) films have a highly effective ability to capture amine odors, and the ambient ammonia concentration of 15 ppm could be condensed up to approximately 20,000 ppm inside the films.

  9. Large Acrylic Spherical Windows In Hyperbaric Underwater Photography

    NASA Astrophysics Data System (ADS)

    Lones, Joe J.; Stachiw, Jerry D.

    1983-10-01

    Both acrylic plastic and glass are common materials for hyperbaric optical windows. Although glass continues to be used occasionally for small windows, virtually all large viewports are made of acrylic. It is easy to uderstand the wide use of acrylic when comparing design properties of this plastic with those of glass, and glass windows are relatively more difficult to fabricate and use. in addition there are published guides for the design and fabrication of acrylic windows to be used in the hyperbaric environment of hydrospace. Although these procedures for fabricating the acrylic windows are somewhat involved, the results are extremely reliable. Acrylic viewports are now fabricated to very large sizes for manned observation or optical quality instrumen tation as illustrated by the numerous acrylic submersible vehicle hulls for hu, an occupancy currently in operation and a 3600 large optical window recently developed for the Walt Disney Circle Vision under-water camera housing.

  10. Cytotoxicity and metal ions removal using antibacterial biodegradable hydrogels based on N-quaternized chitosan/poly(acrylic acid).

    PubMed

    Mohamed, Riham R; Elella, Mahmoud H Abu; Sabaa, Magdy W

    2017-05-01

    Physically crosslinked hydrogels resulted from interaction between N,N,N-trimethyl chitosan chloride (N-Quaternized Chitosan) (NQC) and poly(acrylic acid) (PAA) were synthesized in different weight ratios (3:1), (1:1) and (1:3) taking the following codes Q3P1, Q1P1 and Q1P3, respectively. Characterization of the mentioned hydrogels was done using several analysis tools including; FTIR, XRD, SEM, TGA, biodegradation in simulated body fluid (SBF) and cytotoxicity against HepG-2 liver cancer cells. FTIR results proved that the prepared hydrogels were formed via electrostatic and H-bonding interactions, while XRD patterns proved that the prepared hydrogels -irrespective to their ratios- were more crystalline than both matrices NQC and PAA. TGA results, on the other hand, revealed that Q1P3 hydrogel was the most thermally stable compared to the other two hydrogels (Q3P1 and Q1P1). Biodegradation tests in SBF proved that these hydrogels were more biodegradable than the native chitosan. Examination of the prepared hydrogels for their potency in heavy metal ions removal revealed that they adsorbed Fe (III) and Cd (II) ions more than chitosan, while they adsorbed Cr (III), Ni (II) and Cu (II) ions less than chitosan. Moreover, testing the prepared hydrogels as antibacterial agents towards several Gram positive and Gram negative bacteria revealed their higher antibacterial activity as compared with NQC when used alone. Evaluating the cytotoxic effect of these hydrogels on an in vitro human liver cancer cell model (HepG-2) showed their good cytotoxic activity towards HepG-2. Moreover, the inhibition rate increased with increasing the hydrogels concentration in the culture medium. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. Link to an amendment published at 79 FR 34637, June 18, 2014... nickel acrylate complex (PMN P-85-1034) is subject to reporting under this section for the significant...

  12. Preactivated thiolated poly(methacrylic acid-co-ethyl acrylate): synthesis and evaluation of mucoadhesive potential.

    PubMed

    Hauptstein, Sabine; Bonengel, Sonja; Rohrer, Julia; Bernkop-Schnürch, Andreas

    2014-10-15

    The study was aimed to developed and investigate a novel polymer for intestinal drug delivery with improved mucoadhesive properties. Therefore Eudragit® L 100-55 (poly(methacrylic acid-co-ethyl acrylate)) was thiolated by covalent attachment of L-cysteine. The immobilized thiol groups were preactivated by disulfide bond formation with 2-mercaptonicotinic acid. Resulting derivative (Eu-S-MNA) was investigated in terms of mucoadhesion via three different methods: tensile studies, rotating cylinder studies and rheological synergism method, as well as water-uptake capacity and cytotoxicity. Different derivatives were obtained with increasing amount of bound L-cysteine (60, 140 and 266 μmol/g polymer) and degree of preactivation (33, 45 and 51 μmol/g polymer). Tensile studies revealed a 30.5-, 35.3- and 52.2-fold rise of total work of adhesion for the preactivated polymers compared to the unmodified Eudragit. The adhesion time on the rotating cylinder was prolonged up to 17-fold in case of thiolated polymer and up to 34-fold prolonged in case of the preactivated polymer. Rheological synergism revealed remarkable interaction of all investigated modified derivatives with mucus. Further, water-uptake studies showed an over 7h continuing weight gain for the modified polymers whereat disintegration took place for the unmodified polymer within the first hour. Cell viability studies revealed no impact of modification. Accordingly, the novel preactivated thiolated Eudragit-derivative seems to be a promising excipient for intestinal drug delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Comparison between an Acrylic Splint Herbst and an Acrylic Splint Miniscrew-Herbst for Mandibular Incisors Proclination Control

    PubMed Central

    Manni, Antonio; Pasini, Marco; Nuzzo, Claudio; Grassi, Felice Roberto

    2014-01-01

    Aim. The aim of this study is to compare dental and skeletal effects produced by an acrylic splint Herbst with and without skeletal anchorage for correction of dental class II malocclusion. Methods. The test group was formed by 14 patients that were treated with an acrylic splint miniscrew-Herbst; miniscrews were placed between mandibular second premolars and first molars; controls also consisted of 14 subjects that were treated with an acrylic splint Herbst and no miniscrews. Cephalometric measurements before and after Herbst treatment were compared. The value of α for significance was set at 0.05. Results. All subjects from both groups were successfully treated to a bilateral Class I relationship; mean treatment time was 8,1 months in the test group and 7.8 in the controls. Several variables did not have a statistical significant difference between the two groups. Some of the variables, instead, presented a significant difference such as incisor flaring, mandibular bone base position, and skeletal discrepancy. Conclusions. This study showed that the Herbst appliance associated to miniscrews allowed a better control of the incisor flaring with a greater mandibular skeletal effect. PMID:24963293

  14. Enhanced Dielectric Constant for Efficient Electromagnetic Shielding Based on Carbon-Nanotube-Added Styrene Acrylic Emulsion Based Composite

    PubMed Central

    2010-01-01

    An efficient electromagnetic shielding composite based on multiwalled carbon nanotubes (MWCNTs)-filled styrene acrylic emulsion-based polymer has been prepared in a water-based system. The MWCNTs were demonstrated to have an effect on the dielectric constants, which effectively enhance electromagnetic shielding efficiency (SE) of the composites. A low conductivity threshold of 0.23 wt% can be obtained. An EMI SE of ~28 dB was achieved for 20 wt% MWCNTs. The AC conductivity (σac) of the composites, deduced from imaginary permittivity, was used to estimate the SE of the composites in X band (8.2–12.4 GHz), showing a good agreement with the measured results. PMID:20596498

  15. Allergic effects of the residual monomer used in denture base acrylic resins

    PubMed Central

    Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim

    2015-01-01

    Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705

  16. Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Wei; Huang, Caili; Hong, Kunlun

    Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less

  17. Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties

    DOE PAGES

    Lu, Wei; Huang, Caili; Hong, Kunlun; ...

    2016-12-06

    Living anionic polymerization of acrylates is challenging due to intrinsic side reactions including backbiting reactions of propagating enolate anions and aggregation of active chain ends. In this study, the controlled synthesis of poly(1-adamatyl acrylate) (PAdA) was performed successfully for the first time via living anionic polymerization through investigation of the initiation systems of sec-butyllithium/diphenylethylene/lithium chloride (sec-BuLi/DPE/LiCl), diphenylmethylpotassium/diethylzinc (DPMK/Et 2Zn), and sodium naphthalenide/dipenylethylene/diethylzinc (Na-Naph/DPE/Et2Zn) in tetrahydrofuran at -78 °C using custom glass-blowing and high-vacuum techniques. PAdA synthesized via anionic polymerization using DPMK with a large excess (more than 40-fold to DPMK) of Et 2Zn as the ligand exhibited predicted molecular weightsmore » from 4.3 to 71.8 kg/mol and polydispersity indices of around 1.10. In addition, the produced PAdAs exhibit a low level of isotactic content (mm triads of 2.1%). The block copolymers of AdA and methyl methacrylate (MMA) were obtained by sequential anionic polymerization, and the distinct living property of PAdA over other acrylates was demonstrated based on the observation that the resulting PAdA-b-PMMA block copolymers were formed with no residual PAdA homopolymer. The PAdA homopolymers exhibit a very high glass transition temperature (133 °C) and outstanding thermal stability (T d: 376 °C) as compared to other acrylic polymers such as poly(tert-butyl acrylate) and poly(methyl acrylate). These merits make PAdA a promising candidate for acrylic-based thermoplastic elastomers with high upper service temperature and enhanced mechanical strength.« less

  18. Preparation, properties and biological application of pH-sensitive poly(ethylene oxide) (PEO) hydrogels grafted with acrylic acid(AAc) using gamma-ray irradiation

    NASA Astrophysics Data System (ADS)

    Nho, Young Chang; Mook Lim, Youn; Moo Lee, Young

    2004-09-01

    pH-sensitive hydrogels were studied as a drug carrier for the protection of insulin from the acidic environment of the stomach before releasing it in the small intestine. In this study, hydrogels based on poly(ethylene oxide) (PEO) networks grafted with acrylic acid (AAc) were prepared via a two-step process. PEO hydrogels were prepared by γ-ray irradiation, and then grafting by AAc monomer onto the PEO hydrogels with the subsequent irradiation (radiation dose: 5-20 kGy, dose rate: 2.15 kGy/h). These grafted hydrogels showed a pH-sensitive swelling behavior. The grafted hydrogels were used as a carrier for the drug delivery systems for the controlled release of insulin. The in vitro drug release behaviors of these hydrogels were examined by quantification analysis with a UV/VIS spectrophotometer. Insulin was loaded into freeze-dried hydrogels (7 mm×3 mm×2.5 mm) and administrated orally to healthy and diabetic Wistar rats. The oral administration of insulin-loaded hydrogels to Wistar rats decreased the blood glucose levels obviously for at least 4 h due to the absorption of insulin in the gastrointestinal tract.

  19. The Evaluation of Water Sorption/Solubility on Various Acrylic Resins

    PubMed Central

    Tuna, Suleyman Hakan; Keyf, Filiz; Gumus, Hasan Onder; Uzun, Cengiz

    2008-01-01

    Objectives The absorption of water by acrylic resins is a phenomenon of considerable importance since it is accompanied by dimensional changes, a further undesirable effect of absorbed water in acrylic resins to reduce the tensile strength of the material. Solubility is also an important property because it represents the mass of soluble materials from the polymers. Methods Ten acrylic resin-based materials were evaluated: two heat cure acrylic resins (De Trey QC-20, Meliodent Heat Cure) and eight self cure acrylic resins (Meliodent Cold, Akrileks, Akribel, Akribel Transparent, Vertex Trayplast, Formatray, Dentalon Plus, Palavit G). To evaluate water sorption and water solubility, thirty square-shaped specimens (20×20×1.5 mm) were fabricated from the wax specimens. One way ANOVA test, Tukey test and Pearson correlation coefficient performed for data. Results Water sorption mean values varied from 11.33±0.33 to 30.46±0.55 μg/mm3. Water solubility mean values varied from −0.05±0.23 to 3.69±0.12 μg/mm3. There was statistically significant difference between mean values of the materials (P<.05). There was no linear correlation between sorption and solubility values. Conclusions The results of the water sorption and water solubility values of both self-cured and heat-cured acrylic resins were in accordance with the ISO specification. No correlation found between water sorption and water solubility values. PMID:19212546

  20. Poly(meth)acrylates obtained by cascade reaction.

    PubMed

    Popescu, Dragos; Keul, Helmut; Moeller, Martin

    2011-04-04

    Preparation, purification, and stabilization of functional (meth)acrylates with a high dipole moment are complex, laborious, and expensive processes. In order to avoid purification and stabilization of the highly reactive functional monomers, a concept of cascade reactions was developed comprising enzymatic monomer synthesis and radical polymerization. Transacylation of methyl acrylate (MA) and methyl methacrylate (MMA) with different functional alcohols, diols, and triols (1,2,6-hexanetriol and glycerol) in the presence of Novozyme 435 led to functional (meth)acrylates. After the removal of the enzyme by means of filtration, removal of excess (meth)acrylate and/or addition of a new monomer, e.g., 2-hydroxyethyl (meth)acrylate the (co)polymerization via free radical (FRP) or nitroxide mediated radical polymerization (NMP) resulted in poly[(meth)acrylate]s with predefined functionalities. Hydrophilic, hydrophobic as well as ionic repeating units were assembled within the copolymer. The transacylation of MA and MMA with diols and triols carried out under mild conditions is an easy and rapid process and is suitable for the preparation of sensitive monomers. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Adhesive retention of experimental fiber-reinforced composite, orthodontic acrylic resin, and aliphatic urethane acrylate to silicone elastomer for maxillofacial prostheses.

    PubMed

    Kosor, Begüm Yerci; Artunç, Celal; Şahan, Heval

    2015-07-01

    A key factor of an implant-retained facial prosthesis is the success of the bonding between the substructure and the silicone elastomer. Little has been reported on the bonding of fiber reinforced composite (FRC) to silicone elastomers. Experimental FRC could be a solution for facial prostheses supported by light-activated aliphatic urethane acrylate, orthodontic acrylic resin, or commercially available FRCs. The purpose of this study was to evaluate the bonding of the experimental FRC, orthodontic acrylic resin, and light-activated aliphatic urethane acrylate to a commercially available high-temperature vulcanizing silicone elastomer. Shear and 180-degree peel bond strengths of 3 different substructures (experimental FRC, orthodontic acrylic resin, light-activated aliphatic urethane acrylate) (n=15) to a high-temperature vulcanizing maxillofacial silicone elastomer (M511) with a primer (G611) were assessed after 200 hours of accelerated artificial light-aging. The specimens were tested in a universal testing machine at a cross-head speed of 10 mm/min. Data were collected and statistically analyzed by 1-way ANOVA, followed by the Bonferroni correction and the Dunnett post hoc test (α=.05). Modes of failure were visually determined and categorized as adhesive, cohesive, or mixed and were statistically analyzed with the chi-squared goodness-of-fit test (α=.05). As the mean shear bond strength values were evaluated statistically, no difference was found among the experimental FRC, aliphatic urethane acrylate, and orthodontic acrylic resin subgroups (P>.05). The mean peel bond strengths of experimental fiber reinforced composite and aliphatic urethane acrylate were not found to be statistically different (P>.05). The mean value of the orthodontic acrylic resin subgroup peel bond strength was found to be statistically lower (P<.05). Shear test failure types were found to be statistically different (P<.05), whereas 180-degree peel test failure types were not found to

  2. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  3. Development of a novel oxirane-acrylate composite restorative resin material

    NASA Astrophysics Data System (ADS)

    Sripathi Panditaradhyula, Anuhya

    of these specimens were done by placing the respective specimens in distilled water, ascorbic acid (pH=1.5) and NaOH (pH=13). These resins were not fully cured with filler apart from filled 25:75 oxirane: acrylate cured best. Replacing 4-(Octyloxy) phenyl] phenyl iodonium SbF6 (OPPI) with 4-Isopropyl-4'- methyldiphenyl iodonium Tetrakis (pentafluorophenyl borate (Borate) initiator enhanced 24hr oxirane cure. Formulations had greater hardness compared with the controls. The increase in hardness was due to Increase in oxirane functionality, Increase in filler loading and use of acrylate-salinated filler. Modulus and ultimate transverse strength are greater than controls, but did not have statistically significance energy to break. Thus, these composites are as tough as controls and less brittle. They have the higher hydrophobicity than BisGMA: TEGDMA controls. Furthermore, other means of increasing hydrophobicity was explored, because higher the hydrophobicity, higher the resistance to hydrolytic degradation. Further research observations, such as dynamic mechanical analysis, should be carried out in order to determine the molecular interactions and usage of multi-walled, white carbon nanotubes as filler material.

  4. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  5. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  6. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...

  7. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as perfluoroalkyl acrylate copolymer (PMN P-11-63) is subject to reporting under this section for the... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer... Specific Chemical Substances § 721.10519 Perfluoroalkyl acrylate copolymer (generic). (a) Chemical...

  8. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  9. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  10. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate polymer...

  11. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2017-02-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  12. pH-sensitive Itaconic acid based polymeric hydrogels for dye removal applications.

    PubMed

    Sakthivel, M; Franklin, D S; Guhanathan, S

    2016-12-01

    A series of Itaconic Acid (IA) based pH-sensitive polymeric hydrogels were synthesized by condensation polymerization of Itaconic Acid (IA) with Ethylene Glycol (EG) in the presence of an acid medium resulted into pre-polymer. Further, pre-polymer were co-polymerized with Acrylic Acid (AA) through free radical polymerization using Potassium persulphate (KPS). The structural and surface morphological characterizations of the synthesized hydrogels were studied using FT-IR spectroscopy and Scanning Electron Microscope (SEM) respectively. The swelling and swelling equilibrium were performed at varies pH (4.0-10.0). Further, the effects of IA, EG and AA on swelling properties have also been investigated. Thermal stability of synthesized hydrogels have been investigated by TGA, DTA and DSC. The synthesized hydrogels have shown good ability to uptake a Cationic dye. The Methylene blue has been chosen as a model cationic dye. The results of dye removal using IA hydrogels found to have excellent dye removal capacity. Such kind of IA based hydrogels may be recommended for eco-friendly environmental application. viz., removal of dyes and metal ions and sewage water treatment, purification of water etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Polyurethane-acrylate-based hydrophobic film: Facile fabrication, characterization, and application

    NASA Astrophysics Data System (ADS)

    Park, Jongsung; Nguyen, Bui Quoc Huy; Kim, Ji-Kwan; Shanmugasundaram, Arunkumar; Lee, Dong-Weon

    2018-06-01

    Polyurethane-acrylate (PUA) is a versatile UV-curable polymer with a short curing time at room temperature, whose surface structure can be flexibly modified by applying various micropatterns. In this paper, we propose a facile and cost-effective fabrication method for the continuous production of an optically transparent PUA-based superhydrophobic thin film. Poly(dimethylsiloxane) (PDMS) was employed as a soft mold for the fabrication of PUA films through the roll-to-roll technique. In addition, nanosilica was spray-coated onto the PUA surface to further improve the hydrophobicity. The fabricated PUA thin film showed the highest static water contact angle (WCA) of ∼140°. The high durability of the PUA film was also demonstrated through mechanical impacting tests. Furthermore, only ∼2% of voltage loss was observed in the solar panel covered with the PUA-based superhydrophobic film. These obtained results indicate the feasibility of applying the film as a protective layer in applications requiring a high transparency and a self-cleaning effect.

  14. pH-responsive polymeric micelles of poly(ethylene glycol)-b-poly(alkyl(meth)acrylate-co-methacrylic acid): influence of the copolymer composition on self-assembling properties and release of candesartan cilexetil.

    PubMed

    Satturwar, Prashant; Eddine, Mohamad Nasser; Ravenelle, François; Leroux, Jean-Christophe

    2007-03-01

    The objective of the present study was to investigate the influence of chemical structure and molecular weight of pH-sensitive block copolymers on their self-assembling properties, the loading and the release of candesartan cilexetil (CDN). Block copolymers of poly(ethylene glycol) and t-butyl methacrylate, iso-butyl acrylate, n-butyl acrylate or propyl methacrylate were synthesized by atom transfer radical polymerization. pH-sensitivity was obtained by hydrolysis of t-butyl groups. The poorly water-soluble drug CDN was incorporated in the micelles and the in vitro drug release was evaluated as a function of pH. The critical aggregation concentration of hydrolyzed copolymers (pK(a)=6.2-6.6) was higher compared to the unhydrolyzed ones. Dynamic light scattering studies and atomic force microscopy images revealed uniform size micelles with aggregation numbers ranging from 60 to 160. The entrapment efficiency of CDN was generally found to be above 90%, with drug loading levels reaching approximately 20% (w/w). Differential scanning calorimetry studies showed the amorphous nature of entrapped CDN. The release of CDN from pH-sensitive micelles was triggered upon an increase in pH from 1.2 to 7.2. These findings suggest that the PEG-b-poly(alkyl(meth)acrylate-co-methacrylic acid)s can self-assemble to form micelles which exhibit high loading capacities for CDN and release the drug in a pH-dependent fashion.

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as articles...

  16. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials, containers...

  17. Evaluating the efficiency of humic acid to remove micro-organisms from denture base material.

    PubMed

    Meriç, Gökçe; Güvenir, Meryem; Süer, Kaya

    2016-09-01

    To evaluate the efficiency of humic acid substances on removing micro-organisms from denture base materials. Old denture wearer needs effective, easy-use and safe denture-cleaning material. Square-shaped, heat-polymerised acrylic resin specimens (n = 550) were prepared and divided into five groups (n = 110 for each) corresponding to the microbial contamination (Candida albicans, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Pseudomonas aeruginosa). Contaminated specimens were randomly assigned to the application of five different denture-cleaning agents as follows (n = 20 for each): Kloroben, Corsodyl, Steradent, Corega, experimental solution with humic acid. Ten specimens were assessed as an experimental control carried out simultaneously for the treatment groups for each micro-organism. It was divided into two groups: negative control and positive control (n = 5 for each). All acrylic specimens were incubated 37°C for 24 h (for bacterial strains) and 37°C for 48 h (for yeast strains). After incubation period, all brain-heart infusion broths (BHI) which contain disinfectant acrylic specimens were cultured on 5% sheep blood agar (for bacteria) and Sabouraud dextrose agar (SDA) for yeast using loop. The numbers of colony-forming units per millilitre (CFU/ml) were calculated. The results were analysed by Mann-Whitney U-test and Kruskal-Wallis tests (p = 0.05). Corsodyl and Kloroben completely eliminated the adherence of all investigated micro-organisms (100%) and showed the highest removal activity compared with other cleaning agents (p < 0.05). There was no statistically significant difference between Corsodyl and Kloroben (p ≥ 0.05), and there was no statistically significant difference between Corega, Steradent and experimental solution (p ≥ 0.05). Humic acid could be used as an alternative 'natural' solution for denture-cleaning agent. © 2014 John Wiley & Sons A/S and The Gerodontology Association. Published by John Wiley

  18. A novel self-embrittling strippable coating for radioactive decontamination based on silicone modified styrene-acrylic emulsion

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Wang, Jianhui; Zheng, Li; Li, Jian; Cui, Can; Lv, Linmei

    2017-03-01

    Silicone modified styrene-acrylic emulsion and butyl acrylate were used as a main film-forming agent and an additive respectively to synthesize a self-embrittling strippable coating. The doping mass-ratio of butyl acrylate was adjusted at 0, 5%, 10%, 15%, 20%, and the results indicated the optimized doping ratio was 10%. Ca(OH)2 was used to promote the coating film self-embrittling at a moderate doping mass-ratio of 20%. The synthesized coating’s coefficients of α and β decontamination on concrete, marble, glass and stainless steel surfaces were both greater than 85%, which indicated the synthesized coating is a promising cleaner for radioactive decontamination.

  19. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  20. Nucleophilic Addition of Reactive Dyes on Amidoximated Acrylic Fabrics

    PubMed Central

    El-Shishtawy, Reda M.; El-Zawahry, Manal M.; Abdelghaffar, Fatma; Ahmed, Nahed S. E.

    2014-01-01

    Seven reactive dyes judiciously selected based on chemical structures and fixation mechanisms were applied at 2% owf of shade on amidoximated acrylic fabrics. Amidoximated acrylic fabric has been obtained by a viable amidoximation process. The dyeability of these fabrics was evaluated with respect to the dye exhaustion, fixation, and colour strength under different conditions of temperature and dyeing time. Nucleophilic addition type reactive dyes show higher colour data compared to nucleophilic substitution ones. FTIR studies further implicate the binding of reactive dyes on these fabrics. A tentative mechanism is proposed to rationalize the high fixation yield obtained using nucleophilic addition type reactive dyes. Also, the levelling and fastness properties were evaluated for all dyes used. Excellent to good fastness and levelling properties were obtained for all samples irrespective of the dye used. The result of investigation offers a new method for a viable reactive dyeing of amidoximated acrylic fabrics. PMID:25258720

  1. Homogeneous synthesis of cellulose acrylate-g-poly (n-alkyl acrylate) solid-solid phase change materials via free radical polymerization.

    PubMed

    Qian, Yong-Qiang; Han, Na; Bo, Yi-Wen; Tan, Lin-Li; Zhang, Long-Fei; Zhang, Xing-Xiang

    2018-08-01

    A novel solid-solid phase change materials, namely, cellulose acrylate-g-poly (n-alkyl acrylate) (CA-g-PAn) (n = 14, 16 and 18) were successfully synthesized by free radical polymerization in N, N-dimethylacetamide (DMAc). The successful grafting was confirmed by fourier transform infrared spectra (FT-IR) and nuclear magnetic resonance (NMR). The properties of the CA-g-PAn copolymers were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA). The phase change temperatures and the melting enthalpies of CA-g-PAn copolymers are in the range of 10.1-53.2 °C and 15-95 J/g, respectively. It can be adjusted by the contents of poly (n-alkyl acrylate) and the length of alkyl side-chain. The thermal resistant temperatures of CA-g-PA14, 16 and 18 copolymers are 308 °C, 292 °C and 273 °C, respectively. It show that all of grafting materials exhibit good thermal stability and shape stability. Therefore, it is expected to be applied in the cellulose-based thermos-regulating field. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Preparation and characterization of pH sensitive crosslinked Linseed polysaccharides-co-acrylic acid/methacrylic acid hydrogels for controlled delivery of ketoprofen.

    PubMed

    Shabir, Farya; Erum, Alia; Tulain, Ume Ruqia; Hussain, Muhammad Ajaz; Ahmad, Mahmood; Akhter, Faiza

    2017-01-01

    Some pH responsive polymeric matrix of Linseed ( Linum usitatissimum ), L. hydrogel (LSH) was prepared by free radical polymerization using potassium persulfate (KPS) as an initiator, N,N -methylene bisacrylamide (MBA) as a crosslinker, acrylic acid (AA) and methacrylic acid (MAA) as monomers; while ketoprofen was used as a model drug. Different formulations of LSH-co-AA and LSH-co-MAA were formulated by varying the concentration of crosslinker and monomers. Structures obtained were thoroughly characterized using Fourier transforms infrared (FTIR) spectroscopy, XRD analysis and Scanning electron microscopy. Sol-gel fractions, porosity of the materials and ketoprofen loading capacity were also measured. Swelling and in vitro drug release studies were conducted at simulated gastric fluids, i.e., pH 1.2 and 7.4. FTIR evaluation confirmed successful grafting of AA and MAA to LSH backbone. XRD studies showed retention of crystalline structure of ketoprofen in LSH-co-AA and its amorphous dispersion in LSH-co-MAA. Gel content was increased by increasing MBA and monomer content; whereas porosity of hydrogel was increased by increasing monomer concentration and decreased by increasing MBA content. Swelling of copolymer hydrogels was high at pH 7.4 and low at pH 1.2. Ketoprofen release showed an increasing trend by increasing monomer content; however it was decreased with increasing MBA content. Sustained release of ketoprofen was noted from copolymers and release followed Korsmeyer-Peppas model.

  3. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  4. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium

    PubMed Central

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    Abstract In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks (M c), crosslink density (M r), volume interaction parameter (v 2,s), Flory Huggins water interaction parameter and diffusion coefficient (Q) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM. PMID:29491802

  5. The structural, morphological and thermal properties of grafted pH-sensitive interpenetrating highly porous polymeric composites of sodium alginate/acrylic acid copolymers for controlled delivery of diclofenac potassium.

    PubMed

    Jalil, Aamir; Khan, Samiullah; Naeem, Fahad; Haider, Malik Suleman; Sarwar, Shoaib; Riaz, Amna; Ranjha, Nazar Muhammad

    2017-01-01

    In present investigation new formulations of Sodium Alginate/Acrylic acid hydrogels with high porous structure were synthesized by free radical polymerization technique for the controlled drug delivery of analgesic agent to colon. Many structural parameters like molecular weight between crosslinks ( M c ), crosslink density ( M r ), volume interaction parameter ( v 2, s ), Flory Huggins water interaction parameter and diffusion coefficient ( Q ) were calculated. Water uptake studies was conducted in different USP phosphate buffer solutions. All samples showed higher swelling ratio with increasing pH values because of ionization of carboxylic groups at higher pH values. Porosity and gel fraction of all the samples were calculated. New selected samples were loaded with the model drug (diclofenac potassium).The amount of drug loaded and released was determined and it was found that all the samples showed higher release of drug at higher pH values. Release of diclofenac potassium was found to be dependent on the ratio of sodium alginate/acrylic acid, EGDMA and pH of the medium. Experimental data was fitted to various model equations and corresponding parameters were calculated to study the release mechanism. The Structural, Morphological and Thermal Properties of interpenetrating hydrogels were studied by FTIR, XRD, DSC, and SEM.

