Science.gov

Sample records for acrylic acid copolymers

  1. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  2. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  3. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  5. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  6. Acrylamide/acrylic acid copolymers for cement fluid loss control

    SciTech Connect

    McKenzie, L.F.; McElfresh, P.M.

    1982-01-01

    Acrylamide/acrylic acid copolymers are considered as effective fluid loss control additives in a wide range of oil well cements. Unlike HEC based fluid loss aditives, these copolymers can be used with calcium chloride accelerator without significantly influencing fluid loss control. Another advantage of the copolymers is that the amount of fluid loss for a given concentration of polymer remains relatively constant over a wide range of temperatures. The use of acrylamide/acrylic acid copolymers has generally been restricted to wells below 60 degree C BHCT. Above that temperature chemical changes in the copolymer often lead to retardation of the cement. This paper presents data related to the use of acrylamide/acrylic acid copolymers as fluid loss control agents in oil well cementing. A comparison of these polymers with HEC based fluid loss control additives is made. In addition, data related to the cause of acrylamide/acrylic acid copolymer retarding effects is presented. 4 refs.

  7. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  8. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  9. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  10. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  11. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  12. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  13. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  14. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new...

  15. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new...

  16. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  17. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer

    PubMed Central

    Lee, Kyung Dong; Jeong, Young-Il; Kim, Da Hye; Lim, Gyun-Taek; Choi, Ki-Choon

    2013-01-01

    Background Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate) (PAA-MMA) incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. PMID:23966778

  18. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  19. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  20. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  1. The synthesis, properties, and applications of hydrophilic polymers and copolymers of hydroxyalkyl esters of acrylic and methacrylic acids

    NASA Astrophysics Data System (ADS)

    Asadov, Z. G.; Aliev, V. S.

    1992-05-01

    The scientific-technical and patent literature on the synthesis of hydroxyalkyl esters of acrylic and methacrylic acids by their catalytic reaction with epoxyalkanes, by the radical copolymerisation and polymerisation of presynthesised monomeric esters, and also by the chemical modification of polymerisation and copolymerisation products is surveyed. A wide variety of physicochemical properties of the polymers and copolymers based on the hydroxyalkyl esters of acrylic and methacrylic acids are described. The principal trends and prospects in the application of the high-molecular-weight products obtained in various branches of the national economy are indicated. The bibliography includes 158 references.

  2. Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer.

    PubMed

    Chen, Yu; Tan, Hui-min

    2006-05-22

    A novel carboxymethylchitosan-g-poly(acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared through graft polymerization of acrylic acid onto the chain of carboxymethylchitosan and subsequent crosslinking. It was demonstrated by FTIR spectroscopy that acrylic acid had been graft polymerized with carboxymethylchitosan. The thermal stability of the polymer was characterized by thermogravimetric analysis. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. The rate of water absorption of the polymer was high, and the swelling of the polymer fitted the process of first dynamics. The swelling ratio of the polymer was pH-dependent.

  3. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent.

  4. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  5. Experimental study of the antithrombogenic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues.

    PubMed

    San Román, J; Buján, J; Bellón, J M; Gallardo, A; Escudero, M C; Jorge, E; de Haro, J; Alvarez, L; Castillo-Olivares, J L

    1996-09-01

    The objective of the present work was study of the behavior of active coatings of hydrophilic acrylic polymers bearing salicylic acid residues linked covalently to the macromolecular chains, after their application to woven and knitted Dacron vascular grafts. In vitro tests were carried out under dynamic flow conditions using equipment especially designed to reproduce physiologic conditions, to determine the retention of the coating using a saline solution. Ex vivo tests were carried out in an extracorporeal circuit using the dog as an animal model. The study of the deposition of platelets was followed by labeling of autologous platelets with 111In-oxine, as well as by analysis of the surfaces of the prostheses by scanning electron microscopy. An application of thin coatings of hydrophilic acrylic copolymers improves the antithrombogenicity of the vascular grafts with respect to the uncoated prosthesis. The presence of relatively small amounts of units bearing salicylic acid residues in the copolymer chains (5-20 wt %) gives good results when they are applied to woven and knitten Dacron meshes which have been quantified by analysis of the percentage of radiotracer on the surface of the vascular grafts tested in ex vivo experiments. The salicylic acid residues are released slowly to the medium by hydrolysis of the reversible covalent bonds of this compound to the acrylic macromolecular chains, which provides an additional antiaggregating effect for platelets. The polymeric coating forms a thin active film which improves the antithrombogenic properties of the surface of woven or knitted Dacron vascular grafts in ex vivo experiments.

  6. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    PubMed

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  7. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylate ester copolymer coating. 175.210 Section... Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as... prepared food, subject to the provisions of this section: (a) The acrylate ester copolymer is a...

  9. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer.

    PubMed

    Hajeeth, T; Vijayalakshmi, K; Gomathi, T; Sudha, P N

    2013-11-01

    The extraction of cellulose from sisal fiber was done initially using the steam explosion method. The batch adsorption studies were conducted using the cellulose extracted from the sisal fiber and cellulose-g-acrylic acid as an adsorbent for the removal of Cu(II) and Ni(II) metal ions from aqueous solution. The effect of sorbent amount, agitation period and pH of solution that influence sorption capacity were investigated. From the observed results, it was evident that the adsorption of metal ions increases with the increase in contact time and adsorbent dosage. The optimum pH was found to be 5.0 for the removal of copper(II) and nickel(II) for both the extracted cellulose and cellulose-g-acrylic acid copolymer. The adsorption data were modeled using Langmuir and Freundlich isotherms. The experimental results of the Langmuir, Freundlich isotherms revealed that the adsorption of Cu(II) and nickel(II) ion onto cellulose extracted from the sisal fiber and cellulose-g-acrylic acid copolymer was found to fit well with Freundlich isotherm. The kinetics studies show that the adsorption follows the pseudo-second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylic acid copolymer was found to be an efficient adsorbent.

  10. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  11. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  12. Preparation and in vitro release studies of ibuprofen-loaded films and microspheres made from graft copolymers of poly(L-lactic acid) on acrylic backbones.

    PubMed

    Gallardo, A; Eguiburu, J L; Fernandez Berridi, M J; San Román, J

    1998-11-13

    The present article describes the preparation of films of various thickness and microspheres from new resorbable graft copolymers of polyacrylic (methyl methacrylate, MMA, or methyl acrylate, MA), or polyvinylic (vinyl pyrrolidone, VP) chains and poly(l-lactic acid) (PLLA) side blocks charged with 15-20% of ibuprofen (IBU) (a non-steroidic antiinflammatory agent). In the case of MMA-LLA and MA-LLA graft copolymers the release of IBU in buffered solution is modulated by the flexibility of the copolymer chains in a first step of one to two days and in a second step by the diffusive properties of the system as well as by the biodegradation of the polymers. The VP-PLLA graft copolymers are highly hydrophilic and the release of IBU is modulated by the diffusion of the drug through the swollen system. Specific interactions between the IBU molecules and the pyrrolidone rings also participate in the kinetic behaviour of the release process.

  13. Self-assembling linear and star shaped poly(ϵ-caprolactone)/poly[(meth)acrylic acid] block copolymers as carriers of indomethacin and quercetin.

    PubMed

    Bury, Katarzyna; Du Prez, Filip; Neugebauer, Dorota

    2013-11-01

    A amphiphilic linear AB, BAB, and star shaped (AB)3 block copolymers of poly(ϵ-caprolactone) (PCL)/poly(meth)acrylic acid (P(M)AA) are used for the preparation of nanoparticles and drug entrapment, where indomethacin and quercetin are employed as model drugs. Drug loading experiments with the nanoparticles based on PAA block copolymers demonstrate a higher efficiency for the star structure, whereas the PMAA star copolymer presents the lowest entrapment ability. The release properties are studied at room temperature and 37 °C in phosphate buffer solutions with pH equal to 5 and 7.4. The kinetic profiles show a strong relation to the copolymer's topology, indicating the lowest release rates from the star based superstructures, while the PMAA particles are less stable than those containing PAA segment(s).

  14. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  16. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  17. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  18. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  20. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  1. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  2. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  3. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  4. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  5. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  6. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-ethyl acrylate copolymers. 177.1320... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1320 Ethylene-ethyl acrylate copolymers. Ethylene-ethyl acrylate copolymers may be safely used to produce packaging materials,...

  7. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  8. Cycloolefin effect in cycloolefin-(meth)acryl copolymer

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soon; Seo, Dong Chul; Lee, Chang Soo; Park, Sang Wok; Kim, Sang Jin; Shin, Dae Hyeon; Shin, Jin Bong; Park, Joo Hyun

    2008-11-01

    One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low transmittance in COMA type copolymer most researchers were interested in developing of (meth)acryl type copolymer again for ArF photoresist. On the other hand, we have studied various polymer platforms suitable ArF photoresist except for meth(acryl) type copolymer. As a result of this study we had developed ROMA type polymers and cycloolefin-(meth)acryl type copolymers. Among the polymers cycloolefin-(meth)acryl type copolymer has many attractions such as etch roughness, resist reflow which needs low glass transition temperature and solvent solubility. In this study, we intend to find out cycloolefin-(meth)acryl copolymer characteristics compared with (meth)acryl copolymer. And, we have tried to find out any differences between acrylate type copolymer and cycloolefin-(meth)acrylate type copolymer with various evaluation results. As a result of this study we are going to talk about the reason that the resist using acrylate type copolymer and cycloolefin-(meth)acryl type copolymer show good pattern profile while acrylate type copolymer show poor pattern profile. We also intend to explain the role of cycloolefin as a function of molecular weight variation and substitution ratio variation of cycloolefin in cycloolefin-(meth)acrylate resin.One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low

  9. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model.

  10. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents.

  11. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177... Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl... section, the ethylene-methyl acrylate copolymer resins consist of basic copolymers produced by...

  12. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such proportions that the ethyl acrylate... prescribed in paragraph (c)(2) of this section, when tested by the methods prescribed for polyethylene...

  13. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis

    PubMed Central

    Gamage, Pubudu; Basel, Matthew T.; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael

    2009-01-01

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8±4.4 nm for P[(NIPAM)95.5-co-(AA)4.5] (PDI (polydispersity index)=1.55) and 21.8±4.2 nm for P[(NIPAM)95.3-co-(AA)4.7] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)95-co-(AA)2.8-AAC8F17 2.2] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8±7.1 nm, with a depth of only 2 nm. PMID:20161351

  14. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics.

  15. Well Ordered Melts from Low Molar Mass Pluronic Copolymers Blended with Poly (acrylic acid): Effect of Homopolymer Molar Mass

    NASA Astrophysics Data System (ADS)

    Daga, Vikram; Tirumala, Vijay; Romang, Alvin; Lin, Eric; Watkins, James

    2008-03-01

    The use of short chain block copolymer melts as nanostructured templates is often limited by their low segregation strength (χN). Since increasing molar mass to strengthen segregation also increases the interdomain spacing, it is more desirable to increase the segment-segment interaction parameter, χ to produce strong segregation. We have recently shown that block copolymer melts with a molar mass less than 15 kg/mol undergo disorder-to-order transition without a significant increase in interdomain spacing when blended with a selectively associating homopolymer, due to an apparent increase in effective χ. Here, we study the effect of homopolymer molar mass on the segregation of a disordered poly (oxyethylene-oxypropylene-oxyethylene) copolymer melt that forms lamellar microstructure in the ordered phase. Based on small-angle scattering measurements, we find that the melts remain ordered over a broad range of homopolymer chain lengths, ranging up to ten times that of the copolymer. This approach has many implications for the use of commodity block copolymer surfactants as inexpensive nanostructured templates for commercial applications.

  16. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  17. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  18. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  19. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  20. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  1. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used as articles or components...

  2. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  3. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  4. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177... for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1340 Ethylene-methyl acrylate copolymer resins. Ethylene-methyl acrylate copolymer resins may be safely used...

  5. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  6. Hydrogen-bonded aggregates in precise acid copolymers

    SciTech Connect

    Lueth, Christopher A.; Bolintineanu, Dan S.; Stevens, Mark J. Frischknecht, Amalie L.

    2014-02-07

    We perform atomistic molecular dynamics simulations of melts of four precise acid copolymers, two poly(ethylene-co-acrylic acid) (PEAA) copolymers, and two poly(ethylene-co-sulfonic acid) (PESA) copolymers. The acid groups are spaced by either 9 or 21 carbons along the polymer backbones. Hydrogen bonding causes the acid groups to form aggregates. These aggregates give rise to a low wavevector peak in the structure factors, in agreement with X-ray scattering data for the PEAA materials. The structure factors for the PESA copolymers are very similar to those for the PEAA copolymers, indicating a similar distance between aggregates which depends on the spacer length but not on the nature of the acid group. The PEAA copolymers are found to form more dimers and other small aggregates than do the PESA copolymers, while the PESA copolymers have both more free acid groups and more large aggregates.

  7. Langmuir-Blodgett films of random copolymers of fluoroalkyl(meth)acrylate and methacrylic acid: Fabrication and X-ray diffraction study

    SciTech Connect

    Safronov, V.; Feigin, L.A.; Budovskaya, L.D.; Ivanova, V.N.

    1994-12-31

    Langmuir-Blodgett films of amphiphilic fluorinated copolymers were fabricated and studied by X-ray diffraction. Although these films show poor interlayer periodicity, they possess a uniform thickness even in the case of very thin films of one bilayer (22 {angstrom}). This feature was used to obtain complex LB structures (superlattices) with alteration of copolymer and fatty acid bilayers. X-ray diffraction data proved the regular periodical organization of these structures and allowed to calculate electron density distribution across the superlattices.

  8. New blends of ethylene-butyl acrylate copolymers with thermoplastic starch. Characterization and bacterial biodegradation.

    PubMed

    Morro, A; Catalina, F; Corrales, T; Pablos, J L; Marin, I; Abrusci, C

    2016-09-20

    Ethylene-butyl acrylate copolymer (EBA) with 13% of butyl acrylate content was used to produce blends with 10, 30 and 60% of thermoplastic starch (TPS) plasticized with glycerol. Ethylene-acrylic acid copolymer (EAA) was used as compatibilizer at 20% content with respect to EBA. The blends were characterized by X-ray diffraction, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), water-Contact Angle measurements (CA), Differential Scanning Calorimetry (DSC) and Stress-strain mechanical tests. Initiated autoxidation of the polymer blends was studied by chemiluminescence (CL) confirming that the presence of the polyolefin-TPS interphase did not substantially affect the oxidative thermostability of the materials. Three bacterial species have been isolated from the blend films buried in soil and identified as Bacillus subtilis, Bacillus borstelensis and Bacillus licheniformis. Biodegradation of the blends (28days at 45°C) was evaluated by carbon dioxide measurement using the indirect impedance technique.

  9. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer

    PubMed Central

    Tan, Xuhua; Zhan, Jiezhao; Zhu, Yi; Cao, Ji; Wang, Lin; Liu, Sa; Wang, Yingjun; Liu, Zhenzhen; Qin, Yingyan; Wu, Mingxing; Liu, Yizhi; Ren, Li

    2017-01-01

    Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage. PMID:28084469

  10. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  11. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  12. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  13. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  14. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.

    PubMed

    Matsuoka, Hideki; Suetomi, Yoshiko; Kaewsaiha, Ploysai; Matsumoto, Kozo

    2009-12-15

    The nanostructure and its transition of in a poly(acrylic acid) (PAA) brush in the water surface monolayers of poly(hydrogenated isoprene)-b-poly(acrylic acid) with different block lengths and block ratios were investigated by X-ray reflectivity as a function of surface pressure (brush density) and salt concentration in the subphase. The PAA brush showed the same behavior after salt addition as did the poly(methacrylic acid) (PMAA) brush, which was investigated previously. The brush chains expanded and then shrunk after passing the maximum with increasing added salt concentration. This behavior could be explained by the change in electric charges on the PAA brush chains as was observed on the PMAA brush. The PAA brush chains showed a critical brush density, where there was a transition between the carpet layer only and carpet + brush layer structures, as did the PMAA and poly(styrene sulfonic acid) (PSS) brushes. The critical brush density was about 0.4 chains nm(-2), which was higher than that of the PSS brush, a strong acid brush, and was close to that of the PMAA brush, a weak acid brush. However, the critical brush density of the PAA brush was independent of the hydrophilic chain length whereas that of the PMAA brush decreased with increasing PMAA chain length. In addition, the PAA brush had a thicker carpet layer than the PSS and PMAA brushes. Hence, the mechanism of PAA brush formation was predicted to be different from that of not only the PSS brush (strong acid brush) but also the PMAA brush.

  15. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  16. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2014-11-01

    Interpenetrating network (IPN) type hydrogels of a biopolymer and a synthetic polymer were prepared from chitosan and crosslink copolymer of acrylic acid, sodium acrylate and hydroxyethyl methacrylate. Acrylic acid, sodium acrylate, hydroxyethyl methacrylate and N'N'-methylenebisacrylamide (MBA) monomers were free radically copolymerized and crosslinked in aqueous solution of chitosan. Several IPN hydrogels were prepared by varying concentrations of initiator, crosslinker (MBA) and weight% of chitosan . These hydrogels were characterized by free acid content, pH at point of zero charge (PZC), FTIR, DTA-TGA, SEM and XRD. The swelling and diffusion characteristics, network parameters and adsorption of cationic methyl violet (MV) and anionic congo red (CR) dyes by these hydrogels were studied. The hydrogels showed high adsorption (9.5-119 mg/g for CR and 9.2-98 mg/g for MV) and removal% (98-73% for CR and 94-66% for MV) over the feed concentration of 10-140 mg/l dye in water. The isotherms and kinetics of dye adsorption by the hydrogels were also studied.

  17. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-03

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  18. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  19. The thickening additives for mineral and synthetic oils based on the copolymers of alkyl acrylates or methacrylates and butyl vinyl ether

    NASA Astrophysics Data System (ADS)

    Geraskina, Evgeniya V.; Moikin, Alexey A.; Semenycheva, Ludmila L.

    2014-05-01

    A new method for synthesizing of the copolymers of acrylic and methacrylic acid esters with butyl vinyl ether in an excess of low-boiling monomer, which has proven effective for a number of alkyl methacrylates was proposed. Tests of thickening efficiency of the obtained copolymers were carried out. The resistance to mechanical degradation of the mineral, semi synthetic and synthetic base oils doped with the copolymers was evaluated.

  20. Ionization of amphiphilic acidic block copolymers.

    PubMed

    Colombani, Olivier; Lejeune, Elise; Charbonneau, Céline; Chassenieux, Christophe; Nicolai, Taco

    2012-06-28

    The ionization behavior of an amphiphilic diblock copolymer poly(n-butyl acrylate(50%)-stat-acrylic acid(50%))(100)-block-poly(acrylic acid)(100) (P(nBA(50%)-stat-AA(50%))(100)-b-PAA(100), DH50) and of its equivalent triblock copolymer P(nBA(50%)-stat-AA(50%))(100)-b-PAA(200)-b-P(nBA(50%)-stat-AA(50%))(100) (TH50) were studied by potentiometric titration either in pure water or in 0.5 M NaCl. These polymers consist of a hydrophilic acidic block (PAA) connected to a hydrophobic block, P(nBA(50%)-stat-AA(50%))(100), whose hydrophobic character has been mitigated by copolymerization with hydrophilic units. We show that all AA units, even those in the hydrophobic block could be ionized. However, the AA units within the hydrophobic block were less acidic than those in the hydrophilic block, resulting in the preferential ionization of the latter block. The preferential ionization of PAA over that of P(nBA(50%)-stat-AA(50%))(100) was stronger at higher ionic strength. Remarkably, the covalent bonds between the PAA and P(nBA(50%)-stat-AA(50%))(100) blocks in the diblock or the triblock did not affect the ionization of each block, although the self-association of the block copolymers into spherical aggregates modified the environment of the PAA blocks compared to when PAA was molecularly dispersed.

  1. Influence of Zwitterions on Thermomechanical Properties and Morphology of Acrylic Copolymers: Implications for Electroactive Applications

    DTIC Science & Technology

    2011-09-30

    properties of ethyl acrylate and n-butyl acrylate ( nBA )-based sulfobetaine-containing copolymers.10,11 They found that the incorporation of...ammonio]-1-propanesulfonate (SBMA), a zwitterionic mono- mer. Copolymerization of both charge-containing monomers with nBA elucidates the influence of...3-[[2-(methacryloyloxy)ethyl]- (dimethyl)ammonio]-1-propanesulfonate (SBMA), was generously provided by Raschig GmbH. n-Butyl acrylate ( nBA , Alfa

  2. Stable emulsion copolymers of acrylamide and ammonium acrylate for use in enhanced oil recovery

    SciTech Connect

    Frank, S.; Coscia, A.T.; Schmitt, J.M.

    1984-03-27

    There is provided a process for recovering oil from oil bearing formations employing the use of a water treating medium, which medium comprises the inclusion of a novel stable emulsion copolymer of acrylamide and ammonium acrylate as well as the emulsion copolymer per se.

  3. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-vinyl pyrrolidone.

    PubMed

    Zhunuspayev, Daulet E; Mun, Grigoriy A; Hole, Patrick; Khutoryanskiy, Vitaliy V

    2008-12-02

    The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

  4. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  5. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  7. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  8. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  10. The electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent.

    PubMed

    Xu, Naiku; Cao, Jipeng; Lu, Yuyao

    2016-01-01

    Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the material that has better performance in comparison with electrospun polystyrene material through the electrospinning of the copolymer of styrene and butyl acrylate. In this work, a polymer was synthesized through suspension polymerization by using styrene and butyl acrylate as comonomers. The synthesis of the copolymer of styrene and butyl acrylate was verified through dissolution and hydrolysis experimental data; as well through nuclear magnetic resonance spectrometry. The viscous flow activation energy of the solution consisting of copolymer and N, N-dimethylformamide was determined via viscosity method and then adopted to establish the entanglement characteristics of butyl acrylate's chain segments. Finally, in order to electrospin the copolymer solution into fibrous membrane, the effects of monomer feed ratio and spinning parameters were investigated. The prepared fibrous membrane was found to have a potential use as oil absorbent.

  11. [Study on photoluminescence of 8-hydroxyquinaldine gallium acrylate and methyl methacrylate copolymer].

    PubMed

    Xiao, Zun-hong

    2006-03-01

    A new copolymer of 8-hydroxyquinaldine gallium acrylate and methyl methacrylate was prepared. The composition and properties of the copolymer were characterized by FTIR, UV-Vis, DSC, TG and fluorescence spectra. A strong blue-green photoluminescence, with the peak at 496 nm, was observed for the copolymer/CHCl3 solution. Effect of monomer ratio and concentration on the photoluminescence property of the copolymer was investigated. The results showed that the maximum fluorescence intensity was attained when Ga(Mq)2A: MMA was 1:20, the maximum excitation wavelength is approximately 263 nm when the concentration of the copolymer is under 2 g x L(-1), but the maximum excitation wavelength exceeds 365 nm when the concentration is above 4 g x L(-1). The copolymer was soluble in chloroform, acetone, and DMF at 25 degrees C, so it could be easier to prepare electroluminescent device by spin-coat technology.

  12. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  13. Reactivity ratios and sequence determination of methacrylonitrile/butyl acrylate copolymers by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Brar, A. S.; Pradhan, D. R.; Hooda, Sunita

    2004-08-01

    Methacrylonitrile/butyl acrylate (M/B) copolymers were prepared by bulk polymerization using benzoyl peroxide as an initiator. The Distortionless Enhancement by Polarization Transfer spectra were used to differentiate between the carbon resonance signals of methyl, methine, methylene and oxymethylene groups in the 13C{ 1H} NMR spectrum of the copolymer (M/B). Comonomer reactivity ratios were determined using Kelen-Tudos and non-linear error in variable methods. Two-dimensional Heteronuclear Single Quantum Coherence and Total Correlated Spectroscopy were used to resolve the complex 1H NMR spectrum and to determine the compositional and configurational sequences of M/B copolymers.

  14. Properties of extruded starch-poly(methyl acrylate) graft copolymers prepared from spherulites formed from amylose-oleic acid inclusion complexes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mixtures of high amylose corn starch and oleic acid were processed by steam jet-cooking, and the dispersions were rapidly cooled to yield amylose-oleic acid inclusion complexes as sub-micron spherulites and spherulite aggregates. Dispersions of these spherulite particles were then graft polymerized ...

  15. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.338 Salt of an acrylate copolymer (generic). Link to an amendment published at 79 FR 34636, June 18, 2014. (a) Chemical substance and significant new uses subject to reporting. (1) The...

  16. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... percent by weight unless it is blended with polyethylene or with one or more olefin copolymers complying with § 177.1520 or with a mixture of polyethylene and one or more olefin copolymers, in such... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification....

  17. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate.

    PubMed

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-02

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  18. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    NASA Astrophysics Data System (ADS)

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-03-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances.

  19. Double-bond-containing polyallene-based triblock copolymers via phenoxyallene and (meth)acrylate

    PubMed Central

    Ding, Aishun; Lu, Guolin; Guo, Hao; Huang, Xiaoyu

    2017-01-01

    A series of ABA triblock copolymers, consisting of double-bond-containing poly(phenoxyallene) (PPOA), poly(methyl methacrylate) (PMMA), or poly(butyl acrylate) (PBA) segments, were synthesized by sequential free radical polymerization and atom transfer radical polymerization (ATRP). A new bifunctional initiator bearing azo and halogen-containing ATRP initiating groups was first prepared followed by initiating conventional free radical homopolymerization of phenoxyallene with cumulated double bond to give a PPOA-based macroinitiator with ATRP initiating groups at both ends. Next, PMMA-b-PPOA-b-PMMA and PBA-b-PPOA-b-PBA triblock copolymers were synthesized by ATRP of methyl methacrylate and n-butyl acrylate initiated by the PPOA-based macroinitiator through the site transformation strategy. These double-bond-containing triblock copolymers are stable under UV irradiation and free radical circumstances. PMID:28252049

  20. Lignin poly(lactic acid) copolymers

    DOEpatents

    Olsson, Johan Vilhelm; Chung, Yi-Lin; Li, Russell Jingxian; Waymouth, Robert; Sattely, Elizabeth; Billington, Sarah; Frank, Curtis W.

    2017-02-14

    Provided herein are graft co-polymers of lignin and poly(lactic acid) (lignin-g-PLA copolymer), thermoset and thermoplastic polymers including them, methods of preparing these polymers, and articles of manufacture including such polymers.

  1. Photooxidative degradation of clear ultraviolet absorbing acrylic copolymer surfaces

    NASA Technical Reports Server (NTRS)

    Gupta, A.; Liang, R. H.; Vogl, O.; Pradellok, W.; Huston, A. L.; Scott, G. W.

    1983-01-01

    Photodegradation of copolymer of methyl methacrylate and 2(2'-hydroxy 5'vinyl-phenyl) 2H-benzotriazole has been investigated in order to determine the changes in the chemical composition of the surface of the copolymer on photooxidation. An electronic energy transfer mechanism has been postulated in order to interpret the observed photochemical changes in the polymer. Preliminary examination of the photophysical properties of the chromophore provides support for such a mechanism.

  2. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  3. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  4. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  5. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  6. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion.

    PubMed

    Shojaei, A H; Paulson, J; Honary, S

    2000-07-03

    Based on the premise that similar surface properties between the adhesive and the substrate would yield a strong adhesive bond, copolymers of acrylic acid (AA) and 2-ethylhexyl acrylate (EHA), P(AA-co-EHA), were designed and synthesized for buccal mucoadhesion. A series of linear copolymers with varying feed ratios of the two monomers (AA and EHA) were synthesized through free radical copolymerization at 69+/-0.5 degrees C using azobis(isobutyronitrile) (AIBN) as initiator. The reactions were carried out in THF under nitrogen for 24 h. The glass transition temperatures, T(g), of the copolymers were determined using DSC. The adhesion studies were conducted to determine the effects of copolymer composition, contact time between the substrate and the adhesive, and crosshead speed on mucoadhesive performance of the copolymer films using a computer interfaced Instron material testing system. The glass transition temperature of the copolymers decreased with increasing EHA content. Wet glass surface as substrate was shown not to be a good substrate model for adhesion determination studies. The copolymer composed of 46:54 mol.% AA:EHA (an almost 1:1 ratio in the repeat units) yielded the highest mucoadhesive force in contact with porcine buccal mucosa which was significantly greater (P<0.05) than that of poly(acrylic acid) (PAA) (used as positive control). The mucoadhesive force for all copolymers studied was significantly (P<0.05) greater than that of the negative control (backing material without copolymer film) except for the EHA homopolymer. Crosshead speed increased mucoadhesive force linearly and had a more pronounced effect on the mucoadhesive performance than time of contact between the adhesive and the substrate.

  7. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel.

    PubMed

    Zhao, Yanli; Li, Yanli; Ge, Jianjun; Li, Na; Li, Ling-Bing

    2014-11-01

    The aim of the study is to synthesize a thiolated Pluronic copolymer, Pluronic-poly (acrylic acid)-cysteine copolymer, to construct a mixed micelle system with the Pluronic-poly (acrylic acid)-cysteine copolymer and Pluronic L121 (PL121) and to evaluate the potential of these mixed micelles as an oral drug delivery system for paclitaxel. Compared with Pluronic-poly (acrylic acid)-cysteine micelles, drug-loading capacity of Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles was increased from 0.4 to 2.87%. In vitro release test indicated that Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles exhibited a pH sensitivity. The permeability of drug-loaded micelles in the intestinal tract was studied with an in situ perfusion method in rats. The presence of verapamil and Pluronic both improved the intestinal permeability of paclitaxel, which further certified the inhibition effect of thiolated Pluronic on P-gp. In pharmacokinetic study, the area under the plasma concentration-time curve (AUC0→∞) of paclitaxel-loaded mixed micelles was four times greater than that of the paclitaxel solution (p < 0.05). In general, Pluronic-poly (acrylic acid)-cysteine/PL121 micelles were proven to be a potential oral drug delivery system for paclitaxel.

  8. Biointegration of corneal macroporous membranes based on poly(ethyl acrylate) copolymers in an experimental animal model.

    PubMed

    Alió del Barrio, Jorge L; Chiesa, Massimo; Gallego Ferrer, Gloria; Garagorri, Nerea; Briz, Nerea; Fernandez-Delgado, Jorge; Sancho-Tello Valls, Maria; Botella, Carmen Carda; García-Tuñón, Ignacio; Bataille, Laurent; Rodriguez, Alejandra; Arnalich-Montiel, Francisco; Gómez Ribelles, Jose L; Antolinos-Turpín, Carmen M; Gómez-Tejedor, Jose A; Alió, Jorge L; De Miguel, Maria P

    2015-03-01

    Currently available keratoprosthesis models (nonbiological corneal substitutes) have a less than 75% graft survival rate at 2 years. We aimed at developing a model for keratoprosthesis based on the use of poly(ethyl acrylate) (PEA)-based copolymers, extracellular matrix-protein coating and colonization with adipose-derived mesenchymal stem cells. Human adipose tissue derived mesenchymal stem cells (h-ADASC) colonization efficiency of seven PEA-based copolymers in combination with four extracellular matrix coatings were evaluated in vitro. Then, macroporous membranes composed of the optimal PEA subtypes and coating proteins were implanted inside rabbit cornea. After a 3-month follow-up, the animals were euthanized, and the clinical and histological biointegration of the implanted material were assessed. h-ADASC adhered and survived when cultured in all PEA-based macroporous membranes. The addition of high hydrophilicity to PEA membranes decreased h-ADASC colonization in vitro. PEA-based copolymer containing 10% hydroxyethyl acrylate (PEA-HEA10) or 10% acrylic acid (PEA-AAc10) monomeric units showed the best cellular colonization rates. Collagen plus keratan sulfate-coated polymers demonstrated enhanced cellular colonization respect to fibronectin, collagen, or uncoated PEAs. In vivo implantation of membranes resulted in an extrusion rate of 72% for PEA, 50% for PEA-AAc10, but remarkably of 0% for PEA-HEA10. h-ADASC survival was demonstrated in all the membranes after 3 months follow-up. A slight reduction in the extrusion rate of h-ADASC colonized materials was observed. No significant differences between the groups with and without h-ADASC were detected respect to transparency or neovascularization. We propose PEA with low hydroxylation as a scaffold for the anchoring ring of future keratoprosthesis.

  9. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    NASA Astrophysics Data System (ADS)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  10. Acrylic AB and ABA block copolymers based on poly(2-ethylhexyl acrylate) (PEHA) and poly(methyl methacrylate) (PMMA) via ATRP.

    PubMed

    Haloi, Dhruba J; Ata, Souvik; Singha, Nikhil K; Jehnichen, Dieter; Voit, Brigitte

    2012-08-01

    Acrylic block copolymers have several advantages over conventional styrenic block copolymers, because of the presence of a saturated backbone and polar pendant groups. This investigation reports the preparation and characterization of di- and triblock copolymers (AB and ABA types) of 2-ethylhexyl acrylate (EHA) and methyl methacrylate (MMA) via atom transfer radical polymerization (ATRP). A series of block copolymers, PEHA-block-PMMA(AB diblock) and PMMA-block-PEHA-block-PMMA(ABA triblock) were prepared via ATRP at 90 °C using CuBr as catalyst in combination with N,N,N',N″,N″-pentamethyl diethylenetriamine (PMDETA) as ligand and acetone as additive. The chemical structure of the macroinitiators and molar composition of block copolymers were characterized by (1)H NMR analysis, and molecular weights of the polymers were analyzed by GPC analysis. DSC analysis showed two glass transition temperatures (T(g)), indicating formation of two domains, which was corroborated by AFM analysis. Small-angle X-ray scattering (SAXS) analysis of AB and ABA block copolymers showed scattering behavior inside the measuring limits indicating nanophase separation. However, SAXS pattern of AB diblock copolymers indicated general phase separation only, whereas for ABA triblock copolymer an ordered or mixed morphology could be deduced, which is assumed to be the reason for the better mechanical properties achieved with ABA block copolymers than with the AB analogues.

  11. Interactions between nanostructured calcium hydroxide and acrylate copolymers: implications in cultural heritage conservation.

    PubMed

    Carretti, Emiliano; Chelazzi, David; Rocchigiani, Giulia; Baglioni, Piero; Poggi, Giovanna; Dei, Luigi

    2013-08-06

    The interactions between an acrylic copolymer, poly ethylmethacrylate/methylacrylate (70:30) (Poly(EMA/MA), and Ca(OH)2 nanoparticles were investigated in order to establish the reciprocal influence of these two compounds on their peculiar properties. The carbonation kinetics of Ca(OH)2 nanoparticles by atmospheric CO2 was investigated by FTIR and SEM measurements and compared to that of a nanocomposite film. CaCO3 formation occurred even in the presence of the copolymer, but only after an induction period of ca. 200 h and with a lower reaction rate. Some implications in cultural heritage conservation dealing with application of nanolime on artifacts previously treated with acrylic copolymers were discussed. Contact angle measurements, mechanical cohesion properties, and water vapor permeability allowed us to conclude that the optimum behavior of nanolime with respect to transpiration was not compromised by the presence of the copolymer, and the behavior in terms of mechanical properties recovery by the application of Ca(OH)2 nanoparticles remained excellent even in the presence of poly(EMA/MA).

  12. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method.

    PubMed

    Hua, Helin; Li, Na; Wu, Linlin; Zhong, Hui; Wu, Guangxial; Yuan, Zonghuan; Lin, Xiangwei; Tang, Lianyi

    2008-01-01

    Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.

  13. 78 FR 6213 - Styrene-2-Ethylhexyl Acrylate Copolymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... requirement of a tolerance for residues of 2-propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene... Ester, Polymer with Ethenylbenzene on food or feed commodities. DATES: This regulation is effective... for residues of 2-propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene; CAS No....

  14. Tensile Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Szewczyk, Steve; Schwartz, Eric; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Wagener, Kenneth; Winey, Karen

    2015-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide tunable mechanical properties. We report tensile testing and in situ x-ray scattering measurements of a homologous series of precise poly(ethylene-co-acrylic acid) copolymers (pxAA). Upon variation of the number of backbone carbons (x = 9, 15, 21) between pendant acrylic acid groups along the linear polyethylene chain, these materials exhibit pronounced changes in both their tensile properties as well as their morphological evolution during deformation. The hierarchical layered acid aggregate structure coincides with the onset of a strain hardening mechanism and was observed in both a semi-crystalline sample (p21AA) as well as an amorphous sample (p15AA). The polymer with the shortest spacing between acid groups (p9AA) maintains a liquid-like distribution of acid aggregates during deformation, exhibiting low tensile strength which we attribute to facile acid exchange between acid aggregates during deformation. Our results indicate that the formation of the hierarchical layered structure, which coincides with polymer strain-hardening regime, originates from the associating acid groups cooperatively preventing disentanglement. NSF-DMR-1103858.

  15. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  16. Tuning the Molar Composition of "Charge-Shifting" Cationic Copolymers Based on 2-(N,N-Dimethylamino)Ethyl Acrylate and 2-(tert-Boc-Amino)Ethyl Acrylate.

