Science.gov

Sample records for acrylic acid polymer

  1. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  2. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  3. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  4. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  5. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  6. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  7. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  8. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  9. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  10. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  11. Crosslinked carboxymethylchitosan-g-poly(acrylic acid) copolymer as a novel superabsorbent polymer.

    PubMed

    Chen, Yu; Tan, Hui-min

    2006-05-22

    A novel carboxymethylchitosan-g-poly(acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared through graft polymerization of acrylic acid onto the chain of carboxymethylchitosan and subsequent crosslinking. It was demonstrated by FTIR spectroscopy that acrylic acid had been graft polymerized with carboxymethylchitosan. The thermal stability of the polymer was characterized by thermogravimetric analysis. By studying the swelling ratio of the polymer synthesized under different conditions, optimization conditions were found for a polymer with the highest swelling ratio. The rate of water absorption of the polymer was high, and the swelling of the polymer fitted the process of first dynamics. The swelling ratio of the polymer was pH-dependent.

  12. 76 FR 77709 - Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-14

    ... AGENCY 40 CFR Part 180 Butyl acrylate-methacrylic acid-styrene polymer; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of 2-Propenoic acid, 2-methyl-, polymer with butyl 2...-styrene polymer when used as an inert ingredient in a pesticide chemical formulation....

  13. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  14. Salicylic acid-releasing polyurethane acrylate polymers as anti-biofilm urological catheter coatings.

    PubMed

    Nowatzki, Paul J; Koepsel, Richard R; Stoodley, Paul; Min, Ke; Harper, Alan; Murata, Hironobu; Donfack, Joseph; Hortelano, Edwin R; Ehrlich, Garth D; Russell, Alan J

    2012-05-01

    Biofilm-associated infections are a major complication of implanted and indwelling medical devices like urological and venous catheters. They commonly persist even in the presence of an oral or intravenous antibiotic regimen, often resulting in chronic illness. We have developed a new approach to inhibiting biofilm growth on synthetic materials through controlled release of salicylic acid from a polymeric coating. Herein we report the synthesis and testing of a ultraviolet-cured polyurethane acrylate polymer composed, in part, of salicyl acrylate, which hydrolyzes upon exposure to aqueous conditions, releasing salicylic acid while leaving the polymer backbone intact. The salicylic acid release rate was tuned by adjusting the polymer composition. Anti-biofilm performance of the coatings was assessed under several biofilm forming conditions using a novel combination of the MBEC Assay™ biofilm multi-peg growth system and bioluminescence monitoring for live cell quantification. Films of the salicylic acid-releasing polymers were found to inhibit biofilm formation, as shown by bioluminescent and GFP reporter strains of Pseudomonas aeruginosa and Escherichia coli. Urinary catheters coated on their inner lumens with the salicylic acid-releasing polymer significantly reduced biofilm formation by E. coli for up to 5 days under conditions that simulated physiological urine flow.

  15. Accurate determination of residual acrylic acid in superabsorbent polymer of hygiene products by headspace gas chromatography.

    PubMed

    Zhang, Shu-Xin; Chai, Xin-Sheng; Jiang, Ran

    2017-02-17

    This work reports on a method for the determination of residual acrylic acid (AA) in the superabsorbent polymers for hygiene products by headspace analysis. It was based on water extraction for the polymer sample at a room temperature for 50min. Then, the AA in the extractant reacted with bicarbonate solution in a closed headspace sample vial, from which the carbon dioxide generated from the reaction (within 20min at 70°C) was detected by gas chromatography (GC). It was found that there is adsorption partition equilibrium of AA between solid-liquid phases. Therefore, an equation for calculating the total AA content in the original polymers sample was derived based on the above phase equilibrium. The results show that the HS-GC method has good precision (RSD<2.51%) and good accuracy (recoveries from 93 to 105%); the limit of quantification (LOQ) was 373mg/kg. The present method is rapid, accurate, and suitable for determining total residual acrylic acid in a wide variety of applications from processing of superabsorbent polymer to commercial products quality control.

  16. Properties of the acrylic acid polymers obtained by atmospheric pressure plasma polymerization

    NASA Astrophysics Data System (ADS)

    Topala, Ionut; Dumitrascu, Nicoleta; Popa, Gheorghe

    2009-01-01

    Plasma polymers of acrylic acid were obtained using an atmospheric pressure discharge system. The plasma polymerization reactor uses a dielectric barrier discharge, with the polyethylene terephthalate dielectric acting as substrate for deposition. The plasma was characterized by specific electrical measurements, monitoring the applied voltage and the discharge current. Based on the spatially resolved optical emission spectroscopy, we analyzed the distribution of the excited species in the discharge gap, specific plasma temperatures (vibrational and gas temperatures) being calculated with the Boltzmann plot method. The properties of the plasma polymer films were investigated by contact angle measurements, infrared and UV-Vis spectroscopy, scanning electron microscopy. The films produced by plasma polymerization at atmospheric pressure showed a hydrophilic character, in correlation with the strong absorbance of OH groups in the FTIR spectrum. Moreover, the surface of the plasma polymers at micrometric scale is smooth and free of defects without particular features.

  17. Release of triamcinolone acetonide from mucoadhesive polymer composed of chitosan and poly(acrylic acid) in vitro.

    PubMed

    Ahn, Jae-Soon; Choi, Hoo-Kyun; Chun, Myong-Kwan; Ryu, Jei-Man; Jung, Jae-Hee; Kim, Yue-Un; Cho, Chong-Su

    2002-03-01

    Transmucosal drug delivery (TMD) system using mucoadhesive polymer has been recently interested due to the rapid onset of action, high blood level, avoidance of the first-pass effect and the exposure of the drug to the gastrointestinal tract. A novel mucoadhesive polymer complex composed of chitosan and poly(acrylic acid) (PAA) was prepared by template polymerization of acrylic acid in the presence of chitosan for the TMD system. Triamcinolone acetonide (TAA) was loaded into the chitosan/PAA polymer complex film. TAA was evenly dispersed in chitosan, PAA polymer complex film without interaction with polymer complex. Release behavior of TAA from the mucoadhesive polymer film was dependent on time, pH, loading content of drug, and chitosan PAA ratio. The analysis of the drug release from the mucoadhesive film showed that TAA might be released from the chitosan/PAA polymer complex film through non-Fickian diffusion mechanism.

  18. ABS polymer electroless plating through a one-step poly(acrylic acid) covalent grafting.

    PubMed

    Garcia, Alexandre; Berthelot, Thomas; Viel, Pascal; Mesnage, Alice; Jégou, Pascale; Nekelson, Fabien; Roussel, Sébastien; Palacin, Serge

    2010-04-01

    A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.

  19. Photopolymerisation and characterization of maleylatedcellulose-g-poly(acrylic acid) superabsorbent polymer.

    PubMed

    Sawut, Amatjan; Yimit, Mamatjan; Sun, Wanfu; Nurulla, Ismayil

    2014-01-30

    A novel biodegradable superabsorbent polymer has been prepared from maleylated cotton stalk cellulose (MCSC) crosslinker and acrylic acid (AA) by ultraviolet (UV) photopolymerization in aqueous solution at room temperature, and irgacure 651 as a photoinitiator. The resulting superabsorbent was characterized by FT-IR, (1)H NMR, SEM and TGA. The effects of preparation conditions such as degree of substitution (DS), amount of maleylated cotton stalk cellulose, exposed time, photoinitiator amount and monomer concentration on the water absorbency and the monomer conversion in graft were evaluated. The swelling kinetics, salt-resistance, water retention capacity and biodegradability of the MCSC-g-PAA superabsorbent were investigated. It was found that, the obtained superabsorbent have good swelling degree that greatly affected by its composition and preparation conditions. Owing to its considerable good water retention capacity, being economical and environment-friendly, it might be useful for its application in agriculture field.

  20. The graft polymers from different species of lignin and acrylic acid: synthesis and mechanism study.

    PubMed

    Ye, De zhan; Jiang, Li; Ma, Chao; Zhang, Ming-hua; Zhang, Xi

    2014-02-01

    The influence of lignin species on the grafting mechanism of lignosulfonate (from eucalyptus and pine, recorded as HLS and SLS, respectively) with acrylic acid (AA) was investigated. The graft polymers were confirmed by the absorption of carbonyl groups in the FTIR spectra. The decreasing phenolic group's content (Ph-OH) is not only due to its participation as grafting site but also to the negative effect of initiator. In the initial period (0-60 min), HLS and SLS both accelerate the polymerization of AA. Additionally, Ph-OH group's content is proportional to product yield (Y%), monomer conversion (C%) and grafting efficiency (GE%), strongly indicating that it acts as active center. Nevertheless, compared with HLS, Y% and C% in SLS grafting system are lower though it has higher Ph-OH group's content, which is due to the quinonoid structure formed by the self-conjugated of phenoxy radical in Guaiacyl unit. Finally, the lignosulfonate grafting mechanism was proposed.

  1. The synthesis, properties, and applications of hydrophilic polymers and copolymers of hydroxyalkyl esters of acrylic and methacrylic acids

    NASA Astrophysics Data System (ADS)

    Asadov, Z. G.; Aliev, V. S.

    1992-05-01

    The scientific-technical and patent literature on the synthesis of hydroxyalkyl esters of acrylic and methacrylic acids by their catalytic reaction with epoxyalkanes, by the radical copolymerisation and polymerisation of presynthesised monomeric esters, and also by the chemical modification of polymerisation and copolymerisation products is surveyed. A wide variety of physicochemical properties of the polymers and copolymers based on the hydroxyalkyl esters of acrylic and methacrylic acids are described. The principal trends and prospects in the application of the high-molecular-weight products obtained in various branches of the national economy are indicated. The bibliography includes 158 references.

  2. Protein polymer conjugates: improving the stability of hemoglobin with poly(acrylic acid).

    PubMed

    Thilakarathne, Vindya; Briand, Victoria A; Zhou, Yuxiang; Kasi, Rajeswari M; Kumar, Challa V

    2011-06-21

    The synthesis, characterization, and evaluation of a novel polymer-protein conjugate are reported here. The covalent conjugation of high-molecular weight poly(acrylic acid) (PAA) to the lysine amino groups of met-hemoglobin (Hb) resulted in the covalent conjugation of Hb to PAA (Hb-PAA conjugate), as confirmed by dialysis and electrophoresis studies. The retention of native-like structure of Hb in Hb-PAA was established from Soret absorption, circular dichroism studies, and the redox activity of the iron center in Hb-PAA. The peroxidase-like activities of the Hb-PAA conjugate further confirmed the retention of Hb structure and biological activity. Thermal denaturation of the conjugate was investigated by differential scanning calorimetry and steam sterilization studies. The Hb-PAA conjugate indicated an improved denaturation temperature (T(d)) when compared to that of the unmodified Hb. One astonishing observation was that polymer conjugation significantly enhanced the Hb-PAA storage stability at room temperature. After 120 h of storage at room temperature in phosphate-buffered saline (PBS) at pH 7.4, for example, Hb-PAA retained 90% of its initial activity and unmodified Hb retained <60% of its original activity under identical conditions of buffer, pH, and temperature. Our conjugate demonstrates the key role of polymers in enhancing Hb stability via a very simple, efficient, general route. Water-swollen, lightly cross-linked, stable Hb-polymer nanogels of 100-200 nm were produced quickly and economically by this approach for a wide variety of applications.

  3. The influence of polymer topology on pharmacokinetics: differences between cyclic and linear PEGylated poly(acrylic acid) comb polymers.

    PubMed

    Chen, Bo; Jerger, Katherine; Fréchet, Jean M J; Szoka, Francis C

    2009-12-16

    Water-soluble polymers for the delivery of chemotherapeutic drugs passively target solid tumors as a consequence of reduced renal clearance and the enhanced permeation and retention (EPR) effect. Elimination of the polymers in the kidney occurs due to filtration through biological nanopores with a hydrodynamic diameter comparable to the polymer. Therefore we have investigated chemical features that may broadly be grouped as "molecular architecture" such as: molecular weight, chain flexibility, number of chain ends and branching, to learn how they impact polymer elimination. In this report we describe the synthesis of four pairs of similar molecular weight cyclic and linear polyacrylic acid polymers grafted with polyethylene glycol (23, 32, 65, 114 kDa) with low polydispersities using ATRP and "click" chemistry. The polymers were radiolabeled with (125)I and their pharmacokinetics and tissue distribution after intravenous injection were determined in normal and C26 adenocarcinoma tumored BALB/c mice. Cyclic polymers above the renal threshold of 30 kDa had a significantly longer elimination time (between 10 and 33% longer) than did the comparable linear polymer (for the 66 kDa cyclic polymer, t(1/2,beta)=35+/-2 h) and a greater area under the serum concentration versus time curve. This resulted in a greater tumor accumulation of the cyclic polymer than the linear polymer counterpart. Thus water-soluble cyclic comb polymers join a growing list of polymer topologies that show greatly extended circulation times compared to their linear counterparts and provide alternative polymer architecture for use as drug carriers.

  4. Electrochemical characterization of aminated acrylic conducting polymer

    SciTech Connect

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  5. Acrylamide/acrylic acid copolymers for cement fluid loss control

    SciTech Connect

    McKenzie, L.F.; McElfresh, P.M.

    1982-01-01

    Acrylamide/acrylic acid copolymers are considered as effective fluid loss control additives in a wide range of oil well cements. Unlike HEC based fluid loss aditives, these copolymers can be used with calcium chloride accelerator without significantly influencing fluid loss control. Another advantage of the copolymers is that the amount of fluid loss for a given concentration of polymer remains relatively constant over a wide range of temperatures. The use of acrylamide/acrylic acid copolymers has generally been restricted to wells below 60 degree C BHCT. Above that temperature chemical changes in the copolymer often lead to retardation of the cement. This paper presents data related to the use of acrylamide/acrylic acid copolymers as fluid loss control agents in oil well cementing. A comparison of these polymers with HEC based fluid loss control additives is made. In addition, data related to the cause of acrylamide/acrylic acid copolymer retarding effects is presented. 4 refs.

  6. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  7. Poly (acrylic acid sodium) grafted carboxymethyl cellulose as a high performance polymer binder for silicon anode in lithium ion batteries

    PubMed Central

    Wei, Liangming; Chen, Changxin; Hou, Zhongyu; Wei, Hao

    2016-01-01

    The design of novel binder systems is required for the high capacity silicon (Si) anodes which usually undergo huge volume change during the charge/discharge cycling. Here, we introduce a poly (acrylic acid sodium)-grafted-carboxymethyl cellulose (NaPAA-g-CMC) copolymer as an excellent binder for Si anode in lithium ion batteries (LIBs). The NaPAA-g-CMC copolymer was prepared via a free radical graft polymerization method by using CMC and acrylic acid as precursors. Unlike the linear, one-dimensional binders, the NaPAA-g-CMC copolymer binder is expected to present multi-point interaction with Si surface, resulting in enhanced binding ability with Si particles as well as with the copper (Cu) current collectors, and building a stable solid electrolyte interface (SEI) layer on the Si surface. The NaPAA-g-CMC based Si anode shows much better cycle stability and higher coulombic efficiency than those made with the well-known linear polymeric binders such as CMC and NaPPA. PMID:26786315

  8. Stability effect of cholesterol-poly(acrylic acid) in a stimuli-responsive polymer-liposome complex obtained from soybean lecithin for controlled drug delivery.

    PubMed

    Simões, M G; Alves, P; Carvalheiro, Manuela; Simões, P N

    2017-04-01

    The development of polymer-liposome complexes (PLCs), in particular for biomedical applications, has grown significantly in the last decades. The importance of these studies comes from the emerging need in finding intelligent controlled release systems, more predictable, effective and selective, for applications in several areas, such as treatment and/or diagnosis of cancer, neurological, dermatological, ophthalmic and orthopedic diseases, gene therapy, cosmetic treatments, and food engineering. This work reports the development and characterization of a pH sensitive system for controlled release based on PLCs. The selected hydrophilic polymer was poly(acrylic acid) (PAA) synthesized by atom transfer radical polymerization (ATRP) with a cholesterol (CHO) end-group to improve the anchoring of the polymer into the lipid bilayer. The polymer was incorporated into liposomes formulated from soybean lecithin and stearylamine, with different stearylamine/phospholipid and polymer/phospholipid ratios (5, 10 and 20%). The developed PLCs were characterized in terms of particle size, polydispersity, zeta potential, release profiles, and encapsulation efficiency. Cell viability studies were performed to assess the cytotoxic potential of PLCs. The results showed that the liposomal formulation with 5% of stearylamine and 10% of polymer positively contribute to the stabilization of the complexes. Afterwards, the carboxylic acid groups of the polymer present at the surface of the liposomes were crosslinked and the same parameters analyzed. The crosslinked complexes showed to be more stable at physiologic conditions. In addition, the release profiles at different pHs (2-12) revealed that the obtained complexes released all their content at acidic conditions. In summary, the main accomplishments of this work are: (i) innovative synthesis of cholesterol-poly(acrylic acid) (CHO-PAA) by ATRP; (ii) stabilization of the liposomal formulation by incorporation of stearylamine and CHO

  9. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  10. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  11. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  12. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  13. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  14. Thiolated polymers: self-crosslinking properties of thiolated 450 kDa poly(acrylic acid) and their influence on mucoadhesion.

    PubMed

    Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2002-05-01

    This study examined the rheological and mucoadhesive properties of a self-crosslinking anionic thiolated polymer in vitro. Mediated by a carbodiimide, L-cysteine was covalently bound to poly(acrylic acid) of 450 kDa molecular mass. The resulting thiolated polymers (conjugates I and II) contained 90.5+/-15.8 and 511.6+/-52 micromol thiol groups per gram polymer, respectively (mean+/-S.D., n=3). The amount of covalently attached cysteine was therefore dependent on the concentration of carbodiimide used for the coupling reaction. Both conjugates (3%, m/v) were capable of forming inter- and/or intramolecular disulfide bonds in 100 mM phosphate buffer pH 6.8. Consequently, the apparent viscosity of conjugates I and II increased 12- and 10-fold, respectively, within 24 h of incubation at 37 degrees C. Further, rheological synergy was observed by mixing equal volumes of polymer (unmodified as well as modified) with a mucin solution. A six-fold increase in viscosity immediately after mixing could be observed for the conjugate II/mucin mixture. This clearly indicates the high interaction potential of self-crosslinking thiomers with the mucus gel layer. Mucoadhesion studies confirmed the rheological results. Tablets based on conjugate II remained attached on freshly excised porcine mucosa for about 25 times longer than the corresponding controls, which is the longest time of mucoadhesion ever found among anionic thiomers. Due to the results of the present study, self-crosslinking thiolated poly(acrylates) of 450 kDa represent very promising excipients for the development of various mucoadhesive drug delivery systems.

  15. In situ preparation of powder and the sorption behaviors of molecularly imprinted polymers through the complexation between polymer ion of methyl methacrylate/acrylic acid and Ca++ ion.

    PubMed

    Chough, Sung Hyo; Park, Kwang Ho; Cho, Seung Jin; Park, Hye Ryoung

    2014-09-02

    Molecularly imprinted polymer (MIP) powders were prepared using a simple complexation strategy between the polymer carboxylate groups and template molecule followed by metal cation cross-linking of residual polymer carboxylates. Polymer powders were formed in situ by templating carboxylic acid containing polymers with 4-ethylaniline (4-EA), followed by addition of an aqueous CaCl2 solution. The solution remained homogeneous. The powders were prepared by precipitation by slowly adding a non-solvent, H2O, to the mixture. The resulting particles were very porous with uptake capacity that approached the theoretical value. We suggest two types of complexes are formed between the template, 4-EA, and polymer. The isolated entry type forms well defined cavities for the template with high specific selectivity, while the adjacent entry type forms wider binding sites without specific sorption for isomeric molecules. To evaluate conditions for forming materials with high affinity and selectivity, three MIPs were prepared containing 0.5, 1.0, and 1.5 equivalents of template to the base polymer. The MIP containing 0.5 eq showed higher specific selectivity to 4-EA, but the MIP containing 1.5 eq had noticeably lower selectivity. The lower selectivity is attributed to poorly formed binding sites with little selective sorption to any isomer when the higher ratio of template was used. However at the lower ratio of template the isolated entry is preferably formed to produce well defined binding cavities with higher selectivity to template.

  16. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  17. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  18. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  19. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  20. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  1. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  2. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  3. Controlled evaporative self-assembly of poly(acrylic acid) in a confined geometry for fabricating patterned polymer brushes.

    PubMed

    Men, Yonghong; Xiao, Peng; Chen, Jing; Fu, Jun; Huang, Youju; Zhang, Jiawei; Xie, Zhengchao; Wang, Wenqin; Chen, Tao

    2014-04-29

    A simple yet robust approach was exploited to fabricate large-scaled patterned polymer brushes by combining controlled evaporative self-assembly (CESA) in a confined geometry and self-initiated photografting and photopolymerization (SIPGP). Our method was carried out without any sophisticated instruments, free of lithography, overcoming current difficulties in fabricating polymer patterns by using complex instruments.

  4. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  5. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  7. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  9. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  10. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  11. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  12. Characteristics and mechanisms of acrylate polymer damage to maize seedlings.

    PubMed

    Chen, Xian; Mao, Xiaoyun; Lu, Qin; Liao, Zongwen; He, Zhenli

    2016-07-01

    Superabsorbent acrylate polymers (SAPs) have been widely used to maintain soil moisture in agricultural management, but they may cause damage to plants, and the mechanisms are not well understood. In this study, seed germination, soil pot culture, hydroponic experiments, and SAPs degradation were conducted to investigate damage characteristics and mechanisms associated with SAPs application. The Results showed that SAPs inhibited maize growth and altered root morphology (irregular and loose arrangement of cells and breakage of cortex parenchyma), and the inhibitory effects were enhanced at higher SAPs rates. After 1h SAP hydrogels treatment, root malondialdehyde (MDA) content was significantly increased, while superoxide dismutase (SOD) and catalase (CAT) content were significantly decreased. Hydroponics experiment indicated that root and shoot growth was inhibited at 2.5mgL(-1) acrylic acid (AA), and the inhibition was enhanced with increasing AA rates. This effect was exacerbated by the presence of Na(+) at a high concentration in the hydrogels. Release and degradation of AA were enhanced at higher soil moisture levels. A complete degradation of AA occurred between 15 and 20 days after incubation (DAI), but it took longer for Na(+) concentration to decrease to a safe level. These results indicate that high concentration of both AA and Na(+) present in the SAPs inhibits plant growth. The finding of this study may provide a guideline for appropriate application of SAPs in agriculture.

  13. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 25 2013-07-01 2013-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  14. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  15. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 24 2011-07-01 2011-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  16. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  17. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 24 2014-07-01 2014-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  18. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  19. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  20. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  1. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  2. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  3. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  4. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  5. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  6. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  7. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  10. 40 CFR 180.1162 - Acrylate polymers and copolymers; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 25 2012-07-01 2012-07-01 false Acrylate polymers and copolymers... RESIDUES IN FOOD Exemptions From Tolerances § 180.1162 Acrylate polymers and copolymers; exemption from the requirement of a tolerance. (a) Acrylate polymers and copolymers are exempt from the requirement of...

  11. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  12. Lower critical solution temperature behavior of alpha-substituted poly(acrylic acids)s, cyclopolymerization of N-vinylformamido-methylacrylates, and use of the World-Wide Web in polymer science education

    NASA Astrophysics Data System (ADS)

    Michalovic, Mark Stephen

    A series of alpha-substituted poly(acrylic acid)s was synthesized and characterized. Their aqueous solution properties were investigated with respect to lower critical solution temperature (LCST) behavior. Poly(alpha-methoxymethylacrylic acid) was found to have a lower critical solution temperature (LCST) of 46°C, poly(alpha-methoxyethoxymethylacrylic acid) showed an LCST of 26.5°C and poly(alpha-methoxyethoxyethoxymethylacrylic acid) showed an LCST of 66°C. The cloud points of the solutions of these polymers were found to be sensitive to pH, and to concentrations of additives such as urea, salts, and surfactants. Because of low molecular weight due to chain transfer, high molecular weight analogs of the ether-linked polymers were synthesized in which ester linkages joined the oligo-oxyethylene segment to the acrylate moiety. Poly(alpha-methoxyethoxyacetoxymethylacrylic acid) was the only one of this series to give an LCST with a value of 52.5°C. Copolymers of t-butyl alpha-methoxymethylacrylate (tBMMA) with alpha-(1H,1H- perfluorooctyloxymethyl)acrylic acid (PFOMA) were synthesized, deprotected and their lower critical solution temperatures (LCSTs) evaluated. At PFOMA feed ratios of 0.25 mol % or less, no observable change in the LCST was observed, while at PFOMA feed ratios of above 0.25 mol % to 1.125 mol %, a large linear decrease in the LCST was observed with increasing fluorocarbon content. t-Butyl alpha-(N-vinylformamidomethyl)acrylate (tBVFA) and ethyl alpha-(N-vinylformamidomethyl)acrylate (EVFA) were synthesized from t-butyl alpha-bromomethylacrylate and ethyl alpha-chloromethylacrylate, respectively. tBVFA was found to cyclopolymerize at 120°C in DMF, DMSO, and 1,2-dichlorobenzene at solvent:monomer ratios of 10:1 vol:wt. Molecular weights for poly(tBVFA) ranged from 10,000 to 13,000 as estimated by size-exclusion chromatography. At lower solvent monomer ratio (1:1), and at lower temperature (71°C), crosslinking occurred. EVFA was found to

  13. Structural design of new alicyclic acrylate polymers with androstane moiety for 193-nm resist

    NASA Astrophysics Data System (ADS)

    Aoai, Toshiaki; Sato, Kenichiro; Kodama, Kunihiko; Kawabe, Yasumasa; Nakao, Hajime; Yagihara, Morio

    1999-06-01

    Synthesis of new alicyclic (meth)acrylate polymers containing androstane moieties, especially cholic acid derivatives, and their characteristics were investigated for 193nm single layer resists. Among the derivatives, a work of adhesion, Ohnishi and ring parameters were used as measures for the adhesion and the dry-etching resistance in this study. In the synthesis of the polymers, the use of 3- (beta) -methacryloyoxy-deoxycholic acid, which is the inverse configuration against the original 3-(alpha) -structure, was effective as a monomer, because the steric hindrance at 3- (alpha) -position degraded its polymerization ability. The polymers partially protected by acid labile groups showed a satisfactory adhesion, which was probably due to the hydrophilic hydroxyl group at the 12-position and the carboxyl group linked at the 17-position, and a good dry- etching resistance. On the lithographic imaging with these polymers, the reduction of the side reaction on the acid decomposition and also the control of the flexibility on the polymers largely affected their performance. THe adjustment of the Tg values of the polymers by the co-polymerization and the change of the polymer backbone from the methacrylate to acrylate structure performed well on imaging under 193nm exposure.

  14. Emulsion polymerization of polystyrene-co-acrylic acid with Cu2O incorporation

    NASA Astrophysics Data System (ADS)

    Fahmiati, Sri; Harmami, Sri Budi; Meliana, Yenny; Haryono, Agus

    2017-01-01

    In this research, poly(styrene-co-acrylic acid-Cu) was prepared via emulsion polymerization.Cu contents were varied as 10%, 15% and 20% and mol ratio of styrene to acrylic acid as 1:1 and 2:1. Structure and surface of poly(styrene-co-acrylic acid-Cu) were characterized by FTIR (Fourier Transformed Infra Red), NMR (Nuclear Magnetic Resonance), and SEM/EDX (Scanning Electron Microcope/ Energy Dispersive X-Ray) spectroscopy. The NMR spectra showed that the polymer was formed, however FTIR spectra showed that there were still unreacted monomers. SEM-EDX confirmed that copper (Cu) was dispersed uniformly on poly(styrene-co-acrylic acid-Cu) matrix.

  15. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  16. Conducting polymer films fabricated by oxidative graft copolymerization of aniline on poly(acrylic acid) grafted poly(ethylene terephthalate) surfaces.

    PubMed

    Wang, Jiku; Liu, Xuyan; Choi, Ho-Suk; Kim, Jong-Hoon

    2008-11-27

    A conductive polyaniline/poly(ethylene terephthalate) (PANI/PET) composite film was fabricated via the oxidative graft copolymerization of aniline (ANI) onto the plasma-induced poly(acrylic acid) (PAAc) grafted PET surface. The attenuated total reflectance Fourier transform infrared spectroscopy spectra (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) results confirmed that PANI was successfully grafted onto the surface of the PAAc-g-PET films. The effects of the experimental conditions on the percentage of PANI grafted onto the PAAc-g-PET films were extensively investigated. A very high grafting percentage of ANI can be obtained through the acid-base reaction between the aniline monomer and PAAc on the PAAc-g-PET surface at high temperature. As a result, the grafting percentage of PANI can be increased to as high as 12.18 wt %, which causes the surface resistance of the PANI-g-PAAc-g-PET film to be reduced to about 1000 Omega/sq. We predicted that this is because of the high flexibility of the PAAc molecular chains and high solubility of aniline, both of which facilitate the binding of aniline to PAAc during this high temperature acid-base reaction. It was observed by atomic force microscopy (AFM) that the PANI-modified PET surface exhibits higher size irregularity and surface roughness, which further indicated that a much greater number of aniline molecules can be reactively bonded to and distributed along the grafted AAc chains and that the PANI-g-PAAc-g-PET surface resulting from the sequential oxidative graft copolymerization can possess higher electrical conductivity.

  17. Radiation modification of water absorption of cassava starch by acrylic acid/acrylamide

    NASA Astrophysics Data System (ADS)

    Kiatkamjornwong, Suda; Chomsaksakul, Wararuk; Sonsuk, Manit

    2000-10-01

    Graft copolymerizations of acrylamide and/or acrylic acid onto cassava starch by a simultaneous irradiation technique using gamma-rays as the initiator were studied with regard to various parameters of importance: the monomer-to-cassava starch ratio, total dose (kGy), dose rate (kGy h -1), acrylamide-to-acrylic acid ratio, and the addition of nitric acid and maleic acid as the additives. Grafting parameters were determined in relation to the water absorption of the saponified graft copolymer. The water absorption of the saponified graft copolymer in salt and buffer solutions of different ionic strengths was also measured, from which the superabsorbent properties are found to be pH sensitive. The starch graft copolymers of acrylamide and acrylic acid give higher water absorption than the starch graft copolymers of either acrylamide or acrylic acid alone. The porosity of the saponified starch graft copolymers prepared by the acrylamide/acrylic acid ratios of 70:30 and 50:50 was much higher than the porosity of copolymers in terms of fine networks. Ionic strength and multi-oxidation states of the saline and buffer solutions markedly decreased the water absorption of the saponified cassava starch grafted superabsorbent polymers.

  18. Thermal preparation of chitosan-acrylic acid superabsorbent: optimization, characteristic and water absorbency.

    PubMed

    Ge, Huacai; Wang, Senkang

    2014-11-26

    Chitosan-acrylic acid superabsorbent polymer was successfully prepared by the thermal reaction without using initiator and crosslinker in air. The effects of some reaction variables on the water absorbency of this polymer were investigated by orthogonal tests, and the optimal conditions were described. The influences of temperature, time, ratio of the reactants and neutralization degree of acrylic acid on the reaction were further studied. These polymers were also prepared in nitrogen atmosphere and by using a radical initiator and compared against thermal reaction obtained polymers. The structures of the polymers were characterized by FT-IR, TGA, XRD, (13)C NMR and elemental analyses. The results showed that the thermal reaction product of acrylic acid with chitosan might form N-carboxyethyl grafted and amide-linked polymer and this product could absorb water 644 times its own dry weight. The possible mechanism for the thermal reaction was further suggested. The purpose of this research was to explore the friendly synthesized method of the superabsorbent.

  19. Structure and Proton Conductivity in Mixtures of Poly(acrylic acid) and Imidazole

    NASA Astrophysics Data System (ADS)

    Yang, Han-Chang; Griffin, Philip J.; Winey, Karen I.; University of Pennsylvania Team

    2015-03-01

    Proton conductivity in polymer electrolyte membranes (PEMs) typically involves water, which requires that during operation the humidity of the PEM be carefully controlled. In contrast, anhydrous protic polymer membranes promote proton transport by incorporating heterocyclic molecules, such as imidazole and its derivatives, into acid-containing polymers. In this work, we explore the interplay between nanoscale-structure and proton conduction of poly(acrylic acid) (PAA) blended at varying compositions with 2-ethyl-4-methylimidazole (EMI). We present the glass transition temperature from differential scanning calorimetry, morphology characterization from X-ray scattering, and proton conductivity from electrical impedance spectroscopy.

  20. Continuous process of preparation of n-butyl(meth)acrylate by esterification of (meth)acrylic acid by butanol on thermostable sulfo-cation exchanger

    SciTech Connect

    Zheleznaya, L.L.; Karakhanov, R.A.; Lunin, A.F.; Magadov, R.S.; Meshcheryakov, S.V.; Mkrtychan, V.R.; Fomin, V.A.

    1987-11-10

    The authors propose an effective thermostable sulfo-cation exchanger based on polymers with a system of conjugated bonds, sulfopolyphenylene ketone (SPP) differing from the known cation exchangers by the high thermostability (up to 250/sup 0/C), and also having the effect of the stabilization of the double bond in unsaturated monomers. The combination of inhibiting and cation exchange properties makes it also possible to use these sulfo-cation exchangers in the processes of esterification of (meth)acrylic acids by alcohols without addition of special inhibitors. The SPP catalyst was tested in esterification processes of acrylic an methacrylic acid by butanol at a pilot plant.

  1. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic.../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers...

  2. ALUMINUM-CONTAINING POLYMERS

    DTIC Science & Technology

    ALUMINUM COMPOUNDS, *ORGANOMETALLIC COMPOUNDS, *POLYMERIZATION, *POLYMERS, ACRYLIC RESINS, ALKYL RADICALS, CARBOXYLIC ACIDS, COPOLYMERIZATION, LIGHT TRANSMISSION, STABILITY, STYRENES, TRANSPARENT PANELS.

  3. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  4. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... methacrylate polymers. 177.2000 Section 177.2000 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF...: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.2000 Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl...

  7. Antimicrobial activity of poly(acrylic acid) block copolymers.

    PubMed

    Gratzl, Günther; Paulik, Christian; Hild, Sabine; Guggenbichler, Josef P; Lackner, Maximilian

    2014-05-01

    The increasing number of antibiotic-resistant bacterial strains has developed into a major health problem. In particular, biofilms are the main reason for hospital-acquired infections and diseases. Once formed, biofilms are difficult to remove as they have specific defense mechanisms against antimicrobial agents. Antimicrobial surfaces must therefore kill or repel bacteria before they can settle to form a biofilm. In this study, we describe that poly(acrylic acid) (PAA) containing diblock copolymers can kill bacteria and prevent from biofilm formation. The PAA diblock copolymers with poly(styrene) and poly(methyl methacrylate) were synthesized via anionic polymerization of tert-butyl acrylate with styrene or methyl methacrylate and subsequent acid-catalyzed hydrolysis of the tert-butyl ester. The copolymers were characterized via nuclear magnetic resonance spectroscopy (NMR), size-exclusion chromatography (SEC), Fourier transform infrared spectroscopy (FTIR), elemental analysis, and acid-base titrations. Copolymer films with a variety of acrylic acid contents were produced by solvent casting, characterized by atomic force microscopy (AFM) and tested for their antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The antimicrobial activity of the acidic diblock copolymers increased with increasing acrylic acid content, independent of the copolymer-partner, the chain length and the nanostructure.

  8. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    SciTech Connect

    Beckel, E. R.; Berchtold, K. A.; Nie, J.; Lu, H.; Stansbury, J. W.; Bowman, C. N.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondary functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.

  9. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  10. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  11. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  12. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  13. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  14. Photoinduced Graft-Polymerization of Acrylic Acid on Polyethylene and Polypropylene Surfaces: Comparative Study Using IR-ATR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Gorbachev, A. A.; Tretinnikov, O. N.; Shkrabatovskaya, L. V.; Prikhodchenko, L. K.

    2014-11-01

    Photoinduced graft-polymerization of acrylic acid on the surface of polyethylene and polypropylene films containing a photoinitiator pre-adsorbed from a thin layer of non-de-aerated aqueous monomer solution was investigated. Data about the monomer conversion and grafting depth as functions of the UV irradiation time and polymer nature were obtained using IR-ATR spectroscopy.

  15. Properties of amylose-oleic acid inclusion complexes from corn starch grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn starch granules have been previously investigated as fillers in polymers. In this study, much smaller particles in the form of spherulites produced by steam jet-cooking high-amylose corn starch and oleic acid to form amylose inclusion complexes were graft polymerized with methyl acrylate, both ...

  16. Interactions of sodium montmorillonite with poly(acrylic acid).

    PubMed

    Tran, Nguyen H; Dennis, Gary R; Milev, Adriyan S; Kannangara, G S Kamali; Wilson, Michael A; Lamb, Robert N

    2005-10-15

    The chemical-structural modifications of the natural clay sodium montmorillonite during interaction with poly(acrylic acid) were studied mainly by X-ray photoemission spectroscopy. Samples of modified montmorillonite were prepared from the reaction of sodium montmorillonite ( approximately 0.5 g) and an aqueous solution of poly(acrylic acid) (pH approximately 1.8, 50 g) at varying temperatures. X-ray diffraction indicated that the montmorillonite interlayer space ( approximately 13 A), formed by regular stacking of the silicate layers (dimension approximately 1x1000 nm), expanded to approximately 16 A as the reaction was carried out at room temperature and at 30 degrees C. At 60 degrees C, the interlayer space further expanded to approximately 20 A. The results of X-ray photoemission spectroscopy indicated that poly(acrylic acid) molecules exchange sodium ions on the surface of the silicate layers. These combined results allowed development of a reaction model that explains the dependency of the interlayer expansion with temperature. Information concerning the surface chemical reactions and systematic increases in the interlayer distances is particularly useful if montmorillonite and poly(acrylic acid) are to be used for formation of nanocomposite materials.

  17. Acrylic acid and electric power cogeneration in an SOFC reactor.

    PubMed

    Ji, Baofeng; Wang, Jibo; Chu, Wenling; Yang, Weishen; Lin, Liwu

    2009-04-21

    A highly efficient catalyst, MoV(0.3)Te(0.17)Nb(0.12)O, used for acrylic acid (AA) production from propane, was used as an anodic catalyst in an SOFC reactor, from which AA and electric power were cogenerated at 400-450 degrees C.

  18. Synthesis and Characterization of Waterborne Fluoropolymers Prepared by the One-Step Semi-Continuous Emulsion Polymerization of Chlorotrifluoroethylene, Vinyl Acetate, Butyl Acrylate, Veova 10 and Acrylic Acid.

    PubMed

    Liu, Hongzhu; Bian, Jiming; Wang, Zhonggang; Hou, Chuan-Jin

    2017-01-22

    Waterborne fluoropolymer emulsions were synthesized using the one-step semi-continuous seed emulsion polymerization of chlorotrifluoroethylene (CTFE), vinyl acetate (VAc), n-butyl acrylate (BA), Veova 10, and acrylic acid (AA). The main physical parameters of the polymer emulsions were tested and analyzed. Characteristics of the polymer films such as thermal stability, glass transition temperature, film-forming properties, and IR spectrum were studied. Meanwhile, the weatherability of fluoride coatings formulated by the waterborne fluoropolymer and other coatings were evaluated by the quick ultraviolet (QUV) accelerated weathering test, and the results showed that the fluoropolymer with more than 12% fluoride content possessed outstanding weather resistance. Moreover, scale-up and industrial-scale experiments of waterborne fluoropolymer emulsions were also performed and investigated.

  19. A density functional study on dielectric properties of acrylic acid grafted polypropylene.

    PubMed

    Ruuska, Henna; Arola, Eero; Kortelainen, Tommi; Rantala, Tapio T; Kannus, Kari; Valkealahti, Seppo

    2011-04-07

    Influence of acrylic acid grafting of isotactic polypropylene on the dielectric properties of the polymer is investigated using density functional theory (DFT) calculations, both in the molecular modeling and three-dimensional (3D) bulk periodic system frameworks. In our molecular modeling calculations, polarizability volume, and polarizability volume per mass which reflects the permittivity of the polymer, as well as the HOMO-LUMO gap, one of the important measures indicating the electrical breakdown voltage strength, were examined for oligomers with various chain lengths and carboxyl mixture ratios. When a polypropylene oligomer is grafted with carboxyl groups (cf. acrylic acid), our calculations show that the increase of the polarizability volume α' of the oligomer is proportional to the increase of its mass m, while the ratio α'/m decreases from the value of a pure polymer when increasing the mixture ratio. The decreasing ratio of α'/m under carboxyl grafting indicates that the material permittivity might also decrease if the mass density of the material remains constant. Furthermore, our calculations show that the HOMO-LUMO gap energy decreases by only about 15% in grafting, but this decrease seems to be independent on the mixture ratio of carboxyl. This indicates that by doping polymers with additives better dielectric properties can be tailored. Finally, using the first-principles molecular DFT results for polarizability volume per mass in connection with the classical Clausius-Mossotti relation, we have estimated static permittivity for acrylic acid grafted polypropylene, assuming the structural density keeping constant under grafting. The computed permittivity values are in a qualitative agreement with the recent experiments, showing increasing tendency of the permittivity as a function of the grafting composition. In order to validate our molecular DFT based approach, we have also carried out extensive three-dimensional bulk periodic first

  20. Molecularly imprinted films of acrylonitrile/methyl methacrylate/acrylic acid terpolymers: influence of methyl methacrylate in the binding performance of L-ephedrine imprinted films.

    PubMed

    Brisbane, Carrie; McCluskey, Adam; Bowyer, Michael; Holdsworth, Clovia I

    2013-05-07

    Molecularly imprinted polymeric films (MIPFs) highly selective to 1R,2S(-)ephedrine (L-ephedrine, EPD) were produced by phase inversion post-polymerization imprinting on poly(acrylonitrile-co-methyl methacrylate-co-acrylic acid) (PAMA) terpolymers. The inclusion of methyl methacrylate (MMA) to the polymer formulation resulted in enhanced EPD selectivity which appears to be dictated by polymer composition to achieve the necessary balance between polymer rigidity and porosity. Substitution of MMA with methyl acrylate, ethyl acrylate and n-butyl acrylate resulted in a loss of EPD selectivity and EPD entrapment within the polymer matrix not observed in PAMA MIPFs. MMA, by virtue of its methyl group, is able to provide the scaffolding and rigidity necessary for stability and preservation of imprinted cavities within the PAMA MIPF leading to high EPD selectivity.

  1. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  2. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  3. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  4. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  5. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  6. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers.

  7. Polymerization of acrylic acid using atmospheric pressure DBD plasma jet

    NASA Astrophysics Data System (ADS)

    Bashir, M.; Bashir, S.

    2016-08-01

    In this paper polymerization of acrylic acid was performed using non thermal atmospheric pressure plasma jet technology. The goal of this study is to deposit organic functional coatings for biomedical applications using a low cost and rapid growth rate plasma jet technique. The monomer solution of acrylic acid was vaporized and then fed into the argon plasma for coating. The discharge was powered using a laboratory made power supply operating with sinusoidal voltage signals at a frequency of 10 kHz. The optical emission spectra were collected in order to get insight into the plasma chemistry during deposition process. The coatings were characterized using Fourier transform infrared spectroscopy, atomic force microscopy and growth rates analysis. A high retention of carboxylic functional groups of the monomer was observed at the surface deposited using this low power technique.

  8. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.5 Acrylate-acrylamide resins... and acrylic acid, with the greater part of the polymer being composed of acrylamide units. (2) Sodium... sodium silicate-sodium hydroxide aqueous solution, with the greater part of the polymer being composed...

  9. Extruded films of blended chitosan, low density polyethylene and ethylene acrylic acid.

    PubMed

    Martínez-Camacho, A P; Cortez-Rocha, M O; Graciano-Verdugo, A Z; Rodríguez-Félix, F; Castillo-Ortega, M M; Burgos-Hernández, A; Ezquerra-Brauer, J M; Plascencia-Jatomea, M

    2013-01-16

    The obtaining of chitosan extruded films was possible by using low density polyethylene (LDPE) as a matrix polymer and ethylene-acrylic acid copolymer as an adhesive, in order to ensure adhesion in the interphase of the immiscible polymers. The obtained blend films were resistant; however, a reduction in the mechanical resistance was observed as chitosan concentration increased. The thermal stability of the films showed a certain grade of interaction between polymers as seen in FTIR spectra. The antifungal activity of the extruded films was assessed against Aspergillus niger and high inhibition percentages were observed, which may be mainly attributed to barrier properties of the extruded films and the limited oxygen availability, resulting in the inability of the fungi to grow. A low adherence of fungal spores to the material surface was observed, mainly in areas with chitosan clumps, which can serve as starting points for material degradation.

  10. Adsorption of poly acrylic acid onto the surface of calcite: an experimental and simulation study.

    PubMed

    Sparks, David J; Romero-González, Maria E; El-Taboni, Elfateh; Freeman, Colin L; Hall, Shaun A; Kakonyi, Gabriella; Swanson, Linda; Banwart, Steven A; Harding, John H

    2015-11-07

    Macromolecular binding to minerals is of great importance in the formation of biofilms, and carboxylate functional groups have been found to play a pivotal role in the functioning of these macromolecules. Here we present both fluorescence time-resolved anisotropy measurements and simulation data on the conformational behaviour and binding of a poly acrylic acid polymer. In solution the polymer exhibits a pH dependent behaviour, with a coiled conformation at a low pH and extended conformation at higher pH values. The polymer is readily adsorbed on the surface of calcite, preferring to bind in an extended conformation, with the strength of the adsorption dependent on the pH and presence of counter ions. We discuss the reasons why the calculated adsorption free energy differs from that obtained from a Langmuir isotherm analysis, showing that they refer to different quantities. The enhanced binding of the extended conformations shows the importance of flexibility in the binding of macromolecules.

  11. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    SciTech Connect

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho; Manuel, James; Ahn, Jou-Hyeon

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  12. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  13. Superabsorbent biphasic system based on poly(lactic acid) and poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Pandini, Stefano; Baldi, Francesco; Bignotti, Fabio

    2016-05-01

    In this research work, biocomposites based on crosslinked particles of poly(acrylic acid), commonly used as superabsorbent polymer (SAP), and poly-L-lactic acid (PLLA) were developed to elucidate the role of the filler (i.e., polymeric crosslinked particles) on the overall physico-mechanical behavior and to obtain superabsorbent thermoplastic products. Samples prepared by melt-blending of components in different ratios showed a biphasic system with a regular distribution of particles, with diameter ranging from 5 to 10 μm, within the PLLA polymeric matrix. The polymeric biphasic system, coded PLASA i.e. superabsorbent poly(lactic acid), showed excellent swelling properties, demonstrating that cross-linked particles retain their superabsorbent ability, as in their free counterparts, even if distributed in a thermoplastic polymeric matrix. The thermal characteristics of the biocomposites evidence enhanced thermal stability in comparison with neat PLLA and also mechanical properties are markedly modified by addition of crosslinked particles which induce regular stiffening effect. Furthermore, in aqueous environments the particles swell and are leached from PLLA matrix generating very high porosity. These new open-pore PLLA foams, produced in absence of organic solvents and chemical foaming agents, with good physico-mechanical properties appear very promising for several applications, for instance in tissue engineering for scaffold production.

  14. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - Part I

    NASA Astrophysics Data System (ADS)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-01

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca2+ ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca2+ ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  15. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  16. Graft copolymerization of acrylic acid onto polyamide fibers

    NASA Astrophysics Data System (ADS)

    Makhlouf, Chahira; Marais, Stéphane; Roudesli, Sadok

    2007-04-01

    The grafting of acrylic acid (AA) monomer (CH 2dbnd CH sbnd COOH) on polyamide 6.6 monofilaments (PA 6.6) using benzoyl peroxide (BPO) as initiator was carried out in order to enhance the hydrophilic nature of fibers. The grafting rate depends on the AA concentration, the BPO concentration, the time and the temperature of reaction. The best conditions for optimum rate of grafting were obtained with a AA concentration of 0.5 M, a BPO concentration of 0.03 M, a reaction temperature of T = 85 °C and a reaction time of 120 mn. The fiber surface has been investigated by many experimental techniques of characterization such as Fourier transform infrared spectroscopy (FTIR), calorimetric analysis (DSC), scanning electron microscopy (SEM), and contact angle measurements. The effect of grafting of acrylic acid onto PA 6.6 fibers on their moisture and mechanical resistances was analyzed from water sorption and elongation at break measurements. The analysis of the experimental data shows clearly the efficiency of the grafting reaction used, leading to a significant increase of the hydrophilic character of the PA 6.6 surface.

  17. Synthesis of polyacrylic-acid-based thermochromic polymers

    NASA Astrophysics Data System (ADS)

    Srivastava, Jyoti; Alam, Sarfaraz; Mathur, G. N.

    2003-10-01

    Smart materials respond to environmental stimuli with particular changes in some variables (for example temperature, pressure and electric field etc), for that reason they are often called responsive materials. In the present work, we have synthesized thermochromic polymer based on poly acrylic acid cobalt chloride (CoCl2) and phosphoric acid (H3PO4) that visually and reversibly changes color in the temperature range (70 - 130°C). These thermochromic materials can be used as visual sensors of temperature. Thermochromic polymers are based on polyacrylic acid and CoCl2 complex.

  18. Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro-Optic Devices

    DTIC Science & Technology

    1992-01-07

    COVERED 4. TITLE AND SUBTITLE Nonlinear Optical Acrylic Polymers and Use Thereof in Optical and Electro - Optic Devices 5a. CONTRACT NUMBER 5b. GRANT...generators, computational devices and the like. 15. SUBJECT TERMS optical devices, electro - optical devices, optical signal processing...THEREOF IN OPTICAL AND ELECTRO - OPTIC DEVICES [75] Inventors: Le*lie H. Sperling, Bethlehem; Clarence J. Murphy, Stroudsburg; Warren A. Rosen

  19. Synthesis of Hydroxy-Terminated Dinitropropyl Acrylate Polymers and Improved Characterization of Hydroxy-Terminated Prepolymers

    DTIC Science & Technology

    1983-03-01

    azelate polyesterdiol from Wittco PA Phthalic anhydride PCP Polycaprolactone diol from Union Carbide PDNPA Polydinitropropyl acrylate (our experimental... anhydride (AA) in the presence of N-methylimidazole (NMIM) (15)reported by Conners , and (b) phthalic anhydride (PA) in the presence of pyridine (PY...three meq sample of dried polymer was weighed into a 100 ml round bottom flask and 50 ml of phthalic anhydride stock solution (0.6 N) in anhydrous

  20. Development and characterization of adjustable refractive index scattering epoxy acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-09-01

    This work presents different polymer diffusing films for optical components. In optical applications it is sometimes important to have a film with an adjusted refractive index, scattering properties and a low surface roughness. These diffusing films can be used to increase the efficiency of optical components like organic light emitting diodes (OLEDs). In this study three different epoxy acrylate mixtures containing Syntholux 291 EA, bisphenol a glycerolate dimethacrylate, Sartomer SR 348 L are characterized and optimized with different additives. The adjustable refractive index of the material is achieved with a chemical doping by 9-vinylcarbazole. Titanium nanoparticles in the mixtures generate light scattering and increase the refractive index additionally. To prevent sedimentation and agglomeration of these nanoparticles, a stabilization agent [2-(2-methoxyethoxy)ethoxy]acetic acid is added to the mixture. Other ingredients are a UV-starter and thermal starter for the radical polymerization. A high power stirrer (ultraturrax) is used to mix and disperse all chemical substances together to a homogenous mixture. The viscosity behavior of the mixtures is an important property for the selection of the production method and gets characterized. After the mixing, the monomer mixture is applied on glass substrates by blade coating or screen printing. To initiate the chain growing (polymerization) the produced films are irradiated for 10 minutes long with UV light (UV LED Spot Hönle, 405 nm). After this step a final post bake from the layers in the oven (150°C, 30 min.) is operated. Light transmission measurements (UV-Vis) of the polymer matrix and roughness measurements complement the characterization.

  1. 75 FR 770 - Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2-methyl-2-[(1-oxo-2-propenyl)amino...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-06

    ... AGENCY 40 CFR Part 180 Acrylic acid-benzyl methacrylate-1-propanesulfonic acid, 2- methyl-2... residues of acrylic acid-benzyl methacrylate-1- propanesulfonic acid, 2-methyl-2- -, monosodium salt... to establish a maximum permissible level for residues of acrylic acid-benzyl...

  2. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel.

    PubMed

    Zhang, Mingyue; Cheng, Zhiqiang; Zhao, Tianqi; Liu, Mengzhu; Hu, Meijuan; Li, Junfeng

    2014-09-03

    A novel composite hydrogel was prepared via UV irradiation copolymerization of acrylic acid and maize bran (MB) in the presence of composite initiator (2,2-dimethoxy-2-phenylacetophenone and ammonium persulfate) and cross-linker (N,N'-methylenebis(acrylamide)). Under the optimized conditions, maize bran-poly(acrylic acid) was obtained (2507 g g(-1) in distilled water and 658 g g(-1) in 0.9 wt % NaCl solution). Effects of granularity, salt concentration, and various cations and anions on water absorbency were investigated. It was found that swelling was extremely sensitive to the ionic strength and cation and anion type. Swelling kinetics and water diffusion mechanism in distilled water were also discussed. Moreover, the product showed excellent water retention capability under the condition of high temperature or high pressure. The salt sensitivity, good water absorbency, and excellent water retention capability of the hydrogels give this intelligentized polymer wide potential applications.

  3. The synthesis and in vitro characterization of the mucoadhesion and swelling of poly(acrylic acid) hydrogels.

    PubMed

    Warren, S J; Kellaway, I W

    1998-05-01

    The purpose of this research was to synthesize insoluble, mucoadhesive hydrogels by crosslinking linear poly(acrylic acid) with sucrose and investigate the relationship between hydrogel crosslink density, swelling, and in vitro mucoadhesion. A condensation reaction was employed to synthesize the hydrogels and crosslink density was varied by altering sucrose concentration and cure time. Equilibrium swelling at pH 7.4 was measured both gravimetrically and geometrically. In vitro mucoadhesion was determined by a tensile technique. Equilibrium swelling studies indicated that the crosslink density was proportional to both sucrose concentration and duration of cure time. In vitro mucoadhesive properties of the hydrogels improved as crosslink density increased. This was attributed to an increase in poly(acrylic acid) chain density/unit area of the equilibrium swollen hydrogel, which promoted interaction of the mucoadhesive and glycoprotein polymer chains.