  6. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    PubMed Central

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  7. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  8. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  9. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  10. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... as a perfluoroalkylethyl acrylate copolymer (PMN P-94-241) is subject to reporting under this section... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Perfluoroalkylethyl acrylate copolymer... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a) Chemical...

  11. Shear bond strength of a denture base acrylic resin and gingiva-colored indirect composite material to zirconia ceramics.

    PubMed

    Kubochi, Kei; Komine, Futoshi; Fushiki, Ryosuke; Yagawa, Shogo; Mori, Serina; Matsumura, Hideo

    2017-04-01

    To evaluate the shear bond strengths of two gingiva-colored materials (an indirect composite material and a denture base acrylic resin) to zirconia ceramics and determine the effects of surface treatment with various priming agents. A gingiva-colored indirect composite material (CER) or denture base acrylic resin (PAL) was bonded to zirconia disks with unpriming (UP) or one of seven priming agents (n=11 each), namely, Alloy Primer (ALP), Clearfil Photo Bond (CPB), Clearfil Photo Bond with Clearfil Porcelain Bond Activator (CPB+Act), Metal Link (MEL), Meta Fast Bonding Liner (MFB), MR. bond (MRB), and V-Primer (VPR). Shear bond strength was determined before and after 5000 thermocycles. The data were analyzed with the Kruskal-Wallis test and Steel-Dwass test. The mean pre-/post-thermalcycling bond strengths were 1.0-14.1MPa/0.1-12.1MPa for the CER specimen and 0.9-30.2MPa/0.1-11.1MPa for the PAL specimen. For the CER specimen, the ALP, CPB, and CPB+Act groups had significantly higher bond strengths among the eight groups, at both 0 and 5000 thermocycles. For the PAL specimen, shear bond strength was significantly lower after thermalcycling in all groups tested. After 5000 thermocycles, bond strengths were significantly higher in the CPB and CPB+Act groups than in the other groups. For the PAL specimens, bond strengths were significantly lower after thermalcycling in all groups tested. The MDP functional monomer improved bonding of a gingiva-colored indirect composite material and denture base acrylic resin to zirconia ceramics. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  12. Acid-Group-Content-Dependent Proton Conductivity Mechanisms at the Interlayer of Poly(N-dodecylacrylamide-co-acrylic acid) Copolymer Multilayer Nanosheet Films.

    PubMed

    Sato, Takuma; Tsukamoto, Mayu; Yamamoto, Shunsuke; Mitsuishi, Masaya; Miyashita, Tokuji; Nagano, Shusaku; Matsui, Jun

    2017-11-14

    The effect of the content of acid groups on the proton conductivity at the interlayer of polymer-nanosheet assemblies was investigated. For that purpose, amphiphilic poly(N-dodecylacrylamide-co-acrylic acid) copolymers [p(DDA/AA)] with varying contents of AA were synthesized by free radical polymerization. Surface pressure (π)-area (A) isotherms of these copolymers indicated that stable polymer monolayers are formed at the air/water interface for AA mole fraction (n) ≤ 0.49. In all cases, a uniform dispersion of the AA groups in the polymer monolayer was observed. Subsequently, polymer monolayers were transferred onto solid substrates using the Langmuir-Blodgett (LB) technique. X-ray diffraction (XRD) analyses of the multilayer films showed strong Bragg diffraction peaks, suggesting a highly uniform lamellar structure for the multilayer films. The proton conductivity of the multilayer films parallel to the direction of the layer planes were measured by impedance spectroscopy, which revealed that the conductivity increased with increasing values of n. Activation energies for proton conduction of ∼0.3 and 0.42 eV were observed for n ≥ 0.32 and n = 0.07, respectively. Interestingly, the proton conductivity of a multilayer film with n = 0.19 did not follow the Arrhenius equation. These results were interpreted in terms of the average distance between the AA groups (l AA ), and it was concluded that, for n ≥ 0.32, an advanced 2D hydrogen bonding network was formed, while for n = 0.07, l AA is too long to form such hydrogen bonding networks. The l AA for n = 0.19 is intermediate to these extremes, resulting in the formation of hydrogen bonding networks at low temperatures, and disruption of these networks at high temperatures due to thermally induced motion. These results indicate that a high proton conductivity with low activation energy can be achieved, even under weakly acidic conditions, by arranging the acid groups at an optimal distance.

  13. Starch-g-Poly-(N, N-dimethyl acrylamide-co-acrylic acid): an efficient Cr (VI) ion binder.

    PubMed

    Kolya, Haradhan; Roy, Anirban; Tripathy, Tridib

    2015-01-01

    Synthesis of Starch-g-(Poly N, N-dimethylacrylamide-co-acrylic acid) was carried out by solution polymerization technique using potassium perdisulfate (K(2)S(2)O(8)) as the initiator. The graft copolymer was characterized by measuring molecular weight, using size exclusion chromatography (SEC), FTIR spectroscopy and X-ray diffraction (XRD) studies. The synthetic graft copolymer was used for removal of hexavalent chromium ion [Cr (VI)] from its aqueous solution. Various operating variables affecting the metal sorption such as, the amount of adsorbent, solution pH, contact time, temperature and the Cr (VI) solution concentration were extensively investigated. FTIR and UV-VIS spectroscopy, cyclic voltammetry (CV) were employed to study the metal complexation. The adsorption data could be well described by the pseudo-second-order and Langmuir isotherm model which indicate a chemisorption process. Calculation of the various thermodynamic parameters for the adsorption was also done. The negative value of free energy change (ΔG°) indicates the spontaneous nature of the adsorption. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  16. 40 CFR 721.10082 - Amine modified monomer acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine modified monomer acrylate... Specific Chemical Substances § 721.10082 Amine modified monomer acrylate (generic). (a) Chemical substance... amine modified monomer acrylate (PMN P-06-29) is subject to reporting under this section for the...

  17. Polyurethane acrylate networks including cellulose nanocrystals: a comparison between UV and EB- curing

    NASA Astrophysics Data System (ADS)

    Furtak-Wrona, K.; Kozik-Ostrówka, P.; Jadwiszczak, K.; Maigret, J. E.; Aguié-Béghin, V.; Coqueret, X.

    2018-01-01

    A water-based polyurethane (PUR) acrylate water emulsion was selected as a radiation curable matrix for preparing nanocomposites including cellulose nanocrystals (CNC) prepared by controlled hydrolysis of Ramie fibers. Cross-linking polymerization of samples prepared in the form of films or of 1 mm-thick bars was either initiated by exposure to the 395 nm light of a high intensity LED lamp or by treatment with low energy electron beam (EB). The conversion level of acrylate functions in samples submitted to increasing radiation doses was monitored by Fourier Transform Infrared Spectroscopy (FTIR). Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) were used to characterize changes in the glass transition temperature of the PUR-CNC nanocomposites as a function of acrylate conversion and of CNC content. Micromechanical testing indicates the positive effect of 1 wt% CNC on Young's modulus and on the tensile strength at break (σ) of cured nanocomposites. The presence of CNC in the PUR acrylate matrix was shown to double the σ value of the nanocomposite cured to an acrylate conversion level of 85% by treatment with a 25 kGy dose under EB, whereas no increase of σ was observed in UV-cured samples exhibiting the same acrylate conversion level. The occurrence of grafting reactions inducing covalent linkages between the polysaccharide nanofiller and the PUR acrylate matrix during the EB treatment is advanced as an explanation to account for the improvement observed in samples cured under ionizing radiation.

  18. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  19. Contact allergy to epoxy (meth)acrylates.

    PubMed

    Aalto-Korte, Kristiina; Jungewelter, Soile; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2009-07-01

    Contact allergy to epoxy (meth)acrylates, 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]propane (bis-GMA), 2,2-bis[4-(2-hydroxy-3-acryloxypropoxy)phenyl]-propane (bis-GA), 2,2-bis[4-(methacryl-oxyethoxy)phenyl] propane (bis-EMA), 2,2-bis[4-(methacryloxy)phenyl]-propane (bis-MA), and glycidyl methacrylate (GMA) is often manifested together with contact allergy to diglycidyl ether of bisphenol A (DGEBA) epoxy resin. To analyse patterns of concomitant allergic reactions to the five epoxy (meth)acrylates in relation to exposure. We reviewed the 1994-2008 patch test files at the Finnish Institute of Occupational Health (FIOH) for reactions to the five epoxy (meth)acrylates, and examined the patients' medical records for exposure. Twenty-four patients had an allergic reaction to at least one of the studied epoxy (meth)acrylates, but specific exposure was found only in five patients: two bis-GMA allergies from dental products, two bis-GA allergies from UV-curable printing inks, and one bis-GA allergy from an anaerobic glue. Only 25% of the patients were negative to DGEBA epoxy resin. The great majority of allergic patch test reactions to bis-GMA, bis-GA, GMA and bis-EMA were not associated with specific exposure, and cross-allergy to DGEBA epoxy resin remained a probable explanation. However, independent reactions to bis-GA indicated specific exposure. Anaerobic sealants may induce sensitization not only to aliphatic (meth)acrylates but also to aromatic bis-GA.

  20. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components of...

  1. A simple solubility tests for the discrimination of acrylic and modacrylic fibers.

    PubMed

    Suga, Keisuke; Narita, Yuji; Suzuki, Shinichi

    2014-05-01

    In a crime scene investigation, single fibers play an important role as significant trace physical evidence. Acrylic fibers are frequently encountered in forensic analysis. Currently, acrylic and modacrylic are not discriminated clearly in Japan. Only results of FT-IR, some of acrylics were difficult to separate clearly to acrylic and modacrylic fibers. Solubility test is primitive but convenient useful method, and Japan Industrial Standards (JIS) recommends FT-IR and solubility test to distinguish acrylic and modacrylic fibers. But recommended JIS dissolving test using 100% N,N-dimethylformamide (DMF) as a solvent, some acrylics could not be discriminated. In this report, we used DMF and ethanol (90:10, v/v) solvent. The JIS method could not discriminate 6 acrylics in 60 acrylics; hence, DMF and ethanol (90:10, v/v) solvent discriminated 59 of the 60 fibers (43 acrylic and 16 modacrylic fibers) clearly, but only one modacrylic fiber incorrectly identified as acrylic. © 2014 American Academy of Forensic Sciences.

  2. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    PubMed

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Occupational methacrylate and acrylate allergy--cross-reactions and possible screening allergens.

    PubMed

    Aalto-Korte, Kristiina; Henriks-Eckerman, Maj-Len; Kuuliala, Outi; Jolanki, Riitta

    2010-12-01

    Acrylic resin monomers, especially acrylates and methacrylates, are important occupational allergens. To analyse patterns of concomitant patch test reactions to acrylic monomers in relation to exposure, and to suggest possible screening allergens. We reviewed the patch test files for the years 1994-2009 at the Finnish Institute of Occupational Health for allergic reactions to acrylic monomers, and analysed the clinical records of sensitized patients. In a group of 66 patients allergic to an acrylic monomer, the most commonly positive allergens were three methacrylates, namely ethyleneglycol dimethacrylate (EGDMA), 2-hydroxyethyl methacrylate (2-HEMA) and 2-hydroxypropyl methacrylate (2-HPMA), and an acrylate, namely diethyleneglycol diacrylate (DEGDA). The patterns of concomitant reactions imply that exposure to methacrylates may induce cross-reactivity to acrylates, whereas exposure to acrylates usually does not lead to cross-allergy to methacrylates. Screening for triethyleneglycol diacrylate (TREGDA) in the baseline series was found to be useful, as 3 of 8 patients with diagnosed occupational acrylate allergy might have been missed without the screening. A short screening series of four allergens, EGDMA, DEGDA, 2-HPMA and pentaerythritol triacrylate (PETA), would have screened 93% of our 66 patients; each of the remaining 5 patients reacted to different acrylic monomer(s). © 2010 John Wiley & Sons A/S.

  4. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  5. Thiolated and S-protected hydrophobically modified cross-linked poly(acrylic acid)--a new generation of multifunctional polymers.

    PubMed

    Bonengel, Sonja; Haupstein, Sabine; Perera, Glen; Bernkop-Schnürch, Andreas

    2014-10-01

    The aim of this study was to create a novel multifunctional polymer by covalent attachment of l-cysteine to the polymeric backbone of hydrophobically modified cross-linked poly(acrylic acid) (AC1030). Secondly, the free thiol groups of the resulting thiomer were activated using 2-mercaptonicotinic acid (2-MNA) to provide full reactivity and stability. Within this study, 1167.36 μmol cysteine and 865.72 μmol 2-MNA could be coupled per gram polymer. Studies evaluating mucoadhesive properties revealed a 4-fold extended adherence time to native small intestinal mucosa for the thiomer (AC1030-cysteine) as well as an 18-fold prolonged adhesion for the preactivated thiomer (AC1030-Cyst-2-MNA) compared to the unmodified polymer. Modification of the polymer led to a higher tablet stability concerning the thiomer and the S-protected thiomer, but a decelerated water uptake could be observed only for the preactivated thiomer. Neither the novel conjugates nor the unmodified polymer showed severe toxicity on Caco-2 cells. Evaluation of emulsification capacity proofed the ability to incorporate lipophilic compounds like medium chain triglycerides and the preservation of the emulsifying properties after the modifications. According to these results thiolated AC1030 as well as the S-protected thiolated polymer might provide a promising tool for solid and semisolid formulations in pharmaceutical development. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Allergic contact dermatitis from acrylic nails in a flamenco guitarist.

    PubMed

    Alcántara-Nicolás, F A; Pastor-Nieto, M A; Sánchez-Herreros, C; Pérez-Mesonero, R; Melgar-Molero, V; Ballano, A; De-Eusebio, E

    2016-12-01

    Acrylates are molecules that are well known for their strong sensitizing properties. Historically, many beauticians and individuals using store-bought artificial nail products have developed allergic contact dermatitis from acrylates. More recently, the use of acrylic nails among flamenco guitarists to strengthen their nails has become very popular. A 40-year-old non-atopic male patient working as a flamenco guitarist developed dystrophy, onycholysis and paronychia involving the first four nails of his right hand. The lesions were confined to the fingers where acrylic materials were used in order to strengthen his nails to play the guitar. He noticed improvement whenever he stopped using these materials and intense itching and worsening when he began reusing them. Patch tests were performed and positive results obtained with 2-hydroxyethyl methacrylate (2-HEMA), 2-hydroxyethyl acrylate (2-HEA), ethyleneglycol-dimethacrylate (EGDMA) and 2-hydroxypropyl methacrylate (2-HPMA). The patient was diagnosed with occupational allergic contact dermatitis likely caused by acrylic nails. Artificial nails can contain many kinds of acrylic monomers but most cases of contact dermatitis are induced by 2-HEMA, 2-HPMA and EGDMA. This is the first reported case of occupational allergic contact dermatitis from acrylates in artificial nails in a professional flamenco guitar player. Since the practice of self-applying acrylic nail products is becoming very popular within flamenco musicians, we believe that dermatology and occupational medicine specialists should be made aware of the potentially increasing risk of sensitization from acrylates in this setting. © The Author 2016. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Use of alcohol vinegar in the inhibition of Candida spp. and its effect on the physical properties of acrylic resins.

    PubMed

    de Castro, Ricardo Dias; Mota, Ana Carolina Loureiro Gama; de Oliveira Lima, Edeltrudes; Batista, André Ulisses Dantas; de Araújo Oliveira, Julyana; Cavalcanti, Alessandro Leite

    2015-04-28

    Given the high prevalence of oral candidiasis and the restricted number of antifungal agents available to control infection, this study investigated the in vitro antifungal activity of alcohol vinegar on Candida spp. and its effect on the physical properties of acrylic resins. Tests to determine the Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) of vinegar alcohol (0.04 g/ml of acetic acid) and nystatin (control) were performed. The antifungal activity of alcohol vinegar was assessed through microbial growth kinetic assays and inhibition of Candida albicans adhesion to acrylic resin at different intervals of time. Surface roughness and color of the acrylic resin were analyzed using a roughness meter and color analyzer device. Alcohol vinegar showed MIC75% and MFC62.5% of 2.5 mg/ml, with fungicidal effect from 120 min, differing from nystatin (p < 0.0001), which showed fungistatic effect. Alcohol vinegar caused greater inhibition of C. albicans adhesion to the acrylic resin (p ≤ 0.001) compared to nystatin and did not change the roughness and color parameters of the material. Alcohol vinegar showed antifungal properties against Candida strains and caused no physical changes to the acrylic resin.

  8. Organic compounds containing methoxy and cyanoacrylic acid: Synthesis, characterization, crystal structures, and theoretical studies

    NASA Astrophysics Data System (ADS)

    Khalaji, A. D.; Maddahi, E.; Dusek, M.; Fejfarova, K.; Chow, T. J.

    2015-12-01

    Metal-free organic compounds 24-SC (( E)-2-cyano-3-(2,4-dimethoxyphenyl)acrylic acid) and 34-SC (( E)-2-cyano-3-(3,4-dimethoxyphenyl)acrylic acid), containing methoxy groups as a donor and the acrylic acid as an acceptor were synthesized and characterized by CHN, FT-IR, UV-Vis, 1H-NMR and single crystal X-ray diffraction and used as photosensitizers for the application of dye-sensitized solar cells (DSSC). The sensitizing characteristics of them were evaluated. Both compounds contain the natural molecule, its anionic form and the piperidinium cation and they differ by number of these molecules in the asymmetric unit. To get further insight into the effect of molecular structure on the performance of DSSC, their geometry and energies of HOMO and LUMO were optimized by density functional theory calculation at the B3LYP/6-31G(d) level with Gaussian 03. Overall conversion efficiencies of 0.78 under full sunlight irradiation are obtained for DSSCs based on the new metal-free organic dyes 24-SC and 34-SC.

  9. Incorporation of antimicrobial macromolecules in acrylic denture base resins: a research composition and update.

    PubMed

    Sivakumar, Indumathi; Arunachalam, Kuthalingam Subbiah; Sajjan, Suresh; Ramaraju, Alluri Venkata; Rao, Bheemalingeshwara; Kamaraj, Bindu

    2014-06-01

    Contemporary research in acrylic denture base materials focuses on the development of a novel poly(methyl methacrylate) (PMMA) resin with antimicrobial properties. Although PMMA resin has fulfilled all the requirements of an ideal denture base material, its susceptibility to microbial colonization in the oral environment is a formidable concern to clinicians. Many mechanisms including the absence of ionic charge in the methyl methacrylate resins, hydrophobic interactions, electrostatic interactions, and mechanical attachment have been found to contribute to the formation of biofilm. The present article outlines the basic categories of potential antimicrobial polymer (polymeric biocides) formulations (modified PMMA resins) and considers their applicability, biological status, and usage potential over the coming years. © 2013 by the American College of Prosthodontists.

  10. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  11. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent. Copyright © 2014. Published by Elsevier B.V.

  12. Simulation of 20-year deterioration of acrylic IOLs using severe accelerated deterioration tests.

    PubMed

    Kawai, Kenji; Hayakawa, Kenji; Suzuki, Takahiro

    2012-09-20

    To investigate IOL deterioration by conducting severe accelerated deterioration testing of acrylic IOLs. Department of Ophthalmology, Tokai University School of Medicine Methods: Severe accelerated deterioration tests performed on 7 types of acrylic IOLs simulated 20 years of deterioration. IOLs were placed in a screw tube bottle containing ultra-pure water and kept in an oven (100°C) for 115 days. Deterioration was determined based the outer appearance of the IOL in water and under air-dried conditions using an optical microscope. For accelerated deterioration of polymeric material, the elapse of 115 days was considered to be equivalent to 20 years based on the Arrhenius equation. All of the IOLs in the hydrophobic acrylic group except for AU6 showed glistening-like opacity. The entire optical sections of MA60BM and SA60AT became yellowish white in color. Hydrophilic acrylic IOL HP60M showed no opacity at any of the time points examined. Our data based on accelerated testing showed differences in water content to play a major role in transparency. There were differences in opacity among manufacturers. The method we have used for determining the relative time of IOL deterioration might not represent the exact clinical setting, but the appearance of the materials would presumably be very similar to that seen in patients.

  13. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    PubMed

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Plasma-induced grafting of acrylic acid on bentonite for the removal of U(VI) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Hongshan, ZHU; Shengxia, DUAN; Lei, CHEN; Ahmed, ALSAEDI; Tasawar, HAYAT; Jiaxing, LI

    2017-11-01

    Fabrication of reusable adsorbents with satisfactory adsorption capacity and using environment-friendly preparation processes is required for the environment-related applications. In this study, acrylic acid (AA) was grafted onto bentonite (BT) to generate an AA-graft-BT (AA-g-BT) composite using a plasma-induced grafting technique considered to be an environment-friendly method. The as-prepared composite was characterized by scanning electron microscopy, x-ray powder diffraction, thermal gravity analysis, Fourier transform infrared spectroscopy and Barrett-Emmett-Teller analysis, demonstrating the successful grafting of AA onto BT. In addition, the removal of uranium(VI) (U(VI)) from contaminated aqueous solutions was examined using the as-prepared composite. The influencing factors, including contact time, pH value, ionic strength, temperature, and initial concentration, for the removal of U(VI) were investigated by batch experiments. The experimental process fitted best with the pseudo-second-order kinetic and the Langmuir models. Moreover, thermodynamic investigation revealed a spontaneous and endothermic process. Compared with previous adsorbents, AA-g-BT has potential practical applications in treating U(VI)-contaminated solutions.

  15. Mechanical properties of bulk graphene oxide/poly(acrylic acid)/poly(ethylenimine) ternary polyelectrolyte complex.

    PubMed

    Duan, Yipin; Wang, Chao; Zhao, Mengmeng; Vogt, Bryan D; Zacharia, Nicole S

    2018-05-30

    Ternary complexes formed in a single pot process through the mixing of cationic (branched polyethylenimine, BPEI) and anionic (graphene oxide, GO, and poly(acrylic acid), PAA) aqueous solutions exhibit superior mechanical performance in comparison to their binary analogs. The composition of the ternary complex can be simply tuned through the composition of the anionic solution, which influences the water content and mechanical properties of the complex. Increasing the PAA content in the complex decreases the overall water content due to improved charge compensation with the BPEI, but this change also significantly improves the toughness of the complex. Ternary complexes containing ≤32 wt% PAA were too brittle to generate samples for tensile measurements, while extension in excess of 250% could be reached with 57 wt% PAA. From this work, the influence of GO and PAA on the mechanical properties of GO/PAA/BPEI complexes were elucidated with GO sheets acting to restrain the viscous flow and improve the mechanical strength at low loading (<12.6 wt%) and PAA more efficiently complexes with BPEI than GO to generate a less swollen and stronger network. This combination overcomes the brittle nature of GO-BPEI complexes and viscous creep of PAA-BPEI complexes. Ternary nanocomposite complexes appear to provide an effective route to toughen and strengthen bulk polyelectrolyte complexes.

  16. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  17. Heat-cured acrylic resin versus light-activated resin: a patient, professional and technician-based evaluation of mandibular implant-supported overdentures.

    PubMed

    Asal, S A; Al-AlShiekh, H M

    2017-12-01

    Although light-activated resins (Eclipse) have been reported to possess superior physical and mechanical properties compared with the heat-cured acrylic resins (Lucitone-199), a few studies have compared overdentures with a locator attachment constructed from heat-cured acrylic resins with those constructed from light-activated resins. This clinical study was designed to compare the performance of a mandibular implant-supported overdenture constructed from a heat-cured acrylic resin (Lucitone-199) with that of an overdenture constructed from a light-activated resin (Eclipse). Ten participants received two identical mandibular implant-retained overdentures (Lucitone-199 and Eclipse) opposing one maxillary denture in a random order. Each mandibular overdenture was delivered and worn for 6 months, and two weeks of rest was advised between wears to minimize any carryover effects. Three questionnaires were devised. The first questionnaire (patient evaluation) focused on evaluating different aspects of the denture and overall satisfaction. The second questionnaire (professional dentist evaluation) was based on a clinical evaluation of soft tissues, complications, and the applied technique. The third questionnaire (technician evaluation) involved ranking the different manufacturing steps of the denture and overall preferences. The obtained data was statistically analyzed using an independent sample t-test and the Wilcoxon rank-sum test. The clinician and technician preferred the Eclipse dentures because of their technical aspects, whereas the patients preferred the Lucitone-199 dentures for their aesthetic properties. Implant-supported overdentures constructed from a heat-cured acrylic resin showed superior aesthetics and had a better odor compared with those constructed from a light-cured resin.

  18. Loading and release mechanisms of a biocide in polystyrene-block-poly(acrylic acid) block copolymer micelles.

    PubMed

    Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2008-07-24

    The kinetics of loading of polystyrene197-block-poly(acrylic acid)47 (PS197-b-PAA47) micelles, suspended in water, with thiocyanomethylthiobenzothiazole biocide and its subsequent release were investigated. Loading of the micelles was found to be a two-step process. First, the surface of the PS core of the micelles is saturated with biocide, with a rate determined by the transfer of solid biocide to micelles during transient micelle-biocide contacts. Next, the biocide penetrates as a front into the micelles, lowering the Tg in the process (non-Fickian case II diffusion). The slow rate of release is governed by the height of the energy barrier that a biocide molecule must overcome to pass from PS into water, resulting in a uniform biocide concentration within the micelle, until Tg is increased to the point that diffusion inside the micelles becomes very slow. Maximum loading of biocide into micelles is approximately 30% (w/w) and is achieved in 1 h. From partition experiments, it can be concluded that the biocide has a similar preference for polystyrene as for ethylbenzene over water, implying that the maximum loading is governed by thermodynamics.

  19. Dynamic behavior of acrylic acid clusters as quasi-mobile nodes in a model of hydrogel network

    NASA Astrophysics Data System (ADS)

    Zidek, Jan; Milchev, Andrey; Vilgis, Thomas A.

    2012-12-01

    Using a molecular dynamics simulation, we study the thermo-mechanical behavior of a model hydrogel subject to deformation and change in temperature. The model is found to describe qualitatively poly-lactide-glycolide hydrogels in which acrylic acid (AA)-groups are believed to play the role of quasi-mobile nodes in the formation of a network. From our extensive analysis of the structure, formation, and disintegration of the AA-groups, we are able to elucidate the relationship between structure and viscous-elastic behavior of the model hydrogel. Thus, in qualitative agreement with observations, we find a softening of the mechanical response at large deformations, which is enhanced by growing temperature. Several observables as the non-affinity parameter A and the network rearrangement parameter V indicate the existence of a (temperature-dependent) threshold degree of deformation beyond which the quasi-elastic response of the model system turns over into plastic (ductile) one. The critical stretching when the affinity of the deformation is lost can be clearly located in terms of A and V as well as by analysis of the energy density of the system. The observed stress-strain relationship matches that of known experimental systems.

  20. Flow cytometry of HEK 293T cells interacting with polyelectrolyte multilayer capsules containing fluorescein-labeled poly(acrylic acid) as a pH sensor.

    PubMed

    Reibetanz, Uta; Halozan, David; Brumen, Milan; Donath, Edwin

    2007-06-01

    Polyelectrolyte multilayer sensor capsules, 5 microm in diameter, which contained fluorescein-labeled poly(acrylic acid) (PAAAF) as pH-sensitive reporter molecules, were fabricated and employed to explore their endocytotic uptake into HEK 293T cells by flow cytometry. The percentage of capsules residing in the endolysosomal compartment was estimated from the fluorescence intensity decrease caused by acidification. Capsules attached to the extracellular surface of the plasma membrane were identified by trypan blue quenching. The number of capsules in the cytoplasm was rather small, being below the detection limit of the method. The advantages of polyelectrolyte multilayer capsules are that the fluorophore is protected from interaction with cellular compartments and that the multilayer can be equipped with additional functions.

  1. 2,4,6-Tri-amino-1,3,5-triazin-1-ium 3-(prop-2-eno-yloxy)propano-ate acrylic acid monosolvate monohydrate.

    PubMed

    Sangeetha, V; Kanagathara, N; Chakkaravarthi, G; Marchewka, M K; Anbalagan, G

    2013-05-01

    The asymmetric unit of the title salt, C3H7N6 (+)·C6H7O4 (-)·C3H4O2·H2O, contains a 2,4,6-tri-amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno-yloxy)propano-ate anion and acrylic acid and water solvent mol-ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra-molecular layer in the bc plane via a combination of O-H⋯O, N-H⋯N and N-H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%.

  2. Application of Fourier transform infrared (FT-IR) spectroscopy to the study of the modification of epoxidized sunflower oil by acrylation.