    PubMed

    Ho, Hien The; Bohec, Maël Le; Frémaux, Julien; Piogé, Sandie; Casse, Nathalie; Fontaine, Laurent; Pascual, Sagrario

    2017-03-01

    Copolymers of 2-(N,N-dimethylamino)ethyl acrylate (DMAEA) and 2-(tert-Boc-amino)ethyl acrylate (tBocAEA) are synthesized by reversible addition-fragmentation chain transfer polymerization in a controlled manner with defined molar masses and narrow molar masses distributions (Ð ≤ 1.17). Molar compositions of the P(DMAEA-co-tBocAEA) copolymers are assessed by means of (1) H NMR. A complete screening in molar composition is studied from 0% of DMAEA to 100% of DMAEA. Reactivity ratios of both comonomers are determined by the extended Kelen-Tüdos method (r DMAEA = 0.81 and rtBocAEA = 0.99).

  17. Structure-function properties of starch graft poly(methyl acrylate)copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  18. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  19. 1D and 2D NMR studies of isobornyl acrylate - Methyl methacrylate copolymers

    NASA Astrophysics Data System (ADS)

    Khandelwal, Deepika; Hooda, Sunita; Brar, A. S.; Shankar, Ravi

    2011-10-01

    Isobornyl acrylate - methyl methacrylate (B/M) copolymers of different compositions were synthesized by atom transfer radical polymerization (ATRP) using methyl-2-bromopropionate as an initiator and PMDETA copper complex as catalyst under nitrogen atmosphere at 70 °C. 1H NMR spectrum was used to determine the compositions of copolymer. The copolymer compositions were then used to determine the reactivity ratios of monomers. Reactivity ratios of co-monomers in B/M copolymer, determined from linear Kelen-Tudos method (KT) and non linear Error-in-Variable Method (EVM), are rB = 0.41 ± 0.11, rM = 1.11 ± 0.33 and rB = 0.52, rM = 1.31 respectively. The complete resonance assignments of 1H and 13C{ 1H} NMR spectra were carried out with the help of Distortion less Enhancement by Polarization Transfer (DEPT), two-dimensional Heteronuclear Single Quantum Coherence (HSQC). 2D HSQC assignments were further confirmed by 2D Total Correlation Spectroscopy (TOCSY). The carbonyl carbon of B and M units and methyl carbon of M unit were assigned up to triad compositional and configurational sequences whereas β-methylene carbons were assigned up to tetrad compositional and configurational sequences. Similarly the methine carbon of B unit was assigned up to pentad level. 1,3 and 1,4 bond order couplings of carbonyl carbon and quaternary carbon resonances with methine, methylene and methyl protons were studied in detail using 2D Hetero Nuclear Multiple Bond Correlation (HMBC) spectra.

  20. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may... produced by the polymerization of methacrylic acid and divinylbenzene. The divinylbenzene functions as...

  1. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  2. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  3. 21 CFR 172.775 - Methacrylic acid-divinylbenzene copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Methacrylic acid-divinylbenzene copolymer. 172.775... HUMAN CONSUMPTION Other Specific Usage Additives § 172.775 Methacrylic acid-divinylbenzene copolymer. Methacrylic acid-divinylbenzene copolymer may be safely used in food in accordance with the...

  4. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  5. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers.

  6. Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ivanova, T.; Merijs-Meri, R.; Bitenieks, J.; Zicans, J.; Suslyaev, V. I.; Pletnev, M. A.

    2016-06-01

    The present paper focuses on electromagnetic response of polymeric composites with different concentrations of multiwall carbon nanotubes in the radio (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges. Widely available polymeric materials, such as PVA latex (polyvinyl acetate) and styrene-acrylic copolymer, were used as a matrix. Analysis of the experimental data demonstrated that in electromagnetic shielding applications one should give preference to the styrene-acrylic copolymer, as far as application of this matrix type allows reducing the percolation threshold in such composites. As a result, it allows reaching the necessary level of shielding at a lower filler concentration, while unique properties of the chosen polymer allow expanding the range of applications for the new materials.

  7. Biodegradation of the cross-linked copolymer of acrylamide and potassium acrylate by soil bacteria.

    PubMed

    Oksińska, Małgorzata P; Magnucka, Elżbieta G; Lejcuś, Krzysztof; Pietr, Stanisław J

    2016-03-01

    Chemical cross-linking and the high molecular weight of superabsorbent copolymers (SAPs) are the two main causes of their resistance to biodegradation. However, SAP particles are colonized by microorganisms. For the purposes of this study, the dry technical copolymer of acrylamide and potassium acrylate containing 5.28 % of unpolymerized monomers was wrapped in a geotextile and incubated in unsterile Haplic Luvisol soil as a water absorbing geocomposite. The highest number of soil bacteria that colonized the hydrated SAP and utilized it as the sole carbon and energy source was found after the first month of incubation in soil. It was equal to 7.21-7.49 log10 cfu g(-1) of water absorbed by the SAP and decreased by 1.35-1.61 log10 units within the next 8 months. During this time, the initial SAP water holding capacity of 1665.8 g has decreased by 24.40 %. Moreover, the 5 g of SAP dry mass has declined by 31.70 %. Two bacteria, Rhizobium radiobacter 28SG and Bacillus aryabhattai 31SG isolated from the watered SAP were found to be able to biodegrade this SAP in pure cultures. They destroyed 25.07 and 41.85 mg of 300 mg of the technical SAP during the 60-day growth in mineral Burk's salt medium, and biodegradation activity was equal to 2.95 and 6.72 μg of SAP μg(-1) of protein, respectively. B. aryabhattai 31SG and R. radiobacter 28SG were also able to degrade 9.99 and 29.70 mg of 82 mg of the ultra-pure SAP in synthetic root exudate medium during the 30-day growth, respectively.

  8. Local Dynamics of Acid- and Ion-containing Copolymer Melts

    NASA Astrophysics Data System (ADS)

    Winey, Karen; Middleton, Robert; Tarver, Jacob; Tyagi, Madhusudan; Soles, Christopher; Frischknecht, Amalie

    Interest in acid- and ion-containing polymers arises in part from applications as single-ion conductors for selectively transporting a counter ion for battery applications. Structurally, the low dielectric constant of organic polymers and strong ionic interactions leads to ionic aggregation. Here the polymer backbone motion was investigated through quasi-elastic neutron scattering measurements (QENS) and compared with fully atomistic molecular dynamic simulations of precise poly(ethylene-acrylic acid) copolymers and their ionomers (pxAA-y%Li). The effect of carbon spacer length (x =9, 15, 21) between the acid groups and the degree of neutralization (y) with Li on PE backbone dynamics were considered. Systematic slowing in chain dynamics were observed with increasing neutralization where polymer dynamics appear constrained due to anchoring effects. Simulations provide complementary viewpoints indicating a gradient in chain dynamics as a distance away from acid groups. These results indicate that the addition of pendant acid groups inhibit typical PE backbone motion and the neutralized forms strongly suppress the fraction of mobile PE chain.

  9. Mechanical and thermal behaviour of an acrylic bone cement modified with a triblock copolymer.

    PubMed

    Paz, E; Abenojar, J; Ballesteros, Y; Forriol, F; Dunne, N; Del Real, J C

    2016-04-01

    The basic formulation of an acrylic bone cement has been modified by the addition of a block copolymer, Nanostrength(®) (NS), in order to augment the mechanical properties and particularly the fracture toughness of the bone cement. Two grades of NS at different levels of loading, between 1 and 10 wt.%, have been used. Mechanical tests were conducted to study the behaviour of the modified cements; specific tests measured the bend, compression and fracture toughness properties. The failure mode of the fracture test specimens was analysed using scanning electron microscopy (SEM). The effect of NS addition on the thermal properties was also determined, and the polymerisation reaction using differential scanning calorimetry. It was observed that the addition of NS produced an improvement in the fracture toughness and ductility of the cement, which could have a positive contribution by reducing the premature fracture of the cement mantle. The residual monomer content was reduced when the NS was added. However this also produced an increase in the maximum temperature and the heat delivered during the polymerisation of the cement.

  10. Self-Assembly and Relaxation Behavior of Graphene Containing Acrylic Triblock Copolymer Gels

    NASA Astrophysics Data System (ADS)

    Zabet, Mahla; Hashemnejad, Seyedmeysam; Kundu, Santanu

    2015-03-01

    Investigation of gel mechanical properties as a function of their structure is a significant research interest. This study presents the effect of graphene (or few-layer graphene) on the self-assembly and the relaxation behavior of a thermoreversible gel consists of a physically cross-linked poly (methyl methacrylate)-poly (n-butyl acrylate)-poly (methyl methacrylate) [PMMA-PnBA-PMMA] triblock copolymer in 2-ethyl-1-hexanol, a midblock selective solvent. Graphene was obtained by sonicating exfoliated graphite in 2-ethyl-1-hexanol at various concentrations. Filtration technique and spectrophotometry were utilized to measure the graphene concentration in the dispersions. The dispersed graphene was then incorporated in a series of gels and the effect of graphene on mechanical properties, including the relaxation behavior were studied. Small angle X-ray scattering (SAXS) was used to investigate the microstructure of these gels at room temperature. SAXS data were analyzed to estimate the number of end blocks per junction zone, the average spacing between the junctions, and the change of these properties as a function of graphene concentration. The results indicate that the presence of graphene affects the self-assembly process.

  11. Junction-Controlled Elasticity of Single-Walled Carbon Nanotube Dispersions in Acrylic Copolymer Gels and Solutions

    SciTech Connect

    Schoch, Andrew B.; Shull, Kenneth R.; Brinson, L. Catherine

    2008-08-26

    Oscillatory shear rheometry is used to study the mechanical response of single-walled carbon nanotubes dispersed in solutions of acrylic diblock or triblock copolymers in 2-ethyl-1-hexanol. Thermal transitions in the copolymer solutions provide a route for the easy processing of these composite materials, with excellent dispersion of the nanotubes as verified by near-infrared photoluminescence spectroscopy. The nanotube dispersions form elastic networks with properties that are controlled by the junction points between nanotubes, featuring a temperature-dependent elastic response that is controlled by the dynamic properties of the matrix copolymer solution. The data are consistent with the formation of micelle-like aggregates around the nanotubes. At low temperatures the core-forming poly(methyl methacrylate) blocks are glassy, and the overall mechanical response of the composite does not evolve with time. At higher temperatures the enhanced mobility of the core-forming blocks enables the junctions to achieve more intimate nanotube-nanotube contact, and the composite modulus increases with time. These aging effects are observed in both diblock and triblock copolymer solutions but are partially reversed in the triblock solutions by cooling through the gel transition of the triblock copolymer. This result is attributed to the generation of internal stresses during gelation and the ability of these stresses to break or weaken the nanotube junctions.

  12. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  13. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  14. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  15. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  16. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  17. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  18. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  19. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  20. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  1. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  2. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  3. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  4. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  5. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  6. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  7. Interactions of sodium montmorillonite with poly(acrylic acid).

    PubMed

    Tran, Nguyen H; Dennis, Gary R; Milev, Adriyan S; Kannangara, G S Kamali; Wilson, Michael A; Lamb, Robert N

    2005-10-15

    The chemical-structural modifications of the natural clay sodium montmorillonite during interaction with poly(acrylic acid) were studied mainly by X-ray photoemission spectroscopy. Samples of modified montmorillonite were prepared from the reaction of sodium montmorillonite ( approximately 0.5 g) and an aqueous solution of poly(acrylic acid) (pH approximately 1.8, 50 g) at varying temperatures. X-ray diffraction indicated that the montmorillonite interlayer space ( approximately 13 A), formed by regular stacking of the silicate layers (dimension approximately 1x1000 nm), expanded to approximately 16 A as the reaction was carried out at room temperature and at 30 degrees C. At 60 degrees C, the interlayer space further expanded to approximately 20 A. The results of X-ray photoemission spectroscopy indicated that poly(acrylic acid) molecules exchange sodium ions on the surface of the silicate layers. These combined results allowed development of a reaction model that explains the dependency of the interlayer expansion with temperature. Information concerning the surface chemical reactions and systematic increases in the interlayer distances is particularly useful if montmorillonite and poly(acrylic acid) are to be used for formation of nanocomposite materials.

  8. Acrylic acid and electric power cogeneration in an SOFC reactor.

    PubMed

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  9. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.

    PubMed

    Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya

    2016-09-13

    In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.

  10. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification... adhesive is a device composed of polyvinylmethylether maleic anhydride, acid copolymer,...

  11. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  12. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  13. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  14. 21 CFR 872.3500 - Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. 872.3500 Section 872.3500...), acid copolymer, and carboxymethylcellulose sodium (NACMC) denture adhesive. (a) Identification. Polyvinylmethylether maleic anhydride (PVM-MA), acid copolymer, and carboxymethylcellulose sodium (NACMC)...

  15. Surface self-segregation, wettability, and adsorption behavior of core-shell and pentablock fluorosilicone acrylate copolymers.

    PubMed

    Liang, Junyan; He, Ling; Dong, Xia; Zhou, Tie

    2012-03-01

    The surfaces of films cast from core-shell fluorosilicone acrylate copolymer (BA/MMA/DFHM and BA/MMA/DFHM/MPTMS/D(4)) latexes and linear pentablock fluorosilicone acrylate copolymer (PDMS-b-(PMMA-b-PDFHM)(2)) solutions are intensively investigated and compared by XPS, DCA, AFM, and QCM-D measurements. It is found that the molecular structures and in-solution aggregate structures of these well-defined copolymers have a dramatic influence on the surface structure formation, surface wetting, and adsorption behavior. The PDMS-b-(PMMA-b-PDFHM)(2) film cast from chloroform solution with high concentration of low-density unimers is able to perform as strong surface self-segregation of fluorine-containing groups as core-shell copolymer latex films. The BA/MMA/DFHM/MPTMS/D(4) in the core-shell latex particles exhibits the less pronounced surface self-segregation of silicon-containing groups than PDMS-b-(PMMA-b-PDFHM)(2) due to the occurrence of cross-linking reactions between polysiloxane chains. Indeed, such reactions induce the formation of silica network within the film material, which immobilizes tightly the fluorinated groups on the film surface and thus endows the film with higher surface structural stability for water compared to PDMS-b-(PMMA-b-PDFHM)(2) film with similar surface fluorine concentration and even higher silicon concentration. Still, the PDMS-b-(PMMA-b-PDFHM)(2) film definitely demonstrates higher advancing and receding contact angles for water than BA/MMA/DFHM/MPTMS/D(4) latex film in the case of synergism between surface enrichment of fluorine and silicon.

  16. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  17. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  18. Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid.

    PubMed

    Martínez-Camacho, A P; Cortez-Rocha, M O; Graciano-Verdugo, A Z; Rodríguez-Félix, F; Castillo-Ortega, M M; Burgos-Hernández, A; Ezquerra-Brauer, J M; Plascencia-Jatomea, M

    2013-01-16

    The obtaining of chitosan extruded films was possible by using low density polyethylene (LDPE) as a matrix polymer and ethylene-acrylic acid copolymer as an adhesive, in order to ensure adhesion in the interphase of the immiscible polymers. The obtained blend films were resistant; however, a reduction in the mechanical resistance was observed as chitosan concentration increased. The thermal stability of the films showed a certain grade of interaction between polymers as seen in FTIR spectra. The antifungal activity of the extruded films was assessed against Aspergillus niger and high inhibition percentages were observed, which may be mainly attributed to barrier properties of the extruded films and the limited oxygen availability, resulting in the inability of the fungi to grow. A low adherence of fungal spores to the material surface was observed, mainly in areas with chitosan clumps, which can serve as starting points for material degradation.

  19. Effect of geochemical properties on degradation of trichloroethylene by stabilized zerovalent iron nanoparticle with Na-acrylic copolymer.

    PubMed

    Chen, Meng-yi; Su, Yuh-fan; Shih, Yang-hsin

    2014-11-01

    Stable nanoscale zero-valent iron (NZVI) particles have been developed to remediate chlorinated compounds. The degradation kinetics and efficiency of trichloroethylene (TCE) by a commercial stabilized NZVI with Na-acrylic copolymer (acNZVI) were investigated and compared with those by laboratory-synthesized NZVI and carboxymethyl cellulose (CMC)-stabilized NZVI particles. Results show that the degradation of TCE by acNZVI was faster than that by NZVI and CMC-NZVI. Increase in temperature enhanced the degradation rate and efficiency of TCE with acNZVI. The activation energy of TCE degradation by acNZVI was estimated to be 23 kJ/mol. The degradation rate constants of TCE decreased from 0.064 to 0.026 min(-1) with decrease in initial pH from 9.03 to 4.23. Common groundwater anions including NO3(-), Cl(-), HCO3(-), and SO4(2-) inhibited slightly the degradation efficiencies of TCE by acNZVI. The Na-acrylic copolymer-stabilized NZVI, which exhibited high degradation kinetics and efficiency, could be a good remediation agent for chlorinated organic compounds.

  20. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    SciTech Connect

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; Wang, Yangyang; Hong, Kunlun; Mays, Jimmy

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weight of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.

  1. All-acrylic multigraft copolymers: Effect of side chain molecular weight and volume fraction on mechanical behavior

    DOE PAGES

    Goodwin, Andrew; Wang, Weiyu; Kang, Nam -Goo; ...

    2015-08-21

    We present in this paper the synthesis of poly(n-butyl acrylate)-g-poly(methyl methacrylate) (PnBA-g-PMMA) multigraft copolymers via a grafting-through (macromonomer) approach. The synthesis was performed using two controlled polymerization techniques. The PMMA macromonomer was obtained by high-vacuum anionic polymerization followed by the copolymerization of n-butyl acrylate and PMMA macromonomer using reversible addition–fragmentation chain transfer (RAFT) polymerization to yield the desired all-acrylic multigraft structures. The PnBA-g-PMMA multigraft structures exhibit randomly spaced branch points with various PMMA contents, ranging from 15 to 40 vol %, allowing an investigation into how physical properties vary with differences in the number of branch points and molecular weightmore » of grafted side chains. The determination of molecular weight and polydispersity indices of both the PMMA macromonomer and the graft copolymers was carried out using size exclusion chromatography with triple detection, and the structural characteristics of both the macromonomer and PnBA-g-PMMA graft materials were characterized by 1H and 13C NMR. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed for monitoring the macromonomer synthesis. Thermal characteristics of the materials were analyzed using differential scanning calorimetry and thermogravimetric analysis. The mechanical performance of the graft materials was characterized by rheology and dynamic mechanical analysis, revealing that samples with PMMA content of 25–40 vol % exhibit superior elastomeric properties as compared to materials containing short PMMA side chains or <25 vol % PMMA. In conclusion, atomic force microscopy showed a varying degree of microphase separation between the glassy and rubbery components that is strongly dependent on PMMA side chain molecular weight.« less

  2. Alignment of Fatty Acid-Derived Triblock Copolymers under Large Amplitude Oscillatory Shear

    NASA Astrophysics Data System (ADS)

    Ding, Wenyue; Wang, Shu; Kesava, Sameer; Gomez, Enrique; Robertson, Megan

    Linear ABA triblock copolymers find widespread utilization as thermoplastic elastomers (TPEs): materials which exhibit elastomeric behavior at room temperature and can be readily processed at elevated temperatures. Traditional TPEs are derived from fossil fuels; however, the finite availability of petroleum and the environmental impact of petroleum processing has led to an increased interest in developing alternative sources for polymers. Vegetable oils and their fatty acids are promising replacements for petroleum sources due to their abundance, low cost, lack of toxicity, biodegradability and ease of functionalization that provides convenient routes to polymerization. In this study, triblock copolymer TPEs were synthesized containing lauryl and stearyl acrylate, derived from fatty acids found in vegetable oils. Small-angle X-ray scattering experiments revealed highly aligned triblock copolymer morphologies after the application of large amplitude oscillatory shear. The temperature and frequency dependence of the degree of alignment was investigated. In contrast to prior studies on shear-aligned morphologies in bulk and thin film block copolymers, hexagonal close packed and face centered cubic spherical structures were observed.

  3. Impact property enhancement of poly (lactic acid) with different flexible copolymers

    NASA Astrophysics Data System (ADS)

    Likittanaprasong, N.; Seadan, M.; Suttiruengwong, S.

    2015-07-01

    The objective of this work was to improve the impact property of Poly (lactic acid) (PLA) by blending with different copolymers. Six flexible copolymers, namely, acrylonitrile butadiene styrene (ABS) powder, Biomax, polybutyrate adipate co-terephthalate (PBAT), polyether block amide (PEBAX), ethylene-vinyl acetate (EVA) and ethylene acrylic elastomer (EAE), with loading less than 20wt% were used and compared. The rheological, mechanical and morphological properties of samples were investigated by melt flow index, tensile testing, impact testing and scanning electron microscope (SEM), respectively. It was found that PLA added 20wt% EAE showed the highest impact strength (59.5 kJ/m2), which was 22 times higher than neat PLA. The elongation at break was also increased by 12 folds compared to neat PLA. The SEM images showed good interface and distribution for PLA containing 20wt% EAE, 15 phr Biomax and 20 wt% PEBAX.

  4. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NAmphiphilic copolymers of sucrose methacrylate and acrylic monomers: bio-based materials from renewable resource.

    PubMed

    de Oliveira, Heitor F N; Felisberti, Maria Isabel

    2013-04-15

    Regioselective sucrose 1'-O-methacrylate obtained by transesterification catalyzed by Proteinase-N was copolymerized with hydrophilic N-isopropylacrylamide and hydrophobic methyl methacrylate in different molar ratios by free radical polymerization. The copolymers were characterized by (13)C nuclear magnetic resonance spectroscopy, gel permeation chromatography, differential scanning calorimetry and thermogravimetry. Solubility and phase behavior of aqueous solutions were also investigated. The glass transition of the copolymers presents a positive deviation from the values of the homopolymers due to the high density of inter and intramolecular hydrogen bonding. Their solubility is strongly dependent on the composition. Copolymers poor in methyl methacrylate are water soluble, while copolymers richer in methyl methacrylate behaves as hydrogel. These hydrogels are not chemically crosslinked and their form can be design prior swelling by the conventional processing methods, such as solvent casting and extrusion for instance. Copolymers of N-isopropylacrylamide are water soluble and their aqueous solutions present a lower critical solution temperature behavior forming thermoreversible hydrogels.

  5. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Martínez Martínez, D.; Nohava, Jiri; De Hosson, J. Th. M.

    2015-11-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond-like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the uncoated substrate. A wide range of applied loads is explored, from 1 mN to 1 N, which is achieved by using a specific tribometer. The variation of 3 orders of magnitude in the applied load leads to a strong variation of the observed frictional phenomena. The different behavior of both samples at various loads is explained using a model that considers two contributions to the friction coefficient, namely, an adhesive and a rubber hysteresis part. The constraints and applicability of such model are critically evaluated.

  6. Graft copolymerization of acrylic acid onto polyamide fibers

    NASA Astrophysics Data System (ADS)

    Makhlouf, Chahira; Marais, Stéphane; Roudesli, Sadok

    2007-04-01

    The grafting of acrylic acid (AA) monomer (CH 2dbnd CH sbnd COOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction. The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn. The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements. The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements. The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.

  7. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    NASA Astrophysics Data System (ADS)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2016-10-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  8. Polyglycolic and Polylactic Acid Copolymers as Ureteral Replacements

    DTIC Science & Technology

    1978-08-25

    and Identify by block number) ureteral: regeneration employing polyglycolic- polylactic acid cylinders. Although prolonged patency was not...1473 EDITION OF I NOV 65 IS OBSOLETE UVICLASSTFIED SECURITY CLASSIrICATION OF THIS PAGE (117 sn beta Entered) ’I 4 POLYGLYCOLIC AND POLYLACTIC ACID...UnlimIitod I/1 POLYGLYCOLLC AND POLYLACTIC ACID COPOLYMERS AS URETERAL REPLACEMENTS Abstract Preliminary experimentation in rats and dogs

  9. Polymeric matrices based on graft copolymers of PCL onto acrylic backbones for releasing antitumoral drugs.

    PubMed

    Abraham, Gustavo A; Gallardo, Alberto; San Román, Julio; Fernández-Mayoralas, Alfonso; Zurita, Mercedes; Vaquero, Jesús

    2003-03-15

    Graft copolymers of poly(epsilon-caprolactone) (PCL) on poly(dimethylacrylamide) (PDMAm), poly(methylmethacrylate) (PMMA), or on copolymers of poly(DMAm-co-MMA) have been synthesized and characterized by (1)H NMR spectroscopy, differential scanning calorimetry (DSC), and size exclusion chromatography (SEC). These partially biodegradable copolymer matrices have been proposed as drug delivery systems for the release of low-molecular-weight glycosides. Octyl-N-acetyl-6-O-[2,2-bis(hydroxymethyl)-3-hydroxypropyl]-alpha-D-glucosamide, a synthetic carbohydrate able to inhibit the proliferation of human malignant glioma cells in culture and transplanted glioma in rats was selected as drug model. The in vitro aqueous behavior of four drug-loaded and unloaded graft copolymers of different MMA: DMAm and PCL ratios has been analyzed performing swelling, degradation, and drug release experiments. An intimate dependence of the aqueous behavior with the composition has been found. The higher was the DMAm content, the higher was the hydrophilicity of the synthesized systems as well as the swelling, degradation, and drug release rate. In vivo experiments in pigs demonstrated the very good tolerance of drug-loaded implanted polymeric discs, and that >95% of the charged drug is released after 2 months' implantation.

  10. 21 CFR 177.1990 - Vinylidene chloride/methyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... copolymer is not less than 50,000 when determined by gel permeation chromatography using tetrahydrofuran as... Weight Averages and Molecular Weight Distribution of Polystyrene by Liquid Exclusion Chromatography (Gel Permeation Chromatography-GPC),” which is incorporated by reference. Copies are available from...

  11. Thermal and optical properties of Tb(III), Eu(III) and Tb(III)/Eu(III) co-complexed silicone fluorinated acrylate copolymer

    NASA Astrophysics Data System (ADS)

    Zhai, Yinfeng; Xie, Hongde; Cai, Haijun; Cai, Peiqing; Seo, Hyo Jin

    2015-07-01

    Tb(III), Eu(III) and Tb(III)/Eu(III) activated silicone fluorinated acrylate (SFA) have been successfully synthesized using the method of semi-continuous emulsion polymerization. The copolymers are characterized by flourier transform infrared (FT-IR), thermal gravity analysis (TGA), photoluminescence excitation (PLE) and emission (PL) spectroscopy. The copolymer containing Tb(III) and Eu(III) ions display green and red luminescent colors under UV light excitation, respectively. The TGA curves show the thermal decomposition temperatures of the copolymers are up to about 300 °C. The PL spectra show a strong green emission at 546 nm (5D4 → 7F5) of Tb(III) complexed copolymers, and show a prominent red emission at 615 nm (5D0 → 7F2) of Eu(III) complexed copolymers. Different concentrations of Eu(III) and Tb(III) ions are introduced into the copolymer and the energy transfer from Tb(III) to Eu(III) ions in the copolymer was found. Thus, based on the results it can be suggested that SFA:Eu(III), SFA:Tb(III) and SFA:Tb(III)/Eu(III) can be used potentially as luminescent materials.

  12. Plastic Deformation and Morphological Evolution of Precise Acid Copolymers

    NASA Astrophysics Data System (ADS)

    Middleton, L. Robert; Azoulay, Jason; Murtagh, Dustin; Cordaro, Joseph; Winey, Karen

    2014-03-01

    Acid- and ion-containing polymers have specific interactions that produce complex and hierarchical morphologies that provide remarkable mechanical properties. Historically, correlating the hierarchical structure and the mechanical properties of these polymers has been challenging due to the random arrangements of the polar groups along the backbone, ex situ characterization and the difficulty in deconvolution the effects of crystalline and amorphous regions along with secondary interactions between polymer chains. We address these challenges through in situ deformation of precise acid copolymers and relate the structural evolution to bulk properties by considering a series of copolymers with 9, 15 or 21 carbons between acid groups. Simultaneous synchrotron X-ray scattering and room temperature uniaxial tensile experiments of these precise acid copolymers were conducted. The different deformation mechanisms are compared and the microstructural evolution during deformation is discussed. For example, the liquid-like distribution of acid aggregates within the bulk copolymer transitions into a layered structure concurrent to a dramatic increase in tensile strength. Overall, we evaluate the effect and control of introducing acid groups on mechanical deformation of the bulk copolymers.

  13. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, G.B.; Hogen-Esch, T.E.; Meister, J.J.; Pledger, H. Jr.

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce[sup +4] or other redox initiators are disclosed. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells. 2 figs.

  14. Water-soluble graft copolymers of starch-acrylamide and uses therefor

    DOEpatents

    Butler, George B.; Hogen-Esch, Thieo E.; Meister, John J.; Pledger, Jr., Huey

    1983-08-23

    Graft copolymers having starch as the central chain with grafted side chains of acrylamide or acrylamide-acrylic acid, and a process for preparation of such copolymers in the presence of Ce.sup.+4 or other redox initiators. These copolymers are employed in preparing highly viscous aqueous solutions that are particularly useful in oil recovery from subterranean wells.

  15. 75 FR 770 - Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... AGENCY 40 CFR Part 180 Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2- methyl-2... residues of acrylic acid-benzyl methacrylate-1- propanesulfonic acid, 2-methyl-2- -, monosodium salt... to establish a maximum permissible level for residues of acrylic acid-benzyl...

  16. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods

    PubMed Central

    Ozdemir, Ali Kemal; Turgut, Mehmet; Boztug, Ali; Sumer, Zeynep

    2015-01-01

    PURPOSE The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure. PMID:25932307

  17. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  18. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  19. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    PubMed

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices.

  1. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.

    PubMed

    Yu, Rentong; Zheng, Sixun

    2011-01-01

    Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) co-polymer networks (PNIPAAm-g-PAA) were prepared via the reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropyl- acrylamide (NIPAAm) with trithiocarbonate-terminated PAA as a macromolecular chain-transfer agent in the presence of N,N-methylenebisacrylamide. The PNIPAAm-g-PAA co-polymer networks were characterized by means of Fourier transform infrared spectroscopy, differential scanning calorimetry and small-angle X-ray scattering. It is found that the PNIPAAm-g-PAA co-polymer networks were microphase-separated, in which the microdomains of PNIPAAm-PAA interpolymer complexes were dispersed into the PNIPAAm matrix. The PNIPAAm-g-PAA hydrogels displayed a dual response to temperature and pH values. The thermoresponsive properties of PNIPAAm-g-PAA networks were investigated. Below the volume phase transition temperatures, the PNIPAAm-g-PAA hydrogels possessed much higher swelling ratios than control PNIPAAm hydrogel. In terms of swelling, deswelling and reswelling tests, it is judged that the PNIPAAm-g-PAA hydrogels displayed faster response to the external temperature changes than control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of PAA-grafted PNIPAAm networks, in which the water-soluble PAA chains behave as the hydrophiphilic tunnels and allow water molecules to go through and, thus, to accelerate the diffusion of water molecules.

  2. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Vinyl acetate/crotonic acid copolymer. 175.350... COATINGS Substances for Use as Components of Coatings § 175.350 Vinyl acetate/crotonic acid copolymer. A copolymer of vinyl acetate and crotonic acid may be safely used as a coating or as a component of a...

  3. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuzhir, Polina; Maksimenko, Sergey; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-05-01

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  4. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    SciTech Connect

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  5. Emulsion polymerization of polystyrene-co-acrylic acid with Cu2O incorporation

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Harmami, Sri Budi; Meliana, Yenny; Haryono, Agus

    2017-01-01

    In this research, poly(styrene-co-acrylic acid-Cu) was prepared via emulsion polymerization.Cu contents were varied as 10%, 15% and 20% and mol ratio of styrene to acrylic acid as 1:1 and 2:1. Structure and surface of poly(styrene-co-acrylic acid-Cu) were characterized by FTIR (Fourier Transformed Infra Red), NMR (Nuclear Magnetic Resonance), and SEM/EDX (Scanning Electron Microcope/ Energy Dispersive X-Ray) spectroscopy. The NMR spectra showed that the polymer was formed, however FTIR spectra showed that there were still unreacted monomers. SEM-EDX confirmed that copper (Cu) was dispersed uniformly on poly(styrene-co-acrylic acid-Cu) matrix.

  6. Self-assembling gradient copolymers of vinylimidazol and (acrylic)ibuprofen with anti-inflammatory and zinc chelating properties.

    PubMed

    Suárez, Patricia; Rojo, Luis; González-Gómez, Álvaro; Román, Julio San

    2013-09-01

    Novel gradient copolymers of hydrophilic 1-vinylimidazol and hydrophobic methacrylic derivative of ibuprofen prepared by free radical polymerization are described. The heterogeneous distribution of monomeric units along the polymeric chains leads to a gradient distribution of the hydrophobic and hydrophilic sequences responsible of nanoparticles formation through a self-assembling mechanism, capable of tune the water permeation due to the ionizable imidazole moieties and their gradient profile along the macromolecules, exhibiting pH and composition dependent effect in terms of diameter, zeta potential, acid-base buffering, ibuprofen release and chelating capacities, responsible of matrix metalloproteinase dysfunction showing anti-inflammatory activity in a nitric oxide inhibition assay.

  7. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  8. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  9. Hybrid, elastomeric hydrogels crosslinked by multifunctional block copolymer micelles

    PubMed Central

    Xiao, Longxi; Liu, Chao; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao

    2010-01-01

    Amphiphlic block copolymers consisting of hydrophilic, poly(acrylic acid) randomly decorated with acrylate groups and hydrophobic, rubbery poly(n-butyl acrylate) self-assembled into well-defined micelles with an average diameter of ~21 nm. Radical polymerization of acrylamide in the presence of the crosslinkable micelles gave rise to hybrid, elastomeric hydrogels whose mechancial properties can be readily tuned by varying the BCM concentration. PMID:21278815

  10. Methylation of acidic moieties in poly(methyl methacrylate-co-methacrylic acid) copolymers for end-group characterization by tandem mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-07-30

    The complete structural characterization of a copolymer composed of methacrylic acid (MAA) and methyl methacrylate (MMA) units was achieved using tandem mass spectrometry. In a first step, collision-induced dissociation (CID) of sodiated MAA-MMA co-oligomers allowed us to determine the co-monomeric composition, the random nature of the copolymer and the sum of the end-group masses. However, dissociation reactions of MAA-based molecules mainly involve the acidic pendant groups, precluding individual characterization of the end groups. Therefore, methylation of all the acrylic acid moieties was performed to transform the MAA-MMA copolymer into a PMMA homopolymer, for which CID mainly proceeds via backbone cleavages. Using trimethylsilyldiazomethane as a derivatization agent, this methylation reaction was shown to be complete without affecting the end groups. Using fragmentation rules established for PMMA polymers together with accurate mass measurements of the product ions and knowledge of reagents used for the studied copolymer synthesis, a structure could be proposed for both end groups and it was found to be consistent with signals obtained in nuclear magnetic resonance spectra.

  11. Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery

    PubMed Central

    Shi, Julie; Johnson, Russell N.; Schellinger, Joan G.; Carlson, Peter M.

    2011-01-01

    Biodegradability can be incorporated into cationic polymers via use of disulfide linkages that are degraded in the reducing environment of the cell cytosol. In this work, N-(2-hydroxypropyl)methacrylamide (HPMA) and methacrylamido-functionalized oligo-L-lysine peptide monomers with either a non-reducible 6-aminohexanoic acid (AHX) linker or a reducible 3-[(2-aminoethyl)dithiol]propionic acid (AEDP) linker were copolymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Both of the copolymers and a 1:1 (w/w) mixture of copolymers with reducible and non-reducible peptides were complexed with DNA to form polyplexes. The polyplexes were tested for salt stability, transfection efficiency, and cytotoxicity. The HPMA-oligolysine copolymer containing the reducible AEDP linkers was less efficient at transfection than the non-reducible polymer and was prone to flocculation in saline and serum-containing conditions, but was also not cytotoxic at charge ratios tested. Optimal transfection efficiency and toxicity was attained with mixed formulation of copolymers. Flow cytometry uptake studies indicated that blocking extracellular thiols did not restore transfection efficiency and that the decreased transfection of the reducible polyplex is therefore not primarily caused by extracellular polymer reduction by free thiols. The decrease in transfection efficiency of the reducible polymers could be partially mitigated by the addition of low concentrations of EDTA to prevent metal-catalyzed oxidation of reduced polymers. PMID:21893178

  12. Reducible HPMA-co-oligolysine copolymers for nucleic acid delivery.

    PubMed

    Shi, Julie; Johnson, Russell N; Schellinger, Joan G; Carlson, Peter M; Pun, Suzie H

    2012-05-01

    Biodegradability can be incorporated into cationic polymers via use of disulfide linkages that are degraded in the reducing environment of the cell cytosol. In this work, N-(2-hydroxypropyl)methacrylamide (HPMA) and methacrylamido-functionalized oligo-l-lysine peptide monomers with either a non-reducible 6-aminohexanoic acid (AHX) linker or a reducible 3-[(2-aminoethyl)dithiol] propionic acid (AEDP) linker were copolymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Both of the copolymers and a 1:1 (w/w) mixture of copolymers with reducible and non-reducible peptides were complexed with DNA to form polyplexes. The polyplexes were tested for salt stability, transfection efficiency, and cytotoxicity. The HPMA-oligolysine copolymer containing the reducible AEDP linkers was less efficient at transfection than the non-reducible polymer and was prone to flocculation in saline and serum-containing conditions, but was also not cytotoxic at charge ratios tested. Optimal transfection efficiency and toxicity were attained with mixed formulation of copolymers. Flow cytometry uptake studies indicated that blocking extracellular thiols did not restore transfection efficiency and that the decreased transfection of the reducible polyplex is therefore not primarily caused by extracellular polymer reduction by free thiols. The decrease in transfection efficiency of the reducible polymers could be partially mitigated by the addition of low concentrations of EDTA to prevent metal-catalyzed oxidation of reduced polymers.