  4. Nanoparticles containing ketoprofen and acrylic polymers prepared by an aerosol flow reactor method.

    PubMed

    Eerikäinen, Hannele; Peltonen, Leena; Raula, Janne; Hirvonen, Jouni; Kauppinen, Esko I

    2004-09-23

    The purpose of this study was to outline the effects of interactions between a model drug and various acrylic polymers on the physical properties of nanoparticles prepared by an aerosol flow reactor method. The amount of model drug, ketoprofen, in the nanoparticles was varied, and the nanoparticles were analyzed for particle size distribution, particle morphology, thermal properties, IR spectroscopy, and drug release. The nanoparticles produced were spherical, amorphous, and had a matrix-type structure. Ketoprofen crystallization was observed when the amount of drug in Eudragit L nanoparticles was more than 33% (wt/wt). For Eudragit E and Eudragit RS nanoparticles, the drug acted as an effective plasticizer resulting in lowering of the glass transition of the polymer. Two factors affected the preparation of nanoparticles by the aerosol flow reactor method, namely, the solubility of the drug in the polymer matrix and the thermal properties of the resulting drug-polymer matrix.

  5. Poly(acrylic acid) modified calcium phosphate cements: the effect of the composition of the cement powder and of the molecular weight and concentration of the polymeric acid.

    PubMed

    Majekodunmi, A O; Deb, S

    2007-09-01

    Polymer modified calcium phosphate cements made with cement powders of varying tetracalcium phosphate [TTCP] content were prepared using two different molecular weight fractions of poly(acrylic acid) at four different concentrations. The ratio of the precursors (TTCP:DCPA) in the cement powder was found to influence the initial setting which decreased with increasing concentration of TTCP in the powder phase. It was also observed that cements derived from the higher molecular weight containing PAA yielded significantly (P < 0.05) shorter initial setting time (Ti) than cements containing the lower molecular weight, poly(acrylic acid) [GE7 PAA] The effect of the varying the TTCP content in the three different cement types PCPC-A, PCPC-B and PCPC-C showed that the trends of the compressive strength were specific to the concentration and molecular weight of the poly (acrylic acid). A 20% concentration of Glascol-E7 with a cement powder composed of an equimolar ratio of precursors (PCPC-B) resulted in optimal compressive strength within the range investigated. The TTCP content of the cement powder could also be varied to improve the diametral tensile strengths of the cements; the specific effects however, were again governed by both the concentration and molecular weight of the constituent poly (acrylic acid). The influence of TTCP on both the initial setting time and diametral tensile strength was related to the Ca (2+) ion concentration, which determined the rate and amount of cross-linking in the cement.

  6. Grafting of acrylic acid on etched latent tracks induced by swift heavy ions on polypropylene films

    NASA Astrophysics Data System (ADS)

    Mazzei, R.; Fernández, A.; García Bermúdez, G.; Torres, A.; Gutierrez, M. C.; Magni, M.; Celma, G.; Tadey, D.

    2008-06-01

    In order to continue with a systematic study that include different polymers and monomers, the residual active sites produced by heavy ion beams, that remain after the etching process, were used to start the grafting process. To produce tracks, foils of polypropylene (PP) were irradiated with 208Pb of 25.62 MeV/n. Then, these were etched and grafted with acrylic acid (AA) monomers. Experimental curves of grafting yield as a function of grafting time with the etching time as a parameter were measured. Also, the grating yield as a function of the fluence and etching time was obtained. In addition, the permeation of solutions, with different pH, through PP grafted foils was measured.

  7. Grafting of acrylic acid onto polypropylene films irradiated with argon ions

    NASA Astrophysics Data System (ADS)

    Massa, G.; Mazzei, R.; García Bermúdez, G.; Filevich, A.; Smolko, E.

    2005-07-01

    Polypropylene (PP) foils were irradiated with 100 keV energy Argon ions at different fluences ranging from 1012 up to 2 × 1015 cm-2 and then grafted with acrylic acid (AA). The grafting yield was measured by weight difference and the structural changes on the films were analysed using Fourier transform infrared spectroscopy (FTIR). Different parameters that determined the grafting process such us fluence, grafting time and monomer concentration were analysed. The grafting reached an optimum value at 79% in aqueous solution at 30 min grafting time. The grafting yield as a function of the ion fluence plot, presented a maximum value, as previously found in a study of heavy beam on polymers.

  8. Chelating compounds as potential flash rust inhibitors and melamine & aziridine cure of acrylic colloidal unimolecular polymers (CUPs)

    NASA Astrophysics Data System (ADS)

    Mistry, Jigar Kishorkumar

    Waterborne coatings on ferrous substrates usually show flash rusting which decreases the adhesion of the coating and the corrosion products can form a stain. Chelating compounds were investigated as potential flash rust inhibitors. Compounds being evaluated include amine alcohols, diamines and sulfur containing amines. A new corrosion inhibitor 2,5-bis(thioaceticacid)-1,3,4-thiadiazole (H2ADTZ) was synthesized and its performance characteristics were evaluated. It was noted that the observed structure of 1,3,4-thiadiazolidine-2,5-dithione (also known as 2,5-dimercapto-1,3,4-thiadiazole (DMTD or DMcT)) has been previously reported in three different tautomeric forms including -dithiol and -dithione. The relative stability of each form as well as the synthesis and characterization of the structures of mono- and dialkylated forms of 5-mercapto-1,3,4-thiadiazole-2(3H)-thione (MTT) were examined. The methods of X-ray crystallography, NMR spectroscopy and ab-initio electronic structure calculations were combined to understand the reactivity and structure of each compound. Polymers were synthesized with a 1:7 or 1:8 ratio of acrylic acid to acrylate monomers to produce an acid rich resin. The polymers were reduced and solvent stripped to produce Colloidal Unimolecular Polymers (CUPs). These particles are typically 3-9 nanometers in diameter depending upon the molecular weight. They were then formulated into a clear coating with either a melamine (bake) or an aziridine (ambient cure) and then cured. The melamine system was solvent free, a near zero VOC and the aziridine system was very low to near zero VOC. The coatings were evaluated for their MEK resistance, adhesion, hardness, gloss, flexibility, wet adhesion, abrasion and impact resistance properties.

  9. Hydrophobic acrylic hard coating by surface segregation of hyper-branched polymers

    NASA Astrophysics Data System (ADS)

    Haraguchi, Masayuki; Hirai, Tomoyasu; Ozawa, Masaaki; Miyaji, Katsuaki; Tanaka, Keiji

    2013-02-01

    The ability of hyperbranched polymers (HBPs) to preferentially segregate to the surface of its matrix owing to its unique structure makes it a good candidate as a surface modifier. One particular challenge in its application as an efficient surface modifier, however, is its possible elimination from the surface due to the lack of attachments between a HBP (modifier) and its host material (polymer matrix). Here, we present a novel approach to efficiently prevent the removal of HBPs from the surface of its host material by directly reacting a HBP containing fluoroalkyl segments (F-HBP) to a multi-functional acrylate monomer prior to curing. We also have characterized surface structure and wettability of the acrylic hard coating material by X-ray photoelectron spectroscopic and contact angle measurements, respectively. The results show that since F-HBP was segregated at the surface, the surface became hydrophobic and more stable. Thus, we claim that our approach results in the formation of a water-repellent acrylic hard coating material.

  10. pH-Responsive Behavior of Poly(acrylic acid) Brushes of Varying Thickness

    NASA Astrophysics Data System (ADS)

    Yadav, Vivek; Robertson, Megan; Conrad, Jacinta

    2015-03-01

    We have investigated the pH-dependent response of polyelectrolyte brushes of varying thickness. Our model system consists of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized using a grafting-from approach at constant grafting density. As the polymer brush thickness increased, the brushes exhibited greater hysteresis in static water contact angle as a function of pH. We extracted the pKa of the polymer brushes from contact angle measurements. The relationship between the pKa and brush thickness depended on the order in which the brushes were exposed to solutions of varying pH: pKa decreased on increasing brush thickness when going from basic to acidic medium whereas pKa increased on increasing brush thickness when going from acidic to basic medium. We speculate that the origin of hysteresis can be explained by pH-dependent conformational changes in these polyelectrolyte brushes.

  11. FT-IR and FT-Raman studies of cross-linking processes with Ca²⁺ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina; Tyliszczak, Bozena

    2015-12-05

    The hardening process of moulding sands on quartz matrices bound by polymer binders containing carboxyl and hydroxyl groups can be carried out by using physical (microwave radiation, thermal holding) and chemical (Ca(2+) cations, glutaraldehyde) cross-linking agents. The highest hardening level obtain moulding sand samples containing binders in a form of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) within the microwave radiation field, for which the bending strength is of 1.6 MPa value even after 24h from ending the agent activity. The authors focused, in this study, on finding the reason of this effect. It was shown, by means of the FT-IR and FT-Raman spectroscopic methods, that the chemical adsorption process activated by microwaves plays an essential role. The applied microwaves activate the polar groups present in the polymer composition structure as well as the quartz crystals surfaces (silane groups). Then the chemical adsorption occurs in the binder-matrix system within the microwave radiation field and intermolecular lattices are formed with a participation of hydrogen bridges (SiOH⋯OC, SiOH⋯OH) and COSi type bonds.

  12. Novel molecularly imprinted polymer using 1-(α-methyl acrylate)-3-methylimidazolium bromide as functional monomer for simultaneous extraction and determination of water-soluble acid dyes in wastewater and soft drink by solid phase extraction and high performance liquid chromatography.

    PubMed

    Luo, Xubiao; Zhan, Youcai; Tu, Xinman; Huang, Yining; Luo, Shenglian; Yan, Liushui

    2011-02-25

    Novel water-compatible molecularly imprinted polymers were synthesized in methanol-water systems with Tratarzine as template and 1-(α-methyl acrylate)-3-methylimidazolium bromide (1-MA-3MI-Br) as functional monomer, which has π-π hydrophobic, hydrogen-bonding and electrostatic interactions with template molecule. 1-MA-3MI-Br molecularly imprinted polymers (1-MA-3MI-Br-MIPs) were used as selective sorbents for the solid-phase extraction (SPE) of water-soluble acid dyes from wastewater and soft drink. The good linearity of the method was obtained in a range of 5.0-2000 μg/L with the correlation coefficient of > 0.999. The detection limits were in a range of 0.13-0.51 μg/L for the water-soluble acid dyes in wastewater and 0.095-0.84 μg/L for those in soft drink. The mean recoveries for the acid dyes are from 89.1% to 101.0% in spiked wastewater and 91.0-101.3% in spiked soft drink. Compared with strongly anion exchange solid phase extraction (SAX-SPE), mixture anion exchange solid phase extraction (MAX-SPE), and 1-MA-3MI-Br non-imprinted solid phase extraction (1-MA-3MI-Br-NISPE), almost all of the matrix interferences were removed by 1-MA-3MI-Br-MISPE, exhibiting higher selectivity, recovery and enrichment ability for the acid dyes and better baselines in the results of HPLC analysis.

  13. Experimental study of the antithrombogenic behavior of Dacron vascular grafts coated with hydrophilic acrylic copolymers bearing salicylic acid residues.

    PubMed

    San Román, J; Buján, J; Bellón, J M; Gallardo, A; Escudero, M C; Jorge, E; de Haro, J; Alvarez, L; Castillo-Olivares, J L

    1996-09-01

    The objective of the present work was study of the behavior of active coatings of hydrophilic acrylic polymers bearing salicylic acid residues linked covalently to the macromolecular chains, after their application to woven and knitted Dacron vascular grafts. In vitro tests were carried out under dynamic flow conditions using equipment especially designed to reproduce physiologic conditions, to determine the retention of the coating using a saline solution. Ex vivo tests were carried out in an extracorporeal circuit using the dog as an animal model. The study of the deposition of platelets was followed by labeling of autologous platelets with 111In-oxine, as well as by analysis of the surfaces of the prostheses by scanning electron microscopy. An application of thin coatings of hydrophilic acrylic copolymers improves the antithrombogenicity of the vascular grafts with respect to the uncoated prosthesis. The presence of relatively small amounts of units bearing salicylic acid residues in the copolymer chains (5-20 wt %) gives good results when they are applied to woven and knitten Dacron meshes which have been quantified by analysis of the percentage of radiotracer on the surface of the vascular grafts tested in ex vivo experiments. The salicylic acid residues are released slowly to the medium by hydrolysis of the reversible covalent bonds of this compound to the acrylic macromolecular chains, which provides an additional antiaggregating effect for platelets. The polymeric coating forms a thin active film which improves the antithrombogenic properties of the surface of woven or knitted Dacron vascular grafts in ex vivo experiments.

  14. Matrix normalized MALDI-TOF quantification of a fluorotelomer-based acrylate polymer.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2015-05-19

    The degradation of fluorotelomer-based acrylate polymers (FTACPs) has been hypothesized to serve as a source of the environmental contaminants, perfluoroalkyl carboxylates (PFCAs). Studies have relied on indirect measurement of presumed degradation products to evaluate the environmental fate of FTACPs; however, this approach leaves a degree of uncertainty. The present study describes the development of a quantitative matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry method as the first direct analysis method for FTACPs. The model FTACP used in this study was poly(8:2 FTAC-co-HDA), a copolymer of 8:2 fluorotelomer acrylate (8:2 FTAC) and hexadecyl acrylate (HDA). Instead of relying on an internal standard polymer, the intensities of 40 poly(8:2 FTAC-co-HDA) signals (911-4612 Da) were normalized to the signal intensity of a matrix-sodium cluster (659 Da). We termed this value the normalized polymer response (P(N)). By using the same dithranol solution for the sample preparation of poly(8:2 FTAC-co-HDA) standards, calibration curves with coefficient of determinations (R(2)) typically >0.98 were produced. When poly(8:2 FTAC-co-HDA) samples were prepared with the same dithranol solution as the poly(8:2 FTAC-co-HDA) standards, quantification to within 25% of the theoretical concentration was achieved. This approach minimized the sample-to-sample variability that typically plagues MALDI-TOF, and is the first method developed to directly quantify FTACPs.

  15. Interaction of photosensitive surfactant with DNA and poly acrylic acid

    SciTech Connect

    Zakrevskyy, Yuriy Paasche, Jens; Lomadze, Nino; Santer, Svetlana; Cywinski, Piotr; Cywinska, Magdalena; Reich, Oliver; Löhmannsröben, Hans-Gerd

    2014-01-28

    In this paper, we investigate interactions and phase transitions in polyelectrolyte-surfactant complexes formed between a cationic azobenzene-containing surfactant and two types of polyelectrolytes: natural (DNA) or synthetic (PAA: poly acrylic acid). The construction of a phase diagram allowed distancing between four major phases: extended coil conformation, colloidally stable compacted globules, colloidal instability range, and surfactant-stabilized compact state. Investigation on the complexes’ properties in different phases and under irradiation with UV light provides information about the role of the surfactant's hydrophobic trans isomers both in the formation and destruction of DNA and PAA globules as well as in their colloidal stabilization. The trans isomer shows much stronger affinity to the polyelectrolytes than the hydrophilic cis counterpart. There is no need for complete compensation of the polyelectrolyte charges to reach the complete compaction. On contrary to the findings previously reported in the literature, we demonstrate – for the first time – complete polyelectrolyte compaction which occurs already at 20% of DNA (and at 50% of PAA) charge compensation. The trans isomer plays the main role in the compaction. The aggregation between azobenzene units in the photosensitive surfactant is a driving force of this process. The decompaction can be realized during UV light irradiation and is strongly influenced by the interplay between surfactant-surfactant and surfactant-DNA interactions in the compacted globules.

  16. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  17. Pulsed and continuous wave acrylic acid radio frequency plasma deposits: plasma and surface chemistry.

    PubMed

    Voronin, Sergey A; Zelzer, Mischa; Fotea, Catalin; Alexander, Morgan R; Bradley, James W

    2007-04-05

    Plasma polymers have been formed from acrylic acid using a pulsed power source. An on-pulse duration of 100 micros was used with a range of discharge off-times between 0 (continuous wave) and 20,000 micros. X-ray photoelectron spectroscopy (XPS) has been used in combination with trifluoroethanol (TFE) derivatization to quantify the surface concentration of the carboxylic acid functionality in the deposit. Retention of this functionality from the monomer varied from 2% to 65%. When input power was expressed as the time-averaged energy per monomer molecule, E(mean), the deposit chemistry achieved could be described using a single relationship for all deposition conditions. Deposition rates were monitored using a quartz crystal microbalance, which revealed a range from 20 to 200 microg m(-2) s(-1), and these fell as COOH functional retention increased. The flow rate was found to be the major determinant of the deposition rate, rather than being uniquely defined by E(mean), connected to the rate at which fresh monomer enters the system in the monomer deficient regime. The neutral species were collected in a time-averaged manner. As the energy delivered per molecule in the system (E(mean)) decreased, the amount of intact monomer increased, with the average neutral mass approaching 72 amu as E(mean) tends to zero. No neutral oligomeric species were detected. Langmuir probes have been used to determine the temporal evolution of the density and temperature of the electrons in the plasma and the plasma potential adjacent to the depositing film. It has been found that even 500 micros into the afterglow period that ionic densities are still significant, 5-10% of the on-time density, and that ion accelerating sheath potentials fall from 40 V in the on-time to a few volts in the off-time. We have made the first detailed, time- and energy-resolved mass spectrometry measurements in depositing acrylic acid plasma. These have allowed us to identify and quantify the positive ion

  18. Poly(acrylic acid)-directed synthesis of colloidally stable single domain magnetite nanoparticles via partial oxidation

    NASA Astrophysics Data System (ADS)

    Altan, Cem L.; Gurten, Berna; Sadza, Roel; Yenigul, Elcin; Sommerdijk, Nico A. J. M.; Bucak, Seyda

    2016-10-01

    Octahedral, single domain magnetite nanoparticles with average size of ~55 nm were synthesized through oxidative aging of a ferrous hydroxide (Fe(OH)2) precursor at high pH in water. The synthesis was also carried out in the presence of the hydrophilic polymer poly(acrylic acid). Presence of the polymer changed the particle morphology from octahedral to spherical while average size decreased to 40-50 nm. Although these particles have a tendency to precipitate due to their high magnetic moment, dispersions of these particles were obtained in the presence of this particular polymer which made the particles stable in water for several days making them suitable for various biotechnological applications such as cell separation owing to their low toxicity.

  19. Transport in Porous Media of Poly(Acrylic Acid) Coated Ferrihydrite Nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaffe, P. R.; Xiang, A.; Koel, B. E.

    2012-12-01

    Augmentation of soils with iron to enhance biological processes such as uranium reduction via iron reducing bacteria, e.g., Geobacter sp., might be achieved via the injection of iron nanoparticles into the subsurface. The challenge is to make these nanoparticles transportable in the subsurface while not affecting the iron bioavailability. Poorly crystallized 2-line ferrihydrite iron oxide nanoparticles were synthesized and coated with different amounts of poly(acrylic acid) polymers (Na-PAA6K or Na-PAA140K). Analyses were then performed on these particles, including sorption/desorption of the polymer onto the iron nanoparticles, particle size, zeta potential, transport in sand and soil columns, and bioavailabity of the Fe(III) in the absence and presence of the coating to iron reducing organisms. Results showed that at pH values of environmental relevance, the zeta potential of the particles varied from about 3 mV (pH=8.2) for the non-coated particles to about -30 mV for the particles coated with the polymers to their highest sorption capacity. The coated particle diameter was shown to be in the range of 200 nm. Column transport experiments showed that for the highest polymer coating the nanoparticle breakthrough was virtually identical to that of bromide, while significant filtration was observed for particles with an intermediate coating, and complete particle removal via filtration was observed for the non-coated particles. These results held for sand as well as for soil, which had been previously characterized, from a field site at Rifle, CO. Bioavailability experiments showed no difference in the iron reduction rate between the untreated and treated nanoparticles. These results show that it is possible to manufacture iron nanoparticles to enhance biological iron reduction, and that the transport properties of these treated particles is tunable so that a desired retention in the porous medium can be achieved.

  20. Mechanism of drug release from an acrylic polymer-wax matrix tablet.

    PubMed

    Huang, H P; Mehta, S C; Radebaugh, G W; Fawzi, M B

    1994-06-01

    An acrylic polymer-wax matrix system was evaluated for oral sustained-release tablets of diphenhydramine HCl. A desirable release profile of diphenhydramine was achieved by incorporating Eudragit L in a carnauba wax matrix. In this polymer-wax system, carnauba wax maintained the integrity of the matrix, whereas Eudragit L slowly eroded in the matrix as the drug was released. Thus, the area-to-volume ratio of the tablet remained constant over the duration of the drug release. In vitro drug release studies were conducted at physiological pHs that exist in the gastrointestinal tract. Drug release rates decreased as the polymer:drug ratio increased from 1:2 to 2:1. The drug release rate was faster in pH 7.5 phosphate buffer than in 0.1 N HCl solution. The drug release from these polymer-wax matrices is described by a combination diffusion/erosion mechanism. Based on the typical pH encountered in intestinal fluids, complete dissolution of the drug and polymer at pH 7.5 in 8-10 h would ensure good bioavailability of the drug following oral administration.

  1. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  2. Hemocompatibility of Chitosan/poly(acrylic acid) Grafted Polyurethane Tubing

    PubMed Central

    Lee, Hyun-Su; Tomczyk, Nancy; Kandel, Judith; Composto, Russell J.; Eckmann, David M.

    2013-01-01

    The activation and adhesion of platelets or whole blood exposed to chitosan (CH) grafted surfaces is used to evaluate the hemocompatibility of biomaterials. The biomaterial surfaces are polyurethane (PU) tubes grafted with an inner poly(acrylic acid) (PAA) and an outer CH or quaternary ammonium modified CH (CH-Q) brush. The CH, CH-Q and PAA grafted layers were characterized by ellipsometry and fluorescence microscopy. Material wear tests demonstrate that CH (CH-Q) is stably grafted onto PU tubes upon exposure to saline solution for 7 days. Using quartz-crystal microbalances with dissipation (QCM-D), in-situ adsorption of blood plasma proteins on CH and CH-Q compared to a silicon oxide control was measured. The QCM-D results showed that the physically adsorbed plasma protein layer on CH-Q and CH surfaces is softer and more viscous than the protein layer on the SiO2 surface. The CH-Q layer thus has the weakest interaction with plasma proteins. Whole blood and platelet adhesion was reduced by ~92% on CH-Q, which showed the weakest interaction with plasma protein but more viscous adsorbed plasma protein layer, compared to SiO2. Last, to examine the biologic response of platelets and neutrophils to biomaterial surfaces, CH (CH-Q)/PAA, PAA and PU tubes were tested using a Chandler Loop apparatus as an ex vivo model and flow cytometry. The blood adhesion and biologic response results showed that CH and CH-Q reduced adhesion and activation of platelets and neutrophils and improved hemocompatibility relative to other surfaces (PU and PAA). Our studies demonstrated that the properties of physically adsorbed plasma protein layer on biomaterial surfaces correlates with blood coagulation on biomaterial surfaces. PMID:24349719

  3. Focal point analysis of torsional isomers of acrylic acid

    NASA Astrophysics Data System (ADS)

    Alev Çiftçioğlu, Gökçen; Trindle, Carl; Yavuz, Ilhan

    2010-10-01

    The thermochemistry of acrylic acid has presented challenges owing to its high reactivity, tendency to dimerize in the gas phase, and the existence of two very nearly equal energy conformational isomers. Well-tested thermochemical schemes including G2, G3, G4, and CBS-QB3 agree in the prediction that the s-cis syn structure is the most stable of the torsional isomers, with the s-cis anti form lying 3 kJ mol-1 or less higher in energy. Microwave spectra suggest a value of 0.63 kJ mol-1. The energy barrier between these forms is in the neighbourhood of 25 kJ mol-1 according to a MP2/cc-pVDZ calculation. We present estimates of the relative energies of all four torsional isomers and the rotational barrier based on a variant of the Focal Point Analysis developed by Császár and co-workers. These calculations, extending to the CCSD(T)/cc-pV5Z level, predict that the s-cis anti torsional isomer is the most stable form, in contrast to prior estimates. The s-cis syn form lies about 2.9 kJ mol-1 higher, while the s-trans syn and anti forms lie at about 21.7 and 23.3 kJ mol-1, respectively. We estimate the rotational barrier between the s-cis trans and s-cis anti structures to be about 23.9 kJ mol-1. Error ranges derived from the fit to extrapolation forms suggest that our estimates have an uncertainty of about 0.1 kJ mol-1.

  4. Supercritical water oxidation of acrylic acid production wastewater.

    PubMed

    Gong, Y M; Wang, S Z; Tang, X Y; Xu, D H; Ma, H H

    2014-01-01

    Supercritical water oxidation (SCWO) of wastewater from an acrylic acid manufacturing plant has been studied on a continuous flow experimental system, whose reactor was made of Hastelloy C-276. Experimental conditions included a reaction temperature (T) ranging from 673 to 773K, a residence time (t) ranging from 72.7 to 339s, a constant pressure (P) of 25 MPa and a fixed oxidation coefficient (alpha) of 2.0. Experimental results indicated that reaction temperature and residence time had significant influences on the oxidation reaction, and increasing the two operation parameters could improve both degradation of chemical oxygen demand (COD) and ammonia nitrogen (NH3-N). The COD removal efficiency could reach up to 98.73% at 25 MPa, 773 K and 180.1 s, whereas the destruction efficiency of NH3-N was only 43.71%. We further carried out a kinetic analysis considering the induction period through free radical chain mechanism. It confirms that the power-law rate equation for COD removal was 345 exp(-52200/RT)[COD]1.98[O2]0.17 and for NH3-N removal was 500 exp(-64492.19/RT)[NH3-N]1.87 [O2]0.03. Moreover, the induction time formulations for COD and NH3-N were suspected to be exp(38250/RT)/173 and exp(55690/RT)/15231, respectively. Correspondingly, induction time changed from 2.22 to 5.38 s for COD and 0.38 to 1.38 s for NH3-N. Owing to the catalysis of reactor inner wall surface, more than 97% COD removal was achieved in all samples.

  5. Conversion of (Meth)acrylic acids to methane granular sludge: Initiation by specific anerobic microflora

    SciTech Connect

    Shtarkman, N.B.; Obraztova, A.Y.; Laurinavichyus, K.S.; Galushko, A.S.; Akimenko, V.K.

    1995-03-01

    The role of a specific anaerobic microflora in the initiation of degradation of (meth)acrylic acids to methane by granular sludge from a UASB reactor was investigated. Associations of anaerobic bacteria isolated from the anaerobic sludge, which was used for a long time for treatment of wastewater from (meth)acrylate production, were able to realize the initial stage of (meth)acrylic acid decomposition, i.e., a conversion of acrylic and methacrylic acids to propionic and isobutyric acids, respectively. When added to granules, these association played a role of an {open_quotes}initiator{close_quotes} of the degradation process, which was then continued by the granular sludge microflora utilizing propionate and isobutyrate. Some characteristics of the granules adapted to propionate or isobutyrate are presented. The rates of propionate and isobutyrate consumption by adapted granules is, respectively, 21 and 53 times higher than the values obtained for nonadapted granules. A combined use of {open_quotes}initiating{close_quotes} bacteria and adapted granules provided degradation of (meth)acrylic acids with a maximum methane yield. The possibility is discussed of employing the granules, which are adapted to short-chain fatty acids, and the {open_quotes}initiating{close_quotes} bacteria, which accomplish the initial steps of the organic material decomposition to lower fatty acids, for the conversion of various chemical compounds to methane. 10 refs., 3 figs., 2 tabs.

  6. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  7. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  8. 40 CFR 721.10339 - Adipic acid, substituted propane, alkyldiol, acrylate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Adipic acid, substituted propane... Significant New Uses for Specific Chemical Substances § 721.10339 Adipic acid, substituted propane, alkyldiol... substance identified generically as adipic acid, substituted propane, alkyldiol, acrylate (PMN P-04-113)...

  9. Polymer-Nucleic Acid Interactions.

    PubMed

    Shen, Zhuang-Lin; Xia, Yi-Qi; Yang, Qiu-Song; Tian, Wen-de; Chen, Kang; Ma, Yu-Qiang

    2017-04-01

    Gene therapy is an important therapeutic strategy in the treatment of a wide range of genetic disorders. Polymers forming stable complexes with nucleic acids (NAs) are non-viral gene carriers. The self-assembly of polymers and nucleic acids is typically a complex process that involves many types of interaction at different scales. Electrostatic interaction, hydrophobic interaction, and hydrogen bonds are three important and prevalent interactions in the polymer/nucleic acid system. Electrostatic interactions and hydrogen bonds are the main driving forces for the condensation of nucleic acids, while hydrophobic interactions play a significant role in the cellular uptake and endosomal escape of polymer-nucleic acid complexes. To design high-efficiency polymer candidates for the DNA and siRNA delivery, it is necessary to have a detailed understanding of the interactions between them in solution. In this chapter, we survey the roles of the three important interactions between polymers and nucleic acids during the formation of polyplexes and summarize recent understandings of the linear polyelectrolyte-NA interactions and dendrimer-NA interactions. We also review recent progress optimizing the gene delivery system by tuning these interactions.

  10. Polymer-gel formation and reformation on irradiation of tertiary-butyl acrylate

    NASA Astrophysics Data System (ADS)

    Yao, Tiantian; Denkova, Antonia G.; Warman, John M.

    2014-04-01

    The purpose of the present research was to provide a radiation-chemical basis for the use of tertiary-butyl acrylate gels in radio-fluorogenic dose-imaging applications (Warman et al. 2011a,b, 2013a,b). The radiation-induced polymerization of tertiary-butyl acrylate (TBA) results in the formation of a transparent gel with an optical density lower than 0.1 cm-1 from 600 nm down to 315 nm. The fractional monomer-to-polymer conversion, CM, determined gravimetrically, increases super-linearly with dose, D Gy. Up to CM≈40%, and over the dose rate range D‧=3.5 to 49 cGy s-1, the dose dependence is given by CM=[1+ACM]KD/√D‧ with K=1.43×10-3 Gy-0.5 s-0.5 and A=0.70. For D‧=3.5 cGy s-1 the average polymer size is estimated to be 1.2×105 monomer units or 17 megadalton. For CM≥10% the gel is quasi-rigid, displaying little tendency to flow on a timescale of an hour or more. After removal of monomer by evacuation, the gel can be reformed by adding a volume of monomer to the remaining polymer equal to that removed and allowing this to swell for several days. The dose and dose rate dependence of radiation-induced monomer conversion in the reformed gel show no evidence of a discontinuity caused by the intervening evacuation and reformation procedures.

  11. Synthesis of radiation crosslinked poly(acrylic acid) in the presence of phenyltriethoxysilane

    NASA Astrophysics Data System (ADS)

    Hassan, Safia; Yasin, Tariq

    2014-04-01

    Acrylic acid based superabsorbent hydrogel was prepared using phenyltriethoxysilane (PTES) as polyfunctional monomer. Different amounts of PTES were incorporated in acrylic acid and irradiated at different doses upto maximum of 30 kGy. The crosslinked acrylic acid showed hydrogel properties and its swelling kinetics, gel fraction and equilibrium degree of swelling (EDS) were studied. It was found that the increased PTES concentration decreased the EDS of the hydrogels. Infrared spectroscopy confirmed the crosslinking reaction between the feed components and the existence of siloxane bond. Thermogravimetric analysis showed an increase in the stability of the hydrogels having high PTES content. The swelling of the hydrogel was affected by pH, ionic strength and temperature. These hydrogels showed low swelling in acidic and basic pH range and high swelling around neutral pH. This switchable pH response of these hydrogels can be exploited in environmental and biomedical applications.

  12. Surface modification of cellulosic substrates via atmospheric pressure plasma polymerization of acrylic acid: Structure and properties

    NASA Astrophysics Data System (ADS)

    Garcia-Torres, Jose; Sylla, Dioulde; Molina, Laura; Crespo, Eulalia; Mota, Jordi; Bautista, Llorenç

    2014-06-01

    Surface chemical modification of cellulose-based substrates has been carried out by atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) of acrylic acid. The structure/properties relationship of the samples was studied as a function of the plasma experimental conditions. Acrylic acid monomer/helium ratio and treatment speed clearly influences the wettability properties of the paper substrate: advancing contact angle values were reduced to the half if compare to non-treated paper. Surface morphology of the films did not greatly vary at short polymerization times but fibers were covered by a poly(acrylic acid) film at longer times. FTIR and XPS techniques allowed detecting the retention of carboxylic acid groups/moieties. The possibility to quickly design architectures with tunable carboxylic functions by modifying the plasma processing parameters is shown.

  13. Application of Nano Fe(III)-Tannic Acid Complexes in Modifying Aqueous Acrylic Latex for Controlled-Release Coated Urea.

    PubMed

    Shen, Yazhen; Du, Changwen; Zhou, Jianmin; Ma, Fei

    2017-02-08

    Acrylic latexes are valuable waterborne materials used in controlled-release fertilizers. Controlled-release urea coated with these latexes releases a large amount of nutrients, making it difficult to meet the requirement of plants. Herein, Fe(III)-tannic acid (TA) complexes were blended with acrylic latex and subsequently reassembled on a surface of polyacrylate particles. These complexes remarkably retarded the release of urea (the preliminary solubility was decreased from 22.3 to 0.8%) via decreasing the coating tackiness (Tg was increased from 4.17 to 6.42 °C), increasing the coating strength (tensile stress was improved from 3.88 to 4.45 MPa), and promoting the formation of denser structures (surface tension was decreased from 37.37 to 35.94 mN/m). Overall, our findings showed that a simple blending of Fe(III)-TA complexes with acrylic latex produces excellent coatings that delay the release of urea, which demonstrates great potential for use in controlled-release fertilizers coated with waterborne polymers.

  14. Mucin/poly(acrylic acid) interactions: a spectroscopic investigation of mucoadhesion.

    PubMed

    Patel, Minesh M; Smart, John D; Nevell, Thomas G; Ewen, Richard J; Eaton, Peter J; Tsibouklis, John

    2003-01-01

    Studies using infrared, (1)H and (13)C nuclear magnetic resonance, and X-ray photoelectron spectroscopies and differential scanning calorimetry support the hypothesis that hydrogen bonds, formed between the carboxylic acid functionality of the mucoadhesive material poly(acrylic acid) and the glycoprotein component of mucus, play a significant role in the process of mucoadhesion. There are fewer H-bonded interactions between the components than within the bulk of the pure mucoadhesive agent. The pH of the medium influences the structures of both the poly(acrylic acid) and the mucus, which, in turn, determine the nature and the extent of mucoadhesive interactions.

  15. Effect of an acrylic resin combined with an antimicrobial polymer on biofilm formation

    PubMed Central

    MARRA, Juliê; PALEARI, André Gustavo; RODRIGUEZ, Larissa Santana; LEITE, Andressa Rosa Perin; PERO, Ana Carolina; COMPAGNONI, Marco Antonio

    2012-01-01

    Objectives The purpose of this study was to evaluate the antimicrobial activity of an acrylic resin combined with an antimicrobial polymer poly (2-tert-butylaminoethyl) methacrylate (PTBAEMA) to inhibit Staphylococcus aureus, Streptococcus mutans and Candida albicans biofilm formation. Material and Methods Discs of a heat-polymerized acrylic resin were produced and divided according to PTBAEMA concentration: 0 (control), 10 and 25%. The specimens were inoculated (107 CFU/mL) and incubated at 37ºC for 48 h. After incubation, the wells were washed and each specimen was sonicated for 20 min. Replicate aliquots of resultant suspensions were plated at dilutions at 37ºC for 48 h. The number of colony-forming units (CFU) was counted and expressed as log (CFU+1)/mL and analyzed statistically with α=.05. Results The results showed that 25% PTBAEMA completely inhibited S. aureus and S. mutans biofilm formation. A significant reduction of log (CFU+1)/mL in count of S. aureus (control: 7.9±0.8A; 10%: 3.8±3.3B) and S. mutans (control: 7.5±0.7A; 10%: 5.1±2.7B) was observed for the group containing 10% PTBAEMA (Mann-Whitney, p<0.05). For C. albicans, differences were not significant among the groups (control: 6.6±0.2A; 10%: 6.6±0.4A; 25%: 6.4±0.1A), (Kruskal-Wallis, p>0.05, P=0.079). Conclusions Acrylic resin combined with 10 and 25% of PTBAEMA showed significant antimicrobial activity against S. aureus and S. mutans biofilm, but it was inactive against the C. albicans biofilm. PMID:23329246

  16. Synthesis of a novel acrylated abietic acid-g-bacterial cellulose hydrogel by gamma irradiation.

    PubMed

    Abeer, Muhammad Mustafa; Amin, Mohd Cairul Iqbal Mohd; Lazim, Azwan Mat; Pandey, Manisha; Martin, Claire

    2014-09-22

    Acrylated abietic acid (acrylated AbA) and acrylated abietic acid-grafted bacterial cellulose pH sensitive hydrogel (acrylated AbA-g-BC) were prepared by a one-pot synthesis. The successful dimerization of acrylic acid (AA) and abietic acid (AbA) and grafting of the dimer onto bacterial cellulose (BC) was confirmed by 13C solid state NMR as well as FT-IR. X-ray diffraction analysis showed characteristic peaks for AbA and BC; further, there was no effect of increasing amorphous AA content on the overall crystallinity of the hydrogel. Differential scanning calorimetry revealed a glass transition temperature of 80°C. Gel fraction and swelling studies gave insight into the features of the hydrogel, suggesting that it was suitable for future applications such as drug delivery. Scanning electron microscopy observations showed an interesting interpenetrating network within the walls of hydrogel samples with the lowest levels of AA and gamma radiation doses. Cell viability test revealed that the synthesized hydrogel is safe for future use in biomedical applications.

  17. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  18. Photopolymerized multifunctional (meth)acrylates as model polymers for dental applications.

    PubMed

    Bland, M H; Peppas, N A

    1996-06-01

    Polymer networks that can serve as model systems for dental applications were prepared by photopolymerizations of 1,1,1-trimethylolpropane triacrylate, 1,1,1-trimethylolpropane trimethacrylate, 1,1,1-trimethylolethane trimethacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, Photomer 2028 and Photomer 3015. The UV polymerizations were initiated by 2,2-dimethoxy-2-phenyl-acetophenone. Volume shrinkage was followed over the course of polymerization using a dilatometric technique. Incident light intensities ranged from 1 mW cm-2 to 20 mW cm-2. The effects of monomer structure on % volume shrinkage, including pendant group size, molecular weight between reactive double bonds, and acrylate versus methacrylate monomers were investigated. In addition, the effect of incident light intensity on % volume shrinkage was studied. Typical volume shrinkage varied from 3.5% to 13.5%. The volume shrinkage decreased with increasing monomer rank and increased pendant group size; the shrinkage for methacrylates was less than that for acrylates. Increased incident light intensity resulted in increased shrinkage rate, but not in statistically significant increases of the volume shrinkage. Conversion was calculated from shrinkage data and compared to data from monomer extraction experiments. Results indicate that although double bond conversion is low, conversion of monomer units is significantly higher.

  19. Nanostructured composites obtained by ATRP sleeving of bacterial cellulose nanofibers with acrylate polymers.

    PubMed

    Lacerda, Paula S S; Barros-Timmons, Ana M M V; Freire, Carmen S R; Silvestre, Armando J D; Neto, Carlos P

    2013-06-10

    Novel nanostructured composite materials based on bacterial cellulose membranes (BC) and acrylate polymers were prepared by in situ atom transfer radical polymerization (ATRP). BC membranes were functionalized with initiating sites, by reaction with 2-bromoisobutyryl bromide (BiBBr), followed by atom transfer radical polymerization of methyl methacrylate (MMA) and n-butyl acrylate (BA), catalyzed by copper(I) bromide and N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDETA), using two distinct initiator amounts and monomer feeds. The living characteristic of the system was proven by the growth of PBA block from the BC-g-PMMA membrane. The BC nanofiber sleeving was clearly demonstrated by SEM imaging, and its extent can be tuned by controlling the amount of initiating sites and the monomer feed. The ensuing nanocomposites showed high hydrophobicity (contact angles with water up to 134°), good thermal stability (initial degradation temperature in the range 241-275 °C), and were more flexible that the unmodified BC membranes.

  20. Light scattering study of partially ionized poly(acrylic acid) systems : comparison between gels and solutions

    NASA Astrophysics Data System (ADS)

    Moussaid, A.; Munch, J. P.; Schosseler, F.; Candau, S. J.

    1991-06-01

    Static and quasielastic light scattering experiments have been performed on the reaction bath of partially neutralized poly(acrylic acid) solutions and gels. The intensity scattered from gels is independent on the scattering wavevector, giving thus evidence that the gels are homogeneous at the scale of the wavelength of the light, contrary to what is generally observed in neutral gels. The comparison of the time and ensemble averages of the autocorrelation function of scattered light intensity shows that the gels behave with respect to that experiment as ergodic media. The variations of the intensity scattered from gels and solutions, with the ionization degree and the polymer concentration were found to be in good agreement with those predicted from simple theoretical arguments. The variations of the cooperative diffusion with these same parameters were found similar for gels and solutions. Des mesures de diffusion statique et quasiélastique de la lumière ont été effectuées sur des solutions et des gels d'acide poly(acrylique) partiellement ionisés. L'intensité diffusée par les gels est indépendante du vecteur d'onde de transfert, ce qui montre leur homogénéité, contrairement au cas des gels neutres. La comparaison des moyennes temporelle et spatiale de la fonction d'autocorrélation de l'intensité de la lumière diffusée montre que ces gels se comportent comme des milieux ergodiques. Les variations de l'intensité diffusée par les gels et les solutions en fonction de la concentration en polymère et du degré d'ionisation sont en bon accord avec les prédictions théoriques. Les variations du coefficient de diffusion avec ces mêmes paramètres sont identiques pour les gels et les solutions.

  1. Radiation synthesis of superabsorbent poly(acrylic acid)-carrageenan hydrogels

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Kumar, Manmohan; Varshney, Lalit

    2004-04-01

    A series of superabsorbent hydrogels were prepared from carrageenan and partially neutralized acrylic acid by gamma irradiation at room temperature. The gel fraction, swelling kinetics and the equilibrium degree of swelling (EDS) of the hydrogels were studied. It was found that the incorporation of even 1% carrageenan (sodium salt) increases the EDS of the hydrogels from ˜320 to ˜800 g/g. Thermal analysis were carried out to determine the amount of free water and bound water in the hydrogels. Under optimum conditions, poly(acrylic acid)-carrageenan hydrogels with high gel fraction (˜80%) and very high EDS (˜800 g/g) were prepared gamma radiolytically from aqueous solution containing 15% partially neutralized acrylic acid and 1-5% carrageenan. The hydrogels were also found to be sensitive to the pH and the ionic strength of the medium.

  2. Evaluation of Liquid-Liquid Extraction Process for Separating Acrylic Acid Produced From Renewable Sugars

    NASA Astrophysics Data System (ADS)

    Alvarez, M. E. T.; Moraes, E. B.; Machado, A. B.; Maciel Filho, R.; Wolf-Maciel, M. R.

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method univeral quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  3. Evaluation of liquid-liquid extraction process for separating acrylic acid produced from renewable sugars.

    PubMed

    Alvarez, M E T; Moraes, E B; Machado, A B; Maciel Filho, R; Wolf-Maciel, M R

    2007-04-01

    In this article, the separation and the purification of the acrylic acid produced from renewable sugars were studied using the liquid-liquid extraction process. Nonrandom two-liquids and universal quasi-chemical models and the prediction method universal quasi-chemical functional activity coefficients were used for generating liquid-liquid equilibrium diagrams for systems made up of acrylic acid, water, and solvents (diisopropyl ether, isopropyl acetate, 2-ethyl hexanol, and methyl isobutyl ketone) and the results were compared with available liquid-liquid equilibrium experimental data. Aspen Plus (Aspen Technology, Inc., version 2004.1) software was used for equilibrium and process calculations. High concentration of acrylic acid was obtained in this article using diisopropyl ether as solvent.

  4. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  5. Comparison of acidic polymers for the removal of cobalt from water solutions by polymer assisted ultrafiltration.

    PubMed

    Dambies, Laurent; Jaworska, Agnieszka; Zakrzewska-Trznadel, Grazyna; Sartowska, Bozena

    2010-06-15

    In this study, three sulfonated water-soluble polymers based on poly(vinyl alcohol) of different molecular weights (10,000, 50,000 and 100,000 Da) were prepared and tested against commercially available poly(acrylic acid) for the removal of cobalt using polymer assisted ultrafiltration. High rejection rates were obtained between pH 3 and 6 with sulfonated poly(vinyl alcohol) (PVA 10,000 and 50,000 Da) whereas poly(acrylic acid) (PAA) of similar molecular weights performed rather poorly in this pH range. Sulfonation improved significantly sorption capability of PVA. Sulfonated PVA 10,000 was the best complexing agent with rejection rate above 95% between pH 3 and 6. For unmodified PVA the rejection rate was only 30-45% at pH 6 and there was no rejection at pH 3 at all. PAA rejection rate was above 90% at pH 6 and only about 10% at pH 3. Large scale experiment in cross-flow, continuous apparatus conducted by using PVA-SO(3)H 10,000 Da to remove (60)Co radioisotope from water solutions showed excellent results demonstrating the potential of this polymer to purify acidic radioactive wastes containing cobalt radioisotopes.

  6. Accelerated Amidization of Branched Poly(ethylenimine)/Poly(acrylic acid) Multilayer Films by Microwave Heating.

    PubMed

    Lin, Kehua; Gu, Yuanqing; Zhang, Huan; Qiang, Zhe; Vogt, Bryan D; Zacharia, Nicole S

    2016-09-13

    Chemical cross-linking of layer-by-layer assembled films promotes mechanical stability and robustness in a wide variety of environments, which can be a challenge for polyelectrolyte multilayers in saline environments or for multilayers made from weak polyelectrolytes in environments with extreme pHs. Heating branched poly(ethylenimine)/poly(acrylic acid) (BPEI/PAA) multilayers at sufficiently high temperatures drives amidization and dehydration to covalently cross-link the film, but this reaction is rather slow, typically requiring heating for hours for appreciable cross-linking to occur. Here, a more than one order of magnitude increase in the amidization kinetics is realized through microwave heating of BPEI/PAA multilayers on indium tin oxide (ITO)/glass substrates. The cross-linking reaction is tracked using infrared spectroscopic ellipsometry to monitor the development of the cross-linking products. For thick films (∼1500 nm), gradients in cross-link density can be readily identified by infrared ellipsometry. Such gradients in cross-link density are driven by the temperature gradient developed by the localized heating of ITO by microwaves. This significant acceleration of reactions using microwaves to generate a well-defined cross-link network as well as being a simple method for developing graded materials should open new applications for these polymer films and coatings.

  7. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  8. Chemically Cross-Linked Poly(acrylic-co-vinylsulfonic) Acid Hydrogel for the Delivery of Isosorbide Mononitrate

    PubMed Central

    Ansari, Mahvash; Khan, Ikram Ullah

    2013-01-01

    We report synthesis, characterization, and drug release attributes of a series of novel pH-sensitive poly(acrylic-co-vinylsulfonic) acid hydrogels. These hydrogels were prepared by employing free radical polymerization using ethylene glycol dimethacrylate (EGDMA) and benzyl peroxide (BPO) as cross-linker and initiator, respectively. Effect of acrylic acid (AA), polyvinylsulfonic acid (PVSA), and EGDMA on prepared hydrogels was investigated. All formulations showed higher swelling at high pHs and vice versa. Formulations containing higher content of AA and EGDMA show reduced swelling, but one with higher content of PVSA showed increased swelling. Hydrogel network was characterized by determining structural parameters and loaded with isosorbide mononitrate. FTIR confirmed absence of drug polymer interaction while DSC and TGA demonstrated molecular dispersion of drug in a thermally stable polymeric network. All the hydrogel formulations exhibited a pH dependent release of isosorbide mononitrate which was found to be directly proportional to pH of the medium and PVSA content and inversely proportional to the AA contents. Drug release data were fitted to various kinetics models. Results indicated that release of isosorbide mononitrate from poly(AA-co-VSA) hydrogels was non-Fickian and that the mechanism was diffusion-controlled. PMID:24250265

  9. Water soluble and heat resistant polymers by free radical polymerization of lactic acid-based monomers

    NASA Astrophysics Data System (ADS)

    Tanaka, Hitoshi; Kibayashi, Tatsuya; Niwa, Miki

    2013-08-01

    Tactic heat resistant polymer was prepared by free radical polymerization of lactic acid-based monomers, i.e. chiral 2-isopropyl-5-methylene-1,3-dioxolan-4-ones (1). The polymerization of 1 proceeded smoothly without ring-opening to give a polymer with high isotacticity (mm) of 29.7~100% and glass transition temperature (Tg) of 172~213°C. 1 also showed high reactivity in the copolymerization with styrene and methyl methacrylate, and the incorporation of 1 unit in the copolymer structure increased Tg of each polymer. In addition, hydrolysis of poly(1) produced a new type of water soluble poly(lactic acid), i.e. poly(α-hydroxy acrylate), and poly(α-hydroxy acrylate-co-divinyl benzene) hydrogel absorbed water as high as 1000 times of the original polymer weight.

  10. Preparation of porous carboxymethyl chitosan grafted poly (acrylic acid) superabsorbent by solvent precipitation and its application as a hemostatic wound dressing.

    PubMed

    Chen, Yu; Zhang, Yong; Wang, Fengju; Meng, Weiwei; Yang, Xinlin; Li, Peng; Jiang, Jianxin; Tan, Huimin; Zheng, Yongfa

    2016-06-01

    The volume phase transition of a hydrogel initiated by shrinking may result in complex patterns on its surface. Based on this unique property of hydrogel, we have developed a novel solvent precipitation method to prepare a kind of novel superabsorbent polymers with excellent hemostatic properties. A porous carboxymethyl chitosan grafted poly (acrylic acid) (CMCTS-g-PAA) superabsorbent polymer was prepared by precipitating CMCTS-g-PAA hydrogel with ethanol. Its potential application in hemostatic wound dressing was investigated. The results indicate that the modified superabsorbent polymer is non-cytotoxic. It showed a high swelling capacity and better hemostatic performance in the treatments of hemorrhage model of ear artery, arteria cruralis and spleen of the New Zealand white rabbit than the unmodified polymer and other commonly used clinic wound dressings. The hemostatic mechanism of the porous CMCTS-g-PAA polymer was also discussed.

  11. Poly(acrylic acid) to induce competitive crystallization of a theophylline/oxalic acid cocrystal and a theophylline polymorph

    NASA Astrophysics Data System (ADS)

    Jang, Jisun; Kim, Il Won

    2016-01-01

    Polymeric additives to induce competitive crystallization of pharmaceutical compounds were explored. A cocrystal of theophylline and oxalic acid was used as a model system, and poly(acrylic acid), poly(caprolactone), and poly(ethylene glycol) were the additives. The cocrystal formation was selectively hindered with addition of poly(acrylic acid). First the size of the cocrystals were reduced, and eventually the cocrystallization was inhibited to generate neat theophylline crystals. The theophylline crystals were of a distinctively different crystal structure from known polymorphs, based on powder X-ray diffraction. They were also obtained in nanoscale size, when millimeter-scale crystals formed without poly(acrylic acid). Polymeric additives that could form specific interactions with crystallizing compounds seem to be useful tools for the phase and size control of pharmaceutical crystals.

  12. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    DOE PAGES

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; ...

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, wemore » analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.« less

  13. Radiation grafting of acrylic acid onto partially deacetylated chitin for metal ion adsorbent

    NASA Astrophysics Data System (ADS)

    Hien, Nguyen Quoc; Van Phu, Dang; Duy, Nguyen Ngoc; Huy, Ha Thuc

    2005-07-01

    Radiation processing technology is proved to be a useful tool for modification of polymer material including grafting of monomer onto polymer. In this study, partially deacetylated chitin (PD-chitin) was prepared by soaking chitin in NaOH solution with various concentrations from 10% to 50% (w/w) at room temperature for four days. The degree of deacetylation (DD%) of chitin samples was measured by IR spectroscopy method. Radiation grafting of acrylic acid (AAc) onto PD-chitin was carried out by immerging PD-chitin in AAc solution (5-20%v/v) for swelling two days. The swelled PD-chitin sample was filtered and irradiated with Co-60 radiation at dose of 4.8 kGy for grafting. The resulting product, so called PD-chitin-g-PAA was changed to sodium form, PD-chitin-g-PANa by treating with NaOH 1 N and used as metal ion adsorbent. The adsorption capacities of studied chitin samples for metal ion typically for Cu2+ was determined using atomic absorption spectrophotometer. The results showed that the adsorption capacities for Cu2+ were as the following order: chitin < PD-chitin < PD-chitin-g-PANa < chitosan (DD76%). In addition, equilibrium isotherms were well fitted by Langmuir equation with the constants KL = 15.5 and 19.4 (mg/g); b = 0.02 and 0.04 (L/mg) for PD-chitin and PD-chitin-g-PANa, respectively. The obtained product, PD-chitin-g-PANa can be produced on large scale with competitive cost and used as metal ion adsorbent for water purification as well as for other purposes such as for sorption of dyes and for immobilization of bioactive substances.

  14. Synthesis and antibacterial properties of beta-diketone acrylate bioisosteres of pseudomonic acid A.

    PubMed

    Bennett, I; Broom, N J; Cassels, R; Elder, J S; Masson, N D; O'Hanlon, P J

    1999-07-05

    A series of beta-diketone acrylate bioisosteres 4 of pseudomonic acid A 1 have been synthesized and evaluated for their ability to inhibit bacterial isoleucyl-tRNA synthetase and act as antibacterial agents. A number of analogues have excellent antibacterial activity. Selected examples were shown to afford good blood levels and to be effective in a murine infection model.

  15. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new...

  16. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic). (a) Chemical substance and significant new...