    PubMed

    Irinislimane, Ratiba; Belhaneche-Bensemra, Naima

    2012-12-01

    Commercial sunflower oil was epoxidized at the laboratory-scale. The epoxidized sunflower oil (ESFO) was modified following the acrylation reaction. Modification was carried out simultaneously using acrylic acid (AA) and triethylamine (TEA). To optimize the reaction conditions, the effects of four temperatures (40, 60, 80, and 100 °C), the ESFO:AA (100:100) ratio, and 0.2% TEA were investigated. The rate of conversion was analyzed with both FT-IR and titration of the oxirane ring. After that, the temperature with the highest conversion was selected and used throughout for all modification reactions. Then, four ratios (100:100, 100:90, 100:80, and 100:75) of ESFO:AA were analyzed at four different concentrations of TEA (0.2, 0.3, 0.4, and 0.5%) to determine the best estimate for both the ESFO:AA ratio and the catalyst concentration. Conversion rate was analyzed using FT-IR spectroscopy by measuring the concentrations of ester, carbonyl, and alcohol groups. Moreover, oxirane-ring concentration was estimated using the titration method (with gentian violet as indicator) and FT-IR spectroscopy (epoxy ring absorptions at 1270 cm(-1) and 877 cm(-1)). Based on conversion yield, the optimum ESFO:AA ratio corresponds to 100:80; the best temperature reaction was at 60 °C, and the best TEA concentration was 0.2%. The critical amounts of reactants needed to reach maximum conversion were established. The final acid value of the acrylated ESFO after washing (pH = 7) was 2.1 mg potassium hydroxide (KOH)·g(-1). All results show that FT-IR spectroscopy is a simple, low-cost, rapid method for investigating the kinetics of a reaction.

  3. Screening of Metagenomic and Genomic Libraries Reveals Three Classes of Bacterial Enzymes That Overcome the Toxicity of Acrylate

    PubMed Central

    Curson, Andrew R. J.; Burns, Oliver J.; Voget, Sonja; Daniel, Rolf; Todd, Jonathan D.; McInnis, Kathryn; Wexler, Margaret; Johnston, Andrew W. B.

    2014-01-01

    Acrylate is produced in significant quantities through the microbial cleavage of the highly abundant marine osmoprotectant dimethylsulfoniopropionate, an important process in the marine sulfur cycle. Acrylate can inhibit bacterial growth, likely through its conversion to the highly toxic molecule acrylyl-CoA. Previous work identified an acrylyl-CoA reductase, encoded by the gene acuI, as being important for conferring on bacteria the ability to grow in the presence of acrylate. However, some bacteria lack acuI, and, conversely, many bacteria that may not encounter acrylate in their regular environments do contain this gene. We therefore sought to identify new genes that might confer tolerance to acrylate. To do this, we used functional screening of metagenomic and genomic libraries to identify novel genes that corrected an E. coli mutant that was defective in acuI, and was therefore hyper-sensitive to acrylate. The metagenomic libraries yielded two types of genes that overcame this toxicity. The majority encoded enzymes resembling AcuI, but with significant sequence divergence among each other and previously ratified AcuI enzymes. One other metagenomic gene, arkA, had very close relatives in Bacillus and related bacteria, and is predicted to encode an enoyl-acyl carrier protein reductase, in the same family as FabK, which catalyses the final step in fatty-acid biosynthesis in some pathogenic Firmicute bacteria. A genomic library of Novosphingobium, a metabolically versatile alphaproteobacterium that lacks both acuI and arkA, yielded vutD and vutE, two genes that, together, conferred acrylate resistance. These encode sequential steps in the oxidative catabolism of valine in a pathway in which, significantly, methacrylyl-CoA is a toxic intermediate. These findings expand the range of bacteria for which the acuI gene encodes a functional acrylyl-CoA reductase, and also identify novel enzymes that can similarly function in conferring acrylate resistance, likely, again

  4. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  5. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied.more » The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.« less

  6. Comparative evaluation of surface porosities in conventional heat polymerized acrylic resin cured by water bath and microwave energy with microwavable acrylic resin cured by microwave energy

    PubMed Central

    Singh, Sunint; Palaskar, Jayant N.; Mittal, Sanjeev

    2013-01-01

    Background: Conventional heat cure poly methyl methacrylate (PMMA) is the most commonly used denture base resin despite having some short comings. Lengthy polymerization time being one of them and in order to overcome this fact microwave curing method was recommended. Unavailability of specially designed microwavable acrylic resin made it unpopular. Therefore, in this study, conventional heat cure PMMA was polymerized by microwave energy. Aim and Objectives: This study was designed to evaluate the surface porosities in PMMA cured by conventional water bath and microwave energy and compare it with microwavable acrylic resin cured by microwave energy. Materials and Methods: Wax samples were obtained by pouring molten wax into a metal mold of 25 mm × 12 mm × 3 mm dimensions. These samples were divided into three groups namely C, CM, and M. Group C denotes conventional heat cure PMMA cured by water bath method, CM denotes conventional heat cure PMMA cured by microwave energy, M denotes specially designed microwavable acrylic denture base resin cured by microwave energy. After polymerization, each sample was scanned in three pre-marked areas for surface porosities using the optical microscope. As per the literature available, this instrument is being used for the first time to measure the porosity in acrylic resin. It is a reliable method of measuring area of surface pores. Portion of the sample being scanned is displayed on the computer and with the help of software area of each pore was measured and data were analyzed. Results: Conventional heat cure PMMA samples cured by microwave energy showed maximum porosities than the samples cured by conventional water bath method and microwavable acrylic resin cured by microwave energy. Higher percentage of porosities was statistically significant, but well within the range to be clinically acceptable. Conclusion: Within the limitations of this in-vitro study, conventional heat cure PMMA can be cured by microwave energy

  7. The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases

    PubMed Central

    Alammari, Manal Rahma

    2017-01-01

    Background Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. Objective The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. Methods This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. Results One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p1<0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Conclusion Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with

  8. The influence of polishing techniques on pre-polymerized CAD\\CAM acrylic resin denture bases.

    PubMed

    Alammari, Manal Rahma

    2017-10-01

    Lately, computer-aided design and computer-aided manufacturing (CAD/CAM) has broadly been successfully employed in dentistry. The CAD/CAM systems have recently become commercially available for fabrication of complete dentures, and are considered as an alternative technique to conventionally processed acrylic resin bases. However, they have not yet been fully investigated. The purpose of this study was to inspect the effects of mechanical polishing and chemical polishing on the surface roughness (Ra) and contact angle (wettability) of heat-cured, auto-cured and CAD/CAM denture base acrylic resins. This study was conducted at the Advanced Dental Research Laboratory Center of King Abdulaziz University from March to June 2017. Three denture base materials were selected: heat cure poly-methylmethacrylate resin, thermoplastic (polyamide resin) and (CAD\\CAM) denture base resin. Sixty specimens were prepared and divided into three groups, twenty in each. Each group was divided according to the polishing techniques into (Mech P) and (Chem P), ten specimens in each; surface roughness and wettability were investigated. Data were analyzed by SPSS version 22, using one-way ANOVA and Pearson coefficient. One-way analysis of variance (ANOVA) and post hoc tests were used for comparing the surface roughness values between three groups which revealed a statistical significant difference between them (p 1 <0.001). Heat-cured denture base material of (Group I) in both methods, showed the highest mean surface roughness value (2.44±0.07, 2.72±0.09, Mech P and Chem P respectively); while CAD\\CAM denture base material (group III) showed the least mean values (1.08±0.23, 1.39±0.31, Mech P and Chem P respectively). CAD/CAM showed the least contact angle in both polishing methods, which were statistically significant at 5% level (p=0.034 and p<0.001). Mechanical polishing produced lower surface roughness of CAD\\CAM denture base resin with superior smooth surface compared to chemical

  9. Silane–Acrylate Chemistry for Regulating Network Formation in Radical Photopolymerization

    PubMed Central

    2017-01-01

    Photoinitiated silane–ene chemistry has the potential to pave the way toward spatially resolved organosilicon compounds, which might find application in biomedicine, microelectronics, and other advanced fields. Moreover, this approach could serve as a viable alternative to the popular photoinitiated thiol–ene chemistry, which gives access to defined and functional photopolymer networks. A difunctional bis(trimethylsilyl)silane with abstractable hydrogens (DSiH) was successfully synthesized in a simple one-pot procedure. The radical reactivity of DSiH with various homopolymerizable monomers (i.e., (meth)acrylate, vinyl ester, acrylamide) was assessed via 1H NMR spectroscopic studies. DSiH shows good reactivity with acrylates and vinyl esters. The most promising silane–acrylate system was further investigated in cross-linking formulations toward its reactivity (e.g., heat of polymerization, curing time, occurrence of gelation, double-bond conversion) and compared to state-of-the-art thiol–acrylate resins. The storage stability of prepared resin formulations is greatly improved for silane–acrylate systems vs thiol–ene resins. Double-bond conversion at the gel point (DBCgel) and overall DBC were increased, and polymerization-induced shrinkage stress has been significantly reduced with the introduction of silane–acrylate chemistry. Resulting photopolymer networks exhibit a homogeneous network architecture (indicated by a narrow glass transition) that can be tuned by varying silane concentration, and this confirms the postulated regulation of radical network formation. Similar to thiol–acrylate networks, this leads to more flexible photopolymer networks with increased elongation at break and improved impact resistance. Additionally, swelling tests indicate a high gel fraction for silane–acrylate photopolymers. PMID:29033466

  10. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    PubMed

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  11. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  12. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  13. ICI/BASF PP for acrylics swap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alperowicz, N.

    ICI (London) and BASF (Ludwigshafen) have announced their long-awaited polypropylene (PP) for acrylics swap deal. ICI is buying BASF's European acrylic resin business, and the German firm will acquire ICI's European PP operations. The deal is due for completion by mid-1993, subject to regulatory approvals. BASF, hitherto a small-scale PP producer, doubles capacity to 600,000 m.t./year and moves up the European PP league to number three, behind Himont and Shell. BASF, whose process is used in the plants, secures a foothold in the UK PP market, where Shell - planning a merger with Himont - is the only other producer,more » with 170,000 m.t./year. ICI's purchase involves BASF's Resart GmbH and Critesa SA subsidiaries, located at Mainz, Germany and near Barcelona, Spain, respectively. The business - which will add about [Brit pounds]60 million ($93 million) to ICI Acrylics [Brit pounds]300-million revenues - employs 400 people, who will transfer to ICI.« less

  14. Rheological characterization of cataplasm bases composed of cross-linked partially neutralized polyacrylate hydrogel.

    PubMed

    Wang, Jian; Zhang, Hongqin; An, Dianyun; Yu, Jian; Li, Wei; Shen, Teng; Wang, Jianxin

    2014-10-01

    Viscoelasticity is a useful parameter for characterizing the intrinsic properties of the cross-linked polyacrylate hydrogel used in cataplasm bases. The aim of this study was to investigate the effects of various formulation parameters on the rheological characteristics of polyacrylate hydrogel. The hydrogel layers were formed using a partially neutralized polyacrylate (Viscomate(™)), which contained acrylic acid and sodium acrylate in different copolymerization ratios, as the cross-linked gel framework. Dihydroxyaluminum aminoacetate (DAAA), which produces aluminum ions, was used as the cross-linking agent. Rheological analyses were performed using a "stress amplitude sweep" and a "frequency sweep". The results showed that greater amounts of acrylic acid in the structure of Viscomate as well as higher concentrations of DAAA and Viscomate led to an increase in the elastic modulus (G'). However, greater amounts of acrylic acid in the structure of Viscomate and higher concentrations of DAAA had an opposite on the viscous modulus (G″); this might be owing to higher steric hindrance. The results of this study can serve as guidelines for the optimization of formulations for cataplasms.

  15. Fabrication of magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel for removal of Cd2+ and Pb2.

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-12-01

    A novel macroporous magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel adsorbent was fabricated from the Pickering high internal emulsions template stabilized by modified Fe 3 O 4 nanoparticles. The structure and composition of modified Fe 3 O 4 and macroporous magnetic hydrogel were characterized by TEM, XRD, TG and SEM techniques. The characterization results suggest that the Fe 3 O 4 nanoparticles have been modified successfully with organosilane of 3-aminopropyltrimethoxysilane (APTES), and the porous structure of the macroporous hydrogel can be tuned with the amount of stabilized particles, volume fraction of dispersed phase and the amount of the cosurfactant. Adsorption experiments indicate that the adsorption equilibrium was rapidly reached within 20min and the maximal adsorption capacities were determined to be 308.84mg/g for Cd 2+ and 695.22mg/g for Pb 2+ . After five adsorption-desorption cycles, the adsorbent can retain its high adsorption capacity. The introduction of Fe 3 O 4 is beneficial to the recycle of adsorbent after usage. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biocompatibility and bond degradation of poly-acrylic acid coated copper iodide-adhesives.

    PubMed

    ALGhanem, Adi; Fernandes, Gabriela; Visser, Michelle; Dziak, Rosemary; Renné, Walter G; Sabatini, Camila

    2017-09-01

    To investigate the effect of poly-acrylic acid (PAA) copper iodide (CuI) adhesives on bond degradation, tensile strength, and biocompatibility. PAA-CuI particles were incorporated into Optibond XTR, Optibond Solo and XP Bond in 0.1 and 0.5mg/ml. Clearfil SE Protect, an MDPB-containing adhesive, was used as control. The adhesives were applied to human dentin, polymerized and restored with composite in 2mm-increments. Resin-dentin beams (0.9±0.1mm 2 ) were evaluated for micro-tensile bond strength after 24h, 6 months and 1year. Hourglass specimens (10×2×1mm) were evaluated for ultimate tensile strength (UTS). Cell metabolic function of human gingival fibroblast cells exposed to adhesive discs (8×1mm) was assessed with MTT assay. Copper release from adhesive discs (5×1mm) was evaluated with UV-vis spectrophotometer after immersion in 0.9% NaCl for 1, 3, 5, 7, 10, 14, 21 and 30 days. SEM, EDX and XRF were conducted for microstructure characterization. XTR and Solo did not show degradation when modified with PAA-CuI regardless of the concentration. The UTS for adhesives containing PAA-CuI remained unaltered relative to the controls. The percent viable cells were reduced for Solo 0.5mg/ml and XP 0.1 or 0.5mg/ml PAA-CuI. XP demonstrated the highest ion release. For all groups, the highest release was observed at days 1 and 14. PAA-CuI particles prevented the bond degradation of XTR and Solo after 1year without an effect on the UTS for any adhesive. Cell viability was affected for some adhesives. A similar pattern of copper release was demonstrated for all adhesives. Copyright © 2017. Published by Elsevier Ltd.

  17. Hydrotropic polymer micelles containing acrylic acid moieties for oral delivery of paclitaxel

    PubMed Central

    Kim, Sungwon; Kim, Ji Young; Huh, Kang Moo; Acharya, Ghanshyam; Park, Kinam

    2008-01-01

    Hydrotropic polymers (HPs) and their micelles have been recently developed as vehicles for delivery of poorly water-soluble drugs, such as paclitaxel (PTX), by oral administration. The release of PTX from HP micelles, however, was slow and it took more than a day for complete release of the loaded PTX. Since the gastrointestinal (GI) transit time is known to be only several hours, pH-sensitive HP micelles were prepared for fast release of the loaded PTX responding to pH changes along the GI tract. Acrylic acid (AA) was introduced, as a release modulator, into HPs by copolymerization with 4-(2-vinylbenzyloxy)-N,N-(diethylnicotinamide) (VBODENA). The AA content was varied from 0% to 50 % (in the molar ratio to VBODENA). HPs spontaneously produced micelles in water, and their critical micelle concentrations (CMCs) ranged from 31 μg/mL to 86 μg/mL. Fluorescence probe study using pyrene showed that blank HP micelles possessed a good pH-sensitivity, which was clearly observed at relatively high AA contents and pH > 6. The pH sensitivity also affected the PTX loading property. Above pH 5, the PTX loading content and loading efficiency in HP micelles were significantly reduced. Although this may be primarily due to the AA moieties, other factors may include PTX degradation and polymer aggregation. The PTX release from HP micelles with more than 20% (mol) AA contents was completed within 12 h in a simulated intestinal fluid (SIF, pH=6.5). The HP micelles without any AA moiety showed very slow release profiles. In the simulated gastric fluid (SGF, pH=1.6), severe degradation of the released PTX was observed. The pH-dependent release of PTX from HP micelles can be used to increase the bioavailability of PTX upon oral delivery. PMID:18672013

  18. Separation of copper ions from iron ions using PVA-g-(acrylic acid/N-vinyl imidazole) membranes prepared by radiation-induced grafting.

    PubMed

    Ajji, Zaki; Ali, Ali M

    2010-01-15

    Acrylic acid (AAc), N-vinyl imidazole (Azol) and their binary mixtures were graft copolymerized onto poly(vinyl alcohol) membranes using gamma irradiation. The ability of the grafted membranes to separate Cu ions from Fe ions was investigated with respect to the grafting yield and the pH of the feed solution. The data showed that the diffusion of copper ions from the feed compartment to the receiver compartment depends on the grafting yield of the membranes and the pH of the feed solution. To the contrary, iron ions did not diffuse through the membranes of all grafting yields. However, a limited amount of iron ions diffused in strong acidic medium. This study shows that the prepared membranes could be considered for the separation of copper ions from iron ions. The temperature of thermal decomposition of pure PVA-g-AAc/Azol membrane, PVA-g-AAc/Azol membrane containing copper ions, and PVA-g-AAc/Azol membrane containing iron ions were determined using TGA analyzer. It was shown that the presence of Cu and Fe ions increases the decomposition temperature, and the membranes bonded with iron ions are more stable than those containing copper ions.

  19. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    PubMed Central

    BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen

    2011-01-01

    Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the

  20. Proof-of-concept switchable hydrophobic/hydrophilic patterned surfaces from thermo-mechanically tailored acrylate systems

    NASA Astrophysics Data System (ADS)

    Laursen, Christopher M.

    A novel, proof-of-concept, switchable hydrophobic/hydrophilic structured surface targeted to assist in antifouling of materials in aqueous environments was created through the development of a multi-tiered platform. The understructure consists of a thermo-mechanically tailored acrylate based polymer patterned in a pillared array, which was then overlaid with spatially tailored hydrophobic/hydrophilic surface chemistry treatments. Development focused on the synthesis of a ternary acrylate system displaying proper thermo-mechanical behavior in submerged conditions for the understructure, creation of a sufficient soft molding technique, and methods to chemically alter water-surface wetting interactions. The final acrylate based polymer constituents were chosen based on expected low-toxicity and the ability to be photopolymerized, while the final system displayed appropriate mechanical toughness, water absorption, and material stiffness over a select temperature window. This was important as alteration in wettability characteristics relied upon a stark transition in the polymeric materials stiffness within a narrow temperature range. The material qualitatively displayed a more hydrophobic state with the pillared surface structures erect, and a more hydrophilic state with the pillars bent over.

  1. Hybrid display of static image and aerial image by use of transparent acrylic cubes and retro-reflectors

    NASA Astrophysics Data System (ADS)

    Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu

    2017-02-01

    Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.

  2. The efficacy of acrylic acid grafting and arginine-glycine-aspartic acid peptide immobilization on fibrovascular ingrowth into porous polyethylene implants in rabbits.

    PubMed

    Park, Byung Woo; Yang, Hee Seok; Baek, Se Hyun; Park, Kwideok; Han, Dong Keun; Lee, Tae Soo

    2007-06-01

    To determine the effects of acrylic acid (AA) grafting by argon plasma treatment and of immobilization of arginine-glycine-aspartic acid (RGD) peptides on fibrovascular ingrowth rate into high-density porous polyethylene (HPPE) anophthalmic orbital implants. Sixty rabbits were divided into three groups, with 20 rabbits in each group: (1) control group, rabbits implanted with unmodified HPPE; (2) PAA group, rabbits implanted with HPPE grafted with poly(AA) by argon plasma treatment; (3) RGD group, rabbits implanted with HPPE grafted with AA by argon plasma treatment and subsequently immobilized with RGD peptide. An HPPE spherical implant was put in the abdominal muscles of rabbit. After implantation for 4 weeks, the retrieved implants were sectioned and stained with hematoxylin and eosin (H&E). Blood vessels were counted using CD-31 immunostaining. Cross-sectional areas of fibrovascular ingrowth, blood vessel densities, and host inflammatory response scores were determined for all three groups. The mean cross-sectional areas of fibrovascularization at 2 and 3 weeks after implantation were the greatest in the RGD group, followed by the PAA group. While minimal fibrovascular ingrowths were noted in all implants at 1 week, all the implants showed nearly complete ingrowth at 4 weeks. Blood vessel densities were the highest in the RGD group, followed by the PAA group at 2, 3, and 4 weeks. The mean inflammation scores of the PAA and RGD groups were less than that of the control group. Fibrovascularization into HPPE implants was enhanced by surface grafting of AA and further improved by immobilizing RGD peptides onto the grafted AA surfaces. The inflammatory reactions were mild by either technique of surface modification.

  3. Synthesis and colon-specific drug delivery of a poly(acrylic acid-co-acrylamide)/MBA nanosized hydrogel.

    PubMed

    Ray, Debajyoti; Mohapatra, Dillip K; Mohapatra, Ranjit K; Mohanta, Guru P; Sahoo, Prafulla K

    2008-01-01

    Intravenous administration of 5-fluorouracil (5-FU) for colon cancer therapy produces severe systemic side-effects due to its cytotoxic effect on normal cells. The main objective of the present study was to develop novel oral site-specific delivery of 5-FU to the colon with less drug being released in the stomach or small intestine using biodegradable hydrogel, hydrogel nanoparticles and comparing the targeting efficiency of 5-FU to colon from both. Poly(acrylic acid-co-acrylamide) (P(AA-co-Am)) normal hydrogel and hydrogel nanoparticles (HN) were synthesized by free radical polymerization using N,N-methylene-bis-acrylamide (MBA) as cross-linker, potassium persulfate as reaction initiator and 5-FU was loaded. HN were found to be degradable in physiological medium and showed comparatively higher swelling in rat caecal medium (RCM). 5-FU entrapment was increased by increasing Am (wt%) monomer feed. In vitro release of 5-FU from normal hydrogel and HN in pH progressive medium, it was found that a AA/Am ratio of 25:75 showed higher release in RCM. The Higuchi model yielded good adjustment of in vitro release kinetics. A higher amount of 5-FU reached the colon in HN (61 +/- 2.1%) than normal hydrogel (40 +/- 3.6%) by organ biodistribution studies in albino rats.

  4. Flammability and thermal properties studies of nonwoven flax reinforced acrylic based polyester composites

    NASA Astrophysics Data System (ADS)

    Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.

    2017-12-01

    In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.

  5. Fabrication and Properties of polyacrylic acid by ionic surfactant disturbance method

    NASA Astrophysics Data System (ADS)

    Lawan, S.; Osotchan, T.; Chuajiw, W.; Subannajui, K.

    2017-09-01

    The formation of polymeric materials can be achieved by several methods such as melting and casting, screw extrusion, cross-linking of resin or rubber in a mold, and so on. In this work, the polyacrylic acid is formed by using the emulsion disturbance method. Despite extensively used in the colour painting and coating industries, acrylic emulsion can be processed into a foam and powder configuration by a reaction between acrylic emulsion and salt. The solidification hardly changes the volume between liquid emulsion and solidified polymer which means the final structure of polyacrylic acid is filled with opened air cells. The opened air cell structure is confirmed by the result from scanning electron microscopy. The chemical analysis and crystallography of acrylic powder and foam are examined by Fourier-transform infrared spectroscopy and X-ray diffraction respectively. The phase transformation and Thermal stability are studied by differential scanning calorimetry and thermo gravimetric analysis. Moreover, the mechanical properties of acrylic foam were observed by tensile, compressive and hardness test. In addition to the basic property analysis, acrylic foam was also used in the particle filtration application.

  6. Acrylate and methacrylate contact allergy and allergic contact disease: a 13-year review.

    PubMed

    Spencer, Ashley; Gazzani, Paul; Thompson, Donna A

    2016-09-01

    (Meth)acrylates are important causes of contact allergy and allergic contact disease, such as dermatitis and stomatitis, with new and emerging sources resulting in changing clinical presentations. To identify the (meth)acrylates that most commonly cause allergic contact disease, highlight their usefulness for screening, and examine their relationship with occupational and clinical data. A retrospective review of results from patch tests performed between July 2002 and September 2015, in one tertiary Cutaneous Allergy Unit, was performed A series of 28 (meth)acrylates was applied to 475 patients. Results were positive in 52 cases, with occupational sources being identified in 24. Industrial exposures and acrylic nails were responsible for 13 and 10 cases, respectively, with wound dressings being implicated in 7. We found that four individual (meth)acrylates (2-hydroxyethyl acrylate, 2-hydroxypropyl methacrylate, bisphenol A glycerolate dimethacrylate, and ethyl acrylate), if used as a screening tool, could have identified 47 (90.4%) of our positive cases. Our 13-year experience indicates a changing landscape of (meth)acrylate contact allergy and allergic contact disease, with an observed shift in exposures away from manufacturing and towards acrylic nail sources. Wound dressings are highlighted as emerging sources of sensitization. Larger studies are required to establish the sensitivity and specificity of the four (meth)acrylates proposed for potential screening. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. (Meth)Acrylate Occupational Contact Dermatitis in Nail Salon Workers: A Case Series.

    PubMed

    DeKoven, Samuel; DeKoven, Joel; Holness, D Linn

    Recently, many cases of acrylate-associated allergic contact dermatitis have appeared among nail salon workers. Common acrylate-containing products in nail salons include traditional nail polish, ultraviolet-cured shellac nail polish, ultraviolet-cured gel nails, and press-on acrylic nails. Nail salon technicians seen in the occupational medicine clinic in 2015 and 2016 were identified, and their patch test results and clinical features were summarized. Patch testing was done with the Chemotechnique (Meth)Acrylate nail series, and either the North American Standard series or the North American Contact Dermatitis Group screening series. Six patients were identified, all women, ages 38 to 58. Common presentations included erythematous dermatitis of the dorsa of the hands, palms, and forearms and fissures on the fingertips. Less common sites of eruptions included the periorbital region, cheeks, posterior ears, neck, sacral area, lateral thighs, and dorsa of the feet. All patients reacted to hydroxyethyl methacrylate, and 5 patients reacted to ethyl acrylate. Each patient also reacted to (meth)acrylates that are not found on either standard series, including ethyleneglycol dimethacrylate, 2-hydroxypropyl methacrylate, and 2-hydroxyethyl acrylate. The authors report 6 cases of allergic contact dermatitis to acrylates in nail technicians seen over the past year, representing a new trend in their clinic. These cases are reflective of a growing trend of nail technicians with allergic contact dermatitis associated with occupational (meth)acrylate exposure. Efforts to improve prevention are needed.

  8. Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel

    NASA Astrophysics Data System (ADS)

    Jillings, Chris; DEAP Collaboration

    2013-08-01

    DEAP-3600 is a 3600kg single-phase liquid-argon dark matter detector under construction at SNOLAB with a sensitivity of 10-46cm2 for a 100 GeV WIMP. The argon is held an an acrylic vessel coated with wavelength-shifting 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). Acrylic was chosen because it is optically transparent at the shifted wavelength of 420 nm; an effective neutron shield; and physically strong. With perfect cleaning of the acrylic surface before data taking the irreducible background is that from bulk 210Pb activity that is near the surface. To achieve a background rate of 0.01 events in the 1000-kg fiducial volume per year of exposure, the allowed limit of Pb-210 in the bulk acrylic is 31 mBq/tonne (= 1.2 × 10-20g/g). We discuss how pure acrylic was procured and manufactured into a complete vessel paying particular attention to exposure to radon during all processes. In particular field work at the acrylic panel manufacturer, RPT Asia, and acrylic monomer supplier, Thai MMA Co. Ltd, in Thailand is described. The increased diffusion of radon during annealing the acrylic at 90C as well as techniques to mitigate against this are described.