  13. Electrochromatography on acrylate-based monolith in cyclic olefin copolymer microchip: a cost-effective and easy-to-use technology.

    PubMed

    Ladner, Yoann; Crétier, Gérard; Faure, Karine

    2012-10-01

    This article shows that there is great interest in using an electrochromatographic microchip made of hexyl acrylate (HA) based porous monolith cast within the channel of a cyclic olefin copolymer (COC) device. The monolith is simultaneously in situ synthesized and anchored to the inner walls of the channel in less than 10 min. By appropriate choice of light intensity used during the synthesis, the separation efficiency obtained for nonpolar solutes such as polycyclic aromatic hydrocarbons (PAH) is increased up to 250 000 plates/m. The performance of this HA-filled COC microchip was investigated for a wide range of analytes of varying nature. The reversed-phase separation of four aflatoxins is obtained in less than 2 min. The baseline separation of a mixture of neurotransmitters including six amino acids and two catecholamines is possible thanks to the superimposition of the differences in electrophoretic mobility on the chromatographic process. The durability of the system at pH 13 allows the separation of five biogenic amines and the quantitative determination of two of them in numerous wine samples. The feasibility of on-line preconcentration is also demonstrated. Hydrophilic surface modification of COC channel via UV-photografting with poly(ethylene glycol) methacrylate (PEGMA) before in situ synthesis of HA, is necessary to reduce the adsorption of very hydrophobic solutes such as PAH during enrichment. The detection limit of fluoranthene is decreased down to less than 1 ppb with a preconcentration of 4.5 h on the HA-filled PEGMA functionalized COC microchip.

  14. Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens.

    PubMed

    Nabais, Cláudia R J O D; Heron, B Mark; de Sousa, Hermínio C; Gil, Maria H; Sobral, Abílio J F N

    2011-01-01

    Three different naphthopyrans were incorporated in co-polymers of methyl methacrylate (MMA) and 2-ethylhexyl acrylate (EHA), with and without cross-linking with ethyleneglycol dimethacrylate (EGDMA), by a free radical polymerization method. The obtained materials were characterised in terms of some of their chemical and physical properties that could be important for the final functional properties of the envisaged application. Despite other important functional properties that should be evaluated in the near future, the system based in the physical entrapment of 3,3-bis(4-methoxyphenyl)-3H-naphtho [2,1-b]pyran presented a good potential for its application as novel light-sensitive contact lenses.

  15. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing

    PubMed Central

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.

    2013-01-01

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces. PMID:24349719

  16. Focal point analysis of torsional isomers of acrylic acid

    NASA Astrophysics Data System (ADS)

    Alev Çiftçioğlu, Gökçen; Trindle, Carl; Yavuz, Ilhan

    2010-10-01

    The thermochemistry of acrylic acid has presented challenges owing to its high reactivity, tendency to dimerize in the gas phase, and the existence of two very nearly equal energy conformational isomers. Well-tested thermochemical schemes including G2, G3, G4, and CBS-QB3 agree in the prediction that the s-cis syn structure is the most stable of the torsional isomers, with the s-cis anti form lying 3 kJ mol-1 or less higher in energy. Microwave spectra suggest a value of 0.63 kJ mol-1. The energy barrier between these forms is in the neighbourhood of 25 kJ mol-1 according to a MP2/cc-pVDZ calculation. We present estimates of the relative energies of all four torsional isomers and the rotational barrier based on a variant of the Focal Point Analysis developed by Császár and co-workers. These calculations, extending to the CCSD(T)/cc-pV5Z level, predict that the s-cis anti torsional isomer is the most stable form, in contrast to prior estimates. The s-cis syn form lies about 2.9 kJ mol-1 higher, while the s-trans syn and anti forms lie at about 21.7 and 23.3 kJ mol-1, respectively. We estimate the rotational barrier between the s-cis trans and s-cis anti structures to be about 23.9 kJ mol-1. Error ranges derived from the fit to extrapolation forms suggest that our estimates have an uncertainty of about 0.1 kJ mol-1.

  17. Supercritical water oxidation of acrylic acid production wastewater.

    PubMed

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  18. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  19. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  20. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  1. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  2. Design and Comparative Evaluation of In-vitro Drug Release, Pharmacokinetics and Gamma Scintigraphic Analysis of Controlled Release Tablets Using Novel pH Sensitive Starch and Modified Starch- acrylate Graft Copolymer Matrices

    PubMed Central

    Kumar, Pankaj; Ganure, Ashok Laxmanrao; Subudhi, Bharat Bhushan; Shukla, Shubhanjali

    2015-01-01

    The present investigation deals with the development of controlled release tablets of salbutamol sulphate using graft copolymers (St-g-PMMA and Ast-g-PMMA) of starch and acetylated starch. Drug excipient compatibility was spectroscopically analyzed via FT-IR, which confirmed no interaction between drug and other excipients. Formulations were evaluated for physical characteristics like hardness, friability, weight variations, drug release and drug content analysis which satisfies all the pharmacopoeial requirement of tablet dosage form. Release rate of a model drug from formulated matrix tablets were studied at two different pH namely 1.2 and 6.8, spectrophotometrically. Drug release from the tablets of graft copolymer matrices is profoundly pH-dependent and showed a reduced release rate under acidic conditions as compared to the alkaline conditions. Study of release mechanism by Korsmeyer’s model with n values between 0.61-0.67, proved that release was governed by both diffusion and erosion. In comparison to starch and acetylated starch matrix formulations, pharmacokinetic parameters of graft copolymers matrix formulations showed a significant decrease in Cmax with an increase in tmax, indicating the effect of dosage form would last for longer duration. The gastro intestinal transit behavior of the formulation was determined by gamma scintigraphy, using 99mTc as a marker in healthy rabbits. The amount of radioactive tracer released from the labelled tablets was minimal when the tablets were in the stomach, whereas it increased as tablets reached to intestine. Thus, in-vitro and in-vivo drug release studies of starch-acrylate graft copolymers proved their controlled release behavior with preferential delivery into alkaline pH environment. PMID:26330856

  3. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  4. Synthesis of radiation crosslinked poly(acrylic acid) in the presence of phenyltriethoxysilane

    NASA Astrophysics Data System (ADS)

    Hassan, Safia; Yasin, Tariq

    2014-04-01

    Acrylic acid based superabsorbent hydrogel was prepared using phenyltriethoxysilane (PTES) as polyfunctional monomer. Different amounts of PTES were incorporated in acrylic acid and irradiated at different doses upto maximum of 30 kGy. The crosslinked acrylic acid showed hydrogel properties and its swelling kinetics, gel fraction and equilibrium degree of swelling (EDS) were studied. It was found that the increased PTES concentration decreased the EDS of the hydrogels. Infrared spectroscopy confirmed the crosslinking reaction between the feed components and the existence of siloxane bond. Thermogravimetric analysis showed an increase in the stability of the hydrogels having high PTES content. The swelling of the hydrogel was affected by pH, ionic strength and temperature. These hydrogels showed low swelling in acidic and basic pH range and high swelling around neutral pH. This switchable pH response of these hydrogels can be exploited in environmental and biomedical applications.

  5. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    NASA Astrophysics Data System (ADS)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  6. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion.

    PubMed

    Patel, Minesh M; Smart, John D; Nevell, Thomas G; Ewen, Richard J; Eaton, Peter J; Tsibouklis, John

    2003-01-01

    Studies using infrared, (1)H and (13)C nuclear magnetic resonance, and X-ray photoelectron spectroscopies and differential scanning calorimetry support the hypothesis that hydrogen bonds, formed between the carboxylic acid functionality of the mucoadhesive material poly(acrylic acid) and the glycoprotein component of mucus, play a significant role in the process of mucoadhesion. There are fewer H-bonded interactions between the components than within the bulk of the pure mucoadhesive agent. The pH of the medium influences the structures of both the poly(acrylic acid) and the mucus, which, in turn, determine the nature and the extent of mucoadhesive interactions.

  7. Liver Hypertrophy After Percutaneous Portal Vein Embolization: Comparison of N-Butyl-2-Cyanocrylate Versus Sodium Acrylate-Vinyl Alcohol Copolymer Particles in a Swine Model

    SciTech Connect

    Tsoumakidou, Georgia; Theocharis, Stamatis; Ptohis, Nikolaos Alexopoulou, Efthimia; Mantziaras, George; Kelekis, Nikolaos L. Brountzos, Elias N.

    2011-10-15

    Purpose: Percutaneous portal vein embolization (PPVE) induces hypertrophy of the future liver remnant before hepatic resection. The ideal embolic material has not yet been determined. We compared N-butyl-2-cyanocrylate (NBCA) with sodium acrylate-vinyl alcohol copolymer particles using a swine model. Materials and Methods: Twelve pigs underwent PPVE. Six pigs (group A) were embolized with NBCA, and 6 pigs (group B) were embolized with sodium acrylate-vinyl alcohol copolymer particles. Computed tomographic volumetry of the embolized lobe (EL) and the nonembolized lobe (NEL), along with liver function tests, was performed before and at 14 and 28 days after embolization. Tissue samples from both lobes were taken 14 and 28 days after PPVE. Results: NEL-volume and NEL-ratio increases were significantly higher in group A at 14 and 28 days after PPVE (78 and 52% and 91 and 66%, respectively) than in group B (32 and 12% and 28 and 10%, respectively) (p < 0.05). Percent change of the EL-volume was significantly higher for group A at 28 days after PPVE. No statistically significant difference was found between the groups regarding hepatocyte proliferation on the NEL and apoptosis on the EL at both time intervals. Conclusion: PPVE using NBCA is more efficient and causes more NEL hypertrophy than microspheres.

  8. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation.

    PubMed

    Abeer, Muhammad Mustafa; Amin, Mohd Cairul Iqbal Mohd; Lazim, Azwan Mat; Pandey, Manisha; Martin, Claire

    2014-09-22

    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.

  9. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2...-styrene polymer when used as an inert ingredient in a pesticide chemical formulation....

  10. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  11. Evaluation of Liquid-Liquid Extraction Process for Separating Acrylic Acid Produced From Renewable Sugars

    NASA Astrophysics Data System (ADS)

    Alvarez, M. E. T.; Moraes, E. B.; Machado, A. B.; Maciel Filho, R.; Wolf-Maciel, M. R.

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method univeral quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  12. Evaluation of liquid-liquid extraction process for separating acrylic acid produced from renewable sugars.

    PubMed

    Alvarez, M E T; Moraes, E B; Machado, A B; Maciel Filho, R; Wolf-Maciel, M R

    2007-04-01

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method universal quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  13. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  14. Synthesis and properties of a novel UV-cured fluorinated siloxane graft copolymer for improved surface, dielectric and tribological properties of epoxy acrylate coating

    NASA Astrophysics Data System (ADS)

    Yan, Zhenlong; Liu, Weiqu; Gao, Nan; Wang, Honglei; Su, Kui

    2013-11-01

    A novel functional fluorinated siloxane graft copolymer bearing with vinyl end-groups was synthesized from dihydroxypropyl-terminated poly(dimethylsiloxane) (PDMS), dicarboxyl terminated poly(2,2,3,4,4,4-hexafluorobutyl acrylate) oligomer (CTHFA), 2,4-toluene diissocyanate (TDI) and 2-hydroxyethyl methacrylate (HEMA). The chemical structure was characterized by FT-IR and GPC. The effect of concentration of the vinyl-capped fluorosilicone graft copolymer (Vi-PFSi) on the surface, thermal properties, dielectric and tribological properties of UV-cured films was investigated. Contact angles and surface energies showed that the high hydrophobic and oleophobic surfaces were obtained by incorporation of Vi-PFSi at very low amount (0.5 wt%). X-ray photoelectron spectroscopy (XPS) evidenced that the fluorinated and siloxane moiety selectively migrated to the outermost surface of UV-cured film, thus reduced its surface energy from 45.42 to 15.40 mN/m2 without affecting its bulk properties. The morphology of fracture surface of modified film exhibited rough fracture surface only at the outermost surface, revealing fluorinated and siloxane groups migrated toward air-side surface. The dielectric constants decreased from 5.32 (1 MHz) for bisphenol-A epoxy methacrylate (EMA) to 2.82 (1 MHz) for modified film when the Vi-PFSi copolymer concentration increased from 0 to 0.8 wt%. Tribological results from abrasion tester suggested that the Vi-PFSi could obviously reduce the abrasion weight loss of modified films.

  15. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  16. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  17. Synthesis and antibacterial properties of beta-diketone acrylate bioisosteres of pseudomonic acid A.

    PubMed

    Bennett, I; Broom, N J; Cassels, R; Elder, J S; Masson, N D; O'Hanlon, P J

    1999-07-05

    A series of beta-diketone acrylate bioisosteres 4 of pseudomonic acid A 1 have been synthesized and evaluated for their ability to inhibit bacterial isoleucyl-tRNA synthetase and act as antibacterial agents. A number of analogues have excellent antibacterial activity. Selected examples were shown to afford good blood levels and to be effective in a murine infection model.

  18. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  19. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials.

  20. Radiation induced graft copolymerization of n-butyl acrylate onto poly(ethylene terephthalate) (PET) films and thermal properties of the obtained graft copolymer

    NASA Astrophysics Data System (ADS)

    Ping, Xiang; Wang, Mozhen; Ge, Xuewu

    2011-05-01

    n-Butyl acrylate (BA) was successfully grafted onto poly(ethylene terephthalate) (PET) film using simultaneous radiation induced graft copolymerization with gamma rays. When BA concentration ranges from 20% to 30%, the Degree of Grafting (DG), measured by gravimetry and 1H NMR, increases with the monomer concentration and absorbed dose, but decreases with dose rate from 0.83 to 2.53 kGy/h. The maximum DG can reach up to 22.1%. The thermal transition temperatures such as glass-transition temperature ( Tg) and cold-crystallization temperature ( Tcc) of PET in grafted films were little different from those in original PET film, indicating that microphase separation occurred between PBA side chains and PET backbone. This work implied that if PET/elastomers (e.g., acrylate rubber) blends are radiated by high energy gamma rays under a certain condition, PET-g-polyacrylate copolymer may be produced in-situ, which will improve the compatibility between PET and the elastomers so as to improve the integral mechanical properties of PET based engineering plastic.

  1. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    PubMed

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  2. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions.

  3. Molecular recognition at methyl methacrylate/n-butyl acrylate (MMA/nBA) monomer unit boundaries of phospholipids at p-MMA/nBA copolymer surfaces.

    PubMed

    Yu, Min; Urban, Marek W; Sheng, Yinghong; Leszczynski, Jerzy

    2008-09-16

    Lipid structural features and their interactions with proteins provide a useful vehicle for further advances in membrane proteins research. To mimic one of potential lipid-protein interactions we synthesized poly(methyl methacrylate/ n-butyl acrylate) (p-MMA/nBA) colloidal particles that were stabilized by phospholipid (PLs). Upon the particle coalescence, PL stratification resulted in the formation of surface localized ionic clusters (SLICs). These entities are capable of recognizing MMA/nBA monomer interfaces along the p-MMA/nBA copolymer backbone and form crystalline SLICs at the monomer interface. By utilizing attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy and selected area electron diffraction (SAD) combined with ab initio calculations, studies were conducted that identified the origin of SLICs as well as their structural features formed on the surface of p-MMA/nBA copolymer films stabilized by 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC) PL. Specific entities responsible for SLIC formation are selective noncovalent bonds of anionic phosphate and cationic quaternary ammonium segments of DLPC that interact with two neighboring carbonyl groups of nBA and MMA monomers of the p-MMA/nBA polymer backbone. To the best of our knowledge this is the first example of molecular recognition facilitated by coalescence of copolymer colloidal particles and the ability of PLs to form SLICs at the boundaries of the neighboring MMA and nBA monomer units of the p-MMA/nBA chain. The dominating noncovalent bonds responsible for the molecular recognition is a combination of H-bonding and electrostatic interactions.

  4. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  5. 40 CFR 721.10523 - Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (generic). 721... Substances § 721.10523 Perfluoroalkylethyl methacrylate copolymer with hydroxymethyl acrylamide, vinyl... methacrylate copolymer with hydroxymethyl acrylamide, vinyl chloride and long chain fatty alkyl acrylate (PMN...

  6. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  7. Chitosan-graft-poly(n-butyl acrylate) copolymer: Synthesis and characterization of a natural/synthetic hybrid material.

    PubMed

    Anbinder, Pablo; Macchi, Carlos; Amalvy, Javier; Somoza, Alberto

    2016-07-10

    Two chitosan polymers with different deacetylation degree and molecular weight were subjected to grafting reactions with the aim to enhance the properties of these bio-based materials. Specifically, n-butyl acrylate in different proportions was grafted onto two different deacetylation degree (DD%) chitosan using radical initiation in a surfactant free emulsion system. Infrared spectroscopy was used to confirm grafting and products grafting percentage and efficiency were evaluated against acrylate/chitosan ratio and DD%. Thermal and structural properties and the behavior against water of the raw and grafted biopolymers were studied using several experimental techniques: differential scanning calorimetry, transmission electron microscopy, dynamic light scattering, water swelling, contact angle and positron annihilation lifetime spectroscopy. The influence of the grafting process on the morphological and physicochemical properties of the prepared natural/synthetic hybrid materials is discussed.

  8. Optimization of acrylic acid grafting onto polypropylene using response surface methodology and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Kushwaha, Jai P.; Chaudhari, Chandrasekhar V.; Dubey, Kumar A.; Varshney, Lalit

    2017-03-01

    Simultaneous radiation grafting was optimized to graft acrylic acid monomer on the polypropylene (PP) films to make them hydrophilic and enhance their biodegradability. Experiments were designed based on full factorial central composite design (response surface methodology) and influence of monomer concentration, radiation dose, inhibitor concentration, solvent concentration on degree of grafting was investigated. The extent of grafting was found to increase with increasing monomer concentration, inhibitor concentration and radiation dose. The targeted 35% grafting could be achieved at optimum condition viz. monomer concentration 12.09 wt%, radiation dose 12.40 kGy, inhibitor concentration 0.07 M and solvent concentration 0.12 M. The grafted PP films at different degrees of grafting were tested for tensile properties and characterized by swelling studies, fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Successful grafting of acrylic acid onto polypropylene films was indicated by FTIR and confirmed quantitatively by determination of carboxylic groups on the film surface. Tensile strength of grafted PP films decreased with increase in degree of grafting. The crystallinity of the grafted PP films was lower than that of PP film as indicated by DSC studies. Grafting of acrylic acid increased the roughness on the surface of PP films indicated by SEM studies. The maximum biodegradability of the 34.55% grafted film was 5.5%.

  9. Thermal preparation of chitosan-acrylic acid superabsorbent: optimization, characteristic and water absorbency.

    PubMed

    Ge, Huacai; Wang, Senkang

    2014-11-26

    Chitosan-acrylic acid superabsorbent polymer was successfully prepared by the thermal reaction without using initiator and crosslinker in air. The effects of some reaction variables on the water absorbency of this polymer were investigated by orthogonal tests, and the optimal conditions were described. The influences of temperature, time, ratio of the reactants and neutralization degree of acrylic acid on the reaction were further studied. These polymers were also prepared in nitrogen atmosphere and by using a radical initiator and compared against thermal reaction obtained polymers. The structures of the polymers were characterized by FT-IR, TGA, XRD, (13)C NMR and elemental analyses. The results showed that the thermal reaction product of acrylic acid with chitosan might form N-carboxyethyl grafted and amide-linked polymer and this product could absorb water 644 times its own dry weight. The possible mechanism for the thermal reaction was further suggested. The purpose of this research was to explore the friendly synthesized method of the superabsorbent.

  10. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  11. A density functional study on dielectric properties of acrylic acid grafted polypropylene.

    PubMed

    Ruuska, Henna; Arola, Eero; Kortelainen, Tommi; Rantala, Tapio T; Kannus, Kari; Valkealahti, Seppo

    2011-04-07

    Influence of acrylic acid grafting of isotactic polypropylene on the dielectric properties of the polymer is investigated using density functional theory (DFT) calculations, both in the molecular modeling and three-dimensional (3D) bulk periodic system frameworks. In our molecular modeling calculations, polarizability volume, and polarizability volume per mass which reflects the permittivity of the polymer, as well as the HOMO-LUMO gap, one of the important measures indicating the electrical breakdown voltage strength, were examined for oligomers with various chain lengths and carboxyl mixture ratios. When a polypropylene oligomer is grafted with carboxyl groups (cf. acrylic acid), our calculations show that the increase of the polarizability volume α' of the oligomer is proportional to the increase of its mass m, while the ratio α'/m decreases from the value of a pure polymer when increasing the mixture ratio. The decreasing ratio of α'/m under carboxyl grafting indicates that the material permittivity might also decrease if the mass density of the material remains constant. Furthermore, our calculations show that the HOMO-LUMO gap energy decreases by only about 15% in grafting, but this decrease seems to be independent on the mixture ratio of carboxyl. This indicates that by doping polymers with additives better dielectric properties can be tailored. Finally, using the first-principles molecular DFT results for polarizability volume per mass in connection with the classical Clausius-Mossotti relation, we have estimated static permittivity for acrylic acid grafted polypropylene, assuming the structural density keeping constant under grafting. The computed permittivity values are in a qualitative agreement with the recent experiments, showing increasing tendency of the permittivity as a function of the grafting composition. In order to validate our molecular DFT based approach, we have also carried out extensive three-dimensional bulk periodic first

  12. 2-Fatty acrylic acids: new highly derivatizable lipophilic platform molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the incorporation of an alpha-methylene unit into fatty acid skeletons. Since the new olefin is conjugated with the carboxylate, it is susceptible to 1,4- (Michael) additions. We have used multifunctional thiols and amines for additions at the methylene. The resulting products ...

  13. Radiation-induced graft polymerization of acrylamide and acrylic acid onto polyethylene

    NASA Astrophysics Data System (ADS)

    Grushevskaya, L. N.; Aliev, R. E.; Kabanov, V. Ya.

    The radiation-induced grafting of acrylamide onto low-density polyethylene by the different methods and under different conditions was investigated: by the direct liquid phase method from this monomer solution in water (in neutral and acid media) and acetone, and by the pre-irradiation method from aqueous solutions as well as from its sublimated vapour. The molecular masses of polyacrylamide homopolymers were determined. The discussion and comparison of different methods of acrylamide grafting are performed. The relationship between rates of graft polymerization onto polyethylene and homopolymerization of acrylic acid in the presence of metal ions is considered.

  14. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  15. Radiation synthesis of eco-friendly water reducing sulfonated starch/acrylic acid hydrogel designed for cement industry

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, El-Sayed A.; Diaa, D. A.

    2013-04-01

    Starch was treated with chlorosulfonic acid to obtain sulfonated starch. Acrylic acid/sulfonated starch semi-interpenetrated network IPN of different compositions was prepared using ionizing radiation. Swelling of prepared IPNs at different environmental conditions was studied. The possible use of sulfonated starch/acrylic acid IPN as a water-retarding agent in the cement industry was investigated. ζ-potential measurements were used to determine the stability of the colloidal cement—SS/AA and cement -poly-naphthalene sulfonic acid (SNF) water retarding mixtures. Sulfonated starch/acrylic acid water-retarding property was influenced by hydrogel concentration and composition. Sulfonated starch/acrylic acid IPN admixture has a great effect on the cement initial setting time. Using 2% of SS/AA or SNF resulted in an increase in initial setting time by 2 and 1 h respectively, if compared with native cement initial setting time. The results showed that the synthetic commercial super-plasticizers could be replaced by an eco-friendly water-retarding sulfonated starch/acrylic acid IPN in the cement industry.

  16. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature.

    PubMed

    Saatchi, Mersa; Behl, Marc; Nöchel, Ulrich; Lendlein, Andreas

    2015-05-01

    Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (ΔT m ) of the actuating oligo(ε-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above Tm,offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad ΔTm s from 2 °C to 50 °C and from -10 °C to 37 °C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 °C and 37 °C. In this way, the application spectrum of the rbSME can be extended to biomedical applications.

  17. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    PubMed

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.

  18. Preparation of synthetic copolymers potentially capable to interact with biomacromolecules

    NASA Astrophysics Data System (ADS)

    Davydova, N. K.; Sinitsyna, O. V.; Zinoviev, K. E.

    2012-07-01

    A series of substituted amides of acrylic acid with various functional groups have been synthesized. On their basis there were obtained synthetic polymers which potentially could be employed as the probes capable of interaction with biomacromolecules. Atomic force microscopy was applied to study the interaction between DNA and the copolymers.

  19. Development of Electrically Conductive Transparent Coatings for Acrylic Plastic

    DTIC Science & Technology

    1952-12-01

    and methyl methacrylate monomer (I mole) in cyciohexanone (Z moles) vw’th benzoyl peroxide catalyst (0, Z% of total weight). The mix- ture was refluxed... methacrylic acid- methyl methaerylate copolymer re•I. The composite material, i. e., the acrylic and applied coating, retains essentially all the original...0.001" to 0.002" when rolled on and of less than 0.001" when sprayed on. The ability of the methacrylic acid- methyl methacrylate copolymer to cover the

  20. Electrochemical investigations of 3-(3-thienyl) acrylic acid protected nanoclusters and planar gold surfaces.

    PubMed

    Nirmal, R G; Kavitha, A L; Berchmans, Sheela; Yegnaraman, V

    2007-06-01

    Formation of self assembled monolayers on gold surface by thiols and disulphides is a well known phenomenon and extensive research work has been carried out in this area with envisaged applications in the area of sensors, molecular electronics, lithography, device fabrication using bottom-up approach, etc. Recently, it has been established that thiophene molecules can self assemble on gold surface due to Au-S interactions. 3-(3-thienyl) acrylic acid, a bifunctional ligand is used in this work to form self-assembled monolayers on planar gold surfaces (two dimensional assemblies) and to prepare monolayer protected gold nano clusters (three-dimensional assemblies). The electron transfer blocking properties of the two-dimensional monolayers were evaluated by using standard redox probes like ferrocyanide anions and Ruthenium hexamine cations. The functionalisation of the two-dimensional and three-dimensional assemblies has been carried out with ferrocene carboxylic acid and the functionalised monolayers were characterized by Cyclic voltammetry. The formation of thienyl acrylic acid protected nanoclusters has been verified by TEM and surface plasmon resonance absorption. It has been observed that when thiophene based ligands are used as stabilizers for the formation of metal nanoparticles, they tend to aggregate as a result of pi-pi interactions between adjacent thiophene ligands. In this case it is found that aggregation is prevented. The substituent at the thiophene ring hinders pi-pi interactions. The quantised nature of electrochemical charging of these nanoparticles has been demonstrated by differential pulse voltammetry (DPV), which exhibit peak like features (coulomb's staircase). This work also explores the possibility of using 3-(3-thienyl) acrylic acid as building blocks or spacers on planar and colloidal gold surfaces for potential applications in the field of sensors and devices.

  1. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    PubMed

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  2. Synthesis of carboxymethylcellulose/acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Superabsorbent hydrogels were prepared by gamma irradiation from aqueous solutions of carboxymethylcellulose (CMC) and acrylic acid (AAc) with varying CMC:AAc ratio. By partially replacing the CMC with AAc the gelation increased and led to a higher gel fraction and lower water uptake. Moreover, the gelation required significantly milder synthesis conditions. Decreasing both the dose and the solute concentration in the presence of AAc led to gels with higher gel fraction and higher degree of swelling compared to pure CMC gels. Increasing the AAc content up to 10% proved to be very effective, while very high AAc content (over 50%) hindered the gelation process.

  3. Vinylpyrrolidone-co-(meth)acrylic acid inserts for ocular drug delivery: synthesis and evaluation.

    PubMed

    Barbu, Eugen; Sarvaiya, Indrajeetsinh; Green, Keith L; Nevell, Thomas G; Tsibouklis, John

    2005-09-15

    Copolymeric hydrogels constituting of vinylpyrrolidone and methacrylic or acrylic acid repeat units have been prepared and investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. The materials were synthesized by radical-induced polymerization in the presence of N,N'-methylenebisacrylamide crosslinker, and the influences of network composition and drug solubility upon the swelling properties, adhesion behavior, and drug release characteristics were studied. In vitro release experiments showed that some of these materials could be useful vehicles for the delivery of drugs such as pilocarpine or chloramphenicol, while in vivo studies, using the rabbit model, confirmed their high potential for the controlled ocular delivery of pilocarpine hydrochloride.

  4. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  5. Photocurable biodegradable liquid copolymers: synthesis of acrylate-end-capped trimethylene carbonate-based prepolymers, photocuring, and hydrolysis.

    PubMed

    Matsuda, Takehisa; Kwon, Il Keun; Kidoaki, Satoru

    2004-01-01

    Various photocurable liquid biodegradable trimethylene carbonate (TMC)-based (co)oligomers were prepared by ring-opening (co)polymerization of TMC with or without L-lactide (LL) using low molecular weight poly(ethylene glycol) (PEG) (mol wt 200, 600, or 1000) or trimethylolpropane (TMP) as an initiator. Resultant (co)oligomers were pastes, viscous liquids, or liquids at room temperature, depending on the monomer composition and monomer/initiator ratio. Liquid (co)oligomers were subsequently end-capped with acrylate groups. Upon visible-light irradiation in the presence of camphorquinone as a radical generator, rapid liquid-to-solid transformation occurred to produce photocured solid. The photocuring yield increased with photoirradiation time, photointensity, and camphorquinone concentration. The photocured polymers derived from low molecular weight PEG (PEG200) and TMP exhibited much reduced hydrolysis potential compared with PEG1000-derived polymers in terms of weight loss, water uptake, and swelling depth. Force-distance curve measurements by nanoindentation using atomic force microscopy clearly showed that Young's moduli of the photocured polymer films decreased with increasing hydrolysis time. Their potential biomedical applications are discussed.

  6. Ultraviolet absorbing copolymers

    DOEpatents

    Gupta, Amitava; Yavrouian, Andre H.

    1982-01-01

    Photostable and weather stable absorping copolymers have been prepared from acrylic esters such as methyl methacrylate containing 0.1 to 5% of an 2-hydroxy-allyl benzophenone, preferably the 4,4' dimethoxy derivative thereof. The pendant benzophenone chromophores protect the acrylic backbone and when photoexcited do not degrade the ester side chain, nor abstract hydrogen from the backbone.

  7. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; García-González, Ester; Puglia, Giuseppe; Basile, Francesco; Concepción, Patricia; Bandinelli, Claudia; López Nieto, José M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51 % are reported.

  8. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control.

  9. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  10. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  11. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  12. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  13. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  14. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  15. Protein adsorption from flowing solutions on pure and maleic acid copolymer modified glass particles.

    PubMed

    Klose, Theresia; Welzel, Petra B; Werner, Carsten

    2006-08-01

    The adsorption of human serum albumin (HSA) and lysozyme (LSZ) on pure as well as maleic acid (MA) copolymer coated spherical soda lime glass particles was investigated under flowing conditions. Coating the glass particles with two different maleic acid copolymers alters the properties of the particle surface concerning its charge and hydrophobicity in a well-defined gradation. Frontal chromatography was used to determine the surface concentration of the adsorbed proteins and to establish adsorption isotherms. The introduced methodology was demonstrated to provide a powerful means to study protein adsorption at solid/liquid interfaces. Investigations with virginal and protein-preadsorbed glass particles revealed that even under streaming conditions HSA is irreversibly adsorbed, whereas LSZ partially desorbs. For LSZ and HSA the adsorbed amounts and the isotherms strongly depend on the surface "history", i.e. the presence or absence of preadsorbed protein layers, and the kind of surface modification of the glass. Compared to the soda lime glass surface the adsorption of HSA was strongly increased on surfaces modified with a hydrophobic maleic acid copolymer indicating a strong hydrophobic protein-surface interaction. By coating the surface with a hydrophilic and more negatively charged maleic acid copolymer the adsorption of HSA to that surface was lower and comparable to the adsorption onto plain glass due to the electrostatic repulsion between HSA and the modified surface. In contrast the affinity to any of the investigated particle surfaces was generally higher for LSZ than for HSA which can be mainly attributed to the electrostatic attraction between LZS and the surface. The adsorbed amount of LSZ on the copolymer coated particle surfaces was much higher than on the pure soda lime glass particles indicating superposed hydrophobic interactions in the case of the hydrophobic MA copolymer layer and an increased density of anionic sites as well as interactions of

  16. Thermodynamics and phase behavior of acid-tethered block copolymers with ionic liquids.

    PubMed

    Jung, Ha Young; Park, Moon Jeong

    2016-12-21

    We investigate the phase behavior of acid-tethered block copolymers with and without ionic liquids. Two phosphonated block copolymers and their sulfonated analogs were synthesized by fine-tuning the degree of polymerization and the acid content. The block copolymers carrying acid groups with ionic liquids exhibited rich phase sequences, i.e., disorder-lamellae (LAM), gyroid-LAM, gyroid-hexagonal cylinder (HEX), and gyroid-A15 lattice, and the cation/anion ratio in the ionic liquid exerted profound effects on the segregation strength and topology of the self-assembled structures. Additionally, using ionic liquids with excessive cation content was found to enhance the effective Flory-Huggins interaction parameter, χeff, of the samples. However, as the anion content of the ionic liquids increased the segregation strength decreased. This is attributed to the packing frustration accompanied by the prevailing repulsive electrostatic interactions of the anions in the ionic liquid and the polymer matrix. As the hydrophobicity of the ionic liquids increased, well-defined ordered phases emerged in the phosphonated block copolymers with increased anion content, contrary to the disordered phases of the sulfonated samples. Thus, the balance between solvation energy of the anions and the electrostatic interactions is a key determinant of the thermodynamics of acid-tethered block copolymers containing ionic liquids.

  17. Stereocomplexes of enantiomeric lactic acid and sebacic acid ester-anhydride triblock copolymers.

    PubMed

    Slivniak, Raia; Domb, Abraham J

    2002-01-01

    A systematic study on the synthesis, characterization, degradation, and drug release of d-, l-, and dl-poly(lactic acid) (PLA)-terminated poly(sebacic acid) (PSA) and their stereocomplexes is reported. PLA-terminated sebacic acid polymers were synthesized by melt condensation of the acetate anhydride derivatives of PLA oligomers and sebacic anhydride oligomers to yield ABA triblock copolymers of molecular weights between 3000 and 9000 that melt at temperatures between 35 and 80 degrees C. Pairs of the corresponding enantiomeric ABA copolymers composed of l-PLA-PSA-l-PLA and d-PLA-PSA-d-PLA were solvent mixed to form stereocomplexes. The formed stereocomplexes exhibited higher crystalline melting temperature than the enantiomeric polymers, which indicate stereocomplex formulation. The PLA terminals had a significant effect on the polymer degradation and drug release rate. PSA with up to 20% w/w of PLA terminals degraded and released the incorporated drug for more than 3 weeks as compared with 10 days for PSA homopolymer.

  18. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes.

  19. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.

  20. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.

    PubMed

    Bauri, Kamal; Roy, Saswati Ghosh; Pant, Shashank; De, Priyadarsi

    2013-02-26

    Leucine/isoleucine side chain polymers are of interest due to their hydrophobicity and reported role in the formation of α-helical structures. The synthesis and reversible addition-fragmentation chain transfer (RAFT) polymerization of amino acid-based chiral monomers, namely Boc-L-leucine methacryloyloxyethyl ester (Boc-L-Leu-HEMA, 1a), Boc-L-leucine acryloyloxyethyl ester (Boc-L-Leu-HEA, 1b), Boc-L-isoleucine methacryloyloxyethyl ester (Boc-L-Ile-HEMA, 1c), and Boc-L-isoleucine acryloyloxyethyl ester (Boc-L-Ile-HEA, 1d), are reported. The controlled nature of the polymerization of the said chiral monomers in N, N-dimethylformamide (DMF) at 70 °C is evident from the formation of narrow polydisperse polymers, the molecular weight controlled by the monomer/chain transfer agent (CTA) molar ratio and the linear relationship between molecular weight and monomer conversion. The resulting well-defined polymers were used as macro-CTAs to prepare corresponding diblock copolymers by RAFT polymerization of methyl (meth)acrylate monomers. Deprotection of Boc groups in the homopolymers and block copolymers under acidic conditions produced cationic, pH-responsive polymers with primary amine moieties at the side chains. The optical activity of the homopolymers and block copolymers were studied using circular dichroism (CD) spectroscopy and specific rotation measurements. The self-assembling nature of the block copolymers to produce highly ordered structures was illustrated through dynamic light scattering (DLS) and atomic force microscopy (AFM) studies. The side chain amine functionality instills pH-responsive behavior, which makes these cationic polymers attractive candidates for drug delivery applications, as well as for conjugation of biomolecules.