  17. Cisplatin-incorporated nanoparticles of poly(acrylic acid-co-methyl methacrylate) copolymer

    PubMed Central

    Lee, Kyung Dong; Jeong, Young-Il; Kim, Da Hye; Lim, Gyun-Taek; Choi, Ki-Choon

    2013-01-01

    Background Although cisplatin is extensively used in the clinical field, its intrinsic toxicity limits its clinical use. We investigated nanoparticle formations of poly(acrylic acid-co-methyl methacrylate) (PAA-MMA) incorporating cisplatin and their antitumor activity in vitro and in vivo. Methods Cisplatin-incorporated nanoparticles were prepared through the ion-complex formation between acrylic acid and cisplatin. The anticancer activity of cisplatin-incorporated nanoparticles was assessed with CT26 colorectal carcinoma cells. Results Cisplatin-incorporated nanoparticles have small particle sizes of less than 200 nm with spherical shapes. Drug content was increased according to the increase of the feeding amount of cisplatin and acrylic acid content in the copolymer. The higher acrylic acid content in the copolymer induced increase of particle size and decrease of zeta potential. Cisplatin-incorporated nanoparticles showed a similar growth-inhibitory effect against CT26 tumor cells in vitro. However, cisplatin-incorporated nanoparticles showed improved antitumor activity against an animal tumor xenograft model. Conclusion We suggest that PAA-MMA nanoparticles incorporating cisplatin are promising carriers for an antitumor drug-delivery system. PMID:23966778

  18. Study of the influence of the acrylic acid plasma parameters on silicon and polyurethane substrates using XPS and AFM

    NASA Astrophysics Data System (ADS)

    Vilani, C.; Weibel, D. E.; Zamora, R. R. M.; Habert, A. C.; Achete, C. A.

    2007-10-01

    XPS and AFM have been used to investigate surface modifications produced by acrylic acid (AA) vapor plasma treatment of silicon (Si)(1 0 0) substrates and polyurethanes (PUs) membranes. XPS analyses of Si and PUs treated substrates at low plasma power (5-20 W) revealed the formation of a thin film on the surfaces, which chemically resembles the poly(acrylic acid) film conventionally synthesised. No signal of the Si substrate could be seen under these low plasma power applications on silicon. However, when the plasma power is higher than 30 W one can clearly see XPS silicon signatures. AFM measurements of silicon substrates treated with AA plasma at low power (5-20 W) showed the formation of a thin polymer film of about 220-55 nm thickness. Further, applications of high plasma power (30-100 W) displayed a marked difference from low plasma modifications and it was found sputtering of the silicon substrate. Pervaporation results of AA plasma treated PUs membranes revealed that the selectivity for the separation of methanol from methyl- t-butyl ether is higher at 100 W and 1 min treatment time, than the other conditions studied. This last finding is discussed concerning the surface modifications produced on plasma treated silicon substrates and PU membranes.

  19. Modification of polyethylene by radiation-induced graft polymerization of acrylic acid

    NASA Astrophysics Data System (ADS)

    Sidorova, L. P.; Aliev, A. D.; Zlobin, V. B.; Aliev, R. E.; Chalykh, A. E.; Kabanov, V. Ya.

    The kinetics investigation of the radiation-induced graft polymerization of acrylic acid onto low density polyethylene by direct method in aqueous solution in the presence of Mohr's salt, was performed. The technique of the contrasting of polyacrylic acid (PAA) graft layer was worked out by Ag +-ions. The structural and morphological peculiarities of grafted copolymers of PE with PAA were determined by the method of electron probe, and X-ray microanalysis by means of the electron microscopy.

  20. Efficient removal of malachite green dye using biodegradable graft copolymer derived from amylopectin and poly(acrylic acid).

    PubMed

    Sarkar, Amit Kumar; Pal, Aniruddha; Ghorai, Soumitra; Mandre, N R; Pal, Sagar

    2014-10-13

    This article reports on the application of a high performance biodegradable adsorbent based on amylopectin and poly(acrylic acid) (AP-g-PAA) for removal of toxic malachite green dye (MG) from aqueous solution. The graft copolymer has been synthesized and characterized using various techniques including FTIR, GPC, SEM and XRD analyses. Biodegradation study suggests that the co-polymer is biodegradable in nature. The adsorbent shows excellent potential (Qmax, 352.11 mg g(-1); 99.05% of MG has been removed within 30 min) for removal of MG from aqueous solution. It has been observed that point to zero charge (pzc) of graft copolymer plays significant role in adsorption efficacy. The adsorption kinetics and isotherm follow pseudo-second order and Langmuir isotherm models, respectively. Thermodynamics parameters suggest that the process of dye uptake is spontaneous. Finally desorption study shows excellent regeneration efficiency of adsorbent.

  1. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications.

  2. Pre-irradiation induced emulsion co-graft polymerization of acrylonitrile and acrylic acid onto a polyethylene nonwoven fabric

    NASA Astrophysics Data System (ADS)

    Liu, Hanzhou; Yu, Ming; Ma, Hongjuan; Wang, Ziqiang; Li, Linfan; Li, Jingye

    2014-01-01

    A pre-irradiation induced emulsion co-graft polymerization method was used to introduce acrylonitrile and acrylic acid onto a PE nonwoven fabric. The use of acrylic acid is meant to improve the hydrophilicity of the modified fabric. The kinetics of co-graft polymerization were studied. The existence of polyacrylonitrile (PAN) and poly(acrylic acid) (PAAc) graft chains was proven by Fourier transform infrared spectroscopy (FTIR) analysis. The existence of the nitrile groups in the graft chains indicates that they are ready for further amidoximation and adsorption of heavy metal ions.

  3. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleissner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-04-01

    The aim is to develop a polymer layer which has the ability to diffuse light homogeneously and exhibit a high refractive index. The mixtures are containing an acrylate casting resin, benzylmethacrylate, phenanthrene and other additives. Phenanthrene is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements the polymerized samples require a planar surface without air bubbles. To produce flat samples a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet and another glass plate is developed. Glue clamps are used to fix this construction together. Selected samples have a refractive index of 1.585 at 20°C at a wavelength of 589nm. A master mixture with a high refractive index is taken for further experiments. Nano scaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. The specular transmission and the overall transmission are measured to investigate the degree of scattering, which is defined as the haze. Most of the presented layers express the expected haze of over 50%.

  4. Synthesis and magnetic heating characteristics of thermoresponsive poly (N-isopropylacrylamide-co-acrylic acid)/nano Fe3O4 nanparticles

    NASA Astrophysics Data System (ADS)

    Thu Trang Mai, Thi; Le, Thi Hong Phong; Pham, Hong Nam; Do, Hung Manh; Phuc Nguyen, Xuan

    2014-12-01

    In this work the synthesis of thermo-sensitive polymer coated magnetic nanoparticles and their inductive heating have been studied. Poly (N-isopropylacrylamide-co-acrylic acid) (NA) polymers were first synthesized by emulsion polymerization of poly(N-isopropylacrylamide) (NIP) in water and followed by encapsulating magnetic nanoparticles (MNPs). As increasing the concentration of acrylic acid (AA), the lower critical solution temperature (LCST) increased, so that with 150% of AA (molar ratio) the LCST reached 42 °C, which is close to the temperature of hyperthermia treatment. Magnetization and ac susceptibility measurements were conducted to depict some characteristics of the NIP-MNPs and NA-MNPs that are related with the loss power. Attempts to analyze the rate of magnetic inductive heating were performed to show the Brownian relaxation origin of additional heat source created by the magnetite nanoparticles capped with thermosensitive polymers. Our results suggest that these thermo-sensitive polymer-coated magnetic nanoparticles show a potential for hyperthermia and drug delivery application.

  5. Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels

    NASA Astrophysics Data System (ADS)

    Faghihi, Shahab; Gheysour, Mahsa; Karimi, Alireza; Salarian, Reza

    2014-02-01

    Hydrogels have found many practical uses in drug release, wound dressing, and tissue engineering. However, their applications are restricted due to their weak mechanical properties. The role of graphene oxide nanosheets (GONS) as reinforcement agent in poly (acrylic acid) (PAA)/Gelatin (Gel) composite hydrogels is investigated. Composite hydrogels are synthesized by thermal initiated redox polymerization method. Samples are then prepared with 20 and 40 wt. % of PAA, an increasing amount of GONS (0.1, 0.2, and 0.3 wt. %), and a constant amount of Gel. Subsequently, cylindrical hydrogel samples are subjected to a series of compression tests in order to measure their elastic modulus, maximum stress and strain. The results exhibit that the addition of GONS increases the Young's modulus and maximum stress of hydrogels significantly as compared with control (0.0 wt. % GONS). The highest Young's modulus is observed for hydrogel with GO (0.2 wt. %)/PAA (20 wt. %), whereas the highest maximum stress is detected for GO (0.2 wt. %)/PAA (40 wt. %) specimen. The addition of higher amounts of GONS leads to a decrease in the maximum stress of the hydrogel GO (0.3 wt. %)/PAA (40 wt. %). No significant differences are detected for the maximum strain among the hydrogel samples, as the amount of GONS increased. These results suggest that the application of GONS could be used to improve mechanical properties of hydrogel materials. This study may provide an alternative for the fabrication of low-cost graphene/polymer composites with enhanced mechanical properties beneficial for tissue engineering applications.

  6. Novel sustainable polymers derived from renewable rosin and fatty acids

    NASA Astrophysics Data System (ADS)

    Wilbon, Perry

    In the work of this dissertation, polymers derived from renewable bio-based resources prepared by various polymerization techniques were investigated. The properties of these polymeric materials were characterized and discussed. Rosin was first converted into acrylate or methacrylate monomers for atom transfer radical polymerization (ATRP). Second, rosin was combined with vegetable oil to produce completely renewable novel polyesters by acyclic diene metathesis (ADMET) polymerization. Third, degradable block copolymers were synthesized composed of polycaprolactone and rosin grafted polycaprolactone with the aid of ring-opening polymerization (ROP). Finally, degradable polyesters were produced using vegetable oil derivatives as starting materials. These new rosin and fatty acid based renewable polymer materials will have potential applications as sustainable thermoplastics, thermoplastic elastomers, etc.

  7. Poly(acrylic acid)-grafted poly(N-isopropyl acrylamide) networks: preparation, characterization and hydrogel behavior.

    PubMed

    Yu, Rentong; Zheng, Sixun

    2011-01-01

    Poly(acrylic acid)-grafted poly(N-isopropylacrylamide) co-polymer networks (PNIPAAm-g-PAA) were prepared via the reversible addition-fragmentation transfer (RAFT) polymerization of N-isopropyl- acrylamide (NIPAAm) with trithiocarbonate-terminated PAA as a macromolecular chain-transfer agent in the presence of N,N-methylenebisacrylamide. The PNIPAAm-g-PAA co-polymer networks were characterized by means of Fourier transform infrared spectroscopy, differential scanning calorimetry and small-angle X-ray scattering. It is found that the PNIPAAm-g-PAA co-polymer networks were microphase-separated, in which the microdomains of PNIPAAm-PAA interpolymer complexes were dispersed into the PNIPAAm matrix. The PNIPAAm-g-PAA hydrogels displayed a dual response to temperature and pH values. The thermoresponsive properties of PNIPAAm-g-PAA networks were investigated. Below the volume phase transition temperatures, the PNIPAAm-g-PAA hydrogels possessed much higher swelling ratios than control PNIPAAm hydrogel. In terms of swelling, deswelling and reswelling tests, it is judged that the PNIPAAm-g-PAA hydrogels displayed faster response to the external temperature changes than control PNIPAAm hydrogel. The improved thermoresponsive properties of hydrogels are ascribed to the formation of PAA-grafted PNIPAAm networks, in which the water-soluble PAA chains behave as the hydrophiphilic tunnels and allow water molecules to go through and, thus, to accelerate the diffusion of water molecules.

  8. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  9. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  10. Review of Preparation and Properties of Polymers from Copolymerization of Aprotic Acrylic Monomers with Protic Acrylic Monomers

    DTIC Science & Technology

    1988-07-01

    aqueous solution of this polymer with certain added salts was used as a blood substitute. It has been used in cosmetic applications, such as hair...purification nor much measuring time. Kuramshin and co-workers investigated the polymerization of MMA using a system of 4-phenyl-1,3-dioxane hydroperoxide ...the cobalt salt effectively initiated polymerization only at a temperature higher than 70 OC. Introduction of the catalyst, a cobalt(II) salt

  11. Transport of poly(acrylic acid) coated 2-line ferrihydrite nanoparticles in saturated aquifer sediments for environmental remediation

    NASA Astrophysics Data System (ADS)

    Xiang, Aishuang; Zhou, Sheng; Koel, Bruce E.; Jaffé, Peter R.

    2014-04-01

    Groundwater remediation using iron oxide and zero-valent iron nanoparticles (NPs) can be effective, but is limited in many applications due to the NP strong retention in groundwater-saturated porous media after injection, the passivation of the porous surface, and the high cost of nanomaterials versus macro scale iron. In this study, we investigated transport of bare and polymer-coated 2-line ferrihydrite NPs (30-300 nm) in saturated aquifer sediments. The influence of poly(acrylic acid) (PAA) polymer coatings was studied on the colloidal stability and transport in sediments packed column tests simulating groundwater flow in saturated sediments. In addition, the influence of calcium cations was investigated by transport measurements using sediments with calcium concentrations in the aqueous phase ranging from 0.5 (typical for most sediments) to 2 mM. Measurements were also made of zeta potential, hydrodynamic diameter, polymer adsorption and desorption properties, and bio-availability of PAA-coated NPs. We found that NP transport through the saturated aquifer sediments was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. We further discovered that PAA coatings enhanced NP transport, compared to bare NPs, in all calcium-containing experiments tested, however, the presence of calcium always exhibited a negative effect on NP transport. In tests of bioavailability, the iron reduction rate of the coated and bare NPs by Geobacter sulfurreducens was the same, which shows that the PAA coating does not significantly reduce NP Fe(III) bioavailability. Our results demonstrate that much improved transport of iron oxide NP can be achieved in saturated aquifer sediments by introducing negatively charged polyelectrolytes and optimizing polymer concentrations, and furthermore, these coated NPs retain their bioavailability that is needed for applications in bio-environmental remediation.

  12. Optimization of acrylic acid grafting onto polypropylene using response surface methodology and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Kushwaha, Jai P.; Chaudhari, Chandrasekhar V.; Dubey, Kumar A.; Varshney, Lalit

    2017-03-01

    Simultaneous radiation grafting was optimized to graft acrylic acid monomer on the polypropylene (PP) films to make them hydrophilic and enhance their biodegradability. Experiments were designed based on full factorial central composite design (response surface methodology) and influence of monomer concentration, radiation dose, inhibitor concentration, solvent concentration on degree of grafting was investigated. The extent of grafting was found to increase with increasing monomer concentration, inhibitor concentration and radiation dose. The targeted 35% grafting could be achieved at optimum condition viz. monomer concentration 12.09 wt%, radiation dose 12.40 kGy, inhibitor concentration 0.07 M and solvent concentration 0.12 M. The grafted PP films at different degrees of grafting were tested for tensile properties and characterized by swelling studies, fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Successful grafting of acrylic acid onto polypropylene films was indicated by FTIR and confirmed quantitatively by determination of carboxylic groups on the film surface. Tensile strength of grafted PP films decreased with increase in degree of grafting. The crystallinity of the grafted PP films was lower than that of PP film as indicated by DSC studies. Grafting of acrylic acid increased the roughness on the surface of PP films indicated by SEM studies. The maximum biodegradability of the 34.55% grafted film was 5.5%.

  13. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  14. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel.

    PubMed

    Zhao, Yanli; Li, Yanli; Ge, Jianjun; Li, Na; Li, Ling-Bing

    2014-11-01

    The aim of the study is to synthesize a thiolated Pluronic copolymer, Pluronic-poly (acrylic acid)-cysteine copolymer, to construct a mixed micelle system with the Pluronic-poly (acrylic acid)-cysteine copolymer and Pluronic L121 (PL121) and to evaluate the potential of these mixed micelles as an oral drug delivery system for paclitaxel. Compared with Pluronic-poly (acrylic acid)-cysteine micelles, drug-loading capacity of Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles was increased from 0.4 to 2.87%. In vitro release test indicated that Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles exhibited a pH sensitivity. The permeability of drug-loaded micelles in the intestinal tract was studied with an in situ perfusion method in rats. The presence of verapamil and Pluronic both improved the intestinal permeability of paclitaxel, which further certified the inhibition effect of thiolated Pluronic on P-gp. In pharmacokinetic study, the area under the plasma concentration-time curve (AUC0→∞) of paclitaxel-loaded mixed micelles was four times greater than that of the paclitaxel solution (p < 0.05). In general, Pluronic-poly (acrylic acid)-cysteine/PL121 micelles were proven to be a potential oral drug delivery system for paclitaxel.

  15. Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid).

    PubMed

    Jin, Naixiong; Zhang, Hao; Jin, Shi; Dadmun, Mark D; Zhao, Bin

    2012-03-15

    We report in this article a method to tune the sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers that consist of two blocks exhibiting distinct lower critical solution temperatures (LCSTs) in water. A small amount of weak acid groups is statistically incorporated into the lower LCST block so that its LCST can be tuned by varying solution pH. Well-defined diblock copolymers, poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid) (PTEGMA-b-P(DEGEA-co-AA)), were prepared by reversible addition-fragmentation chain transfer polymerization and postpolymerization modification. PTEGMA and PDEGEA are thermosensitive water-soluble polymers with LCSTs of 58 and 9 °C, respectively, in water. A 25 wt % aqueous solution of PTEGMA-b-P(DEGEA-co-AA) with a molar ratio of DEGEA to AA units of 100:5.2 at pH = 3.24 underwent multiple phase transitions upon heating, from a clear, free-flowing liquid (<15 °C) to a clear, free-standing gel (15-46 °C) to a clear, free-flowing hot liquid (47-56 °C), and a cloudy mixture (≥57 °C). With the increase of pH, the sol-to-gel transition temperature (T(sol-gel)) shifted to higher values, while the gel-to-sol transition (T(gel-sol)) and the clouding temperature (T(clouding)) of the sample remained essentially the same. These transitions and the tunability of T(sol-gel) originated from the thermosensitive properties of two blocks of the diblock copolymer and the pH dependence of the LCST of P(DEGEA-co-AA), which were confirmed by dynamic light scattering and differential scanning calorimetry studies. Using the vial inversion test method, we mapped out the C-shaped sol-gel phase diagrams of the diblock copolymer in aqueous buffers in the moderate concentration range at three different pH values (3.24, 5.58, and 5.82, all measured at ~0 °C). While the upper temperature boundaries overlapped, the lower temperature boundary

  16. 2-Fatty acrylic acids: new highly derivatizable lipophilic platform molecules

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper reports the incorporation of an alpha-methylene unit into fatty acid skeletons. Since the new olefin is conjugated with the carboxylate, it is susceptible to 1,4- (Michael) additions. We have used multifunctional thiols and amines for additions at the methylene. The resulting products ...

  17. Radiation-induced graft polymerization of acrylamide and acrylic acid onto polyethylene

    NASA Astrophysics Data System (ADS)

    Grushevskaya, L. N.; Aliev, R. E.; Kabanov, V. Ya.

    The radiation-induced grafting of acrylamide onto low-density polyethylene by the different methods and under different conditions was investigated: by the direct liquid phase method from this monomer solution in water (in neutral and acid media) and acetone, and by the pre-irradiation method from aqueous solutions as well as from its sublimated vapour. The molecular masses of polyacrylamide homopolymers were determined. The discussion and comparison of different methods of acrylamide grafting are performed. The relationship between rates of graft polymerization onto polyethylene and homopolymerization of acrylic acid in the presence of metal ions is considered.

  18. Synthesis of silica coated zinc oxide–poly(ethylene-co-acrylic acid) matrix and its UV shielding evaluation

    SciTech Connect

    Ramasamy, Mohankandhasamy; Kim, Yu Jun; Gao, Haiyan; Yi, Dong Kee; An, Jeong Ho

    2014-03-01

    Graphical abstract: - Highlights: • Well layer thickness controlled silica shell was made on ZnO nanoparticles. • PEAA, an interfacial agent is used to make nanocomposite–polymer matrix by twin-screw extruder. • Si-ZnO/PEAA matrix is highly stable and UV protective as compared to ZnO/PEAA matrix. • Nanoparticle embedded polymer matrix is suggested to make UV shielding fabrics with Nylon4. - Abstract: Silica coated zinc oxide nanoparticles (Si-ZnO NPs) (7 nm thick) were synthesized successfully and melt blended with poly(ethylene-co-acrylic acid) (PEAA resin) to improving ultraviolet (UV) shielding of zinc oxide nanoparticles (ZnO NPs). The photostability of both the ZnO NPs and Si-ZnO NPs were analyzed by the difference in photoluminescence (PL) and by methylene blue (MB) degradation. Photo-degradation studies confirmed that Si-ZnO NPs are highly photostable compared to ZnO NPs. The melt blended matrices were characterized by field emission scanning electron microscopy interfaced with energy dispersive X-ray spectroscopy (FE-SEM-EDX). The UV shielding property was analyzed from the transmittance spectra of UV–visible (UV–vis) spectroscopy. The results confirmed fine dispersion of thick Si-ZnO NPs in the entire resin matrix. Moreover, the Si-ZnO/PEAA showed about 97% UV shielding properties than the ZnO/PEAA.

  19. Radiation synthesis of eco-friendly water reducing sulfonated starch/acrylic acid hydrogel designed for cement industry

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, El-Sayed A.; Diaa, D. A.

    2013-04-01

    Starch was treated with chlorosulfonic acid to obtain sulfonated starch. Acrylic acid/sulfonated starch semi-interpenetrated network IPN of different compositions was prepared using ionizing radiation. Swelling of prepared IPNs at different environmental conditions was studied. The possible use of sulfonated starch/acrylic acid IPN as a water-retarding agent in the cement industry was investigated. ζ-potential measurements were used to determine the stability of the colloidal cement—SS/AA and cement -poly-naphthalene sulfonic acid (SNF) water retarding mixtures. Sulfonated starch/acrylic acid water-retarding property was influenced by hydrogel concentration and composition. Sulfonated starch/acrylic acid IPN admixture has a great effect on the cement initial setting time. Using 2% of SS/AA or SNF resulted in an increase in initial setting time by 2 and 1 h respectively, if compared with native cement initial setting time. The results showed that the synthetic commercial super-plasticizers could be replaced by an eco-friendly water-retarding sulfonated starch/acrylic acid IPN in the cement industry.

  20. Electrochemical investigations of 3-(3-thienyl) acrylic acid protected nanoclusters and planar gold surfaces.

    PubMed

    Nirmal, R G; Kavitha, A L; Berchmans, Sheela; Yegnaraman, V

    2007-06-01

    Formation of self assembled monolayers on gold surface by thiols and disulphides is a well known phenomenon and extensive research work has been carried out in this area with envisaged applications in the area of sensors, molecular electronics, lithography, device fabrication using bottom-up approach, etc. Recently, it has been established that thiophene molecules can self assemble on gold surface due to Au-S interactions. 3-(3-thienyl) acrylic acid, a bifunctional ligand is used in this work to form self-assembled monolayers on planar gold surfaces (two dimensional assemblies) and to prepare monolayer protected gold nano clusters (three-dimensional assemblies). The electron transfer blocking properties of the two-dimensional monolayers were evaluated by using standard redox probes like ferrocyanide anions and Ruthenium hexamine cations. The functionalisation of the two-dimensional and three-dimensional assemblies has been carried out with ferrocene carboxylic acid and the functionalised monolayers were characterized by Cyclic voltammetry. The formation of thienyl acrylic acid protected nanoclusters has been verified by TEM and surface plasmon resonance absorption. It has been observed that when thiophene based ligands are used as stabilizers for the formation of metal nanoparticles, they tend to aggregate as a result of pi-pi interactions between adjacent thiophene ligands. In this case it is found that aggregation is prevented. The substituent at the thiophene ring hinders pi-pi interactions. The quantised nature of electrochemical charging of these nanoparticles has been demonstrated by differential pulse voltammetry (DPV), which exhibit peak like features (coulomb's staircase). This work also explores the possibility of using 3-(3-thienyl) acrylic acid as building blocks or spacers on planar and colloidal gold surfaces for potential applications in the field of sensors and devices.

  1. Acrylic polymer-grafted polypropylene sutures for covalent immobilization or reversible adsorption of vancomycin.

    PubMed

    García-Vargas, M; González-Chomón, C; Magariños, B; Concheiro, A; Alvarez-Lorenzo, C; Bucio, E

    2014-01-30

    Glycidyl methacrylate (GMA) and acrylic acid (AAc) were separately grafted onto polypropylene (PP) monofilament sutures by means of pre-irradiation using a (60)Co γ-source, with the purpose of loading vancomycin via (i) covalent immobilization through the glycidyl groups of GMA and (ii) ionic interaction with AAc moieties. The effect of absorbed radiation dose, monomer concentration, temperature and reaction time on the grafting degree was evaluated in detail. GMA grafting ranged from 25% to 800% while the grafting yield of AAc onto PP could be tuned between 9% and 454%, at doses from 5 to 50 kGy and a dose rate 13.7 kGy/h. Grafting of GMA or AAc decreased the decomposition temperature and made the sutures swellable to a certain extent. GMA grafting led to a continuous, smooth and thick coating, which was suitable for immobilization of up to 1.9 μg vancomycin per gram. The immobilized vancomycin enabled a reduction in the Staphylococcus aureus CFU adhered to the suture surface. On the other hand, dried AAc-functionalized sutures exhibited a rough and cracked surface which was responsible for a minor increase in the coefficient of friction. PP-g-AAc sutures exhibited pH-dependent swelling and remarkably high capability to host vancomycin (up to 109.9 mg/g), particularly those with an intermediate degree of grafting. Some AAc-functionalized sutures were shown able to inhibit bacterial growth after successive challenges with fresh lawns. Therefore, tuning the yield of grafting of GMA or AAc may enable the preparation of drug-suture combination products that retain or release, respectively, antimicrobial agents.

  2. Antibacterial properties of a self-cured acrylic resin composed of a polymer coated with a silver-containing organic composite antibacterial agent.

    PubMed

    Kiriyama, Takashi; Kuroki, Kenjiro; Sasaki, Keisuke; Tomino, Masahumi; Asakura, Masaki; Kominami, Yoshiko; Takahashi, Yoshihumi; Kawai, Tatsushi

    2013-01-01

    A novel antibacterial polymer, coated with a silver-containing organic composite antibacterial agent, was dispersed in a self-cured acrylic resin. Residual viable cell count of each oral bacterial and fungal species cultivated on acrylic resin specimens containing the antibacterial polymer was significantly decreased when compared to those cultivated on specimens prepared from untreated polymer. A strong inverse correlation was found between the amount of eluted silver ions and the residual viable cell count of all species grown on the antibacterial polymer: the lower the viable cell count, the higher the amount of eluted silver ions. This clearly indicated the antibacterial activity of silver ions. As the content of organic composite antibacterial agent added to the polymer increased from 0.5% to 1.5% in 0.5% increments, amount of eluted silver ions significantly increased with each 0.5% increment to exert greater antibacterial effect.

  3. Recrystallization of water in non-water-soluble (meth)acrylate polymers is not rare and is not devitrification.

    PubMed

    Gemmei-Ide, Makoto; Ohya, Atsushi; Kitano, Hiromi

    2012-02-16

    Change in the state of water sorbed into four kinds of non-water-soluble poly(meth)acrylates with low water content by temperature (T) perturbation was examined on the basis of T variable mid-infrared (MIR) spectroscopy. Many studies using differential scanning calorimetry suggested that there was no change in the state. T dependence of their MIR spectra, however, clearly demonstrated various changes in the state. Furthermore, recrystallization, which was crystallization during heating, was observed in all four polymers. The recrystallization observed in this study was not devitrification, which is the change in the state from glassy water to crystalline water, but vapor deposition during heating (vapor re-deposition). There were only two reports about recrystallization of water in a non-water-soluble polymer before this report; therefore, it might be considered to be a rare phenomenon. However, as demonstrated in this study, it is not a rare phenomenon. Recrystallization (vapor re-deposition) of water in the polymer matrices is related to a balance between flexibility and strength of the electrostatic interaction sites of polymer matrices but might not be related to the biocompatibility of polymers.

  4. Interaction of a cationic acrylate polymer with caseins: biphasic effect of Eudragit E100 on the stability of casein micelles.

    PubMed

    Ausar, Salvador F; Bianco, Ismael D; Castagna, Leonardo F; Alasino, Roxana V; Beltramo, Dante M

    2003-07-16

    When whole or skim milk was incubated with the cationic acrylate polymer Eudragit E100, a biphasic effect on the stability of casein micelles was observed. A precipitation phase was observed at low polymer/casein ratios. Strikingly, a solubilization phase of the aggregates was observed when the ratios of polymer/casein were increased. Purified alpha(s)-, beta-, and kappa-caseins or dephosphorylated caseins were equally precipitated and resolubilized by the cationic polymer, indicating no special selectivity for a particular protein or phosphate residue for these events. An increase in the size of the aggregates as the optimum precipitating amount of Eudragit E100 was reached suggests a crossbridging of the micelles by the polymer. The inhibition of the precipitation phase by high ionic strength indicates that electrostatic interactions play a critical role in complex formation. Furthermore, a dramatic reduction in size of the protein colloidal particles upon solubilization of the aggregates was observed by dynamic light scattering, indicating a dissociation of the micellar structure. Taken together, the results indicate that at low concentration Eudragit E100 may act as a precipitant of casein micelles, mainly by ionic interaction and at high concentration as an amphipathic agent, solubilizing casein micelles with a disruption of their internal structure.

  5. Behavior of Surface-Anchored Poly(acrylic acid) Brushes with Grafting Density Gradients on Solid Substrates: 1. Experiment

    SciTech Connect

    Wu,T.; Gong, P.; Szleifer, I.; Vicek, P.; Subr, V.; Genzer, J.

    2007-01-01

    We describe experiments pertaining to the formation of surface-anchored poly(acrylic acid) (PAA) brushes with a gradual variation of the PAA grafting densities on flat surfaces and provide detailed analysis of their properties. The PAA brush gradients are generated by first covering the substrate with a molecular gradient of the polymerization initiator, followed by the 'grafting from' polymerization of tert-butyl acrylate (tBA) from these substrate-bound initiator centers, and finally converting the PtBA into PAA. We use spectroscopic ellipsometry to measure the wet thickness of the grafted PAA chains in aqueous solutions at three different pH values (4, 5.8, and 10) and a series of ionic strengths (IS). Our measurements reveal that at low grafting densities, s, the wet thickness of the PAA brush (H) remains relatively constant, the polymers are in the mushroom regime. Beyond a certain value of s, the macromolecules enter the brush regime, where H increases with increasing s. For a given s, H exhibits a nonmonotonic behavior as a function of the IS. At large IS, the H is small because the charges along PAA are completely screened by the excess of the external salt. As IS decreases, the PAA enters the so-called salt brush (SB) regime, where H increases. At a certain value of IS, H reaches a maximum and then decreases again. The latter is a typical brush behavior in so-called osmotic brush (OB) regime. We provide detailed discussion of the behavior of the grafted PAA chains in the SB and OB regimes.

  6. Synthesis of carboxymethylcellulose/acrylic acid hydrogels with superabsorbent properties by radiation-initiated crosslinking

    NASA Astrophysics Data System (ADS)

    Fekete, Tamás; Borsa, Judit; Takács, Erzsébet; Wojnárovits, László

    2016-07-01

    Superabsorbent hydrogels were prepared by gamma irradiation from aqueous solutions of carboxymethylcellulose (CMC) and acrylic acid (AAc) with varying CMC:AAc ratio. By partially replacing the CMC with AAc the gelation increased and led to a higher gel fraction and lower water uptake. Moreover, the gelation required significantly milder synthesis conditions. Decreasing both the dose and the solute concentration in the presence of AAc led to gels with higher gel fraction and higher degree of swelling compared to pure CMC gels. Increasing the AAc content up to 10% proved to be very effective, while very high AAc content (over 50%) hindered the gelation process.

  7. Thermal destruction of copolymers of polypropylene glycol maleate with acrylic acid

    NASA Astrophysics Data System (ADS)

    Burkeev, M. Zh.; Sarsenbekova, A. Zh.; Tazhbaev, E. M.; Figurinene, I. V.

    2015-12-01

    The results from thermogravimetric and kinetic studies of copolymers of polypropylene glycol maleate with acrylic acid at different molar ratios are presented. The results from conventional thermogravimetric studies are used to determine kinetic characteristics of the process of thermal decomposition, i.e., activation energy and pre-exponential factors. These parameters are determined in three ways: the Achar, Freeman-Carroll, and Sharp-Wentworth methods. Activation energies calculated using all the three methods confirm the dependence of the destruction process on the ratio of components in a synthesized copolymer. It is shown that the obtained values of the activation energies and thermodynamic characteristics allow us to predict a copolymer's composition.

  8. Vinylpyrrolidone-co-(meth)acrylic acid inserts for ocular drug delivery: synthesis and evaluation.

    PubMed

    Barbu, Eugen; Sarvaiya, Indrajeetsinh; Green, Keith L; Nevell, Thomas G; Tsibouklis, John

    2005-09-15

    Copolymeric hydrogels constituting of vinylpyrrolidone and methacrylic or acrylic acid repeat units have been prepared and investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. The materials were synthesized by radical-induced polymerization in the presence of N,N'-methylenebisacrylamide crosslinker, and the influences of network composition and drug solubility upon the swelling properties, adhesion behavior, and drug release characteristics were studied. In vitro release experiments showed that some of these materials could be useful vehicles for the delivery of drugs such as pilocarpine or chloramphenicol, while in vivo studies, using the rabbit model, confirmed their high potential for the controlled ocular delivery of pilocarpine hydrochloride.

  9. Mechanism of poly(acrylic acid) acceleration of antithrombin inhibition of thrombin: implications for the design of novel heparin mimics.

    PubMed

    Monien, Bernhard H; Cheang, Kai I; Desai, Umesh R

    2005-08-11

    The bridging mechanism of antithrombin inhibition of thrombin is a dominant mechanism contributing a massive approximately 2500-fold acceleration in the reaction rate and is also a key reason for the clinical usage of heparin. Our recent study of the antithrombin-activating properties of a carboxylic acid-based polymer, poly(acrylic acid) (PAA), demonstrated a surprisingly high acceleration in thrombin inhibition (Monien, B. H.; Desai, U. R. J. Med. Chem. 2005, 48, 1269). To better understand this interesting phenomenon, we have studied the mechanism of PAA-dependent acceleration in antithrombin inhibition of thrombin. Competitive binding studies with low-affinity heparin and a heparin tetrasaccharide suggest that PAA binds antithrombin in both the pentasaccharide- and the extended heparin-binding sites, and these results are corroborated by molecular modeling. The salt-dependence of the K(D) of the PAA-antithrombin interaction shows the formation of five ionic interactions. In contrast, the contribution of nonionic forces is miniscule, resulting in an interaction that is significantly weaker than that observed for heparins. A bell-shaped profile of the observed rate constant for antithrombin inhibition of thrombin as a function of PAA concentration was observed, suggesting that inhibition proceeds through the "bridging" mechanism. The knowledge gained in this mechanistic study highlights important rules for the rational design of orally available heparin mimics.

  10. Poly(vinyl alcohol)/poly(acrylic acid) hydrogel coatings for improving electrode-neural tissue interface.

    PubMed

    Lu, Yi; Wang, Dingfang; Li, Tao; Zhao, Xueqing; Cao, Yuliang; Yang, Hanxi; Duan, Yanwen Y

    2009-09-01

    A major problem which hinders the applications of neural prostheses is the inconsistent performance caused by tissue responses during long-term implantation. The study investigated a new approach for improving the electrode-neural tissue interface. Hydrogel poly(vinyl alcohol)/poly(acrylic acid) interpenetrating polymer networks (PVA/PAA IPNs) were synthesized and tailored as coatings for poly(dimethylsiloxane) (PDMS) based neural electrodes with the aid of plasma pretreatment. Changes in the electrochemical impedance and maximum charge injection (Q(inj)) limits of the coated iridium oxide microelectrodes were negligible. Protein adsorption on PDMS was reduced by approximately 85% after coating. In the presence of nerve growth factor (NGF), neurite extension of rat pheochromocytoma (PC12) cells was clearly greater on PVA/PAA IPN films than on PDMS substrates. Furthermore, the tissue responses of PDMS implants coated with PVA/PAA IPN films were studied by 6-week implantation in the cortex of rats, which found that the glial fibrillary acidic protein (GFAP) immunoreactivity in animals (n=8) receiving coated implants was significantly lower (p<0.05) compared to that of uncoated implants (n=7) along the entire distance of 150 microm from the outer skirt to the implant interface. The coated film remained on the surface of the explanted implants, confirmed by scanning electron microscopy (SEM). All of these suggest the hydrogel coating is feasible and favorable to neural electrode applications.

  11. Characterization of bioactive RGD peptide immobilized onto poly(acrylic acid) thin films by plasma polymerization

    NASA Astrophysics Data System (ADS)

    Seo, Hyun Suk; Ko, Yeong Mu; Shim, Jae Won; Lim, Yun Kyong; Kook, Joong-Ki; Cho, Dong-Lyun; Kim, Byung Hoon

    2010-11-01

    Plasma surface modification can be used to improve the surface properties of commercial pure Ti by creating functional groups to produce bioactive materials with different surface topography. In this study, a titanium surface was modified with acrylic acid (AA) using a plasma treatment and immobilized with bioactive arginine-glycine-aspartic acid (RGD) peptide, which may accelerate the tissue integration of bone implants. Both terminals containing the -NH2 of RGD peptide sequence and -COOH of poly(acrylic acid) (PAA) thin film were combined with a covalent bond in the presence of 1-ethyl-3-3-dimethylaminopropyl carbodiimide (EDC). The chemical structure and morphology of AA film and RGD immobilized surface were investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All chemical analysis showed full coverage of the Ti substrate with the PAA thin film containing COOH groups and the RGD peptide. The MC3T3-E1 cells were cultured on each specimen, and the cell alkaline phosphatase (ALP) activity were examined. The surface-immobilized RGD peptide has a significantly increased the ALP activity of MC3T3-E1 cells. These results suggest that the RGD peptide immobilization on the titanium surface has an effect on osteoblastic differentiation of MC3T3-E1 cells and potential use in osteo-conductive bone implants.

  12. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  13. Multielement crystalline and pseudocrystalline oxides as efficient catalysts for the direct transformation of glycerol into acrylic acid.

    PubMed

    Chieregato, Alessandro; Soriano, M Dolores; García-González, Ester; Puglia, Giuseppe; Basile, Francesco; Concepción, Patricia; Bandinelli, Claudia; López Nieto, José M; Cavani, Fabrizio

    2015-01-01

    Glycerol surplus from biodiesel synthesis still represents a major problem in the biofuel production chain. Meanwhile, those in the acrylic acid market are looking for new processes that are able to offer viable alternatives to propylene-based production. Therefore, acrylic acid synthesis from glycerol could be an effective solution to both issues. Among the viable routes, one-pot synthesis theoretically represents the most efficient process, but it is also highly challenging from the catalyst design standpoint. A new class of complex W--Mo--V mixed-oxide catalysts, which are strongly related to the hexagonal tungsten bronze structure, able to directly convert glycerol into acrylic acid with yields of up to 51 % are reported.

  14. Polymers with customizable optical and rheological properties based on an epoxy acrylate based host-guest system

    NASA Astrophysics Data System (ADS)

    Gleiβner, U.; Hobmaier, J.; Hanemann, T.

    2015-09-01

    We report an easy way to tune the optical refractive index and viscosity of an epoxy acrylate-based host-guest system which can be used for the fabrication of optical waveguides. This allows fast and precise modification of the material system for different replication methods like hot embossing, inkjet printing or spin coating. To modify the refractive index n, an electron-rich organic dopant such as phenanthrene is added to a commercially available reactive polymer based resin. Moreover, changes in viscosity can be achieved by using a comonomer with suitable properties like benzyl methacrylate (BMA). We used a commercially available UV-curable epoxy acrylate based polymer matrix to investigate both the influence of phenanthrene and of benzyl methacrylate. First, mixtures of the pure polymer and benzyl methacrylate with a ratio of 30, 50, and 80 wt% benzyl methacrylate were produced. Second, phenanthrene was added with 5 and 10 wt%, respectively. All components were mixed and then polymerized by UV-irradiation and with a thermal postcure. The viscosity of the mixtures decreased at 20°C linearly from 1.5 Pa·s (30 wt%) to 8 mPa·s (80 wt%), whereas the refractive index decreased at the same time by a small amount from 1.570 to 1.568 (@589 nm, 20 °C). By adding phenanthrene refractive index increased to a maximum of n = 1.586 (50 wt% BMA, 10 wt% phenanthrene). Abbe numbers for the compositions without phenanthrene ranged from 35 to 38.

  15. Polymer matrix effects on acid generation

    NASA Astrophysics Data System (ADS)

    Fedynyshyn, Theodore H.; Goodman, Russell B.; Roberts, Jeanette

    2008-03-01

    We have measured the acid generation efficiency with EUV exposure of a PAG in different polymer matrixes representing the main classes of resist polymers as well as some previously described fluoropolymers for lithographic applications. The polymer matrix was found to have a significant effect on the acid generation efficiency of the PAG studied. A linear relationship exists between the absorbance of the resist and the acid generation efficiency. A second inverse relationship exists between Dill C and aromatic content of the resist polymer. It was shown that polymer sensitization is important for acid generation with EUV exposure and the Dill C parameter can be increased by up to five times with highly absorbing non-aromatic polymers, such as non-aromatic fluoropolymers, over an ESCAP polymer. The increase in the Dill C value will lead to an up to five fold increase in resist sensitivity. It is our expectation that these insights into the nature of polymer matrix effects on acid generation could lead to increased sensitivity for EUV resists.

  16. Acrylate-silica polymer nanocomposites obtained by sol-gel reactions. Structure, properties and scaffold preparation

    NASA Astrophysics Data System (ADS)

    Rodriguez Hernandez, Jose Carlos

    The manuscript deals with the development and characterization of hybrid materials based on poly(hydroxyethyl acrylate) (hereafter PHEA) reinforced by the inclusion of an amorphous silica phase. Both phases were simultaneously synthesized: the organic phase underwent a free radical polymerization reaction induced by the small addition of a thermal initiator (benzoyl peroxide); besides, silica (SiO2) was polymerized by an acid catalyzed sol-gel reaction of the silicon alkoxide tetraethoxysilane (hereafter TEOS). The sol-gel reaction conditions where silicon dioxide is formed influence the final silica structure: degree of condensation, linear versus branched intermediate species, average size, and so on. Some of the key parameters to control SiO2 topology on sol-gel derived composites include the catalyst nature used to increase the alkoxide reactivity (as well as its amount, pH), the available water to hydrolyze the silica precursor (referred to the stoichiometric amount needed to fully hydrolyze one molecule of TEOS) and ratio between the organic and inorganic phases on the final hybrid. The former (catalyst) and the second (water) conditions were fixed so as to synthesize materials with silica average sizes around tens of nanometres (nanocomposites); the latter, the relative ratio between organic and inorganic phases, was systematically changed. Besides, it is introduced a methodology to prepare a new kind of scaffolds made by nanocomposites whose pore morphology consists of a cylindrical channel mesh, which are perpendicular between themselves. The procedure is based on the well-known method of intermediate templates, this time prepared by a stack of woven fabrics which are first pressed and afterwards sintered. After the filling of the holes left inside the template by the monomeric solution and subsequent thermal polymerization, templates are removed by the selective solvent of the material it is made up. A suitable template preparation is found to be crucial

  17. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    PubMed

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  18. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  19. Characterization of thin-film deposition in a pulsed acrylic acid polymerizing discharge

    SciTech Connect

    Voronin, Sergey A.; Bradley, James W.; Fotea, Catalin; Zelzer, Mischa; Alexander, Morgan R.

    2007-07-15

    In this study, thin-film deposition in a pulsed rf polymerizing discharge (13.56 MHz) struck in acrylic acid has been investigated by mass spectrometry, x-ray photoelectron spectroscopy, and quartz crystal microbalance techniques. The experiment was conducted at a fixed acrylic acid pressure of 1.3 Pa and 'on' pulse duration of 0.1 ms, whereas the 'off' time was varied between 0 and 20 ms. The rf input power in the 'on' time and gas flow rate were varied between 10 and 50 W and 1.5 and 4.8 sccm (sccm denotes cubic centimeter per minute at STP), respectively. These changes of the discharge conditions resulted in large-scale progressive variations in film and gas-phase plasma composition. In particular, the -COOH functionality of the monomer was increasingly retained in the plasma-generated thin films as the duty cycle was lowered (i.e., with lowered time-averaged powers). The monomer retention reached its maximum value of 66% for 'off' times exceeding 5 ms, when the discharge was operating in the power-deficient regime. The results show that the film deposition rate is a strong function of the monomer flow rate, whereas -COOH retention is correlated to the amount of unfragmented monomer in the plasma, controlled by the applied power.

  20. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  1. Surface functionalization of an osteoconductive filler by plasma polymerization of poly(ε-caprolactone) and poly(acrylic acid) films

    NASA Astrophysics Data System (ADS)

    Petisco-Ferrero, S.; Sánchez-Ilárduya, M. B.; Díez, A.; Martín, L.; Meaurio Arrate, E.; Sarasua, J. R.

    2016-11-01

    One of the major limitations found in the use of nanocomposites based on synthetic hydroxyapatite and polymeric matrix for bone-tissue regeneration lies in the poor interfacial adhesion between the inorganic filler and the polymer matrix. The integrity of the nanocomposite is severely compromised since, on the one hand, high surface fillers tend to form aggregates and on the other, there is no chemical bonding between these two different categories of materials. Thus, customized surface functionalization stands as an effective route to improve the interfacial behaviour between particles and polymeric matrices. Amongst the current state of development of coating technologies, the high film-chemistry controllability offered by plasma polymerization technology enhances the synthesis of polymeric films from virtually any starting organic monomer. In this sense, the work presented here provides strong evidences of surface functionalization achieved by plasma polymerization starting respectively from ε-caprolactone and acrylic acid monomers. The chemistry of the deposited films has been descriptively analysed by XPS demonstrating outstanding retention of monomer functionalities and FTIR spectra of the deposited films revealed a high resemblance to those obtained by conventional synthesis. Results provided thereof are expected to significantly contribute to improve the interfacial behaviour in terms of matrix-reinforcement compatibilization, of crucial importance for bone-tissue engineering applications.

  2. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model.

    PubMed

    Mohamad, Najwa; Mohd Amin, Mohd Cairul Iqbal; Pandey, Manisha; Ahmad, Naveed; Rajab, Nor Fadilah

    2014-12-19

    Natural polymer-based hydrogels are of interest to health care professionals as wound dressings owing to their ability to absorb exudates and provide hydration for healing. The aims of this study were to develop and characterize bacterial cellulose/acrylic acid (BC/AA) hydrogels synthesized by electron beam irradiation and investigate its wound healing potential in an animal model. The BC/AA hydrogels were characterized by SEM, tensile strength, water absorptivity, and water vapor transmission rate (WVTR). The cytotoxicity of the hydrogels was investigated in L929 cells. Skin irritation and wound healing properties were evaluated in Sprague-Dawley rats. BC/AA hydrogels had a macroporous network structure, high swelling ratio (4000-6000% at 24h), and high WVTR (2175-2280 g/m(2)/day). The hydrogels were non-toxic in the cell viability assay. In vivo experiments indicated that hydrogels promoted faster wound-healing, enhanced epithelialization, and accelerated fibroblast proliferation compared to that in the control group. These results suggest that BC/AA hydrogels are promising materials for burn dressings.

  3. Surface modification with poly(sulfobetaine methacrylate-co-acrylic acid) to reduce fibrinogen adsorption, platelet adhesion, and plasma coagulation.

    PubMed

    Kuo, Wei-Hsuan; Wang, Meng-Jiy; Chien, Hsiu-Wen; Wei, Ta-Chin; Lee, Chiapyng; Tsai, Wei-Bor

    2011-12-12

    Zwitterionic sulfobetaine methacrylate (SBMA) polymers were known to possess excellent antifouling properties due to high hydration capacity and neutral charge surface. In this study, copolymers of SBMA and acrylic acid (AA) with a variety of compositions were synthesized and were immobilized onto polymeric substrates with layer-by-layer polyelectrolyte films via electrostatic interaction. The amounts of platelet adhesion and fibrinogen adsorption were determined to evaluate hemocompatibility of poly(SBMA-co-AA)-modified substrates. Among various deposition conditions by modulating SBMA ratio in the copolymers and pH of the deposition solution, poly(SBMA(56)-co-AA(44)) deposited at pH 3.0 possessed the best hemocompatibility. This work demonstrated that poly(SBMA-co-AA) copolymers adsorbed on polyelectrolyte-base films via electrostatic interaction improve hemocompatibility effectively and are applicable for various substrates including TCPS, PU, and PDMS. Furthermore, poly(SBMA-co-AA)-coated substrate possesses great durability under rigorous conditions. The preliminary hemocompatibility tests regarding platelet adhesion, fibrinogen adsorption, and plasma coagulation suggest the potential of this technique for the application to blood-contacting biomedical devices.

  4. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC).

    PubMed

    Ritter, Helmut; Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by (1)H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by (1)H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed.

  5. Amino-functionalized (meth)acryl polymers by use of a solvent-polarity sensitive protecting group (Br-t-BOC)

    PubMed Central

    Tabatabai, Monir; Herrmann, Markus

    2016-01-01

    Summary We describe the synthesis of bromo-tert-butyloxycarbonyl (Br-t-BOC)-amino-protected monomers 2-((1-bromo-2-methylpropan-2-yl)oxycarbonylamino)ethyl (meth)acrylate 3a,b. For this purpose, 2-isocyanatoethyl (meth)acrylate 1a,b was reacted with 1-bromo-2-methylpropan-2-ol (2a). The free radical polymerization of (Br-t-BOC)-aminoethyl (meth)acrylates 3a,b yielded poly((Br-t-BOC)-aminoethyl (meth)acrylate) 6a,b bearing protected amino side groups. The subsequent solvolysis of the Br-t-BOC function led to the new polymers poly(2-aminoethyl (meth)acrylate) 8a,b with protonated free amino groups. The monomers and the resulting polymers were thoroughly characterized by 1H NMR, IR, GPC and DSC methods. The kinetics of the deprotection step was followed by 1H NMR spectroscopy. The solvent polarity and neighboring group effects on the kinetics of deprotection are discussed. PMID:26977183

  6. Poly(acrylic acid) nanogel as a substrate for cellulase immobilization for hydrolysis of cellulose.

    PubMed

    Ahmed, Ibrahim Nasser; Chang, Ray; Tsai, Wei-Bor

    2017-04-01

    Cellulase was adsorbed onto poly(acrylic acid), PAA, nanogel, that was fabricated via inverse-phase microemulsion polymerization. The PAA nanogel was around 150nm in diameter and enriched with carboxyl groups. The surface charge of PAA nanogel depended on the pHs of the environment and affected the adsorption of cellulase. The temperature stability of the immobilized cellulase was greatly enhanced in comparison to the free enzyme, especially at high temperature. At 80°C, the immobilized cellulase remained ∼75% of hydrolytic activity, in comparison to ∼55% for the free cellulase. Furthermore, the immobilized cellulase was more active than the free enzyme in acidic buffers. The immobilized cellulase could be recovered via centrifugation and can be used repeatedly, although the recovery ratio needs further improvement. In conclusion, PAA nanogel has the potential in the application of enzyme immobilization for biochemical processes.

  7. Biodegradable polymers derived from amino acids.

    PubMed

    Khan, Wahid; Muthupandian, Saravanan; Farah, Shady; Kumar, Neeraj; Domb, Abraham J

    2011-12-08

    In the past three decades, the use of polymeric materials has increased dramatically for biomedical applications. Many α-amino acids derived biodegradable polymers have also been intensely developed with the main goal to obtain bio-mimicking functional biomaterials. Polymers derived from α-amino acids may offer many advantages, as these polymers: (a) can be modified further to introduce new functions such as imaging, molecular targeting and drugs can be conjugated chemically to these polymers, (b) can improve on better biological properties like cell migration, adhesion and biodegradability, (c) can improve on mechanical and thermal properties and (d) their degradation products are expected to be non-toxic and readily metabolized/excreted from the body. This manuscript focuses on biodegradable polymers derived from natural amino acids, their synthesis, biocompatibility and biomedical applications. It is observed that polymers derived from α-amino acids constitute a promising family of biodegradable materials. These provide innovative multifunctional polymers possessing amino acid side groups with biological activity and with innumerous potential applications.

  8. Magnetic pH-responsive poly(methacrylic acid-co-acrylic acid)-co-polyvinylpyrrolidone magnetic nano-carrier for controlled delivery of fluvastatin.

    PubMed

    Amoli-Diva, Mitra; Pourghazi, Kamyar; Mashhadizadeh, Mohammad Hossein

    2015-02-01

    A novel pH-responsive polymer, poly(methacrylic acid-co-acrylic acid)-co-polyvinyl-pyrrolidone (polymeric nano-carrier) was synthesized and used for encapsulation of 3-aminopropyl triethoxysilane modified Fe3O4 nanoparticles to prepare a new magnetic nano-carrier. The loading and release characteristics of both polymeric and magnetic nano-carriers were investigated using fluvastatin as the model drug. The loading behavior of the carriers was studied by varying concentration of fluvastatin in aqueous medium at 25°C and their release was followed spectrophotometrically (at 304 nm) at 37°C in three different solutions (buffered at pH1.2, 5.5 and 7.2) to simulate gastric and intestine medium. The effect of different parameters on the release of fluvastatin such as the amount of methacrylic acid monomer, cross-linker amount, initiator amount, and magnetic nanoparticles content was also studied. Considering the release kinetics and mechanism of the magnetic nanocarrier besides swelling behavior study of the polymeric nano-carrier reveal Fickian pattern and diffusion controlled mechanism for delivery of fluvastatin.