  9. A Three Month Comparative Evaluation of the Effect of Different Surface Treatment Agents on the Surface Integrity and Softness of Acrylic based Soft Liner: An In vivo Study

    PubMed Central

    Mahajan, Neerja; Naveen, Y. G.; Sethuraman, Rajesh

    2017-01-01

    Introduction Acrylic based soft liners are cost effective, yet are inferior in durability as compared to silicone based liners. Hence, this study was conducted to evaluate if the softness and surface integrity of acrylic based soft liner can be maintained by using different surface treatment agents. Aim To comparatively evaluate the effects of Varnish, Monopoly and Kregard surface treatment agents on the surface integrity and softness of acrylic based soft liner at baseline, at one month and after three months. Materials and Methods A total of 37 participants who required conventional maxillary dentures were selected according to the determined inclusion and exclusion criteria of the study. In the maxillary denture on the denture bearing surface, eight palatal recesses (5 mm x 3 mm) were made and filled with acrylic based soft liner (Permasoft). The soft liners in these recesses were given surface treatment and divided as control (uncoated), Varnish, Monopoly and Kregard groups. The hardness and surface integrity were evaluated with Shore A Durometer and Scanning Electron Microscope (SEM) respectively at baseline, one month and three months interval. Surface integrity between groups was compared using Kruskal-Wallis test. Intergroup comparison for hardness was done using ANOVA and Tukey’s HSD post-hoc tests. Results Amongst all the groups tested, surface integrity was maintained in the Kregard group, as compared to control, Varnish and Monopoly groups for all three time intervals (p< 0.001). Kregard treated samples also demonstrated significantly higher softness at all the time intervals (p<0.001). Conclusion Surface treatment with Kregard demonstrated better surface integrity and softness at all the time intervals. PMID:29207842

  10. Sulfonated macro-RAFT agents for the surfactant-free synthesis of cerium oxide-based hybrid latexes.

    PubMed

    Garnier, Jérôme; Warnant, Jérôme; Lacroix-Desmazes, Patrick; Dufils, Pierre-Emmanuel; Vinas, Jérôme; van Herk, Alex

    2013-10-01

    Three types of amphiphatic macro-RAFT agents were employed as compatibilizers to promote the polymerization reaction at the surface of nanoceria for the synthesis of CeO2-based hybrid latexes. Macro-RAFT copolymers and terpolymers were first synthesized employing various combinations of butyl acrylate as a hydrophobic monomer and acrylic acid (AA) and/or 2-acrylamido-2-methylpropane sulfonic acid (AMPS) as hydrophilic monomers. After characterizing the adsorption of these macro-RAFT agents at the cerium oxide surface by UV-visible spectrometry, emulsion copolymerization reactions of styrene and methyl acrylate were then carried out in the presence of the surface-modified nanoceria. Dynamic Light Scattering and cryo-Transmission Electron Microscopy were employed to confirm the hybrid structure of the final CeO2/polymer latexes, and proved that the presence of acrylic acid units in amphiphatic macro-RAFT agents enabled an efficient formation of hybrid structures, while the presence of AMPS units, when combined with AA units, resulted in a better distribution of cerium oxide nanoclusters between latex particles. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Swelling of Superabsorbent Poly(Sodium-Acrylate Acrylamide) Hydrogels and Influence of Chemical Structure on Internally Cured Mortar

    NASA Astrophysics Data System (ADS)

    Krafcik, Matthew J.; Erk, Kendra A.

    Superabsorbent hydrogel particles show promise as internal curing agents for high performance concrete (HPC). These gels can absorb and release large volumes of water and offer a solution to the problem of self-dessication in HPC. However, the gels are sensitive to ions naturally present in concrete. This research connects swelling behavior with gel-ion interactions to optimize hydrogel performance for internal curing, reducing the chance of early-age cracking and increasing the durability of HPC. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and characterized with swelling tests in different salt solutions. Depending on solution pH, ionic character, and gel composition, diffrerent swelling behaviors are observed. As weight percent of acrylic acid increases, gels demonstrate higher swelling ratios in reverse osmosis water, but showed substantially decreased swelling when aqueous cations are present. Additionally, in multivalent cation solutions, overshoot peaks are present, whereby the gels have a peak swelling ratio but then deswell. Multivalent cations interact with deprotonated carboxylic acid groups, constricting the gel and expelling water. Mortar containing hydrogels showed reduced autogenous shrinkage and increased relative humidity.

  12. [PREPARATION AND BIOCOMPATIBILITY OF IN SITU CROSSLINKING HYALURONIC ACID HYDROGEL].

    PubMed

    Liang, Jiabi; Li, Jun; Wang, Ting; Liang, Yuhong; Zou, Xuenong; Zhou, Guangqian; Zhou, Zhiyu

    2016-06-08

    To fabricate in situ crosslinking hyaluronic acid hydrogel and evaluate its biocompatibility in vitro. The acrylic acid chloride and polyethylene glycol were added to prepare crosslinking agent polyethylene glycol acrylate (PEGDA), and the molecular structure of PEGDA was analyzed by Flourier transformation infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy. Hyaluronic acid hydrogel was chemically modified to prepare hyaluronic acid thiolation (HA-SH). And the degree of HA-SH was analyzed qualitatively and quantitatively by Ellman method. HA-SH solution in concentrations ( W/V ) of 0.5%, 1.0%, and 1.5% and PEGDA solution in concentrations ( W/V ) of 2%, 4%, and 6% were prepared with PBS. The two solutions were mixed in different ratios, and in situ crosslinking hyaluronic acid hydrogel was obtained; the crosslinking time was recorded. The cellular toxicity of in situ crosslinking hyaluronic acid hydrogel (1.5% HA-SH and 4% PEGDA mixed) was tested by L929 cells. Meanwhile, the biocompatibility of hydrogel was tested by co-cultured with human bone mesenchymal stem cells (hBMSCs). Flourier transformation infrared spectroscopy showed that most hydroxyl groups were replaced by acrylate groups; 1H nuclear magnetic resonance spectroscopy showed 3 characteristic peaks of hydrogen representing acrylate and olefinic bond at 5-7 ppm. The thiolation yield of HA-SH was 65.4%. In situ crosslinking time of hyaluronic acid hydrogel was 2 to 70 minutes in the PEGDA concentrations of 2%-6% and HA-SH concentrations of 0.5%-1.5%. The hyaluronic acid hydrogel appeared to be transparent. The toxicity grade of leaching solution of hydrogel was grade 1. hBMSCs grew well and distributed evenly in hydrogel with a very high viability. In situ crosslinking hyaluronic acid hydrogel has low cytotoxicity, good biocompatibility, and controllable crosslinking time, so it could be used as a potential tissue engineered scaffold or repairing material for tissue regeneration.

  13. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  14. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  15. Acrylate intercalation and in situ polymerization in iron-, cobalt-, or manganese-substituted nickel hydroxides.

    PubMed

    Vaysse, C; Guerlou-Demourgues, L; Duguet, E; Delmas, C

    2003-07-28

    A chimie douce route based on successive redox and exchange reactions has allowed us to prepare new hybrid organic-inorganic materials, composed of polyacrylate macromolecules intercalated into layered double hydroxides (LDHs), deriving from Ni(OH)(2). Monomer intercalation and in situ polymerization mechanisms have appeared to be strongly dependent upon the nature of the substituting cation in the slabs. In the case of iron-based LDHs, a phase containing acrylate monomeric intercalates has been isolated and identified by X-ray diffraction and infrared spectroscopy. Second, interslab free-radical polymerization of acrylate anions has been successfully initiated using potassium persulfate. In cobalt- or manganese-based LDHs, one-step polymerization has been observed, leading directly to a material containing polyacrylate intercalate.

  16. Bulk & Interfacial Contributions to the Adhesion of Acrylic Emulsion-Based Pressure Sensitive Adhesives

    NASA Astrophysics Data System (ADS)

    Wang, Qifeng

    The performance of pressure sensitive adhesives (PSAs) depends strongly on the viscoelastic properties of the adhesive material itself and the surface that it is placed into contact with. In this work we use a multiple- oscillatory test with microindentation apparatus that is able to quantify the mechanical response of adhesive materials in the linear regime, and also in the highly strained regime where the adhesive layer has cavitated to form mechanically isolated brils. The experiments involved the use of hemispherical indenters made of glass or polyethylene, brought into contact with a thin adhesive layer and then retracted, with comprehensive displacement history. A set of model acrylic emulsion-based PSAs were used in the experiments which show a suprising degree of elastic character at high strain. The experiment result suggest that an adhesive failure criterion based on the stored elastic energy is appropriate for these systems. The primary effect of the substrate is to modify the maximum strain where adhesive detachment from the indenter occurs.

  17. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  18. Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jillings, Chris; Collaboration: DEAP Collaboration; and others

    DEAP-3600 is a 3600kg single-phase liquid-argon dark matter detector under construction at SNOLAB with a sensitivity of 10{sup −46}cm{sup 2} for a 100 GeV WIMP. The argon is held an an acrylic vessel coated with wavelength-shifting 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). Acrylic was chosen because it is optically transparent at the shifted wavelength of 420 nm; an effective neutron shield; and physically strong. With perfect cleaning of the acrylic surface before data taking the irreducible background is that from bulk {sup 210}Pb activity that is near the surface. To achieve a background rate of 0.01 events in the 1000-kg fiducial volume per yearmore » of exposure, the allowed limit of Pb-210 in the bulk acrylic is 31 mBq/tonne (= 1.2 × 10{sup −20}g/g). We discuss how pure acrylic was procured and manufactured into a complete vessel paying particular attention to exposure to radon during all processes. In particular field work at the acrylic panel manufacturer, RPT Asia, and acrylic monomer supplier, Thai MMA Co. Ltd, in Thailand is described. The increased diffusion of radon during annealing the acrylic at 90C as well as techniques to mitigate against this are described.« less

  19. Catalytic conversion of lactic acid and its derivatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokitkar, P.B.; Langford, R.; Miller, D.J.

    1993-12-31

    The catalytic upgrading of lactic acid and methyl lactate is being investigated. With the commercialization of inexpensive starch fermentation technologies, US production of lactic acid is undergoing a surge. Dropping cost and increased availability offer a major opportunity to develop lactic acid as a renewable feedstock for chemicals production. IT can be catalytically converted into several important chemical intermediates currently derived from petroleum including acrylic acid, propanoic acid, and 2,3-pentanedione. The process can expand the potential of biomass as a substitute feedstock for petroleum and can benefit both the US chemical process industry and US agriculture via increased production ofmore » high-value, non-food products from crops and crop byproducts. Reaction studies of lactic acid and its ester are conducted in fixed bed reactors at 250-380{degrees}C and 0.1-0.5 MPa (1-5 atm) using salt catalysts on low surface area supports. Highest selectivities achieved are 42% to acrylic acid and 55% to 2,3-pentanedione from lactic acid over NaNO{sub 3} catalyst on low surface area silica support. High surface area (microporous) or highly acidic supports promote fragmentation to acetaldehyde and thus reduce yields of desirable products. The support acidity gives rice to lactic acid from neat methyl lactate feed but the lactic acid yield goes down after the nitrate salt is impregnated on the support. Both lactic acid and methyl lactate form 2,3-pentanedione. Methyl lactate reactions are more complex since it forms all the products obtained from lactic acid as well as many corresponding esters of the acids obtained from lactic acid (mainly methyl acrylate, methyl propionate, methyl acetate). At high temperatures, methyl acetate and acetic acid yields become significant from methyl lactate whereas lactic acid gives significant amount of acetol at high temperatures.« less

  20. Acetic and Acrylic Acid Molecular Imprinted Model Silicone Hydrogel Materials for Ciprofloxacin-HCl Delivery

    PubMed Central

    Hui, Alex; Sheardown, Heather; Jones, Lyndon

    2012-01-01

    Contact lenses, as an alternative drug delivery vehicle for the eye compared to eye drops, are desirable due to potential advantages in dosing regimen, bioavailability and patient tolerance/compliance. The challenge has been to engineer and develop these materials to sustain drug delivery to the eye for a long period of time. In this study, model silicone hydrogel materials were created using a molecular imprinting strategy to deliver the antibiotic ciprofloxacin. Acetic and acrylic acid were used as the functional monomers, to interact with the ciprofloxacin template to efficiently create recognition cavities within the final polymerized material. Synthesized materials were loaded with 9.06 mM, 0.10 mM and 0.025 mM solutions of ciprofloxacin, and the release of ciprofloxacin into an artificial tear solution was monitored over time. The materials were shown to release for periods varying from 3 to 14 days, dependent on the loading solution, functional monomer concentration and functional monomer:template ratio, with materials with greater monomer:template ratio (8:1 and 16:1 imprinted) tending to release for longer periods of time. Materials with a lower monomer:template ratio (4:1 imprinted) tended to release comparatively greater amounts of ciprofloxacin into solution, but the release was somewhat shorter. The total amount of drug released from the imprinted materials was sufficient to reach levels relevant to inhibit the growth of common ocular isolates of bacteria. This work is one of the first to demonstrate the feasibility of molecular imprinting in model silicone hydrogel-type materials. PMID:28817033

  1. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  2. Structural coloration of chitosan coated cellulose fabrics by electrostatic self-assembled poly (styrene-methyl methacrylate-acrylic acid) photonic crystals.

    PubMed

    Yavuz, Gönül; Zille, Andrea; Seventekin, Necdet; Souto, Antonio P

    2018-08-01

    The structural coloration of a chitosan-coated woven cotton fabric obtained by glutaraldehyde-stabilized deposition of electrostatic self-assembled monodisperse and spherically uniform (250 nm) poly (styrene-methyl methacrylate-acrylic acid) photonic crystal nanospheres (P(St-MMA-AA)) was investigated. Bright iridescent coatings displaying different colors in function of the viewing angle were obtained. The SEM, diffuse reflectance spectroscopy, TGA, DSC and FTIR analyses confirm the presence of structural color and the glutaraldehyde and chitosan ability to provide durable chemical bonding between cotton fabric and photonic crystal (PCs) coating with the highest degradation temperature and the lowest enthalpy. The coatings are characterized by a mixture of face-centered cubic and hexagonal close-packed arrays alternating random packing regions. For the first time a cost-efficient structural coloration with high washing and light fastness using self-assembled P(St-MMA-AA) photonic crystals was successfully developed onto woven cotton fabric using chitosan and/or glutaraldehyde as stabilizing agent opening new strategies for the development of dye-free coloration of textiles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barleany, Dhena Ria, E-mail: dbarleany@yahoo.com; Ulfiyani, Fida; Istiqomah, Shafina

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 gmore » g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)« less

  4. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil.

  5. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  6. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant new...

  8. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  9. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  10. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ethylene-methyl acrylate copolymer resins used in food-packaging adhesives complying with § 175.105 of this... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  11. Evaluation of mechanism of cold atmospheric pressure plasma assisted polymerization of acrylic acid on low density polyethylene (LDPE) film surfaces: Influence of various gaseous plasma pretreatment

    NASA Astrophysics Data System (ADS)

    Ramkumar, M. C.; Pandiyaraj, K. Navaneetha; Arun Kumar, A.; Padmanabhan, P. V. A.; Uday Kumar, S.; Gopinath, P.; Bendavid, A.; Cools, P.; De Geyter, N.; Morent, R.; Deshmukh, R. R.

    2018-05-01

    Owing to its exceptional physiochemical properties, low density poly ethylene (LDPE) has wide range of tissue engineering applications. Conversely, its inadequate surface properties make LDPE an ineffectual candidate for cell compatible applications. Consequently, plasma-assisted polymerization with a selected precursor is a good choice for enhancing its biocompatibility. The present investigation studies the efficiency of plasma polymerization of acrylic acid (AAC) on various gaseous plasma pretreated LDPE films by cold atmospheric pressure plasma, to enhance its cytocompatibility. The change in chemical composition and surface topography of various gaseous plasma pretreated and acrylic deposited LDPE films has been assessed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The changes in hydrophilic nature of surface modified LDPE films were studied by contact angle (CA) analysis. Cytocompatibility of the AAC/LDPE films was also studied in vitro, using RIN-5F cells. The results acquired by the XPS and AFM analysis clearly proved that cold atmospheric pressure (CAP) plasma assisted polymerization of AAC enhances various surface properties including carboxylic acid functional group density and increased surface roughness on various gaseous plasma treated AAC/LDPE film surfaces. Moreover, contact angle analysis clearly showed that the plasma polymerized samples were hydrophilic in nature. In vitro cytocompatibility analysis undoubtedly validates that the AAC polymerized various plasma pretreated LDPE films surfaces stimulate cell distribution and proliferation compared to pristine LDPE films. Similarly, cytotoxicity analysis indicates that the AAC deposited various gaseous plasma pretreated LDPE film can be considered as non-toxic as well as stimulating cell viability significantly. The cytocompatible properties of AAC polymerized Ar + O2 plasma pretreated LDPE films were found to be more pronounced compared to the other plasma pretreated

  12. Toughening epoxy acrylate with polyurethane acrylates and hyper-branched polyester in three dimensional printing

    NASA Astrophysics Data System (ADS)

    Fang, Chao; Li, Ning; Liu, Yang; Lu, Gang

    2018-05-01

    In order to improve the toughness of epoxy acrylate (EA) in three dimensional printing (3D-printing), bifunctional polyurethane acrylate (PUA) and trifunctional PUA were firstly blended with EA. The multi-indicators orthogonal experiment, designed with the indicators of tensile strength, elongation at break and impact strength, was used to find out the optimal formulation. Then, hyper-branched polyesters (HBPs) was added to improve the toughness of the photocurable system. The microstructures of the cured specimens were characterized by optical microscopy and scanning electron microscopy. By analyzing their mechanical properties and microstructures, it was revealed that the best addition amounts of HBP are 10 wt%. Results indicated that their toughness improved a lot comparing with pure EA. The changes of mechanical properties were characterized by DMA. The addition of HBP could cause a loss in stiffness, elasticity modulus and thermostability.

  13. Synthesis, Characterization, and Visible Light Curing Capacity of Polycaprolactone Acrylate

    PubMed Central

    Tzeng, Jy-Jiunn; Hsiao, Yi-Ting; Wu, Yun-Ching; Chen, Hsuan; Lee, Shyh-Yuan

    2018-01-01

    Polycaprolactone (PCL) is drawing increasing attention in the field of medical 3D printing and tissue engineering because of its biodegradability. This study developed polycaprolactone prepolymers that can be cured using visible light. Three PCL acrylates were synthesized: polycaprolactone-530 diacrylate (PCL530DA), glycerol-3 caprolactone triacrylate (Glycerol-3CL-TA), and glycerol-6 caprolactone triacrylate (Glycerol-6CL-TA). PCL530DA has two acrylates, whereas Glycerol-3CL-TA and Glycerol-6CL-TA have three acrylates. The Fourier transform infrared and nuclear magnetic resonance spectra suggested successful synthesis of all PCL acrylates. All are liquid at room temperature and can be photopolymerized into a transparent solid after exposure to 470 nm blue LED light using 1% camphorquinone as photoinitiator and 2% dimethylaminoethyl methacrylate as coinitiator. The degree of conversion for all PCL acrylates can reach more than 80% after 1 min of curing. The compressive modulus of PCL530DA, Glycerol-3CL-TA, and Glycerol-6CL-TA is 65.7 ± 12.7, 80.9 ± 6.1, and 32.1 ± 4.1 MPa, respectively, and their compressive strength is 5.3 ± 0.29, 8.3 ± 0.18, and 3.0 ± 0.53 MPa, respectively. Thus, all PCL acrylates synthesized in this study can be photopolymerized and because of their solid structure and low viscosity, they are applicable to soft tissue engineering and medical 3D printing. PMID:29854803

  14. Development of (acrylic acid/ polyethylene glycol)-zinc oxide mucoadhesive nanocomposites for buccal administration of propranolol HCl

    NASA Astrophysics Data System (ADS)

    Mahmoud, Ghada A.; Ali, Amr El-Hag; Raafat, Amany I.; Badawy, Nagwa A.; Elshahawy, Mai. F.

    2018-06-01

    A series of mucoadhesive nanocomposites with self disinfection properties composed of acrylic acid, polyethylene glycol and ZnO nanoparticles (AAc/PEG)-ZnO were developed for localized buccal Propranolol HCl delivery. γ-irradiation as a clean tool for graft copolymerization process was used for the preparation of (AAc/PEG) hydrogels. In suite precipitation technique was used for ZnO nanoparticles immobilization within (AAc/PEG) hydrogels. The developed (AAc/PEG)-ZnO nanocomposites were characterized by X-ray diffraction (XRD), UV-Vis spectrophotometer, energy dispersive X-ray spectroscopy (EDX) and scanning electron microscopy (SEM) to confirm the success of ZnO nanoparticles formation within the (AAc/PEG) matrices. The presence of ZnO nanoparticles improves the thermal stability as indicated using thermogravimetric analysis (TGA). The mucoadhesion characteristics such as hydration degree, surface pH, and mucoadhesive strength were evaluated in artificial saliva solution. The self disinfection property of the developed (AAc/PEG)-ZnO nanocomposites was investigated by examining their resistance to pathogenic microorganisms such as Staphylococcus aureus, Bacillus subtilis, and Escherichia coli using disc diffusion method. The release of Propranolol -HCl drug in artificial saliva was found to obey a non-Fickian diffusion mechanism. The obtained results suggests that (AAc/PEG)-ZnO nanocomposites could be used as mucoadhesive carrier for buccal drug delivery with efficient antibacterial properties.

  15. Oriented antibody immobilization to polystyrene macrocarriers for immunoassay modified with hydrazide derivatives of poly(meth)acrylic acid

    PubMed Central

    Shmanai, Vadim V; Nikolayeva, Tamara A; Vinokurova, Ludmila G; Litoshka, Anatoli A

    2001-01-01

    Background Hydrophobic polystyrene is the most common material for solid phase immunoassay. Proteins are immobilized on polystyrene by passive adsorption, which often causes considerable denaturation. Biological macromolecules were found to better retain their functional activity when immobilized on hydrophilic materials. Polyacrylamide is a common material for solid-phase carriers of biological macromolecules, including immunoreagents used in affinity chromatography. New macroformats for immunoassay modified with activated polyacrylamide derivatives seem to be promising. Results New polymeric matrices for immunoassay in the form of 0.63-cm balls which contain hydrazide functional groups on hydrophilic polymer spacer arms at their surface shell are synthesized by modification of aldehyde-containing polystyrene balls with hydrazide derivatives of poly(meth)acrylic acid. The beads contain up to 0.31 μmol/cm2 active hydrazide groups accessible for covalent reaction with periodate-oxidized antibodies. The matrices obtained allow carrying out the oriented antibody immobilization, which increases the functional activity of immunosorbents. Conclusions An efficient site-directed antibody immobilization on a macrosupport is realized. The polymer hydrophilic spacer arms are the most convenient and effective tools for oriented antibody coupling with molded materials. The suggested scheme can be used for the modification of any other solid supports containing electrophilic groups reacting with hydrazides. PMID:11545680

  16. [Preparation of Pb2+ imprinted acrylic acid-co-styrene and analysis of its adsorption properties by FAAS].

    PubMed

    Shawket, Abliz; Abdiryim, Supahun; Wang, Ji-De; Ismayil, Nurulla

    2011-06-01

    With lead ion template, acrylic acid as functional monomer, potassium persulfate as initiator, strytrene as framework monomer, lead ion imprinted polymers (Pb(II)-IIPs) were prepared using free emulsion polymerization method. The structure and morphology of the polymers were analyzed by UV-spectra, FTIR and scanning electron microscopy. The adsorption/ desorption and selectivity for Pb2+ were investigated by flame atomic absorption spectrometry (FAAS) as the detection means. The results show that compared with non-imprinted polymers(NIPs), the Pb(II)-IIPs had higher specific adsorption properties and selective recognition ability for Pb(II). The relative selectivity coefficient of Pb(II)-IIPs for Pb(II) was 6.25, 6.18, 6.25 and 6.38 in the presence of Cd(II), Cu(II), Mn(II) and Zn(II) interferences, respectively. The absorption rate was the best at the pH of adsorbent solution of 6, Adsorption rate reached 96% during the 2.5 h static adsorption time. Using 3.0 mol x L(-1) HCI as the best desorption solvent to desorb the adsorbents, the desorbtion rate reached 98%. Under the best adsorption conditions, the adsorption capacity of Pb(II)-IIPs for Pb(II) was found to be 40. mg x g(-1).

  17. Repair of bis-acryl provisional restorations using flowable composite resin.

    PubMed

    Bohnenkamp, David M; Garcia, Lily T

    2004-11-01

    Provisional restorations provide interim coverage for prepared teeth while fixed definitive restorations are fabricated. Several types of autopolymerizing acrylic resins have been used for many years to fabricate provisional restorations. In recent years, bis-acryl resin composite material has gained popularity among clinicians for the direct fabrication of provisional fixed restorations. Occasionally, deficiencies may occur while fabricating a direct provisional restoration and require chairside repair. This article describes an effective procedure for the use of light-polymerized flowable composite resin for the intraoral repair of bis-acryl provisional restorations.

  18. Synthesis of N-vinylpyrrolidone modified acrylic acid copolymer in supercritical fluids and its application in dental glass-ionomer cements.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U

    2008-07-01

    Compressed fluids such as supercritical CO(2) offer marvellous opportunities for the synthesis of polymers, particularly in applications in medicine and dentistry. It has several advantages in comparison to conventional polymerisation solvents, such as enhanced kinetics and simplified solvent removal process. In this study, poly(acrylic acid-co-itaconic acid-co-N-vinylpyrrolidone) (PAA-IA-NVP), a modified glass-ionomer polymer, was synthesised in supercritical CO(2) (sc-CO(2)) and methanol as a co-solvent. The synthesised polymer was characterized by (1)H-NMR, Raman and FT-IR spectroscopy and viscometry. The molecular weight of the final product was also measured using static light scattering method. The synthesised polymers were subsequently used in several glass ionomer cement formulations (Fuji II commercial GIC) in which mechanical strength (compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS)) and handling properties (working and setting time) of the resulting cements were evaluated. The polymerisation reaction in sc-CO(2)/methanol was significantly faster than the corresponding polymerisation reaction in water and the purification procedures were simpler for the former. Furthermore, glass ionomer cement samples made from the terpolymer prepared in sc-CO(2)/methanol exhibited higher CS and DTS and comparable BFS compared to the same polymer synthesised in water. The working properties of glass ionomer formulations made in sc-CO(2)/methanol were comparable and in selected cases better than the values of those made from polymers synthesised in water.

  19. Preparation and luminescent properties of the novel polymer-rare earth complexes composed of Poly(ethylene-co-acrylic acid) and Europium ions

    NASA Astrophysics Data System (ADS)

    Wu, Yuewen; Hao, Haixia; Wu, Qingyao; Gao, Zihan; Xie, Hongde

    2018-06-01

    A series of novel polymer-rare earth complexes with Eu3+ ions have been synthesized and investigated successfully, including the binary complexes containing the single ligand poly(ethylene-co-acrylic acid) (EAA) and the ternary complexes using 1,10-phenanthroline (phen), dibenzoylmethane (DBM) or thenoyltrifluoroacetone (TTA) as the second ligand. Their structures have been characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis and X-ray diffraction (XRD), which confirm that both EAA and small molecules participate in the coordination reaction with rare earth ions, and they can disperse homogeneously in the polymer matrixes. Both ultraviolet-visible (UV-vis) absorption and photoluminescence tests for the complexes have been recorded. The relationship between fluorescence intensity of polymer-rare earth complexes and the quantity of ligand EAA has been studied and discussed. The films casted from the complexes solution can emit strong characteristic red light under UV light excitation. All these results suggest that the complexes possess potential application as luminescent materials.

  20. The effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced acrylic resin denture base material on oral epithelial cells and fibroblasts.

    PubMed

    Sipahi, Cumhur; Ozen, Julide; Ural, A Ugur; Dalkiz, Mehmet; Beydemir, Bedri

    2006-09-01

    Acrylic resin dentures may have cytotoxic effects on oral soft tissues. However, there is sparse data about the cytotoxic effect of fibre-reinforced acrylic resin denture base materials. The purpose of this in vitro study was to determine the effect of two fibre impregnation methods on the cytotoxicity of a glass and carbon fibre-reinforced heat-polymerized acrylic resin denture base material on oral epithelial cells and fibroblasts. One hundred acrylic resin discs were assigned to five experimental groups (n = 20). One of the groups did not include any fibre. Two groups consisted of silane and monomer treated glass fibres (Vetrolex) impregnated into acrylic resin (QC-20) discs. The other two groups consisted of silane and monomer treated carbon fibres (Type Tenox J, HTA). Untreated cell culture was used as positive control. The human oral epithelial cell line and buccal fibroblast cultures were exposed to test specimens. The cytotoxicity of the test materials was determined by succinic dehydrogenase activity (MTT method) after 24 and 72 h exposures. Data were analysed with a statistical software program (SPSSFW, 9.0). A one-way analysis of variance (anova) test and Bonferroni test were used for the comparisons between the groups. All statistical tests were performed at the 0.95 confidence level (P < 0.05). After 24 and 72 h incubation, cell viability percentages of all experimental groups showed significant decrease according to the positive control cell culture. Fibroblastic cell viability percentages of silane and monomer treated fibre-reinforced groups were lower than the unreinforced group. Cell viability of monomer-treated groups displayed the lowest percentages. Elapsed incubation time decreased epithelial cell viability in silane-treated groups. Fibroblastic cell viability was not influenced by elapsed time except the unreinforced group.

  1. 40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87) is...

  2. 40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87) is...