  1. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    PubMed

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method.

  2. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  3. Effect of molecular structure of aniline-formaldehyde copolymers on corrosion inhibition of mild steel in hydrochloric acid solution.

    PubMed

    Zhang, Yan; Nie, Mengyan; Wang, Xiutong; Zhu, Yukun; Shi, Fuhua; Yu, Jianqiang; Hou, Baorong

    2015-05-30

    Aniline-formaldehyde copolymers with different molecular structures have been prepared and investigated for the purpose of corrosion control of mild steel in hydrochloric acid. The copolymers were synthesized by a condensation polymerization process with different ratios of aniline to formaldehyde in acidic precursor solutions. The corrosion inhibition efficiency of as-synthesized copolymers for Q235 mild steel was investigated in 1.0 mol L(-1) hydrochloric acid solution by weight loss measurement, potentiodynamic polarization, and electrochemical impedance spectroscopy, respectively. All the results demonstrate that as-prepared aniline-formaldehyde copolymers are efficient mixed-type corrosion inhibitors for mild steels in hydrochloric acid. The corrosion inhibition mechanism is discussed in terms of the role of molecular structure on adsorption of the copolymers onto the steel surface in acid solution.

  4. Incorporation of salicylic acid derivatives to hydrophilic copolymer systems with biomedical applications.

    PubMed

    Elvira, C; Gallardo, A; Lacroix, N; Schacht, E; San Román, J

    2001-06-01

    Hydrogels based on polymeric derivatives of salicylic acid have been prepared for biomedical applications by free radical copolymerization of 2-hydroxy-4-methacrylamidobenzoic acid, 4HMA, and 2-hydroxy-5-methacrylamidobenzoic acid, 5HMA, with 2- hydroxyethylmethacrylate, HEMA, in a wide range of compositions. The reactivity ratios of 4HMA and 5HMA with HEMA in radical copolymerization processes have been determined from their 1H NMR spectra by applying linearization methods and non-linear least square treatments. Tgs of the corresponding copolymers were analyzed by DSC. The swelling behavior in water of the prepared copolymers was studied in comparison to poly-(HEMA), poly-(4HMA) and poly-(5HMA) hydration degrees, being in all cases superior to 35%. The hydrolytical behavior of the synthesized copolymers was studied at three different pHs (2, 7.4 and 10) determining the release percentage of the salicylic acid derivatives, 4-amino salicylic acid, 4ASA, and 5-amino salicylic acid, 5ASA, analyzed by high performance liquid chromatography (HPLC). The release analysis was followed during 230 days and a pH dependence was observed obtaining the highest release percentages at pH=10, whereas at physiological pH (7.4) the release percentages were in range from 2 to 5% at that time for all copolymer systems. The hydrolytical stability is enough for long-term applications like bone cements, ionomers, etc.

  5. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-05

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  6. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  7. Radiation Synthesis of Poly(Starch/Acrylic acid) pH Sensitive Hydrogel for Rutin Controlled Release.

    PubMed

    Abdel Ghaffar, A M; Radwan, Rasha R; Ali, H E

    2016-11-01

    The copolymerization of starch with acrylic acid AAc using direct gamma radiation technique was performed. The effect of AAc concentrations on the gel (%) and swelling behavior were investigated. It is found that as AAc concentrations increase both gel(%) and swelling behavior increase. The Poly(starch/acrylic acid) (1:10wt%) hydrogel were selected due to its high swelling properties. From the in-vitro release study of the rutin-loaded hydrogel it is observed that it is strong pH-dependent release behavior, thus offering a maximum release as pH increased. The dextran sulphate sodium (DSS)-induced rat colitis model was treated with rutin-loaded Poly(starch/acrylic acid) (1:10wt%) hydrogel and free rutin solution by oral administration. Colitic control group showed a significant elevation in colon/body weight ratio, myeloperoxgidase activity, tumor necrosis factor, nitric oxide and malondialdehyde levels. However, glutathione level was reduced. It was found that the rutin-loaded hydrogel was more efficient than free rutin as evidenced by improvement of all measured parameters. These effects were confirmed histopathologically and may be attributed to its ability to control delivery of rutin to colon with minor early release of rutin before colon. The Poly(starch/acrylic acid) (1:10wt%) can represent a pivotal anti-inflammatory approach for patients with inflammatory bowel disease in order to increase efficacy and reduce toxicity.

  8. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  9. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

  10. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  11. Introduction of poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid)] branches onto starch for cotton warp sizing.

    PubMed

    Shen, Shiqi; Zhu, Zhifeng; Liu, Fengdan

    2016-03-15

    An attempt has been made to reveal the effect of amphoteric poly(2-acryloyloxyethyl trimethyl ammonium chloride-co-acrylic acid) [P(ATAC-co-AA)] branches grafted onto the backbones of starch upon the adhesion-to-cotton, film properties, and desizability of maize starch for cotton warp sizing. Starch-g-poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid) [S-g-P(ATAC-co-AA)] was prepared by the graft copolymerization of 2-acryloyloxyethyl trimethyl ammonium chloride (ATAC) and acrylic acid (AA) with acid-converted starch (ACS) in aqueous medium using Fe(2+)-H2O2 initiator. The adhesion was evaluated in term of bonding strength according to the FZ/T 15001-2008 whereas the film properties considered included tensile strength, work and percentage elongation at break. The evaluation was undertaken through the comparison of S-g-P(ATAC-co-AA) with ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride). It was found that the amphoteric branch was able to significantly improve the adhesion and mitigate the brittleness of starch film. Zeta potential of cooked S-g-P(ATAC-co-AA) paste, depending on the mole ratio of ATAC to AA units on P(ATAC-co-AA) branches, had substantial effect on the adhesion and desizability. Increasing the mole ratio raised the potential, which favored the adhesion but disfavored the removal of S-g-P(ATAC-co-AA) from sized cotton warps. Electroneutral S-g-P(ATAC-co-AA) was superior to negatively grafted starch in adhesion and to positively grafted starch in desizability. Generally, it showed better sizing property than ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride), and had potential in the application of cotton warp sizing.

  12. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL...). Where primary, secondary, and tertiary waste treatment will occur, or treatment in a lined...

  13. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    NASA Astrophysics Data System (ADS)

    Mazzei, R.; Fernández, A.; García Bermúdez, G.; Torres, A.; Gutierrez, M. C.; Magni, M.; Celma, G.; Tadey, D.

    2008-06-01

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured.

  14. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    NASA Astrophysics Data System (ADS)

    Massa, G.; Mazzei, R.; García Bermúdez, G.; Filevich, A.; Smolko, E.

    2005-07-01

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 × 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers.

  15. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  16. Radiation-induced grafting of diallyldimethylammonium chloride onto acrylic acid grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Dhanawade, B. R.; Mitra, D.; Varshney, Lalit; Sabharwal, Sunil

    2009-01-01

    Diallyldimethylammonium chloride (DADMAC) was grafted onto polyethylene (PE) films by a double grafting procedure. The PE film was initially modified by grafting acrylic acid (AA), through a mutual irradiation method. AA-g-PE film, thus obtained was subjected to subsequent radiation grafting reaction of DADMAC, to give a DADMAC-g-AA-g-PE film having a comb-type structure. The influence of different conditions, such as the extent of AA grafting, DADMAC concentration, absorbed dose and dose rate, on the grafting yield of DADMAC was investigated. A maximum DADMAC grafting of 30% was achieved. The equilibrium degree of swelling (EDS) of the grafted films were gravimetrically determined. TGA and FT-IR techniques were employed to characterize the grafted PE films.

  17. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer.

    PubMed

    Sawut, Amatjan; Yimit, Mamatjan; Sun, Wanfu; Nurulla, Ismayil

    2014-01-30

    A novel biodegradable superabsorbent polymer has been prepared from maleylated cotton stalk cellulose (MCSC) crosslinker and acrylic acid (AA) by ultraviolet (UV) photopolymerization in aqueous solution at room temperature, and irgacure 651 as a photoinitiator. The resulting superabsorbent was characterized by FT-IR, (1)H NMR, SEM and TGA. The effects of preparation conditions such as degree of substitution (DS), amount of maleylated cotton stalk cellulose, exposed time, photoinitiator amount and monomer concentration on the water absorbency and the monomer conversion in graft were evaluated. The swelling kinetics, salt-resistance, water retention capacity and biodegradability of the MCSC-g-PAA superabsorbent were investigated. It was found that, the obtained superabsorbent have good swelling degree that greatly affected by its composition and preparation conditions. Owing to its considerable good water retention capacity, being economical and environment-friendly, it might be useful for its application in agriculture field.

  18. Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties.

    PubMed

    Ju, Qiang; Luo, Wenqin; Liu, Yongsheng; Zhu, Haomiao; Li, Renfu; Chen, Xueyuan

    2010-07-01

    Water-soluble lanthanide-doped BaFCl nanophosphors with the surface functionalized by a layer of poly (acrylic acid) are synthesized via a facile one-step solvothermal method. Intense long-lived luminescence is realized from visible to near-infrared (NIR) by doping with different lanthanide ions. The emission and excitation spectra of Eu(3+) indicate that the doped lanthanide ions occupy a site close to the surface of the nanoparticles. Strong NIR emissions of Nd(3+) and green luminescence of Tb(3+) using Ce(3+) as sensitizers are also achieved in BaFCl nanoparticles. The synthesized nanoparticles featuring long-lived luminescence in either visible or NIR regions may have potential applications as luminescent labels for biological applications.

  19. Adsorption of poly acrylic acid onto the surface of calcite: an experimental and simulation study.

    PubMed

    Sparks, David J; Romero-González, Maria E; El-Taboni, Elfateh; Freeman, Colin L; Hall, Shaun A; Kakonyi, Gabriella; Swanson, Linda; Banwart, Steven A; Harding, John H

    2015-11-07

    Macromolecular binding to minerals is of great importance in the formation of biofilms, and carboxylate functional groups have been found to play a pivotal role in the functioning of these macromolecules. Here we present both fluorescence time-resolved anisotropy measurements and simulation data on the conformational behaviour and binding of a poly acrylic acid polymer. In solution the polymer exhibits a pH dependent behaviour, with a coiled conformation at a low pH and extended conformation at higher pH values. The polymer is readily adsorbed on the surface of calcite, preferring to bind in an extended conformation, with the strength of the adsorption dependent on the pH and presence of counter ions. We discuss the reasons why the calculated adsorption free energy differs from that obtained from a Langmuir isotherm analysis, showing that they refer to different quantities. The enhanced binding of the extended conformations shows the importance of flexibility in the binding of macromolecules.

  20. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.

    PubMed

    Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi

    2014-02-01

    The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed.

  1. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  2. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Dumitrascu, Nicoleta; Popa, Gheorghe

    2009-01-01

    Plasma polymers of acrylic acid were obtained using an atmospheric pressure discharge system. The plasma polymerization reactor uses a dielectric barrier discharge, with the polyethylene terephthalate dielectric acting as substrate for deposition. The plasma was characterized by specific electrical measurements, monitoring the applied voltage and the discharge current. Based on the spatially resolved optical emission spectroscopy, we analyzed the distribution of the excited species in the discharge gap, specific plasma temperatures (vibrational and gas temperatures) being calculated with the Boltzmann plot method. The properties of the plasma polymer films were investigated by contact angle measurements, infrared and UV-Vis spectroscopy, scanning electron microscopy. The films produced by plasma polymerization at atmospheric pressure showed a hydrophilic character, in correlation with the strong absorbance of OH groups in the FTIR spectrum. Moreover, the surface of the plasma polymers at micrometric scale is smooth and free of defects without particular features.

  3. Acid-Cleavable Unimolecular Micelles from Amphiphilic Star Copolymers for Triggered Release of Anticancer Drugs.

    PubMed

    Zhang, Shan; Xu, Jianbin; Chen, Heng; Song, Zhangfa; Wu, Yalan; Dai, Xingyi; Kong, Jie

    2017-03-01

    In this contribution, amphiphilic star copolymers (H40-star-PCL-a-PEG) with an H40 hyperbranched polyester core and poly(ε-caprolactone)-a-poly(ethylene glycol) copolymer arms linked with acetal groups are synthesized using ring-opening polymerization and a copper (I)-catalyzed alkyne-azide cycloaddition click reaction. The acid-cleavable acetal groups between the hydrophilic and hydrophobic segments of the arms endow the amphiphilic star copolymers with pH responsiveness. In aqueous solution, unimolecular micelles can be formed with good stability and a unique acid degradability, as is desirable for anticancer drug carriers. For the model drug of doxorubicin, the in vitro release behavior, intracellular release, and inhibition of proliferation of HeLa cells show that the acid-cleavable unimolecular micelles with anticancer activity can be dissociated in an acidic environment and efficiently internalized by HeLa cells. Due to the acid-cleavable and biodegradable nature, unimolecular micelles from amphiphilic star copolymers are promising for applications in intracellular drug delivery for cancer chemotherapy.

  4. Corrosion Inhibitive Evaluation of an Environmentally Friendly Water-Base Acrylic Terpolymer on Mild Steel in Hydrochloric Acid Media

    NASA Astrophysics Data System (ADS)

    Azghandi, Mojtaba Vakili; Davoodi, Ali; Farzi, Gholam Ali; Kosari, Ali

    2013-12-01

    The corrosion inhibitive performance of an environmentally friendly water-base acrylic terpolymer [methyl methacrylate/Butyl Acrylate/Acrylic acid (ATP)] on mild steel in 1 M HCl was investigated by alternating current and direct current electrochemical techniques and the quantum chemical method. An efficiency of more than 97 pct was obtained with 0.8 mmol/L ATP. The increase in inhibitor concentration and immersion time has a positive effect, while the temperature influence is negligible on the inhibitor efficiency. The present terpolymer obeys the Langmuir isotherm, and thermodynamic calculation reveals a chemisorption type on the surface. Density functional calculations showed that the lone pairs of electrons of oxygen in the structure of three monomers are suitable sites to adsorb onto the metal surface. Finally, in the presence of ATP, a decrease in surface roughness and corrosion attacks was demonstrated by atomic force microscopy and optical microscopy examinations, respectively.

  5. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS OF COATINGS Substances for Use as Components...

  6. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  7. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  8. 21 CFR 175.350 - Vinyl acetate/crotonic acid copolymer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Vinyl acetate/crotonic acid copolymer. 175.350 Section 175.350 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  9. Acid-Labile Amphiphilic PEO-b-PPO-b-PEO Copolymers: Degradable Poloxamer Analogs.

    PubMed

    Worm, Matthias; Kang, Biao; Dingels, Carsten; Wurm, Frederik R; Frey, Holger

    2016-05-01

    Poly ((ethylene oxide)-b-(propylene oxide)-b-(ethylene oxide)) triblock copolymers commonly known as poloxamers or Pluronics constitute an important class of nonionic, biocompatible surfactants. Here, a method is reported to incorporate two acid-labile acetal moieties in the backbone of poloxamers to generate acid-cleavable nonionic surfactants. Poly(propylene oxide) is functionalized by means of an acetate-protected vinyl ether to introduce acetal units. Three cleavable PEO-PPO-PEO triblock copolymers (Mn,total = 6600, 8000, 9150 g·mol(-1) ; Mn,PEO = 2200, 3600, 4750 g·mol(-1) ) have been synthesized using anionic ring-opening polymerization. The amphiphilic copolymers exhibit narrow molecular weight distributions (Ð = 1.06-1.08). Surface tension measurements reveal surface-active behavior in aqueous solution comparable to established noncleavable poloxamers. Complete hydrolysis of the labile junctions after acidic treatment is verified by size exclusion chromatography. The block copolymers have been employed as surfactants in a miniemulsion polymerization to generate polystyrene (PS) nanoparticles with mean diameters of ≈200 nm and narrow size distribution, as determined by dynamic light scattering and scanning electron microscopy. Acid-triggered precipitation facilitates removal of surfactant fragments from the nanoparticles, which simplifies purification and enables nanoparticle precipitation "on demand."

  10. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  11. Hyaluronic acid grafted PLGA copolymer nanoparticles enhance the targeted delivery of Bromelain in Ehrlich's Ascites Carcinoma.

    PubMed

    Bhatnagar, Priyanka; Pant, Aditya Bhushan; Shukla, Yogeshwer; Panda, Amulya; Gupta, Kailash Chand

    2016-08-01

    Rapidly increasing malignant neoplastic disease demands immediate attention. Several dietary compounds have recently emerged as strong anti-cancerous agents. Among, Bromelain (BL), a protease from pineapple plant, was used to enhance its anti-cancerous efficacy using nanotechnology. In lieu of this, hyaluronic acid (HA) grafted PLGA copolymer, having tumor targeting ability, was developed. BL was encapsulated in copolymer to obtain BL-copolymer nanoparticles (NPs) that ranged between 140 to 281nm in size. NPs exhibited higher cellular uptake and cytotoxicity in cells with high CD44 expression as compared with non-targeted NPs. In vivo results on tumor bearing mice showed that NPs were efficient in suppressing the tumor growth. Hence, the formulation could be used as a self-targeting drug delivery cargo for the remission of cancer.

  12. Neuraminidase-resistant hemagglutination inhibitors: acrylamide copolymers containing a C-glycoside of N-acetylneuraminic acid.

    PubMed

    Sparks, M A; Williams, K W; Whitesides, G M

    1993-03-19

    Copolymers consisting of a polyacrylamide backbone with side chains terminated in C-glycosidic analogs of N-acetylneuraminic acid were synthesized by free radical copolymerization of alpha-2-C-[3-[[2-(N-acryloylamino)ethyl]thio]propyl]-N- acetylneuraminic acid (5) with acrylamide. Unlike natural and synthetic polyvalent materials that contain N-acetylneuraminic acid in O-glycosidic form, these C-glycosidic copolymers resist neuraminidase-catalyzed cleavage of the neuraminic acid residue from the copolymer backbone. Examination of these C-glycosidic copolymers in a hemagglutination inhibition assay indicated that they are as effective in vitro as polyvalent O-glycosidic copolymers in inhibiting agglutination of erythrocytes by influenza virus. The minimum value of the inhibition constant, calculated on the basis of the concentration of Neu5Ac groups in solution, is Ki(HAI) approximately 10(-7) M for both copolymers. The inhibitory potency of the C-glycoside-based copolymers becomes more significant at lower concentrations of Neu5Ac moieties in solution than does the inhibitory potency of the O-glycoside-based copolymer.

  13. Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid

    NASA Technical Reports Server (NTRS)

    Hsu, L. C.; Philipp, W. H.; Sheibley, D. W.; Gonzalez-Sanabria, O. D. (Inventor)

    1985-01-01

    A battery separator for an alkaline battery is described. The separator comprises a cross linked copolymer of vinyl alcohol units and unsaturated carboxylic acid units. The cross linked copolymer is insoluble in water, has excellent zincate diffusion and oxygen gas barrier properties and a low electrical resistivity. Cross linking with a polyaldehyde cross linking agent is preferred.

  14. Protective effects of nonionic tri-block copolymers on bile acid-mediated epithelial barrier disruption.

    SciTech Connect

    Edelstein, A.; Fink, D.; Musch, M.; Valuckaite, V.; Zabornia, O.; Grubjesic, S.; Firestone, M. A.; Matthews, J. B.; Alverdy, J. C.

    2011-11-01

    Translocation of bacteria and other luminal factors from the intestine following surgical injury can be a major driver of critical illness. Bile acids have been shown to play a key role in the loss of intestinal epithelial barrier function during states of host stress. Experiments to study the ability of nonionic block copolymers to abrogate barrier failure in response to bile acid exposure are described. In vitro experiments were performed with the bile salt sodium deoxycholate on Caco-2 enterocyte monolayers using transepithelial electrical resistance to assay barrier function. A bisphenol A coupled triblock polyethylene glycol (PEG), PEG 15-20, was shown to prevent sodium deoxycholate-induced barrier failure. Enzyme-linked immunosorbent assay, lactate dehydrogenase, and caspase 3-based cell death detection assays demonstrated that bile acid-induced apoptosis and necrosis were prevented with PEG 15-20. Immunofluorescence microscopic visualization of the tight junctional protein zonula occludens 1 (ZO-1) demonstrated that PEG 15-20 prevented significant changes in tight junction organization induced by bile acid exposure. Preliminary transepithelial electrical resistance-based studies examining structure-function correlates of polymer protection against bile acid damage were performed with a small library of PEG-based copolymers. Polymer properties associated with optimal protection against bile acid-induced barrier disruption were PEG-based compounds with a molecular weight greater than 10 kd and amphiphilicity. The data demonstrate that PEG-based copolymer architecture is an important determinant that confers protection against bile acid injury of intestinal epithelia.

  15. Responsive Boronic Acid-Decorated (Co)polymers: From Glucose Sensors to Autonomous Drug Delivery

    PubMed Central

    Vancoillie, Gertjan; Hoogenboom, Richard

    2016-01-01

    Boronic acid-containing (co)polymers have fascinated researchers for decades, garnering attention for their unique responsiveness toward 1,2- and 1,3-diols, including saccharides and nucleotides. The applications of materials that exert this property are manifold including sensing, but also self-regulated drug delivery systems through responsive membranes or micelles. In this review, some of the main applications of boronic acid containing (co)polymers are discussed focusing on the role of the boronic acid group in the response mechanism. We hope that this summary, which highlights the importance and potential of boronic acid-decorated polymeric materials, will inspire further research within this interesting field of responsive polymers and polymeric materials. PMID:27775572

  16. Responsive copolymers for enhanced petroleum recovery. Quarterly technical progress report, December 21, 1994--March 22, 1995

    SciTech Connect

    McCormick, C.; Hester, R.

    1995-05-01

    The purpose of this study is to extend the concept of micellar polymerization to more complex systems, and to explore the responsive nature of hydrophobically modified polyelectrolytes by tailoring the microstructure. The synthesis of hydrophobically modified acrylamide/acrylic acid copolymer is described. These types of polymers are of interest as thickening agents utilized in enhanced oil recovery.

  17. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  18. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    PubMed

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  19. Characterization of 1:1 Random Copolymers Obtained from 6-, 7-, 11-, and 12-Carbon Amino Acids.

    DTIC Science & Technology

    1993-10-22

    Random Copolymers Obtained From 6-, 7-, 11-, and 12-Carbon Amino Acids by C. G. Johnson and L. J. Mathias 0 T .... Prepared for Publication r. t in the...NOOOG4-f-j- From 6-, 7-, 11-, and 12-Carbon Amino Acids 1225 ~~~ :: V Co~de 413m(iUK C. G Johnson, and Lo J. Mathias ś RFORMING ORGANIZA7,iCN ;fAMjjS...distribution is unlimited. Copolymers were prepared from the title amino acids by rr ilt condensation under dry nitrogen. The resulting copolymers were

  20. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  1. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Rafiei, H. R.; Shirvani, M.; Ogunseitan, O. A.

    2016-11-01

    We synthesized a novel poly acrylic acid-organobentonite (PAA-Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA-Bent) and PAA-Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA-Bent predicted by Langmuir model were 52.3 and 93.0 mg g-1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L-1 solid-to-liquid ratio and an initial metal concentration of 400 mg L-1. The results indicated that PAA-Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.

  2. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  3. Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro.

    PubMed

    Ahn, Jae-Soon; Choi, Hoo-Kyun; Chun, Myong-Kwan; Ryu, Jei-Man; Jung, Jae-Hee; Kim, Yue-Un; Cho, Chong-Su

    2002-03-01

    Transmucosal drug delivery (TMD) system using mucoadhesive polymer has been recently interested due to the rapid onset of action, high blood level, avoidance of the first-pass effect and the exposure of the drug to the gastrointestinal tract. A novel mucoadhesive polymer complex composed of chitosan and poly(acrylic acid) (PAA) was prepared by template polymerization of acrylic acid in the presence of chitosan for the TMD system. Triamcinolone acetonide (TAA) was loaded into the chitosan/PAA polymer complex film. TAA was evenly dispersed in chitosan, PAA polymer complex film without interaction with polymer complex. Release behavior of TAA from the mucoadhesive polymer film was dependent on time, pH, loading content of drug, and chitosan PAA ratio. The analysis of the drug release from the mucoadhesive film showed that TAA might be released from the chitosan/PAA polymer complex film through non-Fickian diffusion mechanism.

  4. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates.

  5. Discovery and SARs of Trans-3-Aryl Acrylic Acids and Their Analogs as Novel Anti- Tobacco Mosaic Virus (TMV) Agents

    PubMed Central

    Wu, Meng; Wang, Ziwen; Meng, Chuisong; Wang, Kailiang; Hu, Yanna; Wang, Lizhong; Wang, Qingmin

    2013-01-01

    A series of trans-3-aryl acrylic acids 1–27 and their derivatives 28–34 were prepared and evaluated for their antiviral activity against tobacco mosaic virus (TMV) for the first time. The bioassay results showed that most of these compounds exhibited good antiviral activity against TMV, of which compounds 1, 5, 6, 20, 27 and 34 exhibited significantly higher activity against TMV than commercial Ribavirin both in vitro and in vivo. Furthermore, these compounds have more simple structure than commercial Ribavirin, and can be synthesized more efficiently. These new findings demonstrate that trans-3-aryl acrylic acids and their derivatives represent a new template for antiviral studies and could be considered for novel therapy against plant virus infection. PMID:23418574

  6. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel.

    PubMed

    Zhang, Mingyue; Cheng, Zhiqiang; Zhao, Tianqi; Liu, Mengzhu; Hu, Meijuan; Li, Junfeng

    2014-09-03

    A novel composite hydrogel was prepared via UV irradiation copolymerization of acrylic acid and maize bran (MB) in the presence of composite initiator (2,2-dimethoxy-2-phenylacetophenone and ammonium persulfate) and cross-linker (N,N'-methylenebis(acrylamide)). Under the optimized conditions, maize bran-poly(acrylic acid) was obtained (2507 g g(-1) in distilled water and 658 g g(-1) in 0.9 wt % NaCl solution). Effects of granularity, salt concentration, and various cations and anions on water absorbency were investigated. It was found that swelling was extremely sensitive to the ionic strength and cation and anion type. Swelling kinetics and water diffusion mechanism in distilled water were also discussed. Moreover, the product showed excellent water retention capability under the condition of high temperature or high pressure. The salt sensitivity, good water absorbency, and excellent water retention capability of the hydrogels give this intelligentized polymer wide potential applications.

  7. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite.

    PubMed

    Kyzas, George Z; Bikiaris, Dimitrios N; Seredych, Mykola; Bandosz, Teresa J; Deliyanni, Eleni A

    2014-01-01

    A novel graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite (GO/CSA) was prepared and used as biosorbent for the removal of pharmaceutical compound (dorzolamide) from biomedical synthetic wastewaters. The performance was evaluated taking into account pH, kinetics and thermodynamics of adsorption. GO/CSA presented higher adsorption capacity in comparison with the parent materials (graphite oxide and poly(acrylic acid) grafted chitosan). All adsorbents prepared were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and potentiometric titration. The surface features were also evaluated after the dorzolamide adsorption in order to derive the adsorption mechanism. It was suggested that the reactive groups of GO and CSA can interact with the amino groups of dorzolamide and mainly the abundance of carboxyl groups of GO/CSA composite was the main reason for its enhanced adsorption capacity.

  8. The synthesis and in vitro characterization of the mucoadhesion and swelling of poly(acrylic acid) hydrogels.

    PubMed

    Warren, S J; Kellaway, I W

    1998-05-01

    The purpose of this research was to synthesize insoluble, mucoadhesive hydrogels by crosslinking linear poly(acrylic acid) with sucrose and investigate the relationship between hydrogel crosslink density, swelling, and in vitro mucoadhesion. A condensation reaction was employed to synthesize the hydrogels and crosslink density was varied by altering sucrose concentration and cure time. Equilibrium swelling at pH 7.4 was measured both gravimetrically and geometrically. In vitro mucoadhesion was determined by a tensile technique. Equilibrium swelling studies indicated that the crosslink density was proportional to both sucrose concentration and duration of cure time. In vitro mucoadhesive properties of the hydrogels improved as crosslink density increased. This was attributed to an increase in poly(acrylic acid) chain density/unit area of the equilibrium swollen hydrogel, which promoted interaction of the mucoadhesive and glycoprotein polymer chains.

  9. Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid.

    PubMed

    Majekodunmi, A O; Deb, S

    2007-09-01

    Polymer modified calcium phosphate cements made with cement powders of varying tetracalcium phosphate [TTCP] content were prepared using two different molecular weight fractions of poly(acrylic acid) at four different concentrations. The ratio of the precursors (TTCP:DCPA) in the cement powder was found to influence the initial setting which decreased with increasing concentration of TTCP in the powder phase. It was also observed that cements derived from the higher molecular weight containing PAA yielded significantly (P < 0.05) shorter initial setting time (Ti) than cements containing the lower molecular weight, poly(acrylic acid) [GE7 PAA] The effect of the varying the TTCP content in the three different cement types PCPC-A, PCPC-B and PCPC-C showed that the trends of the compressive strength were specific to the concentration and molecular weight of the poly (acrylic acid). A 20% concentration of Glascol-E7 with a cement powder composed of an equimolar ratio of precursors (PCPC-B) resulted in optimal compressive strength within the range investigated. The TTCP content of the cement powder could also be varied to improve the diametral tensile strengths of the cements; the specific effects however, were again governed by both the concentration and molecular weight of the constituent poly (acrylic acid). The influence of TTCP on both the initial setting time and diametral tensile strength was related to the Ca (2+) ion concentration, which determined the rate and amount of cross-linking in the cement.

  10. Synthesis, characterization and applications of graft copolymer (κ-carrageenan-g-vinylsulfonic acid).

    PubMed

    Yadav, Mithilesh; Sand, Arpit; Mishra, Madan Mohan; Tripathy, Jasaswini; Pandey, Vijay Shankar; Behari, Kunj

    2012-04-01

    The synthesis of graft copolymer (κ-carrageenan-g-vinylsulfonic acid) is carried out in nitrogen atmosphere using potassium peroxymonosulfate (PMS) and malonic acid (MA) as redox system. The effect of reaction variables including the concentration of vinylsulfonic acid 1.3×10(-2) to 6.7×10(-2) mol dm(-3), PMS 4×10(-3) to 20×10(-3) mol dm(-3), MA 1.6×10(-3) to 4.8×10(-3) mol dm(-3), sulfuric acid 1×10(-3) to 8×10(-3) mol dm(-3), κ-carrageenan 0.4-1.8 g dm(-3) as well as time duration 60-180 min and temperature 25-45 °C has been studied. The water swelling capacity of graft copolymer is investigated. Flocculation property for both coking and non-coking coals is studied for the treatment of coal mine waste water. The graft copolymer has been characterized by FTIR and thermogravimetric analysis.

  11. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  12. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  13. Isotherm and kinetics study for acrylic acid removal using powdered activated carbon.

    PubMed

    Kumar, Arvind; Prasad, B; Mishra, I M

    2010-04-15

    The potential of powdered activated carbon (PAC) for the adsorption of acrylic acid (AA) from aqueous solution was studied at the initial concentration (C(0)) in the range of 50-500 mg/l over the temperature range of 303-348 K. The equilibrium adsorption studies were carried out to evaluate the effect of adsorbent dosage and contact time, change in pH by adding adsorbents and the initial concentration. Langmuir, Freundlich and Redlich-Peterson (R-P) equilibrium isotherm models were tested to represent the data. Error functions were used to test their validity to fit of the adsorption data with the isotherm and kinetic models. The Freundlich isotherm equation is found to best represent the equilibrium separation data in the temperature range of 303-348 K. The maximum adsorption capacity of AA onto PAC was obtained as q(m)=36.23 mg/g with an optimum PAC dosage w=20 g/l at 303 K for C(0)=100 mg/l. The pseudo-second-order kinetics is found to represent the experimental AA-PAC data. The negative value of DeltaG(ad)(o) (-16.60 to -18.18 kJ/mol K) indicate the feasibility and spontaneity of the adsorption process.

  14. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen

    2015-07-15

    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  15. Novel poly(ethylene-co-acrylic acid) nanofibrous biomaterials for peptide synthesis and biomedical applications.

    PubMed

    Xiang, Bei; Sun, Gang; Lam, Kit S; Xiao, Kai

    2010-10-01

    Poly(ethylene-co-acrylic acid) (PE-co-AA) fibers in sizes of 200-500 nm were prepared by using a novel melt-extrusion-extraction fabrication process. The thermoplastic nanofibers could be controllably dispersed and reassembled by a novel solvent exchange filtration method. The dispersed PE-co-AA nanofibers possess active surface areas and could directly conduct chemical reactions on surfaces. Surface modifications and organic synthesis on the nanofibers were proven effective and controllable after the dispersion. Multistep synthesis of biomolecules, such as peptide ligand HWRGWV against Fc portion of human IgG, was successful. The surface-anchored ligand has shown bioactivity through selective binding to and staining by human IgG-alkaline phosphatase conjugate. Another peptide, LXY3, a selective cyclic peptide ligand against alpha3beta1 integrin of MDA-MB-231 breast cancer cells, was also prepared on the surfaces of the dispersed nanofibers. The results showed that MDA-MB-231 cells were able to specifically bind to and grow on surfaces of the nanofibers that were functionalized with LXY3.

  16. Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes

    NASA Astrophysics Data System (ADS)

    Duran, Sibel; Şolpan, Dilek; Güven, Olgun

    1999-05-01

    Acrylamide (AAm)-acrylic acid (AAc) hydrogels have been prepared at AAm initial compositions of 15%, 20% and 30%. AAm-AAc monomer mixtures have been irradiated in a 60Co-γ source at different doses and percent conversions have been determined gravimetrically. 100% conversion of monomers into hydrogels was achieved at 8 kGy dose. These hydrogels were swollen in distilled water at pH 3.03, 4.18, 4.68, 5.05, 5.30, 6.0, 7.0, 8.0. The results of swelling tests at pH 8.0 indicated that poly(AAm-AAc) hydrogels prepared from solution containing 15% (mol%) AAm showed maximum % swelling as 3000%. Poly(AAm-AAc) hydrogels have been considered for the removal of some textile dyes from aqueous solutions. Among the two common textile dyes tested, Janus Green B (JGB) has showed the highest adsorption capacity while Congo Red (CR) was not adsorbed by these hydrogels. Adsorption isotherms were constructed for JGB and poly(AAm/AAc) gel systems. It is concluded that cross-linked poly(AAm/AAc) hydrogels can be successfully used in the purification of waste water containing certain textile dyes.

  17. Accelerated Amidization of Branched Poly(ethylenimine)/Poly(acrylic acid) Multilayer Films by Microwave Heating.

    PubMed

    Lin, Kehua; Gu, Yuanqing; Zhang, Huan; Qiang, Zhe; Vogt, Bryan D; Zacharia, Nicole S

    2016-09-13

    Chemical cross-linking of layer-by-layer assembled films promotes mechanical stability and robustness in a wide variety of environments, which can be a challenge for polyelectrolyte multilayers in saline environments or for multilayers made from weak polyelectrolytes in environments with extreme pHs. Heating branched poly(ethylenimine)/poly(acrylic acid) (BPEI/PAA) multilayers at sufficiently high temperatures drives amidization and dehydration to covalently cross-link the film, but this reaction is rather slow, typically requiring heating for hours for appreciable cross-linking to occur. Here, a more than one order of magnitude increase in the amidization kinetics is realized through microwave heating of BPEI/PAA multilayers on indium tin oxide (ITO)/glass substrates. The cross-linking reaction is tracked using infrared spectroscopic ellipsometry to monitor the development of the cross-linking products. For thick films (∼1500 nm), gradients in cross-link density can be readily identified by infrared ellipsometry. Such gradients in cross-link density are driven by the temperature gradient developed by the localized heating of ITO by microwaves. This significant acceleration of reactions using microwaves to generate a well-defined cross-link network as well as being a simple method for developing graded materials should open new applications for these polymer films and coatings.

  18. Cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres for sensitive electrochemical immunoassay.

    PubMed

    Zhang, Bing; Cui, Yuling; Liu, Bingqian; Chen, Huafeng; Chen, Guonan; Tang, Dianping

    2012-05-15

    A novel class of molecular tags, cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres (Cd-MPSA), was first synthesized and functionalized with polyclonal rabbit anti-human luteinizing hormone antibodies (PAb(2)) for highly efficient electrochemical immunoassay of luteinizing hormone (LH). Transmission electron microscope (TEM) and Fourier transform infrared spectroscope (FTIR) were employed to characterize the prepared Cd-MPSA. By using Cd-MPSA-labeled PAb(2) as molecular tags, a novel sandwich-type immunoassay protocol was built for determination of LH on monoclonal mouse anti-human luteinizing hormone antibody (MAb(1))-functionalized gold electrode. The assay was carried out in pH 5.3 HAc-NaAc buffer solution by square wave voltammetry (SWV). The signal was obtained by the reduction of the doped cadmium ions in the Cd-MPSA. Under optimal conditions, the currents increased with the increasing LH level in the sample, and exhibited a linear range from 0.25 to 240 mIU mL(-1) with a detection limit of 0.08 mIU mL(-1) LH at 3s(B). The precision, reproducibility, and specificity were acceptable. No obvious difference was encountered in the analysis of spiking LH samples into newborn calf serum with the referenced values.

  19. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications.

  20. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  1. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  2. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  3. Light scattering study of partially ionized poly(acrylic acid) systems : comparison between gels and solutions

    NASA Astrophysics Data System (ADS)

    Moussaid, A.; Munch, J. P.; Schosseler, F.; Candau, S. J.

    1991-06-01

    Static and quasielastic light scattering experiments have been performed on the reaction bath of partially neutralized poly(acrylic acid) solutions and gels. The intensity scattered from gels is independent on the scattering wavevector, giving thus evidence that the gels are homogeneous at the scale of the wavelength of the light, contrary to what is generally observed in neutral gels. The comparison of the time and ensemble averages of the autocorrelation function of scattered light intensity shows that the gels behave with respect to that experiment as ergodic media. The variations of the intensity scattered from gels and solutions, with the ionization degree and the polymer concentration were found to be in good agreement with those predicted from simple theoretical arguments. The variations of the cooperative diffusion with these same parameters were found similar for gels and solutions. Des mesures de diffusion statique et quasiélastique de la lumière ont été effectuées sur des solutions et des gels d'acide poly(acrylique) partiellement ionisés. L'intensité diffusée par les gels est indépendante du vecteur d'onde de transfert, ce qui montre leur homogénéité, contrairement au cas des gels neutres. La comparaison des moyennes temporelle et spatiale de la fonction d'autocorrélation de l'intensité de la lumière diffusée montre que ces gels se comportent comme des milieux ergodiques. Les variations de l'intensité diffusée par les gels et les solutions en fonction de la concentration en polymère et du degré d'ionisation sont en bon accord avec les prédictions théoriques. Les variations du coefficient de diffusion avec ces mêmes paramètres sont identiques pour les gels et les solutions.

  4. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  5. Molecular Model for the Solubilization of Membranes into Nanodisks by Styrene Maleic Acid Copolymers

    PubMed Central

    Scheidelaar, Stefan; Koorengevel, Martijn C.; Pardo, Juan Dominguez; Meeldijk, Johannes D.; Breukink, Eefjan; Killian, J. Antoinette

    2015-01-01

    A recent discovery in membrane research is the ability of styrene-maleic acid (SMA) copolymers to solubilize membranes in the form of nanodisks allowing extraction and purification of membrane proteins from their native environment in a single detergent-free step. This has important implications for membrane research because it allows isolation as well as characterization of proteins and lipids in a near-native environment. Here, we aimed to unravel the molecular mode of action of SMA copolymers by performing systematic studies using model membranes of varying compositions and employing complementary biophysical approaches. We found that the SMA copolymer is a highly efficient membrane-solubilizing agent and that lipid bilayer properties such as fluidity, thickness, lateral pressure profile, and charge density all play distinct roles in the kinetics of solubilization. More specifically, relatively thin membranes, decreased lateral chain pressure, low charge density at the membrane surface, and increased salt concentration promote the speed and yield of vesicle solubilization. Experiments using a native membrane lipid extract showed that the SMA copolymer does not discriminate between different lipids and thus retains the native lipid composition in the solubilized particles. A model is proposed for the mode of action of SMA copolymers in which membrane solubilization is mainly driven by the hydrophobic effect and is further favored by physical properties of the polymer such as its relatively small cross-sectional area and rigid pendant groups. These results may be helpful for development of novel applications for this new type of solubilizing agent, and for optimization of the SMA technology for solubilization of the wide variety of cell membranes found in nature. PMID:25606677

  6. Blood compatibility evaluations of poly(ethylene glycol)-poly(lactic acid) copolymers.

    PubMed

    Li, Chenghua; Ma, Chengyan; Zhang, Yi; Liu, Zonghua; Xue, Wei

    2016-05-01

    Poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) copolymers have been widely used for various biomedical applications. However, their hemocompatibility has not been clarified, which would lag their developments and clinical applications. In this work, we studied the effect of PEG-PLA copolymers on key human blood components in terms of their structure and bio-functions, including morphology and lysis of red blood cells, fibrinogen structure and conformation, and plasma and blood coagulation. To elucidate a structure-activity relationship, we used diblock PEG-PLA copolymers with different molecular weight, PEG(5 kDa)-PLA(25 kDa) and PEG(2 kDa)-PLA(2 kDa), abbreviated as PEG5k-PLA25k and PEG2k-PLA2k, respectively. The results show that the PEG-PLA copolymers at the concentration range studied in this work neither caused morphological alteration and lysis of red blood cells nor affected the oxygen delivery function and fibrinogen conformation. PEG5k-PLA25k from 10 to 100 mg/mL and PEG2k-PLA2k from 1.5 to 5 mg/mL disturbed the local microenvironments of fibrinogen molecules. PEG5k-PLA25k at up to 0.1 mg/mL did not interfere in the coagulation process of plasma or whole blood, while PEG2k-PLA2k from 0.1 mg/mL significantly interfered in the intrinsic plasma coagulation pathway and impaired whole blood coagulation. The results provide important information for the molecular design and clinical applications of PEG-PLA copolymers.

  7. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing

    2013-04-01

    Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.

  8. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Huy, Ha Thuc

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants KL = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  9. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  10. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  11. Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid).

    PubMed

    Thilakarathne, Vindya; Briand, Victoria A; Zhou, Yuxiang; Kasi, Rajeswari M; Kumar, Challa V

    2011-06-21

    The synthesis, characterization, and evaluation of a novel polymer-protein conjugate are reported here. The covalent conjugation of high-molecular weight poly(acrylic acid) (PAA) to the lysine amino groups of met-hemoglobin (Hb) resulted in the covalent conjugation of Hb to PAA (Hb-PAA conjugate), as confirmed by dialysis and electrophoresis studies. The retention of native-like structure of Hb in Hb-PAA was established from Soret absorption, circular dichroism studies, and the redox activity of the iron center in Hb-PAA. The peroxidase-like activities of the Hb-PAA conjugate further confirmed the retention of Hb structure and biological activity. Thermal denaturation of the conjugate was investigated by differential scanning calorimetry and steam sterilization studies. The Hb-PAA conjugate indicated an improved denaturation temperature (T(d)) when compared to that of the unmodified Hb. One astonishing observation was that polymer conjugation significantly enhanced the Hb-PAA storage stability at room temperature. After 120 h of storage at room temperature in phosphate-buffered saline (PBS) at pH 7.4, for example, Hb-PAA retained 90% of its initial activity and unmodified Hb retained <60% of its original activity under identical conditions of buffer, pH, and temperature. Our conjugate demonstrates the key role of polymers in enhancing Hb stability via a very simple, efficient, general route. Water-swollen, lightly cross-linked, stable Hb-polymer nanogels of 100-200 nm were produced quickly and economically by this approach for a wide variety of applications.

  12. Fracture Mechanisms of Layer-By-Layer Polyurethane/Poly(Acrylic Acid) Nanocomposite

    NASA Astrophysics Data System (ADS)

    Kheng, Eugene R.

    A layer-by-layer(LBL) manufactured material is examined in detail in this thesis. Improvements are made to the method of its manufacture. Efforts are made to understand its fracture mechanisms and take advantage of these fracture mechanisms in the absorption of impact energy. A novel series of experiments has been performed on LBL manufactured thin films to demonstrate their unique fracture mechanisms. Polyurethane/Poly(Acrylic Acid) (PU/PAA) and PU/PAA/(PU/Clay)5 nanocomposite films readily undergo Interlaminar mode II fracture, because of the relatively weak elctrostatic bonds between monolayers. Tensile tests performed while under observation by a scanning electron microscope demonstrate the tendency of these nanocomposite films to undergo interlaminar mode II fracture even when loads are applied in the plane of nanocomposite film. It is concluded that these mechanisms of energy dissipation are responsible for the enhanced toughness of these films when used as layers between glass blocks in the prevention of impact damage to the glass. A novel automated manufacturing facility has been designed and built to deposit large sheets of Layer-by-Layer nanocomposite film. These large sheets are incorporated into a borosillicate glass composite in order to compare the ballistic characteristics of LBL PU based nanocomposite films to a single cast layer of polyurethane. It is demonstrated that shear fracture is the mode of failure in the blocks containing the nanocomposite film. The shear fracture surface in the nanocomposite after it has undergone a ballistic impact is characterized. Additional experiments are performed to characterize the interlaminar fracture stresses and toughnesses of the nanocomposite LBL layers, to assist in the implementation of a numerical crack band model that describes the nanocomposite film. The computational model predicts the failure of the ballistic nanocomposite samples, and the predicted V50 velocity is found to be in good agreement with

  13. Data on glycerol/tartaric acid-based copolymer containing ciprofloxacin for wound healing applications

    PubMed Central

    De Giglio, E.; Bonifacio, M.A.; Cometa, S.; Vona, D.; Mattioli-Belmonte, M.; Dicarlo, M.; Ceci, E.; Fino, V.; Cicco, S.R.; Farinola, G.M.

    2016-01-01

    This data article is related to our recently published research paper “Exploiting a new glycerol-based copolymer as a route to wound healing: synthesis, characterization and biocompatibility assessment", De Giglio et al. (Colloids and Surfaces B: Biointerfaces 136 (2015) 600–611) [1]. The latter described a new copolymer derived from glycerol and tartaric acid (PGT). Herein, an investigation about the PGT-ciprofloxacin (CIP) interactions by means of Fourier Transform Infrared Spectroscopy (FT-IR) acquired in Attenuated Total Reflectance (ATR) mode and Differential Scanning Calorimetry (DSC) was reported. Moreover, CIP release experiments on CIP-PGT patches were performed by High Performance Liquid Chromatography (HPLC) at different pH values. PMID:27158646

  14. Preparation of metal adsorbent from poly(methyl acrylate)-grafted-cassava starch via gamma irradiation

    NASA Astrophysics Data System (ADS)

    Suwanmala, Phiriyatorn; Hemvichian, Kasinee; Hoshina, Hiroyuki; Srinuttrakul, Wannee; Seko, Noriaki

    2012-08-01

    Metal adsorbent containing hydroxamic acid groups was successfully synthesized by radiation-induced graft copolymerization of methyl acrylate (MA) onto cassava starch. The optimum conditions for grafting were studied in terms of % degree of grafting (Dg). Conversion of the ester groups present in poly(methyl acrylate)-grafted-cassava starch copolymer into hydroxamic acid was carried out by treatment with hydroxylamine (HA) in the presence of alkaline solution. The maximum percentage conversion of the ester groups of the grafted copolymer, % Dg=191 (7.63 mmol/g of MA), into the hydroxamic groups was 70% (5.35 mmol/g of MA) at the optimum condition. The adsorbent of 191%Dg had total adsorption capacities of 2.6, 1.46, 1.36, 1.15 and 1.6 mmol/g-adsorbent for Cd2+, Al3+, UO22+, V5+ and Pb2+, respectively, in the batch mode adsorption.

  15. Preparation of a light-sensitive and reversible dissolution copolymer and its application in lysozyme purification.

    PubMed

    Wen, Wen; Wan, Junfen; Cao, Xuejun; Xia, Jinan

    2007-01-01

    A novel light-sensitive and cation-exchange copolymer (PNBCC) has been synthesized by random copolymerization of chlorophyllin sodium copper salt, crylic acid, n-butyl acrylate, and N-isopropylacrylamide. The PNBCC copolymer showed reversible dissolution and could be precipitated by 488 nm laser irradiation with the least light density of 1.70 x 10(5) W/m(2). By optimizing the ratio of monomers, pH, and ion concentration, over 95% copolymer was recovered by laser irradiation. The copolymer was used to purify lysozyme as light-sensitive cation exchanger, and its adsorption matched a Langmuir adsorption isotherm with maximum adsorption capacity of 98,900 U/g and dissociated constant of 852 U/mL. By applying the copolymer to the separation of lysozyme from egg white, the specific activity of lysozyme was improved from 399 to 6346 U/mg and the recovery of lysozyme achieved 81.3%.

  16. Application of Nano Fe(III)-Tannic Acid Complexes in Modifying Aqueous Acrylic Latex for Controlled-Release Coated Urea.

    PubMed

    Shen, Yazhen; Du, Changwen; Zhou, Jianmin; Ma, Fei

    2017-02-08

    Acrylic latexes are valuable waterborne materials used in controlled-release fertilizers. Controlled-release urea coated with these latexes releases a large amount of nutrients, making it difficult to meet the requirement of plants. Herein, Fe(III)-tannic acid (TA) complexes were blended with acrylic latex and subsequently reassembled on a surface of polyacrylate particles. These complexes remarkably retarded the release of urea (the preliminary solubility was decreased from 22.3 to 0.8%) via decreasing the coating tackiness (Tg was increased from 4.17 to 6.42 °C), increasing the coating strength (tensile stress was improved from 3.88 to 4.45 MPa), and promoting the formation of denser structures (surface tension was decreased from 37.37 to 35.94 mN/m). Overall, our findings showed that a simple blending of Fe(III)-TA complexes with acrylic latex produces excellent coatings that delay the release of urea, which demonstrates great potential for use in controlled-release fertilizers coated with waterborne polymers.

  17. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications.

    PubMed

    Kirf, Dominik; Higginbotham, Clement L; Rowan, Neil J; Devery, Sinéad M

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  18. Disposable luminol copolymer-based biosensor for uric acid in urine.

    PubMed

    Ballesta-Claver, J; Díaz Ortega, I F; Valencia-Mirón, M C; Capitán-Vallvey, L F

    2011-09-30

    A new electrochemiluminescent (ECL) disposable biosensor for uric acid was manufactured by immobilization in a double-layer design of luminol as a copolymer with 3,3',5,5'-tetramethylbenzidine (TMB) and the enzyme uricase in chitosan on gold screen-printed cells. The good mechanical and improved electroluminescent characteristics of the new copolymer poly(luminol-TMB) make it possible to determine uric acid by measuring the growing ECL emission with the analyte concentration. The combination of enzymatic selectivity with ECL sensitivity results in a disposable analytical device with a linear range for uric acid from 1.5×10(-6) to 1.0×10(-4) M, a limit of detection of 4.4×10(-7) M and a precision of 13.1% (1.0×10(-5) M, n=10) as relative standard deviation. Satisfactory results were obtained for uric acid determination in 24h-urine samples compared to a reference procedure. This uric acid biosensor can be used as a low-cost alternative to conventional methods.

  19. Synthesis of comb-like copolymers from renewable resources: Itaconic anhydride, stearyl methacrylate and lactic acid

    NASA Astrophysics Data System (ADS)

    Shang, Shurui

    The synthesis and properties of comb-like copolymers and ionomers derived from renewable resources: itaconic anhydride (ITA), stearyl methacrylate (SM) and lactic acid (LA) are described. The copolymers based on ITA and SM (ITA-SM) were nearly random with a slight alternating tendency. The copolymers exhibited a nanophase-separated morphology, with the stearate side-chains forming a bilayer, semi-crystalline structure. The crystalline side-chains suppressed molecular motion of the main-chain, so that a glass transition temperature (Tg) was not resolved unless the ITA concentration was sufficiently high so that Tg > the melting point (Tm). The softening point and modulus of the copolymers increased with the increasing ITA concentration, but the thermal stability decreased. The ITA moiety along the main chain of the copolymers was neutralized with metal acetates to produce Na-, Ca- and Zn- random ionomers with comb-like architectures. In general, the incorporation of the ionic groups increased the Tg and suppressed the crystallinity of the side-chain packing. Ionomers with high SM side-chain density had two competing driving forces for self-assembled nano-phase separation: ionic aggregation and side-chain crystalline packing. Upon neutralization, a morphological transition from semi-crystalline lamella to spherical ionic aggregation was observed by small angle X-ray scattering (SAXS) analysis and transmission electron microscopy (TEM). Thermomechanical analysis revealed an increasing resistance to penetration deformation with an increasing degree of neutralization and an apparent rubbery plateau was observed above Tg. A controlled transesterification of PLA in glassware was an effective way to prepare a methacrylate functionalized PLA macromonomer with controlled molecular weight, which was used to synthesize a variety of copolymers. The copolymerization of this functionalized PLA macromonomer with ITA totally suppressed the side-chain crystallinity for the PLA chain

  20. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    SciTech Connect

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; Opper, Kathleen L.; Wagener, Kenneth B.; Stevens, Mark J.; Frischknecht, Amalie Lucile; Winey, Karen I.

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. In these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the average

  1. Direct comparisons of X-ray scattering and atomistic molecular dynamics simulations for precise acid copolymers and ionomers

    DOE PAGES

    Buitrago, C. Francisco; Bolintineanu, Dan; Seitz, Michelle E.; ...

    2015-02-09

    Designing acid- and ion-containing polymers for optimal proton, ion, or water transport would benefit profoundly from predictive models or theories that relate polymer structures with ionomer morphologies. Recently, atomistic molecular dynamics (MD) simulations were performed to study the morphologies of precise poly(ethylene-co-acrylic acid) copolymer and ionomer melts. Here, we present the first direct comparisons between scattering profiles, I(q), calculated from these atomistic MD simulations and experimental X-ray data for 11 materials. This set of precise polymers has spacers of exactly 9, 15, or 21 carbons between acid groups and has been partially neutralized with Li, Na, Cs, or Zn. Inmore » these polymers, the simulations at 120 °C reveal ionic aggregates with a range of morphologies, from compact, isolated aggregates (type 1) to branched, stringy aggregates (type 2) to branched, stringy aggregates that percolate through the simulation box (type 3). Excellent agreement is found between the simulated and experimental scattering peak positions across all polymer types and aggregate morphologies. The shape of the amorphous halo in the simulated I(q) profile is in excellent agreement with experimental I(q). We found that the modified hard-sphere scattering model fits both the simulation and experimental I(q) data for type 1 aggregate morphologies, and the aggregate sizes and separations are in agreement. Given the stringy structure in types 2 and 3, we develop a scattering model based on cylindrical aggregates. Both the spherical and cylindrical scattering models fit I(q) data from the polymers with type 2 and 3 aggregates equally well, and the extracted aggregate radii and inter- and intra-aggregate spacings are in agreement between simulation and experiment. Furthermore, these dimensions are consistent with real-space analyses of the atomistic MD simulations. By combining simulations and experiments, the ionomer scattering peak can be associated with the

  2. Biodegradation of poly(hydroxy butanoic acid) copolymer mulch films in soil

    NASA Astrophysics Data System (ADS)

    Kukade, Pranav

    Agricultural mulch films that are used to cover soil of crop rows contribute to earlier maturation of crops and higher yield. Incineration and landfill disposals are the most common means of disposal of the incumbent polyethylene (PE) mulch films; however, these are not environment friendly options. Biodegradable mulch films that can be rototilled into the soil after crop harvest are a promising alternative to offset problems such as landfill disposal, film retrieval and disposal costs. In this study, an in-house laboratory scale test method was developed in which the rate of disintegration, as a result of biodegradation of films based on polyhydroxybutanoic acid (PHB) copolymers was investigated in a soil environment using the residual weight loss method. The influence of soil composition, moisture levels in the soil, and industry-standard anti-microbial additive in the film composition on the rate of disintegration of PHB copolymer films was investigated. The soil composition has significant effect on the disintegration kinetics of PHB copolymer films, since the increasing compost levels in the soil lowered the rate of disintegration of the film. Also, with the increase in moisture level up to a threshold limit, the microbial activity and, hence, the rate of disintegration increased. Lastly, the developed lab-scale test protocol was found to be sensitive to even small concentrations of industry-standard antimicrobial additive in the film composition.

  3. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  4. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  5. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.

    PubMed

    dos Santos, K S C R; Coelho, J F J; Ferreira, P; Pinto, I; Lorenzetti, S G; Ferreira, E I; Higa, O Z; Gil, M H

    2006-03-09

    Chitosan based membranes to be applied on wound healing as topical drug delivery systems were developed by graft copolymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto chitosan using cerium ammonium nitrate as chemical initiator. Evidence for graft copolymerization of the vinyl monomers onto chitosan was obtained by FTIR and DMTA. Swelling degree, cytotoxicity, thrombogenicity and haemolytic activity of these membranes were evaluated. Chitosan-graft-AA-graft-HEMA showed to be the best matrix for drug delivery systems than chitosan-graft-AA because it retains good swelling properties, but the content in HEMA has improved cytocompatibility, hemocompatibility and thrombogenic character.

  6. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Li, Jingye; Hou, Zhengchi; Yao, Side; Shi, Liuqing; Liang, Guoming; Sheng, Kanglong

    2008-07-01

    Polyethersulfone (PES) powder was grafted with acrylic acid (AAc) by simultaneous γ-ray irradiation. The kinetics of the radiation induced graft polymerization was studied and the grafted PES powder was characterized. Then, microfiltration (MF) membranes were prepared from PES-g-PAAc powder with different degrees of grafting (DG) under phase inversion method. The swelling behavior and the mean pore size of MF membranes were measured, and the filtration property was tested. The results showed that the pore size and the flux of MF membranes increased with the increase in DG. And, MF membranes' properties were dependent on the pH value.

  7. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic) Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    PubMed Central

    Ansari, Mahvash; Khan, Ikram Ullah

    2013-01-01

    We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic) acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA) and benzyl peroxide (BPO) as cross-linker and initiator, respectively. Effect of acrylic acid (AA), polyvinylsulfonic acid (PVSA), and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA) hydrogels was non-Fickian and that the mechanism was diffusion-controlled. PMID:24250265

  8. Synthesis and characterization of crystalline assembly of poly(N-isopropylacrylamide)-co-acrylic acid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Bo

    In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ˜98°C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH-sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH-sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a thermodynamic perturbation theory combined with lightscattering and spectrometer measurements. It was shown how the volume transition of PNIPAM particles affected the interaction potential and determined a novel phase diagram that had not been observed in conventional colloids. Because both particle size and attractive potential depended on temperature, PNIPAM aqueous dispersion exhibited phase transitions at a fixed particle number density by either increasing or decreasing temperature. The phase transition of PNIPAm-co-AAc colloids was also

  9. Bioadhesion of various proteins on random, diblock and triblock copolymer surfaces and the effect of pH conditions

    PubMed Central

    Palacio, Manuel L. B.; Schricker, Scott R.; Bhushan, Bharat

    2011-01-01

    The adhesive interactions of block copolymers composed of poly(methyl methacrylate) (PMMA)/poly(acrylic acid) (PAA) and poly(methyl methacrylate)/poly(2-hydroxyethyl methacrylate) (PHEMA) with the proteins fibronectin, bovine serum albumin and collagen were studied by atomic force microscopy. Adhesion experiments were performed both at physiological pH and at a slightly more acidic condition (pH 6.2) to model polymer–protein interactions under inflammatory or infectious conditions. The PMMA/PAA block copolymers were found to be more sensitive to the buffer environment than PMMA/PHEMA owing to electrostatic interactions between the ionized acrylate groups and the proteins. It was found that random, diblock and triblock copolymers exhibit distinct adhesion profiles although their chemical compositions are identical. This implies that biomaterial nanomorphology can be used to control protein–polymer interactions and potentially cell adhesion. PMID:21147831

  10. Coal-water slurry viscosity reduction using olefin/maleic acid salt copolymers

    SciTech Connect

    Matt, J.; Ferrara, J.M.

    1984-04-10

    An improved coal-water slurry of the type comprising at least 45% by weight of finely divided coal particles and a dispersing agent, said slurry being characterized as having a Brookfield viscosity at 60 rpm of less than 4,000 centipoise, the improvement which comprises adjusting the pH of said slurry to at least 6 and using as the dispersing agent, a water-soluble salt of an olefin/maleic acid copolymer having a molecular weight within the range of about between 3,000-50,000.

  11. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s.

    PubMed

    Huang, Shu-Chen; Naka, Kensuke; Chujo, Yoshiki

    2007-11-20

    Stable amorphous calcium carbonate (ACC) composite particle with a size-controlled monodispersed sphere was obtained by a new simple carbonate controlled-addition method by using poly(acrylic acid) (PAA) (Mw = 5000), in which an aqueous ammonium carbonate solution was added into an aqueous solution of PAA and CaCl2 with a different time period. The obtained ACC composite products consist of about 50 wt % of ACC, 30 wt % of PAA, and H2O. Average particle sizes of the ACC spheres increased from (1.8 +/- 0.4) x 102 to (5.5 +/- 1.2) x 102 nm with an increase of the complexation time of the PAA-CaCl2 solution from 3 min to 24 h, respectively. The ACC formed from the complexation time for 3 min was stable for 10 days with gentle stirring as well as 3 months under a quiescent condition in the aqueous solution. Moreover, the ACC was also stable at 400 degrees C. Stability of the amorphous phase decreased with an increase of the complexation time of the PAA-CaCl2 solution. No ACC was obtained when the lower molar mass PAAs (Mw = 1200 and 2100) were used. In the higher molar mass case (Mw = 25 000), a mixture of the amorphous phase and vaterite and calcite crystalline product was produced. The present results demonstrate that the interaction and the reaction kinetics of the PAA-Ca2+-H2O complex play an important role in the mineralization of CaCO3.

  12. Understanding field variation, quantum chemical modeling and molecular orbital analyses of trans-3-(trans-4-imidazolyl) acrylic acid

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Arivazhagan, M.

    2017-02-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab-initio) study on the structure and the vibrations of Trans-3-(trans-4-imidazolyl) acrylic acid (TTIAA) are compared and analyzed. The assignment of each normal mode has been made using the observed and calculated frequencies. The optimized geometries, harmonic vibrational wavenumbers and intensities of vibrational bands of trans-3-(trans-4-imidazolyl) acrylic acid (TTIAA) have been carried out using the HF/B3LYP method using the standard 6311++G(d,p) basis set calculations in this investigation. The result describes the variation in electrostatic and transport properties for zero and various external applied field. The variation in MPA charges are small due to the application of EFs: however, in most cases it is found to be systematic and almost uniform. When the field increases from 0.00 to 0.02 VÅ-1, the hybridization of molecular levels broadens the DOS and decreases the HLG from 3.6609 to 1.2325 eV; the decrease of band gap at the high field indicates that this molecule exhibit considerable electrical conductivity. Fukui indices to determine the local reactive site for the molecular systems during electrophilic, nucleophilic, radical and dual descriptor attacks. The results clearly show the superiority of MPA scheme. This study may be useful to design new molecules with more electrical conductivity.

  13. Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM

    NASA Astrophysics Data System (ADS)

    Vilani, C.; Weibel, D. E.; Zamora, R. R. M.; Habert, A. C.; Achete, C. A.

    2007-10-01

    XPS and AFM have been used to investigate surface modifications produced by acrylic acid (AA) vapor plasma treatment of silicon (Si)(1 0 0) substrates and polyurethanes (PUs) membranes. XPS analyses of Si and PUs treated substrates at low plasma power (5-20 W) revealed the formation of a thin film on the surfaces, which chemically resembles the poly(acrylic acid) film conventionally synthesised. No signal of the Si substrate could be seen under these low plasma power applications on silicon. However, when the plasma power is higher than 30 W one can clearly see XPS silicon signatures. AFM measurements of silicon substrates treated with AA plasma at low power (5-20 W) showed the formation of a thin polymer film of about 220-55 nm thickness. Further, applications of high plasma power (30-100 W) displayed a marked difference from low plasma modifications and it was found sputtering of the silicon substrate. Pervaporation results of AA plasma treated PUs membranes revealed that the selectivity for the separation of methanol from methyl- t-butyl ether is higher at 100 W and 1 min treatment time, than the other conditions studied. This last finding is discussed concerning the surface modifications produced on plasma treated silicon substrates and PU membranes.

  14. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites.

    PubMed

    Liu, Yi; Zheng, Yian; Wang, Aiqin

    2010-01-01

    A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.

  15. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education

    NASA Astrophysics Data System (ADS)

    Michalovic, Mark Stephen

    A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to

  16. Analytical strategy for the molecular weight determination of random copolymers of poly(methyl methacrylate) and poly(methacrylic acid).

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2010-06-01

    Molecular weight characterization of random amphiphilic copolymers currently represents an analytical challenge. In particular, molecules composed of methacrylic acid (MAA) and methyl methacrylate (MMA) as the repeat units raise issues in commonly used techniques. The present study shows that when random copolymers cannot be properly ionized by MALDI, and hence detected and measured in MS, one possible analytical strategy is to transform them into homopolymers, which are more amenable to this ionization technique. Then, by combining the molecular weight of the so-obtained homopolymers, as measured by MS, with the relative molar proportion of the MMA and MMA units, as given by (1)H NMR spectrum, one can straightforwardly estimate the molecular weight of the initial copolymer. A methylation reaction was performed to transform MAA-MMA copolymer samples into PMMA homopolymers, using trimethylsilyldiazomethane as a derivatization agent. Weight average molecular weight (M(w)) parameters of the MAA-MMA copolymers could then be derived from M(w) values obtained for the methylated MAA-MMA molecules by MALDI, which were also validated by pulsed gradient spin echo (PGSE) NMR. An alkene function in one of the studied copolymer end-groups was also shown to react with the methylation agent, giving rise to MMA-like polymeric by-products characterized by tandem mass spectrometry and which could be avoided by adjusting the amount of the trimethylsilyldiazomethane in the reaction medium.

  17. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil.

    PubMed

    Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang

    2005-05-27

    Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.

  18. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles

    PubMed Central

    Guan, Qingxiang; Zhang, Guangyuan; Sun, Dandan; Wang, Yue; Liu, Kun; Wang, Miao; Sun, Cheng; Zhang, Zhuo; Li, Bingjin; Lv, Jiayin

    2017-01-01

    Bletilla striata polysaccharides (BSPs) have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA) was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs). Docetaxel (DTX)-loaded SA-BSPs (DTX-SA-BSPs) copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazonium bromide) assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy. PMID:28334044

  19. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  20. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE PAGES

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; ...

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  1. Biodegradable DNA-brush Block Copolymer Spherical Nucleic Acids Enable Transfection Agent-Free Intracellular Gene Regulation

    PubMed Central

    Zhang, Chuan; Hao, Liangliang; Calabrese, Colin M.; Zhou, Yu; Choi, Chung Hang J.; Xing, Hang; Mirkin, Chad A.

    2015-01-01

    A new strategy for synthesizing spherical nucleic acid (SNA) nanostructures from biodegradable DNA block copolymers is reported. Multiple DNA strands are grafted to one end of a polyester chain (poly-caprolactone) to generate an amphiphilic DNA brush block copolymer (DBBC) structure capable of assembling into spherical micelles in aqueous solution. These novel DBBC-based micelle-SNAs exhibit a higher surface density of nucleic acids compared to micelle structures assembled from an analogous linear DNA block copolymer (DBC), which endows them with the ability to more efficiently enter cells without the need for transfection agents. Importantly, the new SNAs show effective gene regulation without observable cellular toxicity in mammalian cell culture. PMID:26297167

  2. bFGF interaction and in vivo angiogenesis inhibition by self-assembling sulfonic acid-based copolymers.

    PubMed

    García-Fernández, L; Aguilar, M R; Ochoa-Callejero, L; Abradelo, C; Martínez, A; San Román, J

    2012-01-01

    The antiangiogenic activity of different families of biocompatible and non-toxic polymer drugs based on 2-acrylamido-2-methylpropane sulfonic acid (AMPS) or polymethacrylic derivatives of 5-aminonaphthalen sulfonic acid (MANSA) is analyzed using directed in vivo angiogenesis assay and correlated with in vitro results. These active compounds were copolymerized with butylacrylate (BA) and N-vinylpyrrolidone in order to obtain two families of copolymers with different properties in aqueous media. The most hydrophobic copolymers poly(BA-co-MANSA) and poly(BA-co-AMPS) formed amphiphilic copolymers and presented micellar morphology in aqueous media. This supramolecular organization of the copolymers had a clear effect on bioactivity. Poly(BA-co-MANSA) copolymers showed the best antiangiogenic activity and very low toxicity at relatively low dose, with the possibility to be injected directly in the solid tumors alone or in combination with other therapeutic agents such as anti-VEGF drugs. The obtained results demonstrate that not only the chemical structure but also the supramolecular organization of the macromolecules plays a key role in the anti-angiogenic activity of these active polymers.

  3. Poly(citric acid)-block-poly(ethylene glycol) copolymers--new biocompatible hybrid materials for nanomedicine.

    PubMed

    Naeini, Ashkan Tavakoli; Adeli, Mohsen; Vossoughi, Manouchehr

    2010-08-01

    Linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks were synthesized through polycondensation. The molecular self-assembly of synthesized PCA-PEG-PCA copolymers in water led to formation of nanoparticles and fibers in different sizes and shapes depending on the time and size of PCA blocks. Ten days after dissolving PCA-PEG-PCA copolymers in water, the size of fibers had reached several millimeters. Mixing a water solution of fluorescein as a small guest molecule and PCA-PEG-PCA copolymers led to the encapsulation of fluorescein by products of molecular self-assembly. To investigate their potential application in nanomedicine and to understand the limitations and capabilities of these materials as nanoexcipients in biological systems, different types of short-term in vitro cytotoxicity experiments on the HT1080 cell line (human fibrosarcoma) and hemocompatibility tests were performed. From the clinical editor: This manuscript investigates the potentials of linear-dendritic ABA triblock copolymers containing poly(ethylene glycol) (PEG) as B block and hyperbranched poly(citric acid) (PCA) as A blocks for future applications in nanomedicine.

  4. Weathering and Biodegradation Study on Graft Copolymer Compatibilized Hybrid Bionanocomposites of Poly(Lactic Acid)

    NASA Astrophysics Data System (ADS)

    Sajna, VP; Nayak, Sanjay K.; Mohanty, Smita

    2016-07-01

    This work reports on the influence of moisture absorption and accelerated weathering on the properties of graft copolymer compatibilized bionanocomposites of poly(lactic acid) (PLA). Moisture absorption tests were conducted for 30 days by immersing the samples in a distilled water bath at room temperature, and the amount of moisture absorbed in each time interval was measured. The rate of moisture uptake decreased by incorporation of C30B nanoclay and graft copolymer into fiber-reinforced PLA composites. Changes in the mechanical properties of composites in each time interval of moisture absorption were investigated using tensile and impact tests. Exposure to moisture caused significant drops in the mechanical properties. The morphological characterization of biocomposites during the aforementioned tests has been made using SEM, while bionanocomposites were analyzed by TEM. Further, this paper also reported the effect of accelerated weathering on the mechanical properties and the results are confirmed through SEM analysis. Biodegradation behaviors of PLA biocomposites and bionanocomposites have also been studied.

  5. Degradable biocomposite of nano calcium-deficient hydroxyapatite-multi(amino acid) copolymer

    PubMed Central

    Li, Hong; Gong, Min; Yang, Aiping; Ma, Jian; Li, Xiangde; Yan, Yonggang

    2012-01-01

    Background and methods A nano calcium-deficient hydroxyapatite (n-CDHA)-multi(amino acid) copolymer (MAC) composite bone substitute biomaterial was prepared using an in situ polymerization method. The composition, structure, and compressive strength of the composite was characterized, and the in vitro degradability in phosphate-buffered solution and preliminary cell responses to the composite were investigated. Results The composite comprised n-CDHA and an amide linkage copolymer. The compressive strength of the composite was in the range of 88–129 MPa, varying with the amount of n-CDHA in the MAC (ranging from 10 wt% to 50 wt%). Weight loss from the composite increased (from 32.2 wt% to 44.3 wt%) with increasing n-CDHA content (from 10 wt% to 40 wt%) in the MAC after the composite was soaked in phosphate-buffered solution for 12 weeks. The pH of the soaking medium varied from 6.9 to 7.5. MG-63 cells with an osteogenic phenotype were well adhered and spread on the composite surface. Viability and differentiation increased with time, indicating that the composite had no negative effects on MG-63 cells. Conclusion The n-CDHA-MAC composite had good cytocompatibility and has potential to be used as a bone substitute. PMID:22457591

  6. Properties of Starch-Poly(acrylamide-co-2-acrylamido-2-methylpropanesulfonic acid) Graft Copolymers Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of starch with acrylamide and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) were prepared by reactive extrusion in a twin-screw extruder. The weight ratio of total monomer to starch was fixed at 1:3, while the molar fraction of AMPS in the monomer feed ranged from 0 to 0.119. Mon...

  7. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Graft copolymers of waxy maize starch and poly-y-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180 deg C and pH 7.0 were the best reaction conditions resulti...

  8. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  9. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  10. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    NASA Astrophysics Data System (ADS)

    Altan, Cem L.; Gurten, Berna; Sadza, Roel; Yenigul, Elcin; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2016-10-01

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH)2) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40-50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity.

  11. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability.

    PubMed

    Yan, Jiajie; Huang, Yunpeng; Miao, Yue-E; Tjiu, Weng Weei; Liu, Tianxi

    2015-01-01

    Free-standing poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) membranes with polydopamine (PDA) coating were prepared based on the combination of electrospinning and self-polymerization of dopamine. This is a facile, mild, controllable, and low-energy consumption process without any rigorous restriction to reactive conditions. Benefiting from the high specific surface area of electrospun membranes and the abundant "adhesive" functional groups of polydopamine, the as-prepared membranes exhibit efficient adsorption performance towards methyl blue with the adsorption capacity reaching up to 1147.6 mg g(-1). Moreover, compared to other nanoparticle adsorbents, the as-prepared self-standing membrane is highly flexible, easy to operate and retrieve, and most importantly, easy to elute, and regenerate, which enable its potential applications in wastewater treatment.

  12. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  13. In Vitro Antibacterial Activity of Nano Silver Ion Substituted Poly Acrylic Acid Films on Titanium by Plasma Polymerization.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kook, Joong-Ki; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    Antibacterial activity of oral pathogens such as Streptococcus mutans, Streptococcus sobrinus when silver ion immobilized on commercially pure (CP) titanium (Ti) surface was investigated in this study. Plasma-polymerized acrylic acid to have carboxyl group was deposited on CP-Ti surface and then ion-exchanged with Ag+ ions in 0.1 N AgNO3. In anti-adherent experiment, antibacterial activity was tested using broth culture methods. The biofilm formation assay was performed using semi-defined biofilm medium with sucrose. The silver coated CP-Ti completely inhibited the growth of S. mutans and S. sobrinus. In addition, the biofilm formation was significantly inhibited in silver-coated CP-Ti group.

  14. Structural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) copolymer by nuclear magnetic resonance and mass spectrometry.

    PubMed

    Giordanengo, Rémi; Viel, Stéphane; Hidalgo, Manuel; Allard-Breton, Béatrice; Thévand, André; Charles, Laurence

    2009-11-03

    Mass spectrometry (MS) and nuclear magnetic resonance (NMR) have been combined to achieve the complete microstructural characterization of a poly(methacrylic acid)-poly(methyl methacrylate) (PMAA-PMMA) copolymer synthesized by nitroxide-mediated polymerization. Various PMAA-PMMA species could be identified which mainly differ in terms of terminaisons. 1H and 13C NMR experiments revealed the structure of the end-groups as well as the proportion of each co-monomer in the copolymers. These end-group masses were further confirmed from m/z values of doubly charged copolymer anions detected in the single stage mass spectrum. In contrast, copolymer composition derived from MS data was not consistent with NMR results, obviously due to strong mass bias well known to occur during electrospray ionization of these polymeric species. Tandem mass spectrometry could reveal the random nature of the copolymer based on typical dissociation reactions, i.e., water elimination occurred from any two contiguous MAA units while MAA-MMA pairs gave rise to the loss of a methanol molecule. Polymer backbone cleavages were also observed to occur and gave low abundance fragment ions which allowed the structure of the initiating end-group to be confirmed.

  15. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  16. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    SciTech Connect

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-01-01

    The development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platforms for achieving this separation, yet the design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime–phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in the polymer. Samples exposed to seawater also display a feature consistent with a μ2-oxo-bridged transition metal, suggesting the formation of an in situ specific binding site. These findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.

  17. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    DOE PAGES

    Abney, C. W.; Das, S.; Mayes, R. T.; ...

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposedmore » to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.« less

  18. A report on emergent uranyl binding phenomena by an amidoxime phosphonic acid co-polymer

    SciTech Connect

    Abney, C. W.; Das, S.; Mayes, R. T.; Kuo, L. -J.; Wood, J.; Gill, G.; Piechowicz, M.; Lin, Z.; Lin, W.; Dai, S.

    2016-08-01

    Development of technology to harvest the uranium dissolved in seawater would enable access to vast quantities of this critical metal for nuclear power generation. Amidoxime polymers are the most promising platform for achieving this separation, yet design of advanced adsorbents is hindered by uncertainty regarding the uranium binding mode. In this work we use XAFS to investigate the uranium coordination environment in an amidoxime-phosphonic acid copolymer adsorbent. In contrast to the binding mode predicted computationally and from small molecule studies, a cooperative chelating model is favoured, attributable to emergent behavior resulting from inclusion of amidoxime in a polymer. Samples exposed to seawater also display a feature consistent with a 2-oxo-bridged transition metal, suggesting formation of an in situ specific binding site. As a result, these findings challenge long held assumptions and provide new opportunities for the design of advanced adsorbent materials.

  19. Cotton fabric coated with nano TiO 2-acrylate copolymer for photocatalytic self-cleaning by in-situ suspension polymerization

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Tian, Xiuzhi; Gu, Jian; Huang, Dan; Yang, Yiqi

    2011-08-01

    Two kinds of nano TiO 2-polyacrylate hybrid dispersions, TBM-w and TBM-e were synthesized by in-situ suspension polymerization and solution polymerization respectively, in order to fix the nano TiO 2 on fabrics. The photocatalytic self-cleaning fabrics have received much attention in recent years for its water-saving and environment-protection advantages. However, the fixation of the photocatalyst on fabrics is still a key problem that inhibits industrialization of these eco-friendly fabrics. The cotton fabric was treated by the two hybrid dispersions. The photocatalytic self-cleaning property was characterized. Infrared spectroscopy, burning loss test and thermogravimetry showed that some copolymer chains entangled with the nano TiO 2. Transmission electron microscope illustrated that there was a polymeric layer on the surface of nano TiO 2. The average diameter of TBM-w was smaller than that of TBM-e based on size analysis. The photocatalytic decoloration of the grape syrup indicated that the fabric with TiO 2-polymer hybrid had excellent self-cleaning property.

  20. Baroplastic Block copolymers

    NASA Astrophysics Data System (ADS)

    Hewlett, Sheldon A.

    2005-03-01

    Block copolymers with rubbery and glassy components have been observed to have pressure induced miscibility. These microphase-separated materials, termed baroplastics, were able to flow and be processed at temperatures below the Tg of the glassy component by simple compression molding and extrusion. Diblock and triblock copolymers of polystyrene and poly(butyl acrylate) or poly(2-ethyl hexyl acrylate) were synthesized by atom transfer radical polymerization (ATRP) and processed at room temperature into well defined transparent objects. SAXS and SANS measurements demonstrated partial mixing between components as a result of pressure during processing. DSC results also show the presence of distinct domains even after several processing cycles. Their mechanical properties after processing were tested and compared with commercial thermoplastic elastomers.

  1. Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 1. Experiment

    SciTech Connect

    Wu,T.; Gong, P.; Szleifer, I.; Vicek, P.; Subr, V.; Genzer, J.

    2007-01-01

    We describe experiments pertaining to the formation of surface-anchored poly(acrylic acid) (PAA) brushes with a gradual variation of the PAA grafting densities on flat surfaces and provide detailed analysis of their properties. The PAA brush gradients are generated by first covering the substrate with a molecular gradient of the polymerization initiator, followed by the 'grafting from' polymerization of tert-butyl acrylate (tBA) from these substrate-bound initiator centers, and finally converting the PtBA into PAA. We use spectroscopic ellipsometry to measure the wet thickness of the grafted PAA chains in aqueous solutions at three different pH values (4, 5.8, and 10) and a series of ionic strengths (IS). Our measurements reveal that at low grafting densities, s, the wet thickness of the PAA brush (H) remains relatively constant, the polymers are in the mushroom regime. Beyond a certain value of s, the macromolecules enter the brush regime, where H increases with increasing s. For a given s, H exhibits a nonmonotonic behavior as a function of the IS. At large IS, the H is small because the charges along PAA are completely screened by the excess of the external salt. As IS decreases, the PAA enters the so-called salt brush (SB) regime, where H increases. At a certain value of IS, H reaches a maximum and then decreases again. The latter is a typical brush behavior in so-called osmotic brush (OB) regime. We provide detailed discussion of the behavior of the grafted PAA chains in the SB and OB regimes.

  2. Photoinduced graft-copolymer synthesis and characterization of methacrylic acid onto natural biodegradable lignocellulose fiber.

    PubMed

    Khan, Ferdous

    2004-01-01

    UV radiation induced graft copolymerization of methacrylic acid onto natural lignocellulose (jute) fiber was carried out both by "simultaneous irradiation and grafting" and by preirradiation methods using 1-hydroxycyclohexyl-phenyl ketone as a photoinitiator. In the "simultaneous irradiation and grafting" method, the variation of graft weight with UV-radiation time, monomer concentration, and the concentration of photoinitiator was investigated. In the case of the preirradiation method, the incorporation of 2-methyl-2-propene 1-sulfonic acid, sodium salt, into the grafting reaction solution played a most important role in suppressing the homopolymer/gel formation and facilitating graft copolymerization. The optimum value of the reaction parameters on the percentage of grafting was evaluated. In comparison, results showed that the method of graft-copolymer synthesis has significant influence on graft weight. The study on the mechanical and thermal properties of grafted samples was conducted. The results showed that the percentage of grafting has a significant effect on the mechanical and thermal properties in the case of grafted samples. Considering the water absorption property, the jute-poly(methacrylic acid)-grafted sample showed a maximum up to 42% increase in hydrophilicity with respect to that of the "as received" sample. Attenuated total reflection infrared studies indicate that the estimation of the degree of grafting could be achieved by correlating band intensities with the percent graft weight.

  3. Platinum-Incorporating Poly(N-vinylpyrrolidone)-poly(aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery.

    PubMed

    Yao, Xikuang; Xie, Chen; Chen, Weizhi; Yang, Chenchen; Wu, Wei; Jiang, Xiqun

    2015-07-13

    Cisplatin-incorporating pseudoblock copolymer nanoparticles with high drug loading efficiency (ca. 50%) were prepared built on host-guest inclusion complexation between β-cyclodextrin end-capped poly(N-vinylpyrrolidone) block and admantyl end-capped poly(aspartic acid) block, followed by the coordination between cisplatin and carboxyl groups in poly(aspartic acid). The host-guest interaction between the two polymer blocks was examined by two-dimensional nuclear overhauser effect spectroscopy. The size and morphology of nanoparticles formed were characterized by dynamic light scattering, zeta potential, transmission electron microscopy, and atomic force microscopy. The size control of nanoparticles was carried out by varying the ratio of poly(N-vinylpyrrolidone) to poly(aspartic acid). The nanoparticles were stable in the aqueous medium with different pH values but disintegrated in the medium containing Cl(-) ions. The in vitro and in vivo antitumor effects of cisplatin-loaded nanoparticles were evaluated. The biodistribution of the nanoparticles in vivo was studied by noninvasive near-infrared fluorescence imaging and ion-coupled plasma mass spectrometry. It was found that cisplatin-loaded nanoparticles could effectively accumulate in the tumor site and exhibited significant superior in vivo antitumor activity to the commercially available free cisplatin by combining the tumor volume, body weight, and survival rate measurements.

  4. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  5. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  6. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.

    PubMed

    Lu, Yi; Wang, Dingfang; Li, Tao; Zhao, Xueqing; Cao, Yuliang; Yang, Hanxi; Duan, Yanwen Y

    2009-09-01

    A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode-neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Q(inj)) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by approximately 85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n=8) receiving coated implants was significantly lower (p<0.05) compared to that of uncoated implants (n=7) along the entire distance of 150 microm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.

  7. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  8. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  9. Properties of Copolymers of Aspartic Acid and Aliphatic Dicarboxylic Acids Prepared by Reactive Extrusion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspartic acid may be prepared chemically or by the fermentation of carbohydrates. Currently, low molecular weight polyaspartic acids are prepared commercially by heating aspartic acid at high temperatures (greater than 220 degrees C) for several hours in the solid state. In an effort to develop a ...

  10. Preparation of starch-poly-glutamic acid graft copolymers by microwave irradiation and the characterization of their properties.

    PubMed

    Xu, Jingyuan; Krietemeyer, Elizabeth F; Finkenstadt, Victoria L; Solaiman, Daniel; Ashby, Richard D; Garcia, Rafael A

    2016-04-20

    Graft copolymers of waxy maize starch and poly-γ-glutamic acid (PGA) were produced in an aqueous solution using microwave irradiation. The microwave reaction conditions were optimized with regard to temperature and pH. The temperature of 180°C and pH7.0 were the best reaction conditions resulting in a PGA graft of 0.45% based on nitrogen analysis. The average graft content and graft efficiency for the starch-PGA graft copolymer prepared at 180°C and pH7.0 were 4.20% and 2.73%, respectively. The starch-PGA graft copolymer produced at 180°C and pH7.0 could absorb more than 20 times its own weight amount of water and form a gel. The preliminary rheology study revealed that the starch-PGA graft copolymer gel exhibited viscoelastic solid behavior while the control sample of waxy starch showed viscoelastic liquid behavior.

  11. Folic acid-conjugated amphiphilic alternating copolymer as a new active tumor targeting drug delivery platform

    PubMed Central

    Li, Xia; Szewczuk, Myron R; Malardier-Jugroot, Cecile

    2016-01-01

    Targeted drug delivery using polymeric nanostructures is an emerging cancer research area, engineered for safer, more efficient, and effective use of chemotherapeutic drugs. A pH-responsive, active targeting delivery system was designed using folic acid functionalized amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA). The polymeric template is pH responsive, forming amphiphilic nanostructures at pH 7, allowing the encapsulation of hydrophobic drugs on its interior. Moreover, the structure is stable only at neutral pH and collapses in the acidic tumor microenvironment, releasing drugs on-site from its core. The delivery vehicle is investigated using human pancreatic PANC-1 cancer cells and RAW-Blue™ mouse macrophage reporter cell line, both of which have overly expression of folic acid receptors. To trace the cellular uptake by both cell lines, curcumin was selected as a dye and drug mimic owing to its fluorescence nature and hydrophobic properties. Fluorescent microscopy of FA-DABA-SMA loaded with curcumin revealed a significant internalization of the dye by human pancreatic PANC-1 cancer cells compared to those with unfunctionalized polymers (SMA). Moreover, the FA-DABA-SMA polymers exhibit rodlike association specific to the cells. Both empty SMA and FA-DABA-SMA show little toxicity to PANC-1 cells as characterized by WST-1 cell proliferation assay. These results clearly indicate that FA-DABA-SMA polymers show potential as an active tumor targeting drug delivery system with the ability to internalize hydrophobic chemotherapeutics after they specifically attach to cancer cells. PMID:28008233

  12. Solubilization of Membrane Proteins into Functional Lipid‐Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer

    PubMed Central

    Oluwole, Abraham Olusegun; Danielczak, Bartholomäus; Meister, Annette; Babalola, Jonathan Oyebamiji; Vargas, Carolyn

    2017-01-01

    Abstract Once removed from their natural environment, membrane proteins depend on membrane‐mimetic systems to retain their native structures and functions. To this end, lipid‐bilayer nanodiscs that are bounded by scaffold proteins or amphiphilic polymers such as styrene/maleic acid (SMA) copolymers have been introduced as alternatives to detergent micelles and liposomes for in vitro membrane‐protein research. Herein, we show that an alternating diisobutylene/maleic acid (DIBMA) copolymer shows equal performance to SMA in solubilizing phospholipids, stabilizes an integral membrane enzyme in functional bilayer nanodiscs, and extracts proteins of various sizes directly from cellular membranes. Unlike aromatic SMA, aliphatic DIBMA has only a mild effect on lipid acyl‐chain order, does not interfere with optical spectroscopy in the far‐UV range, and does not precipitate in the presence of low millimolar concentrations of divalent cations. PMID:28079955

  13. Block copolymer/ferroelectric nanoparticle nanocomposites

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-08-01

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were

  14. Preparation and characterization of lignin based macromonomer and its copolymers with butyl methacrylate.

    PubMed

    Liu, Xiaohuan; Wang, Jifu; Yu, Juan; Zhang, Mingming; Wang, Chunpeng; Xu, Yuzhi; Chu, Fuxiang

    2013-09-01

    Copolymerization of butyl methacrylate (BMA) with biobutanol lignin (BBL) was achieved by free-radical polymerization (FRP) using a lignin-based macromonomer. The lignin-based macromonomer containing acrylic groups was prepared by reacting acryloyl chloride with biobutanol lignin using triethylamine (TEA) as absorb acid agentin. From the results of elemental analysis and GPC, the average degree of polymerization (DP) of BBL was estimated to be five. A detailed molecular characterization has been performed, including techniques such as (1)H NMR, (13)C NMR and UV-vis spectroscopies, which provided quantitative information about the composition of the copolymers. The changes in the solubility of lignin-g-poly(BMA) copolymers in ethyl ether were dependent on the length of poly(BMA) side chain. TGA analysis indicated that the lignin-containing poly(BMA) graft copolymers exhibited high thermal stability. The bulky aromatic group of lignin increased the glass-transition temperature of poly(BMA). In order to confirm the main structure of copolymer, (AC-g-BBL)-co-BMA copolymer was also synthesized by atom transfer radical polymerization (ATRP), and the results revealed that the copolymer prepared by ATRP had the same solution behavior as that prepared by FRP, and the lignin-based macromonomer showed no homopolymerizability due to the steric hindrance. In addition, the lignin-co-BMA copolymer had a surprisingly higher molecular weight than poly(BMA) under the same reaction condition, suggesting that a branched lignin based polymer could be formed.

  15. Anti-plasticizing effect of amorphous indomethacin induced by specific intermolecular interactions with PVA copolymer.

    PubMed

    Ueda, Hiroshi; Aikawa, Shohei; Kashima, Yousuke; Kikuchi, Junko; Ida, Yasuo; Tanino, Tadatsugu; Kadota, Kazunori; Tozuka, Yuichi

    2014-09-01

    The mechanism of how poly(vinyl alcohol-co-acrylic acid-co-methyl methacrylate) (PVA copolymer) stabilizes an amorphous drug was investigated. Solid dispersions of PVA copolymer, poly(vinyl pyrrolidone) (PVP), and poly(vinyl pyrrolidone-co-vinyl acetate) (PVPVA) with indomethacin (IMC) were prepared. The glass transition temperature (Tg)-proportion profiles were evaluated by differential scanning calorimetry (DSC). General Tg profiles decreasing with the IMC ratio were observed for IMC-PVP and IMC-PVPVA samples. An interesting antiplasticizing effect of IMC on PVA copolymer was observed; Tg increased up to 20% IMC ratio. Further addition of IMC caused moderate reduction with positive deviation from theoretical values. Specific hydrophilic and hydrophobic interactions between IMC and PVA copolymer were revealed by infrared spectra. The indole amide of IMC played an important role in hydrogen bonding with PVA copolymer, but not with PVP and PVPVA. X-ray diffraction findings and the endotherm on DSC profiles suggested that PVA copolymer could form a semicrystalline structure and a possibility of correlation of the crystallographic nature with its low hygroscopicity was suggested. PVA copolymer was able to prevent crystallization of amorphous IMC through both low hygroscopicity and the formation of a specific intermolecular interaction compared with that with PVP and PVPVA.

  16. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  17. Block copolymer/ferroelectric nanoparticle nanocomposites.

    PubMed

    Pang, Xinchang; He, Yanjie; Jiang, Beibei; Iocozzia, James; Zhao, Lei; Guo, Hanzheng; Liu, Jin; Akinc, Mufit; Bowler, Nicola; Tan, Xiaoli; Lin, Zhiqun

    2013-09-21

    Nanocomposites composed of diblock copolymer/ferroelectric nanoparticles were formed by selectively constraining ferroelectric nanoparticles (NPs) within diblock copolymer nanodomains via judicious surface modification of ferroelectric NPs. Ferroelectric barium titanate (BaTiO3) NPs with different sizes that are permanently capped with polystyrene chains (i.e., PS-functionalized BaTiO3NPs) were first synthesized by exploiting amphiphilic unimolecular star-like poly(acrylic acid)-block-polystyrene (PAA-b-PS) diblock copolymers as nanoreactors. Subsequently, PS-functionalized BaTiO3 NPs were preferentially sequestered within PS nanocylinders in the linear cylinder-forming polystyrene-block-poly(methyl methacrylate) (PS-b-PMMA) diblock copolymer upon mixing the BaTiO3 NPs with PS-b-PMMA. The use of PS-b-PMMA diblock copolymers, rather than traditional homopolymers, offers the opportunity for controlling the spatial organization of PS-functionalized BaTiO3 NPs in the PS-b-PMMA/BaTiO3 NP nanocomposites. Selective solvent vapor annealing was utilized to control the nanodomain orientation in the nanocomposites. Vertically oriented PS nanocylinders containing PS-functionalized BaTiO3 NPs were yielded after exposing the PS-b-PMMA/BaTiO3 NP nanocomposite thin film to acetone vapor, which is a selective solvent for PMMA block. The dielectric properties of nanocomposites in the microwave frequency range were investigated. The molecular weight of PS-b-PMMA and the size of BaTiO3 NPs were found to exert an apparent influence on the dielectric properties of the resulting nanocomposites.

  18. Novel Extracellular PHB Depolymerase from Streptomyces ascomycinicus: PHB Copolymers Degradation in Acidic Conditions

    PubMed Central

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZSa), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZSa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZSa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser131-Asp209-His269, were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZSa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZSa make it an interesting candidate for industrial applications involving PHB degradation. PMID:23951224

  19. Novel extracellular PHB depolymerase from Streptomyces ascomycinicus: PHB copolymers degradation in acidic conditions.

    PubMed

    García-Hidalgo, Javier; Hormigo, Daniel; Arroyo, Miguel; de la Mata, Isabel

    2013-01-01

    The ascomycin-producer strain Streptomyces ascomycinicus has been proven to be an extracellular poly(R)-3-hydroxybutyrate (PHB) degrader. The fkbU gene, encoding a PHB depolymerase (PhaZ Sa ), has been cloned in E. coli and Rhodococcus sp. T104 strains for gene expression. Gram-positive host Rhodococcus sp. T104 was able to produce and secrete to the extracellular medium an active protein form. PhaZ Sa was purified by two hydrophobic interaction chromatographic steps, and afterwards was biochemically as well as structurally characterized. The enzyme was found to be a monomer with a molecular mass of 48.4 kDa, and displayed highest activity at 45°C and pH 6, thus being the first PHB depolymerase from a gram-positive bacterium presenting an acidic pH optimum. The PHB depolymerase activity of PhaZ Sa was increased in the presence of divalent cations due to non-essential activation, and also in the presence of methyl-β-cyclodextrin and PEG 3350. Protein structure was analyzed, revealing a globular shape with an alpha-beta hydrolase fold. The amino acids comprising the catalytic triad, Ser(131)-Asp(209)-His(269), were identified by multiple sequence alignment, chemical modification of amino acids and site-directed mutagenesis. These structural results supported the proposal of a three-dimensional model for this depolymerase. PhaZ Sa was able to degrade PHB, but also demonstrated its ability to degrade films made of PHB, PHBV copolymers and a blend of PHB and starch (7∶3 proportion wt/wt). The features shown by PhaZ Sa make it an interesting candidate for industrial applications involving PHB degradation.

  20. Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium.

    PubMed

    de la Torre, Paloma M; Torrado, Susana; Torrado, Santiago

    2003-04-01

    Non-covalent polyionic complexes were developed for localized antibiotic delivery in the stomach. Freeze-dried interpolymer complexes based on polyacrylic acid (PAA) and chitosan (CS) were prepared in a wide range of copolymer compositions by dissolving both polymers in acidic conditions. The influence of hydrogel-forming medium on the swelling and drug release was evaluated. The properties of these complexes were investigated by using scanning electron microscopy, dynamic swelling/eroding and release experiments in enzyme-free simulated gastric fluid (SGF). The electrostatic polymer/polymer interactions generate polyionic complexes with different porous structures. In a low pH environment, the separation of both polymer chains augmented as the amount of cationic and carboxilic groups increased within the network. However, the presence of higher amount of ions in the hydrogel-forming medium produced a network collapse, decreasing the maximum swelling ratio in SGF. PAA:CS:A (1:2.5:2)-1.75 M complexes released around 54% and 71% of the amoxicillin in 1 and 2 h, respectively, in acidic conditions. A faster drug release from this interpolymer complex was observed when the ionic strength of the hydrogel-forming medium increased. Complexes with a high amount of both polymer chains within the network, PAA:CS:A(2.5:5:2), showed a suitable amoxicillin release without being affected by an increased amount of ions in the hydrogel-forming medium. These freeze-dried interpolymer complexes could serve as potential candidates for amoxicillin delivery in an acidic enviroment.

  1. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  2. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples.

  3. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    SciTech Connect

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan; Yi, Dong Kee; An, Jeong Ho

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  4. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.

    PubMed

    Wang, Xiaohuan; Zheng, Yian; Wang, Aiqin

    2009-09-15

    Novel chitosan-g-poly(acrylic acid)/attapulgite (CTS-g-PAA/APT) composites were applied as adsorbents for the removal of Cu(II) from aqueous solution. The effects of the initial pH value (pH(0)) of Cu(II) solution, contact time (t), APT content (wt%) and the initial concentration of Cu(II) solution (C(0)) on the adsorption capacity of the composites were investigated. Results from kinetic experimental data showed that the Cu(II) adsorption rate on the composites with 10, 20 and 30 wt% APT was fast and more than 90% of the maximum adsorption capacity for Cu(II) occurred within the initial 15 min. The adsorption kinetics was better described by the pseudo-second order equation, and their adsorption isotherms were better fitted for the Langmuir equation. The results of the five-time consecutive adsorption-desorption studies showed that the composites had high adsorption and desorption efficiencies, which implies that the composites may be used as quite effective adsorbents for the removal of Cu(II) from aqueous solution.

  5. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  6. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    PubMed

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-21

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.

  7. Immobilization of urease by using chitosan-alginate and poly(acrylamide-co-acrylic acid)/kappa-carrageenan supports.

    PubMed

    Kara, Filiz; Demirel, Gökhan; Tümtürk, Hayrettin

    2006-08-01

    Jack bean urease (urea aminohydrolase, E.C. 3.5.1.5) was entrapped into chitosan-alginate polyelectrolyte complexes (C-A PEC) and poly(acrylamide-co-acrylic acid)/kappa-carrageenan (P(AAm-co-AA)/carrageenan) hydrogels for the potential use in immobilization of urease, not previously reported. The effects of pH, temperature, storage stability, reuse number, and thermal stability on the free and immobilized urease were examined. For the free and immobilized urease into C-A PEC and P(AAm-co-AA)/carrageenan, the optimum pH was found to be 7.5 and 8, respectively. The optimum temperature of the free and immobilized enzymes was also observed to be 55 and 60 degrees C, respectively. Michaelis-Menten constant (K(m)) values for both immobilized urease were also observed smaller than free enzyme. The storage stability values of immobilized enzyme systems were observed as 48 and 70%, respectively, after 70 days. In addition to this, it was observed that, after 20th use in 5 days, the retained activities for immobilized enzyme into C-A PEC and P(AAm-co-AA)/carrageenan matrixes were found as 55 and 89%, respectively. Thermal stability of the free urease was also increased by a result of immobilization.

  8. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    NASA Astrophysics Data System (ADS)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  9. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    PubMed

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications.

  10. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model.

    PubMed

    Mohamad, Najwa; Mohd Amin, Mohd Cairul Iqbal; Pandey, Manisha; Ahmad, Naveed; Rajab, Nor Fadilah

    2014-12-19

    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.

  11. Fabrication of magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel for removal of Cd(2+) and Pb(2).

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-12-01

    A novel macroporous magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel adsorbent was fabricated from the Pickering high internal emulsions template stabilized by modified Fe3O4 nanoparticles. The structure and composition of modified Fe3O4 and macroporous magnetic hydrogel were characterized by TEM, XRD, TG and SEM techniques. The characterization results suggest that the Fe3O4 nanoparticles have been modified successfully with organosilane of 3-aminopropyltrimethoxysilane (APTES), and the porous structure of the macroporous hydrogel can be tuned with the amount of stabilized particles, volume fraction of dispersed phase and the amount of the cosurfactant. Adsorption experiments indicate that the adsorption equilibrium was rapidly reached within 20min and the maximal adsorption capacities were determined to be 308.84mg/g for Cd(2+) and 695.22mg/g for Pb(2+). After five adsorption-desorption cycles, the adsorbent can retain its high adsorption capacity. The introduction of Fe3O4 is beneficial to the recycle of adsorbent after usage.

  12. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces.

    PubMed

    Moradi, Omid; Modarress, Hamid; Noroozi, Mehdi

    2004-03-01

    Many commercial soft contact lenses are based on poly-2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) hydrogels. The adsorption of proteins, albumin and lysozyme, on such contact lens surfaces may cause problems in their applications. In this work the adsorption of proteins, albumin and lysozyme, on hydrogel surfaces, AA and HEMA, was investigated as a function of concentration of protein. Also the effects of pH and ionic strength of protein solution on the adsorption of protein were examined. The obtained results indicated that the degree of adsorption of protein increased with the concentration of protein, and the adsorption of albumin on HEMA surface at the studied pHs (6.2-8.6) was higher than AA surface, whereas the adsorption of lysozyme on AA surface at the same pHs was higher than HEMA. The change in ionic strength of protein solution affected the proteins adsorption on both AA and HEMA surfaces. Also, the amount of sodium ions deposited on the AA surface was much higher than HEMA surface. This effect can be related to the negative surface charge of AA and its higher tendency for adsorption of sodium ions compared to the HEMA surface.

  13. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.

    2016-09-01

    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  14. Layer-by-layer structured films of TiO2 nanoparticles and poly(acrylic acid) on electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Kim, Jinho; Kimura, Eiji; Shiratori, Seimei

    2004-08-01

    We report a new approach for fabricating layer-by-layer (LBL) structured ultrathin hybrid films on electrospun nanofibres. Oppositely charged anatase TiO2 nanoparticles and poly(acrylic acid) (PAA) were alternately deposited on the surface of negatively charged cellulose acetate (CA) nanofibres using the electrostatic LBL self-assembly technique. The fibrous mats were characterized by wide-angle x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller (BET) surface area techniques. The crystalline phase of anatase TiO2 remained unchanged in the resultant TiO2/PAA films coated on CA fibrous mats. Moreover, the TiO2/PAA film coated fibres showed rough surfaces with grains due to the deposition of aggregated TiO2 particles. The average diameter of the fibres increased from 344 to 584 nm and the BET surface area of the fibrous mats increased from 2.5 to 6.0 m2 g-1 after coating with five bilayers of TiO2/PAA films.

  15. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.

    PubMed

    Faghihi, Shahab; Karimi, Alireza; Jamadi, Mahsa; Imani, Rana; Salarian, Reza

    2014-05-01

    Owing to excellent thermal and mechanical properties, graphene-based nanomaterials have recently attracted intensive attention for a wide range of applications, including biosensors, bioseparation, drug release vehicle, and tissue engineering. In this study, the effects of graphene oxide nanosheet (GONS) content on the linear (tensile strength and strain) and nonlinear (hyperelastic coefficients) mechanical properties of poly(acrylic acid) (PAA)/gelatin (Gel) hydrogels are evaluated. The GONS with different content (0.1, 0.3, and 0.5 wt.%) is added into the prepared PAA/Gel hydrogels and composite hydrogels are subjected to a series of tensile and stress relaxation tests. Hyperelastic strain energy density functions (SEDFs) are calibrated using uniaxial experimental data. The potential ability of different hyperelastic constitutive equations (Neo-Hookean, Yeoh, and Mooney-Rivlin) to define the nonlinear mechanical behavior of hydrogels is verified by finite element (FE) simulations. The results show that the tensile strength (71%) and elongation at break (26%) of composite hydrogels are significantly increased by the addition of GONS (0.3 wt.%). The experimental data is well fitted with those predicted by the FE models. The Yeoh material model accurately defines the nonlinear behavior of hydrogels which can be used for further biomechanical simulations of hydrogels. This finding might have implications not only for the improvement of the mechanical properties of composite hydrogels but also for the fabrication of polymeric substrate materials suitable for tissue engineering applications.

  16. Solubilization of lipids and lipid phases by the styrene-maleic acid copolymer.

    PubMed

    Dominguez Pardo, Juan J; Dörr, Jonas M; Iyer, Aditya; Cox, Ruud C; Scheidelaar, Stefan; Koorengevel, Martijn C; Subramaniam, Vinod; Killian, J Antoinette

    2017-01-01

    A promising tool in membrane research is the use of the styrene-maleic acid (SMA) copolymer to solubilize membranes in the form of nanodiscs. Since membranes are heterogeneous in composition, it is important to know whether SMA thereby has a preference for solubilization of either specific types of lipids or specific bilayer phases. Here, we investigated this by performing partial solubilization of model membranes and analyzing the lipid composition of the solubilized fraction. We found that SMA displays no significant lipid preference in homogeneous binary lipid mixtures in the fluid phase, even when using lipids that by themselves show very different solubilization kinetics. By contrast, in heterogeneous phase-separated bilayers, SMA was found to have a strong preference for solubilization of lipids in the fluid phase as compared to those in either a gel phase or a liquid-ordered phase. Together the results suggest that (1) SMA is a reliable tool to characterize native interactions between membrane constituents, (2) any solubilization preference of SMA is not due to properties of individual lipids but rather due to properties of the membrane or membrane domains in which these lipids reside and (3) exploiting SMA resistance rather than detergent resistance may be an attractive approach for the isolation of ordered domains from biological membranes.

  17. Use of copolymer polylactic and polyglycolic acid resorbable plates in repair of orbital floor fractures.

    PubMed

    Lin, Jonathan; German, Michael; Wong, Brian

    2014-10-01

    The fractures of the orbital floor are common after craniofacial trauma. Repair with resorbable plates is a viable reconstructive option; however, there are few reports in the literature. This study describes our experience using copolymer polylactic and polyglycolic acid (PLLA/PGA) orbital reconstruction plates (LactoSorb, Lorenz Surgical, Jacksonville, FL) in 29 cases of the orbital floor fracture repair. We conducted a retrospective review of 29 orbital floor fractures at a single institution repaired through transconjunctival, preseptal dissection using PLLA/PGA plates fashioned to repair the orbital floor defect. Associated fractures included zygomaticomaxillary, LeFort, and nasoethmoid fractures. There were six patients with complications. Four patients had transient diplopia with complete resolution of symptoms within 1 year. One patient had diplopia postoperatively, but was later lost to follow-up. Two patients have had persistent enophthalmos since 1 year. In each of these cases, the floor fracture was coincident with significant panfacial or neurotrauma. We did not encounter any adverse inflammatory reactions to the implant material itself. The study concluded that orbital floor fracture repair with resorbable plates is safe, relatively easy to perform, and in the majority of cases was effective without complications. In the presence of severe orbital trauma, more rigid implant materials may be appropriate.

  18. Subureteral Injection with Small-Size Dextranomer/Hyaluronic Acid Copolymer: Is It Really Efficient?

    PubMed Central

    Tan, Özgür; Farahvash, Amirali; Senol, Cem; Gümüstas, Hüseyin; Atay, Irfan; Deniz, Nuri

    2016-01-01

    The aim of this study was to evaluate the clinical results of patients with vesicoureteral reflux, which were treated with subureteral injection of small-size (80–120 μm) dextranomer/hyaluronic acid copolymer (Dx/HA). Data of 75 children (105 renal units) who underwent STING procedure with small-size Dx/HA for the treatment of vesicoureteral reflux (VUR) in our clinic between 2008 and 2012 were retrospectively analyzed. Preoperative reflux grade and side, injection indication, postoperative urinary infections and urinary symptoms, voiding cystourethrogram, and renal scintigraphy results were evaluated. The success rate of the procedure was 100% in patients with grades 1 and 2 reflux, 91% in patients with grade 3 reflux, and 82.6% in patients with grade 4. Overall success rate of the treated patients was 97%. Endoscopic subureteric injection with Dx/HA procedure has become a reasonable minimally invasive alternative technique to open surgery, long-term antibiotic prophylaxis, and surveillance modalities in treatment of VUR in terms of easy application, low costs and complication rates, and high success rates. Injection material composed of small-size dextranomer microspheres seems superior to normal size Dx/HA, together with offering similar success with low cost. PMID:28105412

  19. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery.

    PubMed

    Xu, Cong-Fei; Zhang, Hou-Bing; Sun, Chun-Yang; Liu, Yang; Shen, Song; Yang, Xian-Zhu; Zhu, Yan-Hua; Wang, Jun

    2016-05-01

    The design of ideal nanoparticle delivery systems should be capable of meeting the requirements of several stages of drug delivery, including prolonged circulation, enhanced accumulation and penetration in the tumor, facilitated cellular internalization and rapid release of the active drug in the tumor cells. However, among the current design strategies, meeting the requirements of one stage often conflicts with the other. Herein, a tumor pH-labile linkage-bridged block copolymer of poly(ethylene glycol) with poly(lacide-co-glycolide) (PEG-Dlinkm-PLGA) was used for siRNA delivery to fulfill all aforementioned requirements of these delivery stages. The obtained siRNA-encapsulating PEG-Dlinkm-PLGA nanoparticle gained efficiently prolonged circulation in the blood and preferential accumulation in tumor sites via the PEGylation. Furthermore, the PEG surface layer was detached in response to the tumor acidic microenvironment to facilitate cellular uptake, and the siRNA was rapidly released within tumor cells due to the hydrophobic PLGA layer. Hence, PEG-Dlinkm-PLGA nanoparticles met the requirements of several stages of drug delivery, and resulted in the enhanced therapeutic effect of the nanoparticular delivery systems.

  20. Poly(Lactic Acid) Hemodialysis Membranes with Poly(Lactic Acid)-block-Poly(2-Hydroxyethyl Methacrylate) Copolymer As Additive: Preparation, Characterization, and Performance.

    PubMed

    Zhu, Lijing; Liu, Fu; Yu, Xuemin; Xue, Lixin

    2015-08-19

    Poly(lactic acid) (PLA) hemodialysis membranes with enhanced antifouling capability and hemocompatibility were developed using poly(lactic acid)-block-poly(2-hydroxyethyl methacrylate) (PLA-PHEMA) copolymers as the blending additive. PLA-PHEMA block copolymers were synthesized via reversible addition-fragmentation (RAFT) polymerization from aminolyzed PLA. Gel permeation chromatography (GPC) and (1)H-nuclear magnetic resonance ((1)H NMR) were applied to characterize the synthesized products. By blending PLA with the amphiphilic block copolymer, PLA/PLA-PHEMA membranes were prepared by nonsolvent induced phase separation (NIPS) method. Their chemistry and structure were characterized with X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy (AFM). The results revealed that PLA/PLA-PHEMA membranes with high PLA-PHEMA contents exhibited enhanced hydrophilicity, water permeability, antifouling and hemocompatibility. Especially, when the PLA-PHEMA concentration was 15 wt %, the water flux of the modified membrane was about 236 L m(-2) h(-1). Its urea and creatinine clearance was more than 0.70 mL/min, lysozyme clearance was about 0.50 mL/min, BSA clearance was as less as 0.31 mL/min. All the results suggest that PLA-PHEMA copolymers had served as effective agents for optimizing the property of PLA-based membrane for hemodialysis applications.

  1. Comparing Fluid and Elastic Block Copolymer Shells

    NASA Astrophysics Data System (ADS)

    Rozairo, Damith; Croll, Andrew B.

    2014-03-01

    Emulsions can be stabilized with the addition of an amphiphilic diblock copolymer, resulting in droplets surrounded and protected by a polymer monolayer. Such droplets show considerable promise as advanced cargo carriers in pharmaceuticals or cosmetics due to their strength and responsiveness. Diblock copolymer interfaces remain mostly fluid and may not be able to attain the mechanical performance desired by industry. To strengthen block copolymer emulsion droplets we have developed a novel method for creating thin elastic shells using polystyrene-b-poly(acrylic acid)-b-polystyrene (PS-PAA-PS). Characterization of the fluid filled elastic shells is difficult with traditional means which lead us to develop a new and general method of mechanical measurement. Specifically, we use laser scanning confocal microscopy to achieve a high resolution measure of the deformation of soft spheres under the influence of gravity. To prove the resilience of the technique we examine both a polystyrene-b-poly(ethylene oxide) (PS-PEO) stabilized emulsion and the PS-PAA-PS emulsion. The mechanical measurement allows the physics of the polymer at the interface to be examined, which will ultimately lead to the rational development of these technologies.

  2. The outcomes of two different bulking agents (dextranomer hyaluronic acid copolymer and polyacrylate-polyalcohol copolymer) in the treatment of primary vesico-ureteral reflux

    PubMed Central

    Taşkinlar, Hakan; Avlan, Dincer; Bahadir, Gokhan Berktug; Delibaş, Ali; Nayci, Ali

    2016-01-01

    ABSTRACT Purpose Subureteral injection of bulking agents in the endoscopic treatment of vesicoureteral reflux is widely accepted therapy with high success rates. Although the grade of vesicoureteric reflux and experience of surgeon is the mainstay of this success, the characteristics of augmenting substances may have an effect particularly in the long term. In this retrospective study, we aimed to evaluate the clinical outcomes of the endoscopic treatment of vesicoureteric reflux (VUR) with two different bulking agents: Dextranomer/hyaluronic acid copolymer (Dx/HA) and Polyacrylate polyalcohol copolymer (PPC). Materials and Methods A total 80 patients (49 girls and 31 boys) aged 1-12 years (mean age 5.3 years) underwent endoscopic subureteral injection for correction of VUR last six years. The patients were assigned to two groups: subureteral injections of Dx/HA (45 patients and 57 ureters) and PPC (35 patients and 45 ureters). VUR was grade II in 27 ureters, grade III in 35, grade IV in 22 and grade V in 18 ureters. Results VUR was resolved in 38 (66.6%) of 57 ureters and this equates to VUR correction in 33 (73.3%) of the 45 patients in Dx/HA group. In PPC group, overall success rate was 88.8% (of 40 in 45 ureters). Thus, Thus, this equates to VUR correction in 31 (88.5%) of the 35 patients. Conclusions Our short term data show that two different bulking agent injections provide a high level of reflux resolution and this study revealed that success rate of PPC was significantly higher than Dx/HA with less material. PMID:27286115

  3. Clickable Nucleic Acids: Sequence-Controlled Periodic Copolymer/Oligomer Synthesis by Orthogonal Thiol-X Reactions.

    PubMed

    Xi, Weixian; Pattanayak, Sankha; Wang, Chen; Fairbanks, Benjamin; Gong, Tao; Wagner, Justine; Kloxin, Christopher J; Bowman, Christopher N

    2015-11-23

    Synthetic polymer approaches generally lack the ability to control the primary sequence, with sequence control referred to as the holy grail. Two click chemistry reactions were now combined to form nucleobase-containing sequence-controlled polymers in simple polymerization reactions. Two distinct approaches are used to form these click nucleic acid (CNA) polymers. These approaches employ thiol-ene and thiol-Michael reactions to form homopolymers of a single nucleobase (e.g., poly(A)n ) or homopolymers of specific repeating nucleobase sequences (e.g., poly(ATC)n). Furthermore, the incorporation of monofunctional thiol-terminated polymers into the polymerization system enables the preparation of multiblock copolymers in a single reaction vessel; the length of the diblock copolymer can be tuned by the stoichiometric ratio and/or the monomer functionality. These polymers are also used for organogel formation where complementary CNA-based polymers form reversible crosslinks.

  4. Proton-conducting polymer membrane comprised of a copolymer of 2-acrylamido-2-methylpropanesulfonic acid and 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Walker, Charles W.

    In order to identify a proton-conducting polymer membrane suitable for replacing Nafion ® 117 in direct methanol fuel cells (DMFC), we prepared a cross-linked copolymer of hydrophilic 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and 2-hydroxyethyl methacrylate (HEMA). Fumed silicas were also added in an attempt to increase the amount of water adsorbed by the membrane and to enhance water retention. Hydrated copolymer membranes adsorbed significantly more water than Nafion ® 117, but were no better at retaining water during drying under ambient conditions. Films composed of 4% AMPS—96% HEMA had a room temperature proton conductivity of 0.029 S cm -1, which increased to 0.06 S cm -1 at 80 °C.

  5. Preirradiation grafting of ethylene vinyl acetate copolymer resins

    NASA Astrophysics Data System (ADS)

    Ringrose, B. J.; Kronfli, E.

    1999-07-01

    Acrylic acid was graft copolymerised on to EVA powdered resins containing 9%, 18% and 28% vinyl acetate. A preirradiation grafting method was used and the effect on graft level of varying the parameters of gamma irradiation dose (2-50 kGy), dose rate (0.5-5 kGy h -1), monomer concentration (2.5-25%) and grafting time (1-4 h) and temperature (35-98°C) was investigated. The graft copolymer resins were converted into film and characterised in terms of their hydrophilicity and electrolytic resistance in alkaline solutions. Depending on the vinyl acetate content and rheological properties of the base EVA copolymer, high graft weight resins can be converted into semipermeable films suitable for a range of applications including battery separator membranes and topical medical dressings.

  6. Charged Diblock Copolymers at Interfaces: Micelle Dissociation Upon Compression

    SciTech Connect

    Theodoly, O.; Checco, A; Muller, P

    2010-01-01

    We use grazing incidence X-ray scattering to study the surface micellization of charged amphiphilic diblock copolymers poly(styrene-block-acrylic acid) at the air-water interface. Scattering interference peaks are consistent with the formation of hexagonally packed micelles. The remarkable increase of inter-micelle distance upon compression is explained by a dissociation of micelles into a brush. Hence, surface micelles reorganize, whereas micelles of the same copolymers in solutions are 'frozen'. We show indeed that the energetic cost of unimer extraction from micelles is much lower for surface than for solution. Finally, a model combining electrostatic interactions and micelle/brush equilibrium explains surface pressure vs. area without free parameters.

  7. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin.

  8. Self-assembled micelles composed of doxorubicin conjugated Y-shaped PEG-poly(glutamic acid)2 copolymers via hydrazone linkers.

    PubMed

    Sui, Bowen; Xu, Hui; Jin, Jian; Gou, Jingxin; Liu, Jingshuo; Tang, Xing; Zhang, Yu; Xu, Jinghua; Zhang, Hongfeng; Jin, Xiangqun

    2014-08-11

    In this work, micelles composed of doxorubicin-conjugated Y-shaped copolymers (YMs) linked via an acid-labile linker were constructed. Y-shaped copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin)2 and linear copolymers of mPEG-b-poly(glutamate-hydrazone-doxorubicin) were synthesized and characterized. Particle size, size distribution, morphology, drug loading content (DLC) and drug release of the micelles were determined. Alterations in size and DLC of the micelles could be achieved by varying the hydrophobic block lengths. Moreover, at fixed DLCs, YMs showed a smaller diameter than micelles composed of linear copolymers (LMs). Also, all prepared micelles showed sustained release behaviors under physiological conditions over 72 h. DOX loaded in YMs was released more completely, with 30% more drug released in acid. The anti-tumor efficacy of the micelles against HeLa cells was evaluated by MTT assays, and YMs exhibited stronger cytotoxic effects than LMs in a dose- and time-dependent manner. Cellular uptake studied by CLSM indicated that YMs and LMs were readily taken up by HeLa cells. According to the results of this study, doxorubicin-conjugated Y-shaped PEG-(polypeptide)2 copolymers showed advantages over linear copolymers, like assembling into smaller nanoparticles, faster drug release in acid, which may correspond to higher cellular uptake and enhanced extracellular/intracellular drug release, indicating their potential in constructing nano-sized drug delivery systems.

  9. Synthesis and therapeutic effect of styrene–maleic acid copolymer-conjugated pirarubicin

    PubMed Central

    Tsukigawa, Kenji; Liao, Long; Nakamura, Hideaki; Fang, Jun; Greish, Khaled; Otagiri, Masaki; Maeda, Hiroshi

    2015-01-01

    Previously, we prepared a pirarubicin (THP)-encapsulated micellar drug using styrene–maleic acid copolymer (SMA) as the drug carrier, in which active THP was non-covalently encapsulated. We have now developed covalently conjugated SMA-THP (SMA-THP conjugate) for further investigation toward clinical development, because covalently linked polymer–drug conjugates are known to be more stable in circulation than drug-encapsulated micelles. The SMA-THP conjugate also formed micelles and showed albumin binding capacity in aqueous solution, which suggested that this conjugate behaved as a macromolecule during blood circulation. Consequently, SMA-THP conjugate showed significantly prolonged circulation time compared to free THP and high tumor-targeting efficiency by the enhanced permeability and retention (EPR) effect. As a result, remarkable antitumor effect was achieved against two types of tumors in mice without apparent adverse effects. Significantly, metastatic lung tumor also showed the EPR effect, and this conjugate reduced metastatic tumor in the lung almost completely at 30 mg/kg once i.v. (less than one-fifth of the maximum tolerable dose). Although SMA-THP conjugate per se has little cytotoxicity in vitro (1/100 of free drug THP), tumor-targeted accumulation by the EPR effect ensures sufficient drug concentrations in tumor to produce an antitumor effect, whereas toxicity to normal tissues is much less. These findings suggest the potential of SMA-THP conjugate as a highly favorable candidate for anticancer nanomedicine with good stability and tumor-targeting properties in vivo. PMID:25529761

  10. SMA-SH: Modified Styrene-Maleic Acid Copolymer for Functionalization of Lipid Nanodiscs.

    PubMed

    Lindhoud, Simon; Carvalho, Vanessa; Pronk, Joachim W; Aubin-Tam, Marie-Eve

    2016-04-11

    Challenges in purification and subsequent functionalization of membrane proteins often complicate their biochemical and biophysical characterization. Purification of membrane proteins generally involves replacing the lipids surrounding the protein with detergent molecules, which can affect protein structure and function. Recently, it was shown that styrene-maleic acid copolymers (SMA) can dissolve integral membrane proteins from biological membranes into nanosized discs. Within these nanoparticles, proteins are embedded in a patch of their native lipid bilayer that is stabilized in solution by the amphipathic polymer that wraps the disc like a bracelet. This approach for detergent-free purification of membrane proteins has the potential to greatly simplify purification but does not facilitate conjugation of functional compounds to the membrane proteins. Often, such functionalization involves laborious preparation of protein variants and optimization of labeling procedures to ensure only minimal perturbation of the protein. Here, we present a strategy that circumvents several of these complications through modifying SMA by grafting the polymer with cysteamine. The reaction results in SMA that has solvent-exposed sulfhydrils (SMA-SH) and allows tuning of the coverage with SH groups. Size exclusion chromatography, dynamic light scattering, and transmission electron microscopy demonstrate that SMA-SH dissolves lipid bilayer membranes into lipid nanodiscs, just like SMA. In addition, we demonstrate that, just like SMA, SMA-SH solubilizes proteoliposomes into protein-loaded nanodiscs. We covalently modify SMA-SH-lipid nanodiscs using thiol-reactive derivatives of Alexa Fluor 488 and biotin. Thus, SMA-SH promises to simultaneously tackle challenges in purification and functionalization of membrane proteins.

  11. Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Hydrogel in a dc Electric Field: Swelling, Shape Change, and Actuation Characteristics

    PubMed Central

    2014-01-01

    Poly(vinyl alcohol) (PVA)/Poly(acrylic acid) (PAA) hydrogel can be utilized as a biomimetic actuator and coating material for tissue-implant interface, when employing an electrical stimulus. The swelling, shape change, and actuation characteristics of PVA/PAA hydrogel in a range of dc electrical fields were determined to find the optimal electric field for the hydrogel application as biomimetic actuator and coating materials. The hydrogel samples were prepared by dissolving PVA and PAA in deionized water at 4 wt% and mixed together at 1:1 ratio. Two custom made experimental setups were fabricated; one used for the measurement of swelling ratio of the hydrogels; and the other used for the shape changes or actuation characteristics of the hydrogels. Swelling experiments show increased swelling ratios of the hydrogel due to 10 V, 20 V, and 30 V electric fields. The rate of increment of the swelling ratio of hydrogel samples under 10V was higher compare to those samples under 20 V and 30 V. The width and height changes of rectangular shapes and maximum deflection along the length of hydrogel sample due to a range of electric fields (0-30V) were measured using an optical microscope. Incremental shape change up to a specific threshold value (around 10V) was observed due to electric stimulus. Electrostatic actuation pressure of hydrogel samples under 10V was higher compare to those samples under 20 V and 30 V. These results suggested that optimal performance of PVA/PAA hydrogel can be achieved around 10V. PMID:25478321

  12. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    NASA Astrophysics Data System (ADS)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  13. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization.

    PubMed

    Hollmann, Oliver; Czeslik, Claus

    2006-03-28

    The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.

  14. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.

    PubMed

    Vo, Duc Quy; Shin, Eun Woo; Kim, Jae-Seong; Kim, Sunwook

    2010-11-16

    The preparation of AcA-stabilized Ag nanoparticles and its application to make highly conductive thin films are reported. The AcA-stabilized Ag nanoparticles were prepared through a ligand exchange of original oleylamine (OLA)-coated Ag nanoparticles with acrylic acid (AcA), which acted as both an antisolvent and a modifying ligand during the ligand exchange process. Efficiencies of the ligand exchange as well as the properties of Ag nanoparticles were analyzed using various techniques including TEM, FT-IR, XPS, TGA, and UV-vis methods. The thin films were fabricated by annealing spin-coated AcA-stabilized Ag nanoparticles. Further, the effects of annealing temperature, time, and film thickness on both the film morphology and electrical conductivity have been investigated. In this work, due to the low boiling temperature of stabilizer (AcA) and adjustment of annealing conditions, high electrical conductivity was obtained for the Ag thin films. For example, when annealing at 175 °C for 30 min, a 70 nm thick film showed a maximum electrical conductivity of 1.12 × 10(5) S cm(-1). A conductive layer on a flexible polymer substrate (e.g., PET) sheet has been successfully prepared by annealing a spin-coated film at 140 °C for 30 min. The combined advantages of long-term stability of the AcA-stabilized Ag nanoparticles, low annealing temperature, and high conductivity of the prepared thin films make this relatively simple method attractive for applications in flexible electronics.

  15. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials.

  16. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride.

    PubMed

    Caon, Thiago; Porto, Ledilege Cucco; Granada, Andréa; Tagliari, Monika Piazzon; Silva, Marcos Antonio Segatto; Simões, Cláudia Maria Oliveira; Borsali, Redouane; Soldi, Valdir

    2014-02-14

    In view of the fact that the oral administration of finasteride (FIN) has resulted in various undesirable systemic side effects, the topical application of polystyrene and poly(acrylic acid)-based polymersomes (underexplored system) was investigated. Undecorated PS139-b-PAA17 and PS404-b-PAA63 vesicles (C3 and C7, respectively) or vesicles decorated with chitosan samples of different molecular weight (C3/CS-oligo, C7/CS-oligo, C3/CS-37 and C7/CS-37) were prepared by the co-solvent self-assembly method and characterized by small-angle X-ray scattering,transmission electron microscopy and dynamic light scattering techniques. In vitro release experiments and ex vivo permeation using Franz diffusion cells were carried out (through comparison with hydroethanolic finasteride solution). The ideal system should provide high finasteride retention in the dermis and epidermis while allowing some control of the drug release. The particle size and in vitro release were negatively correlated with the permeation coefficient and skin retention in both the epidermis and dermis. The findings that the longest lag time was obtained for the hydroethanolic drug solution and lowest permeation for the systems able to release the drug faster support the hypothesis that nanostructured systems may be required to enhance the penetration and permeation of the drug. Chitosan-decorated polymersomes interacted more strongly with the skin components than non-decorated samples, probably due to the positive surface charge, which increased the FIN retention and reduced the lag time. C7 polymersomes decorated with chitosan were more appropriate for topical applications (high retention in the dermis and epidermis and controlled drug delivery).

  17. Composite scaffolds of dicalcium phosphate anhydrate /multi-(amino acid) copolymer: in vitro degradability and osteoblast biocompatibility.

    PubMed

    Yao, Qianqian; Ye, Jun; Xu, Qian; Mo, Anchun; Gong, Ping

    2015-01-01

    This study aims to evaluate in vitro degradability and osteoblast biocompatibility of dicalcium phosphate anhydrate/multi-(amino acid) (DCPA/MAA) composites prepared by in situ polymerization method. The results revealed that the composites could be slowly degraded in PBS solution, with weight loss of 9.5 ± 0.2 wt.% compared with 12.2 ± 0.2 wt.% of MAA copolymer after eight weeks, and the changes of pH value were in the range of 7.18-7.4 and stabilized at 7.24. In addition, the compressive strength of the composite decreased from 98 to 62 MPa while that of MAA copolymer from 117 to 86 MPa. Furthermore, with non-toxicity demonstrated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide assay, the addition of DCPA to the MAA copolymer evidenced an enhancement of osteoblast differentiation and attachment compared with pure MAA materials regarding to alkaline phosphatase activity as well as initial cell adhesion. The results indicated that the DCPA/MAA scaffolds with good osteoblast biocompatibility, degradability, and sufficient strength had promising potential application in bone tissue engineering.

  18. Biodegradable blends of poly (lactic acid) (PLA) / polyhydroxybutrate (PHB) copolymer and its effects on rheological, thermal and mechanical properties

    NASA Astrophysics Data System (ADS)

    Sood, Nitin K.

    Poly (Lactic acid) is the most important plastic derived from the renewable resources. PLA based products have extensively been used in the medical industry. However, PLA has a few disadvantages such as inherent brittleness and low toughness despite a high modulus. A focus of this experiment was to study the improvement in toughness of PLA and to study the changes in thermal and rheological properties by blending PLA with a PHB copolymer. Where, PLA and PHB copolymer were melt blended using a twin screw Brabender extruder in the ratios of 100/0, 70/30, 50/50, 30/70, 0/100. Further, the blends were injection molded into tensile bar and impact bars for mechanical testing. Rheological properties were studied using a Galaxy capillary rheometer for melt viscosities and temperature dependence indicated a shear-thinning behavior along with power law model and consistency index. Blends were characterized to study the phase model using a differential scanning calorimetric (DSC), showed two separate phases. Mechanical properties were analyzed using a Tensile and Izod impact test indicating decrease in elastic modulus with increase in toughness and elongation as the PHB copolymer content was increased in the blend.

  19. The effects of the thiolation with thioglycolic acid and l-cysteine on the mucoadhesion properties of the starch-graft-poly(acrylic acid).

    PubMed

    Gök, M Koray; Demir, Kamber; Cevher, Erdal; Özsoy, Yıldız; Cirit, Ümüt; Bacınoğlu, Süleyman; Özgümüş, Saadet; Pabuccuoğlu, Serhat

    2017-05-01

    The aim of this study is to investigate the effects of the thiolation on the mucoadhesion characteristics of the gelatinized and crosslinked wheat starch-graft-poly(acrylic acid) [(WS-g-PAA)gc] for potential use in drug delivery via vaginal route. Thiolation of (WS-g-PAA)gc was first time realized using l-cysteine hydrochloride monohydrate (CyS) and thioglycolic acid (TGA). These conjugates [(WS-g-PAA)gcth] were characterized using FTIR. The free SH group, mucoadhesion, cytotoxicity characteristics and the mechanism of the thiolation were also evaluated. To obtain fundamental data for possible application such as drug carrier, in vitro and in vivo progesterone release profiles from the mucoadhesive tablet formulations were also determined. The results showed that, vaginal tablet containing (WS-g-PAA)gc-TGA, which has not contain free SH groups in its structure, displays higher mucoadhesion than (WS-g-PAA)gc and (WS-g-PAA)gc-CyS. This tablet formulation can also be used as a drug carrier in vaginal applications.

  20. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  1. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  2. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

    PubMed

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-14

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  3. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  4. Solvent-Free Polymerization of L-Aspartic Acid in the Presence of D-Sorbitol to Obtain Water Soluble or Network Copolymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    L-aspartic acid was thermally polymerized in the presence of D-sorbitol with the goal of synthesizing new, higher molecular weight water soluble and absorbent copolymers. No reaction occurred when aspartic acid alone was heated at 170 or 200 degrees C. In contrast, heating sorbitol and aspartic ac...

  5. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications.

  6. Surface characterization of poly(L-lactic acid)-methoxy poly(ethylene glycol) diblock copolymers by static and dynamic contact angle measurements, FTIR, and ATR-FTIR.

    PubMed

    Mert, O; Doganci, E; Erbil, H Y; Demir, A S

    2008-02-05

    The surface composition and surface free energy properties of two types of amphiphilic and semicrystalline diblock copolymers consisting of poly(L-lactic acid) coupled to (methoxy poly(ethylene glycol) (PLLA-MePEG) having differing block lengths of PEG were investigated by using static and dynamic contact angle measurements, transmission Fourier infrared spectroscopy (FTIR), and attenuated total reflection spectroscopy (ATR-FTIR) and compared with results obtained from PLLA and MePEG homopolymers. The contact angle results were evaluated by using the van Oss-Good method (acid-base method), and it was determined that the Lewis base surface tension coefficient (gamma-) of the copolymers increased with an increase of the PEG molar content at the copolymer surface. This result is in good agreement with the transmission FTIR and ATR-FTIR results but not proportional to them, indicating that the surfaces of the copolymers are highly mobile and that the molecular rearrangement takes place upon contact with a polar liquid drop. The dynamic contact angle measurements showed that the strong acid-base interaction between the oxygen atoms in the copolymer backbone of the relatively more hydrophilic PEG segments with the Lewis acidic groups of the polar and hydrogen-bonding water molecules enabled the surface molecules to restructure (conformational change) at the contact area, so that the PEG segments moved upward, whereas the apolar methyl pendant groups of PLLA segments buried downward.

  7. Characterization of maleic acid/anhydride copolymer films by low-rate dynamic liquid-fluid contact angle measurements using axisymmetric drop shape analysis.

    PubMed

    Uhlmann, Petra; Skorupa, Sebastian; Werner, Carsten; Grundke, Karina

    2005-07-05

    Thin films of alternating maleic acid/anhydride copolymers (poly(octadecene-alt-maleic acid/anhydride), POMA; poly(propene-alt-maleic acid/anhydride), PPMA; poly(styrene-alt-maleic acid/anhydride), PSMA) were studied to unravel the influence of the comonomer characteristics in the backbone on the surface-energetic properties of the copolymer films in the dry state and in contact with aqueous solutions. Water contact angle measurements revealed a graduation of the wettability of the dry hydrolyzed and annealed copolymer films that was dependent on the comonomer unit. It ranged from moderately hydrophilic (PPMA, annealed gamma(sv) = 39.9 mJ/m2) to very hydrophobic (POMA, annealed, gamma(sv) = 18.4 mJ/m2) surfaces. Liquid-fluid contact angle measurements using captive air bubbles were performed in different aqueous media (pure water, phosphate-buffered saline, and 10(-)(3) M KCl of two different pH values (pH = 3 and pH = 10) to study the copolymer films in their hydrated states relevant for biointerfacial phenomena. It was found that the graduation of the wettability of the copolymer films in the dry state is overall maintained upon immersion in aqueous solutions. The dependence of the wettability on the pH value of the aqueous medium could be related to the (de)protonation of the carboxylic groups.

  8. Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.

    PubMed

    Lei, Y; Wang, T; Mitchell, J W; Qiu, J; Kilpatrick-Liverman, L

    2014-12-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and (1)H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet-visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion.

  9. Synthesis of Carboxylic Block Copolymers via Reversible Addition Fragmentation Transfer Polymerization for Tooth Erosion Prevention

    PubMed Central

    Lei, Y.; Wang, T.; Mitchell, J.W.; Qiu, J.; Kilpatrick-Liverman, L.

    2014-01-01

    Dental professionals are seeing a growing population of patients with visible signs of dental erosion. The approach currently being used to address the problem typically leverages the enamel protection benefits of fluoride. In this report, an alternative new block copolymer with a hydrophilic polyacrylic acid (PAA) block and a hydrophobic poly(methyl methacrylate) (PMMA) block was developed to similarly reduce the mineral loss from enamel under acidic conditions. This series of PMMA-b-PAA block copolymers was synthesized by reversible addition fragmentation transfer (RAFT) polymerization. Their structures were characterized by gel permeation chromatography (GPC) and 1H nuclear magnetic resonance (NMR) spectra. The molar fractions of acrylic acid (AA) in the final block copolymer were finely controlled from 0.25 to 0.94, and the molecular weight (Mn) of PMMA-b-PAA was controlled from 10 kDa to 90 kDa. The binding capability of the block copolymer with hydroxyapatite (HAP) was investigated by ultraviolet–visible spectroscopy (UV-Vis) and Fourier transform infrared (FTIR) spectroscopy. FTIR spectra confirmed that the PMMA-b-PAA block copolymer could bind to HAP via bridging bidentate bonds. Both UV-Vis and FTIR spectra additionally indicated that a high polymer concentration and low solution pH favored the polymer binding to HAP. The erosion-preventing efficacy of the PMMA-b-PAA block copolymer in inhibiting HAP mineral loss was quantitatively evaluated by atomic absorption spectroscopy (AAS). Based on the results, polymer treatment reduced the amount of calcium released by 27% to 30% in comparison with the unprotected samples. Scanning electron microscope (SEM) observations indicated that PMMA-b-PAA polymer treatment protected enamel from acid erosion. This new amphiphilic block copolymer has significant potential to be integrated into dentifrices or mouthrinses as an alternative non-fluoride ingredient to reduce tooth erosion. PMID:25248611

  10. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  11. Synthesis of amino acid block-copolymer imprinted chiral mesoporous silica and its acoustically-induced optical Kerr effects

    SciTech Connect

    Paik, Pradip; Mastai, Yitzhak; Kityk, Iwan; Rakus, Piort; Gedanken, Aharon

    2012-08-15

    Chiral mesoporous SiO{sub 2} (CMS) have been synthesized and studied the Acoustically-Induced Optical Kerr Effects (AIOKE) and the results have been compared with non-chiral mesoporous silica. The CMS with controllable pore sizes (of {approx}3 nm) and high surface areas of ca. 650 m{sup 2}g{sup -1} was synthesized by mimicking the intrinsic chirality of the amino acid block copolymers. The chiral mesoporous materials were characterized through HRTEM, BET, small-angle XRD, {sup 29}Si-NMR and circular dichroism. AIOKE measurements have been performed using an Er:glass 20 ns laser with a 10 Hz frequency repetition. The optimal AIOKE results of the CMS were achieved for 9.7% of the chromophore in the matrices. We found that the AIOKE for the CMS mimicked with chiral block copolymers is quite high compared to the non-chiral SiO{sub 2}. A difference in AIOKE for these two compounds is observed, enabling CMS that can be used for the design of the acoustically-operated quantum electronic devices. - Graphical abstract: Novel chiral mesoporous SiO{sub 2} (CMS) is showing Acoustically-Induced Optical Kerr Effects (AIOKE). Different in AIOKE of two mesoporous materials is observed, enabling CMS can be used for the design of the acoustically-operated quantum electronic devices.Highlights: Black-Right-Pointing-Pointer Chiral mesoporous SiO{sub 2} (CMS) synthesized with amino acid block copolymers. Black-Right-Pointing-Pointer The Acoustically-induced Optical Kerr Effects (AIOKE) of chiral mesoporous SiO{sub 2} studied. Black-Right-Pointing-Pointer AIOKE very high for CMS compared to non chiral SiO{sub 2}. Black-Right-Pointing-Pointer CMS can be used in acoustically-operated quantum electronic devices.

  12. Imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1992-01-01

    Imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly(arylene ethers) in polar aprotic solvents and by chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The resulting block copolymers have one glass transition temperature or two, depending upon the particular structure and/or the compatibility of the block units. Most of these block copolymers form tough, solvent resistant films with high tensile properties.

  13. New Insights into Poly(Lactic-co-glycolic acid) Microstructure: Using Repeating Sequence Copolymers to Decipher Complex NMR and Thermal Behavior

    PubMed Central

    Stayshich, Ryan M.; Meyer, Tara Y.

    2012-01-01

    Sequence, which Nature uses to spectacular advantage, has not been fully exploited in synthetic copolymers. To investigate the effect of sequence and stereosequence on the physical properties of copolymers a family of complex isotactic, syndiotactic and atactic repeating sequence poly(lactic-co-glycolic acid) copolymers (RSC PLGAs) were prepared and their NMR and thermal behavior was studied. The unique suitability of polymers prepared from the bioassimilable lactic and glycolic acid monomers for biomedical applications makes them ideal candidates for this type of sequence engineering. Polymers with repeating units of LG, GLG and LLG (L = lactic, G = glycolic) with controlled and varied tacticities were synthesized by assembly of sequence specific, stereopure dimeric, trimeric and hexameric segmer units. Specifically labeled deuterated lactic and glycolic acid segmers were likewise prepared and polymerized. Molecular weights for the copolymers ranged from Mn = 12-40 kDa by size exclusion chromatography in THF. Although the effects of sequence-influenced solution conformation were visible in all resonances of the 1H and 13C NMR spectra, the diastereotopic methylene resonances in the 1H NMR (CDCl3) for the glycolic units of the copolymers proved most sensitive. An octad level of resolution, which corresponds to an astounding 31-atom distance between the most separated stereocenters, was observed in some mixed sequence polymers. Importantly, the level of sensitivity of a particular NMR resonance to small differences in sequence was found to depend on the sequence itself. Thermal properties were also correlated with sequence. PMID:20681726

  14. Preparation of novel alkaline pH-responsive copolymers for the formation of recyclable aqueous two-phase systems and their application in the extraction of lincomycin.

    PubMed

    Liu, Jiali; Cao, Xuejun

    2016-02-01

    Aqueous two-phase systems have potential industrial application in bioseparation and biocatalysis engineering; however, their practical application is limited primarily because the copolymers involved in the formation of aqueous two-phase systems cannot be recovered. In this study, two novel alkaline pH-responsive copolymers were synthesized and examined for the extraction of lincomycin. The two copolymers could form a novel alkaline aqueous two-phase systems when their concentrations were both 6% w/w and the pH was 8.4(±0.1)-8.7(±0.1). One copolymer was synthesized using acrylic acid, 2-(dimethylamino)ethyl methacrylate, and butyl methacrylate as monomers. Moreover, 98.8% of the copolymer could be recovered by adjusting the solution pH to its isoelectric point (pH 6.29). The other copolymer was synthesized using the monomers methacrylic acid, 2-(dimethylamino)ethyl methacrylate, and methyl methacrylate. In this case, 96.7% of the copolymer could be recovered by adjusting the solution pH to 7.19. The optimal partition coefficient of lincomycin was 0.17 at 30°C in the presence of 10 mM KBr and 5.5 at 40°C in the presence of 80 mM Ti(SO4)2 using the novel alkaline aqueous two-phase systems.

  15. PEG-detachable and acid-labile cross-linked micelles based on orthoester linked graft copolymer for paclitaxel release

    NASA Astrophysics Data System (ADS)

    Yuan, Zhefan; Huang, Jingyi; Liu, Jing; Cheng, Sixue; Zhuo, Renxi; Li, Feng

    2011-08-01

    Polyethylene glycol detachable graft copolymer, mPEG-g-p(NAS-co-BMA), was synthesized by grafting 2-(ω-methoxy)PEGyl-1,3-dioxan-5-ylamine onto poly(N-(acryloyloxy)succinimide-co-butyl methacrylate). Pseudo in situ cross-linking of the mPEG-g-p(NAS-co-BMA) was performed in dimethylformamide phosphate buffer (v/v = 1/1) by an acid-labile diamine cross-linker bearing two symmetrical cyclic orthoesters. The cross-linked (CL) micelles with different contents of mPEG segments represented different morphologies. The CL micelles containing approximately one mPEG segment exhibited 'echini' morphology whereas the CL micelle with approximately three mPEG segments formed nanowires. The hydrolysis rate of the CL micelles is highly pH-dependent and much more rapid at mild acid than physiological conditions. Hydrolyzates of the CL micelles formed vesicles because new amphiphilic copolymers were formed. Paclitaxel (PTX) was successfully loaded into the CL micelles and a controlled and pH-dependent release behavior was observed. No obvious cytotoxicity was found for the CL micelles at concentration as high as 800 mg l - 1.

  16. Paclitaxel-loaded nanoparticles of star-shaped cholic acid-core PLA-TPGS copolymer for breast cancer treatment

    PubMed Central

    2013-01-01

    A system of novel nanoparticles of star-shaped cholic acid-core polylactide-d-α-tocopheryl polyethylene glycol 1000 succinate (CA-PLA-TPGS) block copolymer was developed for paclitaxel delivery for breast cancer treatment, which demonstrated superior in vitro and in vivo performance in comparison with paclitaxel-loaded poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles and linear PLA-TPGS nanoparticles. The paclitaxel- or couramin 6-loaded nanoparticles were fabricated by a modified nanoprecipitation method and then characterized in terms of size, surface charge, surface morphology, drug encapsulation efficiency, and in vitro drug release. The CA-PLA-TPGS nanoparticles were found to be spherical in shape with an average size of around 120 nm. The nanoparticles were found to be stable, showing no change in the particle size and surface charge during 90-day storage of the aqueous solution. The release profiles of the paclitaxel-loaded nanoparticles exhibited typically biphasic release patterns. The results also showed that the CA-PLA-TPGS nanoparticles have higher antitumor efficacy than the PLA-TPGS nanoparticles and PLGA nanoparticles in vitro and in vivo. In conclusion, such nanoparticles of star-shaped cholic acid-core PLA-TPGS block copolymer could be considered as a potentially promising and effective strategy for breast cancer treatment. PMID:24134303

  17. A General Protocol for the Polycondensation of Thienyl N-Methyliminodiacetic Acid Boronate Esters To Form High Molecular Weight Copolymers

    PubMed Central

    2016-01-01

    Thienyl di-N-methyliminodiacetic acid (MIDA) boronate esters are readily synthesized by electrophilic C–H borylation producing bench stable crystalline solids in good yield and excellent purity. Optimal conditions for the slow release of the boronic acid using KOH as the base in biphasic THF/water mixtures enables the thienyl MIDA boronate esters to be extremely effective homo-bifunctionalized (AA-type) monomers in Suzuki–Miyaura copolymerizations with dibromo-heteroarenes (BB-type monomers). A single polymerization protocol is applicable for the formation of five alternating thienyl copolymers that are (or are close analogues of) state of the art materials used in organic electronics. The five polymers were produced in excellent yields and with high molecular weights comparable to those produced using Stille copolymerization protocols. Therefore, thienyl di-MIDA boronate esters represent bench stable and low toxicity alternatives to highly toxic di-trimethylstannyl AA-type monomers that are currently ubiquitous in the synthesis of these important alternating copolymers. PMID:27636745

  18. Tuning thermoresponsive behavior of diblock copolymers and their gold core hybrids: part 1. Importance of placement of amphiphilic end groups on the diblock copolymers.

    PubMed

    Chen, Ning; Xiang, Xu; Tiwari, Ashutosh; Heiden, Patricia A

    2013-02-01

    We report the effects of use and placement of amphiphilic end groups as a valuable tool to achieve significant changes in the thermoresponsive properties of diblock copolymers without the need to resort to compositional changes. We prepared diblock copolymers of di(ethylene glycol) methyl ether methacrylate and oligo(ethylene glycol) methyl ether acrylate with phenyl dithioester and carboxylic acid chain ends and compared the effects of placement of these amphiphilic chain ends on the cloud points of the copolymers. All the copolymers were high molecular weight (greater than 20 kDa) with a polydispersity between 1.1 and 1.2, and the cloud points were measured by UV-vis spectrophotometry and reported as the temperature at 50% normalized transmission. The thermoresponse showed a significant dependency on end group placement, reaching as much as a 28°C difference in measured cloud point simply by exchanging end group placement rather than compositional changes. The effect is attributed to changes in the solvation and mobility from chain end placement affecting the degree of association of the chains. The underlying effect is due to the hydrophilic/hydrophobic balance in combination with the use of amphiphilic chain end placement that can be applied to copolymers with different blocks at the chain ends. This work shows that substantial changes in thermo-response properties can be achieved by re-arranging monomer components rather than changing monomer composition. This may have value in biomedical materials where the range of acceptable monomers is limited.

  19. Efficient enzymatic acrylation through transesterification at controlled water activity.

    PubMed

    Nordblad, Mathias; Adlercreutz, Patrick

    2008-04-15

    Enzymatic acrylation is a process of potentially strong interest to the chemical industry. Direct esterification involving acrylic acid is unfortunately rather slow, with inhibition phenomena appearing at high acid concentrations. In the present study the acrylation of 1-octanol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was shown to be as much as an order of magnitude faster when ethyl acrylate served as the donor of the acrylic group. Water activity is a key parameter for optimizing the rate of ester synthesis. The optimum water activity for the esterification of octanol by acrylic acid was found to be 0.75, that for its esterification by propionic acid to be 0.45 and the transesterification involving ethyl acrylate to be fastest at a water activity of 0.3. The reasons for these differences in optimum water activity are discussed in terms of enzyme specificity, substrate solvation, and mass transfer effects.

  20. TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids.

    PubMed

    Sadofsky, Laura R; Boa, Andrew N; Maher, Sarah A; Birrell, Mark A; Belvisi, Maria G; Morice, Alyn H

    2011-01-01

    The nociceptor TRPA1 is thought to be activated through covalent modification of specific cysteine residues on the N terminal of the channel. The precise mechanism of covalent modification with unsaturated carbonyl-containing compounds is unclear, therefore by examining a range of compounds which can undergo both conjugate and/or direct addition reactions we sought to further elucidate the mechanism(s) whereby TRPA1 can be activated by covalent modification. Calcium signalling was used to determine the mechanism of activation of TRPA1 expressed in HEK293 cells with a series of related compounds which were capable of either direct and/or conjugate addition processes. These results were confirmed using physiological recordings with isolated vagus nerve preparations. We found negligible channel activation with chemicals which could only react with cysteine residues via conjugate addition such as acrylamide, acrylic acid, and cinnamic acid. Compounds able to react via either conjugate or direct addition, such as acrolein, methyl vinyl ketone, mesityl oxide, acrylic acid NHS ester, cinnamaldehyde and cinnamic acid NHS ester, activated TRPA1 in a concentration dependent manner as did compounds only capable of direct addition, namely propionic acid NHS ester and hydrocinnamic acid NHS ester. These compounds failed to activate TRPV1 expressed in HEK293 cells or mock transfected HEK293 cells. For molecules capable of direct or conjugate additions, the results suggest for the first time that TRPA1 may be activated preferentially by direct addition of the thiol group of TRPA1 cysteines to the agonist carbonyl carbon of α,β-unsaturated carbonyl-containing compounds.

  1. Alginate based hybrid copolymer hydrogels--influence of pore morphology on cell-material interaction.

    PubMed

    Gnanaprakasam Thankam, Finosh; Muthu, Jayabalan

    2014-11-04

    Alginate based hybrid copolymer hydrogels with unidirectional pore morphology were prepared to achieve synergistic biological performance for cardiac tissue engineering applications. Alginate based hybrid copolymer (ALGP) were prepared using alginate and poly(propylene fumarate) (HT-PPF) units. Different hybrid bimodal hydrogels were prepared by covalent crosslinking using poly(ethylene glycol diacrylate) and vinyl monomer viz acrylic acid, methyl methacrylate, butyl methacrylate and N-N'-methylene-bis-acrylamide and ionic crosslinking with calcium. The morphologically modified hydrogels (MM-hydrogels) with unidirectional elongated pores and high aspect ratio were prepared. MM-hydrogels favour better mechanical properties; it also enhances cell viability and infiltration due to unidirectional pores. However, the crosslinkers influence the fibroblast infiltration of these hydrogels. Synthesis of collagen and fibroblast infiltration was greater for alginate copolymer crosslinked with poly(ethylene glycol diacrylate-acrylic acid (ALGP-PA) even after one month (288%). This hybrid MM-hydrogel promoted cardiomyoblast growth on to their interstices signifying its potent applications in cardiac tissue engineering.

  2. Mesoporous Silica Films with Long-Range Order Prepared from Strongly Segregated Block Copolymer/Homopolymer Blend Templates

    SciTech Connect

    Tirumala, Vijay R.; Pai, Rajaram A.; Agarwal, Sumit; Testa, Jason J.; Bhatnagar, Gaurav; Romang, Alvin H.; Chandler, Curran; Gorman, Brian P.; Jones, Ronald L.; Lin, Eric K.; Watkins, James J.

    2008-06-30

    Well-ordered mesoporous silica films were prepared by infusion and selective condensation of Si alkoxides within preorganized block copolymer/homopolymer blend templates using supercritical CO{sub 2} as the delivery medium. The morphologies of the mesoporous silica films reflect significant improvements in the strength of segregation and long-range order of template blends of poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) triblock copolymers with selectively associating homopolymers such as poly(acrylic acid) or poly(4-hydroxystyrene) prior as compared to templates comprised of the neat copolymer. Control over film porosity, pore ordering, and morphology of the films is achieved through simple variations in the homopolymer concentration. The films were characterized using X-ray reflectivity, small-angle X-ray scattering, and transmission electron microscopy.

  3. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment

    PubMed Central

    Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar

    2014-01-01

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975

  4. The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system.

    PubMed

    Xiong, Wei; Gao, Xiang; Zhao, Yanbing; Xu, Huibi; Yang, Xiangliang

    2011-05-01

    Poly(N-isopropylacrylamide-co-acrylic acid) microgels (PNA) may be an excellent formulation for in situ gelling system due to their high sensitivity and fast response rate. Four monodispersed PNA microgels with various contents of acrylic acid (AA) were synthesized by emulsion polymerization in this paper. Their hydrodynamic diameters decreased reversibly with both decreasing pH and increasing temperature. The dual temperature/pH-sensitivity was influenced by many factors such as AA content, cross-link density and ion strength. In addition, high concentration PNA dispersions underwent multiple phase transition according to different temperatures, pHs and concentrations, which were summarized in a 3D sol-gel phase diagram in this study. According to the sol-gel phase transition, 8% PNA-025 dispersion maintained a relatively low viscosity and favorable fluidity at pH 5.0 in the temperature range of 25-40°C, but it rapidly increased in viscosity at pH 7.4 and gelled at 37°C. This feature enabled the dual temperature/pH-sensitive microgels to overcome the troubles in syringing of temperature sensitive materials during the injection. Apart from this, PNA could form gel well in in vitro (e.g., medium and serum) and in in vivo with low cytotoxicity. Therefore, it is promising for PNA to be applied in the in situ gelling system.

  5. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment.

    PubMed

    Hernández, Sebastián; Papp, Joseph K; Bhattacharyya, Dibakar

    2014-01-22

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30-60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed.

  6. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  7. Synthesis and magnetic heating characteristics of thermoresponsive poly (N-isopropylacrylamide-co-acrylic acid)/nano Fe3O4 nanparticles

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Le, Thi Hong Phong; Pham, Hong Nam; Do, Hung Manh; Phuc Nguyen, Xuan

    2014-12-01

    In this work the synthesis of thermo-sensitive polymer coated magnetic nanoparticles and their inductive heating have been studied. Poly (N-isopropylacrylamide-co-acrylic acid) (NA) polymers were first synthesized by emulsion polymerization of poly(N-isopropylacrylamide) (NIP) in water and followed by encapsulating magnetic nanoparticles (MNPs). As increasing the concentration of acrylic acid (AA), the lower critical solution temperature (LCST) increased, so that with 150% of AA (molar ratio) the LCST reached 42 °C, which is close to the temperature of hyperthermia treatment. Magnetization and ac susceptibility measurements were conducted to depict some characteristics of the NIP-MNPs and NA-MNPs that are related with the loss power. Attempts to analyze the rate of magnetic inductive heating were performed to show the Brownian relaxation origin of additional heat source created by the magnetite nanoparticles capped with thermosensitive polymers. Our results suggest that these thermo-sensitive polymer-coated magnetic nanoparticles show a potential for hyperthermia and drug delivery application.

  8. Hierarchical pattern formation through photo-induced disorder in block copolymer/additive composite films

    NASA Astrophysics Data System (ADS)

    Yao, Li; Watkins, James

    2013-03-01

    Segregation strength in hybrid materials can be increased through selective hydrogen bonding between organic or nanoparticle additives and one block of weakly segregated block copolymers to generate well ordered hybrid materials. Here, we report the use of enantiopure tartaric acid as the additive to dramatically improve ordering in poly(ethylene oxide-block-tert-butyl acrylate) (PEO-b-PtBA) copolymers. Phase behavior and morphologies within both bulk and thin films were studied by TEM, AFM and X-ray scattering. Suppression of PEO crystallization by the interaction between tartaric acid and the PEO block enables the formation of well ordered smooth thin films. With the addition of a photo acid generator, photo-induced disorder in PEO-b-PtBA/tartaric acid composite system can be achieved upon UV exposure to deprotect PtBA block to yield poly(acrylic acid) (PAA), which is phase-miscible with PEO. Due to the strong interaction of tartaric acid with both blocks, the system undergoes a disordering transition within seconds during a post-exposure baking. With the assistance of trace-amounts of base quencher, high resolution, hierarchical patterns of sub-micron regions of ordered and disordered domains were achieved in thin films through area-selective UV exposure using a photo-mask. Funding from Center for Hierarchical Manufacturing (CHM); Facility support from Materials Research Science and Engineering Center at UMass Amherst and Cornell High Energy Synchrotron Source

  9. [Effect of polymer complexons based on vinylpyrrolidone copolymers with vinyliminodiacetic acid and methacrtloylacetone on the antibiotic sensitivity of antibiotic-resistant bacterial strains].

    PubMed

    Afinogenov, G E; Panarin, E F; Kopeĭkin, V V

    1978-05-01

    Polymer complexons, such as copolymers of vinylpyrrolidone with vinyliminodiacetic acid and metacryloilacetone changed the permeability of the bacterial cell wall due to chelating of the metalic ions contained in the cell wall. An increase in the bacterial sensitivity to chloretracycline, methicillin, ampicillin and methicillin was observed in the presence of the above complexons.

  10. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    SciTech Connect

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, we analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.

  11. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  12. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    SciTech Connect

    Barleany, Dhena Ria Ulfiyani, Fida; Istiqomah, Shafina; Rahmayetty; Heriyanto, Heri; Erizal

    2015-12-29

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w{sup −1} acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g{sup −1} of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g{sup −1} and 523 g g{sup −1} for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM)

  13. Swelling properties of cassava starch grafted with poly (potassium acrylate-co-acrylamide) superabsorbent hydrogel prepared by ionizing radiation

    NASA Astrophysics Data System (ADS)

    Barleany, Dhena Ria; Ulfiyani, Fida; Istiqomah, Shafina; Heriyanto, Heri; Rahmayetty, Erizal

    2015-12-01

    Natural and synthetic hydrophylic polymers can be phisically or chemically cross-linked in order to produce hydrogels. Starch based hydrogels grafted with copolymers from acrylic acid or acrylamide have become very popular for water absorbent application. Superabsorbent hydrogels made from Cassava starch grafted with poly (potassium acrylate-co-acrylamide) were prepared by using of ϒ-irradiation method. Various important parameters such as irradiation doses, monomer to Cassava starch ratio and acrylamide content were investigated. The addition of 7,5 % w w-1 acrylamide into the reaction mixture generated a starch graft copolymer with a water absorption in distilled water as high as 460 g g-1 of its dried weight. The effectivity of hydrogel as superabsorbent for aqueous solutions of NaCl and urea was evaluated. The obtained hydrogel showed the maximum absorptions of 317 g g-1 and 523 g g-1 for NaCl and urea solution, respectively (relative to its own dry weight). The structure of the graft copolymer was analyzed by using Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM).

  14. Poly[lactic-co-(glycolic acid)]-grafted hyaluronic acid copolymer micelle nanoparticles for target-specific delivery of doxorubicin.

    PubMed

    Lee, Hyukjin; Ahn, Cheol-Hee; Park, Tae Gwan

    2009-04-08

    PLGA-grafted HA copolymers were synthesized and utilized as target specific micelle carriers for DOX. For grafting hydrophobic PLGA chains onto the backbone of hydrophilic HA, HA was solubilized in an anhydrous DMSO by nano-complexing with dimethoxy-PEG. The carboxylic groups of HA were chemically grafted with PLGA, producing HA-g-PLGA copolymers. Resultant HA-g-PLGA self-assembled in aqueous solution to form multi-cored micellar aggregates and DOX was encapsulated during the self-assembly. DOX-loaded HA-g-PLGA micelle nanoparticles exhibited higher cellular uptake and greater cytotoxicity than free DOX for HCT-116 cells that over-expressed HA receptor, suggesting that they were taken up by the cells via HA receptor-mediated endocytosis.

  15. Humidity-responsive starch-poly (methyl acrylate) films.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blown films prepared from starch-poly(methyl acrylate) graft copolymers plasticized with urea and water display shrinkage at relative humidities greater than 50%. Shrinkage at relative humidities below approximately 75% is strongly correlated with the urea/starch weight ratio, which controls the eq...

  16. Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability.

    PubMed

    Guan, Jianjun; Hong, Yi; Ma, Zuwei; Wagner, William R

    2008-04-01

    A family of injectable, biodegradable, and thermosensitive copolymers based on N-isopropylacrylamide, acrylic acid, N-acryloxysuccinimide, and a macromer polylactide-hydroxyethyl methacrylate were synthesized by free radical polymerization. Copolymers were injectable at or below room temperature and formed robust hydrogels at 37 degrees C. The effects of monomer ratio, polylactide length, and AAc content on the chemical and physical properties of the hydrogel were investigated. Copolymers exhibited lower critical solution temperatures (LCSTs) from 18 to 26 degrees C. After complete hydrolysis, hydrogels were soluble in phosphate buffered saline at 37 degrees C with LCSTs above 40.8 degrees C. Incorporation of type I collagen at varying mass fractions by covalent reaction with the copolymer backbone slightly increased LCSTs. Water content was 32-80% without collagen and increased to 230% with collagen at 37 degrees C. Hydrogels were highly flexible and relatively strong at 37 degrees C, with tensile strengths from 0.3 to 1.1 MPa and elongations at break from 344 to 1841% depending on NIPAAm/HEMAPLA ratio, AAc content, and polylactide length. Increasing the collagen content decreased both elongation at break and tensile strength. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Hydrogel weight loss at 37 degrees C was 85-96% over 21 days and varied with polylactide content. Degradation products were shown to be noncytotoxic. Cell adhesion on the hydrogels was 30% of that for tissue culture polystyrene but increased to statistically approximate this control surface after collagen incorporation. These newly described thermoresponsive copolymers demonstrated attractive properties to serve as cell or pharmaceutical delivery vehicles for a variety of tissue engineering applications.

  17. Free-radical copolymerisation of acrylamides, acrylates, and α-olefins

    NASA Astrophysics Data System (ADS)

    Carlson, Rebecca K.; Lee, Rachel A.; Assam, Jed H.; King, Rollin A.; Nagel, Megan L.

    2015-07-01

    We report the results of a joint theoretical and experimental investigation into the copolymerisation of acrylamides and acrylates with α-olefins in free-radical processes. The transition-state structures of models for free-radical homo- and copolymerisation involving acrylamide, methylacrylamide, methacrylate, methyl methacrylate, and ethylene have been determined using density functional theory. The reaction energies and barrier heights comport with the experimentally observed properties, including the prevalence of monomer alternation, the realised stereospecificity, and the reaction yield. Continuum solvation models have been applied to determine the sensitivity of the relative energies to the bulk solvent properties. Experimentally, a Lewis acid catalyst is demonstrated to increase the incorporation of nonpolar 1-alkenes in copolymerisations with polar acrylamides and acrylates. In the presence of the Lewis acid, scandium (III) trifluoromethanesulfonate, the copolymerisation of 1-hexene and acrylamide results in an 8.5 mol % incorporation, up from 3.9 mol % in the absence of the Lewis acid. Computations incorporating Mg2+ as a model Lewis acid elucidate the mechanism of this catalysis. In the addition of methacrylate to a methyl methacrylate radical terminated polymer, the Lewis acid binds to the carbonyls on both promoting isotactic addition, while for the addition of an alkene to the same polymer, the Lewis acid binds to the polymer, reducing the barrier for alkenyl addition inductively by withdrawing electron density. We have demonstrated the ability of computational studies to aid experimentalists in the synthesis of new copolymers with desired properties.

  18. Copolymers of covalently crosslinked linear and branched polyethylenimines as efficient nucleic acid carriers.

    PubMed

    Goyal, Ritu; Bansal, Ruby; Gandhi, R P; Gupta, K C

    2014-11-01

    The present study describes the formation of copolymers of linear and branched PEIs (25 kDa each). These polyethylenimines (bPEI and IPEI) were crosslinked with each other to obtain branched-linear (BL) PEI copolymers using epichlorohydrin as a crosslinker in two steps. First, IPEI was reacted with epichlorohydrin to form IPEI-chlorohydrin (CHL) and subsequently, bPEI was grafted onto CHL in basic medium by in situ generation of epoxy functionalities. The two PEIs were crosslinked by varying the weight ratio of bPEI while keeping the amount of IPEI fixed. The ratio of two PEIs (1:1, 2:1, 3:1, 4:1 and 5:1) and crosslinking percentage of epichlorohydrin (5, 10, 15 and 20%) appeared as the main parameters to have affected the transfection efficiency. The lead conjugate/DNA complex was tested for in vivo transgene expression in Balb/c mice and was found to show maximum expression in the spleen.

  19. Polypeptide Point Modifications with Fatty Acid and Amphiphilic Block Copolymers for Enhanced Brain Delivery

    PubMed Central

    Batrakova, Elena V.; Vinogradov, Serguei V.; Robinson, Sandra M.; Niehoff, Michael L.; Banks, William A.; Kabanov, Alexander V.

    2009-01-01

    There is a tremendous need to enhance delivery of therapeutic polypeptides to the brain to treat disorders of the central nervous system (CNS). The brain delivery of many polypeptides is severely restricted by the blood—brain barrier (BBB). The present study demonstrates that point modifications of a BBB-impermeable polypeptide, horseradish peroxidase (HRP), with lipophilic (stearoyl) or amphiphilic (Pluronic block copolymer) moieties considerably enhance the transport of this polypeptide across the BBB and accumulation of the polypeptide in the brain in vitro and in vivo. The enzymatic activity of the HRP was preserved after the transport. The modifications of the HRP with amphiphilic block copolymer moieties through degradable disulfide links resulted in the most effective transport of the HRP across in vitro brain microvessel endothelial cell monolayers and efficient delivery of HRP to the brain. Stearoyl modification of HRP improved its penetration by about 60% but also increased the clearance from blood. Pluronic modification using increased penetration of the BBB and had no significant effect on clearance so that uptake by brain was almost doubled. These results show that point modification can improve delivery of even highly impermeable polypeptides to the brain. PMID:16029020

  20. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    PubMed

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

  1. Nanoscale Ionic Aggregate Morphology in Zwitterionic Copolymers

    NASA Astrophysics Data System (ADS)

    Choi, Jae-Hong; Huyck, Rebecca; Salas-de La Cruz, David; Long, Timothy E.; Winey, Karen I.

    2009-03-01

    The morphology of two different zwitterionic copolymers, poly(sulfobetaine methacrylate-ran-butyl acrylate), and poly(sulfobetaine methacrylamide-ran-butyl acrylate) are investigated as a function of the mol % content of SBMA (7 and 9 mol %) and SBMAm (6, 10 and 13 mol %), respectively. In both copolymers, X-ray scattering results show a new structure in the material arising from ionic aggregates. The sizes of the ionic aggregates are obtained through the scattering model. The sizes of the ionic aggregates increase as the ion content increases. The application of scanning transmission electron microscopy to the study of ionomer morphology has enabled direct, model-independent visualization of the ionic aggregates. The correlation between X-ray scattering results and the real space imaging for morphology of these zwitterionic copolymers will be presented.

  2. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  3. Imide/Arylene Ether Copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Hergenrother, Paul M.; Bass, Robert G.

    1991-01-01

    New imide/arylene ether copolymers prepared by reacting anhydride-terminated poly(amic acids) with amine-terminated poly(arylene ethers) in polar aprotic solvents. Each resulting copolymer may have one glass-transition temperature or two, depending on chemical structure and/or compatibility of block units. Most of copolymers form tough, solvent-resistant films with high tensile properties. Films cast from solution tough and flexible, and exhibit useful thermal and mechanical properties. Potentially useful as moldings, adhesives, or composite matrices. Because of flexible arylene ether blocks, these copolymers easier to process than polyimides.

  4. Nanoparticle assembly of a photo- and pH-responsive random azobenzene copolymer.

    PubMed

    Feng, Ning; Han, Guoxiang; Dong, Jie; Wu, Hao; Zheng, Yudong; Wang, Guojie

    2014-05-01

    Stimuli-responsive polymeric nanoparticles with a core of hydrophobic azobenzene-containing acrylate units and a shell of hydrophilic acrylic acid units were prepared from a novel photo- and pH-responsive amphiphilic random azobenzene copolymer. Upon UV light irradiation, the trans azobenzene changed to the cis form and thus the water contact angle and the absorption of water on the polymer film could be changed, while little effect was exerted on the morphology of the nanoparticles although the polarity of the core of nanoparticles increased. Adjusting pH of the nanoparticle solution could exert a strong effect on the morphology of the nanoparticles. The prime nanoparticles (pH 6) changed to nanoparticle aggregates at pH 3, and to swollen nanoparticles at pH 11. The controlled release of Nile Red from the nanoparticles under the stimuli was demonstrated.

  5. High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder

    NASA Astrophysics Data System (ADS)

    Maroni, F.; Gabrielli, S.; Palmieri, A.; Marcantoni, E.; Croce, F.; Nobili, F.

    2016-11-01

    Fe3O4 nanoparticles synthesized by a base catalyzed method are tested as anode material for Li-ion batteries. The pristine nanoparticles are morphologically characterized showing an average size of 11 nm. Electrodes are prepared using high-molecular weight Poly (acrylic acid) as improved binder and ethanol as low cost and environmentally friendly solvent. The evaluation of electrochemical properties shows high specific capacity values of 857 mA hg-1 after 200 cycles at a specific current of 462 mAg-1, as well as an excellent rate capability with specific current values up to 18480 mAg-1. To the best of our knowledge, this is the first report of Fe3O4 nanoparticles cycling with PAA as binder.

  6. A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand

    NASA Astrophysics Data System (ADS)

    Oanh, Vuong Thi Kim; Lam, Tran Dai; Thu, Vu Thi; Lu, Le Trong; Nam, Pham Hong; Tam, Le The; Manh, Do Hung; Phuc, Nguyen Xuan

    2016-08-01

    Highly stable Fe3O4 liquid was synthesized by thermal decomposition using poly(acrylic acid) (PAA) as a phase transfer ligand. The crystalline structure, morphology, and magnetic properties of the as-prepared samples were thoroughly characterized. Results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with a spinel single-phase structure, average size of 8-13 nm, and high saturation magnetization (up to 75 emu/g). The PAA-capped Fe3O4 nanoparticles displayed high stability over a wide pH range (from 4 to 7) in 300 mM salt solution. More importantly, the heat-generating capacity of the nanoparticle systems was quantified at a specific absorption rate (SAR) of 70.22 W/g, which is 35% higher than magnetic nanoparticles coated with sodium dodecyl sulfate (SDS). These findings suggest the potential application of PAA-coated magnetic nanoparticles in magnetic hyperthermia.

  7. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  8. Reusable nanocomposite of CoFe2O4/chitosan-graft-poly(acrylic acid) for removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Cuong; Huynh, Thi Kim Ngoc

    2014-06-01

    In this paper, CoFe2O4/chitosan-graft-poly(acrylic acid) (CoFe2O4/CS-graft-PAA) nanocomposites were prepared successfully by coprecipitation of the compounds in alkaline solution and were used for removal of nickel (II) ions from aqueous solution. The sorption rate was affected significantly by the initial concentration of the solution, sorbent amount, and pH value of the solution. Batch experiments were conducted to investigate the adsorption capacity under different initial concentration (ranging from 25 to 150 mg L-1), solution pH (4.1, 5.3, 6.4 and 7.6), and contact time. These nanocomposites can be recycled conveniently from water with the assistance of an external magnet because of their exceptional properties. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA).

  9. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    PubMed

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed.

  10. Fe2O3/TiO2 nanocomposite photocatalyst prepared by supercritical fluid combination technique and its application in degradation of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, J. C.

    2017-01-01

    Fe2O3/TiO2 nanocomposite photocatalysts were synthesized by supercritical fluid combination technique, consisting of sol-gel method and supercritical fluid drying. The photocatalytic activity of the samples was evaluated by the degradation of acrylic acid. The results indicated that the Fe2O3/TiO2 nanocomposite catalysts prepared by this novel technique showed significant improvement in catalytic activity compared with pure TiO2 or Fe2O3/TiO2 catalysts prepared by traditional drying. Both infrared and ultraviolet spectrum of Fe2O3/TiO2 nanocomposite photocatalysts shift a little to lower wavelength indicating that the absorption threshold of Fe doped nanocomposite photocatalysts shift into the visible light region. This phenomenon was also attested by the photocatalytic degradation test under visible light.

  11. Membrane protein extraction and purification using styrene-maleic acid (SMA) copolymer: effect of variations in polymer structure.

    PubMed

    Morrison, Kerrie A; Akram, Aneel; Mathews, Ashlyn; Khan, Zoeya A; Patel, Jaimin H; Zhou, Chumin; Hardy, David J; Moore-Kelly, Charles; Patel, Roshani; Odiba, Victor; Knowles, Tim J; Javed, Masood-Ul-Hassan; Chmel, Nikola P; Dafforn, Timothy R; Rothnie, Alice J

    2016-12-01

    The use of styrene-maleic acid (SMA) copolymers to extract and purify transmembrane proteins, while retaining their native bilayer environment, overcomes many of the disadvantages associated with conventional detergent-based procedures. This approach has huge potential for the future of membrane protein structural and functional studies. In this investigation, we have systematically tested a range of commercially available SMA polymers, varying in both the ratio of styrene and maleic acid and in total size, for the ability to extract, purify and stabilise transmembrane proteins. Three different membrane proteins (BmrA, LeuT and ZipA), which vary in size and shape, were used. Our results show that several polymers, can be used to extract membrane proteins, comparably to conventional detergents. A styrene:maleic acid ratio of either 2:1 or 3:1, combined with a relatively small average molecular mass (7.5-10 kDa), is optimal for membrane extraction, and this appears to be independent of the protein size, shape or expression system. A subset of polymers were taken forward for purification, functional and stability tests. Following a one-step affinity purification, SMA 2000 was found to be the best choice for yield, purity and function. However, the other polymers offer subtle differences in size and sensitivity to divalent cations that may be useful for a variety of downstream applications.

  12. Characterization of copolymer latexes by capillary electrophoresis.

    PubMed

    Anik, Nadia; Airiau, Marc; Labeau, Marie-Pierre; Bzducha, Wojciech; Cottet, Hervé

    2010-02-02

    Latexes are widely used for industrial applications, including decorative paints, binders for the papermaking industry, and drilling fluids for oil-field applications. In this work, the interest of capillary zone electrophoresis (CE) for the characterization of hydrophobic block copolymer latexes obtained by the conventional emulsion polymerization technique consisting of a core of polystyrene (PS) surrounded by a layer of poly(ethyl acrylate) (PEA) has been investigated. The PEA part of the copolymer can be partially hydrolyzed in poly(acrylic acid) (PAA) leading to PS-PEA-AA water-soluble amphiphilic copolymer having high viscosifying properties. The main purpose of this work was to evaluate the potential of CE for the characterization of the latexes at the different stages of the synthesis (PS core, PS-PEA diblock latex, and hydrolyzed PS-PEA-AA gel). The main analytical issues were to state (i) if there was free PS or PEA homopolymer latexes in the PS-PEA latex sample and (ii) if there was free PS, PEA, PS-PEA latexes, or free PAA chains in the PS-PEA-AA gel. Within this scope, this work describes the optimization of the selectivity of the separation between the different species (PS, PEA particles in the not hydrolyzed diblock latex and PS, PEA, PS-PEA particles as well as the polymer PAA chains in the PS-PEA-AA diblock gel sample obtained by latter latex hydrolysis). For that purpose, several experimental parameters were investigated such as pH and ionic strength of the background electrolyte (BGE) or the concentration of neutral surfactant added in the BGE. A challenging issue was to overcome the high viscosity of the PS-PEA-AA gel. This was resolved by the addition of 10 mM neutral surfactant in the gel sample and in the BGE. Finally, it is demonstrated that, within the detection limits, CE is a suitable analytical tool for controlling and monitoring the syntheses of these latexes and for intrinsically characterizing the distribution in charge density of

  13. Mesosized Crystal-like Structure of Hexagonally Packed Hollow Hoops by Solution Self-Assembly of Diblock Copolymers

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Bartels, Carl; Yu, Yisong; Shen, Hongwei; Eisenberg, Adi

    1997-12-01

    Mesosize crystal-like aggregates with an internal structure of hexagonally packed hollow hoops (HHH) in a polystyrene matrix have been prepared in solution by self-assembly of asymmetric polystyrene-b-poly(acrylic acid) diblock copolymers. Most of the aggregates are cylindrical or in the shape of truncated cones. The external surface of the aggregates and the internal surface of the hollow hoops are lines with short poly(acrylic acid) chains. The hoop morphology is imposed because the end-capping energy of a rod on this size scale is more important than the curvature energy. A strong interdependence between the external shape and the internal structure in these mesosize particles is demonstrated.

  14. Crystalline imide/arylene ether copolymers

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J. (Inventor); Hergenrother, Paul M. (Inventor); Bass, Robert G. (Inventor)

    1995-01-01

    Crystalline imide/arylene ether block copolymers are prepared by reacting anhydride terminated poly(amic acids) with amine terminated poly)arylene ethers) in polar aprotic solvents and chemically or thermally cyclodehydrating the resulting intermediate poly(amic acids). The block copolymers of the invention have one glass transition temperature or two, depending on the particular structure and/or the compatibility of the block units. Most of these crystalline block copolymers for tough, solvent resistant films with high tensile properties. While all of the copolymers produced by the present invention are crystalline, testing reveals that copolymers with longer imide blocks or higher imide content have increased crystallinity.

  15. Environmentally Benign CO2-Based Copolymers: Degradable Polycarbonates Derived from Dihydroxybutyric Acid and Their Platinum-Polymer Conjugates.

    PubMed

    Tsai, Fu-Te; Wang, Yanyan; Darensbourg, Donald J

    2016-04-06

    (S)-3,4-Dihydroxybutyric acid ((S)-3,4-DHBA), an endogenous straight chain fatty acid, is a normal human urinary metabolite and can be obtained as a valuable chiral biomass for synthesizing statin-class drugs. Hence, its epoxide derivatives should serve as promising monomers for producing biocompatible polymers via alternating copolymerization with carbon dioxide. In this report, we demonstrate the production of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) from racemic-tert-butyl 3,4-epoxybutanoate (rac-(t)Bu 3,4-EB) and CO2 using bifunctional cobalt(III) salen catalysts. The copolymer exhibited greater than 99% carbonate linkages, 100% head-to-tail regioselectivity, and a glass-transition temperature (Tg) of 37 °C. By way of comparison, the similarly derived polycarbonate from the sterically less congested monomer, methyl 3,4-epoxybutanoate, displayed 91.8% head-to-tail content and a lower Tg of 18 °C. The tert-butyl protecting group of the pendant carboxylate group was removed using trifluoroacetic acid to afford poly(3,4-dihydroxybutyric acid carbonate). Depolymerization of poly(tert-butyl 3,4-dihydroxybutanoate carbonate) in the presence of strong base results in a stepwise unzipping of the polymer chain to yield the corresponding cyclic carbonate. Furthermore, the full degradation of the acetyl-capped poly(potassium 3,4-dihydroxybutyrate carbonate) resulted in formation of the biomasses, β-hydroxy-γ-butyrolacetone and 3,4-dihydroxybutyrate, in water (pH = 8) at 37 °C. In addition, water-soluble platinum-polymer conjugates were synthesized with platinum loading of 21.3-29.5%, suggesting poly(3,4-dihydroxybutyric acid carbonate) and related derivatives may serve as platinum drug delivery carriers.

  16. The profile of adsorbed plasma and serum proteins on methacrylic acid copolymer beads: Effect on complement activation.

    PubMed

    Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V

    2017-02-01

    Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3adesarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization.

  17. Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion.

    PubMed

    Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2002-05-01

    This study examined the rheological and mucoadhesive properties of a self-crosslinking anionic thiolated polymer in vitro. Mediated by a carbodiimide, L-cysteine was covalently bound to poly(acrylic acid) of 450 kDa molecular mass. The resulting thiolated polymers (conjugates I and II) contained 90.5+/-15.8 and 511.6+/-52 micromol thiol groups per gram polymer, respectively (mean+/-S.D., n=3). The amount of covalently attached cysteine was therefore dependent on the concentration of carbodiimide used for the coupling reaction. Both conjugates (3%, m/v) were capable of forming inter- and/or intramolecular disulfide bonds in 100 mM phosphate buffer pH 6.8. Consequently, the apparent viscosity of conjugates I and II increased 12- and 10-fold, respectively, within 24 h of incubation at 37 degrees C. Further, rheological synergy was observed by mixing equal volumes of polymer (unmodified as well as modified) with a mucin solution. A six-fold increase in viscosity immediately after mixing could be observed for the conjugate II/mucin mixture. This clearly indicates the high interaction potential of self-crosslinking thiomers with the mucus gel layer. Mucoadhesion studies confirmed the rheological results. Tablets based on conjugate II remained attached on freshly excised porcine mucosa for about 25 times longer than the corresponding controls, which is the longest time of mucoadhesion ever found among anionic thiomers. Due to the results of the present study, self-crosslinking thiolated poly(acrylates) of 450 kDa represent very promising excipients for the development of various mucoadhesive drug delivery systems.

  18. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  19. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery.

    PubMed

    Simões, M G; Alves, P; Carvalheiro, Manuela; Simões, P N

    2017-04-01

    The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO

  20. Morphological Evolution During Tensile Deformation in Semi-Crystalline Precise Functional Copolymers via Fitting of In Situ Xray Scattering

    NASA Astrophysics Data System (ADS)

    Trigg, Edward B.; Middleton, L. Robert; Aitken, Brian S.; Azoulay, Jason; Murtagh, Dustin; Wagener, Kenneth B.; Cordaro, Joseph; Winey, Karen I.

    Morphological evolution during tensile deformation of semi-crystalline polymers is often described qualitatively. The layered crystal structures of precise copolymers, in which functional groups are bonded at precise intervals along the polymer backbone, allow for quantitative fitting of oriented X-ray scattering peaks to provide additional information. The crystallites in precise poly(ethylene-co-acrylic acid) align with the acid group layers' normal vector parallel to the tensile direction, while those in precise poly(ethylene-co-imidazolium bromide) align with the layers' normal vector perpendicular to the tensile direction. We present fits of in situ X-ray scattering during tensile deformation of semi-crystalline precise copolymers, to quantify the size, shape, and degree of orientation of the crystallites during the deformation process. Mathematical descriptions of the X-ray scattering in these two cases is explored, and a physical explanation for the difference in alignment direction is proposed.