  9. Stability study of ambroxol hydrochloride sustained release pellets coated with acrylic polymer.

    PubMed

    Kibria, Golam; Islam, K M Ariful; Jalil, Reza-Ul

    2009-01-01

    The aim of the present study is to perform stability study of ambroxol hydrochloride sustained release pellets stored in different storage conditions. The drug loaded beads were prepared by extrusion-spheronization technology then coated with ammonio methacrylate copolymer type A (Eudragit RL 30 D) and ammonio methacrylate copolymer type B (Eudragit RS 30 D) at a ratio of 2:3 (8% polymer by weight on dry basis) in fluid bed coater (Wurster column). Stability study of pellets was performed as capsule dosage form in aluminium-PVDC packaging mode at room temperature, 40 degrees C, 40 degrees C/75%RH & 30 degrees C/70%RH for three months. After one month the shape & size of the pellets was changed in all conditions. The color of the pellets remains unchanged up to the 2nd month in all conditions except at 40 degrees C/75%RH and in this case some pellets become brown. But after 3rd month, pellets become brownish in all conditions except at room temperature. At RT the color of pellets remains unchanged during the stability study. The mean drug content decreased gradually in all conditions. In acid media the initial drug release was 23% but after 1st month it was decreased to 13-15% in all conditions. In the buffer media (pH 6.8) the drug release was increased a little bit in all conditions except at 30 degrees C/70%RH with the passes of storage time. Stability studies at 30 degrees C/70%RH revealed consistent drug release (f(2)>50) throughout the stability period. The physical properties of pellets as well as the in vitro release profile of the drug was found to be a function of the different storage conditions as well as the physico-chemical nature of the polymers.

  10. 78 FR 20029 - Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic Acid; Tolerance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... AGENCY 40 CFR Part 180 Castor Oil, Polymer With Adipic Acid, Linoleic Acid, Oleic Acid and Ricinoleic..., polymer with adipic acid, linoleic acid, oleic acid and ricinoleic acid (CAS Reg. No. 1357486-09- 9) when used as an inert ingredient in a pesticide formulation. Advance Polymer Technology submitted a...

  11. Determination of enrofloxacin by room-temperature phosphorimetry after solid phase extraction on an acrylic polymer sorbent

    NASA Astrophysics Data System (ADS)

    de Souza, Cabrini F.; Martins, Renata K. S.; da Silva, Andrea R.; da Cunha, Alessandra L. M. C.; Aucélio, Ricardo Q.

    A phosphorimetric method was developed to enable the determination of enrofloxacin using photochemical derivatization which was used to both improve detection limits and to minimize the uncertainty of measurements. Phosphorescence was induced on cellulose containing TlNO3. Absolute limit of detection at the ng range and linear analytical response over three orders of magnitude were achieved. A metrological study was made to obtain the combined uncertainty value and to identify that the precision was mainly affected by the changing of substrates when measuring the signal from each replicate. Pharmaceutical formulations containing enrofloxacin were successfully analyzed by the method and the results were similar to the ones achieved using a HPLC method. A solid phase extraction on an acrylic polymer was optimized to separate enrofloxacin from interferents such as diclofenac and other components from biological matrices, which allowed the successful use of the method in urine analysis.

  12. Evaluation of poly(acrylic acid-co-ethylhexyl acrylate) films for mucoadhesive transbuccal drug delivery: factors affecting the force of mucoadhesion.

    PubMed

    Shojaei, A H; Paulson, J; Honary, S

    2000-07-03

    Based on the premise that similar surface properties between the adhesive and the substrate would yield a strong adhesive bond, copolymers of acrylic acid (AA) and 2-ethylhexyl acrylate (EHA), P(AA-co-EHA), were designed and synthesized for buccal mucoadhesion. A series of linear copolymers with varying feed ratios of the two monomers (AA and EHA) were synthesized through free radical copolymerization at 69+/-0.5 degrees C using azobis(isobutyronitrile) (AIBN) as initiator. The reactions were carried out in THF under nitrogen for 24 h. The glass transition temperatures, T(g), of the copolymers were determined using DSC. The adhesion studies were conducted to determine the effects of copolymer composition, contact time between the substrate and the adhesive, and crosshead speed on mucoadhesive performance of the copolymer films using a computer interfaced Instron material testing system. The glass transition temperature of the copolymers decreased with increasing EHA content. Wet glass surface as substrate was shown not to be a good substrate model for adhesion determination studies. The copolymer composed of 46:54 mol.% AA:EHA (an almost 1:1 ratio in the repeat units) yielded the highest mucoadhesive force in contact with porcine buccal mucosa which was significantly greater (P<0.05) than that of poly(acrylic acid) (PAA) (used as positive control). The mucoadhesive force for all copolymers studied was significantly (P<0.05) greater than that of the negative control (backing material without copolymer film) except for the EHA homopolymer. Crosshead speed increased mucoadhesive force linearly and had a more pronounced effect on the mucoadhesive performance than time of contact between the adhesive and the substrate.

  13. Segregation of mass at the periphery of N -isopropylacrylamide-co-acrylic-acid microgels at high temperatures

    SciTech Connect

    Hyatt, John S.; Do, Changwoo; Hu, Xiaobo; Choi, Hong Sung; Kim, Jin Woong; Lyon, L. Andrew; Fernandez-Nieves, Alberto

    2015-09-29

    Here, we investigate poly(N-isopropylacrylamide) (pNIPAM) microgels randomly copolymerized with large mol % of protonated acrylic acid (AAc), finding that above the lower critical solution temperature the presence of the acid strongly disrupts pNIPAM's collapse, leading to unexpected new behavior at high temperatures. We see a dramatic increase in the ratio between the radius of gyration and the hydrodynamic radius above the theoretical value for homogeneous spheres, and a corresponding increase of the network length scale, which we attribute to the presence of a heterogeneous polymer distribution that forms due to frustration of pNIPAM's coil-to-globule transition by the AAc. Finally, we analyze this phenomenon using a Debye-Bueche-like scattering contribution as opposed to the Lorentzian term often used, interpreting the results in terms of mass segregation at the particle periphery.

  14. UV-induced graft polymerization of acrylic acid in the sub-micronchannels of oxidized PET track-etched membrane

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Mashentseva, Anastassiya A.; Güven, Olgun; Taltenov, Abzal A.

    2015-12-01

    In this article, we report on functionalization of track-etched membrane based on poly(ethylene terephthalate) (PET TeMs) oxidized by advanced oxidation systems and by grafting of acrylic acid using photochemical initiation technique for the purpose of increasing functionality thus expanding its practical application. Among advanced oxidation processes (H2O2/UV) system had been chosen to introduce maximum concentration of carboxylic acid groups. Benzophenone (BP) photo-initiator was first immobilized on the surfaces of cylindrical pores which were later filled with aq. acrylic acid solution. UV-irradiation from both sides of PET TeMs has led to the formation of grafted poly(acrylic acid) (PAA) chains inside the membrane sub-micronchannels. Effect of oxygen-rich surface of PET TeMs on BP adsorption and subsequent process of photo-induced graft polymerization of acrylic acid (AA) were studied by ESR. The surface of oxidized and AA grafted PET TeMs was characterized by UV-vis, ATR-FTIR, XPS spectroscopies and by SEM.

  15. Synergistic effect of additives including multifunctional acrylates in wood plastic composites

    NASA Astrophysics Data System (ADS)

    Khan, Mubarak A.; Idriss Ali, K. M.; Garnett, John L.

    1993-07-01

    Wood Plastic Composite (WPC) was prepared with simul (soft wood, density = 0.4g/cc) and butylmethacrylate (BMA) monomer using 10% methanol as the swelling agent. Effect of additives including (i) multifunctional acrylates such as tripropylene glycol diacrylate (TPGDA), trimethylol propane triacrylate (TMPTA) (ii) oligomer acrylates like the urethane (UA), epoxy (EA) and polyester (PEA) acrylates and (iii) N-vinyl pyrrolidone (NVP) was investigated using 1 to 3 Mrad dose at 0.8 Mrad/h. Synergistic increases in polymer loading yields was achieved in presence of the additives, particularly with the trifunctional acrylate (TMPTA). In addition, acid as well as urea were also used as co-additives and synergistic enhancement in yields of polymer loading were obtained. The synergistic polymer loading by acid addition causes substantial decrease in tensile strength of the composite; but other additives and co-additives increase both the polymer loading and the tensile strength in these systems.

  16. Radiation Synthesis of Poly(Starch/Acrylic acid) pH Sensitive Hydrogel for Rutin Controlled Release.

    PubMed

    Abdel Ghaffar, A M; Radwan, Rasha R; Ali, H E

    2016-11-01

    The copolymerization of starch with acrylic acid AAc using direct gamma radiation technique was performed. The effect of AAc concentrations on the gel (%) and swelling behavior were investigated. It is found that as AAc concentrations increase both gel(%) and swelling behavior increase. The Poly(starch/acrylic acid) (1:10wt%) hydrogel were selected due to its high swelling properties. From the in-vitro release study of the rutin-loaded hydrogel it is observed that it is strong pH-dependent release behavior, thus offering a maximum release as pH increased. The dextran sulphate sodium (DSS)-induced rat colitis model was treated with rutin-loaded Poly(starch/acrylic acid) (1:10wt%) hydrogel and free rutin solution by oral administration. Colitic control group showed a significant elevation in colon/body weight ratio, myeloperoxgidase activity, tumor necrosis factor, nitric oxide and malondialdehyde levels. However, glutathione level was reduced. It was found that the rutin-loaded hydrogel was more efficient than free rutin as evidenced by improvement of all measured parameters. These effects were confirmed histopathologically and may be attributed to its ability to control delivery of rutin to colon with minor early release of rutin before colon. The Poly(starch/acrylic acid) (1:10wt%) can represent a pivotal anti-inflammatory approach for patients with inflammatory bowel disease in order to increase efficacy and reduce toxicity.

  17. Structure-function properties of amylose-oleic acid inclusion complexes grafted with poly(methyl acrylate)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spherulites, produced by steam jet-cooking high-amylose starch and oleic acid, were grafted with methyl acrylate, both before and after removal of un-complexed amylopectin. For comparison, granular high-amylose corn starch was graft polymerized in a similar manner. The amount of grafted and ungrafte...

  18. A stencil printed, high energy density silver oxide battery using a novel photopolymerizable poly(acrylic acid) separator.

    PubMed

    Braam, Kyle; Subramanian, Vivek

    2015-01-27

    A novel photopolymerized poly(acrylic acid) separator is demonstrated in a printed, high-energy-density silver oxide battery. The printed battery demonstrates a high capacity of 5.4 mA h cm(-2) at a discharge current density of 2.75 mA cm(-2) (C/2 rate) while delivering good mechanical flexibility and robustness.

  19. Introduction of poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid)] branches onto starch for cotton warp sizing.

    PubMed

    Shen, Shiqi; Zhu, Zhifeng; Liu, Fengdan

    2016-03-15

    An attempt has been made to reveal the effect of amphoteric poly(2-acryloyloxyethyl trimethyl ammonium chloride-co-acrylic acid) [P(ATAC-co-AA)] branches grafted onto the backbones of starch upon the adhesion-to-cotton, film properties, and desizability of maize starch for cotton warp sizing. Starch-g-poly[(2-acryloyloxyethyl trimethyl ammonium chloride)-co-(acrylic acid) [S-g-P(ATAC-co-AA)] was prepared by the graft copolymerization of 2-acryloyloxyethyl trimethyl ammonium chloride (ATAC) and acrylic acid (AA) with acid-converted starch (ACS) in aqueous medium using Fe(2+)-H2O2 initiator. The adhesion was evaluated in term of bonding strength according to the FZ/T 15001-2008 whereas the film properties considered included tensile strength, work and percentage elongation at break. The evaluation was undertaken through the comparison of S-g-P(ATAC-co-AA) with ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride). It was found that the amphoteric branch was able to significantly improve the adhesion and mitigate the brittleness of starch film. Zeta potential of cooked S-g-P(ATAC-co-AA) paste, depending on the mole ratio of ATAC to AA units on P(ATAC-co-AA) branches, had substantial effect on the adhesion and desizability. Increasing the mole ratio raised the potential, which favored the adhesion but disfavored the removal of S-g-P(ATAC-co-AA) from sized cotton warps. Electroneutral S-g-P(ATAC-co-AA) was superior to negatively grafted starch in adhesion and to positively grafted starch in desizability. Generally, it showed better sizing property than ACS, starch-g-poly(acrylic acid), and starch-g-poly(2-acryloyloxyethyl trimethyl ammonium chloride), and had potential in the application of cotton warp sizing.

  20. Adherence of Candida albicans to glow-discharge modified acrylic denture base polymers.

    PubMed

    Yildirim, M S; Hasanreisoglu, U; Hasirci, N; Sultan, N

    2005-07-01

    An important aetiologic factor in the pathogenesis of denture-induced stomatitis, is the presence of numerous yeasts, usually Candida albicans, on the fitting surfaces of dentures. In the present study, effect of glow-discharge plasma, a technique applied to increase surface wettability of acrylic resins, on candidial adherence was evaluated. The durability of glow-discharge modification with saliva coating was also evaluated. Samples including control and experimental groups were prepared by using heat compression mould technique. To create a hydrophobicity gradient, experimental groups were exposed to a radiofrequency glow discharge in an O2 atmosphere under different discharge powers. To characterize the wetting properties, an expression of surface hydrophobicity, contact angle measurements were performed by the sessile drop method. The organism used was C. albicans (ATTC10321). Acrylic samples were coated with unstimulated whole saliva collected from a healthy man. The fungal suspension was poured on saliva-inoculated samples and incubated at 37 degrees for 2 h. The samples were then fixed with glutaraldehyde and Gram stained. Adhered candidial cells were examined by light microscope. Diffuse Reflectance FTIR (DRIFT) and scanning electron-microscope examinations were also performed to evaluate the surface composition and roughness of the test groups. Glow-discharge plasma was found to be an effective means of increasing surface wettability even with salivary pellicle. Amounts of candida cells adhered were significantly higher in all the plasma treated surfaces than the unmodified control group (P < 0.001). It was concluded that improving the surface wettability of acrylic resins by glow-discharge plasma in O2 atmosphere increased the adherence of the C. albicans.

  1. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment

    PubMed Central

    Hernández, Sebastián; Papp, Joseph K.; Bhattacharyya, Dibakar

    2014-01-01

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30–60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed. PMID:24954975

  2. Iron-Based Redox Polymerization of Acrylic Acid for Direct Synthesis of Hydrogel/Membranes, and Metal Nanoparticles for Water Treatment.

    PubMed

    Hernández, Sebastián; Papp, Joseph K; Bhattacharyya, Dibakar

    2014-01-22

    Functionalized polymer materials with ion exchange groups and integration of nano-structured materials is an emerging area for catalytic and water pollution control applications. The polymerization of materials such as acrylic acid often requires persulfate initiator and a high temperature start. However, is generally known that metal ions accelerate such polymerizations starting from room temperature. If the metal is properly selected, it can be used in environmental applications adding two advantages simultaneously. This paper deals with this by polymerizing acrylic acid using iron as accelerant and its subsequent use for nanoparticle synthesis in hydrogel and PVDF membranes. Characterizations of hydrogel, membranes and nanoparticles were carried out with different techniques. Nanoparticles sizes of 30-60 nm were synthesized. Permeability and swelling measurements demonstrate an inverse relationship between hydrogel mesh size (6.30 to 8.34 nm) and membrane pores (222 to 110 nm). Quantitative reduction of trichloroethylene/chloride generation by Fe/Pd nanoparticles in hydrogel/membrane platforms was also performed.

  3. Synthesis and characterization of zinc chloride containing poly(acrylic acid) hydrogel by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Park, Jong-Seok; Kuang, Jia; Gwon, Hui-Jeong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Seob Khil, Myung; Nho, Young-Chang

    2013-07-01

    In this study, the characterization of zinc chloride incorporated into a poly(acrylic acid) (PAAc) hydrogel prepared by gamma-ray irradiation was investigated. Zinc chloride powder with different concentrations was dissolved in the PAAc solution, and it was crosslinked with gamma-ray irradiation. The effects of various parameters such as zinc ion concentration and irradiation doses on characteristics of the hydrogel formed were investigated in detail for obtaining an antibacterial wound dressing. In addition, the gel content, pH-sensitive (pH 4 or 7) swelling ratio, and UV-vis absorption spectra of the zinc particles in the hydrogels were characterized. Moreover, antibacterial properties of these new materials against Staphylococcus aureus and Escherichia coli strains were observed on solid growth media. The antibacterial tests indicated that the zinc chloride containing PAAc hydrogels have good antibacterial activity.

  4. Radiation-induced grafting of diallyldimethylammonium chloride onto acrylic acid grafted polyethylene

    NASA Astrophysics Data System (ADS)

    Francis, Sanju; Dhanawade, B. R.; Mitra, D.; Varshney, Lalit; Sabharwal, Sunil

    2009-01-01

    Diallyldimethylammonium chloride (DADMAC) was grafted onto polyethylene (PE) films by a double grafting procedure. The PE film was initially modified by grafting acrylic acid (AA), through a mutual irradiation method. AA-g-PE film, thus obtained was subjected to subsequent radiation grafting reaction of DADMAC, to give a DADMAC-g-AA-g-PE film having a comb-type structure. The influence of different conditions, such as the extent of AA grafting, DADMAC concentration, absorbed dose and dose rate, on the grafting yield of DADMAC was investigated. A maximum DADMAC grafting of 30% was achieved. The equilibrium degree of swelling (EDS) of the grafted films were gravimetrically determined. TGA and FT-IR techniques were employed to characterize the grafted PE films.

  5. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  6. Poly (acrylic acid)-capped lanthanide-doped BaFCl nanocrystals: synthesis and optical properties.

    PubMed

    Ju, Qiang; Luo, Wenqin; Liu, Yongsheng; Zhu, Haomiao; Li, Renfu; Chen, Xueyuan

    2010-07-01

    Water-soluble lanthanide-doped BaFCl nanophosphors with the surface functionalized by a layer of poly (acrylic acid) are synthesized via a facile one-step solvothermal method. Intense long-lived luminescence is realized from visible to near-infrared (NIR) by doping with different lanthanide ions. The emission and excitation spectra of Eu(3+) indicate that the doped lanthanide ions occupy a site close to the surface of the nanoparticles. Strong NIR emissions of Nd(3+) and green luminescence of Tb(3+) using Ce(3+) as sensitizers are also achieved in BaFCl nanoparticles. The synthesized nanoparticles featuring long-lived luminescence in either visible or NIR regions may have potential applications as luminescent labels for biological applications.

  7. Study on swelling behaviour of hydrogel based on acrylic acid and pectin from dragon fruit

    NASA Astrophysics Data System (ADS)

    Abdullah, Mohd Fadzlanor; Lazim, Azwani Mat

    2014-09-01

    Biocompatible hydrogel based on acrylic acid (AA) and pectin was synthesized using gamma irradiation technique. AA was grafted onto pectin backbone that was extracted from dragon fruit under pH 3.5 and extracts and ethanol ratios (ER) 1:0.5. The optimum hydrogel system with high swelling capacity was obtained by varying the dose of radiation and ratio of pectin:AA. FTIR-ATR spectroscopy was used to verify the interaction while thermal properties were analyzed by TGA and DSC. Swelling studies was carried out in aqueous solutions with different pH values as to determine the pH sensitivity. The results show that the hydrogel with a ratio of 2:3 (pectin:AA) and 30 kGy radiation dose has the highest swelling properties at pH of 10.

  8. Corrosion Inhibitive Evaluation of an Environmentally Friendly Water-Base Acrylic Terpolymer on Mild Steel in Hydrochloric Acid Media

    NASA Astrophysics Data System (ADS)

    Azghandi, Mojtaba Vakili; Davoodi, Ali; Farzi, Gholam Ali; Kosari, Ali

    2013-12-01

    The corrosion inhibitive performance of an environmentally friendly water-base acrylic terpolymer [methyl methacrylate/Butyl Acrylate/Acrylic acid (ATP)] on mild steel in 1 M HCl was investigated by alternating current and direct current electrochemical techniques and the quantum chemical method. An efficiency of more than 97 pct was obtained with 0.8 mmol/L ATP. The increase in inhibitor concentration and immersion time has a positive effect, while the temperature influence is negligible on the inhibitor efficiency. The present terpolymer obeys the Langmuir isotherm, and thermodynamic calculation reveals a chemisorption type on the surface. Density functional calculations showed that the lone pairs of electrons of oxygen in the structure of three monomers are suitable sites to adsorb onto the metal surface. Finally, in the presence of ATP, a decrease in surface roughness and corrosion attacks was demonstrated by atomic force microscopy and optical microscopy examinations, respectively.

  9. Feasibility of Crosslinked Acrylic Shape Memory Polymer for a Thrombectomy Device

    PubMed Central

    Muschenborn, Andrea D.; Hearon, Keith; Volk, Brent L.; Conway, Jordan W.; Maitland, Duncan J.

    2014-01-01

    Purpose To evaluate the feasibility of utilizing a system of SMP acrylates for a thrombectomy device by determining an optimal crosslink density that provides both adequate recovery stress for blood clot removal and sufficient strain capacity to enable catheter delivery. Methods Four thermoset acrylic copolymers containing benzylmethacrylate (BzMA) and bisphenol A ethoxylate diacrylate (Mn~512, BPA) were designed with differing thermomechanical properties. Finite element analysis (FEA) was performed to ensure that the materials were able to undergo the strains imposed by crimping, and fabricated devices were subjected to force-monitored crimping, constrained recovery, and bench-top thrombectomy. Results Devices with 25 and 35 mole% BPA exhibited the highest recovery stress and the highest brittle response as they broke upon constrained recovery. On the contrary, the 15 mole % BPA devices endured all testing and their recovery stress (5 kPa) enabled successful bench-top thrombectomy in 2/3 times, compared to 0/3 for the devices with the lowest BPA content. Conclusion While the 15 mole% BPA devices provided the best trade-off between device integrity and performance, other SMP systems that offer recovery stresses above 5 kPa without increasing brittleness to the point of causing device failure would be more suitable for this application. PMID:25414549

  10. Degradable, pH-sensitive, membrane-destabilizing, comb-like polymers for intracellular delivery of nucleic acids.

    PubMed

    Lin, Yen-Ling; Jiang, Guohua; Birrell, Lisa K; El-Sayed, Mohamed E H

    2010-09-01

    This report describes the design and synthesis of a new series of degradable, pH-sensitive, membrane-destabilizing, comb-like polymers that can enhance the intracellular delivery of therapeutic nucleic acids. These comb-like polymers are based on a diblock polymer backbone where the first block is a copolymer of pH-sensitive ethyl acrylic acid (EAA) monomers and hydrophobic butyl methacrylate (BMA) or hexyl methacrylate monomers. The second block is a homopolymer of N-acryloxy succinimide (NASI) or ss-benzyl l-aspartate N-carboxy-anhydride (BLA-NCA) monomers, which are functionalized to allow controlled grafting of hydrophobic HMA and cationic trimethyl aminoethyl methacrylate (TMAEMA) copolymers via acid-labile hydrazone linkages. These comb-like polymers displayed high hemolytic activity in acidic solutions, which increased with the increase in polymer concentration. All comb-like polymers degraded into small fragments upon incubation in an acidic solution (pH 5.8) due to hydrolysis of the hydrazone linkages connecting the hydrophobic/cationic grafts to the polymer backbone. Comb-like polymers successfully complexed anti-GAPDH siRNA molecules into serum- and nuclease-stable particles, which successfully silenced GAPDH expression at both the mRNA and protein levels. These results collectively indicate the potential of these new comb-like polymers to serve as vehicles for effective intracellular delivery of therapeutic nucleic acids.

  11. Effects of Acid and Ionic Aggregation on the Polymer Dynamics in Precise Ionomers

    NASA Astrophysics Data System (ADS)

    Middleton, Luri Robert; Tarver, Jacob; Azoulay, Jason; Murtagh, Dustin; Wagener, Ken; Cordaro, Joseph; Tyagi, Madhu; Soles, Christopher; Winey, Karen

    2015-03-01

    Interest in acid- and ion-containing polymers arises from applications as single-ion conductors for selectively transporting a counter ion of the opposite charge for energy applications. The relatively low dielectric constant of the organic polymer and strong ionic interactions leads to ionic aggregation. Ion aggregation anchors the polymer chain, decreasing the mobility of the ion and the polymer. In precise poly(ethylene-acrylic acid) copolymers and ionomers (pxAA-%Li) we report on the effect of carbon spacer length (x =9, 15, 21) between the acid groups and the effect of the percent of acid groups neutralized with Li on backbone dynamics. The polymer backbone motion is investigated through quasi-elastic neutron scattering measurements. At nano-second timescales a single relaxation fits the data. Systematic changes in dynamics were observed with increasing neutralization percent where polymer dynamics are confined due to anchoring effects. Intriguingly, systematic changes in the spacer lengths did not result in similar behavior. At pico-second timescales multiple overlapping relaxations are observed but even at these short timescales systematic changes in atomic motion are observed with ion content. NSF-DMR-1103858.

  12. Risk Assessment of residual monomer migrating from acrylic polymers and causing Allergic Contact Dermatitis during normal handling and use.

    PubMed

    Pemberton, Mark A; Lohmann, Barbara S

    2014-08-01

    Acrylic, Poly Methyl Methacrylate (PMMA) based polymers are found in many industrial, professional and consumer products and are of low toxicity, but do contain very low levels of residual monomers and process chemicals that can leach out during handling and use. Methyl Methacrylate, the principle monomer is of low toxicity, but is a recognized weak skin sensitizer. The risk of induction of contact allergy in consumers was determined using a method based upon the Exposure-based Quantitative Risk Assessment approach developed for fragrance ingredients. The No Expected Sensitization Induction Level (NESIL) was based on the threshold to induction of sensitization (EC3) in the Local Lymph Node Assay (LLNA) since no Human Repeat Insult Patch Test (HRIPT) data were available. Categorical estimation of Consumer Exposure Level was substituted with a worst case assumption based upon the quantitative determination of MMA monomer migration into simulants. Application of default and Chemical-Specific Adjustment Factors results in a Risk Characterization Ratio (RCR) of 10,000 and a high Margin of Safety for induction of Allergic Contact Dermatitis (ACD) in consumers handling polymers under conservative exposure conditions. Although there are no data available to derive a RCR for elicitation of ACD it is likely to be lower than that for induction.

  13. One-step formation of multiple Pickering emulsions stabilized by self-assembled poly(dodecyl acrylate-co-acrylic acid) nanoparticles.

    PubMed

    Zhu, Ye; Sun, Jianhua; Yi, Chenglin; Wei, Wei; Liu, Xiaoya

    2016-09-13

    In this study, a one-step generation of stable multiple Pickering emulsions using pH-responsive polymeric nanoparticles as the only emulsifier was reported. The polymeric nanoparticles were self-assembled from an amphiphilic random copolymer poly(dodecyl acrylate-co-acrylic acid) (PDAA), and the effect of the copolymer content on the size and morphology of PDAA nanoparticles was determined by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The emulsification study of PDAA nanoparticles revealed that multiple Pickering emulsions could be generated through a one-step phase inversion process by using PDAA nanoparticles as the stabilizer. Moreover, the emulsification performance of PDAA nanoparticles at different pH values demonstrated that multiple emulsions with long-time stability could only be stabilized by PDAA nanoparticles at pH 5.5, indicating that the surface wettability of PDAA nanoparticles plays a crucial role in determining the type and stability of the prepared Pickering emulsions. Additionally, the polarity of oil does not affect the emulsification performance of PDAA nanoparticles, and a wide range of oils could be used as the oil phase to prepare multiple emulsions. These results demonstrated that multiple Pickering emulsions could be generated via the one-step emulsification process using self-assembled polymeric nanoparticles as the stabilizer, and the prepared multiple emulsions have promising potential to be applied in the cosmetic, medical, and food industries.

  14. Reduced plaque accumulation on hydrocarbon thin film deposited on restorative acrylic polymers.

    PubMed

    Bellanda, M; Cassinelli, C; Morra, M

    1997-08-01

    The deposition of a thin polymeric film from ethylene plasma was used to modify the surface properties of acrylic teeth, commonly used in the dental practice for crown and bridge restorations. The effects of the surface modification process on the surface composition, morphology, and energetics were evaluated by electron spectroscopy for chemical analysis, atomic force microscopy, and contact angle measurement respectively. Plaque accumulation on the plasma-coated and untreated material was evaluated in in vivo experiments, in which the same patient received conventional and plasma-coated restorations. The hydrocarbon-like surface of the plasma-coated restoration remained remarkably free from plaque, even in the absence of brushing. On the other hand, plaque accumulation was observed on the unmodified restoration. Results are discussed according to recent theories on bioadhesive phenomena.

  15. Preparation and in vitro release studies of ibuprofen-loaded films and microspheres made from graft copolymers of poly(L-lactic acid) on acrylic backbones.

    PubMed

    Gallardo, A; Eguiburu, J L; Fernandez Berridi, M J; San Román, J

    1998-11-13

    The present article describes the preparation of films of various thickness and microspheres from new resorbable graft copolymers of polyacrylic (methyl methacrylate, MMA, or methyl acrylate, MA), or polyvinylic (vinyl pyrrolidone, VP) chains and poly(l-lactic acid) (PLLA) side blocks charged with 15-20% of ibuprofen (IBU) (a non-steroidic antiinflammatory agent). In the case of MMA-LLA and MA-LLA graft copolymers the release of IBU in buffered solution is modulated by the flexibility of the copolymer chains in a first step of one to two days and in a second step by the diffusive properties of the system as well as by the biodegradation of the polymers. The VP-PLLA graft copolymers are highly hydrophilic and the release of IBU is modulated by the diffusion of the drug through the swollen system. Specific interactions between the IBU molecules and the pyrrolidone rings also participate in the kinetic behaviour of the release process.

  16. Controlled release of insulin through hydrogels of (acrylic acid)/trimethylolpropane triacrylate

    NASA Astrophysics Data System (ADS)

    Raymundi, Vanessa C.; Aguiar, Leandro G.; Souza, Esmar F.; Sato, Ana C.; Giudici, Reinaldo

    2016-10-01

    Hydrogels of poly(acrylic acid) crosslinked with trimethylolpropane triacrylate (TMPTA) were produced through solution polymerization. After these hydrogels were loaded with insulin solution, they evidenced swelling. Experiments of controlled release of insulin through the hydrogels were performed in acidic and basic media in order to evaluate the rates of release of this protein provided by the referred copolymer. Additionally, a mathematical description of the system based on differential mass balance was made and simulated in MATLAB. The model consists of a system of differential equations which was solved numerically. As expected, the values of swelling index at the equilibrium and the rates of insulin release were inversely proportional to the degree of crosslinking. The mathematical model provided reliable predictions of release profiles with fitted values of diffusivity of insulin through the hydrogels in the range of 6.0 × 10-7-1.3 × 10-6 cm2/s. The fitted and experimental values of partition coefficients of insulin between the hydrogel and the medium were lower for basic media, pointing out good affinity of insulin for these media in comparison to the acidic solutions.

  17. Poly(Acrylic Acid-b-Styrene) Amphiphilic Multiblock Copolymers as Building Blocks for the Assembly of Discrete Nanoparticles

    PubMed Central

    Greene, Anna C.; Zhu, Jiahua; Pochan, Darrin J.; Jia, Xinqiao; Kiick, Kristi L.

    2011-01-01

    In order to expand the utility of current polymeric micellar systems, we have developed amphiphilic multiblock copolymers containing alternating blocks of poly(acrylic acid) and poly(styrene). Heterotelechelic poly(tert-butyl acrylate-b-styrene) diblock copolymers containing an α-alkyne and an ω-azide were synthesized by atom transfer radical polymerization (ATRP), allowing control over the molecular weight while maintaining narrow polydispersity indices. The multiblock copolymers were constructed by copper-catalyzed azide-alkyne cycloaddition of azide-alkyne end functional diblock copolymers which were then characterized by 1H NMR, FT-IR and SEC. The tert-butyl moieties of the poly(tert-butyl acrylate-b-styrene) multiblock copolymers were easily removed to form the poly(acrylic acid-b-styrene) multiblock copolymer ((PAA-PS)9), which contained up to 9 diblock repeats. The amphiphilic multiblock (PAA-PS)9 (Mn = 73.3 kg/mol) was self-assembled by dissolution into tetrahydrofuran and extensive dialysis against deionized water for 4 days. The critical micelle concentration (CMC) for (PAA-PS)9 was determined by fluorescence spectroscopy using pyrene as a fluorescent probe and was found to be very low at 2 × 10-4 mg/mL. The (PAA-PS)9 multiblock was also analyzed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The hydrodynamic diameter of the particles was found to be 11 nm. Discrete spherical particles were observed by TEM with an average particle diameter of 14 nm. The poly(acrylic acid) periphery of the spherical particles should allow for future conjugation of biomolecules. PMID:21552373

  18. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.

    PubMed

    Vo, Duc Quy; Shin, Eun Woo; Kim, Jae-Seong; Kim, Sunwook

    2010-11-16

    The preparation of AcA-stabilized Ag nanoparticles and its application to make highly conductive thin films are reported. The AcA-stabilized Ag nanoparticles were prepared through a ligand exchange of original oleylamine (OLA)-coated Ag nanoparticles with acrylic acid (AcA), which acted as both an antisolvent and a modifying ligand during the ligand exchange process. Efficiencies of the ligand exchange as well as the properties of Ag nanoparticles were analyzed using various techniques including TEM, FT-IR, XPS, TGA, and UV-vis methods. The thin films were fabricated by annealing spin-coated AcA-stabilized Ag nanoparticles. Further, the effects of annealing temperature, time, and film thickness on both the film morphology and electrical conductivity have been investigated. In this work, due to the low boiling temperature of stabilizer (AcA) and adjustment of annealing conditions, high electrical conductivity was obtained for the Ag thin films. For example, when annealing at 175 °C for 30 min, a 70 nm thick film showed a maximum electrical conductivity of 1.12 × 10(5) S cm(-1). A conductive layer on a flexible polymer substrate (e.g., PET) sheet has been successfully prepared by annealing a spin-coated film at 140 °C for 30 min. The combined advantages of long-term stability of the AcA-stabilized Ag nanoparticles, low annealing temperature, and high conductivity of the prepared thin films make this relatively simple method attractive for applications in flexible electronics.

  19. Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid.

    PubMed

    Yan, Bo; Tao, Li-Zhi; Liang, Yu; Xu, Bo-Qing

    2014-06-01

    Gas-phase dehydration of lactic acid (LA) to acrylic acid (AA) was investigated over alkali-exchanged β zeolite (M(x)Na(1-x)β, M=Li(+), K(+), Rb(+), or Cs(+)) of different exchange degrees (x). The reaction was conducted under varying conditions to understand the catalyst selectivity for AA production and trends of byproduct formation. The nature and exchange degree of M(+) were found to be critical for the acid-base properties and catalytic performance of the exchanged zeolite. K(x)Na(1-x)β of x=0.94 appeared to be the best performing catalyst whereas Li(x)Na(1-x)β and Naβ were the poorest in terms of AA selectivity and yield. The AA yield as high as 61 mol % (selectivity: 64 mol %) could be obtained under optimized reaction conditions for up to 8 h over the best performing K0.94Na0.06β. The acid and base properties of the catalysts were probed, respectively by temperature-programmed desorption (TPD) of adsorbed NH3 and CO2, and were related to the electrostatic potentials of the alkali ions in the zeolite, which provided a basis for the discussion of the acid-base catalysis for sustainable AA formation from LA.

  20. Removal of lead from aqueous solutions by a poly(acrylic acid)/bentonite nanocomposite

    NASA Astrophysics Data System (ADS)

    Rafiei, H. R.; Shirvani, M.; Ogunseitan, O. A.

    2016-11-01

    We synthesized a novel poly acrylic acid-organobentonite (PAA-Bent) nanocomposite by successive intercalation of cetyltrimethylammonium (CTA) surfactant and polyacrylic acid (PAA) into the bentonite (Bent) interlayer spaces. The surfactant-modified clay (CTA-Bent) and PAA-Bent nanocomposite were characterized by XRD and FT-IR techniques and used for removal of Pb(II) from aqueous solution. The XRD results confirmed the intercalation of CTA and PAA into the interlayer spaces of the bentonite increasing the d 001 spacing of the clay from 12.2 up to 38.9 Å. FT-IR analysis of the modified clay samples revealed the functional groups of CTA and PAA constituents alighted on the bentonite surfaces. Maximum Pb sorption capacity of the Bent and PAA-Bent predicted by Langmuir model were 52.3 and 93.0 mg g-1, respectively, showing that the synthesized nanocomposite superiorly adsorbed Pb from the solution as compared to the Bent. The maximum Pb removal efficiency of 99.6 % was achieved by the nanocomposite at 25 °C with <30 min contact time for a 7.5 g L-1 solid-to-liquid ratio and an initial metal concentration of 400 mg L-1. The results indicated that PAA-Bent nanocomposite can be efficiently used as a superadsorbent for the removal of Pb(II) from aqueous solution.

  1. Development and characterization of high refractive index and high scattering acrylate polymer layers

    NASA Astrophysics Data System (ADS)

    Eiselt, Thomas; Gomard, Guillaume; Preinfalk, Jan; Gleißner, Uwe; Lemmer, Uli; Hanemann, Thomas

    2016-11-01

    In this work, we develop a wet-processable scattering layer exhibiting a high refractive index that can be used in organic light-emitting diodes for light outcoupling purposes. The composite layers contain an acrylate casting resin, benzylmethacrylate, and phenanthrene, which is employed to increase the refractive index. The mixtures are first rheologically characterized and then polymerized with heat and UV radiation. For the refractive index measurements, the polymerized samples require a planar surface without air bubbles. To produce flat samples, a special construction consisting of a glass plate, a teflon sheet, a silicone ring (PDMS mold), another teflon sheet, and another glass plate is developed. Glue clamps are used to hold the construction together. The refractive index of the samples can be increased from 1.565 to 1.585 at 20°C at a wavelength of 589 nm following the addition of 20 wt% phenanthrene. A master mixture with a high refractive index is taken for further experiments. Nanoscaled titanium dioxide is added and dispersed into the master mixture and then spin coated on a glass substrate. These layers are optically characterized. Most of the presented layers present the expected haze of over 50%.

  2. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  3. Application of Targeted Molecular and Material Property Optimization to Bacterial Attachment-Resistant (Meth)acrylate Polymers.

    PubMed

    Adlington, Kevin; Nguyen, Nam T; Eaves, Elizabeth; Yang, Jing; Chang, Chien-Yi; Li, Jianing; Gower, Alexandra L; Stimpson, Amy; Anderson, Daniel G; Langer, Robert; Davies, Martyn C; Hook, Andrew L; Williams, Paul; Alexander, Morgan R; Irvine, Derek J

    2016-09-12

    Developing medical devices that resist bacterial attachment and subsequent biofilm formation is highly desirable. In this paper, we report the optimization of the molecular structure and thus material properties of a range of (meth)acrylate copolymers which contain monomers reported to deliver bacterial resistance to surfaces. This optimization allows such monomers to be employed within novel coatings to reduce bacterial attachment to silicone urinary catheters. We show that the flexibility of copolymers can be tuned to match that of the silicone catheter substrate, by copolymerizing these polymers with a lower Tg monomer such that it passes the flexing fatigue tests as coatings upon catheters, that the homopolymers failed. Furthermore, the Tg values of the copolymers are shown to be readily estimated by the Fox equation. The bacterial resistance performance of these copolymers were typically found to be better than the neat silicone or a commercial silver containing hydrogel surface, when the monomer feed contained only 25 v% of the "hit" monomer. The method of initiation (either photo or thermal) was shown not to affect the bacterial resistance of the copolymers. Optimized synthesis conditions to ensure that the correct copolymer composition and to prevent the onset of gelation are detailed.

  4. Drug release from interpenetrating polymer networks based on poly(ethylene glycol) methyl ether acrylate and gelatin.

    PubMed

    Ding, Frank; Hsu, S-H; Wu, D-H; Chiang, W-Y

    2009-01-01

    In order to develop new materials for biomedical and pharmaceutical applications, interpenetrating polymer networks (IPNs) based on poly(ethylene glycol) methyl ether acrylate (PEGMEA) and gelatin were synthesized. These two materials were cross-linked sequentially using N,N'-methylene bisacrylamide (NMBA) and glutaraldehyde (Glu). Two series of IPNs gels were synthesized by applying different amounts of PEGMEA and gelatin in the initial feed. Sequential IPNs were prepared by polymerizing and cross-linking PEGMEA in the presence of gelatin using redox initiators (e.g., ammonium peroxydisulfate (APS) and N,N,N',N'-tetramethyl ethylenediamine (TEMED)), as well as NMBA as the cross-linking agent. Gelatin in firm gel was then cross-linked with 1% glutaraldehyde. The swelling kinetics, mechanical properties and drug-release behavior of these IPNs were analyzed. The surface properties were examined by scanning electron microscopy. The results indicated that the swelling ratio decreased with an increase in the content of both PEGMEA and gelatin in the IPNs. PEGMEA/gelatin-based full-IPNs had a significantly higher shear modulus (G) and cross-linking density (rho) when the content of PEGMEA was increased. The drug loading was very high due to the full-IPN structure. The drug-release velocity was mainly affected by the content of PEGMEA.

  5. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates.

  6. Discovery and SARs of Trans-3-Aryl Acrylic Acids and Their Analogs as Novel Anti- Tobacco Mosaic Virus (TMV) Agents

    PubMed Central

    Wu, Meng; Wang, Ziwen; Meng, Chuisong; Wang, Kailiang; Hu, Yanna; Wang, Lizhong; Wang, Qingmin

    2013-01-01

    A series of trans-3-aryl acrylic acids 1–27 and their derivatives 28–34 were prepared and evaluated for their antiviral activity against tobacco mosaic virus (TMV) for the first time. The bioassay results showed that most of these compounds exhibited good antiviral activity against TMV, of which compounds 1, 5, 6, 20, 27 and 34 exhibited significantly higher activity against TMV than commercial Ribavirin both in vitro and in vivo. Furthermore, these compounds have more simple structure than commercial Ribavirin, and can be synthesized more efficiently. These new findings demonstrate that trans-3-aryl acrylic acids and their derivatives represent a new template for antiviral studies and could be considered for novel therapy against plant virus infection. PMID:23418574

  7. Removal of dorzolamide from biomedical wastewaters with adsorption onto graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite.

    PubMed

    Kyzas, George Z; Bikiaris, Dimitrios N; Seredych, Mykola; Bandosz, Teresa J; Deliyanni, Eleni A

    2014-01-01

    A novel graphite oxide/poly(acrylic acid) grafted chitosan nanocomposite (GO/CSA) was prepared and used as biosorbent for the removal of pharmaceutical compound (dorzolamide) from biomedical synthetic wastewaters. The performance was evaluated taking into account pH, kinetics and thermodynamics of adsorption. GO/CSA presented higher adsorption capacity in comparison with the parent materials (graphite oxide and poly(acrylic acid) grafted chitosan). All adsorbents prepared were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and potentiometric titration. The surface features were also evaluated after the dorzolamide adsorption in order to derive the adsorption mechanism. It was suggested that the reactive groups of GO and CSA can interact with the amino groups of dorzolamide and mainly the abundance of carboxyl groups of GO/CSA composite was the main reason for its enhanced adsorption capacity.

  8. Multifunctional electroactive electrospun nanofiber structures from water solution blends of PVA/ODA-MMT and poly(maleic acid-alt-acrylic acid): effects of Ag, organoclay, structural rearrangement and NaOH doping factors

    NASA Astrophysics Data System (ADS)

    Şimşek, Murat; Rzayev, Zakir M. O.; Bunyatova, Ulviya

    2016-06-01

    Novel multifunctional colloidal polymer nanofiber electrolytes were fabricated by green reactive electrospinning nanotechnology from various water solution/dispersed blends of poly (vinyl alcohol-co-vinyl acetate) (PVA)/octadecyl amine-montmorillonite (ODA-MMT) as matrix polymer nanocomposite and poly(maleic acid-alt-acrylic acid) (poly(MAc-alt-AA) and/or its Ag-carrying complex as partner copolymers. Polymer nanofiber electrolytes were characterized using FTIR, XRD, thermal (DSC, TGA-DTG), SEM, and electrical analysis methods. Effects of partner copolymers, organoclay, in situ generated silver nanoparticles (AgNPs), and annealing procedure on physical and chemical properties of polymer composite nanofibers were investigated. The electrical properties (resistance, conductivity, activation energy) of nanofibers with/without NaOH doping agent were also evaluated. This work presented a structural rearrangement of nanofiber mats by annealing via decarboxylation of anhydride units with the formation of new conjugated double bond sites onto partner copolymer main chains. It was also found that the semiconductor behaviors of nanofiber structures were essentially improved with increasing temperature and fraction of partner copolymers as well as presence of organoclay and AgNPs in nanofiber composite.

  9. Sub-nanoscale nanoimprint fabrication of atomically stepped glassy substrates of silicate glass and acryl polymer

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Mamoru

    2015-11-01

    In the nanoimprint process, the resolution limit of patterning has attracted much attention from both scientific and industrial aspects. In this article, we briefly review the main achievements of our research group on sub-nanoscale nanoimprint fabrication of atomically patterned glassy substrates of oxide glass and polymer. By applying the sapphire (α-Al2O3 single crystal) wafers with self-organized nanopatterns of atomic steps as thermal nanoimprinting molds, we successfully transferred their nanoscale patterns onto the surfaces of glassy substrates such as soda-lime silicate glasses and poly(methyl methacrylate) polymers. The surfaces of nanoimprinted glassy materials exhibited regularly arrayed atomic stairs with 0.2-0.3 nm step height, which were in good agreement with the sub-nanopatterns of sapphire molds. These atomically stepped morphologies on the glassy substrates were found to be stable for about 1 year.

  10. Poly(ethyl Acrylate) and Poly(Gamma-Benzyl-L-Glutamate): An Interpenetrating Polymer System

    DTIC Science & Technology

    1988-06-13

    when American scientists developed styrene - butadiene rubber (SBR) as a substitute for natural rubber , research on polymer synthesis and properties has...as films, then cured to form the IPN. Later, they studied PBA with poly( styrene - butadiene ) (PSB) and polychloroprene [59]. Other work on IPN’s...found that the Young’s modulus seems to fit Takayanagi’s Model 2. Kraus et al. [1191 studied the dynamic behavior of PS reinforced styrene - butadiene

  11. Poly(acrylic acid) brushes pattern as a 3D functional biosensor surface for microchips

    NASA Astrophysics Data System (ADS)

    Wang, Yan-Mei; Cui, Yi; Cheng, Zhi-Qiang; Song, Lu-Sheng; Wang, Zhi-You; Han, Bao-Hang; Zhu, Jin-Song

    2013-02-01

    Poly(acrylic acid) (PAA) brushes, a novel three dimensional (3D) precursor layer of biosensor or protein microarrays, possess high protein loading level and low non-specific protein adsorption. In this article, we describe a simple and convenient way to fabricate 3D PAA brushes pattern by microcontact printing (μCP) and characterize it with FT-IR and optical microscopy. The carboxyl groups of PAA brushes can be applied to covalently immobilize protein for immunoassay. Thriving 3D space made by patterning PAA brushes thin film is available to enhance protein immobilization, which is confirmed by measuring model protein interaction between human immunoglobulin G (H-IgG) and goat anti-H-IgG (G-H-IgG) with fluorescence microscopy and surface plasmon resonance imaging (SPRi). As expected, the SPRi signals of H-IgG coating on 3D PAA brushes pattern and further measuring specific binding with G-H-IgG are all larger than that of 3D PAA brushes without pattern and 2D bare gold surface. We further revealed that this surface can be used for high-throughput screening and clinical diagnosis by label-free assaying of Hepatitis-B-Virus surface antibody (HBsAb) with Hepatitis-B-Virus surface antigen (HBsAg) concentration array chip. The linearity range for HBsAb assay is wider than that of conventional ELISA method.

  12. Isotherm and kinetics study for acrylic acid removal using powdered activated carbon.

    PubMed

    Kumar, Arvind; Prasad, B; Mishra, I M

    2010-04-15

    The potential of powdered activated carbon (PAC) for the adsorption of acrylic acid (AA) from aqueous solution was studied at the initial concentration (C(0)) in the range of 50-500 mg/l over the temperature range of 303-348 K. The equilibrium adsorption studies were carried out to evaluate the effect of adsorbent dosage and contact time, change in pH by adding adsorbents and the initial concentration. Langmuir, Freundlich and Redlich-Peterson (R-P) equilibrium isotherm models were tested to represent the data. Error functions were used to test their validity to fit of the adsorption data with the isotherm and kinetic models. The Freundlich isotherm equation is found to best represent the equilibrium separation data in the temperature range of 303-348 K. The maximum adsorption capacity of AA onto PAC was obtained as q(m)=36.23 mg/g with an optimum PAC dosage w=20 g/l at 303 K for C(0)=100 mg/l. The pseudo-second-order kinetics is found to represent the experimental AA-PAC data. The negative value of DeltaG(ad)(o) (-16.60 to -18.18 kJ/mol K) indicate the feasibility and spontaneity of the adsorption process.

  13. Synthesis and Biomedical Applications of Poly((meth)acrylic acid) Brushes.

    PubMed

    Qu, Zhenyuan; Xu, Hong; Gu, Hongchen

    2015-07-15

    Poly((meth)acrylic acid) (P(M)AA) brushes possess a number of distinctive properties that are particularly attractive for biomedical applications. This minireview summarizes recent advances in the synthesis and biomedical applications of P(M)AA brushes and brushes containing P(M)AA segments. First, we review different surface-initiated polymerization (SIP) methods, with a focus on recent progress in the surface-initiated controlled/living radical polymerization (SI-CLRP) techniques used to generate P(M)AA brushes with a tailored structure. Next, we discuss biomolecule immobilization methods for P(M)AA brushes, including physical adsorption, covalent binding, and affinity interactions. Finally, typical biomedical applications of P(M)AA brushes are reviewed, and their performance is discussed based on their unique properties. We conclude that P(M)AA brushes are promising biomaterials, and more potential biomedical applications are expected to emerge with the further development of synthetic techniques and increased understanding of their interactions with biological systems.

  14. Novel poly(ethylene-co-acrylic acid) nanofibrous biomaterials for peptide synthesis and biomedical applications.

    PubMed

    Xiang, Bei; Sun, Gang; Lam, Kit S; Xiao, Kai

    2010-10-01

    Poly(ethylene-co-acrylic acid) (PE-co-AA) fibers in sizes of 200-500 nm were prepared by using a novel melt-extrusion-extraction fabrication process. The thermoplastic nanofibers could be controllably dispersed and reassembled by a novel solvent exchange filtration method. The dispersed PE-co-AA nanofibers possess active surface areas and could directly conduct chemical reactions on surfaces. Surface modifications and organic synthesis on the nanofibers were proven effective and controllable after the dispersion. Multistep synthesis of biomolecules, such as peptide ligand HWRGWV against Fc portion of human IgG, was successful. The surface-anchored ligand has shown bioactivity through selective binding to and staining by human IgG-alkaline phosphatase conjugate. Another peptide, LXY3, a selective cyclic peptide ligand against alpha3beta1 integrin of MDA-MB-231 breast cancer cells, was also prepared on the surfaces of the dispersed nanofibers. The results showed that MDA-MB-231 cells were able to specifically bind to and grow on surfaces of the nanofibers that were functionalized with LXY3.

  15. Synthesis and characterization of acrylamide-acrylic acid hydrogels and adsorption of some textile dyes

    NASA Astrophysics Data System (ADS)

    Duran, Sibel; Şolpan, Dilek; Güven, Olgun

    1999-05-01

    Acrylamide (AAm)-acrylic acid (AAc) hydrogels have been prepared at AAm initial compositions of 15%, 20% and 30%. AAm-AAc monomer mixtures have been irradiated in a 60Co-γ source at different doses and percent conversions have been determined gravimetrically. 100% conversion of monomers into hydrogels was achieved at 8 kGy dose. These hydrogels were swollen in distilled water at pH 3.03, 4.18, 4.68, 5.05, 5.30, 6.0, 7.0, 8.0. The results of swelling tests at pH 8.0 indicated that poly(AAm-AAc) hydrogels prepared from solution containing 15% (mol%) AAm showed maximum % swelling as 3000%. Poly(AAm-AAc) hydrogels have been considered for the removal of some textile dyes from aqueous solutions. Among the two common textile dyes tested, Janus Green B (JGB) has showed the highest adsorption capacity while Congo Red (CR) was not adsorbed by these hydrogels. Adsorption isotherms were constructed for JGB and poly(AAm/AAc) gel systems. It is concluded that cross-linked poly(AAm/AAc) hydrogels can be successfully used in the purification of waste water containing certain textile dyes.

  16. Cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres for sensitive electrochemical immunoassay.

    PubMed

    Zhang, Bing; Cui, Yuling; Liu, Bingqian; Chen, Huafeng; Chen, Guonan; Tang, Dianping

    2012-05-15

    A novel class of molecular tags, cadmium ion-doped magnetic poly(styrene-acrylic acid) nanospheres (Cd-MPSA), was first synthesized and functionalized with polyclonal rabbit anti-human luteinizing hormone antibodies (PAb(2)) for highly efficient electrochemical immunoassay of luteinizing hormone (LH). Transmission electron microscope (TEM) and Fourier transform infrared spectroscope (FTIR) were employed to characterize the prepared Cd-MPSA. By using Cd-MPSA-labeled PAb(2) as molecular tags, a novel sandwich-type immunoassay protocol was built for determination of LH on monoclonal mouse anti-human luteinizing hormone antibody (MAb(1))-functionalized gold electrode. The assay was carried out in pH 5.3 HAc-NaAc buffer solution by square wave voltammetry (SWV). The signal was obtained by the reduction of the doped cadmium ions in the Cd-MPSA. Under optimal conditions, the currents increased with the increasing LH level in the sample, and exhibited a linear range from 0.25 to 240 mIU mL(-1) with a detection limit of 0.08 mIU mL(-1) LH at 3s(B). The precision, reproducibility, and specificity were acceptable. No obvious difference was encountered in the analysis of spiking LH samples into newborn calf serum with the referenced values.

  17. Potassium fulvate as co-interpenetrating agent during graft polymerization of acrylic acid from cellulose.

    PubMed

    Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F; Essawy, Hisham A

    2016-10-01

    Grafting polymerization of acrylic acid onto cellulose in presence of potassium fulvate (KF) as a co-interpenetrating agent results enhanced water sorption compared to materials prepared similarly in its absence. The insertion of potassium fulvate (KF) did not affect the grafting process and is thought to proceed in parallel to the graft polymerization via intensive polycondensation reactions of its function groups (-COOH and OH) with COOH of the monomer and OH groups of cellulose. The combination of graft copolymerization and polycondensation reactions is assumed to produce interpenetrating network structure. Fourier transform infrared (FTIR) confirmed successful incorporation within the network structure which is an evidence for formation of interpenetrating network. The obtained structures showed homogeneous uniform surface as revealed by scanning electron microscopy (SEM). The obtained superabsorbent possessed high water absorbency 422 and 48.8g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced water retention even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high content of hydrophilic groups. The new superabsorbents proved to be efficient devices for controlled release of fertilizers which expands their use in agricultural applications.

  18. Surfactants modify the release from tablets made of hydrophobically modified poly (acrylic acid)☆

    PubMed Central

    Knöös, Patrik; Onder, Sebla; Pedersen, Lina; Piculell, Lennart; Ulvenlund, Stefan; Wahlgren, Marie

    2013-01-01

    Many novel pharmaceutically active substances are characterized by a high hydrophobicity and a low water solubility, which present challenges for their delivery as drugs. Tablets made from cross-linked hydrophobically modified poly (acrylic acid) (CLHMPAA), commercially available as Pemulen™, have previously shown promising abilities to control the release of hydrophobic model substances. This study further investigates the possibility to use CLHMPAA in tablet formulations using ibuprofen as a model substance. Furthermore, surfactants were added to the dissolution medium in order to simulate the presence of bile salts in the intestine. The release of ibuprofen is strongly affected by the presence of surfactant and/or buffer in the dissolution medium, which affect both the behaviour of CLHMPAA and the swelling of the gel layer that surrounds the disintegrating tablets. Two mechanisms of tablet disintegration were observed under shear, namely conventional dissolution of a soluble tablet matrix and erosion of swollen insoluble gel particles from the tablet. The effects of surfactant in the surrounding medium can be circumvented by addition of surfactant to the tablet. With added surfactant, tablets that may be insusceptible to the differences in bile salt level between fasted or fed states have been produced, thus addressing a central problem in controlled delivery of hydrophobic drugs. In other words CLHMPAA is a potential candidate to be used in tablet formulations for controlled release with poorly soluble drugs. PMID:25755999

  19. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  20. Oleanolic acid acrylate elicits antidepressant-like effect mediated by 5-HT1A receptor

    PubMed Central

    Fajemiroye, James O.; Polepally, Prabhakar R.; Chaurasiya, Narayan D.; Tekwani, Babu L.; Zjawiony, Jordan K.; Costa, Elson A.

    2015-01-01

    The development of new drugs for the treatment of depression is strategic to achieving clinical needs of patients. This study evaluates antidepressant-like effect and neural mechanisms of four oleanolic acid derivatives i.e. acrylate (D1), methacrylate (D2), methyl fumarate (D3) and ethyl fumarate (D4). All derivatives were obtained by simple one-step esterification of oleanolic acid prior to pharmacological screening in the forced swimming (FS) and open field (OF) tests. Pharmacological tools like α-methyl-p-tyrosine (AMPT, catecholamine depletor), p-chlorophenylalanine (serotonin depletor), prazosin (PRAZ, selective α1-receptor antagonist), WAY-100635 (selective serotonin 5-HT1A receptor antagonist) as well as monoamine oxidase (MAO) and functional binding assays were conducted to investigate possible neural mechanisms. In the FS test, D1 showed the most promising antidepressant-like effect without eliciting locomotor incoordination. Unlike group of mice pretreated with AMPT 100 mg/kg, PCPA 100 mg/kg or PRAZ 1 mg/kg, the effect of D1 was attenuated by WAY-100635 0.3 mg/kg pretreatment. D1 demonstrated moderate inhibition of MAO-A (IC50 = 48.848 ± 1.935 μM), potency (pEC50 = 6.1 ± 0.1) and intrinsic activity (Emax = 26 ± 2.0%) on 5-HT1A receptor. In conclusion, our findings showed antidepressant-like effect of D1 and possible involvement of 5-HT1A receptor. PMID:26199018

  1. Toward "stable-on-the-table" enzymes: improving key properties of catalase by covalent conjugation with poly(acrylic acid).

    PubMed

    Riccardi, Caterina M; Cole, Kyle S; Benson, Kyle R; Ward, Jessamyn R; Bassett, Kayla M; Zhang, Yiren; Zore, Omkar V; Stromer, Bobbi; Kasi, Rajeswari M; Kumar, Challa V

    2014-08-20

    Several key properties of catalase such as thermal stability, resistance to protease degradation, and resistance to ascorbate inhibition were improved, while retaining its structure and activity, by conjugation to poly(acrylic acid) (PAA, Mw 8000) via carbodiimide chemistry where the amine groups on the protein are appended to the carboxyl groups of the polymer. Catalase conjugation was examined at three different pH values (pH 5.0, 6.0, and 7.0) and at three distinct mole ratios (1:100, 1:500, and 1:1000) of catalase to PAA at each reaction pH. The corresponding products are labeled as Cat-PAA(x)-y, where x is the protein to polymer mole ratio and y is the pH used for the synthesis. The coupling reaction consumed about 60-70% of the primary amines on the catalase; all samples were completely water-soluble and formed nanogels, as evidenced by gel electrophoresis and electron microscopy. The UV circular dichroism (CD) spectra indicated substantial retention of protein secondary structure for all samples, which increased to 100% with increasing pH of the synthesis and polymer mole fraction. Soret CD bands of all samples indicated loss of ∼50% of band intensities, independent of the reaction pH. Catalytic activities of the conjugates increased with increasing synthesis pH, where 55-80% and 90-100% activity was retained for all samples synthesized at pH 5.0 and pH 7.0, respectively, and the Km or Vmax values of Cat-PAA(100)-7 did not differ significantly from those of the free enzyme. All conjugates synthesized at pH 7.0 were thermally stable even when heated to ∼85-90 °C, while native catalase denatured between 55 and 65 °C. All conjugates retained 40-90% of their original activities even after storing for 10 weeks at 8 °C, while unmodified catalase lost all of its activity within 2 weeks, under similar storage conditions. Interestingly, PAA surrounding catalase limited access to the enzyme from large molecules like proteases and significantly increased

  2. Thermoset polymer-layered silicic acid nanocomposites

    NASA Astrophysics Data System (ADS)

    Wang, Zhen

    Nanocomposites are formed when phase mixing occurs on a nanometer length scale. Due to the improved phase morphology and interfacial properties, nanocomposites exhibit mechanical properties superior to conventional composites. Toyota researchers first demonstrated that organoclay could be exfoliated in a nylon-6 matrix to greatly improve the thermal and mechanical properties of the polymer, which has resulted in a practical application in the automobile industry. A great deal of research has been conducted on organic-inorganic hybrid composites in which smectite clays are used as reinforcement agents. However, little work has been devoted to derivatives of other layered inorganic solids. In the present work, the first examples of organic polymer-layered silicic acid nanocomposites have been prepared by formation of a cured epoxy polymer network in the presence of organo cation exchange forms of magadiite. The exfoliation of silicate nanolayers in the epoxy matrix was achieved by in-situ intragallery polymerization during the thermosetting process. In general, the tensile properties, solvent resistance, barrier properties and chemical stability of the polymer matrix are greatly improved by the embedded silicate nanolayers when the matrix is flexible (sub-ambient Tg). The improvement of properties are dependent on the silicate loading, the degree of nanolayer separation and interfacial properties. Interestingly, the exfoliation also affects the polymer elasticity in a favorable way. The mechanism leading to nanocomposite formation is proposed. One exfoliated epoxy-magadiite nanocomposite/composition possessed unique transparent optical properties. The exfoliation chemistry was successfully extended to the other members of the layered silicic acid family. A new approach also was developed to prepare thermoset epoxy polymer-layered silicate nanocomposites in which curing agents can be directly intercalated into the intragallery without the need for alkylammonium ions

  3. ToF-SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups.

    PubMed

    Hook, Andrew L; Scurr, David J

    2016-04-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information-rich nature of ToF-SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono-functional from multi-functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure-function relationships based upon ToF-SIMS data of polymer libraries.

  4. ToF‐SIMS analysis of a polymer microarray composed of poly(meth)acrylates with C6 derivative pendant groups

    PubMed Central

    Scurr, David J.

    2016-01-01

    Surface analysis plays a key role in understanding the function of materials, particularly in biological environments. Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) provides highly surface sensitive chemical information that can readily be acquired over large areas and has, thus, become an important surface analysis tool. However, the information‐rich nature of ToF‐SIMS complicates the interpretation and comparison of spectra, particularly in cases where multicomponent samples are being assessed. In this study, a method is presented to assess the chemical variance across 16 poly(meth)acrylates. Materials are selected to contain C6 pendant groups, and ten replicates of each are printed as a polymer microarray. SIMS spectra are acquired for each material with the most intense and unique ions assessed for each material to identify the predominant and distinctive fragmentation pathways within the materials studied. Differentiating acrylate/methacrylate pairs is readily achieved using secondary ions derived from both the polymer backbone and pendant groups. Principal component analysis (PCA) is performed on the SIMS spectra of the 16 polymers, whereby the resulting principal components are able to distinguish phenyl from benzyl groups, mono‐functional from multi‐functional monomers and acrylates from methacrylates. The principal components are applied to copolymer series to assess the predictive capabilities of the PCA. Beyond being able to predict the copolymer ratio, in some cases, the SIMS analysis is able to provide insight into the molecular sequence of a copolymer. The insight gained in this study will be beneficial for developing structure–function relationships based upon ToF‐SIMS data of polymer libraries. © 2016 The Authors Surface and Interface Analysis Published by John Wiley & Sons Ltd. PMID:27134321

  5. Synthesis and characterization of polyether urethane acrylate-LiCF 3SO 3-based polymer electrolytes by UV-curing in lithium batteries

    NASA Astrophysics Data System (ADS)

    Kim, Cheon-Soo; Kim, Bo-Hyun; Kim, Keon

    The prepolymers of polyether urethane acrylate (PEUA) were synthesized from polyether polyol (polyethylene glycol (PEG) or polypropylene glycol (PPG)), diisocyanate (hexamethylene diisocyanate (HMDI) or toluene 2,4-diisocyanate (TDI)), and the caprolactone-modified hydroxyethyl acrylate (FA2D) using the catalyst (dibutyltin dilaurate (DBTDL)) by stepwise addition reaction. Lithium triflate (LiCF 3SO 3) was dissolved in PEUA prepolymers, and plasticizer (propylene carbonate (PC)) was added into prepolymer and salt mixtures. Then photoinitiator (Irgacure 184) was also dissolved in the mixtures. Thin films were prepared by casting on the glass plate, and then by curing the plasticized prepolymer and salt mixtures under UV radiation. Electrochemical and electrical properties of PEUA-LiCF 3SO 3-based polymer electrolytes were evaluated and discussed to be used in lithium batteries.

  6. Controlled release camptothecin tablets based on pluronic and poly(acrylic acid) copolymer. Effect of fabrication technique on drug stability, tablet structure, and release mode.

    PubMed

    Bromberg, Lev; Hatton, T Alan; Barreiro-Iglesias, Rafael; Alvarez-Lorenzo, Carmen; Concheiro, Angel

    2007-06-01

    Poly(ethylene oxide)-b-poly(propylene oxide)-b-(polyethylene oxide)-g-poly(acrylic acid), a graft-comb copolymer of Pluronic 127 and poly(acrylic acid) (Pluronic-PAA), was explored as an excipient for tablet dosage form of camptothecin (CPT). The tablets were prepared by either direct compression of the drug-polymer physical blend, suspension in ethanol followed by evaporation, or compression after kneading and characterized with respect to their physical structures, drug stability, and release behavior. Porosity and water uptake rate were strongly dependent on the fabrication procedure, ranking in the order: direct compression of physical blend > compression after suspension/evaporation in ethanol > compression after kneading. Tablets prepared by compression of physical blends swelled in water with a rapid surface gel layer formation that impeded swelling and disintegration of the tablets core. These tablets were able to sustain the CPT release for a period of time longer than those observed with the tablets made by either suspension/evaporation or kneading, which disintegrated within a few minutes. Despite the tablet disintegration, the CPT release was impeded for at least 6 hr, which was attributed to the ability of the Pluronic-PAA copolymers to form micellar aggregates at the hydrated surface of the particles. Physical mixing did not alter the fraction of CPT being in the pharmaceutically active lactone form, whilst the preparation of the tablets by the other two methods caused a significant reduction in the lactone form content. Tablets prepared from the physical blends demonstrated CPT release rates increasing with the pH due to the PAA ionization leading to the increase in the rate and extent of the tablet swelling. The results obtained demonstrate the potential of the Pluronic-PAA copolymers for the oral administration of chemotherapeutic agents.

  7. Influence of thermal processing on the properties of chlorpheniramine maleate tablets containing an acrylic polymer.

    PubMed

    Zhu, Yucun; Shah, Navnit H; Malick, A Waseem; Infeld, Martin H; McGinity, James W

    2002-11-01

    The purpose of this investigation was to determine the effects of thermal processing and post-processing thermal treatment on the release properties of chlorpheniramine maleate (CPM) from matrix tablets containing Eudragit RS PO and triethyl citrate (TEC). CPM tablets containing Eudragit RS PO with and without TEC were prepared by direct compression (DC), high shear hot-melt granulation (HMG), and hot-melt extrusion (HME). X-ray diffraction patterns showed that the CPM was distributed in Eudragit RS PO at the molecular level following HME. The thermogravimetry analysis (TGA) profiles of CPM, Eudragit RS PO, and TEC demonstrated that these materials were thermally stable during both the high shear HMG and HME processes. The tablets were subjected to post-processing thermal treatment by storing the tablets at 60 degrees C in open containers for 24 hr. Tablets prepared by DC showed the highest drug release rate constant of 36.2% hr-1/2. When 4% TEC was incorporated into the formulation, the drug release rate constant for the directly compressed tablets decreased to 32.4% hr-1/2. After high shear HMG and HME of the powder blend containing 4% TEC, the drug release rate constant decreased to 30.8 and 13.8% hr-1/2 for the respective processes. The drug release rate constants for all tablets decreased following post-processing thermal treatment. The reduction in release rate was due to an increase in the intermolecular binding and entanglement between drug molecules and polymer molecules that occurred during thermal processing. Post-processing thermal treatment of the hot-melt extrudates had a minimal effect on the drug release rate since the HME process enhanced the drug and polymer entanglement to a greater extent.

  8. Nanostructure of Poly(Acrylic Acid) Adsorption Layer on the Surface of Activated Carbon Obtained from Residue After Supercritical Extraction of Hops

    NASA Astrophysics Data System (ADS)

    Wiśniewska, M.; Nosal-Wiercińska, A.; Ostolska, I.; Sternik, D.; Nowicki, P.; Pietrzak, R.; Bazan-Wozniak, A.; Goncharuk, O.

    2017-01-01

    The nanostructure of poly(acrylic acid) (PAA) adsorption layer on the surface of mesoporous-activated carbon HPA obtained by physical activation of residue after supercritical extraction of hops was characterized. This characterization has been done based on the analysis of determination of adsorbed polymer amount, surface charge density, and zeta potential of solid particles (without and in the PAA presence). The SEM, thermogravimetric, FTIR, and MS techniques have allowed one to examine the solid surface morphology and specify different kinds of HPA surface groups. The effects of solution pH, as well as polymer molecular weight and concentration, were studied. The obtained results indicated that the highest adsorption on the activated carbon surface was exhibited by PAA with lower molecular weight (i.e., 2000 Da) at pH 3. Under such conditions, polymeric adsorption layer is composed of nanosized PAA coils (slightly negatively charged) which are densely packed on the positive surface of HPA. Additionally, the adsorption of polymeric macromolecules into solid pores is possible.

  9. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    PubMed

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  10. Nanostructure of Poly(Acrylic Acid) Adsorption Layer on the Surface of Activated Carbon Obtained from Residue After Supercritical Extraction of Hops.

    PubMed

    Wiśniewska, M; Nosal-Wiercińska, A; Ostolska, I; Sternik, D; Nowicki, P; Pietrzak, R; Bazan-Wozniak, A; Goncharuk, O

    2017-12-01

    The nanostructure of poly(acrylic acid) (PAA) adsorption layer on the surface of mesoporous-activated carbon HPA obtained by physical activation of residue after supercritical extraction of hops was characterized. This characterization has been done based on the analysis of determination of adsorbed polymer amount, surface charge density, and zeta potential of solid particles (without and in the PAA presence). The SEM, thermogravimetric, FTIR, and MS techniques have allowed one to examine the solid surface morphology and specify different kinds of HPA surface groups. The effects of solution pH, as well as polymer molecular weight and concentration, were studied. The obtained results indicated that the highest adsorption on the activated carbon surface was exhibited by PAA with lower molecular weight (i.e., 2000 Da) at pH 3. Under such conditions, polymeric adsorption layer is composed of nanosized PAA coils (slightly negatively charged) which are densely packed on the positive surface of HPA. Additionally, the adsorption of polymeric macromolecules into solid pores is possible.

  11. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.

    PubMed

    Schroeder, Walter F; Liu, Yuanqin; Tomba, J Pablo; Soleimani, Mohsen; Lau, Willie; Winnik, Mitchell A

    2010-03-11

    We describe fluorescence resonance energy transfer (FRET) experiments carried out to examine the effect of ethylene glycol and propylene glycol on the early stages of polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films. In our approach, we temporarily arrest the drying process of a wet latex film by sealing the film in a previously cooled airtight sample chamber. This arrests propagation of the drying front and suppresses polymer diffusion during the measurements. We then measure donor fluorescence decays from 0.5 mm diameter spots at various locations on the film. From our analysis, we obtain information about the earliest stages of polymer diffusion as the film is still drying. We also investigate the effect of these glycols on polymer diffusion at longer aging times on predried latex films. Ethylene glycol and propylene glycol retard polymer diffusion at early times immediately after the passing of the drying front but enhance the rate of polymer diffusion at later aging times. This behavior is described quantitatively in terms of free-volume theory and the partitioning of the glycols between the aqueous and polymer phases in the film.

  12. Fracture Mechanisms of Layer-By-Layer Polyurethane/Poly(Acrylic Acid) Nanocomposite

    NASA Astrophysics Data System (ADS)

    Kheng, Eugene R.

    A layer-by-layer(LBL) manufactured material is examined in detail in this thesis. Improvements are made to the method of its manufacture. Efforts are made to understand its fracture mechanisms and take advantage of these fracture mechanisms in the absorption of impact energy. A novel series of experiments has been performed on LBL manufactured thin films to demonstrate their unique fracture mechanisms. Polyurethane/Poly(Acrylic Acid) (PU/PAA) and PU/PAA/(PU/Clay)5 nanocomposite films readily undergo Interlaminar mode II fracture, because of the relatively weak elctrostatic bonds between monolayers. Tensile tests performed while under observation by a scanning electron microscope demonstrate the tendency of these nanocomposite films to undergo interlaminar mode II fracture even when loads are applied in the plane of nanocomposite film. It is concluded that these mechanisms of energy dissipation are responsible for the enhanced toughness of these films when used as layers between glass blocks in the prevention of impact damage to the glass. A novel automated manufacturing facility has been designed and built to deposit large sheets of Layer-by-Layer nanocomposite film. These large sheets are incorporated into a borosillicate glass composite in order to compare the ballistic characteristics of LBL PU based nanocomposite films to a single cast layer of polyurethane. It is demonstrated that shear fracture is the mode of failure in the blocks containing the nanocomposite film. The shear fracture surface in the nanocomposite after it has undergone a ballistic impact is characterized. Additional experiments are performed to characterize the interlaminar fracture stresses and toughnesses of the nanocomposite LBL layers, to assist in the implementation of a numerical crack band model that describes the nanocomposite film. The computational model predicts the failure of the ballistic nanocomposite samples, and the predicted V50 velocity is found to be in good agreement with

  13. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  14. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.

  15. Investigation of the Rotation of Molecular Groups in Polymers of Methyl Acrylate and Vinyl Acetate by the Method of IR-Spectroscopy,

    DTIC Science & Technology

    1987-08-27

    BY THE METHOD OF IR- SPECTROSCOPY by O.N. Trapeznikova, T.V. Belopol’skaya OTtO ELECTE NOV 1 71987 ED Approved for public release; Distribution...MOLECULAR GROUPS IN POLYMERS OF METHYL ACRYLATE AND VINYL ACETATE BY THE METHOD OF IR- SPECTROSCOPY By: O.N. Trapeznikova, T.V. Belopol’skaya English...THE METHOD OF IR- SPECTROSCOPY O.N. Trapeznikova, T.V. Belopol’skaya Physics Institute of Leningrad State University in. A.A. Zhdanov Submitted 17 July

  16. Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens.

    PubMed

    Nabais, Cláudia R J O D; Heron, B Mark; de Sousa, Hermínio C; Gil, Maria H; Sobral, Abílio J F N

    2011-01-01

    Three different naphthopyrans were incorporated in co-polymers of methyl methacrylate (MMA) and 2-ethylhexyl acrylate (EHA), with and without cross-linking with ethyleneglycol dimethacrylate (EGDMA), by a free radical polymerization method. The obtained materials were characterised in terms of some of their chemical and physical properties that could be important for the final functional properties of the envisaged application. Despite other important functional properties that should be evaluated in the near future, the system based in the physical entrapment of 3,3-bis(4-methoxyphenyl)-3H-naphtho [2,1-b]pyran presented a good potential for its application as novel light-sensitive contact lenses.

  17. Synthesis, characterization and properties of a physically and chemically gelling polymer system using poly(NIPAAm-co-HEMA-acrylate) and poly(NIPAAm-co-cysteamine).

    PubMed

    Bearat, Hanin H; Lee, Bae Hoon; Valdez, Jorge; Vernon, Brent L

    2011-01-01

    The aim of this work was to develop a simultaneous physically and chemically gelling system using NIPAAm co-polymers. The in situ polymer gel was obtained by synthesizing poly(NIPAAm-co-HEMAacrylate) and poly(NIPAAm-co-cysteamine) through free radical polymerization and further nucleophilic substitution. The purpose of the dual gelation is that physical gelation would take place at higher temperatures as the NIPAAm chains associate, while chemical gelation would occur through a Michael-type addition reaction, resulting in a cross-link forming through a nucleophilic attack of the thiolate on the acrylate. The structure of each co-polymer was then verified using (1)H-NMR and FT-IR spectroscopy. The corresponding lower critical solution temperature and phase transition behavior of each co-polymer was analyzed through cloud point and DSC, while mechanical properties were investigated through rheology. Swelling behavior was also monitored at different temperatures. The resulting polymer system demonstrated properties compatible with physiological conditions, forming a gel at pH 7.4 and at temperatures near body temperature. The hydrogel also showed reduced viscoelastic flow at low frequency stress, and increased strength than purely physical or chemical gels. Swelling behavior was determined to be temperature-dependent; however, no difference was observed in swelling percent beyond 48 h. Having the ability to alter these co-polymers through various synthesis parameters and techniques, this hydrogel can potentially be used as an injectable, waterborne gelling material for biomedical applications such as endovascular embolization.

  18. Controlling the Mesostructure Formation within the Shell of Novel Cubic/Hexagonal Phase Cetyltrimethylammonium Bromide-Poly(acrylamide-acrylic acid) Capsules for pH Stimulated Release.

    PubMed

    Tangso, Kristian J; Patel, Hetika; Lindberg, Seth; Hartley, Patrick G; Knott, Robert; Spicer, Patrick T; Boyd, Ben J

    2015-11-11

    The self-assembly of ordered structures in mixtures of oppositely charged surfactant and polymer systems has been exploited in various cleaning and pharmaceutical applications and continue to attract much interest since their discovery in the late twentieth century. The ability to control the electrostatic and hydrophobic interactions that dictate the formation of liquid crystalline phases in these systems is advantageous in manipulation of structure and rendering them responsive to external stimuli. Nanostructured capsules comprised of the cationic surfactant, cetyltrimethylammonium bromide (CTAB), and the diblock copolymer poly(acrylamide-acrylic acid) (PAAm-AA) were prepared to assess their potential as pH responsive nanomaterials. Crossed-polarizing light microscopy (CPLM) and small-angle X-ray scattering (SAXS) identified coexisting Pm3n cubic and hexagonal phases at the surfactant-polymer interface. The hydrophobic and electrostatic interactions between the oppositely charged components were studied by varying temperature and solution pH, respectively, and were found to influence the liquid crystalline nanostructure formed. The lattice parameter of the mesophases and the fraction of cubic phase in the system decreased upon heating. Acidic conditions resulted in the loss of the highly ordered structures due to protonation of the carboxylic acid group, and subsequent reduction of attractive forces previously present between the oppositely charged molecules. The rate of release of the model hydrophilic drug, Rhodamine B (RhB), from nanostructured macro-sized capsules significantly increased when the pH of the solution was adjusted from pH 7 to pH 2. This allowed for immediate release of the compound of interest "on demand", opening new options for structured materials with increased functionality over typical layer-by-layer capsules.

  19. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-08-04

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated.

  20. Synthesis of hollow silver spheres using poly-(styrene-methyl acrylic acid) as templates in the presence of sodium polyacrylate

    NASA Astrophysics Data System (ADS)

    Wang, Aili; Yin, Hengbo; Ge, Chen; Ren, Min; Liu, Yumin; Jiang, Tingshun

    2010-02-01

    Hollow silver spheres were successfully prepared by reducing AgNO 3 with ascorbic acid and using negatively charged poly-(styrene-methyl acrylic acid) (PSA) spheres as templates in the presence of sodium polyacrylate as a stabilizer. Firstly, silver cations adsorbed on the surface of PSA spheres via electrostatic attraction between the carboxyl groups and silver cations were reduced in situ by ascorbic acid. The silver nanoparticles deposited on the surface of PSA spheres served as seeds for the further growth of silver shells. After that, extra amount of AgNO 3 and ascorbic acid solutions were added to form PSA/Ag composites with thick silver shells. In order to obtain compact silver shells, the as-prepared PSA/Ag composites were heated at 150 °C for 3 h. Then hollow silver spheres were prepared by dissolving PSA templates with tetrahydrofuran.

  1. Preparation of Poly Acrylic Acid-Poly Acrylamide Composite Nanogels by Radiation Technique

    PubMed Central

    Ghorbaniazar, Parisa; Sepehrianazar, Amir; Eskandani, Morteza; Nabi-Meibodi, Mohsen; Kouhsoltani, Maryam; Hamishehkar, Hamed

    2015-01-01

    Purpose: Nanogel, a nanoparticle prepared from a cross-linked hydrophilic polymer network, has many biomedical applications. A radiation technique has recently been introduced as one of the appropriate methods for the preparation of polymeric nanogels due to its additive-free initiation and easy control procedure. Methods: We have investigated the formation of nano-sized polymeric gels, based on the radiation-induced inter- and intra-molecular cross-linking of the inter-polymer complex (IPC) of polyacrylamide (PAAm) and polyacrylic acide (PAAc). Results: The results indicated that the prepared polymeric complex composed of PAAm and PAAc was converted into nanogel by irradiation under different doses (1, 3, 5 and 7 kGy). This was due to inter- and intra-molecular cross-linking at the range of 446-930 nm as characterized by the photon correlation spectroscopy method. Increasing the irradiation dose reduced the size of nanoparticles to 3 kGy; however, the higher doses increased the size and size distribution. Scanning electron microscopy images indicated the nanogel formation in the reported size by particle size and showed the microcapsule structure of the prepared nanogels. Biocompatibility of nanogels were assessed and proved by MTT assay. Conclusion: It was concluded that low dose irradiation can be successfully applied for nanometre-ranged hydrogel. PMID:26236667

  2. Synthesis and characterization of membranes obtained by graft copolymerization of 2-hydroxyethyl methacrylate and acrylic acid onto chitosan.

    PubMed

    dos Santos, K S C R; Coelho, J F J; Ferreira, P; Pinto, I; Lorenzetti, S G; Ferreira, E I; Higa, O Z; Gil, M H

    2006-03-09

    Chitosan based membranes to be applied on wound healing as topical drug delivery systems were developed by graft copolymerization of acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) onto chitosan using cerium ammonium nitrate as chemical initiator. Evidence for graft copolymerization of the vinyl monomers onto chitosan was obtained by FTIR and DMTA. Swelling degree, cytotoxicity, thrombogenicity and haemolytic activity of these membranes were evaluated. Chitosan-graft-AA-graft-HEMA showed to be the best matrix for drug delivery systems than chitosan-graft-AA because it retains good swelling properties, but the content in HEMA has improved cytocompatibility, hemocompatibility and thrombogenic character.

  3. Microfiltration membranes prepared from polyethersulfone powder grafted with acrylic acid by simultaneous irradiation and their pH dependence

    NASA Astrophysics Data System (ADS)

    Deng, Bo; Li, Jingye; Hou, Zhengchi; Yao, Side; Shi, Liuqing; Liang, Guoming; Sheng, Kanglong

    2008-07-01

    Polyethersulfone (PES) powder was grafted with acrylic acid (AAc) by simultaneous γ-ray irradiation. The kinetics of the radiation induced graft polymerization was studied and the grafted PES powder was characterized. Then, microfiltration (MF) membranes were prepared from PES-g-PAAc powder with different degrees of grafting (DG) under phase inversion method. The swelling behavior and the mean pore size of MF membranes were measured, and the filtration property was tested. The results showed that the pore size and the flux of MF membranes increased with the increase in DG. And, MF membranes' properties were dependent on the pH value.

  4. Modeling the free radical polymerization of acrylates

    NASA Astrophysics Data System (ADS)

    Günaydin, Hakan; Salman, Seyhan; Tüzün, Nurcan Şenyurt; Avci, Duygu; Aviyente, Viktorya

    Acrylates have gained importance because of their ease of conversion to high-molecular-weight polymers and their broad industrial use. Methyl methacrylate (MMA) is a well-known monomer for free radical polymerization, but its α-methyl substituent restricts the chemical modification of the monomer and therefore the properties of the resulting polymer. The presence of a heteroatom in the methyl group is known to increase the polymerizability of MMA. Methyl α-hydroxymethylacrylate (MHMA), methyl α-methoxymethylacrylate (MC1MA), methyl α-acetoxymethylacrylate (MAcMA) show even better conversions to high-molecular-weight polymers than MMA. In contrast, the polymerization rate is known to decrease as the methyl group is replaced by ethyl in ethyl α-hydroxymethylacrylate (EHMA) and t-butyl in t-butyl α-hydroxymethylacrylate (TBHMA). In this study, quantum mechanical tools (B3LYP/6-31G*) have been used in order to understand the mechanistic behavior of the free radical polymerization reactions of acrylates. The polymerization rates of MMA, MHMA, MC1MA, MAcMA, EHMA, TBHMA, MC1AN (α-methoxymethyl acrylonitrile), and MC1AA (α-methoxymethyl acrylic acid) have been evaluated and rationalized. Simple monomers such as allyl alcohol (AA) and allyl chloride (AC) have also been modeled for comparative purposes.

  5. Carbohydrate Polymers for Nonviral Nucleic Acid Delivery

    PubMed Central

    Sizovs, Antons; McLendon, Patrick M.; Srinivasachari, Sathya

    2014-01-01

    Carbohydrates have been investigated and developed as delivery vehicles for shuttling nucleic acids into cells. In this review, we present the state of the art in carbohydrate-based polymeric vehicles for nucleic acid delivery, with the focus on the recent successes in preclinical models, both in vitro and in vivo. Polymeric scaffolds based on the natural polysaccharides chitosan, hyaluronan, pullulan, dextran, and schizophyllan each have unique properties and potential for modification, and these results are discussed with the focus on facile synthetic routes and favorable performance in biological systems. Many of these carbohydrates have been used to develop alternative types of biomaterials for nucleic acid delivery to typical polyplexes, and these novel materials are discussed. Also presented are polymeric vehicles that incorporate copolymerized carbohydrates into polymer backbones based on polyethylenimine and polylysine and their effect on transfection and biocompatibility. Unique scaffolds, such as clusters and polymers based on cyclodextrin (CD), are also discussed, with the focus on recent successes in vivo and in the clinic. These results are presented with the emphasis on the role of carbohydrate and charge on transfection. Use of carbohydrates as molecular recognition ligands for cell-type specific delivery is also briefly reviewed. We contend that carbohydrates have contributed significantly to progress in the field of non-viral DNA delivery, and these new discoveries are impactful for developing new vehicles and materials for treatment of human disease. PMID:21504102

  6. Synthesis and characterization of crystalline assembly of poly(N-isopropylacrylamide)-co-acrylic acid nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhou, Bo

    In this study, crystalline poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAm-co-AAc) nanoparticle network in organic solvents was obtained by self assembling precursor particles in acetone/epichlorohydrin mixture at room temperature followed by inter-sphere crosslinking at ˜98°C. The crystals thus formed can endure solvent exchanges or large distortions under a temporary compressing force with the reoccurrence of crystalline structures. In acetone, the crystals were stable, independent of temperature, while in water crystals could change their colors upon heating or changing pH values. By passing a focused white light beam through the crystals, different colors were displayed at different observation angles, indicating typical Bragg diffraction. Shear moduli of the gel nanoparticle crystals were measured in the linear stress-yield ranges for the same gel crystals in both acetone and water. Syntheses of particles of different sizes and the relationship between particle size and the color of the gel nanoparticle networks at a constant solid content were also presented. Temperature- and pH-sensitive crystalline PNIPAm-co-AAc hydrogel was prepared using osmosis crosslinking method. Not only the typical Bragg diffraction phenomenon was observed for the hydrogel but also apparent temperature- and pH-sensitive properties were performed. The phase behavior of PNIPAm nanoparticles dispersed in water was also investigated using a thermodynamic perturbation theory combined with lightscattering and spectrometer measurements. It was shown how the volume transition of PNIPAM particles affected the interaction potential and determined a novel phase diagram that had not been observed in conventional colloids. Because both particle size and attractive potential depended on temperature, PNIPAM aqueous dispersion exhibited phase transitions at a fixed particle number density by either increasing or decreasing temperature. The phase transition of PNIPAm-co-AAc colloids was also

  7. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s.

    PubMed

    Huang, Shu-Chen; Naka, Kensuke; Chujo, Yoshiki

    2007-11-20

    Stable amorphous calcium carbonate (ACC) composite particle with a size-controlled monodispersed sphere was obtained by a new simple carbonate controlled-addition method by using poly(acrylic acid) (PAA) (Mw = 5000), in which an aqueous ammonium carbonate solution was added into an aqueous solution of PAA and CaCl2 with a different time period. The obtained ACC composite products consist of about 50 wt % of ACC, 30 wt % of PAA, and H2O. Average particle sizes of the ACC spheres increased from (1.8 +/- 0.4) x 102 to (5.5 +/- 1.2) x 102 nm with an increase of the complexation time of the PAA-CaCl2 solution from 3 min to 24 h, respectively. The ACC formed from the complexation time for 3 min was stable for 10 days with gentle stirring as well as 3 months under a quiescent condition in the aqueous solution. Moreover, the ACC was also stable at 400 degrees C. Stability of the amorphous phase decreased with an increase of the complexation time of the PAA-CaCl2 solution. No ACC was obtained when the lower molar mass PAAs (Mw = 1200 and 2100) were used. In the higher molar mass case (Mw = 25 000), a mixture of the amorphous phase and vaterite and calcite crystalline product was produced. The present results demonstrate that the interaction and the reaction kinetics of the PAA-Ca2+-H2O complex play an important role in the mineralization of CaCO3.

  8. Understanding field variation, quantum chemical modeling and molecular orbital analyses of trans-3-(trans-4-imidazolyl) acrylic acid

    NASA Astrophysics Data System (ADS)

    Gayathri, R.; Arivazhagan, M.

    2017-02-01

    In this work, a joint experimental (FTIR and FT-Raman) and theoretical (DFT and ab-initio) study on the structure and the vibrations of Trans-3-(trans-4-imidazolyl) acrylic acid (TTIAA) are compared and analyzed. The assignment of each normal mode has been made using the observed and calculated frequencies. The optimized geometries, harmonic vibrational wavenumbers and intensities of vibrational bands of trans-3-(trans-4-imidazolyl) acrylic acid (TTIAA) have been carried out using the HF/B3LYP method using the standard 6311++G(d,p) basis set calculations in this investigation. The result describes the variation in electrostatic and transport properties for zero and various external applied field. The variation in MPA charges are small due to the application of EFs: however, in most cases it is found to be systematic and almost uniform. When the field increases from 0.00 to 0.02 VÅ-1, the hybridization of molecular levels broadens the DOS and decreases the HLG from 3.6609 to 1.2325 eV; the decrease of band gap at the high field indicates that this molecule exhibit considerable electrical conductivity. Fukui indices to determine the local reactive site for the molecular systems during electrophilic, nucleophilic, radical and dual descriptor attacks. The results clearly show the superiority of MPA scheme. This study may be useful to design new molecules with more electrical conductivity.

  9. Enhanced adsorption of Methylene Blue from aqueous solution by chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites.

    PubMed

    Liu, Yi; Zheng, Yian; Wang, Aiqin

    2010-01-01

    A series of chitosan-g-poly (acrylic acid)/vermiculite hydrogel composites were synthesized and used as adsorbents for the investigation of the effect of process parameters such as vermiculite content, pH of dye solution, contact time, initial concentration of dye solution, temperature, ionic strength and concentration of surfactant sodium dodecyl sulfate on the removal of Methylene Blue (MB) from aqueous solution. The results showed that the adsorption capacity for dye increased with increasing pH, contact time and initial dye concentration, but decreased with increasing temperature, ionic strength and sodium dodecyl sulfate concentration in the present of the surfactant. The adsorption kinetics of MB onto the hydrogel composite followed pseudo second-order kinetics and the adsorption equilibrium data obeyed Langmuir isotherm. By introducing 10 wt.% vermiculite into chitosan-g-poly (acrylic acid) polymeric network, the obtaining hydrogel composite showed the highest adsorption capacity for MB, and then could be regarded as a potential adsorbent for cationic dye removal in a wastewater treatment process.

  10. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate-acrylamide resins. 173.5 Section 173.5... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.5 Acrylate-acrylamide resins. Acrylate-acrylamide resins may be safely used in food under the following prescribed conditions: (a)...

  11. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylate-acrylamide resins. 173.5 Section 173.5... CONSUMPTION Polymer Substances and Polymer Adjuvants for Food Treatment § 173.5 Acrylate-acrylamide resins. Acrylate-acrylamide resins may be safely used in food under the following prescribed conditions: (a)...

  12. “Stable-on-the-Table” Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity

    PubMed Central

    Ghimire, Ananta; Zore, Omkar V.; Thilakarathne, Vindya K.; Briand, Victoria A.; Lenehan, Patrick J.; Lei, Yu; Kasi, Rajeswari M.; Kumar, Challa V.

    2015-01-01

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, MW 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17–20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at −0.279 and −0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications. PMID:26393601

  13. Uniform thin film electrode made of low-temperature-sinterable silver nanoparticles: optimized extent of ligand exchange from oleylamine to acrylic acid

    NASA Astrophysics Data System (ADS)

    Lee, Yung Jong; Kim, Na Rae; Lee, Changsoo; Lee, Hyuck Mo

    2017-02-01

    Lowering the sintering temperature of nanoparticles in the electrode deposition process holds both academic and industrial interest because of the potential applications of such electrodes in polymer devices and flexible electronics. In addition, achieving uniform electrode formation after ligand exchange is equally important as lowering the sintering temperature. Here, we report a simple chemical treatment by the addition of ligand-exchanging interfaces to lower the sintering temperature; we also determine the optimum extent of ligand exchange for crack-free electrode formation. First, we investigated the structural change of Ag thin films with respect to the concentration of acrylic acid (AA) solutions. Second, we used thermal analysis to evaluate the effects of changes in the sintering temperature. We observed that the resulting conductivity of the Ag patterns was only one order of magnitude lower than that of bulk Ag when the patterns were sintered at 150 °C. The simple chemical treatment developed in this work for solution-processed Ag electrode formation can be adopted for flexible electronics, which would eliminate the need for vacuum and high-temperature processes.

  14. Radiation induced deposition of copper nanoparticles inside the nanochannels of poly(acrylic acid)-grafted poly(ethylene terephthalate) track-etched membranes

    NASA Astrophysics Data System (ADS)

    Korolkov, Ilya V.; Güven, Olgun; Mashentseva, Anastassiya A.; Atıcı, Ayse Bakar; Gorin, Yevgeniy G.; Zdorovets, Maxim V.; Taltenov, Abzal A.

    2017-01-01

    Poly(ethylene terephthalate) PET, track-etched membranes (TeMs) with 400 nm average pore size were UV-grafted with poly(acrylic acid) (PAA) after oxidation of inner surfaces by H2O2/UV system. Carboxylate groups of grafted PAA chains were easily complexed with Cu2+ ions in aqueous solutions. These ions were converted into metallic copper nanoparticles (NPs) by radiation-induced reduction of copper ions in aqueous-alcohol solution by gamma rays in the dose range of 46-250 kGy. Copper ions chelating with -COOH groups of PAA chains grafted on PET TeMs form polymer-metal ion complex that prevent the formation of agglomerates during reduction of copper ions to metallic nanoparticles. The detailed analysis by X-Ray diffraction technique (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) confirmed the deposition of copper nanoparticles with the average size of 70 nm on the inner surface of nanochannels of PET TeMs. Samples were also investigated by FTIR, ESR spectroscopies to follow copper ion reduction.

  15. Ultrasonic Velocity, Viscosity and Refractive Index Investigation on Interacting Blend Solutions of PAA (Poly Acrylic Acid) and PVA (Poly Vinyl Alcohol) in Solvent DMSO (Di methyl Sulphoxide)

    NASA Astrophysics Data System (ADS)

    Nagamani, Chakrala

    2010-11-01

    The present study provides a great insight into the major new research areas like Plasma research (which is yielding a greater understanding of the universe) and Nano Technology Research (which provides many practical uses like Drug Delivery System). The Ultrasonic Velocities, Viscosities and Refractive indices of Poly (Acrylic Acid) and Poly (Vinyl Alcohol) blends in DMSO solutions have been measured over a wide range of composition, concentration and at different temperatures. The variation of Ultrasonic Velocity, derived acoustical parameters, adiabatic compressibility, acoustic impedance, Rao number, molar compressibility and relaxation strength with composition of blend solution was found not linear. This non-linearity has been attributed to incompatibility in conformity with the earlier findings. This behavior was confirmed by Viscometric and interaction parameters studies, as well as by investigation of Refractive index studies. These investigations offer an entirely new and simple approach to the study of the compatibility of polymer blends which is in general obtained by sophisticated techniques of thermal dynamic mechanical and electron microscopic analysis.

  16. pH-responsive controlled-release fertilizer with water retention via atom transfer radical polymerization of acrylic acid on mussel-inspired initiator.

    PubMed

    Ma, Zhi-yuan; Jia, Xin; Zhang, Guo-xiang; Hu, Jia-mei; Zhang, Xiu-lan; Liu, Zhi-yong; Wang, He-yun; Zhou, Feng

    2013-06-12

    This work reports a polydopamine-graft-poly(acrylic acid) (Pdop-g-PAA)-coated controlled-release multi-element compound fertilizer with water-retention function by a combination of mussel-inspired chemistry and surface-initiated atom transfer radical polymerization (SI-ATRP) techniques for the first time. The morphology and composition of the products were characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography (GPC), and inductively coupled plasma (ICP) emission spectrometry. The results revealed that the stimuli-responsive layer formed by a Pdop inner layer and a PAA outer corona exhibit outstanding selective permeability to charged nutrients and the release rate of encapsulated elements can be tailored by the pH values. At low pH, the Pdop-g-PAA layer can reduce nutrient loss, and at high pH, the coating restrains transportation of negative nutrients but favors the release of cations. Moreover, PAA brushes provide good water-retention property. This Pdop-graft-polymer brushes coating will be effective and promising in the research and development of multi-functional controlled-release fertilizer.

  17. "Stable-on-the-Table" Biosensors: Hemoglobin-Poly (Acrylic Acid) Nanogel BioElectrodes with High Thermal Stability and Enhanced Electroactivity.

    PubMed

    Ghimire, Ananta; Zore, Omkar V; Thilakarathne, Vindya K; Briand, Victoria A; Lenehan, Patrick J; Lei, Yu; Kasi, Rajeswari M; Kumar, Challa V

    2015-09-18

    In our efforts toward producing environmentally responsible but highly stable bioelectrodes with high electroactivities, we report here a simple, inexpensive, autoclavable high sensitivity biosensor based on enzyme-polymer nanogels. Met-hemoglobin (Hb) is stabilized by wrapping it in high molecular weight poly(acrylic acid) (PAA, M(W) 450k), and the resulting nanogels abbreviated as Hb-PAA-450k, withstood exposure to high temperatures for extended periods under steam sterilization conditions (122 °C, 10 min, 17-20 psi) without loss of Hb structure or its peroxidase-like activities. The bioelectrodes prepared by coating Hb-PAA-450k nanogels on glassy carbon showed well-defined quasi-reversible redox peaks at -0.279 and -0.334 V in cyclic voltammetry (CV) and retained >95% electroactivity after storing for 14 days at room temperature. Similarly, the bioelectrode showed ~90% retention in electrochemical properties after autoclaving under steam sterilization conditions. The ultra stable bioelectrode was used to detect hydrogen peroxide and demonstrated an excellent detection limit of 0.5 μM, the best among the Hb-based electrochemical biosensors. This is the first electrochemical demonstration of steam-sterilizable, storable, modular bioelectrode that undergoes reversible-thermal denaturation and retains electroactivity for protein based electrochemical applications.

  18. Poly-N-Isopropylacrylamide/acrylic Acid Copolymers for the Generation of Nanostructures at Mica Surfaces and as Hydrophobic Host Systems for the Porin MspA from Mycobacterium smegmatis

    PubMed Central

    Gamage, Pubudu; Basel, Matthew T.; Lovell, Kimberly; Pokhrel, Megh Raj; Battle, Deletria; Ito, Takashi; Pavlenok, Mikhail; Niederweis, Michael

    2009-01-01

    The work presented here aims at utilizing poly-N-isopropyl-acrylamide/acrylic acid copolymers to create nanostructured layers on mica surfaces by a simple spin-casting procedure. The average composition of the copolymers determined by elemental analysis correlates excellently with the feed composition indicating that the radical polymerization process is statistical. The resulting surfaces were characterized by Atomic Force Microscopy (magnetic AC-mode) at the copolymer/air interface. Postpolymerization modification of the acrylic acid functions with perfluoro-octyl-iodide decreased the tendency towards spontaneous formation of nanopores. Crosslinking of individual polymer chains permitted the generation of ultraflat layers, which hosted the mycobacterial channel protein MspA, without compromising its channel function. The comparison of copolymers of very similar chemical composition that have been prepared by living radical polymerization and classic radical polymerization indicated that differences in polydispersity played only a minor role when poly-N-isopropyl-acrylamide/acrylic acid copolymers were spincast, but a major role when copolymers featuring the strongly hydrophobic perfluoro-octyl-labels were used. The mean pore diameters were 23.8±4.4 nm for P[(NIPAM)95.5-co-(AA)4.5] (PDI (polydispersity index)=1.55) and 21.8±4.2 nm for P[(NIPAM)95.3-co-(AA)4.7] (PDI=1.25). The depth of the nanopores was approx. 4 nm. When depositing P[(NIPAM)95-co-(AA)2.8-AAC8F17 2.2] (PDI=1.29) on Mica, the resulting mean pore diameter was 35.8±7.1 nm, with a depth of only 2 nm. PMID:20161351

  19. Facile synthesis of acid-labile polymers with pendent ortho esters.

    PubMed

    Cheng, Jing; Ji, Ran; Gao, Shi-Juan; Du, Fu-Sheng; Li, Zi-Chen

    2012-01-09

    This work presents a facile approach for preparation of acid-labile and biocompatible polymers with pendent cyclic ortho esters, which is based on the efficient and mild reactions between cyclic ketene acetal (CKA) and hydroxyl groups. Three CKAs, 2-ethylidene-1,3-dioxane (EDO), 2-ethylidene-1,3-dioxolane (EDL), and 2-ethylidene-4- methyl-1,3-dioxolane (EMD) were prepared from the corresponding cyclic vinyl acetals by catalytic isomerization of the double bond. The reaction of CKAs with different alcohols and diols was examined using trace of p-toluenesulfonic acid as a catalyst. For the monohydroxyl alcohols, cyclic ortho esters were formed by simple addition of the hydroxyl group toward CKAs with ethanol showing a much greater reactivity than iso-propanol. When 1,2- or 1,3-diols were used to react with the CKAs, we observed the isomerized cyclic ortho esters besides the simple addition products. Biocompatible polyols, that is, poly(2-hydroxyethyl acrylate) (PHEA) and poly(vinyl alcohol) (PVA) were then modified with CKAs, and the degree of substitution of the pendent ortho esters can be easily tuned by changing feed ratio. Both the small molecule ortho esters and the CKA-modified polymers demonstrate the pH-dependent hydrolysis profiles, which depend also on the chemical structure of the ortho esters as well as the polymer hydrophobicity.

  20. Binding of Polycarboxylic Acids to Cationic Mixed Micelles: Effects of Polymer Counterion Binding and Polyion Charge Distribution.

    PubMed

    Yoshida; Sokhakian; Dubin

    1998-09-15

    Mixed micelles of cetyltrimethylammonium chloride (CTAC) and n-dodecyl hexaoxyethylene glycol monoether (C12E8) bind to polyanions when the mole fraction of the cationic surfactant exceeds a critical value (Yc). Yc corresponds to a critical micelle surface charge density at which polyelectrolyte will bind to this colloidal particle. Turbidimetric titrations were used to determine Yc for such cationic-nonionic micelles in the presence of acrylic acid and acrylamido-2-methylpropane sulfonate homopolymers (PAA and PAMPS, respectively) and their copolymers with acrylamide, as function of pH, ionic strength, and polyelectrolyte counterion. In 0.20 M NaCl, Yc for PAA is found to be remarkably insensitive to pH, i.e., virtually independent of the apparent polymer charge density xiapp. On the other hand, the expected inverse relationship between Yc and xiapp is observed either for PAA when NaCl is replaced by TMACl (tetramethylammonium chloride), or when xiapp is manipulated using acrylic acid/acrylamide copolymers at high pH. The effective charge density of PAA is thus seen to be suppressed by specific sodium ion binding, indicating that the influence of salts on the interaction of polycarboxylic acids with colloidal particles may differ qualitatively from their effect on the analogous behavior of strong polyanions. Comparisons between homo- and copolymers of acrylic acid were carried out also to test the hypothesis that the "mobility" of charges on PAA at moderate pH (degree of ionization less than unity) could make this "annealed" polymer exhibit the behavior of a more highly charged one. The results, while consistent with this expectation, were obscured by the likely effect of copolymer sequence distributions. Copyright 1998 Academic Press.

  1. Removal of Cu(II) and Ni(II) using cellulose extracted from sisal fiber and cellulose-g-acrylic acid copolymer.

    PubMed

    Hajeeth, T; Vijayalakshmi, K; Gomathi, T; Sudha, P N

    2013-11-01

    The extraction of cellulose from sisal fiber was done initially using the steam explosion method. The batch adsorption studies were conducted using the cellulose extracted from the sisal fiber and cellulose-g-acrylic acid as an adsorbent for the removal of Cu(II) and Ni(II) metal ions from aqueous solution. The effect of sorbent amount, agitation period and pH of solution that influence sorption capacity were investigated. From the observed results, it was evident that the adsorption of metal ions increases with the increase in contact time and adsorbent dosage. The optimum pH was found to be 5.0 for the removal of copper(II) and nickel(II) for both the extracted cellulose and cellulose-g-acrylic acid copolymer. The adsorption data were modeled using Langmuir and Freundlich isotherms. The experimental results of the Langmuir, Freundlich isotherms revealed that the adsorption of Cu(II) and nickel(II) ion onto cellulose extracted from the sisal fiber and cellulose-g-acrylic acid copolymer was found to fit well with Freundlich isotherm. The kinetics studies show that the adsorption follows the pseudo-second-order kinetics. From the above results, it was concluded that the cellulose-g-acrylic acid copolymer was found to be an efficient adsorbent.

  2. A new coordination mode of (E)-3-(3-hydroxyl-phenyl)-acrylic acid in copper complex: Crystal structure and magnetic properties

    SciTech Connect

    Jin, Xin; Zhou, Pei; Zheng, Chunying; Li, Hui

    2015-05-15

    A copper complex ([Cu(py){sub 2}(L){sub 2}]·2CH{sub 3}OH){sub n} (HL=(E)-3-(3-hydroxyl-phenyl)-acrylic acid) (1) with acrylic acid ligand was synthesized and structurally analyzed by IR, elemental analysis, TGA and the single-crystal X-ray diffraction methods. It is the first time to find that phenolic hydroxyl of L coordinates to Cu(II). Complex 1 exhibits 1D chain by a double-bridge of ligands, and the 3D supramolecular framework in complex 1 is constructed by π–π stacking interactions and van der Waals Contacts among the 1D chains. The magnetic properties of complex 1 have been studied. - Graphical abstract: A copper complex based on (E)-3-(3-hydroxyl-phenyl)-acrylic acid in a novel coordinated way was synthesized and a ferromagnetic exchange interactions between neighboring Cu(II) ions has be achieved. - Highlights: • A new copper complex with acrylic acid ligand was synthesized and analyzed. • We find the phenolic hydroxyl of MCA ligand coordinates to metal ion firstly. • A ferromagnetic exchange interactions between Cu(II) ions has been achieved.

  3. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films

    NASA Astrophysics Data System (ADS)

    Bozzi, Annick; Chapiro, Adolphe

    Grafting acrylic acid into air-irradiated Teflon-FEP films was investigated. Pre-irradiation doses ranged from 0.5 to 10 kGy. Grafting occurred at 45 or 60°C. Homopolymerization inhibitors, ferrous ions or methylene blue, were added to the system. It was found that after completion of the reaction, within 40-100 min, membranes were obtained with very low electric resistivities. The influence of added inhibitors, pre-irradiation dose and grafting temperature was studied. From the results it is concluded that the initiating centers in air-irradiated Teflon-FEP are, on the one hand, peroxides of structure POOP', in which P is a polymeric radical and Pprime; a small fragment, and on the other trapped PO .2 radicals. The latter only react after losing their oxygen. In the presence of polymerization inhibitors, initiation involves a redox process which reduces the overall activation energy.

  4. Polydopamine-coated electrospun poly(vinyl alcohol)/poly(acrylic acid) membranes as efficient dye adsorbent with good recyclability.

    PubMed

    Yan, Jiajie; Huang, Yunpeng; Miao, Yue-E; Tjiu, Weng Weei; Liu, Tianxi

    2015-01-01

    Free-standing poly(vinyl alcohol)/poly(acrylic acid) (PVA/PAA) membranes with polydopamine (PDA) coating were prepared based on the combination of electrospinning and self-polymerization of dopamine. This is a facile, mild, controllable, and low-energy consumption process without any rigorous restriction to reactive conditions. Benefiting from the high specific surface area of electrospun membranes and the abundant "adhesive" functional groups of polydopamine, the as-prepared membranes exhibit efficient adsorption performance towards methyl blue with the adsorption capacity reaching up to 1147.6 mg g(-1). Moreover, compared to other nanoparticle adsorbents, the as-prepared self-standing membrane is highly flexible, easy to operate and retrieve, and most importantly, easy to elute, and regenerate, which enable its potential applications in wastewater treatment.

  5. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  6. Preparation of poly(polyethylene glycol methacrylate-co-acrylic acid) hydrogels by radiation and their physical properties

    NASA Astrophysics Data System (ADS)

    Park, Sung-Eun; Nho, Young-Chang; Kim, Hyung-Il

    2004-02-01

    The pH-responsive copolymer hydrogels were prepared with the monomers of polyethylene glycol methacrylate and acrylic acid based on γ-ray irradiation technique. The gel content of these copolymer hydrogels varied depending on both the composition of monomers and the radiation dose. Maximum gel percent and degree of crosslinking were obtained at the composition of equal amount of comonomers. These copolymer hydrogels did not show any noticeable change in swelling at lower pH range. However they showed an abrupt increase in swelling at higher pH range due to the ionization of carboxyl groups. This pH-responsive swelling behavior was applied for the insulin carrier via oral delivery. Insulin-loaded copolymer hydrogels released most of their insulin in the simulated intestinal fluid which had a pH of 6.8 but not in the simulated gastric fluid which had a pH of 1.2.

  7. In Vitro Antibacterial Activity of Nano Silver Ion Substituted Poly Acrylic Acid Films on Titanium by Plasma Polymerization.

    PubMed

    Ko, Yeong-Mu; Myung, Sung-Woon; Kook, Joong-Ki; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-01-01

    Antibacterial activity of oral pathogens such as Streptococcus mutans, Streptococcus sobrinus when silver ion immobilized on commercially pure (CP) titanium (Ti) surface was investigated in this study. Plasma-polymerized acrylic acid to have carboxyl group was deposited on CP-Ti surface and then ion-exchanged with Ag+ ions in 0.1 N AgNO3. In anti-adherent experiment, antibacterial activity was tested using broth culture methods. The biofilm formation assay was performed using semi-defined biofilm medium with sucrose. The silver coated CP-Ti completely inhibited the growth of S. mutans and S. sobrinus. In addition, the biofilm formation was significantly inhibited in silver-coated CP-Ti group.

  8. THE RATIO OF THE GLASS TEMPERATURE TO THE MELTING POINT IN POLYMERS.

    DTIC Science & Technology

    PLASTICS , MELTING POINT, TRANSITION TEMPERATURE, POLYETHYLENE PLASTICS , VINYL PLASTICS , BUTADIENES, FLUORINE COMPOUNDS, STYRENE PLASTICS , POLYMERS...NYLON, PHYSICAL PROPERTIES, MOLECULAR STRUCTURE, CARBONATES, ESTERS, ACRYLIC RESINS, PHENOLIC PLASTICS , ANHYDRIDES, CARBOXYLIC ACIDS, PHTHALATES, UNITED KINGDOM.

  9. Hyperbranched chelating polymers for the polymer-assisted ultrafiltration of boric acid

    SciTech Connect

    Smith, B.M.; Todd, P.; Bowman, C.N.

    1999-07-01

    Two hyperbranched chelating polymers, glucoheptonamide derivatives of dendrimetric poly(amido amine) and poly(ethylene imine), were employed in polymer-assisted ultrafiltration and concentration of boron from aqueous feed streams. For feeds containing approximately 1 mM B (10 ppm), volume reduction factors of 20 were observed in cyclic adsorption-desorption. The concentrations of both polymers declined due to permeation through an ultrafiltration membrane with pore sizes which should have retained them. Acid-catalyzed hydrolysis of the amide linkages between the polymer backbone and the chelating side groups is implicated in this loss of polymer mass and effectiveness.

  10. Preparation and Properties of Ethylene Vinyl Acetate Copolymer/Silica Nanocomposites in Presence of EVA-g-Acrylic Acid.

    PubMed

    Tham, Do Quang; Tuan, Vu Manh; Thanh, Dinh Thi Mai; Chinh, Nguyen Thuy; Giang, Nguyen Vu; Trang, Nguyen Thi Thu; Hang, To Thi Xuan; Huong, Ho Thu; Dung, Nguyen Thi Kim; Hoang, Thai

    2015-04-01

    Here we report a facile approach to enhance the dispersibility of ethylene vinyl acetate copolymer (EVA)/silica nanocomposites (for the EVA/silica nanocomposites and interaction between silica nanoparticles (nanosilica) and EVA by adding EVA-g-acrylic acid (EVAgAA) as a compatibilizer, which was formed by grafting acrylic acid onto EVA chains with the aid of dicumyl peroxide). The above nanocomposites with and without EVAgAA were prepared by melt mixing in a Haake intermixer with different contents of silica and EVAgAA. Their structure and morphology were characterized by Fourier transform infra-red (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), and the mechanical, rheological, dielectrical, and flammability properties of the nanocomposites were also investigated. The FT-IR spectra of the nanocomposites confirmed the formation of hydrogen bonds between the surface silanol groups of nanosilica and C=O groups of EVA and/or EVAgAA. The presence of EVAgAA remarkably increased the intensity of hydrogen bonding between nanosilica and EVA which not only enhanced the dispersion of nanosilica in EVA matrix but also increased the mechanical, viscosity and storage modulus of EVA/silica nanocomposites. In addition, the flammability of EVA/silica nanocomposites is also significantly reduced after the functionalization with EVAgAA. However, the mechanical properties of EVA/silica nanocomposites tended to level off when its content was above 1.5 wt.%. It has also been found that the dielectric constant value of the EVA/EVAgAA/silica nanocomposites is much lower than that of the EVA/silica nanocomposites, which is another evidence of the hydrogen bonding formation between EVAgAA and nanosilica.

  11. Influence of fluorination on the characterization of fluorotelomer-based acrylate polymers by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

    PubMed

    Rankin, Keegan; Mabury, Scott A

    2014-01-15

    The relative degree of fluorotelomer-based acrylate polymers (FTACPs) fluorination was demonstrated to influence the sample preparation protocol for matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectrometry. A homologous series of FTACPs were synthesized from fluorotelomer and hydrocarbon acrylates of different chain lengths, which varied the ratio of perfluorinated to hydrogenated carbons (RF/RH). The solubility of FTACPs in tetrahydrofuran (THF) and chloroform was observed to decrease for highly fluorinated FTACPs (RF/RH>0.5) promoting FTACP aggregation. No dependence on the degree of fluorination was observed for the solubility of FTACPs in the fluorinated solvents α,α,α-trifluorotoluene (TFT) or dichloropentafluoropropanes (HCFC-225). For FTACPs with a low degree of fluorination such as poly(8:2 FTAC-co-HDA) (RF/RH=0.375), MALDI-ToF analysis was successful using a conventional sample preparation protocol with THF, and dithranol (Dith) matrix. Conversely, the poor solubility of the highly fluorinated poly(8:2 FTAC-co-BA) (RF/RH=1.5) in THF resulted in mass discrimination. Several fluorinated sample preparation protocols were evaluated for poly(8:2 FTAC-co-BA) using TFT and HCFC-225, and decafluoroazobenzene (DFAB) or 2-[(2E)-3-(4-tert-butylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) matrices. The high volatility of HCFC-225 decreased FTACP pooling during solvent evaporation in comparison to the less volatile TFT, and improved the quantity of detectable signals. MALDI-ToF analysis of poly(8:2 FTAC-co-BA) in a 95:5 HCFC-225:methanol with DCTB being the best sample preparation protocol for highly fluorinated FTACPs in this study producing the highest number of observable signals. Employing a fluorinated sample preparation offers the capability of analyzing other highly fluorinated polymers that are not compatible with conventional sample preparations.

  12. Thermochemical study of amino acid imprinted polymer films.

    PubMed

    Chai, Ziyi; BelBruno, Joseph J

    2015-11-01

    Molecularly imprinted polymers provide an alternative to traditional methods of amino acid analysis. The imprinted polymers are more robust and significantly less expensive than, for example, ELISA analysis. Amino acid imprinted nylon-6 thin films were studied by differential scanning calorimetry and scanning electron microscopy. Endothermic peaks were observed for imprinted films at temperatures higher than that for pure nylon, indicating the formation of a more-ordered, hydrogen bonded polymer. Removal of the amino acid from the imprinted film resulted in reversion to the peak observed for pure nylon-6. Additives, β-cyclodextrin and multiwalled carbon nanotubes, were added to the imprinted polymer solutions as a means to increase the porosity of the films. These studies resulted in alternative morphologies and calorimetric results that provide additional functionalities and applications for imprinted polymers.

  13. Electrical characterization of proton conducting polymer electrolyte based on bio polymer with acid dopant

    NASA Astrophysics Data System (ADS)

    Kalaiselvimary, J.; Pradeepa, P.; Sowmya, G.; Edwinraj, S.; Prabhu, M. Ramesh

    2016-05-01

    This study describes the biodegradable acid doped films composed of chitosan and Perchloric acid with different ratios (2.5 wt %, 5 wt %, 7.5 wt %, 10 wt %) was prepared by the solution casting technique. The temperature dependence of the proton conductivity of complex electrolytes obeys the Arrhenius relationship. Proton conductivity of the prepared polymer electrolyte of the bio polymer with acid doped was measured to be approximately 5.90 × 10-4 Scm-1. The dielectric data were analyzed using Complex impedance Z*, Dielectric loss ɛ', Tangent loss for prepared polymer electrolyte membrane with the highest conductivity samples at various temperature.

  14. Preparation and dielectric analysis of microphase-separated poly(acrylonitrile-co-acrylamide-co-acrylic acid) hydrogels

    SciTech Connect

    Hu, D.Shiaw-Guang; Lin, Yow-Shi

    1993-12-31

    The acidic hydrolysis of polyacrylonitrile was carried out to yield a variety of terpolymers made up of nitriles, amides and acids. The formation of block structure was shown to follow a ripper mechanism occurring to acrylamide groups, that is more pronounced for a certain range of acrylamide content, evidenced by the composition analysis using {sup 1}H-NMR and base titration. The rates of formation of acrylamide fraction and acid fraction in the consecutive mode are approximately the same, yielding the content of ionic groups from 0.8 to 2.2. mole percent, dependent on the time of hydrolysis. The dielectric relaxation measurement on swollen gels shows three relaxation transitions, {alpha}, {beta}, {gamma}, over -150{degrees}C to 0{degrees}C, as influenced by the chemical composition and water absorption. The {beta} and {gamma} are associated with the polymer-water interaction and short-range motion of polymers and water.

  15. Interpolymer complexes of poly(acrylic acid) and chitosan: influence of the ionic hydrogel-forming medium.

    PubMed

    de la Torre, Paloma M; Torrado, Susana; Torrado, Santiago

    2003-04-01

    Non-covalent polyionic complexes were developed for localized antibiotic delivery in the stomach. Freeze-dried interpolymer complexes based on polyacrylic acid (PAA) and chitosan (CS) were prepared in a wide range of copolymer compositions by dissolving both polymers in acidic conditions. The influence of hydrogel-forming medium on the swelling and drug release was evaluated. The properties of these complexes were investigated by using scanning electron microscopy, dynamic swelling/eroding and release experiments in enzyme-free simulated gastric fluid (SGF). The electrostatic polymer/polymer interactions generate polyionic complexes with different porous structures. In a low pH environment, the separation of both polymer chains augmented as the amount of cationic and carboxilic groups increased within the network. However, the presence of higher amount of ions in the hydrogel-forming medium produced a network collapse, decreasing the maximum swelling ratio in SGF. PAA:CS:A (1:2.5:2)-1.75 M complexes released around 54% and 71% of the amoxicillin in 1 and 2 h, respectively, in acidic conditions. A faster drug release from this interpolymer complex was observed when the ionic strength of the hydrogel-forming medium increased. Complexes with a high amount of both polymer chains within the network, PAA:CS:A(2.5:5:2), showed a suitable amoxicillin release without being affected by an increased amount of ions in the hydrogel-forming medium. These freeze-dried interpolymer complexes could serve as potential candidates for amoxicillin delivery in an acidic enviroment.

  16. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers

    PubMed Central

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed. PMID:26909074

  17. Mitigation of Biofilm Formation on Corrugated Cardboard Fresh Produce Packaging Surfaces Using a Novel Thiazolidinedione Derivative Integrated in Acrylic Emulsion Polymers.

    PubMed

    Brandwein, Michael; Al-Quntar, Abed; Goldberg, Hila; Mosheyev, Gregory; Goffer, Moshe; Marin-Iniesta, Fulgencio; López-Gómez, Antonio; Steinberg, Doron

    2016-01-01

    Various surfaces associated with the storage and packing of food are known to harbor distinct bacterial pathogens. Conspicuously absent among the plethora of studies implicating food packaging materials and machinery is the study of corrugated cardboard packaging, the worldwide medium for transporting fresh produce. In this study, we observed the microbial communities of three different store-bought fruits and vegetables, along with their analog cardboard packaging using high throughput sequencing technology. We further developed an anti-biofilm polymer meant to coat corrugated cardboard surfaces and mediate bacterial biofilm growth on said surfaces. Integration of a novel thiazolidinedione derivative into the acrylic emulsion polymers was assessed using Energy Dispersive X-ray Spectrometry (EDS) analysis and surface topography was visualized and quantified on corrugated cardboard surfaces. Biofilm growth was measured using q-PCR targeting the gene encoding 16s rRNA. Additionally, architectural structure of the biofilm was observed using SEM. The uniform integration of the thiazolidinedione derivative TZD-6 was confirmed, and it was determined via q-PCR to reduce biofilm growth by ~80% on tested surfaces. A novel and effective method for reducing microbial load and preventing contamination on food packaging is thereby proposed.

  18. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices.

  19. Poly(acrylic acid)/polyethylene glycol hygrogel prepared by using gamma-ray irradiation for mucosa adhesion

    NASA Astrophysics Data System (ADS)

    Nho, Young-Chang; Park, Jong-Seok; Shin, Jung-Woong; Lim, Youn-Mook; Jeong, Sung-In; Shin, Young-Min; Gwon, Hui-Jeong; Khil, Myung-Seob; Lee, Deok-Won; Ahn, Sung-Jun

    2015-01-01

    A buccal delivery system provides a much milder environment for drug delivery compared to an oral delivery which presents a hostile environment for drugs, especially proteins and polypeptides, owing to acid hydrolysis. Local delivery in an oral cavity has particular applications in the treatment of toothaches, periodontal disease, and bacterial infections. Poly(acrylic acid) (PAA)-based hydrogels prepared using a chemical initiator have been attempted for a mucoadhesive system owing to their flexibility and excellent bioadhesion. In this experiment, PAA and polyethylene glycol (PEG) were selected to prepare using a radiation process a bioadhesive hydrogel for adhesion to mucosal surfaces. PAA and PEG were dissolved in purified water to prepare a homogeneous PAA/PEG solution, and the solution was then irradiated using an electron beam at dose up to 70 kGy to make the hydrogels. Their physical properties, such as gel percent, swelling percent, and adhesive strength to mucosal surfaces, were investigated. In this experiment, various amounts of PEG were incorporated into the PAA to enhance the mucoadhesive property of the hydrogels. The effect of the molecular weight of PEG on the mucoadhesion was also examined.

  20. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    NASA Astrophysics Data System (ADS)

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-01

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  1. Chemical crosslinking of acrylic acid to form biocompatible pH sensitive hydrogel reinforced with cellulose nanocrystals (CNC)

    SciTech Connect

    Lim, Lim Sze; Ahmad, Ishak; Lazim, Mohd Azwani Shah Mat; Amin, Mohd. Cairul Iqbal Mohd

    2014-09-03

    The purpose of this study is to produce a novel pH and temperature sensitive hydrogel, composed of poly(acrylic acid) (PAA) and cellulose nanocrystal (CNC). CNC was extracted from kenaf fiber through a series of alkali and bleaching treatments followed by acid hydrolysis. The PAA was then subjected to chemical cross-linking using the cross-linking agent (N,N-methylenebisacrylamide) with CNC entrapped in PAA matrix. The mixture was casted onto petri dish to obtain disc shape hydrogel. The effects of reaction conditions such as the ratio of PAA and CNC on the swelling behavior of the hydrogel obtained towards pH and temperature were studied. The obtained hydrogel was further subjected to different tests such swelling test for swelling behaviour at different pH and temperature along with scanning electron microscopy (SEM) for morphology analysis. The hydrogel obtained showed excellent pH sensitivity and obtained maximum swelling at pH 7. Besides that, hydrogel obtained showed significant increase in swelling ratio when temperature of swelling medium was increased from 25°C to 37°C. SEM micrograph showed that the pore size of the hydrogel decreases with increase of CNC content proving that the hydrogel structure became more rigid with addition of CNC. The PAA/CNC hydrogel with such excellent sensitivity towards pH and temperature can be developed further as drug carrier.

  2. Synthesis of polymer materials by low energy electron beam. IV. EB-polymerized urethane-acrylate, -methacrylate and -acrylamide

    NASA Astrophysics Data System (ADS)

    Ando, Masayuki; Uryu, Toshiyuki

    The structure and properties before and after electron beam (EB) irradiation were investigated using urethane prepolymers with different terminal groups of 2-hydroxyethyl acrylate (HEA), 2-hydroxyethyl methacrylate (HEMA) and N-hydroxymethyl acrylamide (HMAAm). The prepolymers were synthesized by reaction of HEA, HEMA and HMAAm with the isocyanate-capped intermediate, which was obtained by reaction of poly(butylene adipate)diol (PBAD) with 4,4'-diphenylmethane diisocyanate. The resulting urethane-acrylate (UA-251M), -methacrylate (UMA-251M) and -acrylamide (UNAA-251M) had the crystallinity arising from PBAD moieties, and UA-251M and UMA-251M had higher crystallinity than UNAA-251M. IR results indicated that UNAA-251M was larger in the fraction of free NH stretching absorption than UA-251M and UMA-251M regardless of the number of NH group per a molecule. Accordingly, it was assumed that the difference in crystallinity was attributed to the polarity of terminal group. Hence, the rate of gel formation for UA-251M and UMA-251M was higher than that of UNAA-251M. The crystallinity based on PBAD of the prepolymers was remained also after EB irradiation. Spherulitic texture was observed on the EB-polymerized gel film surfaces for UA-251M and UMA-251M, while it was almost destroyed for UNAA-251M. Mechanical properties of UA-251M and UMA-251M gel films were much superior to those of UNAA-251M gel film according to the phase structure. Especially, UMA-251M gel film represented most excellent mechanical properties. Schematic models of the phase structure for UA-251M, UMA-251M and UNAA-251M were suggested from all experimental results.

  3. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  4. Alkenyl Carboxylic Acid: Engineering the Nanomorphology in Polymer-Polymer Solar Cells as Solvent Additive.

    PubMed

    Zhang, Yannan; Yuan, Jianyu; Sun, Jianxia; Ding, Guanqun; Han, Lu; Ling, Xufeng; Ma, Wanli

    2017-04-06

    We have investigated a series of commercially available alkenyl carboxylic acids with different alkenyl chain lengths (trans-2-hexenoic acid (CA-6), trans-2-decenoic acid (CA-10), 9-tetradecenoic acid (CA-14)) for use as solvent additives in polymer-polymer non-fullerene solar cells. We systematically investigated their effect on the film absorption, morphology, carrier generation, transport, and recombination in all-polymer solar cells. We revealed that these additives have a significant impact on the aggregation of polymer acceptor, leading to improved phase segregation in the blend film. This in-depth understanding of the additives effect on the nanomorphology in all-polymer solar cell can help further boost the device performance. By using CA-10 with the optimal alkenyl chain length, we achieved fine phase separation, balanced charge transport, and suppressed recombination in all-polymer solar cells. As a result, an optimal power conversion efficiency (PCE) of 5.71% was demonstrated which is over 50% higher than that of the as-cast device (PCE = 3.71%) and slightly higher than that of devices with DIO treatment (PCE = 5.68%). Compared with widely used DIO, these halogen-free alkenyl carboxylic acids have a more sustainable processing as well as better performance, which may make them more promising candidates for use as processing additives in organic non-fullerene solar cells.

  5. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Bioadhesive polymers as platforms for oral controlled drug delivery II: synthesis and evaluation of some swelling, water-insoluble bioadhesive polymers

    SciTech Connect

    Ch'ng, H.S.; Park, H.; Kelly, P.; Robinson, J.R.

    1985-04-01

    A series of cross-linked, swellable polymers was sythesized from monomers such as acrylic acid, methacrylic acid, and others with various cross-linking agents to produce a range of polymers differing in charge densities and hydrophobicity. The densities, rate, and extent of hydration of the polymers were determined. An increase in the number of hydrophobic groups in the polymer structure reduced hydration whereas the density of the polymer was unaffected. A sensitive in vitro method for measuring adhesion of polymer to tissue from the rabbit stomach was developed. Polymers of acrylic acid loosely cross-linked (0.3%, w/w) with three different agents, divinyl glycol, 2,5-dimethyl-1,5-hexadiene, and divinylbenzene, showed the same degree of bioadhesion while poly(methacrylic acid-divinylbenzene) showed reduced bioadhesion. The small percent of cross-linking agent, irrespective of physicochemical properties, did not contribute substantially to bioadhesion, whereas the starting monomer had a large effect. The effect of pH on the bioadhesion of poly(acrylic acid-divinyl glycol) was studied at constant temperature, ionic strength, and osmolality. The polymer showed maximum adhesion at pH 5 and 6 and a minimum at pH 7. Gastrointestinal transit studies of cross-linked polymers in rats were studied. Poly(acrylic acid-divinyl glycol) and poly(methacrylic acid-divinylbenzene) were shown to have substantially longer GI transit times than the control, Amberlite 200 resin beads. The delay in transit time was due to bioadhesion of the polymer to the mucin-epithelial cell surface which was clearly observable on animal autopsy. The acrylic acid polymer showed a longer GI transit time than the methacrylic acid polymer, and this in vivo GI transit result is consistent with in vitro bioadhesion test results.

  7. Polymer electrolyte membrane based on 2-acrylamido-2-methyl propanesulfonic acid fabricated by embedded polymerization

    NASA Astrophysics Data System (ADS)

    Pei, Haiqin; Hong, Liang; Lee, Jim Yang

    Methanol crossover through the Nafion membrane is a perennial problem in the operation of direct methanol fuel cells (DMFCs) and therefore justifies the search for a Nafion substitute. This study reports a new methanol-blocking polymer matrix which consists of a methanol barrier phase and an embedded proton source. A three-component polymer blend (TCPB) of poly(4-vinylphenol-co-methyl methacrylate), poly(butyl methacrylate) (PBMA), and Paraloid ® B-82 acrylic copolymer resins is used as a methanol barrier. In order to implant a proton source in the membrane as homogeneously as possible, the hydrophilic monomers, 2-acrylamido-2-methyl propanesulfonic acid (AMPS), 2-hydroxyethyl methacrylate (HEMA) and a cross-linking agent (poly(ethylene glycol) dimethylacrylate) (PEGDMA) are polymerized after they have been embedded in the TCPB matrix. The embedded polymerization has resulted in an asymmetric membrane structure, in which the hydrophilic network is sandwiched by two outer layers of predominantly hydrophobic TCPB. Measurements are made of properties of the AMPS-containing membranes that are important to fuel cell applications such as water uptake, ion-exchange capacity, proton conductivity, methanol permeability and tensile strength. The highest proton conductivity of the AMPS-containing membrane is about 0.030 S cm -1 at 70 °C. The low methanol permeability (10 -8 to 10 -7 cm 2 s -1) of the AMPS-containing membranes is their primary advantage for DMFC applications.

  8. Memristive behaviour in poly-acrylic acid coated TiO2 nanotube arrays

    NASA Astrophysics Data System (ADS)

    Conti, Daniele; Lamberti, Andrea; Porro, Samuele; Rivolo, Paola; Chiolerio, Alessandro; Fabrizio Pirri, Candido; Ricciardi, Carlo

    2016-12-01

    This work investigates titanium dioxide nanotube arrays (TiO2-NTA) grown by anodic oxidation as an active material for memristive applications. In particular, metal-insulator-metal structures made of vertically oriented amorphous TiO2-NTA grown on titanium foil were exploited in Ti/TiO2-NTA/Pt devices. The deposition of a polymeric thin film between NTA and top electrodes significantly improved the stability of the devices and increased by more than double the off/on resistance ratio. The resistive switching of TiO2-NTA samples crystallised by thermal annealing was also studied. Such devices displayed nonlinear I-V curves characterised by a smooth rectifying behaviour, without any evident resistive switching (RS). Also in this case, the interposition of the polymeric layer enhanced the RS behaviour of TiO2-NTA samples, remarkably increasing the devices’ off/on ratio and endurance. The rise of high resistance states can be simply related to the addition of the polymer as resistance in series, while the variation of the low resistance states is here attributed to the occurrence of surface chemical reactions between polymer functional groups and the metal oxide, which increase the charge carriers available for conduction.

  9. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples.

  10. Fast removal of copper ions from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite composites.

    PubMed

    Wang, Xiaohuan; Zheng, Yian; Wang, Aiqin

    2009-09-15

    Novel chitosan-g-poly(acrylic acid)/attapulgite (CTS-g-PAA/APT) composites were applied as adsorbents for the removal of Cu(II) from aqueous solution. The effects of the initial pH value (pH(0)) of Cu(II) solution, contact time (t), APT content (wt%) and the initial concentration of Cu(II) solution (C(0)) on the adsorption capacity of the composites were investigated. Results from kinetic experimental data showed that the Cu(II) adsorption rate on the composites with 10, 20 and 30 wt% APT was fast and more than 90% of the maximum adsorption capacity for Cu(II) occurred within the initial 15 min. The adsorption kinetics was better described by the pseudo-second order equation, and their adsorption isotherms were better fitted for the Langmuir equation. The results of the five-time consecutive adsorption-desorption studies showed that the composites had high adsorption and desorption efficiencies, which implies that the composites may be used as quite effective adsorbents for the removal of Cu(II) from aqueous solution.

  11. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea

    PubMed Central

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J.; Hartmann, Laura; Cochran, Jennifer R.; Frank, Curtis W.; Yu, Charles Q.; Ta, Christopher N.

    2015-01-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications. PMID:25778285

  12. Hysteretic memory in pH-response of water contact angle on poly(acrylic acid) brushes.

    PubMed

    Yadav, Vivek; Harkin, Adrienne V; Robertson, Megan L; Conrad, Jacinta C

    2016-04-21

    We investigated the pH-dependent response of flat polyacid brushes of varying length and dispersity in the extended brush regime. Our model system consisted of poly(acrylic acid) brushes, which change from hydrophobic and neutral at low pH to hydrophilic and negatively charged at high pH, synthesized on silicon substrates using a grafting-from approach at constant grafting density. We observed three trends in the pH-response: first, the dry brush thickness increased as the pH was increased for brushes above a critical length, and this effect was magnified as the dispersity increased; second, the water contact angle measured at low pH was larger for brushes of greater dispersity; and third, brushes of sufficient dispersity exhibited hysteretic memory behavior in the pH-dependence of the contact angle, in which the contact angle upon increasing and decreasing pH differed. As a consequence, the pKa of the brushes measured upon increasing pH was consistently higher than that measured upon decreasing pH. The observed pH response is consistent with proposed changes in the conformation and charge distribution of the polyelectrolyte brushes that depend on the direction of pH change and the dispersity of the brushes.

  13. Immobilization of urease by using chitosan-alginate and poly(acrylamide-co-acrylic acid)/kappa-carrageenan supports.

    PubMed

    Kara, Filiz; Demirel, Gökhan; Tümtürk, Hayrettin

    2006-08-01

    Jack bean urease (urea aminohydrolase, E.C. 3.5.1.5) was entrapped into chitosan-alginate polyelectrolyte complexes (C-A PEC) and poly(acrylamide-co-acrylic acid)/kappa-carrageenan (P(AAm-co-AA)/carrageenan) hydrogels for the potential use in immobilization of urease, not previously reported. The effects of pH, temperature, storage stability, reuse number, and thermal stability on the free and immobilized urease were examined. For the free and immobilized urease into C-A PEC and P(AAm-co-AA)/carrageenan, the optimum pH was found to be 7.5 and 8, respectively. The optimum temperature of the free and immobilized enzymes was also observed to be 55 and 60 degrees C, respectively. Michaelis-Menten constant (K(m)) values for both immobilized urease were also observed smaller than free enzyme. The storage stability values of immobilized enzyme systems were observed as 48 and 70%, respectively, after 70 days. In addition to this, it was observed that, after 20th use in 5 days, the retained activities for immobilized enzyme into C-A PEC and P(AAm-co-AA)/carrageenan matrixes were found as 55 and 89%, respectively. Thermal stability of the free urease was also increased by a result of immobilization.

  14. Thermoresponsive gelling behavior of concentrated alumina suspensions containing poly(acrylic acid) and PEO-PPO-PEO copolymer.

    PubMed

    Kondo, Akira; Xu, Hui; Abe, Hiroya; Naito, Makio

    2012-05-01

    Thermoresponsive gelling behavior of concentrated alumina suspensions with poly(acrylic acid) (PAA) and triblock copolymer (PEO(101)-PPO(56)-PEO(101), Pluronic F127) was investigated as a function of PAA concentration (0.4-1.2 mass%) for ceramic solid free forming. The copolymer species assemble into micelles at temperatures above 15°C, yielding aqueous physical gel. In this study, the concentrated alumina aqueous suspensions (φ=35 vol%) were first prepared using the anionic dispersant of PAA, and then the copolymer species (10 mass%) were dissolved at a cooled temperature at 10°C. The addition of the copolymer species had a negligible influence on the adsorption state of PAA onto the alumina surfaces. The PAA concentration needed for the saturation adsorption on the alumina surfaces was ~0.6 mass%. When the PAA concentration was this value or slightly less, the suspension became gel state at 30°C from low viscous state at 10°C. The thermally induced alumina gel had excellent viscoelastic properties, and thereby the three dimensional periodic ceramic structures were successfully fabricated by a direct colloidal printing method that using the gels as "solid" inks at the room temperature. On the other hand, when it exceeded the saturation adsorption limit, the gelling behavior was not observed, indicating that the non-adsorbing PAA species may partly suppress the micellization of the copolymer on the heating.

  15. Biocompatibility of poly(ethylene glycol) and poly(acrylic acid) interpenetrating network hydrogel by intrastromal implantation in rabbit cornea.

    PubMed

    Zheng, Luo Luo; Vanchinathan, Vijay; Dalal, Roopa; Noolandi, Jaan; Waters, Dale J; Hartmann, Laura; Cochran, Jennifer R; Frank, Curtis W; Yu, Charles Q; Ta, Christopher N

    2015-10-01

    We evaluated the biocompatibility of a poly(ethylene glycol) and poly(acrylic acid) (PEG/PAA) interpenetrating network hydrogel designed for artificial cornea in a rabbit model. PEG/PAA hydrogel measuring 6 mm in diameter was implanted in the corneal stroma of twelve rabbits. Stromal flaps were created with a microkeratome. Randomly, six rabbits were assigned to bear the implant for 2 months, two rabbits for 6 months, two rabbits for 9 months, one rabbit for 12 months, and one rabbit for 16 months. Rabbits were evaluated monthly. After the assigned period, eyes were enucleated, and corneas were processed for histology and immunohistochemistry. There were clear corneas in three of six rabbits that had implantation of hydrogel for 2 months. In the six rabbits with implant for 6 months or longer, the corneas remained clear in four. There was a high rate of epithelial defect and corneal thinning in these six rabbits. One planned 9-month rabbit developed extrusion of implant at 4 months. The cornea remained clear in the 16-month rabbit but histology revealed epithelial in-growth. Intrastromal implantation of PEG/PAA resulted in a high rate of long-term complications.

  16. Poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid): synthesis, physico-chemical characterisation and nafcillin carrier.

    PubMed

    Zecheru, Teodora; Rotariu, Traian; Rusen, Edina; Mărculescu, Bogdan; Miculescu, Florin; Alexandrescu, Laura; Antoniac, Iulian; Stancu, Izabela-Cristina

    2010-10-01

    In the present study polymeric microbeads of poly(2-hydroxyethyl methacrylate-co-dodecyl methacrylate-co-acrylic acid) or p(HEMA-co-dDMA-co-AA) were synthesised and characterized through FT-IR and scanning electron microscopy (SEM); their swelling behavior against saline solution was explored and their in vitro cytotoxicity was evaluated. Further, in order to elucidate kinetic aspects regarding the ternary system p(HEMA-co-dDMA-co-AA), a mathematical model of the reactivity ratios of the comonomers in the terpolymer has been conceived and analyzed. An intensified tendency of AA units accumulation in the copolymer has been noticed, in spite of HEMA units, while dDMA conserves in the copolymer the fraction from the feed. Three compositions have been selected for nafcillin-loading and their in vitro release capacity was evaluated. The compositions of 80:10:10 and 75:10:15 M ratios appear suitable for further in vivo testing, in order to be used as drug delivery systems in the treatment of different osseous diseases.

  17. Fabrication of magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel for removal of Cd(2+) and Pb(2).

    PubMed

    Zhu, Yongfeng; Zheng, Yian; Wang, Feng; Wang, Aiqin

    2016-12-01

    A novel macroporous magnetic macroporous chitosan-g-poly (acrylic acid) hydrogel adsorbent was fabricated from the Pickering high internal emulsions template stabilized by modified Fe3O4 nanoparticles. The structure and composition of modified Fe3O4 and macroporous magnetic hydrogel were characterized by TEM, XRD, TG and SEM techniques. The characterization results suggest that the Fe3O4 nanoparticles have been modified successfully with organosilane of 3-aminopropyltrimethoxysilane (APTES), and the porous structure of the macroporous hydrogel can be tuned with the amount of stabilized particles, volume fraction of dispersed phase and the amount of the cosurfactant. Adsorption experiments indicate that the adsorption equilibrium was rapidly reached within 20min and the maximal adsorption capacities were determined to be 308.84mg/g for Cd(2+) and 695.22mg/g for Pb(2+). After five adsorption-desorption cycles, the adsorbent can retain its high adsorption capacity. The introduction of Fe3O4 is beneficial to the recycle of adsorbent after usage.

  18. Experimental study of albumin and lysozyme adsorption onto acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) surfaces.

    PubMed

    Moradi, Omid; Modarress, Hamid; Noroozi, Mehdi

    2004-03-01

    Many commercial soft contact lenses are based on poly-2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) hydrogels. The adsorption of proteins, albumin and lysozyme, on such contact lens surfaces may cause problems in their applications. In this work the adsorption of proteins, albumin and lysozyme, on hydrogel surfaces, AA and HEMA, was investigated as a function of concentration of protein. Also the effects of pH and ionic strength of protein solution on the adsorption of protein were examined. The obtained results indicated that the degree of adsorption of protein increased with the concentration of protein, and the adsorption of albumin on HEMA surface at the studied pHs (6.2-8.6) was higher than AA surface, whereas the adsorption of lysozyme on AA surface at the same pHs was higher than HEMA. The change in ionic strength of protein solution affected the proteins adsorption on both AA and HEMA surfaces. Also, the amount of sodium ions deposited on the AA surface was much higher than HEMA surface. This effect can be related to the negative surface charge of AA and its higher tendency for adsorption of sodium ions compared to the HEMA surface.

  19. Highly hydrophilic ultra-high molecular weight polyethylene powder and film prepared by radiation grafting of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wang, Honglong.; Xu, Lu.; Li, Rong.; Pang, Lijuan.; Hu, Jiangtao.; Wang, Mouhua.; Wu, Guozhong.

    2016-09-01

    The surface properties of ultra-high molecular weight polyethylene (UHMWPE) are very important for its use in engineering or composites. In this work, hydrophilic UHMWPE powder and film were prepared by γ-ray pre-irradiation grafting of acrylic acid (AA) and further neutralization with sodium hydroxide solution. Variations in the chemical structure, grafting yield and hydrophilicity were investigated and compared. FT-IR and XPS analysis results showed that AA was successfully grafted onto UHMWPE powder and film; the powder was more suitable for the grafting reaction in 1 wt% AA solution than the film. Given a dose of 300 kGy, the grafting yield of AA was ∼5.7% for the powder but ∼0.8% for the film under identical conditions. Radiation grafting of a small amount of AA significantly improved the hydrophilicity of UHMWPE. The water contact angle of the UHMWPE-g-PAA powder with a grafting yield of AA at ∼5.7% decreased from 110.2° to 68.2°. Moreover, the grafting powder (UHMWPE-g-PAA) exhibited good dispersion ability in water.

  20. Layer-by-layer structured films of TiO2 nanoparticles and poly(acrylic acid) on electrospun nanofibres

    NASA Astrophysics Data System (ADS)

    Ding, Bin; Kim, Jinho; Kimura, Eiji; Shiratori, Seimei

    2004-08-01

    We report a new approach for fabricating layer-by-layer (LBL) structured ultrathin hybrid films on electrospun nanofibres. Oppositely charged anatase TiO2 nanoparticles and poly(acrylic acid) (PAA) were alternately deposited on the surface of negatively charged cellulose acetate (CA) nanofibres using the electrostatic LBL self-assembly technique. The fibrous mats were characterized by wide-angle x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller (BET) surface area techniques. The crystalline phase of anatase TiO2 remained unchanged in the resultant TiO2/PAA films coated on CA fibrous mats. Moreover, the TiO2/PAA film coated fibres showed rough surfaces with grains due to the deposition of aggregated TiO2 particles. The average diameter of the fibres increased from 344 to 584 nm and the BET surface area of the fibrous mats increased from 2.5 to 6.0 m2 g-1 after coating with five bilayers of TiO2/PAA films.

  1. Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model.

    PubMed

    Faghihi, Shahab; Karimi, Alireza; Jamadi, Mahsa; Imani, Rana; Salarian, Reza

    2014-05-01

    Owing to excellent thermal and mechanical properties, graphene-based nanomaterials have recently attracted intensive attention for a wide range of applications, including biosensors, bioseparation, drug release vehicle, and tissue engineering. In this study, the effects of graphene oxide nanosheet (GONS) content on the linear (tensile strength and strain) and nonlinear (hyperelastic coefficients) mechanical properties of poly(acrylic acid) (PAA)/gelatin (Gel) hydrogels are evaluated. The GONS with different content (0.1, 0.3, and 0.5 wt.%) is added into the prepared PAA/Gel hydrogels and composite hydrogels are subjected to a series of tensile and stress relaxation tests. Hyperelastic strain energy density functions (SEDFs) are calibrated using uniaxial experimental data. The potential ability of different hyperelastic constitutive equations (Neo-Hookean, Yeoh, and Mooney-Rivlin) to define the nonlinear mechanical behavior of hydrogels is verified by finite element (FE) simulations. The results show that the tensile strength (71%) and elongation at break (26%) of composite hydrogels are significantly increased by the addition of GONS (0.3 wt.%). The experimental data is well fitted with those predicted by the FE models. The Yeoh material model accurately defines the nonlinear behavior of hydrogels which can be used for further biomechanical simulations of hydrogels. This finding might have implications not only for the improvement of the mechanical properties of composite hydrogels but also for the fabrication of polymeric substrate materials suitable for tissue engineering applications.

  2. 76 FR 7703 - 1,4-Benzenedicarboxylic Acid, Dimethyl Ester, Polymer With 1,4-Butanediol, Adipic Acid, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-11

    ... AGENCY 40 CFR Part 180 1,4-Benzenedicarboxylic Acid, Dimethyl Ester, Polymer With 1,4- Butanediol, Adipic..., polymer with 1,4-butanediol, adipic acid, and hexamethylene diisocyanate (CAS Reg. No. 55231-08-8... residues of 1,4-benzenedicarboxylic acid, dimethyl ester, polymer with 1,4-butanediol, adipic acid,...

  3. Poly(meth)acrylate-based coatings.

    PubMed

    Nollenberger, Kathrin; Albers, Jessica

    2013-12-05

    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities.

  4. Release of a Poorly Soluble Drug from Hydrophobically Modified Poly (Acrylic Acid) in Simulated Intestinal Fluids

    PubMed Central

    Knöös, Patrik

    2015-01-01

    A large part of new pharmaceutical substances are characterized by a poor solubility and high hydrophobicity, which might lead to a difference in drug adsorption between fasted and fed patients. We have previously evaluated the release of hydrophobic drugs from tablets based on Pemulen TR2 and showed that the release can be manipulated by adding surfactants. Here we further evaluate the possibility to use Pemulen TR2 in controlled release tablet formulations containing a poorly soluble substance, griseofulvin. The release is evaluated in simulated intestinal media that model the fasted state (FaSSIF medium) or fed state (FeSSIF). The rheology of polymer gels is studied in separate experiments, in order to gain more information on possible interactions. The release of griseofulvin in tablets without surfactant varied greatly and the slowest release were observed in FeSSIF. Addition of SDS to the tablets eliminated the differences and all tablets showed a slow linear release, which is of obvious relevance for robust drug delivery. Comparing the data from the release studies and the rheology experiment showed that the effects on the release from the different media could to a large extent be rationalised as a consequence of the interactions between the polymer and the surfactants in the media. The study shows that Pemulen TR2 is a candidate for controlled release formulations in which addition of surfactant provides a way to eliminate food effects on the release profile. However, the formulation used needs to be designed to give a faster release rate than the tablets currently investigated. PMID:26473964

  5. Synthesis and Characteristics of Radiation Curable Polyurethanes Containing Pendant Acrylate Groups.

    DTIC Science & Technology

    1986-10-09

    the mechanical properties of electron beam . cured acrylated polyester urethanes based on toluene diisocyanate(TDI) and hydroxyethyl - methacrylate ( HEMA ...acrylate or methacrylate pendant groups are can- didates for radiation sensitive solid polymers since the acrylate groups may undergo crosslinking...acrylate com- 4ponents. Toluene diisocyanate - hydroxyethylmethacrylate (TDI- HEMA ) or isophorone diisocyanate - hydroxylethylmethacrylate (IPDI-HEHA

  6. Physically Cross-linked Polymer Binder Induced by Reversible Acid-Base Interaction for High-Performance Silicon Composite Anodes.

    PubMed

    Lim, Sanghyun; Chu, Hodong; Lee, Kukjoo; Yim, Taeeun; Kim, Young-Jun; Mun, Junyoung; Kim, Tae-Hyun

    2015-10-28

    Silicon is greatly promising for high-capacity anode materials in lithium-ion batteries (LIBs) due to their exceptionally high theoretical capacity. However, it has a big challenge of severe volume changes during charge and discharge, resulting in substantial deterioration of the electrode and restricting its practical application. This conflict requires a novel binder system enabling reliable cyclability to hold silicon particles without severe disintegration of the electrode. Here, a physically cross-linked polymer binder induced by reversible acid-base interaction is reported for high performance silicon-anodes. Chemical cross-linking of polymer binders, mainly based on acidic polymers including poly(acrylic acid) (PAA), have been suggested as effective ways to accommodate the volume expansion of Si-based electrodes. Unlike the common chemical cross-linking, which causes a gradual and nonreversible fracturing of the cross-linked network, a physically cross-linked binder based on PAA-PBI (poly(benzimidazole)) efficiently holds the Si particles even after the large volume changes due to its ability to reversibly reconstruct ionic bonds. The PBI-containing binder, PAA-PBI-2, exhibited large capacity (1376.7 mAh g(-1)), high Coulombic efficiency (99.1%) and excellent cyclability (751.0 mAh g(-1) after 100 cycles). This simple yet efficient method is promising to solve the failures relating with pulverization and isolation from the severe volume changes of the Si electrode, and advance the realization of high-capacity LIBs.

  7. Matrix tablets based on thiolated poly(acrylic acid): pH-dependent variation in disintegration and mucoadhesion.

    PubMed

    Guggi, Davide; Marschütz, Michaela K; Bernkop-Schnürch, Andreas

    2004-04-15

    This study examined the influence of the pH on the mucoadhesive and cohesive properties of polyarcylic acid (PAA) and thiolated PAA. The pH of PAA (molecular mass: 450 kDa) and of a corresponding PAA-cysteine conjugate was adjusted to 3, 4, 5, 6, 7 and 8. The amount of immobilised thiol groups and disulfide bonds was determined via Ellman's reagent. Tablets were compressed out of each pH-batch of both thiolated and unmodified PAA and the swelling behaviour, the disintegration time and the mucoadhesiveness were evaluated. The amount of thiol/disulfide groups per gram thiolated PAA of pH 3 and pH 8 was determined to be 332 +/- 94 micromol and 162 +/- 46 micromol, respectively. The thiolated PAA tablets displayed a minimum four-fold higher water uptake compared to unmodified PAA tablets. A faster and higher water uptake of both polymer types was observed above pH 5. Thiolated polymer tablets showed a 3-20-fold more prolonged disintegration time than unmodified PAA tablets. The cohesiveness of PAA-cysteine conjugate increased at higher pH, whereas the unmodified PAA behaved inversely. A 3-7-fold stronger mucoadhesiveness was observed for the PAA-cysteine conjugate tablets compared to unmodified PAA tablets. For both thiolated and unmodified polymer the mucoadhesiveness was 2-4-fold enhanced below pH 5. The difference in mucoadhesion between the two polymer types was most pronounced at these lower pH values. In this study substantial information regarding the pH-dependence of mucoadhesion and cohesion of unmodified polyacrylates and of thiolated polyacrylates is provided, representing helpful basic information for an ameliorated deployment of these polymers.

  8. Diels-Alder Trapping of Photochemically Generated Dienes with Acrylic Esters: A Novel Approach to Photocured Polymer Film Development

    NASA Technical Reports Server (NTRS)

    Ilhan, Faysal; Tyson, Daniel S.; Smith, Deedee; Meador, Mary Ann; Meador, Michael A.

    2004-01-01

    Diels-Alder cycloadditions have often been utilized in polymer synthesis as an alternative to condensation reactions. In our earlier efforts, we developed a new method for the preparation of linear aromatic polyimides, which employs o-quionodimethanes (o-QDMs), generated by a well-known photochemical reaction: the photoenolization of o-methylphenyl ketones. Photolysis of o-methylbenzophenone 1 produces hydroxy-o-quino- diemthane 2, which can be trapped with dienophiles, such as dimethyl acetylenedicarboxylate, to efficiently yield the corresponding cycloadduct (Scheme 1). Here we extend this approach to a novel photocuring process for development of polymer films. We synthesized a series of molecules with multi o-mehtylphenyl ketone functionalities. We further investigated these molecules as photoreactive monomers to obtain polyester films through Diels-Alder cycloadditions.

  9. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  10. A new approach for the immobilization of poly(acrylic) acid as a chemically reactive cross-linker on the surface of poly(lactic) acid-based biomaterials.

    PubMed

    Stankevich, Ksenia S; Danilenko, Nadezhda V; Gadirov, Ruslan M; Goreninskii, Semen I; Tverdokhlebov, Sergei I; Filimonov, Victor D

    2017-02-01

    A new approach for the immobilization of poly(acrylic) acid (PAA) as a chemically reactive cross-linker on the surface of poly(lactic) acid-based (PLA) biomaterials is described. The proposed technique includes non-covalent attachment of a PAA layer to the surface of PLA-based biomaterial via biomaterial surface treatment with solvent/non-solvent mixture followed by the entrapment of PAA from its solution. Surface morphology and wettability of the obtained PLA-PAA composite materials were investigated by AFM and the sitting drop method respectively. The amount of the carboxyl groups on the composites surface was determined by using the fluorescent compounds (2-(5-aminobenzo[d]oxazol-2-yl)phenol (ABO) and its acyl derivative N-(2-(2-hydroxyphenyl)benzo[d]oxazol-5-yl)acetamide (AcABO)). It was shown that it is possible to obtain PLA-PAA composites with various surface relief and tunable wettability (57°, 62° and 66°). The capacity of the created PAA layer could be varied from 1.5nmol/cm(2) to 0.1μmol/cm(2) depending on the modification conditions. Additionally, using bovine serum albumin (BSA) it was demonstrated that such composites could be modified with proteins with high binding density (around 0.18nmol/cm(2)). Obtained fluoro-labeled PLA-PAA materials, as well as PLA-PAA composites themselves, are valuable since they can be used for biodegradable polymer implants tracking in living systems and as drug delivery systems.

  11. Cyto- and genotoxicological assessment and functional characterization of N-vinyl-2-pyrrolidone-acrylic acid-based copolymeric hydrogels with potential for future use in wound healing applications.

    PubMed

    Kirf, Dominik; Higginbotham, Clement L; Rowan, Neil J; Devery, Sinéad M

    2010-06-01

    This study investigated the toxicity of N-vinyl-2-pyrrolidone-acrylic acid copolymer hydrogels crosslinked with ethylene glycol dimethacrylate or poly(ethylene glycol) dimethacrylate. There is a pressing need to establish the toxicity status of these new copolymers because they may find applications in future wound healing processes. Investigations revealed that the capacity of these hydrogels for swelling permitted the retention of high amounts of water yet still maintaining structural integrity. Reverse phase HPLC analysis suggested that unreacted monomeric base material was efficiently removed post-polymerization by applying an additional purification process. Subsequently, in vitro toxicity testing was performed utilizing direct and indirect contact exposure of the polymers to human keratinocytes (HaCaT) and human hepatoma (HepG2) cells. No indication of significant cell death was observed using the established MTT, neutral red (NR) and fluorescence-based toxicity endpoint indicators. In addition, the alkaline Comet assay showed no genotoxic effects following cell exposure to hydrogel extracts. Investigations at the nucleotide level using the Ames mutagenicity assay demonstrated no evidence of mutagenic activity associated with the polymers. Findings from this study demonstrated that these hydrogels are non-cytotoxic and further work can be carried out to investigate their potential as a wound-healing device that will impact positively on patient health and well-being.

  12. Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein.

    PubMed

    Zhang, Baoliang; Zhang, Hepeng; Fan, Xinlong; Li, Xiangjie; Yin, Dezhong; Zhang, Qiuyu

    2013-05-15

    In this work, Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) (Fe3O4/P(AA-MMA-NIPAm)) thermoresponsive magnetic composite microspheres have been prepared by controlled radical polymerization in the presence of 1,1-diphenylethene (DPE). The shell thickness of thermosensitive polymer (PNIPAm), which was on the surface of the microspheres, can be controlled by using DPE method. The morphology and thermosensitive properties of the composite microspheres, polymerization mechanism of the shell were characterized by TEM, FTIR, VSM, Laser Particle Sizer, TGA, NMR, and GPC. The microspheres with narrow particle size distribution show high saturation magnetization and superparamagnetism. The thermosensitive properties of the composite microspheres can be adjusted indirectly via controlling the addition amount of monomer (NIPAm) in the second step during controlled radical polymerization. Phenolphthalein was chosen as a model drug to investigate drug release behavior of the thermoresponsive magnetic composite microspheres with different shell thickness. Controlled drug release testing reveals that the release behavior depends on the thickness of polymer on the surface of the microspheres.

  13. Poly(Vinyl Alcohol)/Poly(Acrylic Acid) Hydrogel in a dc Electric Field: Swelling, Shape Change, and Actuation Characteristics

    PubMed Central

    2014-01-01

    Poly(vinyl alcohol) (PVA)/Poly(acrylic acid) (PAA) hydrogel can be utilized as a biomimetic actuator and coating material for tissue-implant interface, when employing an electrical stimulus. The swelling, shape change, and actuation characteristics of PVA/PAA hydrogel in a range of dc electrical fields were determined to find the optimal electric field for the hydrogel application as biomimetic actuator and coating materials. The hydrogel samples were prepared by dissolving PVA and PAA in deionized water at 4 wt% and mixed together at 1:1 ratio. Two custom made experimental setups were fabricated; one used for the measurement of swelling ratio of the hydrogels; and the other used for the shape changes or actuation characteristics of the hydrogels. Swelling experiments show increased swelling ratios of the hydrogel due to 10 V, 20 V, and 30 V electric fields. The rate of increment of the swelling ratio of hydrogel samples under 10V was higher compare to those samples under 20 V and 30 V. The width and height changes of rectangular shapes and maximum deflection along the length of hydrogel sample due to a range of electric fields (0-30V) were measured using an optical microscope. Incremental shape change up to a specific threshold value (around 10V) was observed due to electric stimulus. Electrostatic actuation pressure of hydrogel samples under 10V was higher compare to those samples under 20 V and 30 V. These results suggested that optimal performance of PVA/PAA hydrogel can be achieved around 10V. PMID:25478321

  14. Characterization of a planar poly(acrylic acid) brush as a materials coating for controlled protein immobilization.

    PubMed

    Hollmann, Oliver; Czeslik, Claus

    2006-03-28

    The adsorption of two different proteins at a planar poly(acrylic acid) (PAA) brush was studied as a function of the ionic strength of the protein solutions applying total internal reflection fluorescence (TIRF) spectroscopy. Planar PAA brushes were prepared with a grafting density of 0.11 nm(-2) and were characterized using X-ray reflectometry. Hen egg-white lysozyme and bovine serum albumin (BSA) were used as model proteins, which have a net positive and negative charge at neutral pH-values, respectively. It has been found that both proteins adsorb strongly at a planar PAA brush at low ionic strength. Whereas lysozyme interacts with a PAA brush under electrostatic attraction at neutral pH-values, BSA binds under electrostatic repulsion at pH > 5. Even at pH = 8, significant amounts of BSA are adsorbed to a planar PAA brush. In addition, the reversibility of BSA adsorption has been characterized. Dilution of a BSA solution leads to an almost complete desorption of BSA from a PAA brush at short contact times. When the ionic strength of the protein solutions is increased to about 100-200 mM, a planar PAA brush appears largely protein-resistant, regardless of the protein net charge. The results of this study indicate that the salt-dependent protein affinity of a PAA brush represents a unique effect that must be explained by a novel protein-binding mechanism. On the basis of a recent model, it is suggested that a release of counterions is the most probable driving force for protein adsorption at a PAA brush. In a general view, this study characterizes a planar PAA brush as a new materials coating for the controlled immobilization of proteins whose use in biotechnological applications appears to be rewarding.

  15. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials.

  16. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials.

  17. Chitosan-decorated polystyrene-b-poly(acrylic acid) polymersomes as novel carriers for topical delivery of finasteride.

    PubMed

    Caon, Thiago; Porto, Ledilege Cucco; Granada, Andréa; Tagliari, Monika Piazzon; Silva, Marcos Antonio Segatto; Simões, Cláudia Maria Oliveira; Borsali, Redouane; Soldi, Valdir

    2014-02-14

    In view of the fact that the oral administration of finasteride (FIN) has resulted in various undesirable systemic side effects, the topical application of polystyrene and poly(acrylic acid)-based polymersomes (underexplored system) was investigated. Undecorated PS139-b-PAA17 and PS404-b-PAA63 vesicles (C3 and C7, respectively) or vesicles decorated with chitosan samples of different molecular weight (C3/CS-oligo, C7/CS-oligo, C3/CS-37 and C7/CS-37) were prepared by the co-solvent self-assembly method and characterized by small-angle X-ray scattering,transmission electron microscopy and dynamic light scattering techniques. In vitro release experiments and ex vivo permeation using Franz diffusion cells were carried out (through comparison with hydroethanolic finasteride solution). The ideal system should provide high finasteride retention in the dermis and epidermis while allowing some control of the drug release. The particle size and in vitro release were negatively correlated with the permeation coefficient and skin retention in both the epidermis and dermis. The findings that the longest lag time was obtained for the hydroethanolic drug solution and lowest permeation for the systems able to release the drug faster support the hypothesis that nanostructured systems may be required to enhance the penetration and permeation of the drug. Chitosan-decorated polymersomes interacted more strongly with the skin components than non-decorated samples, probably due to the positive surface charge, which increased the FIN retention and reduced the lag time. C7 polymersomes decorated with chitosan were more appropriate for topical applications (high retention in the dermis and epidermis and controlled drug delivery).

  18. Facile synthesis of nucleic acid-polymer amphiphiles and their self-assembly.

    PubMed

    Jia, Fei; Lu, Xueguang; Tan, Xuyu; Zhang, Ke

    2015-05-07

    A solid-phase synthesis for nucleic acid-polymer amphiphiles is developed. Using this strategy, several DNA-b-polymer amphiphiles are synthesized, and their self-assembly in aqueous solution is investigated. This general method can in principle be extended to nearly all polymers synthesized by atom transfer radical polymerization to produce a variety of nucleic acid-polymer conjugates.

  19. The effects of the thiolation with thioglycolic acid and l-cysteine on the mucoadhesion properties of the starch-graft-poly(acrylic acid).

    PubMed

    Gök, M Koray; Demir, Kamber; Cevher, Erdal; Özsoy, Yıldız; Cirit, Ümüt; Bacınoğlu, Süleyman; Özgümüş, Saadet; Pabuccuoğlu, Serhat

    2017-05-01

    The aim of this study is to investigate the effects of the thiolation on the mucoadhesion characteristics of the gelatinized and crosslinked wheat starch-graft-poly(acrylic acid) [(WS-g-PAA)gc] for potential use in drug delivery via vaginal route. Thiolation of (WS-g-PAA)gc was first time realized using l-cysteine hydrochloride monohydrate (CyS) and thioglycolic acid (TGA). These conjugates [(WS-g-PAA)gcth] were characterized using FTIR. The free SH group, mucoadhesion, cytotoxicity characteristics and the mechanism of the thiolation were also evaluated. To obtain fundamental data for possible application such as drug carrier, in vitro and in vivo progesterone release profiles from the mucoadhesive tablet formulations were also determined. The results showed that, vaginal tablet containing (WS-g-PAA)gc-TGA, which has not contain free SH groups in its structure, displays higher mucoadhesion than (WS-g-PAA)gc and (WS-g-PAA)gc-CyS. This tablet formulation can also be used as a drug carrier in vaginal applications.

  20. Molecular Dynamics Simulations of Adsorption of Poly(acrylic acid) and Poly(methacrylic acid) on Dodecyltrimethylammonium Chloride Micelle in Water: Effect of Charge Density.

    PubMed

    Sulatha, Muralidharan S; Natarajan, Upendra

    2015-09-24

    We have investigated the interaction of dodecyltrimethylammonium chloride (DoTA) micelle with weak polyelectrolytes, poly(acrylic acid) and poly(methacrylic acid). Anionic as well as un-ionized forms of the polyelectrolytes were studied. Polyelectrolyte-surfactant complexes were formed within 5-11 ns of the simulation time and were found to be stable. Association is driven purely by electrostatic interactions for anionic chains whereas dispersion interactions also play a dominant role in the case of un-ionized chains. Surfactant headgroup nitrogen atoms are in close contact with the carboxylic oxygens of the polyelectrolyte chain at a distance of 0.35 nm. In the complexes, the polyelectrolyte chains are adsorbed on to the hydrophilic micellar surface and do not penetrate into the hydrophobic core of the micelle. Polyacrylate chain shows higher affinity for complex formation with DoTA as compared to polymethacrylate chain. Anionic polyelectrolyte chains show higher interaction strength as compared to corresponding un-ionized chains. Anionic chains act as polymeric counterion in the complexes, resulting in the displacement of counterions (Na(+) and Cl(-)) into the bulk solution. Anionic chains show distinct shrinkage upon adsorption onto the micelle. Detailed information about the microscopic structure and binding characteristics of these complexes is in agreement with available experimental literature.

  1. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites.

    PubMed

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-14

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm(-1). These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  2. Nacre-inspired integrated strong and tough reduced graphene oxide-poly(acrylic acid) nanocomposites

    NASA Astrophysics Data System (ADS)

    Wan, Sijie; Hu, Han; Peng, Jingsong; Li, Yuchen; Fan, Yuzun; Jiang, Lei; Cheng, Qunfeng

    2016-03-01

    Inspired by the relationship between interface interactions and the high performance mechanical properties of nacre, a strong and tough nacre-inspired nanocomposite was demonstrated based on graphene oxide (GO) and polyacrylic acid (PAA) prepared via a vacuum-assisted filtration self-assembly process. The abundant hydrogen bonding between GO and PAA results in both high strength and toughness of the bioinspired nanocomposites, which are 2 and 3.3 times higher than that of pure reduced GO film, respectively. In addition, the effect of environmental relative humidity on the mechanical properties of bioinspired nanocomposites is also investigated, and is consistent with previous theoretical predictions. Moreover, this nacre-inspired nanocomposite also displays high electrical conductivity of 108.9 S cm-1. These excellent physical properties allow this type of nacre-inspired nanocomposite to be used in many applications, such as flexible electrodes, aerospace applications, and artificial muscles etc. This nacre-inspired strategy also opens an avenue for constructing integrated high performance graphene-based nanocomposites in the near future.

  3. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.

    PubMed

    Liu, Ming; Ren, Yuxun; Zhou, Dong; Jiang, Haoran; Kang, Feiyu; Zhao, Tianshou

    2017-01-25

    The low density associated with low sulfur areal loading in the solid-state sulfur cathode of current Li-S batteries is an issue hindering the development of this type of battery. Polysulfide catholyte as a recyclable liquid fuel was proven to enhance both the energy density and power density of the battery. However, a critical barrier with this lithium (Li)/polysulfide battery is that the shuttle effect, which is the crossover of polysulfides and side deposition on the Li anode, becomes much more severe than that in conventional Li-S batteries with a solid-state sulfur cathode. In this work, we successfully applied an acrylate-based gel polymer electrolyte (GPE) to the Li/polysulfide system. The GPE layer can effectively block the detrimental diffusion of polysulfides and protect the Li metal from the side passivation reaction. Cathode-static batteries utilizing 2 M catholyte (areal sulfur loading of 6.4 mg cm(-2)) present superior cycling stability (727.4 mAh g(-1) after 500 cycles at 0.2 C) and high rate capability (814 mAh g(-1) at 2 C) and power density (∼10 mW cm(-2)), which also possess replaceable and encapsulated merits for mobile devices. In the cathode-flow mode, the Li/polysulfide system with catholyte supplied from an external tank demonstrates further improved power density (∼69 mW cm(-2)) and stable cycling performance. This novel and simple Li/polysulfide system represents a significant advancement of high energy density sulfur-based batteries for future power sources.

  4. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  5. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1996-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  6. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, Patrick V.; Coleman, Robert D.

    1994-01-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  7. Water and UV degradable lactic acid polymers

    DOEpatents

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  8. Water and UV degradable lactic acid polymers

    SciTech Connect

    Bonsignore, P.V.; Coleman, R.D.

    1990-06-26

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylane glycols (PVB 6/22/90), propylene and and polypropylene (PVB 6/22/90) glycols, P-dioxanone, 1, 5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  9. 75 FR 52269 - Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-25

    ...-2010-0429; FRL-8841-2] Acetic Acid Ethenyl Ester, Polymer With Oxirane; Tolerance Exemption AGENCY... from the requirement of a tolerance for residues of acetic acid ethenyl ester, polymer with oxirane... permissible level for residues of acetic acid ethenyl ester, polymer with oxirane on food or feed...

  10. 75 FR 31713 - 2-Propenoic acid polymer, with 1,3-butadiene and ethenylbenzene; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-04

    ... AGENCY 40 CFR Part 180 2-Propenoic acid polymer, with 1,3-butadiene and ethenylbenzene; Tolerance... establishes an exemption from the requirement of a tolerance for residues of 2-propenoic acid polymer, with 1... a maximum permissible level for residues of 2-propenoic acid polymer, with 1,3-butadiene...

  11. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  12. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  13. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  14. 40 CFR 721.10220 - Phosphoric acid, polymer with cycloaliphatic diglycidyl ether, alkylethers (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Phosphoric acid, polymer with... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10220 Phosphoric acid, polymer with... to reporting. (1) The chemical substance identified generically as phosphoric acid, polymer...

  15. Polymers with complexing properties. Simple poly(amino acids)

    NASA Technical Reports Server (NTRS)

    Roque, J. M.

    1978-01-01

    The free amino (0.3 equiv/residue) and carboxyl (0.5 equiv/residue) groups of thermal polylysine increased dramatically on treatment with distilled water. The total hydrolysis of such a polymer was abnormal in that only about 50% of the expected amino acids were recovered. Poly (lysine-co-alanine-co-glycine) under usual conditions hydrolyzed completely in 8 hours; whereas, when it was pretreated with diazomethane, a normal period of 24 hours was required to give (nearly) the same amounts of each free amino acid as compared with those obtained from the untreated polymer. The amino groups of the basic thermal poly(amino acids) were sterically hindered. The existence of nitrogen atoms linking two or three chains and reactive groups (anhydride, imine) were proposed.

  16. Synthesis of interpenetrating network hydrogel from poly(acrylic acid-co-hydroxyethyl methacrylate) and sodium alginate: modeling and kinetics study for removal of synthetic dyes from water.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2013-10-15

    Several interpenetrating network (IPN) hydrogels were made by free radical in situ crosslink copolymerization of acrylic acid (AA) and hydroxy ethyl methacrylate in aqueous solution of sodium alginate. N,N'-methylenebisacrylamide (MBA) was used as comonomer crosslinker for making these crosslink hydrogels. All of these hydrogels were characterized by carboxylic content, FTIR, SEM, XRD, DTA-TGA and mechanical properties. Swelling, diffusion and network parameters of the hydrogels were studied. These hydrogels were used for adsorption of two important synthetic dyes, i.e. Congo red and methyl violet from water. Isotherms, kinetics and thermodynamics of dye adsorption by these hydrogels were also studied.

  17. An investigative study of polymer adsorption onto montmorillonite clay

    SciTech Connect

    McConnell, C.L.; Lochhead, R.Y.

    1996-10-01

    Few studies have been geared towards the study of the mechanisms governing stabilization and flocculation of polymers and clay particles. The overall goal of this research is to relate these mechanisms to properties above and below the critical overlap concentration, c*, of the polymer/clay species. Initially, phase behavior and sedimentation studies were conducted to screen for anionic, cationic and nonionic polymers capable of both flocculation and restabilization. As a result three polymers were selected for further testing: polyacrylamide, poly(acrylamide-co-acrylic acid) and poly(acrylamide-co-diallyldimethylammonium chloride). Polyacrylamide and poly(acrylamide-co-acrylic acid) have been synthesized and characterized by viscometry and {sup 13}C NMR. C* of the polymers was determined by viscometry via Huggins` plots and dynamic light scattering measurements have shown variations in the mean particle size as a function of polymer concentration.

  18. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  19. Interaction of humic acids and humic-acid-like polymers with herpes simplex virus type 1

    NASA Astrophysics Data System (ADS)

    Klöcking, Renate; Helbig, Björn

    The study was performed in order to compare the antiviral activity against herpes simplex virus type 1 (HSV-1) of synthetic humic-acid-like polymers to that of their low-molecular-weight basic compounds and naturally occurring humic acids (HA) in vitro. HA from peat water showed a moderate antiviral activity at a minimum effective concentration (MEC) of 20 µg/ml. HA-like polymers, i.e. the oxidation products of caffeic acid (KOP), hydrocaffeic acid (HYKOP), chlorogenic acid (CHOP), 3,4-dihydroxyphenylacetic acid (3,4-DHPOP), nordihydroguaretic acid (NOROP), gentisinic acid (GENOP), pyrogallol (PYROP) and gallic acid (GALOP), generally inhibit virus multiplication, although with different potency and selectivity. Of the substances tested, GENOP, KOP, 3,4-DHPOP and HYKOP with MEC values in the range of 2 to 10 µg/ml, proved to be the most potent HSV-1 inhibitors. Despite its lower antiviral potency (MEC 40 µg/ml), CHOP has a remarkable selectivity due to the high concentration of this polymer that is tolerated by the host cells (>640 µg/ml). As a rule, the antiviral activity of the synthetic compounds was restricted to the polymers and was not preformed in the low-molecular-weight basic compounds. This finding speaks in favour of the formation of antivirally active structures during the oxidative polymerization of phenolic compounds and, indirectly, of corresponding structural parts in different HA-type substances.

  20. Nanostructure of a poly(acrylic acid) brush and its transition in the amphiphilic diblock copolymer monolayer on the water surface.

    PubMed

    Matsuoka, Hideki; Suetomi, Yoshiko; Kaewsaiha, Ploysai; Matsumoto, Kozo

    2009-12-15

    The nanostructure and its transition of in a poly(acrylic acid) (PAA) brush in the water surface monolayers of poly(hydrogenated isoprene)-b-poly(acrylic acid) with different block lengths and block ratios were investigated by X-ray reflectivity as a function of surface pressure (brush density) and salt concentration in the subphase. The PAA brush showed the same behavior after salt addition as did the poly(methacrylic acid) (PMAA) brush, which was investigated previously. The brush chains expanded and then shrunk after passing the maximum with increasing added salt concentration. This behavior could be explained by the change in electric charges on the PAA brush chains as was observed on the PMAA brush. The PAA brush chains showed a critical brush density, where there was a transition between the carpet layer only and carpet + brush layer structures, as did the PMAA and poly(styrene sulfonic acid) (PSS) brushes. The critical brush density was about 0.4 chains nm(-2), which was higher than that of the PSS brush, a strong acid brush, and was close to that of the PMAA brush, a weak acid brush. However, the critical brush density of the PAA brush was independent of the hydrophilic chain length whereas that of the PMAA brush decreased with increasing PMAA chain length. In addition, the PAA brush had a thicker carpet layer than the PSS and PMAA brushes. Hence, the mechanism of PAA brush formation was predicted to be different from that of not only the PSS brush (strong acid brush) but also the PMAA brush.

  1. Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains.

    PubMed

    Feng, Wei; Zhu, Shiping; Ishihara, Kazuhiko; Brash, John L

    2006-03-01

    The objective of this work was to compare poly(ethylene glycol) (PEG) and phosphorylcholine (PC) moieties as surface modifiers with respect to their ability to inhibit protein adsorption. Surfaces were prepared by graft polymerization of the methacrylate monomers oligo(ethylene glycol) methyl ether methacrylate (OEGMA, MW 300, PEG side chains of length n=4.5) and 2-methacryloyloxyethyl phosphorylcholine (MPC, MW 295). The grafted polymers thus contained short PEG chains and PC, respectively, as side groups. Grafting on silicon was carried out using surface-initiated atom transfer radical polymerization (ATRP). Graft density was controlled via the surface density of the ATRP initiator, and chain length of the grafts was controlled via the ratio of monomer to sacrificial initiator. The grafted surfaces were characterized by water contact angle, x-ray photoelectron spectroscopy, and atomic force microscopy. The effect of graft density and chain length on fibrinogen adsorption from buffer was investigated using radio labeling methods. Adsorption to both MPC- and OEGMA-grafted surfaces was found to decrease with increasing graft density and chain length. Adsorption on the MPC and OEGMA surfaces for a given chain length and density was essentially the same. Very low adsorption levels of the order of 7 ngcm(2) were seen on the most resistant surfaces. The effect of protein size on resistance to adsorption was studied using binary solutions of lysozyme (MW 14 600) and fibrinogen (MW 340 000). Adsorption levels in these experiments were also greatly reduced on the grafted surfaces compared to the control surfaces. It was concluded that at the lowest graft density, both proteins had unrestricted access to the substrate, and the relative affinities of the proteins for the substrate (higher affinity of fibrinogen) determined the composition of the layer. At the highest graft density also, where the adsorption of both proteins was very low, no preference for one or the other

  2. New blends of ethylene-butyl acrylate copolymers with thermoplastic starch. Characterization and bacterial biodegradation.

    PubMed

    Morro, A; Catalina, F; Corrales, T; Pablos, J L; Marin, I; Abrusci, C

    2016-09-20

    Ethylene-butyl acrylate copolymer (EBA) with 13% of butyl acrylate content was used to produce blends with 10, 30 and 60% of thermoplastic starch (TPS) plasticized with glycerol. Ethylene-acrylic acid copolymer (EAA) was used as compatibilizer at 20% content with respect to EBA. The blends were characterized by X-ray diffraction, ATR-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), water-Contact Angle measurements (CA), Differential Scanning Calorimetry (DSC) and Stress-strain mechanical tests. Initiated autoxidation of the polymer blends was studied by chemiluminescence (CL) confirming that the presence of the polyolefin-TPS interphase did not substantially affect the oxidative thermostability of the materials. Three bacterial species have been isolated from the blend films buried in soil and identified as Bacillus subtilis, Bacillus borstelensis and Bacillus licheniformis. Biodegradation of the blends (28days at 45°C) was evaluated by carbon dioxide measurement using the indirect impedance technique.

  3. Effect of Antiadherents on the Physical and Drug Release Properties of Acrylic Polymeric Films.

    PubMed

    Ammar, Hussein O; Ghorab, Mamdouh M; Felton, Linda A; Gad, Shadeed; Fouly, Aya A

    2016-06-01

    Antiadherents are used to decrease tackiness of a polymer coating during both processing and subsequent storage. Despite being a common excipient in coating formulae, antiadherents may affect mechanical properties of the coating film as well as drug release from film-coated tablets, but how could addition of antiadherents affect these properties and to what extent and is there a relation between the physical characteristics of the tablet coat and the drug release mechanisms? The aim of this study was to evaluate physical characteristics of films containing different amounts of the antiadherents talc, glyceryl monostearate, and PlasACRYL(TM) T20. Eudragit RL30D and Eudragit RS30D as sustained release polymers and Eudragit FS30D as a delayed release material were used. Polymer films were characterized by tensile testing, differential scanning calorimetry (DSC), microscopic examination, and water content as calculated from loss on drying. The effect of antiadherents on in vitro drug release for the model acetylsalicylic acid tablets coated with Eudragit FS30D was also determined. Increasing talc concentration was found to decrease the ability of the polymer films to resist mechanical stress. In contrast, glyceryl monostearate (GMS) and PlasACRYL produced more elastic films. Talc at concentrations higher than 25% caused negative effects, which make 25% concentration recommended to be used with acrylic polymers. All antiadherents delayed the drug release at all coating levels; hence, different tailoring of drug release may be achieved by adjusting antiadherent concentration with coating level.

  4. Synthesis and characterization of acrylic-based superabsorbents

    SciTech Connect

    Askari, F.; Nafisi, S.; Omidian, H.; Hashemi, S.A. )

    1993-12-10

    This paper is devoted to the synthesis and characterization of superabsorbent polymers based on acrylic acid. These hydrogels were prepared by carrying the inverse suspension polymerization in an aromatic hydrocarbon. The dispersion is stabilized by the mixture of micromolecular and macromolecular emulsifiers. To obtain high swelling and appropriate absorption kinetics, parameters such as initial monomer and cross-linker concentration, range of neutralization, monomer addition rate, temperature, initiating system, stabilizing system and nature of the organic phase were studied but not reviewed here. Thus, based on these topics a basic formula is obtained to display the effect of some structural parameters on behavior of superabsorbents utilized.

  5. Efficient enzymatic acrylation through transesterification at controlled water activity.

    PubMed

    Nordblad, Mathias; Adlercreutz, Patrick

    2008-04-15

    Enzymatic acrylation is a process of potentially strong interest to the chemical industry. Direct esterification involving acrylic acid is unfortunately rather slow, with inhibition phenomena appearing at high acid concentrations. In the present study the acrylation of 1-octanol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was shown to be as much as an order of magnitude faster when ethyl acrylate served as the donor of the acrylic group. Water activity is a key parameter for optimizing the rate of ester synthesis. The optimum water activity for the esterification of octanol by acrylic acid was found to be 0.75, that for its esterification by propionic acid to be 0.45 and the transesterification involving ethyl acrylate to be fastest at a water activity of 0.3. The reasons for these differences in optimum water activity are discussed in terms of enzyme specificity, substrate solvation, and mass transfer effects.

  6. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing

    2013-04-01

    Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.

  7. TRPA1 is activated by direct addition of cysteine residues to the N-hydroxysuccinyl esters of acrylic and cinnamic acids.

    PubMed

    Sadofsky, Laura R; Boa, Andrew N; Maher, Sarah A; Birrell, Mark A; Belvisi, Maria G; Morice, Alyn H

    2011-01-01

    The nociceptor TRPA1 is thought to be activated through covalent modification of specific cysteine residues on the N terminal of the channel. The precise mechanism of covalent modification with unsaturated carbonyl-containing compounds is unclear, therefore by examining a range of compounds which can undergo both conjugate and/or direct addition reactions we sought to further elucidate the mechanism(s) whereby TRPA1 can be activated by covalent modification. Calcium signalling was used to determine the mechanism of activation of TRPA1 expressed in HEK293 cells with a series of related compounds which were capable of either direct and/or conjugate addition processes. These results were confirmed using physiological recordings with isolated vagus nerve preparations. We found negligible channel activation with chemicals which could only react with cysteine residues via conjugate addition such as acrylamide, acrylic acid, and cinnamic acid. Compounds able to react via either conjugate or direct addition, such as acrolein, methyl vinyl ketone, mesityl oxide, acrylic acid NHS ester, cinnamaldehyde and cinnamic acid NHS ester, activated TRPA1 in a concentration dependent manner as did compounds only capable of direct addition, namely propionic acid NHS ester and hydrocinnamic acid NHS ester. These compounds failed to activate TRPV1 expressed in HEK293 cells or mock transfected HEK293 cells. For molecules capable of direct or conjugate additions, the results suggest for the first time that TRPA1 may be activated preferentially by direct addition of the thiol group of TRPA1 cysteines to the agonist carbonyl carbon of α,β-unsaturated carbonyl-containing compounds.

  8. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  9. Polymer gel dosimeter based on itaconic acid.

    PubMed

    Mattea, Facundo; Chacón, David; Vedelago, José; Valente, Mauro; Strumia, Miriam C

    2015-11-01

    A new polymeric dosimeter based on itaconic acid and N, N'-methylenebisacrylamide was studied. The preparation method, compositions of monomer and crosslinking agent and the presence of oxygen in the dosimetric system were analyzed. The resulting materials were irradiated with an X-ray tube at 158cGy/min, 226cGymin and 298cGy/min with doses up to 1000Gy. The dosimeters presented a linear response in the dose range 75-1000Gy, sensitivities of 0.037 1/Gyat 298cGy/min and an increase in the sensitivity with lower dose rates. One of the most relevant outcomes in this study was obtaining different monomer to crosslinker inclusion in the formed gel for the dosimeters where oxygen was purged during the preparation method. This effect has not been reported in other typical dosimeters and could be attributed to the large differences in the reactivity among these species.

  10. The dual temperature/pH-sensitive multiphase behavior of poly(N-isopropylacrylamide-co-acrylic acid) microgels for potential application in in situ gelling system.

    PubMed

    Xiong, Wei; Gao, Xiang; Zhao, Yanbing; Xu, Huibi; Yang, Xiangliang

    2011-05-01

    Poly(N-isopropylacrylamide-co-acrylic acid) microgels (PNA) may be an excellent formulation for in situ gelling system due to their high sensitivity and fast response rate. Four monodispersed PNA microgels with various contents of acrylic acid (AA) were synthesized by emulsion polymerization in this paper. Their hydrodynamic diameters decreased reversibly with both decreasing pH and increasing temperature. The dual temperature/pH-sensitivity was influenced by many factors such as AA content, cross-link density and ion strength. In addition, high concentration PNA dispersions underwent multiple phase transition according to different temperatures, pHs and concentrations, which were summarized in a 3D sol-gel phase diagram in this study. According to the sol-gel phase transition, 8% PNA-025 dispersion maintained a relatively low viscosity and favorable fluidity at pH 5.0 in the temperature range of 25-40°C, but it rapidly increased in viscosity at pH 7.4 and gelled at 37°C. This feature enabled the dual temperature/pH-sensitive microgels to overcome the troubles in syringing of temperature sensitive materials during the injection. Apart from this, PNA could form gel well in in vitro (e.g., medium and serum) and in in vivo with low cytotoxicity. Therefore, it is promising for PNA to be applied in the in situ gelling system.

  11. Synthesis of lithium iron phosphate/carbon microspheres by using polyacrylic acid coated iron phosphate nanoparticles derived from iron(III) acrylate.

    PubMed

    Xu, Dongwei; He, Yan-Bing; Chu, Xiaodong; Ding, Zhaojun; Li, Baohua; He, Jianfu; Du, Hongda; Qin, Xianying; Kang, Feiyu

    2015-03-01

    Lithium iron phosphate/carbon (LiFePO4 /C) microspheres with high rate and cycling performance are synthesized from iron phosphate/polyacrylic acid (FePO4 /PAA) nanoparticles. Iron(III) acrylate is used as a precursor for both the iron and carbon sources. FePO4 nanoparticles are first produced by a coprecipitation reaction. The byproduct, acrylic acid ions, is polymerized in situ to form a uniform PAA layer on the surface of the FePO4 nanoparticles. The as-prepared LiFePO4 /C microspheres are composed of primary nanoparticles with sizes of 40-50 nm. The nanoparticles are fully coated with a thin, uniform carbon layer derived from the decomposition of the PAA layer. The uniform carbon-coating layer cooperates with interstitial and boundary carbon derived from sucrose successfully to construct an excellent interconnecting conductive network in the microspheres. As a result of the unique structure, the as-prepared LiFePO4 /C microspheres display both high electronic and ionic conductivities, which contribute to their high rate performance (162.9 mAh g(-1) at 0.1C and 126.1 mAh g(-1) at 5C) and excellent cycling stability (97.1% of capacity retention after 500 cycles at 5C/5C).

  12. Cycloolefin effect in cycloolefin-(meth)acryl copolymer

    NASA Astrophysics Data System (ADS)

    Lim, Hyun Soon; Seo, Dong Chul; Lee, Chang Soo; Park, Sang Wok; Kim, Sang Jin; Shin, Dae Hyeon; Shin, Jin Bong; Park, Joo Hyun

    2008-11-01

    One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low transmittance in COMA type copolymer most researchers were interested in developing of (meth)acryl type copolymer again for ArF photoresist. On the other hand, we have studied various polymer platforms suitable ArF photoresist except for meth(acryl) type copolymer. As a result of this study we had developed ROMA type polymers and cycloolefin-(meth)acryl type copolymers. Among the polymers cycloolefin-(meth)acryl type copolymer has many attractions such as etch roughness, resist reflow which needs low glass transition temperature and solvent solubility. In this study, we intend to find out cycloolefin-(meth)acryl copolymer characteristics compared with (meth)acryl copolymer. And, we have tried to find out any differences between acrylate type copolymer and cycloolefin-(meth)acrylate type copolymer with various evaluation results. As a result of this study we are going to talk about the reason that the resist using acrylate type copolymer and cycloolefin-(meth)acryl type copolymer show good pattern profile while acrylate type copolymer show poor pattern profile. We also intend to explain the role of cycloolefin as a function of molecular weight variation and substitution ratio variation of cycloolefin in cycloolefin-(meth)acrylate resin.One of the most important factors in ArF resist development is a resin platform, which dominates a lot of parts of resist characteristics. It has been much changed in order to improve their physical properties such as resolution, pattern profile, etch resistance and line edge roughness. Through the low etch resistance in ArF initial (meth)acryl type copolymer and low

  13. Acid activation of bentonites and polymer-clay nanocomposites.

    SciTech Connect

    Carrado, K. A.; Komadel, P.; Center for Nanoscale Materials; Slovak Academy of Sciences

    2009-04-01

    Modified bentonites are of widespread technological importance. Common modifications include acid activation and organic treatment. Acid activation has been used for decades to prepare bleaching earths for adsorbing impurities from edible and industrial oils. Organic treatment has sparked an explosive interest in a class of materials called polymer-clay nanocomposites (PCNs). The most commonly used clay mineral in PCNs is montmorillonite, which is the main constituent of bentonite. PCN materials are used for structural reinforcement and mechanical strength, for gas permeability barriers, as flame retardants, and to minimize surface erosion (ablation). Other specialty applications include use as conducting nanocomposites and bionanocomposites.

  14. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hexanedioic acid polymer with... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  15. 78 FR 70878 - Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester With 2-Methyloxirane Polymer With Oxirane...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-27

    ... AGENCY 40 CFR Part 180 Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester With 2- Methyloxirane Polymer... residues of Octadecanoic Acid, 12-Hydroxy-, Homopolymer, Ester with 2-Methyloxirane Polymer with Oxirane... 2- Methyloxirane Polymer with Oxirane Monobutyl Ether on food or feed commodities. DATES:...

  16. Solvent effects on the formation of nanoparticles and multilayered coatings based on hydrogen-bonded interpolymer complexes of poly(acrylic acid) with homo- and copolymers of N-vinyl pyrrolidone.

    PubMed

    Zhunuspayev, Daulet E; Mun, Grigoriy A; Hole, Patrick; Khutoryanskiy, Vitaliy V

    2008-12-02

    The formation of hydrogen-bonded interpolymer complexes between poly(acrylic acid) and poly(N-vinyl pyrrolidone) as well as amphiphilic copolymers of N-vinyl pyrrolidone with vinyl propyl ether has been studied in aqueous and organic solutions. It was demonstrated that introduction of vinyl propyl ether units into the macromolecules of the nonionic polymer enhances their ability to form complexes in aqueous solutions due to more significant contribution of hydrophobic effects. The complexation was found to be a multistage process that involves the formation of primary polycomplex particles, which further aggregate to form spherical nanoparticles. Depending on the environmental factors (pH, solvent nature), these nanoparticles may either form stable colloidal solutions or undergo further aggregation, resulting in precipitation of interpolymer complexes. In organic solvents, the intensity of complex formation increases in the following order: methanol < ethanol < isopropanol < dioxane. The multilayered coatings were developed using layer-by-layer deposition of interpolymer complexes on glass surfaces. It was demonstrated that the solvent nature affects the efficiency of coating deposition.

  17. Surface Lewis acid-base properties of polymers measured by inverse gas chromatography.

    PubMed

    Shi, Baoli; Zhang, Qianru; Jia, Lina; Liu, Yang; Li, Bin

    2007-05-18

    Surface Lewis acid-base properties are significant for polymers materials. The acid constant, K(a) and base constant, K(b) of many polymers were characterized by some researchers with inverse gas chromatography (IGC) in recent years. In this paper, the surface acid-base constants, K(a) and K(b) of 20 kinds of polymers measured by IGC in recent years are summarized and discussed, including seven polymers characterized in this work. After plotting K(b) versus K(a), it is found that the polymers can be encircled by a triangle. They scatter in two regions of the triangle. Four polymers exist in region I. K(b)/K(a) of the polymers in region I are 1.4-2.1. The other polymers exist in region II. Most of the polymers are relative basic materials.

  18. Preactivated hyaluronic acid: A potential mucoadhesive polymer for vaginal delivery.

    PubMed

    Nowak, Jessika; Laffleur, Flavia; Bernkop-Schnürch, Andreas

    2015-01-15

    The objective of this study was to develop mucoadhesive polymeric excipients for vaginal drug delivery systems. Hyaluronic acid was thiolated and subsequently preactivated with 6-mercaptonicotinamide (HA-CYS-MNA) to enhance stability and mucoadhesive properties on vaginal mucosa. After determination of the thiol group content, disintegration studies and in vitro mucoadhesion studies (rotating cylinder and tensile) were performed. Furthermore, swelling behavior and cytotoxicity studies were performed in comparison with corresponding polymers. Both, disintegration and in vitro mucoadhesive studies revealed that modifying HA-CYS with MNA resulted in higher stability (3.6-fold prolonged disintegration time compared to unmodified hyaluronic acid) and prolonged mucoadhesion time. MTT assay and LDH revealed no toxicity for the polymeric excipients and safe for their use. Disintegration and swelling results conducted more pronounced stability of the preactivated thiomers compared to corresponding unmodified ones. According to these results preactivated hyaluronic acid might be a useful tool for vaginal delivery systems.

  19. Contributions of polymers to bentonite and saponite fluids

    SciTech Connect

    Guven, N.; Carney, L.L.; Panfil, D.J. . Dept. of Geosciences)

    1991-02-01

    Polymers have been used in drilling fluids for many years. However, the confusion surrounding the use of polymers in the oil field has severely limited their effectiveness. Many oilfield workers simply put all polymers in the same category without regard to the many differences that exist among them. Homopolymers and copolymers of acrylic acid and a copolymer of styrene and maleic anhydride are found to have profound effects on the rheological and filtration properties of clay-based fluids up to 300{degrees}F. These contributions of the polymers are greatly diminished when the clay/polymer fluids were autoclaved at 400{degrees}F. Thus, the effects of these polymers are expected to be negligible at and above 400{degrees}F. Homo- and co-polymers of acrylic acid with molecular weights below 5000 almost eliminate the anomalous viscosity rise of the bentonite fluids at temperatures between 250--450{degrees}F. A homopolymer of acrylic acid with a molecular weight of 60,000 and a co-polymer of styrene and maleic anhydride with very high molecular weight further enhances the anomalous viscosity rise of the bentonite fluid. The original viscosity profile of the saponite fluid is characterized with a high initial viscosity up to 200{degrees}F which is followed by a steep thinning at higher temperatures. The addition of homo- and co-polymer of acrylic acid causes a complete reversal in the fluid viscosity. They become thin at lower temperatures (up to 250{degrees}F) and experience a sudden viscosity rise at higher temperatures. All the above polymers greatly improve the filtration losses of the fluids at room temperatures as indicated by the API test. The filtration tests at high pressure and high temperatures were inconclusive due to the frequent blow-outs that occur during the tests.

  20. Separation of poly(acrylic acid) salts according to topology using capillary electrophoresis in the critical conditions.

    PubMed

    Maniego, Alison R; Ang, Dale; Guillaneuf, Yohann; Lefay, Catherine; Gigmes, Didier; Aldrich-Wright, Janice R; Gaborieau, Marianne; Castignolles, Patrice

    2013-11-01

    Branching was detected in polyacrylates synthesised through radical polymerization via solution-state NMR, while inconsistencies have been reported for the determination of the molar mass of hydrophilic polyacrylates using aqueous-phase and organic-phase size-exclusion chromatography. In this work, poly(sodium acrylate)s, PNaAs, of various topologies were separated for the first time using free-solution capillary electrophoresis (CE). Free-solution CE does not separate the PNaAs by their molar mass, similarly to separations by liquid chromatography in the critical conditions, rather by different topologies (linear, star branched, and hyperbranched). The electrophoretic mobility of PNaAs increases as the degree of branching decreases. Separation is shown to be not only by the topology but also by the end groups as expected for a separation in the critical conditions: replacing a relatively bulky nitroxide end group with hydrogen atom yielded a higher electrophoretic mobility. This novel method, capillary electrophoresis in the critical conditions enabled, for the first time, the separation of hydrophilic polyacrylates according to their topology (branching) and their chain ends. This will allow meaningful and accurate characterization of their branched topologies as well as molar masses and progress in for advanced applications such as drug delivery or flocculation.

  1. Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer.

    PubMed

    Mandal, Bidyadhar; Ray, Samit Kumar

    2014-11-01

    Interpenetrating network (IPN) type hydrogels of a biopolymer and a synthetic polymer were prepared from chitosan and crosslink copolymer of acrylic acid, sodium acrylate and hydroxyethyl methacrylate. Acrylic acid, sodium acrylate, hydroxyethyl methacrylate and N'N'-methylenebisacrylamide (MBA) monomers were free radically copolymerized and crosslinked in aqueous solution of chitosan. Several IPN hydrogels were prepared by varying concentrations of initiator, crosslinker (MBA) and weight% of chitosan . These hydrogels were characterized by free acid content, pH at point of zero charge (PZC), FTIR, DTA-TGA, SEM and XRD. The swelling and diffusion characteristics, network parameters and adsorption of cationic methyl violet (MV) and anionic congo red (CR) dyes by these hydrogels were studied. The hydrogels showed high adsorption (9.5-119 mg/g for CR and 9.2-98 mg/g for MV) and removal% (98-73% for CR and 94-66% for MV) over the feed concentration of 10-140 mg/l dye in water. The isotherms and kinetics of dye adsorption by the hydrogels were also studied.

  2. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... identified as fatty acids, C14-18 and C16-18 unsat., polymers with adipic acid and triethanolamine,...

  3. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... identified as fatty acids, C14-18 and C16-18 unsat., polymers with adipic acid and triethanolamine,...

  4. 40 CFR 721.10395 - Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...., polymers with adipic acid and triethanolamine, di-Me sulfate-quaternized. 721.10395 Section 721.10395... Fatty acids, C14-18 and C16-18 unsatd., polymers with adipic acid and triethanolamine, di-Me sulfate... identified as fatty acids, C14-18 and C16-18 unsat., polymers with adipic acid and triethanolamine,...

  5. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  6. Tacticity control in the synthesis of poly(lactic acid) polymer stars with dipentaerythritol cores.

    PubMed

    Shaver, Michael P; Cameron, Donald J A

    2010-12-13

    The synthesis of a family of polymer stars with arms of varied tacticities is discussed. The effect of polymer tacticity on the physical properties of these polymer stars is presented. Dipentaerythritol cores support six poly(lactic acid) (PLA) arms. Lewis acidic tin and aluminum catalysts control the polymerization to afford polymer stars of variable tacticity. The analysis of these polymers by NMR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and differential scanning calorimetry reveals the effects of tacticity control on the physical properties of the polymer stars. Preliminary decomposition studies suggest that the biodegradation profile of a polymer star may also be tuned by stereochemical control. This is the first systematic altering of tacticity in PLA polymer stars, showing that polymer tacticity can have a great impact on star properties.

  7. Free-radical copolymerisation of acrylamides, acrylates, and α-olefins

    NASA Astrophysics Data System (ADS)

    Carlson, Rebecca K.; Lee, Rachel A.; Assam, Jed H.; King, Rollin A.; Nagel, Megan L.

    2015-07-01

    We report the results of a joint theoretical and experimental investigation into the copolymerisation of acrylamides and acrylates with α-olefins in free-radical processes. The transition-state structures of models for free-radical homo- and copolymerisation involving acrylamide, methylacrylamide, methacrylate, methyl methacrylate, and ethylene have been determined using density functional theory. The reaction energies and barrier heights comport with the experimentally observed properties, including the prevalence of monomer alternation, the realised stereospecificity, and the reaction yield. Continuum solvation models have been applied to determine the sensitivity of the relative energies to the bulk solvent properties. Experimentally, a Lewis acid catalyst is demonstrated to increase the incorporation of nonpolar 1-alkenes in copolymerisations with polar acrylamides and acrylates. In the presence of the Lewis acid, scandium (III) trifluoromethanesulfonate, the copolymerisation of 1-hexene and acrylamide results in an 8.5 mol % incorporation, up from 3.9 mol % in the absence of the Lewis acid. Computations incorporating Mg2+ as a model Lewis acid elucidate the mechanism of this catalysis. In the addition of methacrylate to a methyl methacrylate radical terminated polymer, the Lewis acid binds to the carbonyls on both promoting isotactic addition, while for the addition of an alkene to the same polymer, the Lewis acid binds to the polymer, reducing the barrier for alkenyl addition inductively by withdrawing electron density. We have demonstrated the ability of computational studies to aid experimentalists in the synthesis of new copolymers with desired properties.

  8. High cycling stability of anodes for lithium-ion batteries based on Fe3O4 nanoparticles and poly(acrylic acid) binder

    NASA Astrophysics Data System (ADS)

    Maroni, F.; Gabrielli, S.; Palmieri, A.; Marcantoni, E.; Croce, F.; Nobili, F.

    2016-11-01

    Fe3O4 nanoparticles synthesized by a base catalyzed method are tested as anode material for Li-ion batteries. The pristine nanoparticles are morphologically characterized showing an average size of 11 nm. Electrodes are prepared using high-molecular weight Poly (acrylic acid) as improved binder and ethanol as low cost and environmentally friendly solvent. The evaluation of electrochemical properties shows high specific capacity values of 857 mA hg-1 after 200 cycles at a specific current of 462 mAg-1, as well as an excellent rate capability with specific current values up to 18480 mAg-1. To the best of our knowledge, this is the first report of Fe3O4 nanoparticles cycling with PAA as binder.

  9. A Novel Route for Preparing Highly Stable Fe3O4 Fluid with Poly(Acrylic Acid) as Phase Transfer Ligand

    NASA Astrophysics Data System (ADS)

    Oanh, Vuong Thi Kim; Lam, Tran Dai; Thu, Vu Thi; Lu, Le Trong; Nam, Pham Hong; Tam, Le The; Manh, Do Hung; Phuc, Nguyen Xuan

    2016-08-01

    Highly stable Fe3O4 liquid was synthesized by thermal decomposition using poly(acrylic acid) (PAA) as a phase transfer ligand. The crystalline structure, morphology, and magnetic properties of the as-prepared samples were thoroughly characterized. Results demonstrated that the magnetic Fe3O4 nanomaterial was formed in liquid phase with a spinel single-phase structure, average size of 8-13 nm, and high saturation magnetization (up to 75 emu/g). The PAA-capped Fe3O4 nanoparticles displayed high stability over a wide pH range (from 4 to 7) in 300 mM salt solution. More importantly, the heat-generating capacity of the nanoparticle systems was quantified at a specific absorption rate (SAR) of 70.22 W/g, which is 35% higher than magnetic nanoparticles coated with sodium dodecyl sulfate (SDS). These findings suggest the potential application of PAA-coated magnetic nanoparticles in magnetic hyperthermia.

  10. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  11. Reusable nanocomposite of CoFe2O4/chitosan-graft-poly(acrylic acid) for removal of Ni(II) from aqueous solution

    NASA Astrophysics Data System (ADS)

    Nguyen, Van Cuong; Huynh, Thi Kim Ngoc

    2014-06-01

    In this paper, CoFe2O4/chitosan-graft-poly(acrylic acid) (CoFe2O4/CS-graft-PAA) nanocomposites were prepared successfully by coprecipitation of the compounds in alkaline solution and were used for removal of nickel (II) ions from aqueous solution. The sorption rate was affected significantly by the initial concentration of the solution, sorbent amount, and pH value of the solution. Batch experiments were conducted to investigate the adsorption capacity under different initial concentration (ranging from 25 to 150 mg L-1), solution pH (4.1, 5.3, 6.4 and 7.6), and contact time. These nanocomposites can be recycled conveniently from water with the assistance of an external magnet because of their exceptional properties. The prepared nanocomposites were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), x-ray powder diffraction (XRD), and thermogravimetric analysis (TGA).

  12. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate.

    PubMed

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-03

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  13. Hybrid polymeric hydrogels for ocular drug delivery: nanoparticulate systems from copolymers of acrylic acid-functionalized chitosan and N-isopropylacrylamide or 2-hydroxyethyl methacrylate

    NASA Astrophysics Data System (ADS)

    Barbu, Eugen; Verestiuc, Liliana; Iancu, Mihaela; Jatariu, Anca; Lungu, Adriana; Tsibouklis, John

    2009-06-01

    Nanoparticulate hybrid polymeric hydrogels (10-70 nm) have been obtained via the radical-induced co-polymerization of acrylic acid-functionalized chitosan with either N-isopropylacrylamide or 2-hydroxyethyl methacrylate, and the materials have been investigated for their ability to act as controlled release vehicles in ophthalmic drug delivery. Studies on the effects of network structure upon swelling properties, adhesiveness to substrates that mimic mucosal surfaces and biodegradability, coupled with in vitro drug release investigations employing ophthalmic drugs with differing aqueous solubilities, have identified nanoparticle compositions for each of the candidate drug molecules. The hybrid nanoparticles combine the temperature sensitivity of N-isopropylacrylamide or the good swelling characteristics of 2-hydroxyethyl methacrylate with the susceptibility of chitosan to lysozyme-induced biodegradation.

  14. Self-assembling linear and star shaped poly(ϵ-caprolactone)/poly[(meth)acrylic acid] block copolymers as carriers of indomethacin and quercetin.

    PubMed

    Bury, Katarzyna; Du Prez, Filip; Neugebauer, Dorota

    2013-11-01

    A amphiphilic linear AB, BAB, and star shaped (AB)3 block copolymers of poly(ϵ-caprolactone) (PCL)/poly(meth)acrylic acid (P(M)AA) are used for the preparation of nanoparticles and drug entrapment, where indomethacin and quercetin are employed as model drugs. Drug loading experiments with the nanoparticles based on PAA block copolymers demonstrate a higher efficiency for the star structure, whereas the PMAA star copolymer presents the lowest entrapment ability. The release properties are studied at room temperature and 37 °C in phosphate buffer solutions with pH equal to 5 and 7.4. The kinetic profiles show a strong relation to the copolymer's topology, indicating the lowest release rates from the star based superstructures, while the PMAA particles are less stable than those containing PAA segment(s).

  15. Fe2O3/TiO2 nanocomposite photocatalyst prepared by supercritical fluid combination technique and its application in degradation of acrylic acid

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, J. C.

    2017-01-01

    Fe2O3/TiO2 nanocomposite photocatalysts were synthesized by supercritical fluid combination technique, consisting of sol-gel method and supercritical fluid drying. The photocatalytic activity of the samples was evaluated by the degradation of acrylic acid. The results indicated that the Fe2O3/TiO2 nanocomposite catalysts prepared by this novel technique showed significant improvement in catalytic activity compared with pure TiO2 or Fe2O3/TiO2 catalysts prepared by traditional drying. Both infrared and ultraviolet spectrum of Fe2O3/TiO2 nanocomposite photocatalysts shift a little to lower wavelength indicating that the absorption threshold of Fe doped nanocomposite photocatalysts shift into the visible light region. This phenomenon was also attested by the photocatalytic degradation test under visible light.

  16. Polymer coatings to passivate calcite from acid attack: polyacrylic acid and polyacrylonitrile.

    PubMed

    Thompson, Mary; Wilkins, Shelley J; Compton, Richard G; Viles, Heather A

    2003-04-01

    The extent of passivation of calcite toward dissolution by aqueous acids arising from polymeric coatings based on polyacrylic acid or polyacrylonitrile is evaluated using a channel flow cell technique with microdisc electrode detection. In situ passivation with polyacrylic acid leads to a reduction in the reactivity of calcite toward acid attack with a reduction in the rate constant by up to an order of magnitude compared with untreated calcite. Ex situ passivation with polyacrylic acid for 24 h results in good coverage of the calcite by the polymer but it is shown to erode from the surface when exposed to an aqueous acid solution. In contrast, polyacrylonitrile is demonstrated to form a regular coating after exposure for just 1 h and offers robust potent protection from aqueous acid attack.

  17. A comparative study on the graft copolymerization of acrylic acid onto rayon fibre by a ceric ion redox system and a γ-radiation method.

    PubMed

    Kaur, Inderjeet; Kumar, Raj; Sharma, Neelam

    2010-10-13

    Functionalization of rayon fibre has been carried out by grafting acrylic acid (AAC) both by a chemical method using a Ce(4+)-HNO(3) redox initiator and by a mutual irradiation (γ-rays) method. The reaction conditions affecting the grafting percentage have been optimized for both methods, and the results are compared. The maximum percentage of grafting (50%) by the chemical method was obtained utilizing 18.24 × 10(-3) moles/L of ceric ammonium nitrate (CAN), 39.68 × 10(-2) moles/L of HNO(3), and 104.08 × 10(-2) moles/L of AAc in 20 mL of water at 45°C for 120 min. For the radiation method, the maximum grafting percentage (60%) was higher, and the product was obtained under milder reaction conditions using a lower concentration of AAc (69.38 × 10(-2) moles/L) in 10 mL of water at an optimum total dose of 0.932 kGy. Swelling studies showed higher swelling for the grafted rayon fibre in water (854.54%) as compared to the pristine fibre (407%), while dye uptake studies revealed poor uptake of the dye (crystal violet) by the grafted fibre in comparison with the pristine fibre. The graft copolymers were characterized by IR, TGA, and scanning electron micrographic methods. Grafted fibre, prepared by the radiation-induced method, showed better thermal behaviour. Comparison of the two methods revealed that the radiation method of grafting of acrylic acid onto rayon fibre is a better method of grafting in comparison with the chemical method.

  18. Polymer-based separations: Synthesis and application of polymers for ionic and molecular recognition. Triennial performance report, August 1, 1989--July 31, 1992

    SciTech Connect

    Alexandratos, S.D.

    1992-01-01

    Polymer-based separations have utilized resins such as sulfonic, acrylic, and iminodiacetic acid resins and the XAD series. Selective polymeric reagents for reaction with a targeted metal ion were synthesized as polymers with two different types of functional groups, each operating on the ions through a different mechanism. There are 3 classes of DMBPs (dual mechanism bifunctional polymers). Research during this period dealing with metal ion recognition focused on two of these classes (reduction of metal ions to metal; selective complexation).

  19. 40 CFR 721.6680 - Alkanoic acid, butanediol and cyclohexanealkanol polymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cyclohexanealkanol polymer (generic name). 721.6680 Section 721.6680 Protection of Environment ENVIRONMENTAL... cyclohexanealkanol polymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkanoic acid, butanediol, and cyclohexanealkanol polymer (PMN P-89-672)...

  20. 40 CFR 721.6680 - Alkanoic acid, butanediol and cyclohexanealkanol polymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... cyclohexanealkanol polymer (generic name). 721.6680 Section 721.6680 Protection of Environment ENVIRONMENTAL... cyclohexanealkanol polymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkanoic acid, butanediol, and cyclohexanealkanol polymer (PMN P-89-672)...

  1. 40 CFR 721.6680 - Alkanoic acid, butanediol and cyclohexanealkanol polymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cyclohexanealkanol polymer (generic name). 721.6680 Section 721.6680 Protection of Environment ENVIRONMENTAL... cyclohexanealkanol polymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkanoic acid, butanediol, and cyclohexanealkanol polymer (PMN P-89-672)...

  2. 40 CFR 721.6680 - Alkanoic acid, butanediol and cyclohexanealkanol polymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cyclohexanealkanol polymer (generic name). 721.6680 Section 721.6680 Protection of Environment ENVIRONMENTAL... cyclohexanealkanol polymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkanoic acid, butanediol, and cyclohexanealkanol polymer (PMN P-89-672)...

  3. 40 CFR 721.6680 - Alkanoic acid, butanediol and cyclohexanealkanol polymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cyclohexanealkanol polymer (generic name). 721.6680 Section 721.6680 Protection of Environment ENVIRONMENTAL... cyclohexanealkanol polymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance alkanoic acid, butanediol, and cyclohexanealkanol polymer (PMN P-89-672)...

  4. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  5. 40 CFR 721.6181 - Fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl ether...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... substituted oxirane, formaldehyde-phenol polymer glycidyl ether, substituted proplyamine and...-phenol polymer glycidyl ether, substituted proplyamine and polyethylenepolyamines (generic). (a) Chemical... as fatty acid, reaction product with substituted oxirane, formaldehyde-phenol polymer glycidyl...

  6. The effect of the ratio of two acrylic polymers on the in vitro release kinetics of ketoprofen from pellets prepared by extrusion and spheronisation technique.

    PubMed

    Kibria, Golam; Ul-Jalil, Reza

    2008-04-01

    The aim of this study was to investigate the effect of physico-chemical properties of the polymers on the release profile of ketoprofen from the pellets dosage form. Ammonio Methacrylate Copolymer Type A (Eudragit RL 30 D) & Ammonio Methacrylate Copolymer Type B (Eudragit RS 30 D) were used as release rate retarding polymers. The drug containing core pellets were prepared by extrusion spheronisation technique and subsequently coated with 15% (w/w) polymer load of the combination of Eudragit RL 30 D & Eudragit RS 30 D having ratio 1:0, 4:1, 3:2, 1:1, 2:3, 1:4, 0:1 respectively. Significant differences were found among the drug release profile from different formulations. It was revealed that Eudragit RL 30 D has the effect to increase the initial drug release more significantly where as Eudragit RS 30 D has the effect to minimize the initial drug release but increase the terminal drug release more significantly. In acid media about 50% drug was released from pellets coated only with Eudragit RL 30 D where as only 5% drug was released in case of Eudragit RS 30 D but maximum 10% drug was released from pellets when coated with the combination of Eudragit RL 30 D & Eudragit RS 30 D. In buffer media, evidence of burst release was observed for the pellets coated with Eudragit RL 30 D & Eudragit RS 30 D having ratio of 1:0, 4:1, 3:2 respectively. It was also observed that drug release increases sharply as well as the release best fit to the zero order release kinetics when pellets coated with 1:1 ratio of Eudragit RL 30 D & Eudragit RS and follows Higuchi's release kinetics when ratio was 1:0 & 3:2. The results generated in this study showed that proper selection of polymeric materials based on their physico-chemical properties is important in designing sustained release pellets dosage form with suitable dissolution profile.