  3. Nanoarmoring of Enzymes by Interlocking in Cellulose Fibers With Poly(Acrylic Acid).

    PubMed

    Riccardi, Caterina M; Kasi, Rajeswari M; Kumar, Challa V

    2017-01-01

    A simple method for interlocking glucose oxidase (GOx) and horseradish peroxidase (HRP) in cellulose fibers using poly(acrylic acid) (PAA) as an armor around the enzyme, without any need for activation of the cellulose support, is reported here. The resulting enzyme paper is an inexpensive, stable, simple, wearable, and washable biosensor. PAA functions as a multifunctional tether to interlock the enzyme molecules around the paper fibers so that the enzymes are protected against thermal/chemical denaturation and not released from the paper when washed with a detergent. The decreased conformational entropy of the interlocked enzyme protected by the nanoarmor is likely responsible for increased enzyme stability to heat and chemical denaturants (retained ≥70 percent enzyme activity after washing with urea or SDS for 30min), and the polymer protects the enzyme against inactivation by proteases, bacteria, inhibitors, etc. The kinetics of the interlocked enzyme were similar to that of the enzyme in solution. The V max was 6(±0.5)mM per minute before washing, then increased slightly to 9(±1.4)mM per minute after washing with water. The K m was 22(±6.4mM), which was slightly higher compared to GOx in solution (25-27mM). Because the surface area of the paper does not limit the enzyme loading, about 20% of enzyme was successfully loaded onto the paper (0.2g enzyme per gram of paper), and ≥95% of the enzyme was retained after washing. Interlocking works with other enzymes such as laccase, where ≥60% of the enzyme activity is retained. This novel methodology provides a low cost, simple, modular approach of achieving high enzyme loadings in ordinary filter paper, not limited by cellulose surface area, and there has been no need for complex methods of enzyme engineering or toxic methods of activation of the solid support to prepare highly active biocatalysts. © 2017 Elsevier Inc. All rights reserved.

  4. Preparation of low viscosity epoxy acrylic acid photopolymer prepolymer in light curing system

    NASA Astrophysics Data System (ADS)

    Li, P.; Huang, J. Y.; Liu, G. Z.

    2018-01-01

    With the integration and development of materials engineering, applied mechanics, automatic control and bionics, light cured composite has become one of the most favourite research topics in the field of materials and engineering at home and abroad. In the UV curing system, the prepolymer and the reactive diluent form the backbone of the cured material together. And they account for more than 90% of the total mass. The basic properties of the cured product are mainly determined by the prepolymer. A low viscosity epoxy acrylate photosensitive prepolymer with a viscosity of 6800 mPa • s (25 °C ) was obtained by esterification of 5 hours with bisphenol A epoxy resin with high epoxy value and low viscosity.

  5. Influence of chemical and mechanical polishing on water sorption and solubility of denture base acrylic resins.

    PubMed

    Rahal, Juliana Saab; Mesquita, Marcelo Ferraz; Henriques, Guilherme Elias Pessanha; Nóbilo, Mauro Antonio Arruda

    2004-01-01

    Influence of polishing methods on water sorption and solubility of denture base acrylic resins was studied. Eighty samples were divided into groups: Classico (CL), and QC 20 (QC) - hot water bath cured; Acron MC (AC), and Onda Cryl (ON) - microwave cured; and submitted to mechanical polishing (MP) - pumice slurry, chalk powder, soft brush and felt cone in a bench vise; or chemical polishing (CP) - heated monomer fluid in a chemical polisher. The first desiccation process was followed by storage in distilled water at 37 +/- 1 degrees C for 1 h, 1 day, 1, 2, 3 and 4 weeks. Concluding each period, water sorption was measured. After the fourth week, a second desiccation process was done to calculate solubility. Data were submitted to analysis of variance, followed by Tukey test (pacrylic resins; initially, water sorption values were higher for chemically polished samples, however, after 4 weeks all groups were similar.

  6. Ocean Engineering Studies Compiled 1991. Volume 7. Acrylic Windows- Diverse Design Features and Types of Service

    DTIC Science & Technology

    1991-01-01

    acrylic plastic windows in chambers for human occupancy, the design stress should not exceed 800 psi (i.e., conversion factor of 20). 3. installed...pressure vessels for human occupancy Is 10 yr based on the conserva- tive assumption that in that length of time even stressed acrylic in a tropioal...the Safety Standard for Pressure Ves- sels for Human Oc-upancy (ASME PVHO-1 Safety Standard). Since that time, this ASME Safety Standard has

  7. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    PubMed Central

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074

  8. Desorption of biocides from renders modified with acrylate and silicone.

    PubMed

    Styszko, Katarzyna; Bollmann, Ulla E; Wangler, Timothy P; Bester, Kai

    2014-01-01

    Biocides are used in the building industry to prevent algal, bacterial and fungal growth on polymericrenders and thus to protect buildings. However, these biocides are leached into the environment. To better understand this leaching, the sorption/desorption of biocides in polymeric renders was assessed. In this study the desorption constants of cybutryn, carbendazim, iodocarb, isoproturon, diuron, dichloro-N-octylisothiazolinone and tebuconazole towards acrylate and silicone based renders were assessed at different pH values. At pH 9.5 (porewater) the constants for an acrylate based render varied between 8 (isoproturon) and 9634 (iodocarb) and 3750 (dichloro-N-octylisothiazolinone), respectively. The values changed drastically with pH value. The results for the silicone based renders were in a similar range and usually the compounds with high sorption constants for one polymer also had high values for the other polymer. Comparison of the octanol water partitioning constants (Kow) with the render/water partitioning constants (Kd) revealed similarities, but no strong correlation. Adding higher amounts of polymer to the render material changed the equilibria for dichloro-N-octylisothiazolinone, tebuconazole, cybutryn, carbendazim but not for isoproturon and diuron. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  10. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... conditions: (a) The coating is applied as a continuous film over one or both sides of a base film produced... monomers acrylic acid, acrylonitrile, ethyl acrylate, methacrylic acid, methyl acrylate, methyl...

  11. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... conditions: (a) The coating is applied as a continuous film over one or both sides of a base film produced... monomers acrylic acid, acrylonitrile, ethyl acrylate, methacrylic acid, methyl acrylate, methyl...

  12. Synthesis of acrylic polymer beads for solid-supported proline-derived organocatalysts.

    PubMed

    Kristensen, Tor E; Vestli, Kristian; Fredriksen, Kim A; Hansen, Finn K; Hansen, Tore

    2009-07-16

    A completely non-chromatographic and highly large-scale adaptable synthesis of acrylic polymer beads containing proline and prolineamides has been developed. Novel monomeric proline (meth)acrylates are prepared from hydroxyproline in only one step. Free-radical copolymerization then gives solid-supported proline organocatalysts directly in as little as two steps overall, without using any prefabricated solid supports, by using either droplet or dispersion polymerization. These affordable acrylic beads have highly favorable and adjustable swelling characteristics and are excellent reusable catalysts for organocatalytic reactions.

  13. Morphologies of precise polyethylene-based acid copolymers and ionomers

    NASA Astrophysics Data System (ADS)

    Buitrago, C. Francisco

    Acid copolymers and ionomers are polymers that contain a small fraction of covalently bound acidic or ionic groups, respectively. For the specific case of polyethylene (PE), acid and ionic pendants enhance many of the physical properties such as toughness, adhesion and rheological properties. These improved properties result from microphase separated aggregates of the polar pendants in the non-polar PE matrix. Despite the widespread industrial use of these materials, rigorous chemical structure---morphology---property relationships remain elusive due to the inevitable structural heterogeneities in the historically-available acid copolymers and ionomers. Recently, precise acid copolymers and ionomers were successfully synthesized by acyclic diene metathesis (ADMET) polymerization. These precise materials are linear, high molecular weight PEs with pendant acid or ionic functional groups separated by a precisely controlled number of carbon atoms. The morphologies of nine precise acid copolymers and eleven precise ionomers were investigated by X-ray scattering, solid-state 13C nuclear magnetic resonance (NMR) and differential scanning calorimetry (DSC). For comparison, the morphologies of linear PEs with pseudo-random placement of the pendant groups were also studied. Previous studies of precise copolymers with acrylic acid (AA) found that the microstructural precision produces a new morphology in which PE crystals drive the acid aggregates into layers perpendicular to the chain axes and presumably at the interface between crystalline and amorphous phases. In this dissertation, a second new morphology for acid copolymers is identified in which the aggregates arrange on cubic lattices. The fist report of a cubic morphology was observed at room and elevated temperatures for a copolymer functionalized with two phosphonic acid (PA) groups on every 21st carbon atom. The cubic lattice has been identified as face-centered cubic (FCC). Overall, three morphology types have been

  14. A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly(acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Liu, Qingqing; Bai, Zhengyu; Fan, Jingbiao; Sun, Zhipeng; Mi, Hongyu; Zhang, Qing; Qiu, Jieshan

    2018-04-01

    Structural failure of polyaniline (PANI) stemmed from repeated swelling-shrinkage during Faradic process represents an imminent issue hindering the real application of this material for advanced energy storage. Herein, we explore a clean and facile hydrogel-mediated layer-by-layer strategy to conformally coat a layer of oriented PANI nanofibers on multi-walled carbon nanotubes (MWCNTs) where a layer of UV-polymerized poly(acrylic acid) (PAA) hydrogel is first formed in between as electrodes for supercapacitors. Such an intriguing core-shell tri-component structure perfectly alleviates the drawbacks of PANI as well as combines the advantages of MWCNTs. Especially, the hydrogel used increases the adhesion between PANI and MWCNTs, buffers the structural variation of PANI during cycling, and provide extra driving force accelerating electrolyte penetration throughout active materials. Therefore, the well-intergrown hybrids (PANI/P-MWCNT) display high electrochemical performance as compared to PANI and PANI/MWCNT, i.e., an improved capacitance of 612.5 F g-1 at 0.5 A g-1, and excellent cycling behavior of 81.5% capacitance retention at 5 A g-1 over 1500 cycles. Also, the maximum energy density of the PANI/P-MWCNT based symmetric configuration reaches 8.2 Wh kg-1. Significantly, such a hydrogel-bridged design concept may find the important application for the synthesis of competitive candidates for energy storage.

  15. Color stability and flexural strength of poly (methyl methacrylate) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to beverages and food dye: an in vitro study.

    PubMed

    Gujjari, Anil K; Bhatnagar, Vishrut M; Basavaraju, Ravi M

    2013-01-01

    To evaluate the color stability and flexural strength of poly (methyl methacrylate) (PMMA) and bis-acrylic composite based provisional crown and bridge auto-polymerizing resins exposed to tea, coffee, cola, and food dye. Two provisional crown and bridge resins, one DPI self-cure tooth molding powder (PMMA) (Group A), and one Protemp 4 Temporization Material (bis-acrylic composite) (Group B) were used. Disk-shaped specimens for color stability testing (n = 30 for each material) and bar-shaped specimens for flexural strength testing (n = 30 for each material) were fabricated using a metal mold. The specimens were immersed in artificial saliva, artificial saliva + tea, artificial saliva + coffee, artificial saliva + cola, and artificial saliva + food dye solutions and stored in an incubator at 37°C. Color measurements were taken before immersion, and then after 3 and 7 days of immersion. Flexural strength was evaluated after 7 days of immersion. Group A showed significantly higher color stability as compared to Group B, and artificial saliva + coffee solution had the most staining capacity for the resins. Test solutions had no effect on the flexural strength of Group A, but Group B specimens immersed in artificial saliva + cola showed significantly lower flexural strength values as compared to the control group. The findings of the study showed that for materials used in the study, PMMA was more color stable than bis-acrylic composite based resin. Also, material based on PMMA was more resistant to damage from dietary beverages as compared to bis-acrylic composite based provisional crown and bridge resin.

  16. Microorganisms for producing organic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  17. Microorganisms for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  18. Selective electrochemical detection of 2,4,6-trinitrotoluene (TNT) in water based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin-modified glassy carbon electrode.

    PubMed

    Mahmoud, Khaled A; Abdel-Wahab, Ahmed; Zourob, Mohammed

    2015-01-01

    A new versatile electrochemical sensor based on poly(styrene-co-acrylic acid) PSA/SiO2/Fe3O4/AuNPs/lignin (L-MMS) modified glassy carbon electrode (GCE) was developed for the selective detection of trace trinitrotoluene (TNT) from aqueous media with high sensitivity. The fabricated magnetic microspheres were characterized by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). L-MMS films were cast on the GCE surface to fabricate the TNT sensing electrode. The limit of detection (LOD) of TNT determined by the amperometric i-t curve reached 35 pM. The lignin film and well packed Fe3O4/AuNPs facilitated the pre-concentration of trace TNT on the electrode surface resulting in a fast amperometric response of 3 seconds near the detection limit. The high sensitivity and excellent catalytic activity of the modified electrode could be attributed to the lignin layer and highly packed Fe3O4/AuNPs on the electrode surface. The total recovery of TNT from tapwater and seawater matrices was 98% and 96%, respectively. The electrode film was highly stable after five repeated adsorption/desorption cycles. The new electrochemical sensing scheme provides a highly selective, sensitive and versatile assay for the in-situ detection of TNT in complex water media.

  19. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  20. Biotechnological Production of Organic Acids from Renewable Resources.

    PubMed

    Pleissner, Daniel; Dietz, Donna; van Duuren, Jozef Bernhard Johann Henri; Wittmann, Christoph; Yang, Xiaofeng; Lin, Carol Sze Ki; Venus, Joachim

    2017-03-07

    Biotechnological processes are promising alternatives to petrochemical routes for overcoming the challenges of resource depletion in the future in a sustainable way. The strategies of white biotechnology allow the utilization of inexpensive and renewable resources for the production of a broad range of bio-based compounds. Renewable resources, such as agricultural residues or residues from food production, are produced in large amounts have been shown to be promising carbon and/or nitrogen sources. This chapter focuses on the biotechnological production of lactic acid, acrylic acid, succinic acid, muconic acid, and lactobionic acid from renewable residues, these products being used as monomers for bio-based material and/or as food supplements. These five acids have high economic values and the potential to overcome the "valley of death" between laboratory/pilot scale and commercial/industrial scale. This chapter also provides an overview of the production strategies, including microbial strain development, used to convert renewable resources into value-added products.

  1. Development of gastro intestinal sustained release tablet formulation containing acryl-EZE and pH-dependent swelling HPMC K 15 M.

    PubMed

    Lamoudi, Lynda; Chaumeil, Jean Claude; Daoud, Kamel

    2012-05-01

    The aim of this study was to evaluate physical properties and release from matrix tablets containing different ratios of HPMC 15 M and Acryl-EZE. A further aim is to assess their suitability for pH dependent controlled release. Matrix tablets containing HPMC 15 M and Acryl-EZE were manufactured using a fluidized bed. The release from this matrix using Sodium Diclofenac (SD) as model drug is studied in two dissolution media (0.1 N HCl or pH = 6.8 phosphate buffer solution); the release rate, mechanism, and pH dependence were characterized by fitting four kinetic models and by using a similarity factor analysis. The obtained results revealed that the presence of Acryl-EZE in the matrix tablets is effective in protecting the dosage forms from release in acid environments such as gastric fluid. In pH = 6.8 phosphate buffer, the drug release rate and mechanism of release from all matrices is mainly controlled by HPMC 15 M. The model of Korsmeyer-Peppas was found to fit experimental dissolution results.

  2. A Machine Vision Quality Control System for Industrial Acrylic Fibre Production

    NASA Astrophysics Data System (ADS)

    Heleno, Paulo; Davies, Roger; Correia, Bento A. Brázio; Dinis, João

    2002-12-01

    This paper describes the implementation of INFIBRA, a machine vision system used in the quality control of acrylic fibre production. The system was developed by INETI under a contract with a leading industrial manufacturer of acrylic fibres. It monitors several parameters of the acrylic production process. This paper presents, after a brief overview of the system, a detailed description of the machine vision algorithms developed to perform the inspection tasks unique to this system. Some of the results of online operation are also presented.

  3. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles.

    PubMed

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-10-01

    To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness.

  4. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC.more » Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.« less

  6. 40 CFR 721.10147 - Acrylate derivative of alkoxysilylalkane ester and mixed metal oxides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate derivative of... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10147 Acrylate derivative of... reporting. (1) The chemical substance identified generically as acrylate derivative of alkoxysilylalkane...

  7. Assessing the phytoavailability of arsenic and phosphorus to corn plant after the addition of an acrylic copolymer to polluted soils.

    PubMed

    Mansouri, Tahereh; Golchin, Ahmad; Kouhestani, Hossein

    2017-08-13

    Soil pollution by arsenic increases the potential risk of arsenic entrance into the food chain. The usefulness of maleic anhydride- styrene- acrylic acid copolymer on the mobility and phytoavailability of arsenic was evaluated. Treatments were the concentrations of acrylic copolymer (0, 0.05, 0.10, and 0.20% w/w) and the concentrations of soil total arsenic (0, 6, 12, 24, 48, and 96 mg kg -1 ). Sodium arsenate was added in appropriate amounts to subsamples of an uncontaminated soil to give contaminated soils with different levels of arsenic. The contaminated soils were subjected to a greenhouse experiment using corn as the test crop. The results showed that contamination of soil by arsenic increased the concentrations of soil available arsenic, root and aerial parts arsenic. By the use of acrylic copolymer, the concentration of available arsenic in the soil and the accumulation of arsenic in the root and aerial parts of the corn plant decreased but the dry weights of the root and aerial parts increased significantly. When the concentration of soil total arsenic was 96 mg kg -1 , the application of copolymer at the concentration of 0.20% w/w reduced the concentrations of arsenic in soil, root, and aerial parts by 62.53, 43.65, and 37.00% respectively, indicating that application of acrylic copolymer immobilized arsenic in soils.

  8. 2,4,6-Tri­amino-1,3,5-triazin-1-ium 3-(prop-2-eno­yloxy)propano­ate acrylic acid monosolvate monohydrate

    PubMed Central

    Sangeetha, V.; Kanagathara, N.; Chakkaravarthi, G.; Marchewka, M. K.; Anbalagan, G.

    2013-01-01

    The asymmetric unit of the title salt, C3H7N6 +·C6H7O4 −·C3H4O2·H2O, contains a 2,4,6-tri­amino-1,3,5-triazin-1-ium cation, a 3-(prop-2-eno­yloxy)propano­ate anion and acrylic acid and water solvent mol­ecules in a 1:1:1:1 ratio and with each species in a general position. In the crystal, the components are linked into a supra­molecular layer in the bc plane via a combination of O—H⋯O, N—H⋯N and N—H⋯O hydrogen bonding. The crystal studied was a non-merohedral twin, the minor component contribution being approximately 26%. PMID:23723892

  9. Properties, ageing behavior and stability of bipolar films containing nano-layers of allylamine and acrylic acid plasma polymers

    NASA Astrophysics Data System (ADS)

    Aziz, Gaelle; Asadian, Mahtab; Declercq, Heidi; Morent, Rino; De Geyter, Nathalie

    2018-06-01

    In this work, a dielectric barrier discharge (DBD) has been used for the deposition of bipolar films containing alternating nano-layers of plasma polymerized allylamine (PPAam) and acrylic acid (PPAac). Various films were obtained by varying the single-layer thickness of each plasma polymer while maintaining a constant total film thickness and two kinds of films were fabricated via different depositing sequences (PPAam/Aac and PPAac/Aam). Films properties, ageing in air and stability in water over a 7 days period were investigated. Results showed that, COO- and NH3+ polar entities, generated from the interaction of PPAam and PPAac, are present in the bipolar films. Concerning the films stability, the different reaction mechanisms involved in the formation of each kind of films resulted in a higher amount of polar groups in the PPAam/Aac films; this conferred these films a higher stability than PPAac/Aam. Concerning the films ageing behavior, all prepared samples underwent some kind of ageing which was found to be dependent on the deposition sequence. Results also showed that bipolar coatings exhibited better cell-material interactions compared to PPAam and PPAac films; with a better cell viability observed on PPAam/Aac coatings after 1 and 7 days culture.

  10. Design and synthesis of bio-based UV curable PU acrylate resin from itaconic acid for coating applications

    PubMed Central

    Patil, Deepak M.; Phalak, Ganesh A.; Mhaske, S. T.

    2017-01-01

    Abstract UV curable PUA resin was successfully synthesized from polyol based on sustainable resource originated from itaconic acid (IA), isophorone diisocyanate (IPDI) and 2-hydroxyethyl methacrylate (HEMA). A polyol was synthesized by condensation reaction of IA with 16-hexanediol in the presence of p-Toluenesulfonic acid (pTSA). The synthesized PUA resin was characterized for its structural elucidation by using Fourier Transform Infrared Spectrophotometer (FTIR), 1H and 13C NMR spectroscopy. The synthesized UV curable PUA resin was incorporated in varying concentrations in conventional PUA coating system. The effects of varying concentration of synthesized UV curable PUA resin on rheology, crystallinity, thermal and coating properties were evaluated. The rheological behavior of the resins were evaluated at variable stress and result showed decrease in viscosity of resin as concentration of synthesized UV curable PUA resin increases in conventional PUA resin. The cured coatings have been evaluated for glass transition temperature (T g) and thermal behavior by differential scanning calorimeter and thermogravimetric analysis respectively. The degree of crystallinity of the coatings was determined from X-ray diffraction patterns using the PFM program. It was found that increase in the mass proportion of IA based PUA in coatings, the coating becomes more rigid and crystalline. The synthesized UV curable PUA coatings showed interesting mechanical, chemical, solvent and thermal properties as compared to the conventional PUA. Further, cured coatings were also evaluated for gel content and water absorption. PMID:29491798

  11. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs andmore » Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.« less

  12. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. 21 CFR 177.1480 - Nitrile rubber modified acrylonitrile-methyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Nitrile rubber modified acrylonitrile-methyl... Nitrile rubber modified acrylonitrile-methyl acrylate copolymers. Nitrile rubber modified acrylonitrile... rubber modified acrylonitrile-methyl acrylate copolymers consist of basic copolymers produced by the...

  14. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  15. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  16. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  17. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section for...

  18. Synthesis and characterization of a novel N-vinylcaprolactam-containing acrylic acid terpolymer for applications in glass-ionomer dental cements.

    PubMed

    Moshaverinia, Alireza; Roohpour, Nima; Darr, Jawwad A; Rehman, Ihtesham U

    2009-07-01

    In this study a novel N-vinylcaprolactam (NVC)-containing copolymer of acrylic-itaconic acid was synthesized, characterized and incorporated into Fuji IX conventional glass-ionomer cement (GIC). Subsequently, the effects of incorporation of synthesized terpolymer on the mechanical properties of GIC were studied. The synthesized terpolymer was characterized using (1)H nuclear magnetic resonance, Fourier transform infrared and Raman spectroscopy. The viscosity and molecular weight of the terpolymer were also measured. The compressive strength (CS), diametral tensile strength (DTS) and biaxial flexural strength (BFS) of the modified GICs were evaluated after 24h and 1week of immersion in distilled water at 37 degrees C. The handling properties (working and setting times) of the resulting modified cements were also evaluated. One-way analysis of variance was used to study the statistical significance of the mechanical strengths and handling properties in comparison to the control group. The results showed that NVC-containing GIC samples exhibited significantly higher (P<0.05) DTS (38.3+/-10.9MPa) and BFS (82.2+/-12.8MPa) in comparison to Fuji IX GIC (DTS=19.6+/-11.4MPa; BFS=41.3+/-10.5MPa). The experimental cement also showed higher but not statistically significant values for CS compared to the control material (CS for NVC-containing sample=303+/-32.8MPa; CS for Fuji XI=236+/-41.5MPa). Novel NVC-containing GIC has been developed in this study, with a 28% increase in CS. The presented GIC is capable of doubling the DTS and BFS in comparison to commercial Fuji IX GIC. The working properties of NVC-containing glass-ionomer formulations are comparable and are acceptable for water-based cements.

  19. Color Stability of Silicone or Acrylic Denture Liners: An in Vitro Investigation

    PubMed Central

    Ergun, Gulfem; Nagas, Isil Cekic

    2007-01-01

    Objectives The aim of this study was to compare the color stability of three acrylic based hard liners (Ufi gel hard, Dura-Liner II, Tokuso Rebase) and two silicone based soft liners (Ufi gel permanent, Molloplast B) by using the colorimeter. Methods Sixty disc-shaped samples, with uniform size of 10 mm diameter and 2 mm in thickness were fabricated for each material. Thirty samples were made as control group in distilled water and the remaining thirty samples were weathered in accelerated aging chamber. Color measurements were made before and after distilled water and aging. Data were statistically analyzed using nonparametric Kruskal-Wallis and Mann-Whitney U tests. Results Data showed that there are significant differences among materials in both after distilled water and aging treatments (P<.001). These results indicated that the most discolored liner material was Dura Liner II after aging (ΔE*=16.30) and the least discolored material was Ufi gel permanent after distilled water (ΔE*=0.41). Conclusions Based on the results of this study, silicone based liner materials are considered to be more color stable than acrylic based liner materials. PMID:19212558

  20. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    PubMed

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective.

  1. Allergic contact dermatitis from sculptured acrylic nails: special presentation with an airborne pattern

    PubMed Central

    Maio, Paula; Carvalho, Rodrigo; Amaro, Cristina; Santos, Raquel; Cardoso, Jorge

    2012-01-01

    Methylmethacrylate was first reported in 1941 as a cause of contact dermatitis. Since then, occupational contact allergies to acrylates in dentistry, orthopedic surgery, printing industry and industry have been reported, but few reports are found in the literature as a consequence of the contact with sculptured artificial acrylic nails which are increasingly popular. We describe here 3 patients with contact allergy to acrylates in artificial sculptured nails. Patch tests were performed with the Portuguese baseline series of contact allergens and an extended series of acrylates were applied. In particular, we tested three female patients with allergic contact dermatitis from sculptured acrylic nails. Two of these patients were both customers and also technical nail beauticians. Two patients developed periungual eczema; one presented only with face and eyelid dermatitis had no other lesions. The tests showed positive reaction to 2-hydroxyethylmethacrylate (2-HEMA) and 2-hydroxypropylmethacrylate (2-HPMA) in all the three patients. Our cases demonstrate the variety of clinical presentations of allergic contact dermatitis from acrylic sculptured nails. They show the need to warn patients of persistent and sometimes permanent side effects of these products. They also emphasize the importance of cosmetic ingredient labeling. PMID:25386316

  2. Poly(acrylic acid)-templated silver nanoclusters as a platform for dual fluorometric turn-on and colorimetric detection of mercury (II) ions.

    PubMed

    Tao, Yu; Lin, Youhui; Huang, Zhenzhen; Ren, Jinsong; Qu, Xiaogang

    2012-01-15

    An easy prepared fluorescence turn-on and colorimetric dual channel probe was developed for rapid assay of Hg(2+) ions with high sensitivity and selectivity by using poly(acrylic acid)-templated silver nanoclusters (PAA-AgNCs). The PAA-AgNCs exhibited weak fluorescence, while upon the addition of Hg(2+) ions, AgNCs gives a dramatic increase in fluorescence as a result of the changes of the AgNCs states. The detection limit was estimated to be 2 nM, which is much lower than the Hg(2+) detection requirement for drinking water of U.S. Environmental Protection Agency, and the turn-on sensing mode offers additional advantage to efficiently reduce background noise. Also, a colorimetric assay of Hg(2+) ions can be realized due to the observed absorbance changes of the AgNCs. More importantly, the method was successfully applied to the determination of Hg(2+) ions in real water samples, which suggests our proposed method has a great potential of application in environmental monitoring. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Improvement in the water retention characteristics of sandy loam soil using a newly synthesized poly(acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite material.

    PubMed

    Shahid, Shaukat Ali; Qidwai, Ansar Ahmad; Anwar, Farooq; Ullah, Inam; Rashid, Umer

    2012-08-03

    The use of some novel and efficient crop nutrient-based superabsorbent hydrogel nanocomposites (SHNCs), is currently becoming increasingly important to improve the crop yield and productivity, due to their water retention properties. In the present study a poly(Acrylamide-co-acrylic acid)/AlZnFe2O4 superabsorbent hydrogel nanocomposite was synthesized and its physical properties characterized using Energy Dispersive X-ray (EDX), FE-SEM and FTIR spectroscopic techniques. The effects of different levels of SHNC were studied to evaluate the moisture retention properties of sandy loam soil (sand 59%, silt 21%, clay 19%, pH 7.4, EC 1.92 dS/m). The soil amendment with 0.1, 0.2, 0.3 and 0.4 w/w% of SHNC enhanced the moisture retention significantly at field capacity compared to the untreated soil. Besides, in a separate experiment, seed germination and seedling growth of wheat was found to be notably improved with the application of SHNC. A delay in wilting of seedlings by 5-8 days was observed for SHNC-amended soil, thereby improving wheat plant growth and establishment.

  4. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  7. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate...

  8. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckel, E. R.; Berchtold, K. A.; Nie, J.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondarymore » functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.« less

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  11. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  12. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...

  13. Contact Dermatitis from Penetration of Rubber Gloves by Acrylic Monomer

    PubMed Central

    Pegum, J. S.; Medhurst, F. A.

    1971-01-01

    An orthopaedic surgeon developed dermatitis from acrylic materials. The acrylic monomer was found to penetrate surgical rubber gloves readily. Cases of “rubber glove dermatitis” with negative patch tests may have a similar explanation. Laboratory tests suggest that monomer does not damage rubber sufficiently to allow bacteria to penetrate gloves, but it remains possible that this would happen under theatre conditions. PMID:5581492

  14. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  15. Mechanical properties and cytotoxicity of experimental soft lining materials based on urethane acrylate oligomers.

    PubMed

    Kanie, Takahito; Tomita, Koichi; Tokuda, Masayuki; Arikawa, Hiroyuki; Fujii, Koichi; Ban, Seiji

    2009-07-01

    The purpose of this investigation was to determine whether experimental light-curing soft lining materials (ESLMs) based on commercially available urethane acrylate oligomers (UA-160TM, UV-3200B, UV-3500BA, and UV-3700B) are suitable for clinical use by measuring their viscosity, compressive modulus, Shore A hardness, tensile strength, adhesive strength, and cytotoxicity. The viscosities of the four ESLMs at 25 degrees C were 10.5 Pa.s, UV-3500BA; 144.0 Pa.s, UA-160TM; 328.8 Pa.s, UV-3700B; and 1079.7 Pa.s, UV-3200B. Polymerized UV-3700B was very soft, whereas the softness of the other ESLMs was similar to that of conventional soft lining materials. No significant difference in adhesive strength was observed between UV-3500BA and UV-3700B at 1 day and those at 12 months. Cytotoxicity was measured by a MTT-based assay using HeLa S3 and Ca9-22 cells. UV-3200B and UV-3700B oligomers and all four polymerized ESLMs showed cell viability over 95.2% (p < 0.05).

  16. Star-shaped polymers of bio-inspired algae core and poly(acrylamide) and poly(acrylic acid) as arms in dissolution of silica/silicate.

    PubMed

    Chauhan, Kalpana; Patiyal, Priyanka; Chauhan, Ghanshyam S; Sharma, Praveen

    2014-06-01

    Silica, in natural waters (due to weathering of rocks) decreases system performance in water processing industry due to scaling. In view of that, the present work involves the synthesis of novel green star shaped additives of algae core (a bio-inspired material as diatom maintains silicic acid equilibrium in sea water) as silica polymerization inhibitors. Star shaped materials with bio-inspired core and poly(acrylamide) [poly(AAm)] and poly(acrylic acid) [poly(AAc)] arms were synthesized by economical green approach. The proficiency was evaluated in 'mini lab' scale for the synthesized APAAm (Algae-g-poly(AAm)) and APAAc (Algae-g-poly(AAc)) dendrimers (star shaped) in colloidal silica mitigation/inhibition at 35 °C and 55 °C. Synthesized dendrimers were equally proficient in silica inhibition at 12 h and maintains ≥450 ppm soluble silica. However, APAAm dendrimers of generation 0 confirmed better results (≈300 ppm) in contrast to APAAc dendrimers in silica inhibition at 55 °C. Additionally, dendrimers also worked as a nucleator for heterogeneous polymerization to inhibit silica homo-polymerization. APAAm dendrimer test set showed no silica deposit for more than 10 days of inhibition. EDX characterization results support nucleator mechanism with Si content of 6.97%-10.98% by weight in silica deposits (SiO2-APAAm dendrimer composites). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Bonding of acrylic denture teeth to MMA/PMMA and light-curing denture base materials: the role of conditioning liquids.

    PubMed

    Palitsch, Anne; Hannig, Matthias; Ferger, Paul; Balkenhol, Markus

    2012-03-01

    The connection between resin denture teeth and the denture base is essential for the integrity of partial and full dentures. The aim of the present study was to analyse the bond strength of acrylic denture teeth to two light curing denture base materials compared to the gold-standard (MMA/PMMA) using different conditioning liquids. The ridge laps of 220 identical denture teeth were ground and pre-treated using different conditioning liquids (MMA, an experimental conditioning liquid as well as the two commercially available liquids Palabond and Versyo.bond). The denture base materials (PalaXpress, Versyo.com, Eclipse) were applied using a split mould to obtain tensile bond strength specimens of identical shape. Ten specimens per test group were either stored in water for 24h or thermocycled (5000×, 5-55°C) prior to tensile bond strength testing (cross-head speed 10mm/min). Data was subjected to parametric statistics (α=0.05). The three-way ANOVA revealed a significant influence of the material, pre-treatment as well as the storage. PalaXpress showed the highest bond strength (24.3MPa) of all materials tested after TC, whereas the use of MMA led to the most constant results. Lower values were recorded for Versyo.com (17.5MPa) and Eclipse (10.4MPa) bonded with Versyo.bond. The results indicate that MMA/PMMA based denture base resins provide reliable and durable bond strength to acrylic denture teeth. Using light-curing denture base materials requires the application of appropriate conditioning liquids to obtain acceptable bond strength. The use of MMA affects bond strength to light-curing denture base materials. The pre-treatment of denture teeth is critical regarding their bond-strength to denture base materials and in turn for the integrity of removable full and partial dentures. Light-curing denture base resins are more sensitive to the correct tooth pre-treatment compared to conventional MMA/PMMA materials, requiring specific conditioning liquids. Copyright

  18. Effects of different surface treatments on the bond strength of acrylic denture teeth to polymethylmethacrylate denture base material.

    PubMed

    Akin, Hakan; Kirmali, Omer; Tugut, Faik; Coskun, Mehmet Emre

    2014-09-01

    The purpose of this study was to investigate the effects of various surface pretreatments in the ridge lap area of acrylic resin denture teeth on the shear bond strength to heat-polymerized polymethylmethacrylate (PMMA) denture base resin. Tooth debonding of the denture is a major problem for patients with removable prostheses. A total of 84 central incisor denture teeth were used in this study. Seven test groups with 12 specimens for each group were prepared as follows: untreated (control, group C), ground, with a tungsten carbide bur (group H), airborne-particle abrasion (group AA), primed with methyl methacrylate (group M), treated with izobutyl methacrylate (group iBMA), Eclipse Bonding Agent applied (group E), and Er:YAG laser irradiated (group L). Test specimens were produced according to the manufacturers' instructions and mounted to a universal testing machine for shear testing with a crosshead speed of 1 mm/min. Data were evaluated by one way variance analysis (ANOVA) and Tukey's test (α=0.05). Similar bond strength values were found between groups L and M, and these were the highest shear bond strengths among the groups. The lowest one was observed in group E. All surface treatments, except group E, exhibited significant difference when compared with group C (p<0.05). Lasing of the ridge lap area to enhance the bond strength of acrylic resin denture teeth to PMMA denture base resin might be an alternative to wetting with MMA monomer. To overcome tooth debonding, surface treatment of the ridge lap area should be performed as part of denture fabrication.

  19. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin.

    PubMed

    Atla, Jyothi; Manne, Prakash; Gopinadh, A; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-08-01

    This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat-polymerized acrylic resin. Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. RESULTS were analysed by using one-way analysis of variance (ANOVA). Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm(2)/sec, followed by D (9.09mm(2)/sec), C (8.49mm(2)/sec), B(8.28mm(2)/sec) and A(6.48mm(2)/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction.

  20. Crystal structure transformation in potassium acrylate

    NASA Astrophysics Data System (ADS)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  1. The promise of a specially-designed graft copolymer of acrylic acid onto cellulose as selective sorbent for heavy metal ions.

    PubMed

    Essawy, Hisham A; Mohamed, Magdy F; Ammar, Nabila S; Ibrahim, Hanan S

    2017-10-01

    A specially-designed graft copolymer of acrylic acid onto in-situ formed cellulose-fulvate hybrid showed privileged tendency for uptake of Pb(II) during competitive removal from a mixture containing Cd(II) and Ni(II) within 5min at pH 5. This novel trend is attributed mainly to the crowded high content of coordinating centers within the designed graft copolymer along with the acquired superabsorbency. This provides an outstanding tool to separate some metal ions selectively from mixtures containing multiple ions on kinetic basis. Thus, the designed graft copolymer structure exhibited superior efficiency that reached ∼95% for sole removal of Pb(II). Kinetic modeling for Pb(II) individual removal showed excellent fitting with a pseudo second-order model. Intraparticle diffusion model on the other hand ensured governance of boundary layer effect over diffusion during the removal process due to the superabsorbency feature of the graft copolymer. The experimental findings were described with models such as Freundlich, Langmuir, and Dubinin-Radushkevich. The Langmuir and Freundlich models showed convenience with the adsorption isotherm of Pb(II) onto the developed graft copolymer. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    PubMed

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Cross-reactivity among epoxy acrylates and bisphenol F epoxy resins in patients with bisphenol A epoxy resin sensitivity.

    PubMed

    Lee, Han N; Pokorny, Christopher D; Law, Sandra; Pratt, Melanie; Sasseville, Denis; Storrs, Frances J

    2002-09-01

    The study's objective was 2-fold: first, to evaluate the potential cross-reactivity between Bis-A epoxy resins and epoxy acrylates and second, to study the cross reactivity between Bis-A epoxy resins and newer Bis-F epoxy resins in patients with allergic contact dermatitis to epoxy resins and had positive patch test to the standard epoxy resin based on bisphenol A. Forty-one patients were patch tested to 23 chemicals including epoxy acrylates, Bis-A epoxy resins, and Bis-F epoxy resins, as well as reactive diluents and nonbisphenol epoxy resins. Questions concerning exposure to epoxy resins, occupational history, and problems with dental work were completed. All patients included in the study had positive reactions to the standard Bis-A epoxy resin. Twenty percent (8 of 41) of the patients reacted to at least one of the epoxy acrylates; the most common reaction was to Bis-GMA. Five of 8 patients who reacted to the epoxy acrylates had dental work, but only one patient had problems from her dental work. Six of 8 patients (75%) who reacted to epoxy resins and epoxy acrylates did not react to aliphatic acrylates. Thirty-two percent (13 of 41) reacted to tosylamide epoxy resin, and none reacted to triglycidyl isocyanurate resin. In addition, all patients (100%) had positive reactions to at least one of the Bis-F epoxy resins that were tested. Most patients with sensitivity to Bis-A epoxy resins do not cross-react with epoxy acrylates. Patients with positive patch test reactions to epoxy acrylates used in dentistry usually do not have symptoms from their dental work. To our knowledge, this is the largest series of patients with sensitivity to the standard Bis-A epoxy resin that have been patch tested with the more recently introduced Bis-F epoxy resins. There is significant cross-reactivity between Bis-A and Bis-F epoxy resins, which can be explained by their structural similarity. Copyright 2002, Elsevier Science (USA). All rights reserved.

  4. Impact of Packing and Processing Technique on Mechanical Properties of Acrylic Denture Base Materials

    PubMed Central

    Nejatian, Touraj; Sefat, Farshid; Johnson, Tony

    2015-01-01

    The fracture resistance of polymethylmethacrylate (PMMA) as the most popular denture base material is not satisfactory. Different factors can be involved in denture fracture. Among them, flexural fatigue and impact are the most common failure mechanisms of an acrylic denture base. It has been shown that there is a correlation between the static strength and fatigue life of composite resins. Therefore, the transverse strength of the denture base materials can be an important indicator of their service life. In order to improve the fracture resistance of PMMA, extensive studies have been carried out; however, only a few promising results were achieved, which are limited to some mechanical properties of PMMA at the cost of other properties. This study aimed at optimizing the packing and processing condition of heat-cured PMMA as a denture base resin in order to improve its biaxial flexural strength (BFS). The results showed that the plain type of resin with a powder/monomer ratio of 2.5:1 or less, packed conventionally and cured in a water bath for 2 h at 95 °C provides the highest BFS. Also, it was found that the performance of the dry heat processor is inconsistent with the number of flasks being loaded.

  5. Biogeochemistry of Dimethylsulfide, Dimethylsulfoniopropionate, and Acrylic Acid in the Changjiang Estuary and the East China Sea

    NASA Astrophysics Data System (ADS)

    Wu, Xi; Li, Pei-Feng; Liu, Chun-Ying; Zhang, Hong-Hai; Yang, Gui-Peng; Zhang, Sheng-Hui; Zhu, Mao-Xu

    2017-12-01

    The distributions of dimethylsulfide (DMS), dimethylsulfoniopropionate (DMSP), and acrylic acid (AA) were investigated in the Changjiang Estuary during winter (dry season) and summer (wet season) 2014 and in the East China Sea (ECS) during summer 2015. The rates of dissolved DMSP (DMSPd) degradation with DMS and AA production, DMS degradation, and AA degradation in the ECS were also studied. Significant seasonal variations in DMS(P) and AA concentrations were observed in the Changjiang Estuary with higher values during the wet season than during the dry season. The maximum ratio of AA/chlorophyll a (Chl a) occurred at the mouth of the Changjiang Estuary due to the combined effects of production from DMSP and terrestrial inputs from the Changjiang Estuary. The distributions of DMS(P) and AA in the ECS were dramatically influenced by the Kuroshio Current and the upwelling caused by the Taiwan Warm Current. The ratios of DMS(P)/Chl a and AA/Chl a exhibited similar patterns in the surface seawater of the ECS, which indicated that phytoplankton species and biomass might play important roles in controlling the distributions of DMS(P) and AA. In vertical profiles, high values of AA emerged in the upper water column and bottom seawater of the Changjiang Estuary. Meanwhile, the maxima of DMS(P) and AA generally appeared in the surface or euphotic layer, whereas their minima arose in the bottom seawater of the ECS. The degradation rates of DMSPd, DMS, and AA in the inshore waters were higher than those in the open sea.

  6. Acrylic Triblock Copolymers Incorporating Isosorbide for Pressure Sensitive Adhesives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallagher, James J.; Hillmyer, Marc A.; Reineke, Theresa M.

    A new monomer acetylated acrylic isosorbide (AAI) was prepared in two steps using common reagents without the need for column chromatography. Free radical polymerization of AAI afforded poly(acetylated acrylic isosorbide) (PAAI), which exhibited a glass transition temperature (Tg) = 95 °C and good thermal stability (Td, 5% weight loss; N2 = 331 °C, air = 291 °C). A series of ABA triblock copolymers with either poly(n-butyl acrylate) (PnBA) or poly(2-ethylhexyl acrylate) (PEHA) as the low Tg midblocks and PAAI as the high Tg end blocks were prepared using Reversible Addition–Fragmentation chain Transfer (RAFT) polymerization. The triblock copolymers ranging from 8–24more » wt % PAAI were evaluated as pressure sensitive adhesives by 180° peel, loop tack, and static shear testing. While the PAAI-PEHA-PAAI series exhibited poor adhesive qualities, the PAAI-PnBA-PAAI series of triblock copolymers demonstrated peel forces up to 2.9 N cm–1, tack forces up to 3.2 N cm–1, and no shear failure up to 10000 min. Dynamic mechanical analysis indicated that PAAI-PEHA-PAAI lacked the dissipative qualities needed to form an adhesive bond with the substrate, while the PAAI-PnBA-PAAI series exhibited a dynamic mechanical response consistent with related high performing PSAs.« less

  7. Comparison of cotton and acrylic socks using a generic cushion sole design for runners.

    PubMed

    Herring, K M; Richie, D H

    1993-09-01

    A longitudinal single-blind study was conducted to test the friction blister prevention properties of synthetic acrylic socks in a generic construction. This study serves as a comparison with the authors' previous work comparing acrylic and cotton socks in a patented padded construction. Twenty-seven long-distance runners provided data regarding dampness, temperature, friction blister incidence, severity, and size. Two different socks were tested; each was identical in every aspect of construction except the fiber content. One test sock was composed of 100% synthetic acrylic fibers, and the other was composed of 100% natural cotton fibers. These results were unsuccessful at demonstrating any superiority of cotton or acrylic fibers when knitting produced a generic "cushion sole" sock. The superiority of acrylic fibers has thus far been demonstrated only when sock knitting provides adequate anatomical padding [corrected].

  8. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base.

    PubMed

    Shinawi, Lana Ahmed

    2017-05-01

    The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits.

  9. Effect of denture cleaning on abrasion resistance and surface topography of polymerized CAD CAM acrylic resin denture base

    PubMed Central

    Shinawi, Lana Ahmed

    2017-01-01

    Background The application of computer-aided design computer-aided manufacturing (CAD CAM) technology in the fabrication of complete dentures, offers numerous advantages as it provides optimum fit and eliminates polymerization shrinkage of the acrylic base. Additionally, the porosity and surface roughness of CAD CAM resins is less compared to conventionally processed resins which leads to a decrease in the adhesion of bacteria on the denture base, which is associated with many conditions including halitosis and aspiration pneumonia in elderly denture wearers. Aim To evaluate the influence of tooth brushing with dentifrices on CAD CAM resin blocks in terms of abrasion resistance, surface roughness and scanning electron photomicrography. Methods This experimental study was carried out at the Faculty of Dentistry of King Abdulaziz University during 2016. A total of 40 rectangular shaped polymerized CAD CAM resin samples were subjected to 40.000 and 60.000 brushing strokes under a 200-gram vertical load simulating three years of tooth brushing strokes using commercially available denture cleaning dentifrice. Data were analyzed by SPSS version 20, using descriptive statistics and ANOVA. Results ANOVA test revealed a statistical significant weight loss of CAD CAM acrylic resin denture base specimens following 40.000 and 60.000 brushing strokes as well as a statistical significant change (p=0.0.5) in the surface roughness following brushing. The CAD CAM resin samples SEM baseline imaging revealed a relatively smooth homogenous surface, but following 40,000 and 60,000 brushing strokes, imaging displayed the presence of small scratches on the surface. Conclusion CAD CAM resin displayed a homogenous surface initially with low surface roughness that was significantly affected following simulating three years of manual brushing, but despite the significant weight loss, the findings are within the clinically acceptable limits. PMID:28713496

  10. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  11. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  12. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  13. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of a...

  14. Structural changes of polyacids initiated by their neutralization with various alkali metal hydroxides. Diffusion studies in poly(acrylic acid)s.

    PubMed

    Masiak, Michal; Hyk, Wojciech; Stojek, Zbigniew; Ciszkowska, Malgorzata

    2007-09-27

    The changes in the three-dimensional structure of the poly(acrylic acid), PAA, induced by incorporation of various alkali-metal counterions have been evaluated by studying diffusion of an uncharged probe (1,1'-ferrocenedimethanol) in the polymeric media. The studies are supported by the measurements of conductivity and viscosity of the polymeric media. Solutions of linear PAA of four different sizes (molecular weights: 450,000, 750,000, 1,250,000, 4,000,000) were neutralized with hydroxides of alkali metals of group 1 of the periodic table (Li, Na, K, Rb, Cs) to the desired neutralization degree. The transport properties of the obtained polyacrylates were monitored by measuring the changes in the probe diffusion coefficient during the titration of the polyacids. The probe diffusivity was determined from the steady-state current of the probe voltammetric oxidation at disk microelectrodes. Diffusivity of the probe increases with the increase in the degree of neutralization and with the increase in viscosity. It reaches the maximum value at about 60-80% of the polyacid neutralization. The way the probe diffusion coefficients change is similar in all polyacid solutions and gels. The increase in the size of a metal cation causes, in general, an enhancement in the transport of probe molecules. The biggest differences in the probe diffusivities are between lithium and cesium polyacrylates. The differences between the results obtained for cesium and rubidium are not statistically significant due to lack of good precision of the voltammetric measurements. The measurements of the electric conductivity of polyacrylates and the theoretical predictions supplemented the picture of electrostatic interactions between the polyanionic chains and the metal cations of increasing size. In all instances of the PAAs, the viscosity of the solutions rapidly increases in the 0-60% range of neutralization and then becomes constant in the 60-100% region. With the exception of the shortest

  15. Effectiveness of metal surface treatments in controlling microleakage of the acrylic resin-metal framework interface.

    PubMed

    Sharp, B; Morton, D; Clark, A E

    2000-12-01

    Microleakage at the junction between the metal alloy and acrylic resin in a removable partial denture may result in discoloration, fluid percolation, and acrylic resin deterioration. The junction between a metal alloy and acrylic resin is an area of clinical concern. Failure of a removable partial denture may be linked to this interface. Enhancing resistance to microleakage at this interface may improve the long-term union between the 2 materials. This investigation was designed to determine the effects of various metal surface treatment protocols on microleakage and bond strength between the metal alloy and acrylic resin used in the fabrication of a removable partial denture. Ninety-six nickel-chromium-beryllium alloy specimens were randomly divided into 8 groups. After adaptation of baseplate wax, each specimen was invested. Subsequent to wax removal, each specimen was divided into a control half and an experimental half. Air abrasion, tinplating/oxidation, and silanation were evaluated individually and in all combinations. Heat-polymerized acrylic resin was processed against all specimens before storage in distilled water at 37 degrees C for 72 hours. Each specimen then was thermocycled in distilled water (3000 cycles) before immersion in sodium fluorescein dye for 24 hours. Counting grids that exhibited dye penetration under ultraviolet light exposure allowed assessment of microleakage. Air abrasion resulted in a significant decrease in microleakage when used individually and in all combinations (P<0.05). All experimental combinations that did not involve air abrasion demonstrated no significant reduction in measured microleakage between the experimental and control sides. Tukey's pair-wise comparison of the difference in the mean number of squares exhibiting microleakage between the control and treated sites for each experimental group revealed a significant difference, based on the involvement of air abrasion. Groups involving air abrasion did not differ

  16. Comparison of impact strength of acrylic resin reinforced with kevlar and polyethylene fibres.

    PubMed

    Kamath, G; Bhargava, K

    2002-01-01

    The present study was done to evaluate the impact strengths of heat-activated acrylic resins reinforced with Kevlar fibres, polyethylene fibres and unreinforced heat activated acrylic resin. Each of three groups had 25 specimens. Brass rods of uniform length of 40 mm and diameter of 8 mm were used to prepare the moulds. A combination of long fibres (40 mm length) and short fibres (6 mm length) were used. The total amount of fibres incorporated was limited to 2% by weight of the resin matrix. Short and long fibres of equal weight were incorporated. The short fibres were mixed with polymer and monomer and packed into the mould, while, the long axis of the specimen, perpendicular to the applied force. The specimens were then processed. Impact strength testing was done on Hounsfield's impact testing machine. Kevlar fibre reinforced heat activated acrylic resin specimens recorded higher mean impact strength of 0.8464 Joules, while polyethylene fibres reinforced heat activated acrylic resin recorded mean impact strength of 0.7596 joules. The unreinforced heat activated acrylic resin recorded mean impact strength of 0.3440 Joules.

  17. Potential Fungus surface resistance of the silica/acrylic coated leaves waste composite

    NASA Astrophysics Data System (ADS)

    Masturi; Jannah, WN; Maulana, RM; Darsono, T.; Sunarno; Rustad, S.

    2018-04-01

    The composite coated by some materials coaters have been made. This coating was done to isolate the fungus possibly growing on the composite. The composite was made from a mixture of teak leaves waste and polyurethane polymer using a simple mixing method; then the mixture was pressed at a pressure of 3 metric-tons for 15 minutes. The composite produced then was coated with acrylic only and acrylic-silica using spray method. The coated samples then were characterized using scanning electron microscopy (SEM) to determine the surface pores. Further, it was obtained the average surface pore size of acrylic coater is 1.24 µm, while the acrylic-silica pore forms an oval shape with a length and a width of 0.75 µm and 0.38 µm, respectively. In comparison with the fungus size of 2-7 µm, it can be concluded that the composite is proper as home appliance application.

  18. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

    PubMed Central

    2014-01-01

    PURPOSE This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required. PMID:25006385

  19. Cytotoxicity Evaluation of Two Bis-Acryl Composite Resins Using Human Gingival Fibroblasts.

    PubMed

    Gonçalves, Fabiano Palmeira; Alves, Gutemberg; Guimarães, Vladi Oliveira; Gallito, Marco Antônio; Oliveira, Felipe; Scelza, Míriam Zaccaro

    2016-01-01

    Bis-acryl resins are used for temporary dental restorations and have shown advantages over other materials. The aim of this work was to evaluate the in vitro cytotoxicity of two bis-acryl composite resins (Protemp 4 and Luxatemp Star), obtained at 1, 7 and 40 days after mixing the resin components, using a standardized assay employing human primary cells closely related to oral tissues. Human gingival fibroblast cell cultures were exposed for 24 h to either bis-acryl composite resins, polystyrene beads (negative control) and latex (positive control) extracts obtained after incubation by the different periods, at 37 °C under 5% CO2. Cell viability was evaluated using a multiparametric procedure involving sequential assessment (using the same cells) of mitochondrial activity (XTT assay), membrane integrity (neutral red test) and total cell density (crystal violet dye exclusion test). The cells exposed to the resin extracts showed cell viability indexes exceeding 75% after 24 h. Even when cells were exposed to extracts prepared with longer conditioning times, the bis-acryl composite resins showed no significant cytotoxic effects (p>0.05), compared to the control group or in relation to the first 24 h of contact with the products. There were no differences among the results obtained for the bis-acryl composite resins evaluated 24 h, 7 days and 40 days after mixing. It may be concluded that the bis-acryl resins Protemp 4 and Luxatemp Star were cytocompatible with human gingival fibroblasts, suggesting that both materials are suitable for use in contact with human tissues.

  20. Acrylic Tanks for Stunning Chemical Demonstrations

    ERIC Educational Resources Information Center

    Mirholm, Alexander; Ellervik, Ulf

    2009-01-01

    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)

  1. Evaluation of the surface roughness of three heat-cured acrylic denture base resins with different conventional lathe polishing techniques: A comparative study.

    PubMed

    Rao, Duggineni Chalapathi; Kalavathy, N; Mohammad, H S; Hariprasad, A; Kumar, C Ravi

    2015-01-01

    Surface roughness promotes adhesion and colonization of denture plaque. Therefore, it is important to know the effects of polishing and finishing on the surface roughness of various acrylic resin materials. To evaluate and compare the effects of different conventional lathe polishing techniques on heat cured acrylic resins in producing surface roughness. Three different commercially available heat-cured acrylic resin materials namely DPI, Meliodent and Trevalon Hi were selected. 30 Specimens of each acrylic material (30 x 3 = 90, 10 x 60 x 2mm) were prepared and divided into 5 groups, each group consisted of 6 Nos. of specimens per material(6x3=18) and were grouped as Group A(unfinished), Group B (finished), Group C (Polishing Paste), Group D (Polishing Cake) and Group E (Pumice and Gold rouge). The resulted surface roughness (μm) was measured using Perthometer and observed under Scanning Electron Microscope. The values obtained were subjected statistical analyses. Among the materials tested, better results were obtained with Trevalon Hi followed by Meliodent and DPI. Among the polishing methods used, superior results were obtained with universal polishing paste followed by polishing cake; Pumice and Gold rouge. Although Pumice and Gold rouge values produced greater roughness value, they were well within the threshold value of 0.2 mm.

  2. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave.

    PubMed

    Figuerôa, Rosana Marques Silva; Conterno, Bruna; Arrais, César Augusto Galvão; Sugio, Carolina Yoshi Campos; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2018-01-01

    The proper selection of polymerization cycle is important to prevent overheating of the monomer that could cause degradation, porosity and, consequently, deleterious effects on the denture base properties. Objective This study evaluated the porosity, water sorption and solubility of acrylic resins (Vipi Cril-VC and Vipi Wave-VW) after conventional or microwave polymerization cycles. Material and Methods Specimens (n = 10) were made and cured: 1-WB = 65°C during 90 min + boiling during 90 min (VC cycle - control group); 2-M25 = 10 min at 270 W + 5 min at 0 W + 10 min at 360 W (VW cycle); 3-M3 = 3 min at 550 W; and 4-M5 = 5 min at 650 W. Afterward, they were polished and dried in a dessicator until a constant mass was reached. Specimens were then immersed in distilled water at 37°C and weighed regularly until a constant mass was achieved. For porosity, an additional weight was made with the specimen immediately immersed in distilled water. For water sorption and solubility, the specimens were dried again until equilibrium was reached. Data were submitted to 2 way-ANOVA and Tukey HSD (α=0.05). Results Porosity mean values below 1.52% with no significant difference among groups for both materials were observed. Resins showed water sorption and solubility values without a significant difference. However, there was a significant difference among groups for these both properties (P<0.013). The highest sorption (2.43%) and solubility (0.13%) values were obtained for WB and M3, respectively. Conclusions The conventional acrylic resin could be polymerized in a microwave since both the materials showed similar performance in the evaluated properties. Shorter microwave cycles could be used for both the materials without any detectable increase in volume porosity.