  7. Fast and Simple Preparation of Patterned Surfaces with Hydrophilic Polymer Brushes by Micromolding in Capillaries.

    PubMed

    Vonhören, Benjamin; Langer, Marcel; Abt, Doris; Barner-Kowollik, Christopher; Ravoo, Bart Jan

    2015-12-22

    Micropatterns of hydrophilic polymer brushes were prepared by micromolding in capillaries (MIMIC). The polymers are covalently bound to the surfaces by a rapid hetero Diels-Alder reaction, constituting the first example of polymers grafted to surfaces in a defined pattern by MIMIC. The polymers [poly(acrylic acid), poly(hydroxyethyl acrylate), and poly(tetraethylene glycol acrylate) ranging in molecular weight from 1500 to 6000 g mol(-1)] were prepared with narrow dispersities via the reversible addition-fragmentation chain transfer (RAFT) process using a highly electron deficient RAFT agent that can react with surface-anchored dienes such as cyclopentadiene. We demonstrate that the anchoring method is facile to perform and highly suitable for preparing patterned surfaces that are passivated against biological impact in well-defined areas.

  8. Poly(L-lactic acid)/poly(glycolic acid) microfibrillar polymer-polymer composites: Preparation and viscoelastic properties

    NASA Astrophysics Data System (ADS)

    Kimble, L. D.; Fakirov, S.; Bhattacharyya, D.

    2015-05-01

    Microfibrillar composites (MFCs) from petrochemical-derived polymers have been investigated for several years and the technique can result in significant improvements in mechanical properties when compared with the neat matrix material of the respective composite. The current work applies the technique to biodegradable, biocompatible polymers for potential applications in bioabsorbable medical devices. MFCs were prepared from melt blended poly(L-lactic acid) (PLLA) and poly(glycolic acid) (PGA) via cold drawing then compression molding of extruded yarn. These MFCs were shown to have higher Young's moduli than that of neat PLLA but for load-bearing applications the creep characteristics are of interest. The MFC sheets resulting from compression molding were subjected to tensile relaxation tests at 37°C in the fiber orientation direction. Specimens were also tested via dynamic mechanical thermal analysis (DMTA). Neat PLLA specimens were subjected to the same tests for comparison. Results indicate that at 37°C PLLA/PGA MFCs exhibit lower creep resistance than that of neat PLLA due to the more rapid relaxation of stress observed. DMTA results elucidate the loss modulus changes in PLLA/PGA MFCs which occur as the material approaches the glass transition temperature of PGA (˜45°C).

  9. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  10. Ion exchange polymers and method for making

    NASA Technical Reports Server (NTRS)

    Philipp, Warren H. (Inventor); Street, Kenneth W., Jr. (Inventor)

    1994-01-01

    An ion exchange polymer comprised of an alkali metal or alkaline earth metal salt of a poly(carboxylic acid) in a poly(vinyl acetal) matrix is described. The polymer is made by treating a mixture made of poly(vinyl alcohol) and poly(acrylic acid) with a suitable aldehyde and an acid catalyst to cause acetalization with some cross-linking. The material is then subjected to an alkaline aqueous solution of an alkali metal salt or an alkali earth metal salt. All of the film forming and cross-linking steps can be carried out simultaneously, if desired.

  11. Ferulic Acid-Based Polymers with Glycol Functionality as a Versatile Platform for Topical Applications.

    PubMed

    Ouimet, Michelle A; Faig, Jonathan J; Yu, Weiling; Uhrich, Kathryn E

    2015-09-14

    Ferulic acid-based polymers with aliphatic linkages have been previously synthesized via solution polymerization methods, yet they feature relatively slow ferulic acid release rates (∼11 months to 100% completion). To achieve a more rapid release rate as required in skin care formulations, ferulic acid-based polymers with ethylene glycol linkers were prepared to increase hydrophilicity and, in turn, increase ferulic acid release rates. The polymers were characterized using nuclear magnetic resonance and Fourier transform infrared spectroscopies to confirm chemical composition. The molecular weights, thermal properties (e.g., glass transition temperature), and contact angles were also obtained and the polymers compared. Polymer glass transition temperature was observed to decrease with increasing linker molecule length, whereas increasing oxygen content decreased polymer contact angle. The polymers' chemical structures and physical properties were shown to influence ferulic acid release rates and antioxidant activity. In all polymers, ferulic acid release was achieved with no bioactive decomposition. These polymers demonstrate the ability to strategically release ferulic acid at rates and concentrations relevant for topical applications such as skin care products.

  12. 76 FR 41135 - 2-Propenoic acid, 2-methyl-, phenylmethyl ester, polymer with 2-propenoic acid and sodium 2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-13

    ... and sodium 2-methyl-2- -1- propanesulfonate (1:1), peroxydisulfuric acid ( 202) sodium salt (1:2...-Propenoic acid, 2-methyl-, phenylmethyl ester, polymer with 2-propenoic acid and sodium 2-methyl- 2- -1-propanesulfonate (1:1), peroxydisulfuric acid ( 202) sodium salt (1:2)-initiated (also known here as: ``the...

  13. 76 FR 52875 - 2-Propenoic Acid, Polymer With Ethenylbenzene and (1-methylethenyl) Benzene, Sodium Salt...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ..., Sodium Salt; Tolerance Exemption AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule...-Propenoic acid, polymer with ethenylbenzene and (1-methylethenyl) benzene, sodium salt when used as an inert... residues of 2-Propenoic acid, polymer with ethenylbenzene and (1- methylethenyl) benzene, sodium salt...

  14. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  15. A study of the swelling and model protein release behaviours of radiation-formed poly(N-vinyl 2-pyrrolidone-co-acrylic acid) hydrogels

    NASA Astrophysics Data System (ADS)

    Wang, David; Hill, David J. T.; Rasoul, Firas; Whittaker, Andrew K.

    2011-02-01

    Hydrogels were prepared from poly(acrylic acid-co-N-vinyl pyrrolidone), poly(AA-co-VP) and mixtures of poly(AA-co-VP) and poly(ethylene oxide), PEO, by gamma radiolysis of aqueous solutions of the AA and VP monomers containing ethylene glycol dimethacrylate, EGDMA, as crosslinker and PEO. The AA/VP composition range of the poly(AA-co-VP) was XAA 0.7-0.9. The swelling behaviours of the hydrogels from the dry state were investigated in water (pH 6.5) and 50 mM 4-(2-hydroxyethyl)piperazine-1-ethylsulfonic acid buffer, HEPES buffer, at pH 7.4 and 295 K. The effects of poly(AA-co-VP) composition, crosslinker mole fraction and the presence of PEO on the equilibrium swelling ratio for the gels was examined. The kinetics of the release of a model protein, horseradish peroxidase, HRP, from the hydrogels in water were also studied at 295 K.

  16. Swelling and aspirin release study: cross-linked pH-sensitive vinyl acetate-co-acrylic acid (VAC-co-AA) hydrogels.

    PubMed

    Ranjha, Nazar Mohammad; Mudassir, Jahanzeb

    2008-05-01

    The objective of this work was to develop new pH-sensitive hydrogels to deliver gastric mucosal irritating drugs to the lower part of the gastrointestinal tract. For this purpose, cross-linked vinyl acetate-co-acrylic acid (VAC-co-AA) hydrogels were synthesized by using N, N, methylene bisacrylamide (MBAAm) as a cross-linking agent. Different ratios of 90:10, 70:30, 50:50, 30:70, and 10:90 of VAC-co-AA were synthesized. All of the compositions were cross-linked using 0.15, 0.30, 0.45, and 0.60 mol percent MBAAm. Swelling and aspirin release were studied for 8 hour period. The drug release data were fitted into various kinetic models like the zero-order, first-order, Higuchi, and Peppas. Hydrogels were characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. In addition to the above, these hydrogels were loaded with 2%, 8% and 14% w/v aspirin solutions, keeping the monomeric composition and degree of cross-linking constant. In conclusion, it can be said that aspirin can be successfully incorporated into cross-linked VAC/AA hydrogels and its swelling and drug release can be modulated by changing the mole fraction of the acid component in the gels.

  17. Nanoassembled thin film gas sensors. III. Sensitive detection of amine odors using TiO2/poly(acrylic acid) ultrathin film quartz crystal microbalance sensors.

    PubMed

    Lee, Seung-Woo; Takahara, Naoki; Korposh, Sergiy; Yang, Do-Hyeon; Toko, Kiyoshi; Kunitake, Toyoki

    2010-03-15

    Quartz crystal microbalance (QCM) gas sensors based on the alternate adsorption of TiO(2) and polyacrilic acid (PAA) were developed for the sensitive detection of amine odors. Individual TiO(2) gel layers could be regularly assembled with a thickness of approximately 0.3 nm by the gas-phase surface sol-gel process (GSSG). The thickness of the poly(acrylic acid) (PAA) layer is dependent on its molecular weight, showing different thicknesses of approximately 0.4 nm for PAA(25) (Mw 250,000) and 0.6-0.8 nm for PAA(400) (Mw 4,000,000). The QCM sensors showed a linear response to ammonia in the concentration range 0.3-15 ppm, depending on the deposition cycle of the alternate TiO(2)/PAA layer. The ammonia binding is based on the acid-base interaction to the free carboxylic acid groups of PAA and the limit of detection (LOD) of the 20-cycle TiO(2)/PAA(400) film was estimated to be 0.1 ppm when exposed to ammonia. The sensor response was very fast and stable in a wide relative humidity (rH) range of 30-70%, showing almost the same frequency changes at a given concentration of ammonia. Sensitivity to n-butylamine and ammonia was higher than to pyridine, which is owing to the difference of molecular weight and basicity of the amine analytes. The alternate TiO(2)/PAA(400) films have a highly effective ability to capture amine odors, and the ambient ammonia concentration of 15 ppm could be condensed up to approximately 20,000 ppm inside the films.

  18. Controlled synthesis of amino acid-based pH-responsive chiral polymers and self-assembly of their block copolymers.

    PubMed

    Bauri, Kamal; Roy, Saswati Ghosh; Pant, Shashank; De, Priyadarsi

    2013-02-26

    Leucine/isoleucine side chain polymers are of interest due to their hydrophobicity and reported role in the formation of α-helical structures. The synthesis and reversible addition-fragmentation chain transfer (RAFT) polymerization of amino acid-based chiral monomers, namely Boc-L-leucine methacryloyloxyethyl ester (Boc-L-Leu-HEMA, 1a), Boc-L-leucine acryloyloxyethyl ester (Boc-L-Leu-HEA, 1b), Boc-L-isoleucine methacryloyloxyethyl ester (Boc-L-Ile-HEMA, 1c), and Boc-L-isoleucine acryloyloxyethyl ester (Boc-L-Ile-HEA, 1d), are reported. The controlled nature of the polymerization of the said chiral monomers in N, N-dimethylformamide (DMF) at 70 °C is evident from the formation of narrow polydisperse polymers, the molecular weight controlled by the monomer/chain transfer agent (CTA) molar ratio and the linear relationship between molecular weight and monomer conversion. The resulting well-defined polymers were used as macro-CTAs to prepare corresponding diblock copolymers by RAFT polymerization of methyl (meth)acrylate monomers. Deprotection of Boc groups in the homopolymers and block copolymers under acidic conditions produced cationic, pH-responsive polymers with primary amine moieties at the side chains. The optical activity of the homopolymers and block copolymers were studied using circular dichroism (CD) spectroscopy and specific rotation measurements. The self-assembling nature of the block copolymers to produce highly ordered structures was illustrated through dynamic light scattering (DLS) and atomic force microscopy (AFM) studies. The side chain amine functionality instills pH-responsive behavior, which makes these cationic polymers attractive candidates for drug delivery applications, as well as for conjugation of biomolecules.

  19. 75 FR 4292 - 2-Propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene and 2-methylpropyl 2-methyl-2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-27

    ... AGENCY 40 CFR Part 180 2-Propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene and 2... residues of 2-propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene and 2-methylpropyl 2-methyl-2... permissible level for residues of 2-propenoic acid, 2-ethylhexyl ester, polymer with ethenylbenzene and...

  20. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol...

  1. 40 CFR 721.6980 - Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky-lenepolyols...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dimer acids, polymer with polyalkylene... Substances § 721.6980 Dimer acids, polymer with polyalkylene glycol, bisphenol A-diglycidyl ether, and alky... reporting. (1) The chemical substance dimer acids, polymer with polyalkylene glycol, bisphenol...

  2. Gel and free solution electrophoresis of variably charged polymers.

    PubMed

    Hoagland, D A; Smisek, D L; Chen, D Y

    1996-06-01

    To assess the role of charge density on polyelectrolyte mobility, both gel and free solution electrophoresis experiments are performed on poly(acrylic acid) and acrylic acid/acrylamide copolymers. Control of charge density for poly-(acrylic acid) is achieved through solution pH, while control for acrylic acid/ acrylamide copolymers is obtained through chain composition. In either approach, the effective fraction of charged repeat units can be varied from 0 to 100% without a major interruption of solvent quality. Polyelectrolyte mobility in the presence of a monovalent counterion is observed to rise linearly with charge density when this density is low. A transition to charge density independence then occurs over a surprisingly narrow window of charge density. For vinyl polymers of the sort examined here, the transition occurs when 35-40% of the repeat units are charged. These observations are qualitatively consistent with the free solution electrophoresis model proposed by Manning and several previous data sets. An unexpected overlap of normalized gel and free solution data reveals that the charge density exerts a comparable influence in either environment. Results from the present study help define the experimental conditions in which electrophoresis can provide polymer separation by charge density and those in which the method can provide polymer separation by molecular weight.

  3. 40 CFR 721.10690 - Benzenedicarboxylic acid, polymer with substituted alkanediol, dodecanedioic acid, 1,2-ethanediol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Benzenedicarboxylic acid, polymer with substituted alkanediol, dodecanedioic acid, 1,2-ethanediol, alkanedioic acid, alkanediol,.alpha.-hydro-.omega.-hydroxypoly , 1,3-isobenzofurandione, methylene diphenyl diisocyanate, 2-oxepanone, 2,2'-oxybis and polymethylene polyphenylene...

  4. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    NASA Astrophysics Data System (ADS)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  5. Preparation and application of the sol-gel-derived acrylate/silicone co-polymer coatings for headspace solid-phase microextraction of 2-chloroethyl ethyl sulfide in soil.

    PubMed

    Liu, Mingming; Zeng, Zhaorui; Fang, Huaifang

    2005-05-27

    Three types of novel acrylate/silicone co-polymer coatings, including co-poly(methyl acrylate/hydroxy-terminated silicone oil) (MA/OH-TSO), co-poly(methyl methacrylate/OH-TSO) (MMA/OH-TSO) and co-poly(butyl methacrylate/OH-TSO) (BMA/OH-TSO), were prepared for the first time by sol-gel method and cross-linking technology and subsequently applied to headspace solid-phase microextraction (HS-SPME) of 2-chloroethyl ethyl sulfide (CEES), a surrogate of mustard, in soil. The underlying mechanisms of the coating process were discussed and confirmed by IR spectra. The selectivity of the three types of sol-gel-derived acrylate/silicone coated fibers was studied, and the BMA/OH-TSO coated fibers exhibited the highest extraction ability to CEES. The concentration of BMA and OH-TSO in sol solution was optimized, and the BMA/OH-TSO (3:1)-coated fibers possessed the highest extraction efficiency. Compared with commercially available polyacrylate (PA) fiber, the sol-gel-derived BMA/OH-TSO (3:1) fibers showed much higher extraction efficiency to CEES. Therefore, the BMA/OH-TSO (3:1)-coated fibers were chosen for the analysis of CEES in soil matrix. The reproducibility of coating preparation was satisfactory, with the RSD 2.39% within batch and 3.52% between batches, respectively. The coatings proved to be quite stable at high temperature (to 350 degrees C) and in different solvents (organic or inorganic), thus their lifetimes (to 150 times) are longer than conventional fibers. Extraction parameters, such as the volume of water added to the soil, extraction temperature and time, and the ionic strength were optimized. The linearity was from 0.1 to 10 microg/g, the limit of detection (LOD) was 2.7 ng/g, and the RSD was 2.19%. The recovery of CEES was 88.06% in agriculture soil, 92.61% in red clay, and 101.95% in sandy soil, respectively.

  6. Strategy for identifying unknown hemoglobin adducts using adductome LC-MS/MS data: Identification of adducts corresponding to acrylic acid, glyoxal, methylglyoxal, and 1-octen-3-one.

    PubMed

    Carlsson, Henrik; Törnqvist, Margareta

    2016-06-01

    Electrophilic compounds have the ability to form adducts with nucleophilic sites in proteins and DNA in tissues, and thereby constitute risks for toxic effects. Adductomic approaches are developed for systematic screening of adducts to DNA and blood proteins, with the aim to detect unknown internal exposures to electrophiles. In a previous adductomic screening of adducts to N-terminals in hemoglobin, using LC-MS/MS, 19 unknown adducts were detected in addition to seven previously identified adducts. The present paper describes the identification of four of these unknown adducts, as well as the strategy used to identify them. Using LC-MS data from the screening, hypotheses about adduct identities were formulated: probable precursor electrophiles with matching molecular weights were suggested based on the molecular weights of the modifications and the retention times of the analytes, in combination with comparisons of theoretical Log P calculations and databases. Reference adducts were generated by incubation of blood samples with the hypothesized precursor electrophiles. The four identified precursor electrophiles, corresponding to the observed unknown adducts, were glyoxal, methylglyoxal, acrylic acid and 1-octen-3-one. Possible origins/exposure sources and toxicological information concerning the electrophilic precursors are discussed. The identified adducts could be explored as possible biomarkers for exposure.

  7. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells

    PubMed Central

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-01-01

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of −22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration. PMID:27164090

  8. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively.

  9. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres.

    PubMed

    Dai, Yunlu; Zhang, Cuimiao; Cheng, Ziyong; Ma, Ping'an; Li, Chunxia; Kang, Xiaojiao; Yang, Dongmei; Lin, Jun

    2012-03-01

    In this study, we design a controlled release system based on CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) (PAA) composite microspheres, which were fabricated by filling the pH-responsive PAA inside CaF(2):Ce(3+)/Tb(3+) hollow spheres via photopolymerization route. The CaF(2):Ce(3+)/Tb(3+) hollow spheres prepared by hydrothermal route possess mesoporous structure and show strong green fluorescence from Tb(3+) under UV excitation. Doxorubicin hydrochloride (DOX), a widely used anti-cancer drug, was used as a model drug to evaluate the loading and controlled release behaviors of the composite microspheres due to the good biocompatibility of the samples using MTT assay. The composite carriers provide a strongly pH-dependent drug release behavior owing to the intrinsic property of PAA and its interactions with DOX. The endocytosis process of drug-loaded microspheres was observed using confocal laser scanning microscopy (CLSM) and the in vitro cytotoxic effect against SKOV3 ovarian cancer cells of the DOX-loaded carriers was investigated. In addition, the extent of drug release could be monitored by the altering of photoluminescence (PL) intensity of CaF(2):Ce(3+)/Tb(3+). Considering the good biocompatibility, high drug loading content and pH-dependent drug release of the materials, these hybrid luminescent microspheres have potential applications in drug controlled release and disease therapy.

  10. Preparation and optimization of superabsorbent hydrogel micromatrices based on poly(acrylic acid), partly sodium salt-g-poly(ethylene oxide) for modified release of indomethacin.

    PubMed

    Yuksel, Nilufer; Beba, Leyla

    2009-06-01

    The purpose of this study was to prepare modified-release dosage of indomethacin (IND) in the form of micromatrices based on a superabsorbent hydrogel (SAH), poly(acrylic acid), partly sodium salt-g-poly(ethylene oxide) (PAAc-Na-g-PEO). A soaking procedure was used for the preparation of drug-loaded hydrogel micromatrices. The amount of IND, volume of drug-loading solution, and amount of PAAc-Na-g-PEO granules used for preparing micromatrices were the independent factors. The dependent factors were the measured responses from micromatrices, that is, percent recovery, percent entrapment efficiency, and the time at which 63.2% of the drug was released (T(d), minutes). A three-factor, three-level full factorial design (33) was created to optimize formulations. Nonlinear regression analysis indicated a good correlation between the measured responses and the independent factors. Optimum responses were obtained from medium levels of IND and SAH and low level of drug-loading solution. Differential scanning calorimetry, X-ray diffraction analysis, and scanning electron micrography indicated that IND crystals are physically adsorbed into the pores and irregular spaces of the hydrogel.

  11. Surface characterization of poly(vinyl chloride) urinary catheters functionalized with acrylic acid and poly(ethylene glycol) methacrylate using gamma-radiation

    NASA Astrophysics Data System (ADS)

    Islas, Luisa; Ruiz, Juan-Carlos; Muñoz-Muñoz, Franklin; Isoshima, Takashi; Burillo, Guillermina

    2016-10-01

    Poly(vinyl chloride) (PVC) urinary catheters were modified with either a single or binary graft of acrylic acid (AAc) and/or poly(ethylene glycol) methacrylate (PEGMA) using gamma-radiation from 60Co to obtain PVC-g-AAc, PVC-g-PEGMA, [PVC-g-AAc]-g-PEGMA, and [PVC-g-PEGMA]-g-AAc copolymers. The outer and inner surfaces of the modified catheters were characterized using scanning electron microscopy (SEM), confocal laser microscopy (CLM) and X-ray photoelectron spectroscopy (XPS). The XPS analyses, by examining the correlation between the variation of the C1s and O1s content at the catheter's surface, revealed that the catheter's surfaces were successfully grafted with the chosen compounds, with those that were binary grafted showing a slightly more covered surface as was evidenced by the disappearance of PVC's Cl peak. The SEM and CLM analyses revealed that catheters that had been grafted with PEGMA had a rougher outer surface as compared to those that had only been grafted with AAc. In addition, these imaging techniques showed that the inner surface of the singly grafted catheters, whether they had been grafted with AAc or PEGMA, retained some smoothness at the analyzed grafting percentages, while the binary grafted catheters showed many protuberances and greater roughness on both outer and inner surfaces.

  12. Selective adsorption of Pb (II) ions by amylopectin-g-poly (acrylamide-co-acrylic acid): A bio-degradable graft copolymer.

    PubMed

    Sasmal, Dinabandhu; Maity, Jayanta; Kolya, Haradhan; Tripathy, Tridib

    2017-04-01

    Amylopectin-g-poly (acrylamide-co-acrylic acid) [AP-g-poly (AM-co-AA)] was synthesised in water medium by using potassium perdisulphate as an initiator. The graft copolymer was characterized by molecular weight determination by size exclusion chromatography (SEC), fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) spectroscopy, scanning electron microscope (SEM) studies, thermal analysis, measurement of neutralisation equivalent and biodegradation studies. The graft copolymer was used for Pb (II) ion removal from aqueous solution. The Pb (II) ion removal capacity of the graft copolymer was also compared with another laboratory developed graft copolymer Amylopectin-g-poly (acrylamide) (AP-g-PAM). Both the graft copolymers were also used for the competitive metal ions removal with Pb (II)/Cd (II), Pb (II)/Zn (II), Pb (II)/Ni (II), Pb (II)/Cu (II) pairs separately under similar conditions. AP-g-poly (AM-co-AA) showed better Pb (II) ion adsorbing power over AP-g-PAM and also much selective towards Pb (II) ions. The adsorption follows a second order rate equation and Langmuir isotherm model.

  13. Rapid removal of Pb(II) from aqueous solution by chitosan-g-poly(acrylic acid)/attapulgite/ sodium humate composite hydrogels.

    PubMed

    Zhang, Junping; Jin, Yeling; Wang, Aiqin

    2011-04-01

    A series of novel granular chitosan-g-poly(acrylic acid)/attapulgite/sodium humate (CTS-g-PAA/APT/SH) composite hydrogels were successfully prepared by one-step free radical graft polymerization and applied as adsorbents for the removal of Pb(II) from aqueous solution. The effects of adsorbent composition (including the contents of APT, SH and CTS) on adsorption capacity and adsorption rate were investigated in detail. Results from kinetic experiments showed that the rate of Pb(II) adsorption on the composite hydrogels was quite fast, that more than 90% of the equilibrium adsorption capacity occurs within two minutes and that the adsorption equilibrium could be achieved within 10 minutes. The adsorption kinetics fit well with the pseudo-second order equation. The introduced SH is helpful for both adsorption capacity and adsorption rate. The -COOH and -COO of PAA, -NH2 of CTS, Ph-O and -COO- of SH, as well as cation exchange and Si-OH of APT, participate in adsorption of Pb(II). The synergistic effect of these groups is responsible for the high adsorption capacity and rate.

  14. In situ synthesis of silver nanoparticles on the cotton fabrics modified by plasma induced vapor phase graft polymerization of acrylic acid for durable multifunction

    NASA Astrophysics Data System (ADS)

    Wang, C. X.; Ren, Y.; Lv, J. C.; Zhou, Q. Q.; Ma, Z. P.; Qi, Z. M.; Chen, J. Y.; Liu, G. L.; Gao, D. W.; Lu, Z. Q.; Zhang, W.; Jin, L. M.

    2017-02-01

    A practical and ecological method for preparing the multifunctional cotton fabrics with excellent laundering durability was explored. Cotton fabrics were modified by plasma induced vapor phase graft polymerization (PIVPGP) of acrylic acid (AA) and subsequently silver nanoparticles (AgNPs) were in situ synthesized on the treated cotton fabrics. The AgNP loaded cotton fabrics were characterized by scanning electron microscope (SEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), antibacterial activity, self-cleaning activity, thermal stability and laundering durability, respectively. SEM observation and EDX, XPS and XRD analysis demonstrated the much more AgNPs deposition on the cotton fabrics modified by PIVPGP of AA. The AgNP loaded cotton fabrics also exhibited better antibacterial activity, self-cleaning activity, thermal stability and laundering durability. It was concluded that the surface modification of the cotton fabrics by PIVPGP of AA could increase the loading efficiency and binding fastness of AgNPs on the treated cotton fabrics, which could fabricate the cotton fabrics with durable multifunction. In addition, the mechanism of in situ synthesis of AgNPs on the cotton fabrics modified by PIVPGP of AA was proposed.

  15. Metal ions doped chitosan-poly(acrylic acid) nanospheres: Synthesis and their application in simultaneously electrochemical detection of four markers of pancreatic cancer.

    PubMed

    Rong, Qinfeng; Feng, Feng; Ma, Zhanfang

    2016-01-15

    In this work, a one-pot method was designed to synthesize copper ions, cadmium ions, lead ions and zinc ions doped chitosan-poly(acrylic acid) nanospheres. Those nanospheres can not only produce independent electrochemical signals, but also react with glutaraldehyde (GA) to immobilize different labeled antibodies. Using the modified nanospheres as immunoprobes, a sandwich-type immunosensor was fabricated to simultaneous detection of four tumor markers (CEA, CA199, CA125 and CA242) of pancreatic cancer. This designed immunosensor exhibited good linear relationships in range from 0.1 to 100ng mL(-1) for CEA, 1 to 150UmL(-1) for CA199, CA125 and CA242, corresponding detection limits 0.02ng mL(-1), 0.4UmL(-1), 0.3UmL(-1) and 0.4UmL(-1), respectively. Meanwhile, the immunosensor was applied in analysis of clinical serum samples, whose results were well agreed with the enzyme-linked immunosorbent assay (ELISA), indicating that the proposed immunosensor gave a hope for the identification and validation of specific early cancer.

  16. Characterization and biocompatibility evaluation of bacterial cellulose-based wound dressing hydrogel: effect of electron beam irradiation doses and concentration of acrylic acid.

    PubMed

    Mohamad, Najwa; Buang, Fhataheyah; Mat Lazim, Azwan; Ahmad, Naveed; Martin, Claire; Mohd Amin, Mohd Cairul Iqbal

    2016-09-30

    The use of bacterial cellulose (BC)-based hydrogel has been gaining attention owing to its biocompatibility and biodegradability. This study was designed to investigate the effect of radiation doses and acrylic acid (AA) composition on in vitro and in vivo biocompatibility of BC/AA as wound dressing materials. Physical properties of the hydrogel, that is, thickness, adhesiveness, rate of water vapor transmission, and swelling were measured. Moreover, the effect of these parameters on skin irritation and sensitization, blood compatibility, and cytotoxicity was studied. Increased AA content and irradiation doses increased the thickness, crosslinking density, and improved the mechanical properties of the hydrogel, but reduced its adhesiveness. The swelling capacity of the hydrogel increased significantly with a decrease in the AA composition in simulated wound fluid. The water vapor permeability of polymeric hydrogels was in the range of 2035-2666 [g/(m(-2 ) day(-1) )]. Dermal irritation and sensitization test demonstrated that the hydrogel was nonirritant and nonallergic. The BC/AA hydrogel was found to be nontoxic to primary human dermal fibroblast skin cells with viability >88% and was found to be biocompatible with blood with a low hemolytic index (0.80-1.30%). Collectively, these results indicate that these hydrogels have the potential to be used as wound dressings. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  17. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  18. Retention of heavy metal ions on comb-type hydrogels based on acrylic acid and 4-vinylpyridine, synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    González-Gómez, Roberto; Ortega, Alejandra; Lazo, Luz M.; Burillo, Guillermina

    2014-09-01

    Two novel comb-type hydrogels based on pH-sensitive monomers (acrylic acid (AAc) and 4-vinylpyridine (4VP) were synthesized by gamma radiation. The systems were as follows: a) comb-type hydrogels of an AAc network followed by grafting of 4VP ((net-PAAc)-g-4VP) and b) comb-type hydrogels of an AAc network grafted onto polypropylene (PP) followed by grafting of 4VP (net-(PP-g-AAc)-g-4VP). The equilibrium isotherms and kinetics were evaluated for copper and zinc ions in aqueous solutions. The Zn(II) retention obtained was 480 mg g-1 and 1086 mg g-1 for (net-PAAc)-g-4VP and net-(PP-g-AAc)-g-4VP, respectively. At concentrations as low as ppm, retention efficiencies of approximately 90% were achieved for Cu(II) on (net-PAAc)-g-4VP and for Zn(II) on net-(PP-g-AAc)-g-4VP. Desorption of the hydrogels was also studied, and the results indicated that they can be used repeatedly in aqueous solutions. For both systems, the adsorption of Cu(II) and Zn(II) obeyed the Freundlich model, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The sorption process follows a pseudo-second-order model.

  19. Ear-like poly (acrylic acid)-activated carbon nanocomposite: A highly efficient adsorbent for removal of Cd(II) from aqueous solutions.

    PubMed

    Ge, Huacai; Wang, Jincui

    2017-02-01

    Poly (acrylic acid) modified activated carbon nanocomposite (PAA-AC) was synthesized. The structure and morphology of this nanocomposite were characterized by FTIR, SEM, TEM, XRD and Zeta potential. The adsorption of some heavy metal ions on PAA-AC was studied. The characterization results indicated that PAA-AC was a novel and ear-like nanosheet material with the thickness of about 40 nm and the diameter of about 300 nm. The adsorption results exhibited that the introduction of carboxyl groups into activated carbon evidently increased the uptake for heavy metal ions and the nanocomposite had maximum uptake for Cd(II). Various variables affecting adsorption of PAA-AC for Cd(II) were systematically explored. The maximum capacity and equilibrium time for adsorption of Cd(II) by PAA-AC were 473.2 mg g(-1) and 15 min. Moreover, the removal of Cd(II) for real electroplating wastewater by PAA-AC could reach 98.5%. These meant that the removal of Cd(II) by PAA-AC was highly efficient and fast. The sorption kinetics and isotherm fitted well with the pseudo-second-order model and Langmuir model, respectively. The adsorption mainly was a chemical process by chelation. Thermodynamic studies revealed that the adsorption was a spontaneous and endothermic process. The results revealed that PAA-AC could be considered as a potential candidate for Cd(II) removal.

  20. Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release

    NASA Astrophysics Data System (ADS)

    Kang, Xiaojiao; Yang, Dongmei; Dai, Yunlu; Shang, Mengmeng; Cheng, Ziyong; Zhang, Xiao; Lian, Hongzhou; Ma, Ping'an; Lin, Jun

    2012-12-01

    In this study, multifunctional poly(acrylic acid) modified lanthanide-doped GdVO4 nanocomposites [PAA@GdVO4: Ln3+ (Ln = Yb/Er, Yb/Ho, Yb/Tm)] were constructed by filling PAA hydrogel into GdVO4 hollow spheres via photoinduced polymerization. The up-conversion (UC) emission colors (green, red and blue) can be tuned by changing the codopant compositions in the matrices. The composites have potential applications as bio-probes for cell imaging. Meanwhile, the hybrid spheres can act as T1 contrast agents for magnetic resonance imaging (MRI) owing to the existence of Gd3+ ions on the surface of composites. Due to the nature of PAA, DOX-loaded PAA@GdVO4:Yb3+/Er3+ system exhibits pH-dependent drug releasing kinetics. A lower pH offers a faster drug release rate. Such character makes the loaded DOX easily released at cancer cells. The cell uptake process of drug-loaded composites was observed by using confocal laser scanning microscopy (CLSM). The results indicate the potential application of the multifunctional composites as theragnostics (effective bimodal imaging probes and pH-responsive drug carriers).

  1. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption.

  2. Poly(acrylic acid)-regulated Synthesis of Rod-Like Calcium Carbonate Nanoparticles for Inducing the Osteogenic Differentiation of MC3T3-E1 Cells.

    PubMed

    Yang, Wei; Yao, Chenxue; Cui, Zhengyang; Luo, Dandan; Lee, In-Seop; Yao, Juming; Chen, Cen; Kong, Xiangdong

    2016-05-06

    Calcium carbonate, especially with nanostructure, has been considered as a good candidate material for bone regeneration due to its excellent biodegradability and osteoconductivity. In this study, rod-like calcium carbonate nanoparticles (Rod-CC NPs) with desired water dispersibility were achieved with the regulation of poly (acrylic acid). Characterization results revealed that the Rod-CC NPs had an average length of 240 nm, a width of 90 nm with an average aspect ratio of 2.60 and a negative ζ-potential of -22.25 ± 0.35 mV. The degradation study illustrated the nanoparticles degraded 23% at pH 7.4 and 45% at pH 5.6 in phosphate-buffered saline (PBS) solution within three months. When cultured with MC3T3-E1 cells, the Rod-CC NPs exhibited a positive effect on the proliferation of osteoblast cells. Alkaline phosphatase (ALP) activity assays together with the osteocalcin (OCN) and bone sialoprotein (BSP) expression observations demonstrated the nanoparticles could induce the differentiation of MC3T3-E1 cells. Our study developed well-dispersed rod-like calcium carbonate nanoparticles which have great potential to be used in bone regeneration.

  3. Palladium Nanoparticles Embedded in a Layer-by-Layer Nanoreactor Built with Poly(Acrylic Acid) Using "Electro-Click Chemistry".

    PubMed

    Villalba, Matias; Bossi, Mariano; Pozo, Maria Del; Calvo, Ernesto J

    2016-07-12

    Palladium nanoparticles (Pd NPs) were formed by electrochemical reduction of Pd(NH3)4(3+) ions entrapped by ion exchange in poly(acrylic acid) (PAA) multilayer films grown by the Sharpless "click reaction." The alkyne (PAAalk) and azide (PAAaz) groups were covalently bound to the PAA, and the catalyzed buildup of the multilayer film was performed by electrochemical reduction of Cu(2+) to Cu(+). The size of the Pd NPs formed in Au/(PAAalk)3(PAAaz)2 multilayer films by the click reaction, that is, 50 nm, is larger than that of similar Pd NPs formed in electrostatically bound Au/(PAA)3(PAH)2 nanoreactors, that is, 6-9 nm, under similar conditions. A combination of electrochemical methods and electrochemical quartz crystal microbalance, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), ellipsometry, and scanning electron microscopy has been used to follow these processes. Cyclic voltammetry of the resulting Pd NPs in a 0.1 M H2SO4 solution at 0.1 V·s(-1) shows the PdO reduction peak at the same potential as that on the clean Pd surface unlike the NPs formed in electrostatically self-assembled Au/(PAA)3(PAH)2 nanoreactors with a 0.2 V shift in the cathodic direction most probably because of the strong adsorption of amino groups on the Pd NP surfaces.

  4. Xylan-rich hemicelluloses-graft-acrylic acid ionic hydrogels with rapid responses to pH, salt, and organic solvents.

    PubMed

    Peng, Xin-Wen; Ren, Jun-Li; Zhong, Lin-Xin; Peng, Feng; Sun, Run-Cang

    2011-08-10

    Exploitation of biomaterials derived from renewable resources is an important approach to address environmental and resource problems in the world today. In this paper, novel ionic hydrogels based on xylan-rich hemicelluloses were prepared by free radical graft copolymerization of acrylic acid (AA) and xylan-rich hemicelluloses (XH) by using N,N-methylene-bis(acrylamide) (MBA) as cross-linker and ammonium persulfate/N,N,N',N'-tetramethylethylenediamine (APS/TMEDA) as redox initiator system. The network characteristics of the ionic hydrogels were investigated by Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM), as well as by determination of mechanical properties, swelling, and stimuli responses to pH, salts, and organic solvents. The results showed that an increase in the MBA/XH or AA/XH ratio resulted in higher cross-linking density of the network and thus decreased the swelling ratio. Expansion of the network hydrogels took place at high pH, whereas shrinkage occurred at low pH or in salt solutions as well as in organic solvents. The ionic hydrogels had high water adsorption capacity and showed rapid and multiple responses to pH, ions, and organic solvents, which may allow their use in several areas such as adsorption, separation, and drug release systems.

  5. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles.

    PubMed

    Bishop, Corey J; Kozielski, Kristen L; Green, Jordan J

    2015-12-10

    Intracellular nucleic acid delivery has the potential to treat many genetically-based diseases, however, gene delivery safety and efficacy remains a challenging obstacle. One promising approach is the use of polymers to form polymeric nanoparticles with nucleic acids that have led to exciting advances in non-viral gene delivery. Understanding the successes and failures of gene delivery polymers and structures is the key to engineering optimal polymers for gene delivery in the future. This article discusses the polymer structural features that enable effective intracellular delivery of DNA and RNA, including protection of nucleic acid cargo, cellular uptake, endosomal escape, vector unpacking, and delivery to the intracellular site of activity. The chemical properties that aid in each step of intracellular nucleic acid delivery are described and specific structures of note are highlighted. Understanding the chemical design parameters of polymeric nucleic acid delivery nanoparticles is important to achieving the goal of safe and effective non-viral genetic nanomedicine.

  6. Solid phase graft copolymerization of acrylic monomers onto thermoplastics and their use as blend compatibilizers

    NASA Astrophysics Data System (ADS)

    Subramanian, Srinivas

    This research work is an extension of some of the earlier work done on the development of solid phase grafting technique to graft various monomers onto polymers as well as postulation of the usefulness of the graft copolymers thus synthesized. Polystyrene grafted with acrylic acid, previously developed in bench scale, was synthesized in pilot-plant scale batches. Process parameter studies on the grafting of acrylic acid onto polypropylene and developmental studies on the grafting of maleic anhydride onto polystyrene were also done. Polymers grafted with polar molecules such as maleic anhydride and acrylic acid have been used to compatibilize immiscible blends of polar and non-polar polymers. On the same note, the applicability of the solid phase graft copolymers as blend compatibilizers were investigated and their performance was compared to commercially available compatibilizers. Solid phase graft copolymerization process is a technique to synthesize graft copolymers. Some of its salient features are use of minimal solvent to conduct the reaction and easy equipment modification. It is a low pressure and low temperature process. This technique provides a viable alternative to the environmentally hazardous, and time consuming conventional process currently in use. Hence, development of this technique could be beneficial not only to the plastics industry, but also to mankind. Also, this technique provides a low-cost and extremely easy method to develop graft copolymers such as acrylic acid functionalized polymers that are rapidly gaining popularity as blend compatibilizers and polymer reinforcing agents. A study that proves the potential of these solid phase graft copolymers as good blend compatibilizers for industrially important immiscible polymers will develop interest in the industries about this grafting process. The free radical solid phase graft copolymerization process was carried in a modified Brabender-type mixer fitted with specially designed blades to

  7. Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

    PubMed Central

    Deepa, G; Thulasidasan, Arun Kumar T; Anto, Ruby John; Pillai, J Jisha; Kumar, GS Vinod

    2012-01-01

    Objective: To investigate cross-linked hydrogels prepared via inverse emulsion polymerization to entrap poorly aqueous soluble drugs. Polyethylene glycol cross-linked acrylic polymers were synthesized and the loading and release of curcumin, a model hydrophobic drug, was investigated. Methods: Physicochemical characteristics of hydrogels were studied with 13C nuclear magnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, differential scanning calorimetry, and swelling. Polymerization of the acrylic acid with cross-linked polyethylene glycol diacrylate was characterized with 13C nuclear magnetic resonance imaging and Fourier transform infrared spectroscopy. Results: The in vitro release rate of curcumin showed that there was a sustained release from the hydrogel with increased cross-linking; the release rate depended on the pH of the releasing medium. Intracellular and cytotoxicity studies were carried out in human cervical cancer cell lines. Conclusion: The results suggest cross-linked acrylic polymers can be used as efficient vectors for pH-sensitive, controlled delivery of hydrophobic drugs. PMID:22888244

  8. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  9. 40 CFR 721.10289 - Hexanedioic acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aliphatic polyol dihydrogen phosphate aromatic ester (generic). 721.10289 Section 721.10289 Protection of... polymer with aliphatic polyol dihydrogen phosphate aromatic ester (generic). (a) Chemical substance and... acid polymer with aliphatic polyol dihydrogen phosphate aromatic ester (PMN P-11-333) is subject...

  10. Electrochemical imprinted sensor for determination of oleanic acid based on poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes-chitosan and cobalt hexacyanoferrate nanoparticles.

    PubMed

    Hu, Yufang; Zhang, Zhaohui; Li, Jiaxing; Zhang, Huabin; Luo, Lijuan; Yao, Shouzhuo

    2012-01-15

    A novel sensitive and selective imprinted electrochemical sensor for the determination of oleanic acid was constructed on a carbon electrode by stepwise modification of functional multi-walled carbon nanotubes, cobalt hexacyanoferrate nanoparticles and a thin imprinted sol-gel film. The fabrication of a homogeneous porous poly (sodium 4-styrenesulfonate-co-acrylic acid)-grafted multi-walled carbon nanotubes/SiO(2)-chitosan nanocomposite film was conducted by controllable electrodeposition technology. The surface morphologies of the modified electrodes were characterized by scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, square wave voltammetry and electrochemical impedance spectroscopy in detail. The imprinted sensor displayed high sensitivity and selectivity towards oleanic acid. A linear relationship between the sensor response signal and the logarithm of oleanic acid concentrations ranging from 1.0×10(-8) to 1.0×10(-3) mol L(-1) was obtained with a detection limit of 2.0×10(-9) mol L(-1). It was applied to the determination of oleanic acid in real capsule samples successfully.

  11. Methods for the synthesis of deuterated acrylate salts

    SciTech Connect

    Yang, Jun; Bonnesen, Peter V.; Hong, Kunlun

    2014-09-09

    A method for synthesizing a deuterated acrylate of the Formula (1), the method comprising: (i) deuterating a propiolate compound of Formula (2) to a methyne-deuterated propiolate compound of Formula (3) in the presence of a base and D.sub.2O: and (ii) reductively deuterating the methyne-deuterated propiolate compound of Formula (3) in a reaction solvent in the presence of deuterium gas and a palladium-containing catalyst to afford the deuterated acrylate of the Formula (1). The resulting deuterated acrylate compounds, derivatives thereof, and polymers derived therefrom are also described.

  12. Transient Current Behaviour of Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid Crystal Polymers

    NASA Astrophysics Data System (ADS)

    Yarramaneni, Sridharbabu; Sharma, Anu; Quamara, J. K.

    2011-07-01

    Transient current behaviour of pristine Poly (p-hydroxybenzoic acid-co-ethylene terephthalate) Liquid crystal polymer which is a copolymer of poly ethylene terephthalate and poly p-hydroxybenzoic acid referred as PET/x.PHB polymer liquid crystals have been studied at different biasing electric fields ranging from 13 kV/cm to 104.3 kV/cm and at temperatures 120° C and 250° C for molar ratio x =0.8.

  13. Specific influence of univalent cations on the ionization of alumina-coated TiO2 particles and on the adsorption of poly(acrylic)acid.

    PubMed

    Malgat, Alexandre; Boisvert, Jean-Philippe; Daneault, Claude

    2004-01-15

    A surface counterion titration method was used to monitor the interaction of monovalents cations (Li(+), Na(+), TMA(+)) with the surface of alumina-coated TiO(2) particles in concentrated media at different pH and electrolyte concentrations. This method allows measuring separately the negative and positive contribution to the surface charge. It showed that Cl(-) and TMA(+) are indifferent ions, but Li(+) and Na(+) specifically adsorb on the non-ionized alumina surface sites. The binding sequence of cations is Li(+)>Na(+)>TMA(+) at all ionic strengths investigated and is consistent with the structure-making and structure-breaking model developed a few decades ago. Polyacrylic acid (PAA) previously neutralized with the corresponding hydroxide (LiOH, NaOH, TMAOH) has been adsorbed on the alumina surface at different pH. The polymer counterion has a significant influence on the polymer adsorption. The sequence of the surface coverage as a function of the polymer counterion follows the order Li-PAA > Na-PAA > TMA-PAA. The much higher surface coverage with Li-PAA and Na-PAA compared to TMA-PAA is explained by the specific adsorption of Li-PAA and Na-PAA on the nonionized alumina surface sites, the same way LiCl and NaCl do.

  14. Clinical Performance of a Dermal Filler Containing Natural Glycolic Acid and a Polylactic Acid Polymer

    PubMed Central

    Macchetto, Pedro Cervantes; Durán Páramo, Rosa Margarita

    2010-01-01

    Lipoatrophy is a condition that affects certain individuals, most commonly those who are infected with the human immunodeficiency virus.1–3 Injectable fillers are used for the treatment of these dermal contour deformities to smooth dermal depressions formed by the loss of volume. These dermal fillers (also known as soft tissue augmentation devices) can correct contour deformities caused by lipoatrophy in patients who are human immunodeficiency virus positive or negative. The product used in this study is a patented, second-generation, injectable, dermal collagen stimulator that combines glycolic acid and polylactic acid. The glycolic acid used is not a polymer, but rather an acid derived from sugar cane. Its chemical structure corresponds to that of an alpha-hydroxy acid. Glycolic acid is a well-characterized agent that is present in a number of cosmetic products. Polylactic acid is a synthetic, biocompatible, biodegradable, inert, synthetic polymer from the poly a-hydroxy-acid family that is believed to stimulate fibroblasts to produce more collagen, thus increasing facial volume. Together, polylactic acid and glycolic acid act in concert to 1) stimulate collagen production and 2) hydrate the outer layers of the skin. A multicenter, clinical investigation authorized by the Mexican Secretariat of Health was conducted between September 20, 2002, and September 19, 2004. This clinical study was conducted in male patients between 32 and 60 years of age with lipoatrophy as a result of highly active antiretroviral therapy for human immunodeficiency virus infection. The study objective was to measure the improvement of contour deformities after the injection of a dermal collagen stimulator containing glycolic acid and polylactic acid. In addition to safety, this dermal filler was assessed when used to correct volume deformities caused by lipoatrophy in subjects who are human immunodeficiency virus positive. Thirty male subjects participated and were treated as follows

  15. Polylactic Acid-Based Polymer Blends for Durable Applications

    NASA Astrophysics Data System (ADS)

    Finniss, Adam

    There has been considerable scientific interest in both research and commercial communities as of late in the area of biologically based or sourced plastics. As the consumption of petroleum rises and concerns about climate change increase, this field is likely to grow even larger. One bioplastic that has received a great deal of attention is polylactic acid (PLA). In the past, this material was used mainly in medical or specialty applications, but advancements in manufacturing have led to a desire to use PLA more widely, especially in durable applications. Unfortunately, PLA has several drawbacks that hinder more widespread usage of the material as a durable item: it has low ductility and impact strength in bulk applications, along with poor stability in the face of heat, humidity or liquid media. To combat these deficiencies, a number of techniques were investigated. Samples were annealed to create crystalline domains that would improve mechanical properties and reduce diffusion, blended with graphene to create barriers to diffusion throughout the material, or compounded with a polycarbonate (PC) polymer phase to protect the PLA phase and to enhance the mechanical properties of the blend. If a material containing biologically sourced components with good mechanical properties can be created, it would be desirable for durable uses such as electronics components or as an automotive grade resin. Crystallization experiments were carried out in a differential scanning calorimeter to determine the effects of heat treatment and additives on the rather slow crystallization kinetics of PLA polymer. It was determined that the blending in of the PC phase did not significantly alter the kinetics or mechanism of crystal growth. The addition of graphene to any PC/PLA formulation served as a nucleating agent which speeded up the crystallization kinetics markedly, in some cases by several orders of magnitude. Results obtained from these experiments were internally consistent

  16. Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid)

    NASA Astrophysics Data System (ADS)

    Sekhosana, Kutloano Edward; Nyokong, Tebello

    2016-08-01

    Bis{23-(3,4-di-yloxybenzoic acid)-(2(3), 9(10), 16(17), 23(24)-(hexakis-pyridin-3-yloxy phthalocyaninato)} dineodymium (III) acetate (3) is linked to amino-functionalized multi-walled carbon nanotubes (MWCNT) to form 3-MWCNT. Z-scan technique was employed to experimentally determine the nonlinear absorption coefficient from the open-aperture data. The limiting threshold values as low as 0.045 J cm-2 were found in solution. The conjugate (3-MWCNT) gave better optical limiting behavior than complex 3 alone.

  17. Holographic imaging of 3D objects on dichromated polymer systems

    NASA Astrophysics Data System (ADS)

    Lemelin, Guylain; Jourdain, Anne; Manivannan, Gurusamy; Lessard, Roger A.

    1996-01-01

    Conventional volume transmission holograms of a 3D scene were recorded on dichromated poly(acrylic acid) (DCPAA) films under 488 nm light. The holographic characterization and quality of reconstruction have been studied by varying the influencing parameters such as concentration of dichromate and electron donor, and the molecular weight of the polymer matrix. Ammonium and potassium dichromate have been employed to sensitize the poly(acrylic) matrix. the recorded hologram can be efficiently reconstructed either with red light or with low energy in the blue region without any post thermal or chemical processing.

  18. Tools for fluorescent molecularly imprinted polymers.

    PubMed

    Rathbone, Daniel L; Bains, Ajeet

    2005-01-15

    A linear co-polymer of hexyl acrylate and quinine acrylate was prepared anchored to cellulose filtration membranes. These were used to probe quenching of the tethered fluorophore by test compounds in solution for the validation of imprinted polymer fluorescence studies. The results are compared with simple solution phase quenching studies and also for two membrane-bound imprinted polymers containing the same fluorophore.

  19. Use of pH-sensitive polymer hydrogels in lead removal from aqueous solution.

    PubMed

    Ramírez, Elizabeth; Burillo, S Guillermina; Barrera-Díaz, C; Roa, Gabriela; Bilyeu, Bryan

    2011-08-30

    Three gamma crosslinked polymeric hydrogels were synthesized and evaluated as lead ion sorbents. A crosslinked poly(acrylic acid) hydrogel was compared with two 4-vinylpiridine-grafted poly(acrylic acid) hydrogels (26.74 and 48.1% 4-vinylpiridine). The retention properties for Pb(II) from aqueous solutions of these three polymers were investigated by batch equilibrium procedure. The effects of pH, contact time and Pb(II) concentration were evaluated. The optimal pH range for all polymers was 4-6. The lightly grafted polymer (PAAc-g-4VP at 26.74%) exhibited a Pb(II) removal close to 80% at 5h and above 90% at 24h. The maximum Pb(II) removal was 117.9mg g(-1) of polymer and followed the Freundlich adsorption model. XPS characterization indicates that the carboxyl groups are involved in the Pb(II) removal.

  20. Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation.

    PubMed

    Xu, Ming; Zhu, Jianqiang; Wang, Fanfan; Xiong, Yunjing; Wu, Yakun; Wang, Qiuquan; Weng, Jian; Zhang, Zhihong; Chen, Wei; Liu, Sijin

    2016-03-22

    The unique physicochemical properties of two-dimensional (2D) graphene oxide (GO) could greatly benefit the biomedical field; however, recent research demonstrated that GO could induce in vitro and in vivo toxicity. We determined the mechanism of GO induced toxicity, and our in vitro experiments revealed that pristine GO could impair cell membrane integrity and functions including regulation of membrane- and cytoskeleton-associated genes, membrane permeability, fluidity and ion channels. Furthermore, GO induced platelet depletion, pro-inflammatory response and pathological changes of lung and liver in mice. To improve the biocompatibility of pristine GO, we prepared a series of GO derivatives including aminated GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and poly(ethylene glycol)-functionalized GO (GO-PEG), and compared their toxicity with pristine GO in vitro and in vivo. Among these GO derivatives, GO-PEG and GO-PAA induced less toxicity than pristine GO, and GO-PAA was the most biocompatible one in vitro and in vivo. The differences in biocompatibility were due to the differential compositions of protein corona, especially immunoglobulin G (IgG), formed on their surfaces that determine their cell membrane interaction and cellular uptake, the extent of platelet depletion in blood, thrombus formation under short-term exposure and the pro-inflammatory effects under long-term exposure. Overall, our combined data delineated the key molecular mechanisms underlying the in vivo and in vitro biological behaviors and toxicity of pristine GO, and identified a safer GO derivative that could be used for future applications.