  3. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin

    PubMed Central

    Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-01-01

    Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917

  4. An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Antimicrobial and Fracture Toughness Properties

    PubMed Central

    Rueggeberg, Frederick A.; Niu, Li-na; Mettenberg, Donald; Yiu, Cynthia K. Y.; Blizzard, John D.; Wu, Christine D.; Mao, Jing; Drisko, Connie L.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Global increase in patients seeking orthodontic treatment creates a demand for the use of acrylic resins in removable appliances and retainers. Orthodontic removable appliance wearers have a higher risk of oral infections that are caused by the formation of bacterial and fungal biofilms on the appliance surface. Here, we present the synthetic route for an antibacterial and antifungal organically-modified silicate (ORMOSIL) that has multiple methacryloloxy functionalities attached to a siloxane backbone (quaternary ammonium methacryloxy silicate, or QAMS). By dissolving the water-insoluble, rubbery ORMOSIL in methyl methacrylate, QAMS may be copolymerized with polymethyl methacrylate, and covalently incorporated in the pressure-processed acrylic resin. The latter demonstrated a predominantly contact-killing effect on Streptococcus mutans ATCC 36558 and Actinomyces naselundii ATCC 12104 biofilms, while inhibiting adhesion of Candida albicans ATCC 90028 on the acrylic surface. Apart from its favorable antimicrobial activities, QAMS-containing acrylic resins exhibited decreased water wettability and improved toughness, without adversely affecting the flexural strength and modulus, water sorption and solubility, when compared with QAMS-free acrylic resin. The covalently bound, antimicrobial orthodontic acrylic resin with improved toughness represents advancement over other experimental antimicrobial acrylic resin formulations, in its potential to simultaneously prevent oral infections during appliance wear, and improve the fracture resistance of those appliances. PMID:22870322

  5. Low light CMOS contact imager with an integrated poly-acrylic emission filter for fluorescence detection.

    PubMed

    Dattner, Yonathan; Yadid-Pecht, Orly

    2010-01-01

    This study presents the fabrication of a low cost poly-acrylic acid (PAA) based emission filter integrated with a low light CMOS contact imager for fluorescence detection. The process involves the use of PAA as an adhesive for the emission filter. The poly-acrylic solution was chosen due its optical transparent properties, adhesive properties, miscibility with polar protic solvents and most importantly its bio-compatibility with a biological environment. The emission filter, also known as an absorption filter, involves dissolving an absorbing specimen in a polar protic solvent and mixing it with the PAA to uniformly bond the absorbing specimen and harden the filter. The PAA is optically transparent in solid form and therefore does not contribute to the absorbance of light in the visible spectrum. Many combinations of absorbing specimen and polar protic solvents can be derived, yielding different filter characteristics in different parts of the spectrum. We report a specific combination as a first example of implementation of our technology. The filter reported has excitation in the green spectrum and emission in the red spectrum, utilizing the increased quantum efficiency of the photo sensitive sensor array. The thickness of the filter (20 μm) was chosen by calculating the desired SNR using Beer-Lambert's law for liquids, Quantum Yield of the fluorophore and the Quantum Efficiency of the sensor array. The filters promising characteristics make it suitable for low light fluorescence detection. The filter was integrated with a fully functional low noise, low light CMOS contact imager and experimental results using fluorescence polystyrene micro-spheres are presented.

  6. Development and characterization of amorphous acrylate networks for use as switchable adhesives inspired from shapememory behavior

    NASA Astrophysics Data System (ADS)

    Lakhera, Nishant

    Several types of insects and animals such as spiders and geckos are inherently able to climb along vertical walls and ceilings. This remarkable switchable adhesive behavior has been attributed to the fibrillar structures on their feet, with size ranging from few nanometers to a few micrometers depending on the species. Several studies have attempted to create synthetic micro-patterned surfaces trying to imitate this adhesive behavior seen in nature. The experimental procedures are scattered, with sole purpose of trying to increase adhesion, thereby making direct comparison between studies very difficult. There is a lack of fundamental understanding on adhesion of patterned surfaces. The influence of critical parameters like material modulus, glass transition temperature, viscoelastic effects, temperature and water absorption on adhesion is not fully explored and characterized. These parameters are expected to have a decisive influence on adhesion behavior of the polymer. Previous studies have utilized conventional "off-the-shelf" materials like epoxy, polyurethanes etc. It is however, impossible to change the material modulus, glass transition temperature etc. of these polymer systems without changing the base constituents itself, thereby explaining the gaps in the current research landscape. The purpose of this study was to use acrylate shape-memory polymers (SMPs) for their ability to be tailored to specific mechanical properties by control of polymer chemistry, without changing the base constituents. Polymer networks with tailorable glass transition, material modulus, water absorption etc. were developed and adhesion studies were performed to investigate the influence of temperature, viscoelastic effects, material modulus on the adhesion behavior of flat acrylate polymer surfaces. The knowledge base gained from these studies was utilized to better understand the fundamental mechanisms associated with adhesion behavior of patterned acrylate surfaces. Thermally

  7. Chemically grafted polymeric filters for chemical sensors: Hyperbranched poly(acrylic acid) films incorporating {Beta}-cyclodextrin receptors and amine-functionalized filter layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dermody, D.L.; Peez, R.F.; Bergbreiter, D.E.

    1999-02-02

    The authors report a new molecular-filter approach for enhancing the selectivity of chemical sensors. Specifically, they describe electrochemical sensors prepared from Au electrodes coated with {beta}-cyclodextrin-functionalized, hyperbranched poly(acrylic acid)(PAA) films capped with a chemically grafted, ultrathin polyamine layer. The hyperbranched PAA film is a highly functionalized framework for covalently binding the {beta}-cyclodextrin molecular receptors. The thin, grafted polyamine overlayer acts as a pH-sensitive molecular filter that selectively passes suitably charged analytes. Poly(amidoamine) dendrimers or poly-D-lysine is used as 10--15-nm-thick filter layers. The results show that at low pH, when the polyamines are fully protonated, positively charged redox probe molecules, suchmore » as benzyl viologen (BV), do not permeate the filter layer. However, at high pH, when the filter layer is uncharged, BV penetrates the filter layer and is reduced at the electrode. The opposite pH dependence is observed for negatively charged redox molecules such as anthraquinone-2-sulfonate (AQS). Both BV and AQS specifically interact with the {beta}-cyclodextrin receptors underlying the polyamine filter layers.« less

  8. Acid-Base Homeostasis

    PubMed Central

    Nakhoul, Nazih; Hering-Smith, Kathleen S.

    2015-01-01

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3− and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3− is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys. PMID:26597304

  9. Atypical pattern of (meth)acrylate allergic contact dermatitis in dental professionals.

    PubMed

    Prasad Hunasehally, R Y; Hughes, T M; Stone, N M

    2012-09-01

    (Meth)acrylates in dental bonding agents are a common source of allergic contact dermatitis in dental professionals. The distribution of the contact dermatitis is commonly on finger tips, but is determined by individual habits as demonstrated by the two case reports in this article. Despite the site of contact dermatitis, the bonding agents are often not suspected as a source of contact allergy due to misconception regarding the protective effect of natural rubber latex gloves. With these case reports, we endeavour to emphasize the inadequacy of the latex gloves in protecting against the (meth)acrylate induced contact allergy and also list the measures a dental professional needs to incorporate in order to minimise the risks of sensitisation to (meth)acrylates.

  10. 21 CFR 175.360 - Vinylidene chloride copolymer coatings for nylon film.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... is applied as a continuous film over one or both sides of a base film produced from nylon resins... produced by copolymerizing vinylidene chloride with one or more of the monomers acrylic acid, acrylonitrile, ethyl acrylate, methacrylic acid, methyl acrylate, methyl methacrylate (CAS Reg. No. 80-62-6; maximum...

  11. Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy

    PubMed Central

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H50) or in vivo mouse intraperitoneal (ip) LD50 using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their 13C-NMR β-carbon chemical shift (δ). The log 1/H50 value for methacrylates was linearly correlated with the δCβ value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD50 for (meth)acrylates was linearly correlated with δCβ but not with log P. For (meth)acrylates, the δCβ value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using 1H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H50 value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates. PMID:22312284

  12. Mechanisms of action of (meth)acrylates in hemolytic activity, in vivo toxicity and dipalmitoylphosphatidylcholine (DPPC) liposomes determined using NMR spectroscopy.

    PubMed

    Fujisawa, Seiichiro; Kadoma, Yoshinori

    2012-01-01

    We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates.

  13. Tensile and shear bond strength of hard and soft denture relining materials to the conventional heat cured acrylic denture base resin: An In-vitro study.

    PubMed

    Lau, Mayank; Amarnath, G S; Muddugangadhar, B C; Swetha, M U; Das, Kopal Anshuraj Ashok Kumar

    2014-04-01

    The condition of the denture bearing tissues may be adversely affected by high stress concentration during function. Chairside Denture (Hard and Soft) reliners are used to distribute forces applied to soft tissues during function. Tensile and shear bond strength has been shown to be dependent on their chemical composition. A weak bond could harbor bacteria, promote staining and delamination of the lining material. To investigate tensile and shear bond strength of 4 different commercially available denture relining materials to conventional heat cured acrylic denture base resin. 4 mm sections in the middle of 160 Acrylic cylindrical specimens (20 mm x 8 mm) were removed, packed with test materials (Mollosil, G C Reline Soft, G C Reline Hard (Kooliner) and Ufi Gel Hard and polymerized. Specimens were divided into 8 groups of 20 each. Tensile and shear bond strength to the conventional heat cured acrylic denture base resin were examined by Instron Universal Tensile Testing Machine using the equation F=N/A (F-maximum force exerted on the specimen (Newton) and A-bonding area= 50.24 mm2). One-way ANOVA was used for multiple group comparisons followed by Bonferroni Test and Hsu's MCB for multiple pairwise comparisons to asses any significant differences between the groups. The highest mean Tensile bond strength value was obtained for Ufi Gel Hard (6.49+0.08 MPa) and lowest for G C Reline Soft (0.52+0.01 MPa). The highest mean Shear bond strength value was obtained for Ufi Gel Hard (16.19+0.1 MPa) and lowest for Mollosil (0.59+0.05 MPa). The Benferroni test showed a significant difference in the mean tensile bond strength and the mean shear bond strength when the two denture soft liners were compared as well as when the two denture hard liners were compared. Hsu's MCB implied that Ufi gel hard is better than its other closest competitors. The Tensile and Shear bond strength values of denture soft reliners were significantly lower than denture hard reliners. How to cite the

  14. Designing an antibacterial acrylic resin using the cosolvent method -Effect of ethanol on the optical and mechanical properties of a cold-cure acrylic resin.

    PubMed

    Nezu, Takashi; Nagano-Takebe, Futami; Endo, Kazuhiko

    2017-09-26

    Antimicrobial cetylpyridinium chloride (CPC) has low miscibility with acrylic resin monomer but can be homogeneously mixed using ethanol as a cosolvent. This study investigated the effects of ethanol addition on the properties of a cold-cure acrylic resin. Ethanol was an excellent cosolvent for CPC and methyl methacrylate monomer (MMA), but the cured resin exhibited a strong change in coloration to yellow (ΔE* ab >8) and a drastically reduced bending strength (from 97 to 25 MPa) and elastic modulus (from 2.7 to 0.6 GPa) when equal volumes of ethanol and monomer were used together, possibly due to the solvation and deactivation of radicals by ethanol. However, these unfavorable effects diminished when the ethanol/MMA ratio was reduced to 0.25, and became smaller when each specimen was depressurized and excess ethanol was removed. Thus, it may be possible to develop a molecularly uniform antibacterial acrylic resin with acceptable color and strength using this simple technique.

  15. Effect of ophthalmic solution components on acrylic intraocular lenses.

    PubMed

    Ayaki, Masahiko; Nishihara, Hitoshi; Yaguchi, Shigeo; Koide, Ryohei

    2007-01-01

    To investigate the effect of ophthalmic solution components on the surface of acrylic intraocular lenses (IOLs). Department of Opthalmology, Showa University School of Medicine. Measurement of the contact angles of ophthalmic solutions on 3 acrylic IOLs was performed. The solutions were diclofenac sodium (Diclod), bromfenac sodium (Bronuck), betamethasone phosphate (Rinderon), dibekacin sulfate (Panimycin), polysorbate 80 (Tween 20), benzalkonium chloride, chlorobutanol, methylparahydroxybenzoate, and propylparahydroxybenzoate. The IOLs were incubated at 35 degrees C for 2 weeks in undiluted ophthalmic solutions and in 1:10 dilutions of ophthalmic solution components. The IOLs were sectioned and observed by scanning electron microscopy. The contact angle of Diclod and Bronuck solutions was the smallest. The contact angle of Rinderon and Panimycin was similar to that of distilled water. Scanning electron microscopy examination of IOLs incubated in ophthalmic solution components showed intralenticular changes. The IOLs immersed in ophthalmic solutions did not show any change, even after extended incubation. The chemical components of ophthalmic solutions, such as surfactants and solvents, permeate acrylic IOLs, suggesting the potential for long-term adverse effects of eyedrops in pseudophakic eyes.

  16. Design and UV-curable behaviour of boron based reactive diluent for epoxy acrylate oligomer used for flame retardant wood coating

    PubMed Central

    Chambhare, Sachin U.; Lokhande, Gunawant P.; Jagtap, Ramanand N.

    2017-01-01

    Abstract Difunctional boron-containing reactive flame retardant for UV-curable epoxy acrylate oligomer was synthesized from phenyl boronic acid and glycidyl methacrylate. The synthesized reactive diluent was utilized to formulate ultraviolet (UV)-curable wood coatings. The weight fractions of reactive diluent in coatings formulation was varied from 5 to 25 wt % with constant photoinitiator concentration. The molecular structure of reactive flame retardant was confirmed by Fourier-transform infrared, Nuclear magnetic resonance (NMR) and 11B NMR spectral analysis. Further, the efficacy of flame retardant behaviour of coatings was evaluated using limiting oxygen index and UL-94 vertical burning test. Thermal stability of cured coatings films were estimated from thermogravimetric and differential scanning calorimetry analysis. The effects of varying concentration of reactive diluent on the viscosity of coatings formulation along with optical, mechanical and chemical resistance properties of coatings were also evaluated. The coatings gel content, water absorption behaviour, contact angle analysis and stain resistance were also studied. PMID:29491786

  17. Vibrational, DFT, and thermal analysis of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate

    NASA Astrophysics Data System (ADS)

    Sangeetha, V.; Govindarajan, M.; Kanagathara, N.; Marchewka, M. K.; Drozd, M.; Anbalagan, G.

    2013-12-01

    New organic crystals of 2,4,6-triamino-1,3,5-triazin-1-ium 3-(prop-2-enoyloxy) propanoate acrylic acid monosolvate monohydrate (MAC) have been obtained from aqueous solution by the slow solvent evaporation method at room temperature. Single crystal X-ray diffraction analysis reveals that the compound crystallises in the triclinic system with centrosymmetric space group P-1. FT-IR and FT-Raman spectra of MAC have been recorded and analyzed. The molecular geometry and vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimization based on density functional theory (DFT) B3LYP method with 6-31G(d,p) basis set. The results of the optimized molecular structure are presented and compared with the experimental X-ray diffraction data. The theoretical results show that the optimized geometry can well reproduce the crystal structure, and the calculated vibrational frequency values show good agreement with experimental values. A study of the electronic properties, such as HOMO and LUMO energies and Molecular electrostatic potential (MEP) were performed. Mulliken charges and NBO charges of the title molecule were also calculated and interpreted. Thermogravimetric analysis has been done to study the thermal behaviour of MAC. The 13C and 1H nuclear magnetic resonance (NMR) chemical shifts of the molecule are calculated by the gauge independent atomic orbital (GIAO) method and compared with experimental results.

  18. Transdermal thiol-acrylate polyethylene glycol hydrogel synthesis using near infrared light

    NASA Astrophysics Data System (ADS)

    Chung, Solchan; Lee, Hwangjae; Kim, Hyung-Seok; Kim, Min-Gon; Lee, Luke P.; Lee, Jae Young

    2016-07-01

    Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation via a mixed-mode reaction with a small increase in temperature (~5 °C) under the optimized conditions. We also achieved successful transdermal gelation via the NIR-assisted photothermal thiol-acryl reactions. This new type of NIR-assisted thiol-acrylate polymerization provides new opportunities for in situ hydrogel formation for injectable hydrogels and delivery of drugs/cells for various biomedical applications.Light-induced polymerization has been widely applied for hydrogel synthesis, which conventionally involves the use of ultraviolet or visible light to activate a photoinitiator for polymerization. However, with these light sources, transdermal gelation is not efficient and feasible due to their substantial interactions with biological systems, and thus a high power is required. In this study, we used biocompatible and tissue-penetrating near infrared (NIR) light to remotely trigger a thiol-acrylate reaction for efficient in vivo gelation with good controllability. Our gelation system includes gold nanorods as a photothermal agent, a thermal initiator, diacrylate polyethylene glycol (PEG), and thiolated PEG. Irradiation with a low-power NIR laser (0.3 W cm-2) could induce gelation

  19. In vivo evaluation of thiolated poly(acrylic acid) as a drug absorption modulator for MRP2 efflux pump substrates.

    PubMed

    Greindl, Melanie; Föger, Florian; Hombach, Juliane; Bernkop-Schnürch, Andreas

    2009-08-01

    Recently, several polymers have been reported to modulate drug absorption by inhibition of intestinal efflux pumps such as multidrug resistance proteins (MRPs) and P-glycoprotein (P-gp). The aim of the present study was to evaluate the efficiency of thiolated poly(acrylic acid) (PAA-Cys) to act as a drug absorption modulator for MRP2 efflux pump substrates in vivo, using sulforhodamine 101 as representative MRP2 substrate. In vitro, the permeation-enhancing effect of unmodified PAA and PAA(250)-Cys(,) displaying 580 micromol free thiol groups per gram polymer, was evaluated by using freshly excised rat intestinal mucosa mounted in Ussing-type chambers. In comparison to that of the buffer control, the sulforhodamine 101 transport in the presence of 0.5% unmodified PAA(250) and 0.5% (w/v) PAA(250)-Cys was 1.3- and 4.0-fold improved, respectively. In vivo, sulforhodamine 101 solutions containing 4% (w/v) unmodified PAA(250) or 4% (w/v) thiolated PAA(250) were orally given to rats. The PAA(250)-Cys solution increased the area under the plasma concentration-time curve (AUC(0-12)) of sulforhodamine 101 3.8-fold in comparison to control and 2.2-fold in comparison to unmodified PAA(250). This in vivo study revealed that PAA(250)-Cys significantly increased the oral bioavailability of MRP2 substrate sulforhodamine 101.

  20. Glass-ionomer cement formulations. II. The synthesis of novel polycarobxylic acids.

    PubMed

    Crisp, S; Kent, B E; Lewis, B G; Ferner, A J; Wilson, A D

    1980-06-01

    The synthesis of many polycarboxylic acids is reported. An account is given of their stability in aqueous solution and the properties of cements formed by their reaction with ion-leachable glasses. A copolymer of acrylic and itaconic acids was found to combine several favorable characteristics.

  1. Do flexible acrylic resin lingual flanges improve retention of mandibular complete dentures?

    PubMed Central

    Ahmed Elmorsy, Ayman Elmorsy; Ahmed Ibraheem, Eman Mostafa; Ela, Alaa Aboul; Fahmy, Ahmed; Nassani, Mohammad Zakaria

    2015-01-01

    Objectives: The aim of this study was to compare the retention of conventional mandibular complete dentures with that of mandibular complete dentures having lingual flanges constructed with flexible acrylic resin “Versacryl.” Materials and Methods: The study sample comprised 10 completely edentulous patients. Each patient received one maxillary complete denture and two mandibular complete dentures. One mandibular denture was made of conventional heat-cured acrylic resin and the other had its lingual flanges made of flexible acrylic resin Versacryl. Digital force-meter was used to measure retention of mandibular dentures at delivery and at 2 weeks and 45 days following denture insertion. Results: The statistical analysis showed that at baseline and follow-up appointments, retention of mandibular complete dentures with flexible lingual flanges was significantly greater than retention of conventional mandibular dentures (P < 0.05). In both types of mandibular dentures, retention of dentures increased significantly over the follow-up period (P < 0.05). Conclusions: The use of flexible acrylic resin lingual flanges in the construction of mandibular complete dentures improved denture retention. PMID:26539387

  2. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.

    PubMed

    Ladner, Yoann; Crétier, Gérard; Faure, Karine

    2012-10-01

    This article shows that there is great interest in using an electrochromatographic microchip made of hexyl acrylate (HA) based porous monolith cast within the channel of a cyclic olefin copolymer (COC) device. The monolith is simultaneously in situ synthesized and anchored to the inner walls of the channel in less than 10 min. By appropriate choice of light intensity used during the synthesis, the separation efficiency obtained for nonpolar solutes such as polycyclic aromatic hydrocarbons (PAH) is increased up to 250 000 plates/m. The performance of this HA-filled COC microchip was investigated for a wide range of analytes of varying nature. The reversed-phase separation of four aflatoxins is obtained in less than 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is possible thanks to the superimposition of the differences in electrophoretic mobility on the chromatographic process. The durability of the system at pH 13 allows the separation of five biogenic amines and the quantitative determination of two of them in numerous wine samples. The feasibility of on-line preconcentration is also demonstrated. Hydrophilic surface modification of COC channel via UV-photografting with poly(ethylene glycol) methacrylate (PEGMA) before in situ synthesis of HA, is necessary to reduce the adsorption of very hydrophobic solutes such as PAH during enrichment. The detection limit of fluoranthene is decreased down to less than 1 ppb with a preconcentration of 4.5 h on the HA-filled PEGMA functionalized COC microchip. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Use of hydrophobically modified inulin for the preparation of polymethyl methacrylate/polybutyl acrylate latex particles using a semicontinuous reactor.

    PubMed

    Obiols-Rabasa, M; Ramos, J; Forcada, J; Esquena, J; Solans, C; Levecke, B; Booten, K; Tadros, Tharwat F

    2010-06-01

    The seeded semicontinuous emulsion copolymerization of methyl methacrylate (MMA) and butyl acrylate (BuA) stabilized with a graft polymeric surfactant based on inulin, INUTEC SP1, as well as its mixture with sodium lauryl sulfate (SLS) is described. The mixture of SLS and Brij58 (alcohol ethoxylated) and the mixture of SLS and Pluronic P85 (block copolymer PEO-PPO-PEO) are also used as surfactant systems. The addition of methacrylic acid (MAA) or acrylic acid (AA) as comonomers is also studied. Previous results proved this inulin-derivative surfactant, INUTEC SP1, to be very effective on synthesizing latexes using a very low surfactant concentration. The kinetic features of the emulsion polymerization (instantaneous conversion and total conversion) were gravimetrically determined along the reactions. Latex dispersions were characterized by photon correlation spectroscopy (PCS) and transmission electron microscopy (TEM) to obtain the average particle size, the particle size distributions (PSDs) as well as the polydispersity index (PdI). The stability was determined by turbidimetry measurements and expressed in terms of critical coagulation concentration. The results showed that the use of the graft polymeric surfactant allowed obtaining highly stable nanoparticles, at low surfactant concentrations and high solid contents (up to 37 wt %). This is an improvement with respect to previous works, in which a mixture of the graft polymeric surfactant with another surfactant was required to obtain stable nanoparticles with low polydispersity, at high solid content. In the present work, low polydispersity was achieved using INUTEC as the only emulsifier, which was related to the absence of secondary nucleations. When a mixture of INUTEC SP1 and SLS is used, a wider PSD is obtained due to secondary nucleations. Replacing INUTEC SP1 by other nonionic surfactants such as Brij58 or Pluronic P85 leads to an increase of average particle size and wider PSD.

  4. Strong composition dependence of adhesive properties of ultraviolet curing adhesives with modified acrylates

    NASA Astrophysics Data System (ADS)

    Feng, Yefeng; Li, Yandong; Wang, Fupeng; Peng, Cheng; Xu, Zhichao; Hu, Jianbing

    2018-05-01

    Ultraviolet (UV) curable adhesives have been widely researched in fields of health care and electronic components. UV curing systems with modified acrylic ester prepolymers have been frequently employed. In order to clarify composition dependence of adhesive properties of adhesives containing modified acrylates, in this work, several UV curing adhesives bearing urethane and epoxy acrylates were designed and fabricated. The effects of prepolymer, diluent, feed ratio, initiator and assistant on adhesive performances were investigated. This work might offer a facile route to gain promising high-performance UV curable adhesives with desired adhesive traits through regulating their compositions.

  5. Coumarin-Based Oxime Esters: Photobleachable and Versatile Unimolecular Initiators for Acrylate and Thiol-Based Click Photopolymerization under Visible Light-Emitting Diode Light Irradiation.

    PubMed

    Li, Zhiquan; Zou, Xiucheng; Zhu, Guigang; Liu, Xiaoya; Liu, Ren

    2018-05-09

    Developing efficient unimolecular visible light-emitting diode (LED) light photoinitiators (PIs) with photobleaching capability, which are essential for various biomedical applications and photopolymerization of thick materials, remains a great challenge. Herein, we demonstrate the synthesis of a series of novel PIs, containing coumarin moieties as chromophores and oxime ester groups as initiation functionalities and explore their structure-activity relationship. The investigated oxime esters can effectively induce acrylates and thiol-based click photopolymerization under 450 nm visible LED light irradiation. The initiator O-3 exhibited excellent photobleaching capability and enabled photopolymerization of thick materials (∼4.8 mm). The efficient unimolecular photobleachable initiators show great potential in dental materials and 3D printings.

  6. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    ERIC Educational Resources Information Center

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  7. Effect of silver nano particles on flexural strength of acrylic resins.

    PubMed

    Sodagar, Ahmad; Kassaee, Mohammad Zaman; Akhavan, Azam; Javadi, Negar; Arab, Sepideh; Kharazifard, Mohammad Javad

    2012-04-01

    Poly(methyl methacrylate), PMMA, is widely used for fabrication of removable orthodontic appliances. Silver nano particles (AgNps) have been added to PMMA because of their antimicrobial properties. The aim of this study is to investigate the effect of AgNps on the flexural strength of PMMA. Acrylic liquid containing 0.05% and 0.2% AgNps was prepared for two kinds of acrylic resins: Rapid Repair &Selecta Plus. Two groups without AgNps were used as control groups. For each one, flexural strength was investigated via Three Point Bending method for the 15 acrylic blocks. Two-way ANOVA, one way ANOVA and Tukey tests were used for statistical analysis. Rapid Repair without AgNps showed the highest flexural strength. Addition of 0.05% AgNps to Rapid Repair, significantly decreased its flexural strength while, continuing the addition up to 0.2% increased it nearly up to its primary level. In contrast, addition of AgNps to Selecta Plus increased its flexural strength but addition of 0.05% nano particles was more effective than 0.2%. The effect of AgNps on flexural strength of PMMA depends on several factors including the type of acrylics and the concentrations of nano particles. Copyright © 2011 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOEpatents

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  9. Acrylic esters in radiation polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  10. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up tomore » 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.« less

  11. Peculiarities of the photoinitiator-free photopolymerization of pentabrominated and pentafluorinated aromatic acrylates and methacrylates.

    PubMed

    Daikos, Olesya; Naumov, Sergej; Knolle, Wolfgang; Heymann, Katja; Scherzer, Tom

    2016-11-30

    Pentabrominated and fluorinated aromatic (meth)acrylates as well as their non-halogenated counterparts have been studied with the aim to avoid conventional photoinitiators and to overcome some negative consequences related to their use. Therefore, RTIR spectroscopy, laser flash photolysis and GC/MS were utilized. Even low concentrations (1 to 5 wt%) of brominated (meth)acrylates in the model varnish lead to initiation of a photopolymerization reaction under exposure to UV light with λ > 300 nm. This is due to the fact that excitation of the aryl moiety leads to the homolysis of bromine-phenyl bonds with a high quantum yield of ∼0.15-0.3. Both, bromine radicals released from either ortho, meta or para position as well as the corresponding tetrabromoaryl radicals, may initiate the polymerization of brominated aromatic (meth)acrylates. In contrast, fluorinated aromatic (meth)acrylates undergo α-cleavage of the carboxyl group (as in the case of non-halogenated aromatic (meth)acrylates), if excitation of the acrylic double bonds is done with UV-C light (λ < 280 nm). Radical formation occurs with a comparable quantum yield of 0.1-0.22 (fluorinated) and 0.16-0.36 (non-halogenated compounds), despite the different pathway of fragmentation. Thus, in all cases the efficiency of initiation is comparable to conventional photoinitiators. Quantum chemical calculations of orbitals involved and of the Gibbs free energy of transients and products support the suggested reaction pathway.

  12. Accumulation of Polyhydroxyalkanoic Acid Containing Large Amounts of Unsaturated Monomers in Pseudomonas fluorescens BM07 Utilizing Saccharides and Its Inhibition by 2-Bromooctanoic Acid

    PubMed Central

    Lee, Ho-Joo; Choi, Mun Hwan; Kim, Tae-Un; Yoon, Sung Chul

    2001-01-01

    A psychrotrophic bacterium, Pseudomonas fluorescens BM07, which is able to accumulate polyhydroxyalkanoic acid (PHA) containing large amounts of 3-hydroxy-cis-5-dodecenoate unit up to 35 mol% in the cell from unrelated substrates such as fructose, succinate, etc., was isolated from an activated sludge in a municipal wastewater treatment plant. When it was grown on heptanoic acid (C7) to hexadecanoic acid (C16) as the sole carbon source, the monomer compositional characteristics of the synthesized PHA were similar to those observed in other fluorescent pseudomonads belonging to rRNA homology group I. However, growth on stearic acid (C18) led to no PHA accumulation, but instead free stearic acid was stored in the cell. The existence of the linkage between fatty acid de novo synthesis and PHA synthesis was confirmed by using inhibitors such as acrylic acid and two other compounds, 2-bromooctanoic acid and 4-pentenoic acid, which are known to inhibit β-oxidation enzymes in animal cells. Acrylic acid completely inhibited PHA synthesis at a concentration of 4 mM in 40 mM octanoate-grown cells, but no inhibition of PHA synthesis occurred in 70 mM fructose-grown cells in the presence of 1 to 5 mM acrylic acid. 2-Bromooctanoic acid and 4-pentenoic acid were found to much inhibit PHA synthesis much more strongly in fructose-grown cells than in octanoate-grown cells over concentrations ranging from 1 to 5 mM. However, 2-bromooctanoic acid and 4-pentenoic acid did not inhibit cell growth at all in the fructose media. Especially, with the cells grown on fructose, 2-bromooctanoic acid exhibited a steep rise in the percent PHA synthesis inhibition over a small range of concentrations below 100 μM, a finding indicative of a very specific inhibition, whereas 4-pentenoic acid showed a broad, featureless concentration dependence, suggesting a rather nonspecific inhibition. The apparent inhibition constant Ki (the concentration for 50% inhibition of PHA synthesis) for 2

  13. Cellulose Nanofibrils Aerogel Cross-Linked by Poly(vinyl alcohol) and Acrylic Acid for Efficient and Recycled Adsorption with Heavy Metal Ions.

    PubMed

    She, Jiarong; Tian, Cuihua; Wu, Yiqiang; Li, Xianjun; Luo, Sha; Qing, Yan; Jiang, Zheng

    2018-06-01

    Cellulose nanofibrils (CNFs), disintegrated from natural fibers, are promising alternatives in wastewater purification for the porous structure and numerous hydroxyls. The pristine CNFs aerogel has limited mechanical strength and are vulnerable to collapse when exposed to water. In this work, eco-friendly and recycled CNFs aerogel adsorbents were successfully prepared using cellulose nanofibrils (CNFs), which cross-linked by poly(vinyl alcohol) (PVA) and acrylic acid (AA). The combination of PVA and AA endowed CNFs aerogel strong three-dimensional porous structure and desirable adsorption properties. The heavy metal ions were adsorbed on the CNFs-PVA-AA (CPA) adsorbents efficiently and the maximum adsorption capacities for Cu2+ and Pb2+ approached 30.0 mg/g and 131.5 mg/g, respectively. The CPA adsorbent also showed excellent reusability and their adsorption capacities maintained 89% and 88% for Cu2+ and Pb2+ after 5 repeated uses. The adsorption of these heavy metal ions were confirmed to follow pseudo-second-order kinetic and Langmuir isotherm model. The functions of C ═ O and -OH were the major adsorption sites. Chemical adsorption combined with the porous physical adsorption made the CPA to be excellent adsorbent for the removal of heavy metal ions in wastewater.

  14. Bacterial cellulose based hydrogel (BC-g-AA) and preliminary result of swelling behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakam, Adil; Lazim, Azwan Mat; Abdul Rahman, I. Irman

    2013-11-27

    In this study, hydrogel based on Bacterial cellulose (BC) or local known as Nata de Coco, which grafted with monomer: Acrylic acid (AA) is synthesis by using gamma radiation technique. These hydrogel (BC-g-AA) has unique characteristic whereby responsive to pH buffer solution.

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .../acrylic copolymers are copolymers obtained by reaction of substances permitted by § 177.1010(a) (1), (2... solvent or solvents characterizing the type of food and under the conditions of time and temperature...

  16. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  17. Self-initiation of UV photopolymerization reactions using tetrahalogenated bisphenol A (meth)acrylates.

    PubMed

    Pelras, Théophile; Knolle, Wolfgang; Naumov, Sergej; Heymann, Katja; Daikos, Olesya; Scherzer, Tom

    2017-05-17

    The potential of tetrachlorinated and tetrabrominated bisphenol A diacrylates and dimethacrylates for self-initiation of a radical photopolymerization was investigated. The kinetics of the photopolymerization of an acrylic model varnish containing halogenated monomers was studied by real-time FTIR spectroscopy, whereas the formation of reactive species and secondary products was elucidated by laser flash photolysis and product analysis by GC-MS after steady-state photolysis. The interpretation of the experimental data and the analysis of possible reaction pathways were assisted by quantum chemical calculations. It was shown that all halogenated monomers lead to a significant acceleration of the photopolymerization kinetics at a minimum concentration of 5 wt%. Steady-state and laser flash photolysis measurements as well as quantum chemical calculations showed that brominated and chlorinated samples do not follow the same pathway to generate radical species. Whereas chlorinated (meth)acrylates may cleave only at the C-O bonds of the carboxyl groups resulting in acrolein and oxyl radicals for initiation, brominated monomers may cleave either at the C-O bonds or at the C-Br bonds delivering aryl and bromine radicals. The quantum yields for the photolysis of the halogenated monomers were found to be in the order of 0.1 for acrylates and 0.2 for methacrylates (with an estimated error of 25%), independently of the attached Br and Cl halogens. Finally, the trihalogenated bisphenol A di(meth)acrylate radicals and the acrolein radicals were found to show the highest efficiencies for the reaction with another acrylic double bond leading to the formation of a polymer network.

  18. An image processing approach for investigation on transport of iron oxide nanoparticles (FE3O4) stabilized with poly acrylic acid in two-dimensional porous media

    NASA Astrophysics Data System (ADS)

    Golzar, M.; Azhdary Moghaddam, M.; Saghravani, S. F.; Dahrazma, B.

    2018-04-01

    Iron oxide nanoparticles were stabilized using poly acrylic acid (PAA) to yield stabilized slurry of Iron oxide nanoparticles. A two-dimensional physical model filled by glass beads was used to study the fate and transport of the iron oxide nanoparticles stabilized with PAA in porous media under saturated, steady-state flow conditions. Transport data for a nonreactive tracer, slurry of iron oxide nanoparticles stabilized with PAA were collected under similar flow conditions. The results show that low concentration slurry of iron oxide nanoparticles stabilized with PAA can be transported like a tracer without significant retardation. The image processing technique was employed to measure the tracer/nanoparticle concentration inside the 2-D model filled with glass beads. The groundwater flow model, Visual MODFLOW, was used to model the observed transport patterns through MT3DMS module. Finally, it was demonstrated that the numerical model MODFLOW can be used to predict the fate and transport characteristics of nanoparticles stabilized with PAA in groundwater aquifers.

  19. Preparation by Poly(Acrylic Acid) Sol-Gel Method and Thermoelectric Properties of γ-Na x CoO2 Bulk Materials

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyu; Zhang, Li; Tang, Xinfeng

    2017-11-01

    γ-Na x CoO2 single-phase powders have been synthesized by a poly(acrylic acid) (PAA) sol-gel (SG) method, and γ-Na x CoO2 bulk ceramic fabricated using spark plasma sintering. The effects of the PAA concentration on the sample phase composition and morphology were investigated. The thermoelectric properties of the γ-Na x CoO2 bulk ceramic were also studied. The results show that the PAA concentration did not significantly affect the crystalline phase of the product. However, agglomeration of γ-Na x CoO2 crystals was suppressed by the steric effect of PAA. The Na x CoO2 bulk ceramic obtained using the PAA SG method had higher crystallographic anisotropy, better chemical homogeneity, and higher density than the sample obtained by solid-state reaction (SSR), leading to improved thermoelectric performance. The PAA SG sample had power factor (in-plane PF = σS 2) of 0.61 mW m-1 K-2 and dimensionless figure of merit ( ZT) along the in-plane direction of 0.19 at 900 K, higher than for the SSR sample (in-plane PF = 0.51 mW m-1 K-2, in-plane ZT = 0.17). These results demonstrate that a simple and feasible PAA SG method can be used for synthesis of Na x CoO2 ceramics with improved thermoelectric properties.

  20. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  1. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil.

    PubMed

    Bashir, Shahid; Teo, Yin Yin; Naeem, Sumaira; Ramesh, S; Ramesh, K

    2017-01-01

    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug

  2. pH responsive N-succinyl chitosan/Poly (acrylamide-co-acrylic acid) hydrogels and in vitro release of 5-fluorouracil

    PubMed Central

    Bashir, Shahid; Teo, Yin Yin; Naeem, Sumaira; Ramesh, S.; Ramesh, K.

    2017-01-01

    There has been significant progress in the last few decades in addressing the biomedical applications of polymer hydrogels. Particularly, stimuli responsive hydrogels have been inspected as elegant drug delivery systems capable to deliver at the appropriate site of action within the specific time. The present work describes the synthesis of pH responsive semi-interpenetrating network (semi-IPN) hydrogels of N-succinyl-chitosan (NSC) via Schiff base mechanism using glutaraldehyde as a crosslinking agent and Poly (acrylamide-co-acrylic acid)(Poly (AAm-co-AA)) was embedded within the N-succinyl chitosan network. The physico-chemical interactions were characterized by Fourier transform infrared (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and field emission scanning electron microscope (FESEM). The synthesized hydrogels constitute porous structure. The swelling ability was analyzed in physiological mediums of pH 7.4 and pH 1.2 at 37°C. Swelling properties of formulations with various amounts of NSC/ Poly (AAm-co-AA) and crosslinking agent at pH 7.4 and pH 1.2 were investigated. Hydrogels showed higher swelling ratios at pH 7.4 while lower at pH 1.2. Swelling kinetics and diffusion parameters were also determined. Drug loading, encapsulation efficiency, and in vitro release of 5-fluorouracil (5-FU) from the synthesized hydrogels were observed. In vitro release profile revealed the significant influence of pH, amount of NSC, Poly (AAm-co-AA), and crosslinking agent on the release of 5-FU. Accordingly, rapid and large release of drug was observed at pH 7.4 than at pH 1.2. The maximum encapsulation efficiency and release of 5-FU from SP2 were found to be 72.45% and 85.99%, respectively. Kinetics of drug release suggested controlled release mechanism of 5-FU is according to trend of non-Fickian. From the above results, it can be concluded that the synthesized hydrogels have capability to adapt their potential exploitation as targeted oral drug

  3. Effect of autoclave postpolymerization treatments on the fracture toughness of autopolymerizing dental acrylic resins.

    PubMed

    Durkan, Rukiye; Gürbüz, Ayhan; Yilmaz, Burak; Özel, M Birol; Bağış, Bora

    2012-06-26

    Microwave and water bath postpolymerization have been suggested as methods to improve the mechanical properties of heat and autopolymerizing acrylic resins. However, the effects of autoclave heating on the fracture properties of autopolymerizing acrylic resins have not been investigated. The aim of this study was to assess the effectiveness of various autoclave postpolymerization methods on the fracture properties of 3 different autopolymerizing acrylic resins. Forty-two specimens of 3 different autopolymerizing acrylic resins (Orthocryl, Paladent RR and Futurajet) were fabricated (40x8x4mm), and each group was further divided into 6 subgroups (n=7). Control group specimens remained as processed (Group 1). The first test group was postpolymerized in a cassette autoclave at 135°C for 6 minutes and the other groups were postpolymerized in a conventional autoclave at 130°C using different time settings (5, 10, 20 or 30 minutes). Fracture toughness was then measured with a three-point bending test. Data were analyzed by ANOVA followed by the Duncan test (α=0.05). The fracture toughness of Orthocryl and Paladent-RR acrylic resins significantly increased following conventional autoclave postpolymerization at 130°C for 10 minutes (P<.05). However, the fracture toughness of autoclave postpolymerized Futurajet was not significantly different than its control specimens (P<.05). The fracture toughness of Futurajet was significantly less than Paladent RR and Orthocryl specimens when autoclaved at 130°C for 10 minutes. Within the limitations of this study, it can be suggested that autoclave postpolymerization is an effective method for increasing the fracture toughness of tested autoploymerized acrylic resins.

  4. Surface roughness of denture bases after immersion in fishcake vinegar solution

    NASA Astrophysics Data System (ADS)

    Kodir, K.; Tanti, I.; Odang, R. W.

    2017-08-01

    Fishcake is a common food in Palembang city and is usually eaten with fishcake vinegar sauce. Fishcake vinegar solution contains acetic acid and chloride and fluoride ions, all of which cause surface roughness on the denture base material. The objective of this study was to analyze the effect of fishcake vinegar solution on the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy denture bases. This laboratory-based experimental study was performed on heat-cured acrylic resins, thermoplastic nylon specimen plates formed in 15 × 10 × 1 mm shapes, and cobalt-chromium alloy specimens in cylinder forms with a 7.7 mm diameter and 17.5-mm height. Each group consisted of 10 pieces. Each specimen was immersed in a fishcake vinegar solution at 37 °C for 4 days. The surface roughness was measured using a profilometer before and after immersion. Statistical analyses showed significant (p < 0.05) changes in heat-cured acrylic resin, thermoplastic nylon, and the cobalt chromium alloy plates after immersion in a fishcake vinegar solution for 4 days. Fishcake vinegar solution affects the surface roughness of heat-cured acrylic resin, thermoplastic nylon, and cobalt-chromium alloy plates after a 4-day immersion period. The greatest surface roughness change occurred in the thermoplastic nylon plate, while the lowest change occurred in the cobalt-chromium alloy.

  5. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  6. Chloromonilinic Acids C and D, Phytotoxic Tetrasubstituted 3-Chromanonacrylic Acids Isolated from Cochliobolus australiensis with Potential Herbicidal Activity against Buffelgrass (Cenchrus ciliaris).

    PubMed

    Masi, Marco; Meyer, Susan; Clement, Suzette; Pescitelli, Gennaro; Cimmino, Alessio; Cristofaro, Massimo; Evidente, Antonio

    2017-10-27

    The fungal pathogen Cochliobolus australiensis isolated from infected leaves of the invasive weed buffelgrass (Pennisetum ciliare) was grown in vitro to evaluate its ability to produce phytotoxic metabolites that could potentially be used as natural herbicides against this weed. Two new tetrasubstituted 3-chromanonacrylic acids, named chloromonilinic acids C (1) and D (2), were isolated from the liquid cultures of C. australiensis, together with the known chloromonilinic acid B. Chloromonilinic acids C and D were characterized by spectroscopic and chemical methods as (E)-3-chloro-3-[(5-hydroxy-3-(1-hydroxy-2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid and (Z)-3-chloro-3-[(5-hydroxy-3-(2-methoxy-2-oxoethyl)-7-methyl-4-oxo-4H-chromen-2-yl)]acrylic acid, respectively. The stereochemistry of chloromonilinic acids C and D was determined using a combination of spectroscopic and computational methods, including electronic circular dichroism. The fungus produced these compounds in two different liquid media together with cochliotoxin, radicinin, radicinol, and their 3-epimers. The radicinin-related compounds were also produced when the fungus was grown in wheat seed solid culture, but chloromonilinic acids were not found in the solid culture organic extract. All three chloromonilinic acids were toxic to buffelgrass in a seedling elongation bioassay, with significantly delayed germination and dramatically reduced radicle growth, especially at a concentration of 5 × 10 -3 M.

  7. Shear bond strength between autopolymerizing acrylic resin and Co-Cr alloy using different primers.

    PubMed

    Sanohkan, Sasiwimol; Urapepon, Somchai; Harnirattisai, Choltacha; Sirisinha, Chakrit; Sunintaboon, Panya

    2012-01-01

    This study aimed to examine the shear bond strength between cobalt chromium alloy and autopolymerizing acrylic resin using experimental primers containing 5, 10, and 15 wt% of 4-methacryloxyethyl trimellitic anhydride or 1, 2, and 3 wt% of 3-methacryloxypropyl-trimethoxysilane comparison to 5 commercial primers (ML primers, Alloy primer, Metal/Zirconia primer, Monobond S, and Monobond plus). Sixty alloy specimens were sandblasted and treated with each primer before bonded with an acrylic resin. The control group was not primed. The shear bond strengths were tested and statistically compared. Specimens treated with commercial primers significantly increased the shear bond strength of acrylic resin to cobalt chromium alloy (p<0.05). The highest shear bond strength was found in the Alloy primer group. Among experimental group, using 10 wt% of 4-methacryloxyethyl trimellitic anhydride -or 2 wt% of 3-methacryloxypropyltrimethoxysilane enhanced highest shear bond strength. The experimental and commercial primers in this study all improved bonding of acrylic resin to cobalt chromium alloy.

  8. Effect of repeated immersion solution cycles on the color stability of denture tooth acrylic resins

    PubMed Central

    da SILVA, Paulo Maurício Batista; ACOSTA, Emílio José Tabaré Rodríguez; JACOBINA, Matheus; PINTO, Luciana de Rezende; PORTO, Vinícius Carvalho

    2011-01-01

    Objective Chemical solutions have been widely used for disinfection of dentures, but their effect on color stability of denture tooth acrylic resins after repeated procedures is still unclear. The aim of this in vitro study was to evaluate whether repeated cycles of chemical disinfectants affected the color stability of two denture tooth acrylic resins. Material and Methods Sixty disc-shaped specimens (40 mm x 3 mm) were fabricated from two different brands (Artiplus and Trilux) of denture tooth acrylic resin. The specimens from each brand (n=30) were randomly divided into 6 groups (n=5) and immersed in the following solutions: distilled water (control group) and 5 disinfecting solutions (1% sodium hypochlorite, 2% sodium hypochlorite, 5.25% sodium hypochlorite, 2% glutaraldehyde, and 4% chlorhexidine gluconate). Tooth color measurements were made by spectrophotometry. Before disinfection, the initial color of each tooth was recorded. Further color measurements were determined after subjecting the specimens to 7, 21, 30, 45, 60, and 90 immersion cycles in each tested solution. Color differences (ΔE*) were determined using the CIE L*a*b* color system. Data were analyzed using two-way repeated measures analysis of variance (ANOVA) followed by Tukey tests. The significance level was set at 5%. Results There were statistically significant differences in ΔE* among the 5 disinfectants and water during the 90 cycles of immersion for both denture tooth acrylic resins. Distilled water promoted the greatest color change in both denture tooth acrylic resins, nevertheless none of tested disinfectants promoted ΔE* values higher than 1.0 on these acrylic materials during the 90 cycles of disinfection. Conclusions Repeated immersion cycles in disinfecting solutions alter ∆E* values, however these values do not compromise the color of the tested denture tooth acrylic resins because they are imperceptible to the human eye. PMID:22230997

  9. Computational study of chain transfer to monomer reactions in high-temperature polymerization of alkyl acrylates.

    PubMed

    Moghadam, Nazanin; Liu, Shi; Srinivasan, Sriraj; Grady, Michael C; Soroush, Masoud; Rappe, Andrew M

    2013-03-28

    This article presents a computational study of chain transfer to monomer (CTM) reactions in self-initiated high-temperature homopolymerization of alkyl acrylates (methyl, ethyl, and n-butyl acrylate). Several mechanisms of CTM are studied. The effects of the length of live polymer chains and the type of monoradical that initiated the live polymer chains on the energy barriers and rate constants of the involved reaction steps are investigated theoretically. All calculations are carried out using density functional theory. Three types of hybrid functionals (B3LYP, X3LYP, and M06-2X) and four basis sets (6-31G(d), 6-31G(d,p), 6-311G(d), and 6-311G(d,p)) are applied to predict the molecular geometries of the reactants, products and transition sates, and energy barriers. Transition state theory is used to estimate rate constants. The results indicate that abstraction of a hydrogen atom (by live polymer chains) from the methyl group in methyl acrylate, the methylene group in ethyl acrylate, and methylene groups in n-butyl acrylate are the most likely mechanisms of CTM. Also, the rate constants of CTM reactions calculated using M06-2X are in good agreement with those estimated from polymer sample measurements using macroscopic mechanistic models. The rate constant values do not change significantly with the length of live polymer chains. Abstraction of a hydrogen atom by a tertiary radical has a higher energy barrier than abstraction by a secondary radical, which agrees with experimental findings. The calculated and experimental NMR spectra of dead polymer chains produced by CTM reactions are comparable. This theoretical/computational study reveals that CTM occurs most likely via hydrogen abstraction by live polymer chains from the methyl group of methyl acrylate and methylene group(s) of ethyl (n-butyl) acrylate.

  10. Assessment of surface hardness of acrylic resins submitted to accelerated artificial aging.

    PubMed

    Tornavoi, D C; Agnelli, J A M; Lepri, C P; Mazzetto, M O; Botelho, A L; Soares, R G; Dos Reis, A C

    2012-06-01

    The aim of this study was to assess the influence of accelerated artificial aging (AAA) on the surface hardness of acrylic resins. The following three commercial brands of acrylic resins were tested: Vipi Flash (autopolymerized resin), Vipi Wave (microwave heat-polymerized resin) and Vipi Cril (conventional heat-polymerized resin). To perform the tests, 21 test specimens (65x10x3 mm) were made, 7 for each resin. Three surface hardness readings were performed for each test specimen, before and after AAA, and the means were submitted to the following tests: Kolmogorov-Smirnov (P>0.05), Levene Statistic, Two-way ANOVA, Tukey Post Hoc (P<0.05) with the SPSS Statistical Software 17.0. The analysis of the factors showed significant differences in the hardness values (P<0.05). Before aging, the autopolymerized acrylic resin Vipi Flash showed lower hardness values when compared with the heat-polymerized resin Vipi Cril (P=0.001). After aging, the 3 materials showed similar performance when compared among them. The Vipi Cril was the only one affected by AAA and showed lower hardness values after this procedure (Pp=0.003). It may be concluded that accelerated artificial aging influenced surface hardness of heat-polymerized acrylic resin Vipi Cril.

  11. Processing factors affecting the clarity of a rapid-curing clear acrylic resin.

    PubMed

    Keng, S B; Cruickshanks-Boyd, D W; Davies, E H

    1979-10-01

    The difficulty in repeatedly producing unblemished, clear acrylic resin in the dental laboratory has hindered its wider use, despite its many advantages over coloured material. Recently, rapid-cure dental acrylics have been introduced, which are available in both clear and coloured forms. This investigation examined various factors which may influence the production of unblemished, rapid-curing, clear acrylic resin. Utilizing a quantitative assessment of clarity, the most important factor influencing the clarity of the resin is shown to be the choice of separating medium. Tin-foil produces extremely high clarity, but alginate mould separator causes surface blanching. However, this surface blanching can be removed by polishing. Porosity, caused by too rapid curing, and stone model dryness are of only secondary importance. Possible water contamination of the monomer liquid due to accidental exposure only affects clarity at very high levels of contamination.

  12. Addition of phosphotungstic acid to ethanol for dehydration improves both the ultrastructure and antigenicity of pituitary tissue embedded in LR White acrylic resin.

    PubMed

    Sakai, Yuko; Hosaka, Masahiro; Hira, Yoshiki; Watanabe, Tsuyoshi

    2005-12-01

    Although hydrophilic acrylic resins including LR White have been widely utilized as embedding media for immunocytochemical use, the constituents of tissues are often extracted by the resin monomer during the infiltration process of the embedment, resulting in a discernible impairment of the ultrastructure when the tissue is weakly fixed only with aldehydes. To minimize the extraction by the resin monomer, the embedding procedure with LR White resin was reexamined in the present study. Among the treatments tested, a partial dehydration with 70% ethanol containing 2% phosphotungstic acid (PTA) well preserved the ultrastructure of the pituitary tissue without spoiling the antigenicity of LHbeta and other representative markers for the Golgi apparatus. In addition, treatment with 1% tannic acid (TA) prior to the dehydration described above synergistically improved both the ultrastructure and antigenicity of the tissue so that the orientation of the Golgi apparatus could be determined by double immunogold labeling with commercially available anti-GM130 and anti-TGN38 antibodies. The ultrathin sections from the LR White-embedded tissue treated with TA and dehydrated in 70% ethanol containing 2% PTA also enhanced contrast without conventional heavy-metal staining with uranyl acetate and lead citrate. Our findings further suggest that the precipitation of TA and PTA protected the tissue from being extracted during the embedment, probably because an insoluble complex was transiently formed with the constituents of the tissue. This simple modification of the LR White embedment can extend the application of post-embedding immunocytochemistry as an alternative to pre-embedding immunolabeling with frozen ultrathin sections.

  13. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    PubMed

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  14. Fabrication of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres via Pickering high internal phase emulsion for removal of Cu(2+) and Cd(2.).

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Zong, Li; Wang, Feng; Wang, Aiqin

    2016-09-20

    A series of magnetic hydroxypropyl cellulose-g-poly(acrylic acid) porous spheres were prepared via O/W Pickering high internal phase emulsions (HIPEs) integrated precipitation polymerization. The structure and composition of modified Fe3O4 and porous structures were characterized by TEM, XRD, TGA and SEM. The results indicated that the silanized Fe3O4 can influence greatly the pore structure of magnetic porous sphere in addition to non-negligible impacts of the proportion of mixed solvent and co-surfactant. The adsorption experiment demonstrated that the adsorption equilibrium can be reached within 40min and the maximal adsorption capacity was 300.00mg/g for Cd(2+) and 242.72mg/g for Cu(2+), suggesting its fast adsorption kinetics and high adsorption capacity. After five adsorption-desorption cycles, no significant changes in the adsorption capacity were observed, suggesting its excellent reusability. The magnetic porous sphere can be easily separated from the solution and then find its potential as a recyclable material for highly efficient removal of heavy metals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Autonomic healing of acrylic bone cement.

    PubMed

    Gladman, A Sydney; Celestine, Asha-Dee N; Sottos, Nancy R; White, Scott R

    2015-01-28

    Self-healing in orthopedic bone cement is demonstrated with a novel thermoplastic solvent-bonding approach. Low toxicity solvent-filled microcapsules, embedded in a commercial acrylic bone cement matrix, enable recovery of up to 80% of the virgin fracture toughness of the cement at room and body temperature conditions without external stimuli or human intervention. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer

    PubMed Central

    Tan, Xuhua; Zhan, Jiezhao; Zhu, Yi; Cao, Ji; Wang, Lin; Liu, Sa; Wang, Yingjun; Liu, Zhenzhen; Qin, Yingyan; Wu, Mingxing; Liu, Yizhi; Ren, Li

    2017-01-01

    Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage. PMID:28084469

  17. Development and evaluation of a novel polymeric hydrogel of sucrose acrylate-co-polymethylacrylic acid for oral curcumin delivery.

    PubMed

    Huang, Sijin; Wang, Jialei; Shang, Qing

    2017-02-01

    A monomer of sucrose acrylate (AC-sucrose) was synthesized by conjugating starting compound sucrose with methyl acrylate (MA). The obtained AC-sucrose was characterized by mass spectrometry (MS) and Fourier transform infrared (FTIR) spectroscopy. AC-sucrose was selected as a monomer to fabricate a novel pH sensitive hydrogel via free radical polymerization. The inner morphology of the final hydrogel was observed with an S-4800 scanning electron microscope (SEM). The swelling and de-swelling behaviors of the hydrogel chips were also studied. Curcumin (CUR) was selected as a model drug and loaded into the final hydrogel. The release profiles of CUR were performed via dialysis method in pH 1.2, 6.8 and 7.4 buffers, respectively. Mass and FTIR spectra confirmed the synthesis of AC-sucrose. SEM photographs showed that poly(AC-sucrose-co-MAA) hydrogels had many 3D meshes. In pH 1.2 buffer, the hydrogel chips showed the biggest swelling ratio (SR) of 34.4 ± 1.9%. However, in pH 7.4 buffer, the SRs of the hydrogel chips reached to 368.7 ± 28.0%, which suggested that the hydrogel had an excellent pH sensibility. The releasing profiles showed that only 4.6 ± 0.4% of CUR was released in pH 1.2 buffer but 93.7 ± 4.7% of CUR was diffused into pH 7.4 buffer. These data suggested that the CUR-loaded poly (AC-sucrose-co-MAA) hydrogel could direct CUR to release in basic environments.

  18. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    NASA Astrophysics Data System (ADS)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  19. Accelerating effects of cellulase in the removal of denture adhesives from acrylic denture bases.

    PubMed

    Harada-Hada, Kae; Mimura, Sumiyo; Hong, Guang; Hashida, Tatsumi; Abekura, Hitoshi; Murata, Hiroshi; Nishimura, Masahiro; Nikawa, Hiroki

    2017-04-01

    Studies of effective methods for the easy removal of denture adhesives from a denture base are not well represented in the literature. We previously assessed the removability of denture adhesives by immersing within denture cleaners, showing that some cleaners have a weak effect, insufficiently effective in daily use. In this study, we prepared a cellulase, as a potential component for denture adhesive removers, and we examined whether the addition of cellulase to denture cleaners is effective in the removal of cream denture adhesives. We prepared the cellulase Meicelase as one component for the liquefaction of denture adhesives. We used two denture cleaners and two cream adhesives. After the immersion of plates in sample solutions, we evaluated the area of the sample plate still covered with adhesives. Biofilm removal assay was also performed using denture cleaners containing cellulase. The addition of cellulase accelerated the removal of cream adhesives in immersion experiments to a rate faster than that of water and denture cleaners. However, it did not influence the removability of Candida albicans biofilms from acrylic resin specimens. Cellulase hastened the liquefaction of cream adhesives. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  20. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.6920 Butyl... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane...