Science.gov

Sample records for acrylic composites loaded

  1. Minocycline-loaded cellulose nano whiskers/poly(sodium acrylate) composite hydrogel films as wound dressing.

    PubMed

    Bajpai, S K; Pathak, V; Soni, Bhawna

    2015-08-01

    In this work, antibiotic drug Minocycline (Mic) loaded cellulose nano-whiskers (CNWs)/poly(sodium acrylate) hydrogel films were prepared and investigated for their drug releasing capacity in physiological buffer solution (PBS) at 37 °C. The (CNWs)/poly(sodium acrylate) film, containing 9.7% (w/w) of CNWs, demonstrated Mic release of 2500 μg/g while the plain poly(acrylate) film showed 3100 μg/g of drug release. In addition, with the increase in the concentration of cross-linker N,N'-methylene bisacrylamide (MB) from to, the drug release from the resulting films decreased from 507 to 191 μg/g. The release exponent 'n' for films with different compositions was found in the range of 0.45 to 0.89, thus indicating non-Fickian release mechanism. The Schott model was employed to interpret the kinetic drug release data successfully. The film samples poly(SA) and CNWs/poly(SA) (both not containing drug) showed thrombus formation of 0.010±0.001 g and 0.007±0.001 g, respectively, thus showing the non-thrombogenic behavior. In percent Hemolysis, both of the film samples of 1.136±0.012 and 0.5±0.020, respectively, thus indicating non-hemolytic behavior. In addition, both of the film samples demonstrated protein adsorption of 49.02±0.59μ g/μL and 51.20±0.51 μg/μL per cm(2), thus revealing a fair degree of protein adsorption. Finally, the Mic-loaded films showed fair anti-fungal and antibacterial properties.

  2. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  3. Shaped, lead-loaded acrylic filters for patient exposure reduction and image-quality improvement

    SciTech Connect

    Gray, J.E.; Stears, J.G.; Frank, E.D.

    1983-03-01

    Shaped filters that are constructed of lead-loaded acrylic material for use in patient radiography are discussed. Use of the filters will result in improved overall image quality with significant exposure reduction to the patient (approximately a 2X reduction in breast exposure and a 3X reduction in thyroid gland exposure). Detailed drawings of the shaped filters for scoliosis radiography, cervical spine radiography, and for long film changers in special procedures are provided. The use of the scoliosis filters is detailed and includes phantom and patient radiographs and dose reduction information.

  4. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  5. Alumina-coated graphene nanosheet and its composite of acrylic rubber.

    PubMed

    Dao, Trung Dung; Lee, Hyung-il; Jeong, Han Mo

    2014-02-15

    A graphene was coated with a thin alumina layer to prepare a novel nanosheet which had high thermal conductivity but low electrical conductivity. The nanosheet with minimal aggregation was prepared effectively by first coating it with aluminum tri-sec-butoxide in anhydrous dimethylformamide, followed by rapid calcination in an inert atmosphere after the hydrolysis of the alkoxide. The morphology observed by scanning electron microscopy and elemental mapping by energy-dispersive X-ray spectrometry showed that the alumina layer coated on the graphene surface was uniform and ultra-thin. Thermogravimetry demonstrated that the uniformly coated alumina protective layer substantially improved the thermal stability of the graphene and that the electrically-insulative alumina layer effectively reduced the electrical conductivity of the graphene. The enhanced polar nature of surface as well as the increased surface roughness due to the coated alumina improved the dispersion of the graphene in the polar acrylic rubber matrix and the interaction at the interface. This led to an effective improvement of the thermal conductivity but marginal increase in electrical conductivity by the filler. Tensile modulus increased drastically to as high as 470% for the composite reinforced with the 5 phr (about 2.5 vol%) loading of the alumina-coated graphene. PMID:24370399

  6. Preparation and drug-loading properties of Fe3O4/Poly(styrene-co-acrylic acid) magnetic polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Lu, Wensheng; Shen, Yuhua; Xie, Anjian; Zhang, Weiqiang

    2013-11-01

    Fe3O4/poly(styrene-co-acrylic acid) magnetic polymer nanocomposites were synthesized by the dispersion polymerization method using styrene as hard monomer, acrylic acid as functional monomer, Fe3O4 nanoparticles modified with oleic acid as core, and poly(styrene-co-acrylic acid) as shell. Drug-loading properties of magnetic polymer nanocomposites with curcumin as a model drug were also studied. The results indicated that magnetic polymer nanocomposites with monodisperse were obtained, the particle size distribution was 50-120 nm, and the average size was about 100 nm. The contents of poly(styrene-co-acrylic acid) and Fe3O4 nanoparticles in magnetic polymer nanocomposites were 74% and 24.7%, respectively. The drug-loading capacity and entrapment efficiency were 2.5% and 44.4%, respectively. The saturation magnetization of magnetic polymer nanocomposites at 300 K was 20.2 emu/g without coercivity and remanence. The as-prepared magnetic polymer nanocomposites have not only lots of functional carboxyl groups but also stronger magnetic response, which might have potential applications in drug carrier and targeted drug release.

  7. A temporary space maintainer using acrylic resin teeth and a composite resin.

    PubMed

    Kochavi, D; Stern, N; Grajower, R

    1977-05-01

    A one-session technique for preparing a temporary space maintainer has been described. The technique consists of attaching an acrylic resin pontic to etched surfaces of natural adjacent teeth by means of a composite resin. The main advantages of this technique are elimination of premature tooth preparation, good esthetics, fair strength, low cost, and rapid completion of the restoration without the need of a dental laboratory.

  8. A Study on Effect of Surface Treatments on the Shear Bond Strength between Composite Resin and Acrylic Resin Denture Teeth.

    PubMed

    Chatterjee, Nirmalya; Gupta, Tapas K; Banerjee, Ardhendu

    2011-03-01

    Visible light-cured composite resins have become popular in prosthetic dentistry for the replacement of fractured/debonded denture teeth, making composite denture teeth on partial denture metal frameworks, esthetic modification of denture teeth to harmonize with the characteristics of adjacent natural teeth, remodelling of worn occlusal surfaces of posterior denture teeth etc. However, the researches published on the bond strength between VLC composite resins and acrylic resin denture teeth is very limited. The purpose of this study is to investigate the effect of five different methods of surface treatments on acrylic resin teeth on the shear bond strength between light activated composite resin and acrylic resin denture teeth. Ninety cylindrical sticks of acrylic resin with denture teeth mounted atop were prepared. Various treatments were done upon the acrylic resin teeth surfaces. The samples were divided into six groups, containing 15 samples each. Over all the treated and untreated surfaces of all groups, light-cured composite resin was applied. The shear strengths were measured in a Universal Testing Machine using a knife-edge shear test. Data were analyzed using one way analysis of variance (ANOVA) and mean values were compared by the F test. Application of bonding agent with prior treatment of methyl methacrylate on the acrylic resin denture teeth resulted in maximum bond strength with composite resin.

  9. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement.

    PubMed

    Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge

    2014-01-01

    Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used. PMID:24231380

  10. Elution kinetics, antimicrobial activity, and mechanical properties of 11 different antibiotic loaded acrylic bone cement.

    PubMed

    Gálvez-López, Ruben; Peña-Monje, Alejandro; Antelo-Lorenzo, Ramón; Guardia-Olmedo, Juan; Moliz, Juan; Hernández-Quero, José; Parra-Ruiz, Jorge

    2014-01-01

    Antibiotic-loaded acrylic bone cements (ALABC) spacers are routinely used in the treatment of prosthetic joint infections. The objectives of our study were to evaluate different ALABC for elution kinetics, thermal stability, and mechanical properties. A 10 or 20% mixture (w/w) beads of medium viscosity bone cement (DePuy, Inc) and vancomycin (VAN), gentamycin (GM), daptomycin (DAP), moxifloxacin (MOX), rifampicin (RIF), cefotaxime (CTX), cefepime (FEP), amoxicillin clavulanate (AmC), ampicillin (AMP), meropenem (MER), and ertapenem (ERT) were formed and placed into wells filled with phosphate-buffered saline. Antibiotic concentrations were determined using high-performance liquid chromatography. Antimicrobial activity was tested against Micrococcus luteus ATCC 9341 or Escherichia coli ATCC 25922. AmC, AMP, and FEP concentration rapidly decreased after day 2, being almost undetectable at day 4. Sustained and high elution rates were observed with VAN, GM, MOX, and RIF for the 30-day duration of the experiment. DAP, MER, ERT, and CTX elution rates constantly decreased from day 4. All antibiotics tested retained antimicrobial activity proving thermal stability. Mechanical properties of ALABC were maintained except when RIF was used.

  11. Real-time monitoring of graphene oxide reduction in acrylic printable composite inks

    NASA Astrophysics Data System (ADS)

    Porro, S.; Giardi, R.; Chiolerio, A.

    2014-06-01

    This work reports the electrical characterization of a water-based graphene oxide/acrylic composite material, which was directly inkjet printed to fabricate dissipative patterns. The graphene oxide filler, which is strongly hydrophilic due to its heavily oxygenated surface and can be readily dispersed in water, was reduced by UV irradiation during photo-curing of the polymeric matrix. The concurrent polymerization of the acrylic matrix and reduction of graphene oxide filler was demonstrated by real-time resistance measurements during UV light irradiation. The presence of graphene filler allowed decreasing the resistance of the pure polymeric matrix by nearly five orders of magnitude. This was explained by the fact that clusters of reduced graphene oxide inside the polymer matrix act as preferential pathways for the mobility of charge carriers, thus leading to an overall decrease of the material's resistance.

  12. Preparation, characterization, and antibacterial activity studies of silver-loaded poly(styrene-co-acrylic acid) nanocomposites.

    PubMed

    Song, Cunfeng; Chang, Ying; Cheng, Ling; Xu, Yiting; Chen, Xiaoling; Zhang, Long; Zhong, Lina; Dai, Lizong

    2014-03-01

    A simple method for preparing a new type of stable antibacterial agent was presented. Monodisperse poly(styrene-co-acrylic acid) (PSA) nanospheres, serving as matrices, were synthesized via soap-free emulsion polymerization. Field-emission scanning electron microscopy micrographs indicated that PSA nanospheres have interesting surface microstructures and well-controlled particle size distributions. Silver-loaded poly(styrene-co-acrylic acid) (PSA/Ag-NPs) nanocomposites were prepared in situ through interfacial reduction of silver nitrate with sodium borohydride, and further characterized by transmission electron microscopy and X-ray diffraction. Their effects on antibacterial activity including inhibition zone, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and bactericidal kinetics were evaluated. In the tests, PSA/Ag-NPs nanocomposites showed excellent antibacterial activity against both gram-positive Staphylococcus aureus and gram-negative Escherichia coli. These nanocomposites are considered to have potential application in antibacterial coatings on biomedical devices to reduce nosocomial infection rates. PMID:24433897

  13. Fabrication and Characterization of Gd-DTPA-Loaded Chitosan-Poly(Acrylic Acid) Nanoparticles for Magnetic Resonance Imaging.

    PubMed

    Ahmed, Arsalan; Zhang, Chao; Guo, Jian; Hu, Yong; Jiang, Xiqun

    2015-08-01

    Gd-DTPA-loaded chitosan-poly(acrylic acid) nanoparticles (Gd-DTPA@CS-PAA NPs) were formulated based on the reaction system of water-soluble polymer-monomer pairs of acrylic acid in chitosan solution followed by sorption of Gd-DTPA. Morphological investigations revealed the spherical shape of these NPs with about 220 nm particle size. These NPs showed charge reversal characteristic in acidic solution. In vitro and in vivo magnetic characteristics of these NPs were explored to estimate their utilization in targeted enhanced magnetic resonance imaging. Relaxation studies showed that these NPs possessed pH susceptible relaxation properties, which could introduce in vivo-specific distribution of contrast agent. MRI experiment showed that these nanoparticles had better results in contrast enhancement, and the concentration of contrast agent increased in liver and brain with increment in time. Thus, these NPs could maintain in vivo long circulation and high relaxation rate and were suitable agents for magnetic resonance imaging.

  14. Influence of load on the dry frictional performance of alkyl acrylate copolymer elastomers coated with diamond-like carbon films

    NASA Astrophysics Data System (ADS)

    Martínez Martínez, D.; Nohava, Jiri; De Hosson, J. Th. M.

    2015-11-01

    In this work, the influence of applied load on the frictional behavior of alkyl acrylate copolymer elastomers coated with diamond-like carbon films is studied at dry conditions. The performance of two coatings with very different microstructure (patched vs. continuous film) is compared with the uncoated substrate. A wide range of applied loads is explored, from 1 mN to 1 N, which is achieved by using a specific tribometer. The variation of 3 orders of magnitude in the applied load leads to a strong variation of the observed frictional phenomena. The different behavior of both samples at various loads is explained using a model that considers two contributions to the friction coefficient, namely, an adhesive and a rubber hysteresis part. The constraints and applicability of such model are critically evaluated.

  15. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies. PMID:19452959

  16. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites

    NASA Astrophysics Data System (ADS)

    Dashtizadeh, Ahmad; Abdouss, Majid; Mahdavi, Hossein; Khorassani, Manuchehr

    2011-01-01

    To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.

  17. Highly Loaded Composite Strut Test Results

    NASA Technical Reports Server (NTRS)

    Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.

    2011-01-01

    Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.

  18. Comparing the degree of exothermic polymerization in commonly used acrylic and provisional composite resins for intraoral appliances.

    PubMed

    Rice, C A; Riehl, Jessica; Broman, Karl; Soukup, Jason W; Gengler, William R

    2012-01-01

    The use of dental acrylics and composite resins in veterinary dentistry has become widespread. However their use is not without potential complications. All acrylics and composite resins produce an exothermic reaction during the polymerization process. The aim of the current study was to evaluate thermal conduction during the polymerization reaction of each material to offer clinical guidelines when choosing a material with particular consideration for the significant volumes typically used. Results showed that methylmethacrylate based resins generated a significantly higher degree of heat during polymerization. Bis-acryl based composite resins generated a significantly lower degree of heat during polymerization, making them the material of choice to potentially minimize thermal injury to the dentin-pulp complex. It is the responsibility of the clinician to become aware of all materials available, and to have an understanding of their properties to guide them in making sound clinical judgments.

  19. Coating compositions for solar selective absorption comprising a thermosetting acrylic resin and particles of a low molecular weight fluorocarbon polymer

    SciTech Connect

    Maki, M.; Fukuda, H.; Sano, S.

    1984-01-17

    A coating composition for solar selective absorption comprising, in solvent, particles of an inorganic black pigment dispersed in a dissolved binder of a thermosetting acrylic resin and particles of a low molecular weight fluorocarbon resin contained in an amount of 5-15 parts by weight per 100 parts by weight of the acrylic resin. The inorganic black particles have a size of 0.01-0.5 microns and are contained in an amount of 45-65 parts by weight per 100 parts by weight of the acrylic resin. An article having a metal substrate and a paint film formed thereon from the composition in a dry thickness of 1.5 microns or more is also described.

  20. Polyaniline/poly acid acrylic thin film composites: a new gamma radiation detector

    SciTech Connect

    Lima Pacheco, Ana P.; Araujo, Elmo S.; Azevedo, Walter M. de

    2003-03-15

    In this paper, we present a new and straightforward route to prepare polyaniline/poly acid acrylic (PAA) thin film composites in large areas and on almost any surface. This method was developed to improve the mechanical and adherence properties of polyaniline devices used as ionization radiation sensors. The route consists of the combination of the metal oxidant with polymer acid to form a highly homogeneous and viscous paste, which can be easily spread over any surface. In the second step, an aniline acid solution is brought in contact with the dried paste where polymerization occurs, yielding a high homogeneous and conducting polymer composite. The UV-visible absorption and infrared analysis confirm that a polyaniline/PAA complex is obtained. The four-point conductivity measurements show that the composite conductivity {rho} is the order of 5 {omega}{sup -1} cm{sup -1}. Preliminary gamma radiation interaction with the composite shows that the doped composite exhibits a linear response that can be used in the development of real-time radiation sensors for the dose range from 0 to 5000 Gy.

  1. Preparation and evaluation of MRI detectable poly (acrylic acid) microspheres loaded with superparamagnetic iron oxide nanoparticles for transcatheter arterial embolization.

    PubMed

    Wang, Huan; Qin, Xiao-Ya; Li, Zi-Yuan; Guo, Li-Ying; Zheng, Zhuo-Zhao; Liu, Li-Si; Fan, Tian-Yuan

    2016-09-25

    To monitor the spatial distribution of embolic particles inside the target tissues during and after embolization, blank poly (acrylic acid) microspheres (PMs) were initially prepared by inverse suspension polymerization method and then loaded with superparamagnetic iron oxide (SPIO) nanoparticles by in situ precipitation method to obtain magnetic resonance imaging (MRI) detectable SPIO-loaded poly (acrylic acid) microspheres (SPMs). The loading of SPIO nanoparticles in SPMs was confirmed by vibrating sample magnetometer, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and infrared spectrum, respectively. The results showed that SPMs exhibited excellent superparamagnetism and the SPIO embedded in SPMs were proved to be inverse spinel magnetite. The content of SPIO loaded in wet SPMs of subgroups of 100-300, 300-500, 500-700 and 700-900μm was measured to be 11.84±0.07, 10.20±0.05, 9.98±0.00 and 8.79±0.01mg/ml, corresponding to the weight percentage in freeze-dried SPMs to be 18.07±0.28%, 18.54±0.13%, 18.66±0.01% and 18.50±0.07%, respectively. The SPMs were spherical in shape, had smooth surface, and were within the size range of clinical demands for embolization. The compression tests indicated that SPMs were more rigid than PMs and commercially used Embospheres (P<0.01). The MRI detectability of SPMs was evaluated with the SPMs embedded in gel phantom in vitro and injected subcutaneously into the back of mice in vivo. Both the results demonstrated that the SPMs could provide distinct negative contrast enhancement and be sensitively detected by T2-weighted MR imaging. All the results show that SPMs are potential MRI detectable embolic microspheres for the future embolotherapy. PMID:27426106

  2. Highly Loaded Composite Strut Test Development

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.

    2011-01-01

    Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.

  3. Synthesis of polyoxometalate-loaded epoxy composites

    DOEpatents

    Anderson, Benjamin J

    2014-10-07

    The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.

  4. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  5. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity. PMID:26360748

  6. A novel poly(acrylic acid-co-acrylamide)/diatomite composite flocculant with outstanding flocculation performance.

    PubMed

    Xu, Kun; Liu, Yao; Wang, Yang; Tan, Ying; Liang, Xuecheng; Lu, Cuige; Wang, Haiwei; Liu, Xiusheng; Wang, Pixin

    2015-01-01

    Series of anionic flocculants with outstanding flocculation performance, poly(acrylic acid-co-acrylamide)/diatomite composite flocculants (PAAD) were successfully prepared through aqueous solution copolymerization and applied to flocculate from oil-field fracturing waste-water. The structure of PAAD was characterized by Fourier transform infra-red spectroscopy, (13)C nuclear magnetic resonance and X-ray diffraction tests, and its properties were systematically evaluated by viscometer, thermogravimetry analysis and flocculation measurements. Furthermore, the influences of various reaction parameters on the apparent viscosity of flocculant solution were studied, and the optimum synthesis condition was determined. The novel composite flocculants exhibited outstanding flocculation properties. Specifically, the dosage of composite flocculants that could make the transmittance of treated wastewater exceed 90% was only approximately 12-35 ppm, which was far lower than that of conventional flocculants. Meanwhile, the settling time was lower than 5 s, which was similar to that of conventional flocculants. This was because PAAD flocculants had a higher absorption capacity, and larger chain extending space than conventional linear flocculants, which could refrain from the entanglement of linear polymer chains and significantly improve flocculation capacity.

  7. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    PubMed

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli. PMID:26123815

  8. A green approach to prepare silver nanoparticles loaded gum acacia/poly(acrylate) hydrogels.

    PubMed

    Bajpai, S K; Kumari, Mamta

    2015-09-01

    In this work, gum acacia (GA)/poly(sodium acrylate) semi-interpenetrating polymer networks (Semi-IPN) have been fabricated via free radical initiated aqueous polymerization of monomer sodium acrylate (SA) in the presence of dissolved Gum acacia (GA), using N,N'-methylenebisacrylamide (MB) as cross-linker and potassium persulphate (KPS) as initiator. The semi-IPNs, synthesized, were characterized by various techniques such as X-ray diffraction (XRD), thermo gravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy. The dynamic water uptake behavior of semi-IPNs was investigated and the data were interpreted by various kinetic models. The equilibrium swelling data were used to evaluate various network parameters. The semi-IPNs were used as template for the in situ preparation of silver nanoparticles using extract of Syzygium aromaticum (clove). The formation of silver nanoparticles was confirmed by surface plasmon resonance (SPR), XRD and transmission electron microscopy (TEM). Finally, the antibacterial activity of GA/poly(SA)/silver nanocomposites was tested against E. coli.

  9. Acrylic coatings compositions containing polymer-bound hindered amine light stabilizers

    SciTech Connect

    Callais, P.A.

    1993-12-31

    Unique acrylic coatings resins with attached hindered amine light stabilizer (HALS) groups have been developed. They are readily prepared by reacting a hydrazide functionalized HALS with an acrylic polyol resin containing anhydride and/or epoxy groups or with a peroxide functionalized HALS as the polymerization initiator. As a result, the HALS moiety is rendered nonvolatile and nonextractable. Acrylic melamine and acrylic urethane coatings prepared from the polymer-bound light stabilizer resins exhibit outstanding weatherability and durability in both accelerated and outdoor weathering.

  10. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  11. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  12. Comparative Analysis of Electromagnetic Response of PVA/MWCNT and Styrene-Acrylic Copolymer/MWCNT Composites

    NASA Astrophysics Data System (ADS)

    Plyushch, A. O.; Paddubskaya, A. G.; Kuzhir, P. P.; Maksimenko, S. A.; Ivanova, T.; Merijs-Meri, R.; Bitenieks, J.; Zicans, J.; Suslyaev, V. I.; Pletnev, M. A.

    2016-06-01

    The present paper focuses on electromagnetic response of polymeric composites with different concentrations of multiwall carbon nanotubes in the radio (20 Hz - 1 MHz) and microwave (26-36 GHz) frequency ranges. Widely available polymeric materials, such as PVA latex (polyvinyl acetate) and styrene-acrylic copolymer, were used as a matrix. Analysis of the experimental data demonstrated that in electromagnetic shielding applications one should give preference to the styrene-acrylic copolymer, as far as application of this matrix type allows reducing the percolation threshold in such composites. As a result, it allows reaching the necessary level of shielding at a lower filler concentration, while unique properties of the chosen polymer allow expanding the range of applications for the new materials.

  13. Experimental characterization of composites. [load test methods

    NASA Technical Reports Server (NTRS)

    Bert, C. W.

    1975-01-01

    The experimental characterization for composite materials is generally more complicated than for ordinary homogeneous, isotropic materials because composites behave in a much more complex fashion, due to macroscopic anisotropic effects and lamination effects. Problems concerning the static uniaxial tension test for composite materials are considered along with approaches for conducting static uniaxial compression tests and static uniaxial bending tests. Studies of static shear properties are discussed, taking into account in-plane shear, twisting shear, and thickness shear. Attention is given to static multiaxial loading, systematized experimental programs for the complete characterization of static properties, and dynamic properties.

  14. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  15. Composition containing aerogel substrate loaded with tritium

    DOEpatents

    Ashley, Carol S.; Brinker, C. Jeffrey; Ellefson, Robert E.; Gill, John T.; Reed, Scott; Walko, Robert J.

    1992-01-01

    The invention provides a process for loading an aerogel substrate with tritium and the resultant compositions. According to the process, an aerogel substrate is hydrolyzed so that surface OH groups are formed. The hydrolyzed aerogel is then subjected to tritium exchange employing, for example, a tritium-containing gas, whereby tritium atoms replace H atoms of surface OH groups. OH and/or CH groups of residual alcohol present in the aerogel may also undergo tritium exchange.

  16. Ultrasensitive electrochemical immunosensor based on horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes for protein biomarker detection.

    PubMed

    Zhao, Yan; Zheng, Yiqun; Kong, Rongmei; Xia, Lian; Qu, Fengli

    2016-01-15

    We report an ultrasensitive electrochemical immunosensor designed for the detection of protein biomarkers using horseradish peroxidase (HRP)-loaded silica-poly(acrylic acid) brushes (SiO2-SPAABs) as labels. HRP could be efficiently and stably accommodated in the three-dimensional architecture of the SiO2-SPAABs and the SiO2-SPAABs-HRP exhibited high catalytic performance towards o-phenylenediamine (OPD) oxidation in the presence of H2O2, which resulted in significant differential pulse voltammetric (DPV) response change and color change. Using human IgG (HIgG) as a model analyte, a sandwich-type immunosensor was constructed. In particular, graphene oxide (GO) and SiO2-SPAABs-HRP were used to immobilize capture antibody (Ab1) and bind a layer of detection antibody (Ab2), respectively. The current biosensor exhibited a good linear response of HIgG from 100pg/mL to 100μg/mL with a detection limit of 50pg/mL (S/N=5). The sensitivity was 6.70-fold higher than the conventional enzyme-linked immunosorbent assays. The immunosensor results were validated through the detection of HIgG in serum samples.

  17. Synthesis of linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite as an adsorbent for removal of Pb(ΙΙ) from aqueous solutions.

    PubMed

    Irani, Maryam; Ismail, Hanafi; Ahmad, Zulkifli; Fan, Maohong

    2015-01-01

    The purpose of this work is to remove Pb(II) from the aqueous solution using a type of hydrogel composite. A hydrogel composite consisting of waste linear low density polyethylene, acrylic acid, starch, and organo-montmorillonite was prepared through emulsion polymerization method. Fourier transform infrared spectroscopy (FTIR), Solid carbon nuclear magnetic resonance spectroscopy (CNMR)), silicon(-29) nuclear magnetic resonance spectroscopy (Si NMR)), and X-ray diffraction spectroscope ((XRD) were applied to characterize the hydrogel composite. The hydrogel composite was then employed as an adsorbent for the removal of Pb(II) from the aqueous solution. The Pb(II)-loaded hydrogel composite was characterized using Fourier transform infrared spectroscopy (FTIR)), scanning electron microscopy (SEM)), and X-ray photoelectron spectroscopy ((XPS)). From XPS results, it was found that the carboxyl and hydroxyl groups of the hydrogel composite participated in the removal of Pb(II). Kinetic studies indicated that the adsorption of Pb(II) followed the pseudo-second-order equation. It was also found that the Langmuir model described the adsorption isotherm better than the Freundlich isotherm. The maximum removal capacity of the hydrogel composite for Pb(II) ions was 430mg/g. Thus, the waste linear low-density polyethylene-g-poly (acrylic acid)-co-starch/organo-montmorillonite hydrogel composite could be a promising Pb(II) adsorbent.

  18. Synthesis, characterization and swelling properties of guar gum-g-poly(sodium acrylate-co-styrene)/muscovite superabsorbent composites

    NASA Astrophysics Data System (ADS)

    Wang, Wenbo; Kang, Yuru; Wang, Aiqin

    2010-04-01

    A series of novel guar gum-g-poly(sodium acrylate-co-styrene)/muscovite (GG-g-P(NaA-co-St)/MVT) superabsorbent composites were prepared by free-radical grafting copolymerization of natural guar gum (GG), partially neutralized acrylic acid (NaA), styrene (St) and muscovite (MVT) using ammonium persulfate (APS) as the initiator and N,N-methylene-bis-acrylamide (MBA) as the crosslinker. Optical absorption spectra confirmed that NaA and St had been grafted onto the GG main chain and MVT participated in the polymerization reaction. The simultaneous introduction of St and MVT into the GG-g-PNaA matrix could clearly improve the surface morphologies of the composites, and MVT led to better dispersion in the polymeric matrix without agglomeration, as revealed by electron microscopy. The effects of St and MVT on the water absorption and swelling behavior in various saline solutions, aqueous solutions of hydrophilic organic solvents and surfactant solutions were investigated. Results indicated that the swelling rate and capabilities of the composites were markedly enhanced by the incorporation of the hydrophobic monomer St and inorganic MVT clay mineral. The superabsorbent composite showed a clearer deswelling characteristic in solutions of multivalent saline, acetone and ethanol, and cationic surfactant than that in the solutions of multivalent saline, methanol and anionic surfactant.

  19. Surface properties of poly(styrene- co- n-butyl acrylate) binary copolymers: Effect of chain microstructure and composition

    NASA Astrophysics Data System (ADS)

    Bogdanova, Yu. G.; Kostina, J. V.; Dolzhikova, V. D.; Chernikova, E. V.; Plutalova, A. V.

    2015-12-01

    The regularities of changing of surface energy characteristics of poly(styrene- co- n-butyl acrylate) binary copolymers films at varying of chain microstructure, composition and thermodynamic quality of solvent, from which films are formed, with respect to comonomers, were detected. The concordance between the information about characteristics of films surfaces, obtained via contact angle measurements and ATR-FTIR spectroscopy was observed. The type of polymer chain microstructure, provided the best adhesion properties of copolymers with respect to polar phases was detected.

  20. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Dua, Amit; Dua, Mahima; Sehgal, Varun; Setya, Gaurav; Dhall, Rupinder Singh

    2016-01-01

    Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI. PMID:27195221

  1. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  2. Incorporation of antimicrobial macromolecules in acrylic denture base resins: a research composition and update.

    PubMed

    Sivakumar, Indumathi; Arunachalam, Kuthalingam Subbiah; Sajjan, Suresh; Ramaraju, Alluri Venkata; Rao, Bheemalingeshwara; Kamaraj, Bindu

    2014-06-01

    Contemporary research in acrylic denture base materials focuses on the development of a novel poly(methyl methacrylate) (PMMA) resin with antimicrobial properties. Although PMMA resin has fulfilled all the requirements of an ideal denture base material, its susceptibility to microbial colonization in the oral environment is a formidable concern to clinicians. Many mechanisms including the absence of ionic charge in the methyl methacrylate resins, hydrophobic interactions, electrostatic interactions, and mechanical attachment have been found to contribute to the formation of biofilm. The present article outlines the basic categories of potential antimicrobial polymer (polymeric biocides) formulations (modified PMMA resins) and considers their applicability, biological status, and usage potential over the coming years.

  3. Calcium Phosphate Mineralization in Cellulose Derivative/Poly(acrylic acid) Composites Having a Chiral Nematic Mesomorphic Structure.

    PubMed

    Ogiwara, Takuya; Katsumura, Ayaka; Sugimura, Kazuki; Teramoto, Yoshikuni; Nishio, Yoshiyuki

    2015-12-14

    Calcium phosphate mineralization was conducted by using polymer composites of liquid-crystalline (ethyl)cellulose (EC) or (hydroxypropyl)cellulose (HPC) with poly(acrylic acid) (PAA) as a scaffolding medium for the inorganic deposition. The EC/PAA and HPC/PAA samples were prepared in colored film form from EC and HPC lyotropic liquid crystals of left-handed and right-handed chiral nematics, respectively, by polymerization and cross-linking of acrylic acid as the main solvent component. The mineralization was allowed to proceed in a batchwise operation by soaking the liquid-crystalline films in an aqueous salt solution containing the relevant ions, Ca(2+) and HPO4(2-). The calcium phosphate-deposited EC/PAA and HPC/PAA composites (weight gain, typically 15-25% and 6-11%, respectively) retained the chiral nematic organization of the respective original handedness but exhibited selective light-reflection of longer wavelengths relative to that of the corresponding nonmineralized samples. From X-ray diffraction and energy-dispersive X-ray spectroscopy measurements, it was deduced that the calcium and phosphorus were incorporated inside the polymer matrices in three forms: amorphous calcium phosphate, hydroxyapatite, and a certain complex of PAA-Ca(2+). Dynamic mechanical analysis and thermogravimetry revealed that the inorganic hybridization remarkably enhanced the thermal and mechanical performance of the optically functionalized cellulosic/synthetic polymer composites; however, the effect was more drastic in the EC/PAA series rather than the HPC/PAA series, reflecting the difference in the deposited mineral amount between the two. PMID:26536381

  4. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  5. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts and system ducting. These models will be developed using two independent approaches. The first approach consists of using state-of-the-art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The methodology required to combine the various individual load simulation models (hot-gas dynamic, vibrations, instantaneous position, centrifugal field, etc.) into composite load spectra simulation models will be developed under this program. A computer code incorporating the various individual and composite load spectra models will be developed to construct the specific load model desired. The second approach, which is covered under the options portion of the contract, will consist of developing coupled models for composite load spectra simulation which combine the (deterministic) models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data. This report covers the efforts of the third year of the contract. The overall program status is that the turbine blade loads have been completed and implemented. The transfer duct loads are defined and are being implemented. The thermal loads for all components are defined and coding is being developed. A dynamic pressure load model is under development. The parallel work on the probabilistic methodology is essentially completed. The overall effort is being

  6. Delaminations in composite plates under impact loads

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to non-penetrating (low velocity) impact of a solid object. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the damage initiation load and the locations, shapes, and sizes of the delaminations. Tests were performed measuring the geometries of the delaminations in graphite-epoxy, graphite-toughened epoxy, and graphite-PEEK plates impacted by a projectile with a spherical tip having masses ranging from 0.355 lbm to 0.963 lbm and velocities from 50 in/sec to 225 in/sec. The data were compared to the results of the model, and good agreements were found between the measured and the calculated delamination lengths and widths.

  7. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging

    PubMed Central

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G.

    2015-01-01

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early-stage cancer diagnosis. Gadolinium (Gd) (III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high x-ray attenuation coefficient, is an ideal contrast agent candidate for x-ray based CT imaging. Gd metal organic framework (MOF) nanoparticles with tunable size, high Gd (III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multi-modal imaging probes. PMID:26147906

  8. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of copper(II) ions from aqueous solutions.

    PubMed

    Yan, Han; Yang, Lingyun; Yang, Zhen; Yang, Hu; Li, Aimin; Cheng, Rongshi

    2012-08-30

    In this current work, the magnetic composite microspheres (MCM), consisting of Fe(3)O(4) nanoparticles and poly(acrylic acid) (PAA) blended chitosan (CS), were prepared successfully by a simple method, co-precipitation of the compounds in alkaline solution. SEM, FTIR and TG techniques have been applied to investigate the structures of the MCM materials. The vibrating-sample magnetometer (VSM) measurement illustrated a paramagnetic property as well as a fast magnetic response, which indicated the significant separability of the MCM in the aqueous suspensions. Then, the MCM materials were employed as absorbents for removal of copper(II) (Cu(II)) ions from aqueous solutions. The fundamental adsorption behaviors of MCM were studied also. Experimental results revealed that the CS/PAA-MCM had greater adsorption capacity than CS-MCM, and PAA played an important role for the adsorption of Cu(II) ions. Moreover, the adsorption isotherms were all well described by the Langmuir model, while the adsorption kinetics followed the pseudo-second order equation. Furthermore, the adsorbent could be easily regenerated at lower pH and reused almost without any loss of adsorption capacity. On the contrary, the Cu(II) ions loaded CS-MCM and CS/PAA-MCM were stable enough at pH higher than 4.0, and both exhibited efficient phosphate removal with maximal uptakes around 63.0 and 108.0 mg Pg(-1), respectively. PMID:22749139

  9. Poly(acrylic acid) Bridged Gadolinium Metal-Organic Framework-Gold Nanoparticle Composites as Contrast Agents for Computed Tomography and Magnetic Resonance Bimodal Imaging.

    PubMed

    Tian, Chixia; Zhu, Liping; Lin, Feng; Boyes, Stephen G

    2015-08-19

    Imaging contrast agents for magnetic resonance imaging (MRI) and computed tomography (CT) have received significant attention in the development of techniques for early stage cancer diagnosis. Gadolinium (Gd)(III), which has seven unpaired electrons and a large magnetic moment, can dramatically influence the water proton relaxation and hence exhibits excellent MRI contrast. On the other hand, gold (Au), which has a high atomic number and high X-ray attenuation coefficient, is an ideal contrast agent candidate for X-ray-based CT imaging. Gd metal-organic framework (MOF) nanoparticles with tunable size, high Gd(III) loading and multivalency can potentially overcome the limitations of clinically utilized Gd chelate contrast agents. In this work, we report for the first time the integration of GdMOF nanoparticles with gold nanoparticles (AuNPs) for the preparation of a MRI/CT bimodal imaging agent. Highly stable hybrid GdMOF/AuNPs composites have been prepared by using poly(acrylic acid) as a bridge between the GdMOF nanoparticles and AuNPs. The hybrid nanocomposites were then evaluated in MRI and CT imaging. The results revealed high longitudinal relaxivity in MRI and excellent CT imaging performance. Therefore, these GdMOF/AuNPs hybrid nanocomposites potentially provide a new platform for the development of multimodal imaging probes.

  10. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    A description is presented of the test techniques which have been used to apply sustained uniaxial tensile loading to fiber/epoxy composites. The fiber types used include S-glass, aramid, graphite, and beryllium wire. The applied load vs lifetime data for four composite materials are presented in graphs. Attention is given to a statistical analysis of data, a performance comparison of various composites, the age effect on the strength of composites, the applicability of the lifetime data to complex composites, and aspects of accelerated test method development. It is found that the lifetime of a composite under a sustained load varies widely. Depending on the composite system, the minimum life typically differs from the maximum life by a factor of 100 to 1000. It is in this connection recommended that a use of average life data should be avoided in serious design calculations.

  11. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  12. Synthesis and characterization of poly(methyl methacrylate-butyl acrylate)/nano-titanium oxide composite particles.

    PubMed

    Guo, Gang; Yu, Jie; Luo, Zhu; Zhou, LiangXue; Liang, Hang; Luo, Feng; Qian, ZhiYong

    2011-06-01

    Poly(methyl methacrylate-butyl acrylate) [P(MMA-BA)]/nanosized titanium oxide (nano-TiO2) composite particles were prepared via insitu emulsion polymerization of MMA and BA in presence of nano-TiO2 particles. Before polymerization, the nano-TiO2 particles were modified by coupling agent. The structure and thermal properties of the obtained P(MMA-BA)/nano-TiO2 composite particles were characterized by Fourier transform infrared spectra (FTIR), wide-angle X-ray diffraction (WAXD) and thermogravimetric analysis (TGA). The results showed that there are covalent bond bindings between P(MMA-BA) and nano-TiO2 particles, meaning that P(MMA-BA) and nano-TiO2 particles were not simply blended or mixed up and that there is a strong interaction between P(MMA-BA) and nano-TiO2 particles. TGA and DSC measurements indicated an enhancement of thermal stability. Transmission electron microscopy (TEM) results showed that P(MMA-BA) enhanced the dispersibility of nano-TiO2 particles. The dispersion stabilization of modified nano-TiO2 particles in aqueous system was significantly improved due to the introduction of grafted polymer on the surface of nano-particles.

  13. Radiation cured epoxy acrylate composites based on graphene, graphite oxide and functionalized graphite oxide with enhanced properties.

    PubMed

    Guo, Yuqiang; Bao, Chenlu; Song, Lei; Qian, Xiaodong; Yuan, Bihe; Hu, Yuan

    2012-03-01

    Epoxy acrylate (EA) composites containing graphite oxide (GO), graphene and nitrogen-double bond functionalized graphite oxide (FGO) were fabricated using UV-radiation and electron beam radiation via in-situ polymerization. Graphene and FGO were homogenously dispersed in EA matrix and enhanced properties, including thermal stability, flame retardancy, electrical conductivity and reduced deleterious gas releasing in thermo decomposition were obtained. Microscale combustion colorimeter results illustrated improved flame retardancy; EA/FGO composites achieved a 29.7% reduction in total heat release (THR) when containing only 0.1% FGO and a 38.6% reduction in peak-heat release rate (PHRR) when containing 3% FGO. The onset decomposition temperatures were delayed and the maximum decomposition values were reduced, according to thermogravimetric analysis which indicated enhanced thermal stabilities. The electrical conductivity was increased by 6 orders of magnitude (3% graphene) and the deleterious gas released during the thermo decomposition was reduced with the addition of all the graphite samples. This study represented a new approach to functionalize GO with flame retardant elements and active curable double bond to achieve better dispersion of GO into polymer matrix to obtain nanocomposites and paved a way for achieving graphene-based materials with high-performance of graphene in enhancement of flame retardancy of polymers for practical applications.

  14. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin walled, 2.54-cm (1-in.) diameter tubular specimens of T300/934 graphite/epoxy were fabricated and fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0/90)S and (+ or - 45)S; all tubes contained a 0.48-cm (3/16-in.) diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on the Hill plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  15. Biaxial fatigue loading of notched composites

    NASA Technical Reports Server (NTRS)

    Francis, P. H.; Walrath, D. E.; Sims, D. F.; Weed, D. N.

    1977-01-01

    Thin-walled, 2.54-cm diameter tubular specimens of graphite/epoxy were fatigue cycled in combinations of axial, torsional, and internal pressure loading. Two different four-ply layup configurations were tested: (0-90)s and (+ or- 45)s; each tube contained a 0.48-cm diameter circular hole penetrating one wall midway along the tube length. S-N curves were developed to characterize fatigue behavior under pure axial, torsional, or internal pressure loading, as well as combined loading fatigue. A theory was developed based on a plane stress model which enabled the S-N curve for combined stress states to be predicted from the S-N data for the uniaxial loading modes. Correlation of the theory with the experimental data proved to be remarkably good.

  16. Fracture mechanics and statistical modeling of ternary blends of polylactide/ethylene-acrylate copolymer /wood-flour composites

    NASA Astrophysics Data System (ADS)

    Afrifah, Kojo Agyapong

    This study examined the mechanisms of toughening the brittle bio-based poly(lactic acid) (PLA) with a biodegradable rubbery impact modifier to develop biodegradable and cost effective PLA/wood-flour composites with improved impact strength, toughness, high ductility, and flexibility. Semicrystalline and amorphous PLA grades were impact modified by melt blending with an ethylene-acrylate copolymer (EAC) impact modifier. EAC content was varied to study the effectiveness and efficiency of the impact modifier in toughening the semicrystalline and amorphous grades of the PLA. Impact strength was used to assess the effectiveness and efficiency of the EAC in toughening the blends, whereas the toughening mechanisms were determined with the phase morphologies and the miscibilities of the blends. Subsequent tensile property analyses were performed on the most efficiently toughened PLA grade. Composites were made from PLA, wood flour of various particle sizes, and EAC. Using two-level factorial design the interaction between wood flour content, wood flour particle size, and EAC content and its effect on the mechanical properties of the PLA/wood-flour composites was statistically studied. Numerical optimization was also performed to statistically model and optimize material compositions to attain mechanical properties for the PLA/wood-flour composites equivalent to at least those of unfilled PLA. The J-integral method of fracture mechanics was applied to assess the crack initiation (Jin) and complete fracture (J f) energies of the composites to account for imperfections in the composites and generate data useful for engineering designs. Morphologies of the fractured surfaces of the composites were analyzed to elucidate the failure and toughening mechanisms of the composites. The EAC impact modifier effectively improved the impact strength of the PLA/EAC blends, regardless of the PLA type. However, the EAC was more efficient in the semicrystalline grades of PLA compared to the

  17. Temporary space maintainers retained with composite resin. Part II: Fracture load in vitro.

    PubMed

    Grajower, R; Stern, N; Zamir, S T; Kohavi, D

    1981-01-01

    The average fracture load during occlusal loading of pontics which were bonded to natural abutment teeth in vitro was found to be 56.1, 57.5 and 74.2 kg for natural, acrylic resin, and Restodent pontics, respectively. Coating the roots of the abutment teeth with a thin layer of silicone rubber before embedding them in stone slightly reduced the strength of the fixed partial dentures. Thermocycling the specimens with coated roots caused a considerable decrease in strength to fracture loads of 33.0, 17.9, and 37.3 kg for natural, acrylic resin, and Restodent pontics, respectively. Fracture of the enamel of natural tooth pontics was observed in a few specimens. The superior strength of the fixed partial dentures with natural tooth and Restodent pontics would indicate that these pontics are superior for clinical trials rather than acrylic resin pontics.

  18. Distributed dynamic load on composite laminates

    NASA Astrophysics Data System (ADS)

    Langella, A.; Lopresto, V.; Caprino, G.

    2016-05-01

    An experimental activity conducted in order to assess the impact behavior at room and low temperature of carbon fibre in vinylester resin laminates used in the shipbuilding industry, was reported. The conditions which reproduce the impact of a hull at low temperature with a solid body suspended in the water was reproduced. A test equipment was designed and realized to reproduce the real material behaviour in water to obtain a load distribution on the entire surface of the specimen. The results were obtained impacting the laminates placed between the cilyndrical steel impactor and a bag containing water. A falling weight machine, equipped with an instrumented steel impactor and a thermal chamber, was adopted for the experimental tests. The impact behaviour in hostile environments was compared to the behaviour at room temperature and the data obtained under distributed load conditions were compared with the results from concentrated loads: a completely different behaviour was observed between the two different loading conditions in terms of load-displacement curve. The effect of the impact on the laminates has been related with the delaminations, evaluated by ultrasonic scanning, and the indentation.

  19. Detail of first floor of loading dock showing composition tile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of first floor of loading dock showing composition tile over wood floor/basement ceiling - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  20. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  1. Preparation of mesoporous poly (acrylic acid)/SiO2 composite nanofiber membranes having adsorption capacity for indigo carmine dye

    NASA Astrophysics Data System (ADS)

    Xu, Ran; Jia, Min; Li, Fengting; Wang, Hongtao; Zhang, Bingru; Qiao, Junlian

    2012-03-01

    Mesoporous poly (acrylic acid)/SiO2 (PAA/SiO2) composite nanofiber membranes functionalized with mercapto groups were fabricated by a sol-gel electrospinning method, and their adsorption capacity for indigo carmine was investigated. The membranes were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, x-ray powder diffraction (XRD), and nitrogen adsorption-desorption measurement. SEM and TEM observation results showed that the PAA/SiO2 fibers had diameters between 400-800 nm and mesopores with an average pore size of 3.88 nm. The specific surface area of the mesoporous nanofiber membranes was 514.89 m2/g. The characteristic peaks for mercapto group vibration in FTIR and Raman spectra demonstrated that the mercapto groups have been incorporated into the silica skeleton. The adsorption isotherm data of indigo carmine on the membranes fit well with Redlich-Peterson model, and the maximum adsorption capacity calculated was 523.11 mg/g. It was found that the removal rate of indigo carmine by the membranes reached a maximum of 98% in 90 min and the adsorption kinetics followed a pseudo-second-order model. The high adsorption capacity of PAA/SiO2 nanofiber membrane makes it a promising adsorbent for indigo carmine removal from the wastewater.

  2. Culture-Loaded Expressions in Korean EFL Students' Compositions.

    ERIC Educational Resources Information Center

    Choe, Yongjae Paul

    2001-01-01

    Discusses the inevitability of native culture-loaded expressions in Korean English-as-a-Foreign-Language students' compositions. Cultures, both native and target play a major role in forming ideas in any communicative situation. Thus, Korean EFL students' compositions all reveal without exception the traits of Korean culture. (Author/VWL)

  3. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  4. Numerical optimization of composite hip endoprostheses under different loading conditions

    NASA Technical Reports Server (NTRS)

    Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.

    1992-01-01

    The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.

  5. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  6. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  7. Compressive failure of fiber composites under multi-axial loading

    NASA Astrophysics Data System (ADS)

    Basu, Shiladitya; Waas, Anthony M.; Ambur, Damodar R.

    2006-03-01

    This paper examines the compressive strength of a fiber reinforced lamina under multi-axial stress states. An equilibrium analysis is carried out in which a kinked band of rotated fibers, described by two angles, is sandwiched between two regions in which the fibers are nominally straight. Proportional multi-axial stress states are examined. The analysis includes the possibility of bifurcation from the current equilibrium state. The compressive strength of the lamina is contingent upon either attaining a load maximum in the equilibrium response or satisfaction of a bifurcation condition, whichever occurs first. The results show that for uniaxial loading a non-zero kink band angle β produces the minimum limit load. For multi-axial loading, different proportional loading paths show regimes of bifurcation dominated and limit load dominated behavior. The present results are able to capture the beneficial effect of transverse compression in raising the composite compressive strength as observed in experiments.

  8. Performance of Novel Composites and Sandwich Structures Under Blast Loading

    NASA Astrophysics Data System (ADS)

    Shukla, Arun; Tekalur, Srinivasan Arjun; Gardner, Nate; Jackson, Matt; Wang, Erheng

    The current chapter focuses on the experimental observations of the resistance of different composite material systems to air blast loadings. These material systems include traditional two dimensional (2D) woven laminated composites, layered composites and sandwich composite materials. A controlled blast loading of pre-defined pressure magnitude and rise time were obtained using a shock tube apparatus. Rectangular plate elements of the desired material system were subjected to such a controlled blast loading and the effect of the blast loading on these elements were studied using optical and residual strength measurements. A high speed imaging technique was utilized to study the damage modes and mechanisms in real time. It was observed that layering of a conventional composite material with a soft visco-elastic polymer provided better blast resistance and sandwiching the polymer greatly enhanced its survivability under extreme air blast conditions. Aside from layering the conventional composite material with a soft visco-elastic polymer, it was observed that layering or grading the core can successfully mitigate the impact damage and thus improve the overall blast resistance as well. In addition to these, three dimensional (3D) woven skin and core reinforcements were introduced in the conventional sandwich composites and their effects on the blast resistance were studied experimentally. It was observed that these reinforcements also enhance the blast resistance of conventional sandwich composites by changing the mechanism of failure initiation and propagation in these sandwich structures. The energies during the blast loading process were estimated to illustrate the energy absorption and energy redistribution properties of the composite panels. The effect of pre-existing impact damage on the failure mechanisms in sandwich structures was also studied.

  9. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  10. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. Strength of composite laminates under biaxial loads

    NASA Astrophysics Data System (ADS)

    Hinton, M. J.; Soden, P. D.; Kaddour, A. S.

    1996-05-01

    Five well known failure criteria and one simple progressive model have been used in conjunction with laminate theory, which allows for nonlinear lamina shear behaviour, to predict the initial and final failure strengths of filament wound composite tubes. The predictions have been compared with experimental leakage and fracture stresses for ±75°, ±55° and ±45° filament wound GRP tubes subjected to a wide range of biaxial stress systems including biaxial compression. In some cases the fracture strengths were a factor of 10 higher than the initial failure predictions. The simple progressive failure theory predictions gave the best agreement with the experimental results.

  12. Failure of composite plates under static biaxial planar loading

    NASA Technical Reports Server (NTRS)

    Waas, Anthony M.; Khamseh, Amir R.

    1992-01-01

    The project involved detailed investigations into the failure mechanisms in composite plates as a function of hole size (holes centrally located in the plates) under static loading. There were two phases to the project, the first dealing with uniaxial loads along the fiber direction, and the second dealing with coplanar biaxial loading. Results for the uniaxial tests have been reported and published previously, thus this report will place emphasis on the second phase of the project, namely the biaxial tests. The composite plates used in the biaxial loading experiments, as well as the uniaxial, were composed of a single ply unidirectional graphite/epoxy prepreg sandwiched between two layers of transparent thermoplastic. This setup enabled us to examine the failure initiation and propagation modes nondestructively, during the test. Currently, similar tests and analysis of results are in progress for graphite/epoxy cruciform shaped flat laminates. The results obtained from these tests will be available at a later time.

  13. Combination of modified mixing technique and low frequency ultrasound to control the elution profile of vancomycin-loaded acrylic bone cement

    PubMed Central

    Wendling, A.; Mar, D.; Wischmeier, N.; Anderson, D.

    2016-01-01

    Objectives The objective of this study was to determine if combining variations in mixing technique of antibiotic-impregnated polymethylmethacrylate (PMMA) cement with low frequency ultrasound (LFUS) improves antibiotic elution during the initial high phase (Phase I) and subsequent low phase (Phase II) while not diminishing mechanical strength. Methods Three batches of vancomycin-loaded PMMA were prepared with different mixing techniques: a standard technique; a delayed technique; and a control without antibiotic. Daily elution samples were analysed using flow injection analysis (FIA). Beginning in Phase II, samples from each mix group were selected randomly to undergo either five, 15, 45, or 0 minutes of LFUS treatment. Elution amounts between LFUS treatments were analysed. Following Phase II, compression testing was done to quantify strength. A-priori t-tests and univariate ANOVAs were used to compare elution and mechanical test results between the two mix groups and the control group. Results The delayed technique showed a significant increase in elution on day one compared with the standard mix technique (p < 0.001). The transition point from Phase I to Phase II occurred on day ten. LFUS treatments significantly increased elution amounts for all groups above control. Delayed technique resulted in significantly higher elution amounts for the five-minute- (p = 0.004) and 45-minute- (p < 0.001) duration groups compared with standard technique. Additionally, the correlations between LFUS duration and total elution amount for both mix techniques were significant (p = 0.03). Both antibiotic-impregnated groups exhibited a significant decrease in offset yield stress compared with the control group (p < 0.001), however, their lower 95% confidence intervals were all above the 70 MPa limit defined by International Standards Organization (ISO) 5833-2 reference standard for acrylic bone cement. Conclusion The combination of a delayed mix technique with LFUS treatments

  14. Ultrasonic Studies of Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Winfree, William P.; Johnston, Patrick H.

    1997-01-01

    New composite materials possess attractive properties for use in advanced aircraft. A necessary requirement for their introduction into aeronautic use is an accurate understanding of their long term aging processes so that proper design criteria can be established. In order to understand those properties, these composites must be exposed to thermal and load cycles that are characteristic of flight conditions. Additionally, airline companies will require nondestructive evaluation (NDE) methods that can be used in the field to assess the condition of these new materials as they age. As part of an effort to obtain the required information about new composites for aviation use, we are performing ultrasonic measurements both in the NDE laboratory and in the materials testing laboratory at NASA. The materials testing laboratory is equipped with environmental chambers mounted on load frames so that composite samples can be exposed to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This study reports on our initial ultrasonic attenuation results from thermoset and thermoplastic composite samples. Ultrasonic attenuation measurements have been used reliably to assess the effects of material degradation. For example, recently, researchers have shown that by using frequencies of ultrasound on the order of 24 MHz, they could obtain adequate contrast in the evaluation of thermal degradation in these composites. This paper will present data that shows results at a lower frequency range. In addition, we report results on the frequency dependence of attenuation as the slope of attenuation with respect to frequency, beta = delta alpha (f) / delta f. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation

  15. Lead titanate/cyclic carbonate dependence on ionic conductivity of ferro/acrylate blend polymer composites

    NASA Astrophysics Data System (ADS)

    Jayaraman, R.; Vickraman, P.; Subramanian, N. M. V.; Justin, A. Simon

    2016-05-01

    Impedance, XRD, DSC and FTIR studies had been carried out for PVdF-co-HFP/LIBETI based system for three plasticizer (EC/DMC) - filler (PbTiO3) weight ratios. The enhanced conductivity 4.18 × 10-5 Scm-1 was noted for 57.5 wt% -7.5 wt% plasticizer - filler. while blending PEMA to PVdF-co-HFP respectively 7.5: 22.5 wt % (3/7), 15 wt%: 15 wt % (5/5) and 22.5wt %: 7.5 wt % (7/3), the improved conductivity was noted for 3/7 ratio 1.22 × 10-5 S cm-1 and its temperature dependence abide Arrhenius behavior. The intensity of peaks in XRD diffractogram registered dominance of lead titanate, from 2θ = 10° to 80° and absence of VdF crystallites (α+β phase) was noted. In DSC studies, the presence of the exotherm events, filler effect was distinctively seen exhibiting recrystallization of VdF crystallites. In blending PEMA, however, no trace of exotherms was found suggestive of PEMA better inhibiting recrystallization. FTIR study confirmed molecular interactions of various constituents in the vibrational band 500 - 1000 cm-1 both in pristine PVdF-co-HFP and PEMA blended composites with reference to C-F stretching, C-H stretching and C=O carbonyl bands.

  16. Loading rate sensitivity of open hole composites in compression

    NASA Technical Reports Server (NTRS)

    Lubowinski, Steve J.; Guynn, E. G.; Elber, Wolf; Whitcomb, J. D.

    1988-01-01

    The results are reported of an experimental study on the compressive, time-dependent behavior of graphite fiber reinforced polymer composite laminates with open holes. The effect of loading rate on compressive strength was determined for six material systems ranging from brittle epoxies to thermoplastics at both 75 F and 220 F. Specimens were loaded to failure using different loading rates. The slope of the strength versus elapsed time-to-failure curve was used to rank the materials' loading rate sensitivity. All of the materials had greater strength at 75 F than at 220 F. All the materials showed loading rate effects in the form of reduced failure strength for longer elapsed-time-to-failure. Loading rate sensitivity was less at 220 F than the same material at 70 F. However, C12000/ULTEM and IM7/8551-7 were more sensitive to loading rate than the other materials at 220 F. AS4/APC2 laminates with 24, 32, and 48 plies and 1/16 and 1/4 inch diameter holes were tested. The sensitivity to loading rate was less for either increasing number of plies or larger hole size. The failure of the specimens made from brittle resins was accompanied by extensive delaminations while the failure of the roughened systems was predominantly by shear crippling. Fewer delamination failures were observed at the higher temperature.

  17. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Ho, H. W.; Kurth, R. E.

    1991-01-01

    The work performed to develop composite load spectra (CLS) for the Space Shuttle Main Engine (SSME) using probabilistic methods. The three methods were implemented to be the engine system influence model. RASCAL was chosen to be the principal method as most component load models were implemented with the method. Validation of RASCAL was performed. High accuracy comparable to the Monte Carlo method can be obtained if a large enough bin size is used. Generic probabilistic models were developed and implemented for load calculations using the probabilistic methods discussed above. Each engine mission, either a real fighter or a test, has three mission phases: the engine start transient phase, the steady state phase, and the engine cut off transient phase. Power level and engine operating inlet conditions change during a mission. The load calculation module provides the steady-state and quasi-steady state calculation procedures with duty-cycle-data option. The quasi-steady state procedure is for engine transient phase calculations. In addition, a few generic probabilistic load models were also developed for specific conditions. These include the fixed transient spike model, the poison arrival transient spike model, and the rare event model. These generic probabilistic load models provide sufficient latitude for simulating loads with specific conditions. For SSME components, turbine blades, transfer ducts, LOX post, and the high pressure oxidizer turbopump (HPOTP) discharge duct were selected for application of the CLS program. They include static pressure loads and dynamic pressure loads for all four components, centrifugal force for the turbine blade, temperatures of thermal loads for all four components, and structural vibration loads for the ducts and LOX posts.

  18. Effects of added surfactant on swelling and molecular transport in drug-loaded tablets based on hydrophobically modified poly(acrylic acid).

    PubMed

    Knöös, Patrik; Wahlgren, Marie; Topgaard, Daniel; Ulvenlund, Stefan; Piculell, Lennart

    2014-08-14

    A combination of NMR chemical shift imaging and self-diffusion experiments is shown to give a detailed molecular picture of the events that occur when tablets of hydrophobically modified poly(acrylic acid) loaded with a drug (griseofulvin) swell in water in the presence or absence of surfactant (sodium octylbenzenesulfonate). The hydrophobic substituents on the polymer bind and trap the surfactant molecules in mixed micelles, leading to a slow effective surfactant transport that occurs via a small fraction of individually dissolved surfactant molecules in the water domain. Because of the efficient binding of surfactant, the penetrating water is found to diffuse past the penetrating surfactant into the polymer matrix, pushing the surfactant front outward as the matrix swells. The added surfactant has little effect on the transport of drug because both undissolved solid drug and surfactant-solubilized drug function as reservoirs that essentially follow the polymer as it swells. However, the added surfactant nevertheless has a strong indirect effect on the release of griseofulvin, through the effect of the surfactant on the solubility and erosion of the polymer matrix. The surfactant effectively solubilizes the hydrophobically modified polymer, making it fully miscible with water, leading to a more pronounced swelling and a slower erosion of the polymer matrix.

  19. Alignment and Load Transfer in Carbon Nanotube and Dicyclopentadiene Composites

    NASA Astrophysics Data System (ADS)

    Severino, Joseph Vincent

    Individual carbon nanotubes (CNTs) are the strongest materials available but their macroscopic assemblies are weak. This work establishes a new thermosetting dicyclopentadiene (DCPD) and CNT composite that increases the strength of CNT assemblies. These high volume fraction and void free structures constitute advanced materials that could one day replace traditional composite systems. To further the understanding of physical interactions between polymer and CNTs, a novel "capstan" load transfer mechanism is also introduced. Self-supporting assemblies of interconnected carbon nanotubes were stretched, twisted and compressed to fashion composites by the infusion and polymerization of low viscosity DCPD based monomeric resins. The properties of the CNTs, polymer and composite were characterized with thermal gravimetric analysis (TGA), dynamic mechanical analysis (DMA) and Raman spectroscopy. The microstructure was analyzed by wide angle X-ray scattering (WAXS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Sheets were drawn at 15 m/min from a growth furnace to impart alignment then stretched to further modify alignment. The mechanical properties were determined in five orientations with respect to the growth direction. The strength was nearly three times higher along this growth direction than it was perpendicular, and modulus was nearly six times higher. Transverse stretching achieved 1.5 times the elongation but alignment was inferior due to CNT kinking that prevented alignment and consolidation. Composites yarns and sheets were investigated for the mechanical properties, microstructure and load transfer. The DCPD resin was found to wet the CNTs and lubricated deformation. This reduced loads during processing, and curing solidified the aligned and consolidated structure. The stretched and twisted composite yarns increased the failure stress 51%. In aligned composite sheet, the failure stress increased 200%. The increased stresses

  20. Hybrid S2/Carbon Epoxy Composite Armours Under Blast Loads

    NASA Astrophysics Data System (ADS)

    Dolce, F.; Meo, Michele; Wright, A.; French, M.; Bernabei, M.

    2012-06-01

    Civil and military structures, such as helicopters, aircrafts, naval ships, tanks or buildings are susceptible to blast loads as terroristic attacks increases, therefore there is the need to design blast resistant structures. During an explosion the peak pressure produced by shock wave is much greater than the static collapse pressure. Metallic structures usually undergo large plastic deformations absorbing blast energy before reaching equilibrium. Due to their high specific properties, fibre-reinforced polymers are being considered for energy absorption applications in blast resistant armours. A deep insight into the relationship between explosion loads, composite architecture and deformation/fracture behaviour will offer the possibility to design structures with significantly enhanced energy absorption and blast resistance performance. This study presents the results of a numerical investigation aimed at understanding the performance of a hybrid composite (glass/carbon fibre) plate subjected to blast loads using commercial LS-DYNA software. In particular, the paper deals with numerical 3D simulations of damages caused by air blast waves generated by C4 charges on two fully clamped rectangular plates made of steel and hybrid (S2/Carbon) composite, respectively. A Multi Materials Arbitrary Lagrangian Eulerian (MMALE) formulation was used to simulate the shock phenomenon. For the steel plates, the Johnson-Cook material model was employed. For the composite plates both in-plane and out-of-plane failure criteria were employed. In particular, a contact tiebreak formulation with a mixed mode failure criteria was employed to simulate delamination failure. As for the steel plates the results showed that excellent correlation with the experimental data for the two blast load conditions in terms of dynamic and residual deflection for two different C4 charges. For the composite plates the numerical results showed that, as expected, a wider delamination damage was observed

  1. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1986-01-01

    A multiyear program is performed with the objective to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen (LOX) posts. Progress of the first year's effort includes completion of a sufficient portion of each task -- probabilistic models, code development, validation, and an initial operational code. This code has from its inception an expert system philosophy that could be added to throughout the program and in the future. The initial operational code is only applicable to turbine blade type loadings. The probabilistic model included in the operational code has fitting routines for loads that utilize a modified Discrete Probabilistic Distribution termed RASCAL, a barrier crossing method and a Monte Carlo method. An initial load model was developed by Battelle that is currently used for the slowly varying duty cycle type loading. The intent is to use the model and related codes essentially in the current form for all loads that are based on measured or calculated data that have followed a slowly varying profile.

  2. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Poland, Laura E; Meyer III, Harry M

    2013-01-01

    The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

  3. General stability analysis of composite sandwich plates under thermal load

    NASA Astrophysics Data System (ADS)

    Abdallah, Shaher A.

    In structures subjected to high temperature change such as high-speed aircraft the panels are stressed more significantly under thermal loading than mechanical loading. This can produce instability within the structure; therefore, the thermal loading may become the primary factor in the design of the structure. For example, buckling and facesheet wrinkling are two major failure modes of the composite sandwich plates subjected to various loadings. The goal of this dissertation is to study the stability analysis of composite sandwich plates due to buckling and wrinkling subjected to thermal loading. The primary objective is to find out the critical failure mode and the associated critical temperature change causing it. For thermal buckling and wrinkling analysis, the critical temperature change Delta Tcr, is of more interest than the critical thermal load. In this study, two different approaches of the stability problem of the composite sandwich plate subjected to thermally induced load are developed. In the first approach, the wrinkling analysis and buckling analysis are performed separately to evaluate their associated critical wrinkling and buckling temperature changes. For the face-wrinkling problem, two different models, the linear decaying Hoff model and exponential decaying Chen model are employed. The global buckling analysis is based on the energy method. The second approach is based on the unified theory of Benson and Mayers. In such an approach, the critical temperature change for both the global buckling and face wrinkling can be evaluated simultaneously. A potential energy based variation principle has been applied to formulate the problem. The Lagrange multipliers are used to satisfy the face-core continuity conditions. The buckling and wrinkling can be analyzed and calculated simultaneously. Therefore, the critical wrinkling temperature and the critical buckling temperature are found in a single analysis. The critical buckling and wrinkling stresses

  4. Micromechanical design of hierarchical composites using global load sharing theory

    NASA Astrophysics Data System (ADS)

    Rajan, V. P.; Curtin, W. A.

    2016-05-01

    Hierarchical composites, embodied by natural materials ranging from bone to bamboo, may offer combinations of material properties inaccessible to conventional composites. Using global load sharing (GLS) theory, a well-established micromechanics model for composites, we develop accurate numerical and analytical predictions for the strength and toughness of hierarchical composites with arbitrary fiber geometries, fiber strengths, interface properties, and number of hierarchical levels, N. The model demonstrates that two key material properties at each hierarchical level-a characteristic strength and a characteristic fiber length-control the scalings of composite properties. One crucial finding is that short- and long-fiber composites behave radically differently. Long-fiber composites are significantly stronger than short-fiber composites, by a factor of 2N or more; they are also significantly tougher because their fiber breaks are bridged by smaller-scale fibers that dissipate additional energy. Indeed, an "infinite" fiber length appears to be optimal in hierarchical composites. However, at the highest level of the composite, long fibers localize on planes of pre-existing damage, and thus short fibers must be employed instead to achieve notch sensitivity and damage tolerance. We conclude by providing simple guidelines for microstructural design of hierarchical composites, including the selection of N, the fiber lengths, the ratio of length scales at successive hierarchical levels, the fiber volume fractions, and the desired properties of the smallest-scale reinforcement. Our model enables superior hierarchical composites to be designed in a rational way, without resorting either to numerical simulation or trial-and-error-based experimentation.

  5. Composite laminate tailoring with probabilistic constraints and loads

    NASA Technical Reports Server (NTRS)

    Thanedar, P. B.; Chamis, C. C.

    1990-01-01

    A reliability-based structural synthesis procedure was developed to tailor laminates to meet reliability-based (ply) strength requirements and achieve desirable laminate responses. The main thrust is to demonstrate how to integrate the optimization technique in the composite laminate tailoring process to meet reliability design requirements. The question of reliability arises in fiber composite analysis and design because of the inherent scatter that is observed in the constituent (fiber and matrix) material properties during experimentation. Symmetric and asymmetric composite laminates subject to mechanical loadings are considered as application examples. These application examples illustrate the effectiveness and ease with which reliability considerations can be integrated in the design optimization model for composite laminate tailoring.

  6. Analysis of delamination growth in compressively loaded composite laminates

    NASA Astrophysics Data System (ADS)

    Tratt, Matthew D.

    The present analytical and empirical study of composite structure delamination has attempted to predict the threshold stress for the initiation of delamination growth in compressively loaded composite laminates. The strain-energy release-rate distributions around circular delaminations are computed via MSC/NASTRAN analysis in conjunction with a virtual crack-opening technique. Static compression tests were conducted on specimens of graphite fiber-reinforced epoxy having circular delaminations of various sizes. Computed delamination growth threshold-stress prediction results were at substantial variance with the test data, but confirmed trends and gave qualitative insight into quasi-static delamination growth.

  7. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  8. Response of composite plates subjected to acoustic loading

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.

    1989-01-01

    The objectives of the project were to investigate numerical methodology for the determination of narrowband response in the geometrically nonlinear regime, to determine response characteristics for geometrically nonlinear plates subjected to random loading and to compare the predictions with experiments to be performed at NASA-Langley. The first two objectives were met. The response of composite plates subjected to both narrowband and broadband excitation were studied and the results are presented and discussed.

  9. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  10. Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.

    2016-01-01

    Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.

  11. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  12. Optimization of Sandwich Composites Fuselages Under Flight Loads

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Koussios, Sotiris; Zu, Lei; Beukers, Adriaan

    2012-02-01

    The sandwich composites fuselages appear to be a promising choice for the future aircrafts because of their structural efficiency and functional integration advantages. However, the design of sandwich composites is more complex than other structures because of many involved variables. In this paper, the fuselage is designed as a sandwich composites cylinder, and its structural optimization using the finite element method (FEM) is outlined to obtain the minimum weight. The constraints include structural stability and the composites failure criteria. In order to get a verification baseline for the FEM analysis, the stability of sandwich structures is studied and the optimal design is performed based on the analytical formulae. Then, the predicted buckling loads and the optimization results obtained from a FEM model are compared with that from the analytical formulas, and a good agreement is achieved. A detailed parametric optimal design for the sandwich composites cylinder is conducted. The optimization method used here includes two steps: the minimization of the layer thickness followed by tailoring of the fiber orientation. The factors comprise layer number, fiber orientation, core thickness, frame dimension and spacing. Results show that the two-step optimization is an effective method for the sandwich composites and the foam sandwich cylinder with core thickness of 5 mm and frame pitch of 0.5 m exhibits the minimum weight.

  13. Lifetimes of fiber composites under sustained tensile loading

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Sherry, R. J.; Chiao, C. C.

    1977-01-01

    Results are presented for a study intended to summarize lifetime data on several fiber/epoxy composite materials subjected to sustained uniaxial tensile loading, to report preliminary results of an accelerated test method for predicting the life of simple composites, and to describe related work in progress on pressure vessels and other filament-wound structures. The lifetime performance of the tested composites was compared by plotting the percent of ultimate strength (applied fiber stress normalized with respect to fiber failure stress in a composite) versus lifetime. In terms of performance in long-term tensile applications, the tested composites are ranked in the following order: graphite/epoxy, Be wire/epoxy, Aramid/epoxy, and S-glass/epoxy. The accelerated test using temperature and stress to simulate the passage of time proves to be encouraging, at least in the case of the Aramid/epoxy composite. The potential of a statistical analysis based on Weibull distribution analyses or a power law relationship is demonstrated.

  14. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  15. Assessment of Composite Delamination Self-Healing Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    2009-01-01

    Recently, the promise of self-healing materials for enhanced autonomous durability has been introduced using a micro-encapsulation technique where a polymer based healing agent is encapsulated in thin walled spheres and embedded into a base polymer along with a catalyst phase. For this study, composite skin-stiffener flange debonding specimens were manufactured from composite prepreg containing interleaf layers with a polymer based healing agent encapsulated in thin-walled spheres. Constant amplitude fatigue tests in three-point bending showed the effect of self-healing on the fatigue response of the skin-stiffener flange coupons. After the cycling that created debonding, fatigue tests were held at the mean load for 24 hours. For roughly half the specimens tested, when the cyclic loading was resumed a decrease in compliance (increase in stiffness) was observed, indicating that some healing had occurred. However, with continued cycling, the specimen compliance eventually increased to the original level before the hold, indicating that the damage had returned to its original state. As was noted in a prevoius study conducted with specimens tested under monotonically increasing loads to failure, healing achieved via the micro-encapsulation technique may be limited to the volume of healing agent available relative to the crack volume.

  16. Characterization of Damage in Triaxial Braid Composites Under Tensile Loading

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Roberts, Gary D.; Goldberg, Robert K.

    2009-01-01

    Carbon fiber composites utilizing flattened, large tow yarns in woven or braided forms are being used in many aerospace applications. Their complex fiber architecture and large unit cell size present challenges in both understanding deformation processes and measuring reliable material properties. This report examines composites made using flattened 12k and 24k standard modulus carbon fiber yarns in a 0 /+60 /-60 triaxial braid architecture. Standard straight-sided tensile coupons are tested with the 0 axial braid fibers either parallel with or perpendicular to the applied tensile load (axial or transverse tensile test, respectively). Nonuniform surface strain resulting from the triaxial braid architecture is examined using photogrammetry. Local regions of high strain concentration are examined to identify where failure initiates and to determine the local strain at the time of initiation. Splitting within fiber bundles is the first failure mode observed at low to intermediate strains. For axial tensile tests splitting is primarily in the 60 bias fibers, which were oriented 60 to the applied load. At higher strains, out-of-plane deformation associated with localized delamination between fiber bundles or damage within fiber bundles is observed. For transverse tensile tests, the splitting is primarily in the 0 axial fibers, which were oriented transverse to the applied load. The initiation and accumulation of local damage causes the global transverse stress-strain curves to become nonlinear and causes failure to occur at a reduced ultimate strain. Extensive delamination at the specimen edges is also observed.

  17. Testing and simulation of composite laminates under impact loading

    NASA Astrophysics Data System (ADS)

    Dang, Xinglai

    Owing to their high stiffness-to-weight and high strength-to-weight ratios, fiber-reinforced polymer-matrix composite laminates are excellent materials for high-performance structures. However, their properties in the thickness direction are very poor as they are weakly bonded by polymeric matrices through laminate interfaces. Accordingly, when a composite laminate is subjected to impact loading, high interlaminar stresses along with the low interlaminar strengths could easily result in interlaminar damage such as delamination. This thesis investigated the response of composite laminates under low-velocity impact and presented numerical techniques for impact simulation. To begin with, instrumented drop-weight impacts ranging from subperforation to perforation levels were introduced to composite laminates having various dimensions and thicknesses. Damaged composite laminates were then subjected to compression-after-impact tests for evaluations of residual properties. Experimental results revealed that perforation was an important damage milestone since impact parameters such as peak force, contact duration, maximum deflection and energy absorption, and residual properties such as compressive stiffness, strength and energy absorption all reached critical levels as perforation took place. It was also found that thickness played a more important role than in-plane dimensions in perforation process. In order to understand more about the relationship between laminate thickness and perforation resistance and to present an economical method to improve perforation resistance, thick laminated composite plates and their assembled counterparts were investigated and compared. An energy profile correlating the impact energy and absorbed energy at all energy levels for each type of composite plates investigated was established and found to be able to address the relationship between energy and damage. Experimental results concluded that increasing thickness was more efficient

  18. Failure mechanisms in composite panels subjected to underwater impulsive loads

    NASA Astrophysics Data System (ADS)

    Latourte, Félix; Grégoire, David; Zenkert, Dan; Wei, Xiaoding; Espinosa, Horacio D.

    2011-08-01

    This work examines the performance of composite panels when subjected to underwater impulsive loads. The scaled fluid-structure experimental methodology developed by Espinosa and co-workers was employed. Failure modes, damage mechanisms and their distributions were identified and quantified for composite monolithic and sandwich panels subjected to typical blast loadings. The temporal evolutions of panel deflection and center deflection histories were obtained from shadow Moiré fringes acquired in real time by means of high speed photography. A linear relationship of zero intercept between peak center deflections versus applied impulse per areal mass was obtained for composite monolithic panels. For composite sandwich panels, the relationship between maximum center deflection versus applied impulse per areal mass was found to be approximately bilinear but with a higher slope. Performance improvement of sandwich versus monolithic composite panels was, therefore, established specially at sufficiently high impulses per areal mass ( I0/ M¯>170 m s -1). Severe failure was observed in solid panels subjected to impulses per areal mass larger than 300 m s -1. Extensive fiber fracture occurred in the center of the panels, where cracks formed a cross pattern through the plate thickness and delamination was very extensive on the sample edges due to bending effects. Similar levels of damage were observed in sandwich panels but at much higher impulses per areal mass. The experimental work reported in this paper encompasses not only characterization of the dynamic performance of monolithic and sandwich panels but also post-mortem characterization by means of both non-destructive and microscopy techniques. The spatial distribution of delamination and matrix cracking were quantified, as a function of applied impulse, in both monolithic and sandwich panels. The extent of core crushing was also quantified in the case of sandwich panels. The quantified variables represent ideal

  19. Matrix cracking in laminated composites under monotonic and cyclic loadings

    NASA Technical Reports Server (NTRS)

    Allen, David H.; Lee, Jong-Won

    1991-01-01

    An analytical model based on the internal state variable (ISV) concept and the strain energy method is proposed for characterizing the monotonic and cyclic response of laminated composites containing matrix cracks. A modified constitution is formulated for angle-ply laminates under general in-plane mechanical loading and constant temperature change. A monotonic matrix cracking criterion is developed for predicting the crack density in cross-ply laminates as a function of the applied laminate axial stress. An initial formulation for a cyclic matrix cracking criterion for cross-ply laminates is also discussed. For the monotonic loading case, a number of experimental data and well-known models are compared with the present study for validating the practical applicability of the ISV approach.

  20. One-Pot Synthesis of Hydrophilic Superparamagnetic Fe3O4/Poly(methyl methacrylate-acrylic acid) Composite Nanoparticles with High Magnetization.

    PubMed

    Ma, Shaohua; Lan, Fang; Yang, Qi; Xie, Liqin; Wu, Yao; Gu, Zhongwei

    2015-01-01

    Uniform superparamagnetic Fe3O4/poly(methyl methacrylate-acrylic acid) (P(MMA-AA)) composite nanoparticles with high saturation magnetization and good hydrophilicity were successfully and directly synthesized via a facile one-pot miniemulsion polymerization approach. The mixture of the ferrofluids, MMA and AA monomers, surfactants and initiator was co-sonicated and emulsified to prepare stable miniemulsion for polymerization. The as-prepared products were characterized by SEM, TEM, FT-IR, XRD, TGA and VSM. The results of SEM indicated that the morphology of the Fe3O4/P(MMA-AA) composite nanoparticles all assumed near spherical geometry with diameters about 60 nm, 60 nm, and 100 nm respectively corresponding to the weight ratios of Fe3O4 to MMA and AA at 1:8, 1:4, and 1:2. The TEM images implied that the Fe3O4/P(MMA-AA) composite nanoparticles showed a perfect core-shell structure with a polymeric shell of about 2 nm thickness and a core encapsulating uniform and close packed Fe3O4 nanoparticles. TGA and VSM showed that the Fe3O4/P(MMA-AA) composite nanoparticles with a maximum saturation magnetization up to 45 emu g(-1) corresponding to the magnetite content of 78% exhibited superparamagntism. The hydrophilic modification and the high saturation magnetization impart a promising potential for biomedical applications to the as-synthesized composite nanoparticles. PMID:26328359

  1. Poling of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.; Zhao, Ping

    2014-03-01

    The purpose of this study is to create and evaluate a smart composite structure that can be used for integrated load sensing and structural health monitoring. In this structure, PVDF films are used as the matrix material instead of epoxy resin or other thermoplastics. The reinforcements are two layers of carbon fiber with one layer of Kevlar separating them. Due to the electrical conductivity properties of carbon fiber and the dielectric effect of Kevlar, the structure acts as a capacitor. Furthermore, the piezoelectric properties of the PVDF matrix can be used to monitor the response of the structure under applied loads. In order to exploit the piezoelectric properties of PVDF, the PVDF material must be polarized to align the dipole moments of its crystalline structure. The optimal condition for poling the structure was found by performing a 23 factorial design of experiment (DoE). The factors that were studied in DoE were temperature, voltage, and duration of poling. Finally, the response of the poled structure was monitored by exposing the samples to an applied load.

  2. Delaminations in composite plates under transverse static or impact loads

    SciTech Connect

    Finn, S.R.

    1991-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to transverse static or dynamic (impact) loads. The plate may be simply supported, clamped, or free along its edges. A failure model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were then implemented by a computer code (IMPACT-ST) which can be used to estimate the load at which damage initiates as well as the locations, shapes, and sizes of the delaminations. Test were also performed measuring the geometries of delaminations in Fiberite T300/976 graphite-epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static and impact loads. The data were compared to results of the model and good agreements were found between the measured and calculated delamination lengths and widths.

  3. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge

  4. Active shape control of composite structures under thermal loading

    NASA Astrophysics Data System (ADS)

    Binette, P.; Dano, M.-L.; Gendron, G.

    2009-02-01

    Maintaining the shape of high-precision structures such as space antennas and optical mirrors is still a challenging issue for designers. These structures are subjected to varying temperature conditions which often introduce thermal distortions. The development of smart materials offers great potential to correct the shape and to minimize the surface error. In this study, shape control of a composite structure under thermal loading using piezocomposites is investigated. The composite structure is made of a foam core and two carbon-epoxy face sheets. Macro-fiber composite (MFC™) patches are bonded on one side of the structure. The structure is subjected to a through-the-thickness temperature gradient which induces thermal distortion, essentially in the form of bending. The objective is to apply electric potential to the MFC™ actuators such that the deflection can be minimized. Finite-element analyses are conducted using the commercial software ABAQUS. Experiments are performed to study thermally induced distortion, piezoelectric actuation, and compensation of thermal distortion using MFC™ actuators. Numerical and experimental results are compared. A control loop based on strain measurements is used to actively control the structure. The results show that MFC™ actuators can compensate thermal distortion at all times, and that this is an efficient methodology.

  5. Multi-objective/loading optimization for rotating composite flexbeams

    NASA Technical Reports Server (NTRS)

    Hamilton, Brian K.; Peters, James R.

    1989-01-01

    With the evolution of advanced composites, the feasibility of designing bearingless rotor systems for high speed, demanding maneuver envelopes, and high aircraft gross weights has become a reality. These systems eliminate the need for hinges and heavily loaded bearings by incorporating a composite flexbeam structure which accommodates flapping, lead-lag, and feathering motions by bending and twisting while reacting full blade centrifugal force. The flight characteristics of a bearingless rotor system are largely dependent on hub design, and the principal element in this type of system is the composite flexbeam. As in any hub design, trade off studies must be performed in order to optimize performance, dynamics (stability), handling qualities, and stresses. However, since the flexbeam structure is the primary component which will determine the balance of these characteristics, its design and fabrication are not straightforward. It was concluded that: pitchcase and snubber damper representations are required in the flexbeam model for proper sizing resulting from dynamic requirements; optimization is necessary for flexbeam design, since it reduces the design iteration time and results in an improved design; and inclusion of multiple flight conditions and their corresponding fatigue allowables is necessary for the optimization procedure.

  6. Innovative Manufacturing of Carbon Nanotube-Loaded Fibrillar Polymer Composites

    NASA Astrophysics Data System (ADS)

    Lin, R. J. T.; Bhattacharyya, D.; Fakirov, S.

    The concept of microfibrillar composite (MFC) has been used to create a new type of polymer composites, in which the reinforcing microfibrils are loaded with carbon nanotubes (CNT). Polyamide 66 (PA66) has been melt blended with polypropylene in a twin screw extruder with and without CNT, and thereafter cold drawn to create a fibrillar state as well as to align the CNT in the PA66 microfibrils. The drawn bristles were compression moulded at 180°C to prepare MFC plates. The scanning electron microscope (SEM) observations indicate near perfect distribution of CNT in the reinforcing PA66 microfibrils. Although the fibrillated PA66 is able to improve the tensile stiffness and strength as expected from the MFC structure, the incorporation of CNT does not exhibit any further enhancing effect. It rather adversely affects the mechanical properties due to poor interface adhesion between the matrix and the reinforcing microfibrils with the presence of CNT, as demonstrated by SEM. However, the resulting highly aligned CNT within the MFC are expected to affect the physical and functional properties of these composites.

  7. Buckling and Damage Resistance of Transversely-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Wardle, Brian L.

    1998-01-01

    Experimental and numerical work was conducted to better understand composite shell response to transverse loadings which simulate damage-causing impact events. The quasi-static, centered, transverse loading response of laminated graphite/epoxy shells in a [+/-45(sub n)/O(sub n)](sub s) layup having geometric characteristics of a commercial fuselage are studied. The singly-curved composite shell structures are hinged along the straight circumferential edges and are either free or simply supported along the curved axial edges. Key components of the shell response are response instabilities due to limit-point and/or bifurcation buckling. Experimentally, deflection-controlled shell response is characterized via load-deflection data, deformation-shape evolutions, and the resulting damage state. Finite element models are used to study the kinematically nonlinear shell response, including bifurcation, limit-points, and postbuckling. A novel technique is developed for evaluating bifurcation from nonlinear prebuckling states utilizing asymmetric spatial discretization to introduce numerical perturbations. Advantages of the asymmetric meshing technique (AMT) over traditional techniques include efficiency, robustness, ease of application, and solution of the actual (not modified) problems. The AMT is validated by comparison to traditional numerical analysis of a benchmark problem and verified by comparison to experimental data. Applying the technique, bifurcation in a benchmark shell-buckling problem is correctly identified. Excellent agreement between the numerical and experimental results are obtained for a number of composite shells although predictive capability decreases for stiffer (thicker) specimens which is attributed to compliance of the test fixture. Restraining the axial edge (simple support) has the effect of creating a more complex response which involves unstable bifurcation, limit-point buckling, and dynamic collapse. Such shells were noted to bifurcate into

  8. The strength of laminated composite materials under repeated impact loading

    NASA Technical Reports Server (NTRS)

    Rotem, Assa

    1988-01-01

    When low velocity and energy impact is exerted on a laminated composite material, in a perpendicular direction to the plane of the laminate, invisible damage may develop. It is shown analytically and experimentally that the invisible damage occurs during the first stage of contact between the impactor and the laminate and is a result of the contact stresses. However, the residual flexural strength changes only slightly, because it depends mainly on the outer layers, and these remain undamaged. Repeated impact intensifies the damage inside the laminate and causes larger bending under equivalent impact load. Finally, when the damage is most severe, even though it is still invisible, the laminate fails because of bending on the tension side. If the repeated impact is halted before final fracture occurs the residual strength and modulus would decrease by a certain amount.

  9. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  10. Requalification analysis of a circular composite slab for seismic load

    SciTech Connect

    Srinivasan, M.G.; Kot, C.A.

    1992-11-01

    The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts: a 9 ft square opening and a 3 ft dia hole. The issues that complicated the analysis of this non-typical structure, i.e., composite action and nonlinear stiffness of reinforced concrete (R. C.) sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If codes incorporate guidelines on practical methods for dynamic analysis of R. C. structures, some of the unneeded conservatism could be eliminated in future designs.

  11. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy

  12. Composite Vessels for Containment of Extreme Blast Loadings

    SciTech Connect

    Pastrnak, J; Henning, C; Grundler, W; Switzer, V; Hollaway, R; Morrison, J; Hagler, L; Kokko, E; Deteresa, S; Hathcoat, B; Dalder, E

    2004-07-15

    A worldwide trend for explosives testing has been to replace open-air detonations with containment vessels, especially when any hazardous materials are involved. As part of the National Nuclear Security Administration's (NNSA) effort to ensure the safety and reliability of the nation's nuclear stockpile, researchers at Lawrence Livermore National Laboratory have been developing a high performance filament wound composite firing vessel that is nearly radiographically transparent. It was intended to contain a limited number of detonations of metal cased explosive assemblies in radiographic facilities such as the Advanced Hydrodynamic Facility (AHF) being studied by Los Alamos National Laboratory. A 2-meter diameter pressure vessel was designed to contain up to 35 kg (80 lb) of TNT equivalent explosive without leakage. Over the past 5 years a total of three half-scale (1 meter diameter) vessels have been constructed, and two of them were tested to 150% load with 8.2 kg (18-pound) spheres of C4 explosive. The low density and high specific strength advantages used in this composite vessel design may have other additional applications such as transporting sensitive explosives that could otherwise be moved only in very small quantities. Also, it could be used for highly portable, explosive containment systems for law enforcement.

  13. Effect of in vivo loading on bone composition varies with animal age

    PubMed Central

    Aido, Marta; Kerschnitzki, Michael; Hoerth, Rebecca; Checa, Sara; Spevak, Lyudmila; Boskey, Adele; Fratzl, Peter; Duda, Georg N.; Wagermaier, Wolfgang; Willie, Bettina M.

    2015-01-01

    Loading can increase bone mass and size and this response is reduced with aging. It is unclear, however how loading affects bone mineral and matrix properties. Fourier Transform Infrared Imaging and high resolution synchrotron scanning small angle X-ray scattering were used to study how bone’s microscale and nanoscale compositional properties were altered in the tibial midshaft of young, adult, and elderly female C57Bl/6J mice after two weeks of controlled in vivo compressive loading in comparison to physiological loading. The effect of controlled loading on bone composition varied with animal age, since it predominantly influenced the bone composition of elderly mice. Interestingly, controlled loading led to enhanced collagen maturity in elderly mice. In addition, although the rate of bone formation was increased by controlled loading based on histomorphometry, the newly formed tissue had similar material quality to new bone tissue formed during physiological loading. Similar to previous studies, our data showed that bone composition was animal and tissue age dependent during physiological loading. The findings that the new tissue formed in response to controlled loading and physiological loading had similar bone composition and that controlled loading enhanced bone composition in elderly mice further supports the use of physical activity as a noninvasive treatment to enhance bone quality as well as maintain bone mass in individuals suffering from age-related bone loss. PMID:25639943

  14. Response of marine composites subjected to near field blast loading

    NASA Astrophysics Data System (ADS)

    LiVolsi, Frank

    Experimental studies were performed to understand the explosive response of composite panels when exposed to near-field explosive loading in different environments. The panel construction under consideration was an E-glass fiber-reinforced composite laminate infused with vinyl ester resin (Derakane 8084). The panel was layered bi-axially with plain-woven fiber orientations at 0° and 90°. Panel dimensions were approximately 203 mm x 203 mm x 1 mm (8 in x 8 in x 0.04 in). Experiments were carried out with the panel fully clamped in a holding fixture, which was in turn fastened inside a water tank. The fixture was fastened in such a way as to allow for explosive loading experiments in the following environments: water submersion with water backing, water submersion with air backing, and air immersion with air backing. Experiments were performed in room temperature conditions, and additional experiments in the submerged environments were also performed at high and low water temperatures of 40°C and 0°C, respectively. A stereo Digital Image Correlation (DIC) system was employed to capture the full-field dynamic behavior of the panel during the explosive event. Results indicated that the immersion environment contributes significantly to the blast response of the material and to the specimens' appreciable damage characteristics. The water submersion with air backing environment was found to encourage the greatest panel center point deflection and the most significant damage mechanisms around the boundary. The air immersion with air backing environment was found to encourage less center point deflection and exhibited significant impact damage from the explosive capsule. The water submersion with water backing environment encouraged the least panel deflection and minimal interlaminate damage around the panel boundary and center. Water temperature was found to influence the panel center point deflection, but not damage mechanisms. Maximum positive center point

  15. Synthesis of berberine loaded polymeric nanoparticles by central composite design

    NASA Astrophysics Data System (ADS)

    Mehra, Meenakshi; Sheorain, Jyoti; Kumari, Santosh

    2016-04-01

    Berberine is an isoquinoline alkaloid which is extracted from bark and roots of Berberis vulgaris plant. It has been used in ayurvedic medicine as it possess antimicrobial, antidiabetic, anticancer, antioxidant properties etc. But poor solubility of berberine leads to poor stability and bioavailability in medical formulations decreasing its efficacy. Hence nanoformulations of berberine can help in removing the limiting factors of alkaloid enhancing its utilization in pharmaceutical industry. Sodium alginate polymer was used to encapsulate berberine within nanoparticles by emulsion solvent evaporation method using tween 80 as a surfactant. Two factors and three level in central composite design was used to study the formulation. The optimized formulation (1% v/v of Tween 80 and 0.01% w/v of sodium alginate) of polymeric nanoparticles was taken for further evaluations. The size of synthesized nanoparticles was found to be 71.18 nm by particle size analysis (PSA). The berberine loaded polymeric nanoparticles showed better antibacterial activity compared to aqueous solution of berberine by well diffusion assay.

  16. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  17. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  18. Thermal loading in the laser holography nondestructive testing of a composite structure

    NASA Technical Reports Server (NTRS)

    Liu, H. K.; Kurtz, R. L.

    1975-01-01

    A laser holographic interferometry method that has variable sensitivity to surface deformation was applied to the investigation of composite test samples under thermal loading. A successful attempt was made to detect debonds in a fiberglass-epoxy-ceramic plate. Experimental results are presented along with the mathematical analysis of the physical model of the thermal loading and current conduction in the composite material.

  19. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    DOE PAGES

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion andmore » fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.« less

  20. Shock Loading of Granular Ni/Al Composites. Part 1. Mechanics of Loading

    SciTech Connect

    Cherukara, Mathew J.; Germann, Timothy C.; Kober, Edward M.; Strachan, Alejandro

    2014-10-16

    We present molecular dynamics simulations of the thermomechanical response under shock loading of a granular material consisting of laminated Ni/Al grains. We observe two regimes: At low piston velocities (up ≲ 1km/s), the shock wave is diffuse, and the width of the shock front decreases with increasing piston velocity. Beyond a critical shock strength, however, the width remains relatively constant at approximately the mean grain radius. This change in behavior follows from an evolution of the mechanism of compaction with increasing insult strength. Furthermore, the mechanism evolves from plastic deformation-mediated pore collapse for relatively weak shocks, to solid extrusion and fluid ejecta filling pores ahead of the shock front at intermediate strengths, and finally to atomic jetting into the pore for very strong shocks (up ≳ 2 km/s). High-energy fluid ejecta into pores leads to the formation of flow vorticity and can result in a large fraction of the input energy localizing into translational kinetic energy components including the formation of hot spots. This has implications for the mechanical mixing of Ni and Al in these reactive composites.

  1. Uncertain loading and quantifying maximum energy concentration within composite structures

    NASA Astrophysics Data System (ADS)

    Lipton, Robert; Sinz, Paul; Stuebner, Michael

    2016-11-01

    We introduce a systematic method for identifying the worst case load among all boundary loads of fixed energy. Here the worst case load is defined to be the one that delivers the largest fraction of input energy to a prescribed subdomain of interest. The worst case load is identified with the first eigenfunction of a suitably defined eigenvalue problem. The first eigenvalue for this problem is the maximum fraction of boundary energy that can be delivered to the subdomain. We compute worst case boundary loads and associated energy contained inside a prescribed subdomain through the numerical solution of the eigenvalue problem. We apply this computational method to bound the worst case load associated with an ensemble of random boundary loads given by a second order random process. Several examples are carried out on heterogeneous structures to illustrate the method.

  2. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  3. Impact of Waveguide Filling Material on Near-Field Microwave Inspection of Carbon-Loaded Composites

    NASA Astrophysics Data System (ADS)

    Qaddoumi, Nasser; Saleh, Wael; Sediq, Akram Bin

    2010-10-01

    The advent of carbon loaded composite materials gave a boost to many industries. This is because of their light weight, durability and strength. As new structures utilizing carbon loaded composites are built, the need for a reliable nondestructive testing technique increases. A carbon-loaded composite testing poses a challenge to most nondestructive testing and evaluation (NDT&E) techniques. Microwave NDT&I techniques main challenge is the lossy nature of carbon, especially at high microwave frequencies. Lower frequencies penetrate deeper in carbon-loaded composites, however, to operate at lower frequencies the size of the waveguide probe increases significantly which degrades the resolution rapidly. Open-ended rectangular waveguide sensors filled with a dielectric material will be used to inspect carbon-loaded composites. The filling of the waveguide reduces the frequency of operation and keeps the small size of the waveguide (i.e. increases the penetration depth and maintains the resolution). However, varying the waveguide filling material dielectric properties will have an impact on the measurement parameters optimization process and consequently on the detection sensitivity. In this paper, the use of the waveguide filling material as an optimization parameter will be investigated. Carbon-loaded composites with disbonds will be inspected and the variation of the dielectric properties of the loading material of rectangular waveguide probes for carbon loaded composites inspection will be assessed.

  4. Polymer optical waveguide composed of europium-aluminum-acrylate composite core for compact optical amplifier and laser

    NASA Astrophysics Data System (ADS)

    Mitani, Marina; Yamashita, Kenichi; Fukui, Toshimi; Ishigure, Takaaki

    2015-02-01

    We successfully fabricate polymer waveguides with Europium-Aluminum (Eu-Al) polymer composite core using the Mosquito method that utilizes a microdispenser for realizing a compact waveguide optical amplifiers and lasers. Rareearth (RE) ions are widely used as the gain medium for fiber lasers and optical fiber amplifiers. However, high concentration doping of rare-earth-ion leads to the concentration quenching resulting in observing less gain in optical amplification. For addressing the concentration quenching problem, a rare-earth metal (RE-M) polymer composite has been proposed by KRI, Inc. to be a waveguide core material. Actually, 10-wt% RE doping into organic polymer materials was already achieved. Hence, realization of compact and high-efficiency waveguide amplifiers and lasers have been anticipated using the RE-M polymer composite. In this paper, a microdispenser is adopted to fabricate a Eu-doped polymer waveguide. Then, it is experimentally confirmed that the low-loss waveguides are fabricated with a high reproducibility. Optical gain is estimated by measuring the amplified spontaneous emission using the variable stripe length method. The fabricated waveguide exhibits an optical gain as high as 7.1 dB/cm at 616-nm wavelength.

  5. Intercalation of acrylic acid and sodium acrylate into kaolinite and their in situ polymerization

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Li, Yanfeng; Pan, Xiaobing; Jia, Xin; Wang, Xiaolong

    2007-02-01

    Novel nano-composites of poly (acrylic acid)-kaolinite were prepared, and intercalation and in situ polymerization were used in this process. The nano-composites were obtained by in situ polymerization of acrylic acid (AA) and sodium acrylate (AANa) intercalated into organo-kaolinite, which was obtained by refining and chemically modifying with solution intercalation step in order to increase the basal plane distance of the original clay. The modification was completed by using dimethyl-sulfoxide (DMSO)/methanol and potassium acetate (KAc)/water systems step by step. The materials were characterized with the help of XRD, FT-IR and TEM; the results confirmed that poly(acrylic acid) (PAA) and poly(sodium acrylate) (PAANa) were intercalated into the interlamellar spaces of kaolinite, the resulting copolymer composites (CC0 : copolymer crude kaolinite composite, CC1 : copolymer DMSO kaolinite composite, CC2 : copolymer KAc kaolinite composite) of CC2 exhibited a lamellar nano-composite with a mixed nano-morphology, and partial exfoliation of the intercalating clay platelets should be the main morphology. Finally, the effect of neutralization degree on the intercalation behavior was also investigated.

  6. Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Biswal, M.; Rathore, D. K.; Prusty, R. K.; Dutta, K.; Ray, B. C.

    2016-02-01

    Fibre reinforced polymeric (FRP) composite materials are subjected to different range of loading rates during their service life. Present investigation is focused on to study the effects of variation of loading rates on mechanical behavior and various dominating failure modes of these potential materials when subjected to tensile loading. The results revealed that on the variation of loading rates the ultimate tensile strength varies but the tensile modulus is mostly unaffected. Furthermore, the strain to failure is also increasing with increase in loading rates. Different failure patterns of glass/epoxy composite tested at 1, 10,100, 500 and 1000 mm/min loading rates are identified. Scanning electron micrographs shows various dominating failures modes in the glass/epoxy composite.

  7. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  8. Effect of a silane coupling agent on the optical and the mechanical characteristics of nanodiamond/acrylic resin composites

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Gun; Chun, Yoon-Soo; Lim, Dae-Soon; Kim, Jung Youl

    2014-10-01

    Nanodiamond (ND) is a good candidate for a filler material to fabricate transparent films. This study explores a characterization of the optical and the mechanical properties of ND dispersed polymer films. An attrition milling method was adapted to break ND aggregates, and a silane coupling agent (3-methacryloxypropyltrimethoxysilane) was used to modify the ND surfaces and stabilize the dispersion. Dipentaerylthritol hexaacrylate and pentaerythritol tetraacrylate were used in the polymer matrix, and up to 3 wt.% of ND was added to improve the mechanical properties. Fabricated composites were analyzed and tested using UV-visible spectroscopy for the optical properties and a Micro-Vickers hardness tester and ball-on-disktype friction tester for the mechanical properties. Results show that the transmittance of the ND-added composite increased with decreasing aggregate size. Through the addition of small amounts of NDs, the mechanical properties were greatly improved, the material became 3.5 times as hard, and the wear rate were greatly decreased. Possible mechanisms responsible for the enhancement of the mechanical and the optical properties are discussed.

  9. Injectable, high modulus, and fatigue resistant composite scaffold for load-bearing soft tissue regeneration.

    PubMed

    Hayami, James W S; Waldman, Stephen D; Amsden, Brian G

    2013-12-01

    High modulus, two-phase, bicontinuous scaffolds were prepared by photocross-linking an aqueous suspension of chondrocytes and N-methacrylate glycol chitosan with a hydrolyzable, hydrophobic, acrylated star-copolymer. Two acrylated star-copolymers were examined: poly(ε-caprolactone-co-d,l-lactide) (5446DLLACL) and poly(ε-caprolactone-co-trimethylene carbonate) (7030TMCCL). The scaffolds were assessed for injectability, two-phase interconnectivity, fatigue resistance, and long-term static culture behavior. The 7030TMCCL scaffolds demonstrated decreased moduli of 17% after 1 × 10(6) cycles at 30% strain and 5% after 56 days in culture, compared to the 5446DLLACL scaffolds, which exhibited decreases of 58 and 68%, respectively. The 7030TMCCL scaffolds accumulated more extracellular matrix after 56 days of culture (GAG: 20.1 ± 1, collagen: 35.5 ± 1.8 μg) compared to 5446DLLACL scaffolds (GAG: 13.2 ± 0.6, collagen: 6.2 ± 3.4 μg). Overall, the 7030TMCCL-based scaffolds were shown to be better suited for use as a load bearing soft tissue scaffold. PMID:24147621

  10. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, Robert J.; McMillan, April D.; Johnson, Arvid C.; Everleigh, Carl A.; Moorhead, Arthur J.

    1998-01-01

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads.

  11. Radio-frequency and microwave load comprising a carbon-bonded carbon fiber composite

    DOEpatents

    Lauf, R.J.; McMillan, A.D.; Johnson, A.C.; Everleigh, C.A.; Moorhead, A.J.

    1998-04-21

    A billet of low-density carbon-bonded carbon fiber (CBCF) composite is machined into a desired attenuator or load element shape (usually tapering). The CBCF composite is used as a free-standing load element or, preferably, brazed to the copper, brass or aluminum components of coaxial transmission lines or microwave waveguides. A novel braze method was developed for the brazing step. The resulting attenuator and/or load devices are robust, relatively inexpensive, more easily fabricated, and have improved performance over conventional graded-coating loads. 9 figs.

  12. Thermography Inspection for Early Detection of Composite Damage in Structures During Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Burke, Eric R.; Parker, F. Raymond; Seebo, Jeffrey P.; Wright, Christopher W.; Bly, James B.

    2012-01-01

    Advanced composite structures are commonly tested under controlled loading. Understanding the initiation and progression of composite damage under load is critical for validating design concepts and structural analysis tools. Thermal nondestructive evaluation (NDE) is used to detect and characterize damage in composite structures during fatigue loading. A difference image processing algorithm is demonstrated to enhance damage detection and characterization by removing thermal variations not associated with defects. In addition, a one-dimensional multilayered thermal model is used to characterize damage. Lastly, the thermography results are compared to other inspections such as non-immersion ultrasonic inspections and computed tomography X-ray.

  13. Delaminations in composite plates under transverse static loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.

    1992-01-01

    Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.

  14. Delaminations in composite plates under transverse static loads - Experimental results

    NASA Astrophysics Data System (ADS)

    Finn, Scott R.; He, Yi-Fei; Springer, George S.

    1992-11-01

    Tests were performed measuring the damage initiation loads and the locations, shapes, and sizes of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite-PEEK plates subjected to transverse static loads. The data were compared to the results of the Finn-Springer model, and good agreements were found between the measured and calculated delamination lengths and widths.

  15. Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures

    PubMed Central

    Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.

    2008-01-01

    Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019

  16. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  17. Probabilistic load model development and validation for composite load spectra for select space propulsion engines

    NASA Technical Reports Server (NTRS)

    Kurth, R.; Newell, J. F.

    1987-01-01

    A major task of the program to develop an expert system to predict the loads on selected components of a generic space propulsion engine is the design development and application of a probabilitic loads model. This model is being developed in order to account for the random nature of the loads and assess the variable load ranges' effect on the engine performance. A probabilistic model has been developed. The model is based primarily on simulation methods, but also has a Gaussian algebra method (if all variables are near normal), a fast probability integrator routine (for the calculation of low probability events), and a separate, stand alone program for performing barrier crossing calculations. Each of these probabilistic methods has been verified with theoretical calculations using assumed distributional forms.

  18. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  19. Optimal overlap length in staggered architecture composites under dynamic loading conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Abhishek; Tekalur, Srinivasan Arjun; Miklavcic, Milan

    2013-01-01

    Hybrid staggered architecture composites, like nacre and bone, are known for two discernible aspects: superior strength and synergistic toughness. What is lacking is the scientific rationale proving suitability of these materials under impact/time dependent loading. The current investigation aims to address the structure-property correlationship of these materials by development of an analytical model under dynamic rates of loading. Existing literature studies address behavior of staggered materials under quasi-static loading conditions. Critical overlap length was computed for three natural composites-nacre, spider-silk and, collagen in bone/tendon, and showed reasonable agreement with experimental data. Applicability of the analytical approach to predict lap-joint strength has been briefly discussed and quantified against experimental data. Choice of nanometer sized building blocks in natural composites has been addressed and explained from shear transfer efficiency point of view. The potentiality of these composites for use as biomimetic protective material under impact loading has been addressed as well.

  20. Assessment of particulate cellulose epoxy composites manufactured by JMFIL under impact load

    NASA Astrophysics Data System (ADS)

    Srinivasababu, Nadendla

    2015-08-01

    Increase in environmental concern towards sustainable development invites the development of new materials which are eco-friendly to satisfy various engineering needs. The present work introduces a new manufacturing method i.e. "Just Mold Fill and Immediate Loading" to prepare epoxy composites reinforced at different contents of particulate cellulose. The fabricated composites specimens are post processed and machined, tested as per ASTM procedures under impact load.

  1. Thermography Inspection for Detection and Tracking of Composite Cylinder Damage During Load Testing

    NASA Technical Reports Server (NTRS)

    Zalameda, J. N.; Winfree, W. P.; Seebo, J. P.; Johnston, P. H.

    2010-01-01

    Two thermography techniques, passive and active, are used to detect damage initiation and progression in a cyclically loaded composite cylinder. The passive thermography tracks damage progression in real time during cyclic loading. Active flash thermography, using a flash tube enclosed within the cylinder, images delaminations in a cylinder under different loads. A differential thermography processing technique eliminates normal material variations and improves sensitivity to and sizing of delaminations. The thermography results were compared to nonimmersion ultrasonic results.

  2. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, James F.; Ho, Hing W.

    1991-01-01

    This report summarizes the development for: (1) correlation fields; (2) applications to liquid oxygen post; (3) models for pressure fluctuatios and vibration loads fluctuations; (4) additions to expert systems; and (5) scaling criteria. Implementation to computer code is also described. Demonstration sample cases are included with additional applications to engine duct and pipe bend.

  3. Effect of cyclic loading on microleakage of silorane based composite compared with low shrinkage methacrylate-based composites

    PubMed Central

    Kermanshah, Hamid; Yasini, Esmail; Hoseinifar, Razieh

    2016-01-01

    Background: There are many concerns regarding the marginal seal of composite restorations, especially when composite restorations are subjected to cyclic loading. The aim of this study was to evaluate the effect of cyclic loading on the microleakage of silorane based composite compared with low shrinkage methacrylate-based composites in class V cavities. Materials and Methods: In this in vitro study, class V cavities were prepared on the facial and lingual surfaces of 48 human premolars (96 cavities). The teeth were randomly divided into four groups of 12 teeth (24 cavities) each and restored as follows: Group 1 (Siloran System Adhesive + Filtek P90), Group 2 (All Bond SE + Aelite LS Posterior), Group 3 (Futurabond NR + Grandio), and Group 4 (G-Bond + Kalore-GC). All the specimens were thermocycled for 2000 cycles (5-55°C) and then half of the specimens from each group, were Load cycled. All teeth were immersed in 0.5% basic fuchsine dye, sectioned, and observed under a stereomicroscope. Data were analyzed using Wilcoxon test, Kruskal–Wallis, and Mann–Whitney U-tests. P < 0.05 was considered as significant. Results: In both unloaded and loaded groups, no statistically significant differences were observed among four composites at the occlusal margin, but a significant difference in gingival microleakage was found between Aelite and silorane. Occlusal and gingival microleakage was not affected by cyclic loading in none of the four restorative materials. Conclusion: Silorane did not provide better marginal seal than the low shrinkage methacrylate-based composites (except Aelite). In addition, cyclic loading did not affect the marginal microleakage of evaluated composite restorations. PMID:27274348

  4. Intermediate-scale Fire Performance of Composite Panels under Varying Loads

    SciTech Connect

    Brown, Alexander; Jernigan, Dann A.; Dodd, Amanda B.

    2015-04-01

    New aircraft are being designed with increasing quantities of composite materials used in their construction. Different from the more traditional metals, composites have a higher propensity to burn. This presents a challenge to transportation safety analyses, as the aircraft structure now represents an additional fuel source involved in the fire scenario. Most of the historical fire testing of composite materials is aime d at studying kinetics, flammability or yield strength under fire conditions. Most of this testing is small - scale. Heterogeneous reactions are often length - scale dependent, and this is thought to be particularly true for composites which exhibit signific ant microscopic dynamics that can affect macro - scale behavior. We have designed a series of tests to evaluate composite materials under various structural loading conditions with a consistent thermal condition. We have measured mass - loss , heat flux, and temperature throughout the experiments. Several types of panels have been tested, including simple composite panels, and sandwich panels. The main objective of the testing was to understand the importance of the structural loading on a composite to its b ehavior in response to fire - like conditions. During flaming combustion at early times, there are some features of the panel decomposition that are unique to the type of loading imposed on the panels. At load levels tested, fiber reaction rates at later t imes appear to be independent of the initial structural loading.

  5. Bolted Double-Lap Composite Joints Under Mechanical and Thermal Loading

    NASA Technical Reports Server (NTRS)

    Kradinov, V.; Barut, A.; Madenci, E.; Walker, Sandra P. (Technical Monitor)

    2000-01-01

    This study concerns the determination of the contact stresses and contact region around bolt holes and the bolt load distribution in single- and double-lap joints of composite laminates with arbitrarily located bolts under general mechanical loading conditions and uniform temperature change. The unknown contact stress distribution and contact region between the bolt and laminates and the interaction among the bolts require the bolt load distribution, as well as the contact stresses, to be as part of the solution. The present method is based on the complex potential theory and the variational formulation in order to account for bolt stiffness, bolt-hole clearance, and finite geometry of the composite laminates.

  6. Effects of heat and moisture on fiberglass composite materials in the load carrying and non-load carrying conditions

    NASA Astrophysics Data System (ADS)

    McClurg, Jack Albert

    The objective set forth in this study was to thoroughly document the effects of heat, moisture, and loading conditions on a variety of pultruded unidirectional fiberglass reinforced composite materials. This study incorporated the use of two environmental control chambers and two water immersion tanks in order to provide the necessary range of environmental exposure conditions. A set of specially designed stainless steel loading fixtures was produced in order to introduce the factor of external loading of the specimens while exposed to the predetermined environmental condition and how that would affect the mechanical and physical properties in question. The properties of interest were the flexural strength (determined using the three-point flexural bending method), flexural modulus (determined using the three-point flexural bending method), and glass transition temperature of the material (determined using differential scanning calorimetry). Other data that was noted during the conditioning and testing of the specimens was the break type (flexural tension, compression, shear, etc...), the change in dimensions (prior to exposure vs. after exposure), and the change in weight (prior to exposure vs. after exposure). Using all of the information that was obtained from this study, a more detailed understanding of how and why fiberglass reinforced materials react the way they do when exposed to moisture and elevated temperature was drawn. This study is different from most others in that it explores the interactions of three independent variables (heat, moisture, and loading condition) on three different fiberglass reinforced composite systems (epoxy, vinylester, and polyester resin).

  7. General Factor Loadings and Specific Effects of the Differential Ability Scales, Second Edition Composites

    ERIC Educational Resources Information Center

    Maynard, Jennifer L.; Floyd, Randy G.; Acklie, Teresa J.; Houston, Lawrence, III

    2011-01-01

    The purpose of this study was to investigate the "g" loadings and specific effects of the core and diagnostic composite scores from the Differential Abilities Scales, Second Edition (DAS-II; Elliott, 2007a). Scores from a subset of the DAS-II standardization sample for ages 3:6 to 17:11 were submitted to principal factor analysis. Four composites,…

  8. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  9. Debonding in Composite Skin/Stringer Configurations Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Cvitkovich, Michael K.; Krueger, Ronald; OBrien, T.; Minguet, Pierre J.

    2004-01-01

    The objective of this work was to investigate the damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions as typically experienced by aircraft crown fuselage panels. The specimens for all tests were identical and consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both loads simultaneously. Microscopic investigations of the specimen edges were used to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange near the flange tip causing the flange to almost fully debond from the skin. A two-dimensional plain-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in the locations where delaminations were experimentally observed. The analyses showed that unstable delamination propagation is likely to occur at the loads corresponding to matrix ply crack initiation for all three loadings.

  10. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; OBrien, T. Kevin; Minguet, Pierre J.

    1999-01-01

    Damage mechanisms in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out- of-plane) loading conditions were examined. Specimens consisted of a tapered composite flange bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending . For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. The observations showed that, for all three load cases, failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. A two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, principal stresses exceeded the transverse strength of the material in the flange area. Additionally, delaminations of various lengths were simulated in two locations where delaminations were observed. The analyses showed that unstable delamination propagation is likely to occur in one location at the loads corresponding to matrix ply crack initiation for all three load cases.

  11. Pull-out fibers from composite materials at high rate of loading

    NASA Technical Reports Server (NTRS)

    Amijima, S.; Fujii, T.

    1981-01-01

    Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.

  12. Loading rate effect on interlaminar fracture toughness of a thermoplastic composite

    NASA Technical Reports Server (NTRS)

    Mall, S.; Law, G. E.; Katouzian, M.

    1986-01-01

    A study was undertaken to investigate the loading rate effect on delamination fracture initiation toughness of a thermoplastic composite. For this purpose, double cantilever beam specimens of graphite/PEEK were tested in a displacement controlled mode using an Instron tensile test machine. Specimens were loaded at various crosshead speeds ranging from 0.05 cm/min to 100 cm/min. The interlaminar fracture toughness was found to decrease with increasing loading rate, and this decrease was more than one hundred percent over the five decades of loading rate employed.

  13. Ultrasonic Attenuation Results of Thermoplastic Resin Composites Undergoing Thermal and Fatigue Loading

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.

    1998-01-01

    As part of an effort to obtain the required information about new composites for aviation use, materials and NDE researchers at NASA are jointly performing mechanical and NDE measurements on new composite materials. The materials testing laboratory at NASA is equipped with environmental chambers mounted on load frames that can expose composite materials to thermal and loading cycles representative of flight protocols. Applying both temperature and load simultaneously will help to highlight temperature and load interactions during the aging of these composite materials. This report highlights our initial ultrasonic attenuation results from thermoplastic composite samples that have undergone over 4000 flight cycles to date. Ultrasonic attenuation measurements are a standard method used to assess the effects of material degradation. Recently, researchers have shown that they could obtain adequate contrast in the evaluation of thermal degradation in thermoplastic composites by using frequencies of ultrasound on the order of 24 MHz. In this study, we address the relationship of attenuation measured at lower frequencies in thermoplastic composites undergoing both thermal and mechanical loading. We also compare these thermoplastic results with some data from thermoset composites undergoing similar protocols. The composite s attenuation is reported as the slope of attenuation with respect to frequency, defined as b = Da(f)/Df. The slope of attenuation is an attractive parameter since it is quantitative, yet does not require interface corrections like conventional quantitative attenuation measurements. This latter feature is a consequence of the assumption that interface correction terms are frequency independent. Uncertainty in those correction terms can compromise the value of conventional quantitative attenuation data. Furthermore, the slope of the attenuation more directly utilizes the bandwidth information and in addition, the bandwidth can be adjusted in the post

  14. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    1993-01-01

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  15. Delaminations in composite plates under transverse impact loads - Experimental results

    NASA Astrophysics Data System (ADS)

    Finn, Scott R.; He, Ye-Fei; Springer, George S.

    Tests were performed measuring the locations and geometries of delaminations in Fiberite T300/976 graphite/epoxy, Fiberite IM7/977-2 graphite-toughened epoxy, and ICI APC-2 graphite/PEEK plates subjected to transverse impact loads. The data provide specific information on the effects of impactor velocity, impactor mass, material, thickness of back ply group, difference in fiber orientation between adjacent ply groups, plate thickness, and impactor nose radius. The data were compared to the results of the Finn-Springer model. The model was found to describe the data with reasonable accuracy.

  16. Properties of natural rubber/attapulgite composites prepared by latex compounding method: Effect of filler loading

    SciTech Connect

    Muttalib, Siti Nadzirah Abdul Othman, Nadras Ismail, Hanafi

    2015-07-22

    This paper reports on the effect of filler loading on properties of natural rubber (NR)/attapulgite (ATP) composites. The NR/ATP composites were prepared by latex compounding method. It is called as masterbatch. The masterbatch was subsequently added to the NR through melt mixing process. The vulcanized NR/ATP composites were subjected to mechanical, swelling and morphological tests. All the results were compared with NR/ATP composites prepared by conventional system. The composites from masterbatch method showed better results compared to composites prepared by conventional method. They have higher tensile properties, elongation at break and tear strength. The images captured through scanning electron microscopy test revealed the improvement of tensile strength in masterbatch NR/ATP composites. It can be seen clearly that masterbatch NR/ATP have better filler dispersion compared to conventional method NR/ATP composites.

  17. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient.

  18. Characterizing acrylic pressure-sensitive adhesive tapes favoring diverse biomedical applications

    NASA Astrophysics Data System (ADS)

    Alhijji, Saleh Mohammed S.

    Strong, self-adhesive acrylic polymer-based tapes have been identified as FDA-approved medical device construction components that might also serve in diverse biological locations as artificial muscles, ligaments, or compressive support discs. After assuring that the tapes themselves were not cytotoxic, they were evaluated as possible low-tension muscle substitutes for eyelids, jaws, and other modest body re-closing needs, and well as for higher-tension applications as artificial ligaments. Self-adhesion of the tapes to representative biomaterials, before and after radio-frequency glow discharge treatment for surface energy modification, illustrated the conditions for maximum attachment strength to nonphysiologic substances. Attachment to bony host parts was challenging but apparently met by the application of acrylic-composite-to-dentin bonding systems that has shown good long-term experience in the mouth. Above all, the compression-relaxation properties of the tape materials were superior and their uses in potential Nucleus Pulposus applications for spinal disc repair were most completely explored. Tests included tape-disc performance longevity, both dry and wet, for over 5000 load-relaxation cycles, with no apparent changes in results for the most dense of the tapes evaluated. Direct abrasion was avoided by insertion of rigid polymeric layers. It is recommended that the compressive loading properties of acrylic tapes be further evaluated for spine repair applications.

  19. The composite method: An improved method for stream-water solute load estimation

    USGS Publications Warehouse

    Aulenbach, Brent T.; Hooper, R.P.

    2006-01-01

    The composite method is an alternative method for estimating stream-water solute loads, combining aspects of two commonly used methods: the regression-model method (which is used by the composite method to predict variations in concentrations between collected samples) and a period-weighted approach (which is used by the composite method to apply the residual concentrations from the regression model over time). The extensive dataset collected at the outlet of the Panola Mountain Research Watershed (PMRW) near Atlanta, Georgia, USA, was used in data analyses for illustrative purposes. A bootstrap (subsampling) experiment (using the composite method and the PMRW dataset along with various fixed-interval and large storm sampling schemes) obtained load estimates for the 8-year study period with a magnitude of the bias of less than 1%, even for estimates that included the fewest number of samples. Precisions were always <2% on a study period and annual basis, and <2% precisions were obtained for quarterly and monthly time intervals for estimates that had better sampling. The bias and precision of composite-method load estimates varies depending on the variability in the regression-model residuals, how residuals systematically deviated from the regression model over time, sampling design, and the time interval of the load estimate. The regression-model method did not estimate loads precisely during shorter time intervals, from annually to monthly, because the model could not explain short-term patterns in the observed concentrations. Load estimates using the period-weighted approach typically are biased as a result of sampling distribution and are accurate only with extensive sampling. The formulation of the composite method facilitates exploration of patterns (trends) contained in the unmodelled portion of the load. Published in 2006 by John Wiley & Sons, Ltd.

  20. Stiffener-skin interactions in pressure-loaded composite panels

    NASA Technical Reports Server (NTRS)

    Loup, D. C.; Hyer, M. W.; Starnes, J. H., Jr.

    1986-01-01

    The effects of flange thickness, web height, and skin stiffness on the strain distributions in the skin-stiffener interface region of pressure-loaded graphite-epoxy panels, stiffened by the type-T stiffener, were examined at pressure levels up to one atmosphere. The results indicate that at these pressures geometric nonlinearities are important, and that the overall stiffener stiffness has a significant effect on panel response, particularly on the out-of-plane deformation or pillowing of the skin. The strain gradients indicated that the interface between the skin and the stiffener experiences two components of shear stress, in addition to a normal (peel) stress. Thus, the skin-stiffener interface problem is a three-dimensional problem rather than a two-dimensional one, as is often assumed.

  1. Static and dynamic moduli of posterior dental resin composites under compressive loading.

    PubMed

    Tanimoto, Yasuhiro; Hirayama, Satoshi; Yamaguchi, Masaru; Nishiwaki, Tsuyoshi

    2011-10-01

    Dental resin composites are commonly used as restorative materials for dental treatment. To comprehend the static and dynamic moduli of dental resin composites, we investigated the mechanical behaviors of resin composites under static and dynamic loading conditions. Four commercially available resin composites for posterior restorations were evaluated. The percentages, by weight, of inorganic fillers of resin composites were examined by the ashing technique. The static compressive tests were undertaken with a constant loading speed of 1.0 mm/min using a computer-controlled INSTRON testing machine. The dynamic properties of composites were determined using the split Hopkinson pressure bar (SHPB) technique. When inorganic filler content was increased, a remarkable increase in the static modulus and dynamic modulus were observed. Furthermore, there was a strong relationship between the static modulus and dynamic modulus (r(2) = 0.947). The SHPB technique clearly demonstrated the dynamic properties of composites, and was a useful technique for determining the mechanical behavior of composites under dynamic compressive loading.

  2. Acrylic purification and coatings

    NASA Astrophysics Data System (ADS)

    Kuźniak, Marcin

    2011-04-01

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  3. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  4. Evaluation of Composite Honeycomb Sandwich Panels Under Compressive Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Walker, Sandra P.

    1998-01-01

    Fourteen composite honeycomb sandwich panels were tested to failure under compressive loading. The test specimens included panels with both 8 and 24-ply graphite-bismaleimide composite facesheets and both titanium and graphite-polyimide core materials. The panels were designed to have the load introduced through fasteners attached to pairs of steel angles on the ends of the panels to simulate double shear splice joints. The unloaded edges were unconstrained. Test temperatures included room temperature, 250F, and 300F. For the room and 250F temperature tests, the 24-ply specimen failure strains were close to the unnotched allowable strain values and failure loads were well above the design loads. However, failure strains much lower than the unnotched allowable strain values, and failure loads below the design loads were observed with several of the 8-ply specimens. For each individual test temperature, large variations in the failure strains and loads were observed for the 8-ply specimens. Dramatic decreases in the failure strains and loads were observed for the 24-ply specimens as the test temperature was increased from 250F to 300F. All 8-ply specimens appeared to have failed in a facesheet strength failure mode for all test temperatures. The 24-ply specimens displayed appreciably greater amounts of bending prior to failure than the 8-ply specimens, and panel buckling occurred prior to facesheet strength failure for the 24-ply room and 250F temperature tests.

  5. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  6. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated. PMID:27501777

  7. High-Density Protein Loading on Hierarchically Porous Layered Double Hydroxide Composites with a Rational Mesostructure.

    PubMed

    Tokudome, Yasuaki; Fukui, Megu; Tarutani, Naoki; Nishimura, Sari; Prevot, Vanessa; Forano, Claude; Poologasundarampillai, Gowsihan; Lee, Peter D; Takahashi, Masahide

    2016-09-01

    Hierarchically porous biocompatible Mg-Al-Cl-type layered double hydroxide (LDH) composites containing aluminum hydroxide (Alhy) have been prepared using a phase-separation process. The sol-gel synthesis allows for the hierarchical pores of the LDH-Alhy composites to be tuned, leading to a high specific solid surface area per unit volume available for high-molecular-weight protein adsorptions. A linear relationship between the effective surface area, SEFF, and loading capacity of a model protein, bovine serum albumin (BSA), is established following successful control of the structure of the LDH-Alhy composite. The threshold of the mean pore diameter, Dpm, above which BSA is effectively adsorbed on the surface of LDH-Alhy composites, is deduced as 20 nm. In particular, LDH-Alhy composite aerogels obtained via supercritical drying exhibit an extremely high capacity for protein loading (996 mg/g) as a result of a large mean mesopore diameter (>30 nm). The protein loading on LDH-Alhy is >14 times that of a reference LDH material (70 mg/g) prepared via a standard procedure. Importantly, BSA molecules pre-adsorbed on porous composites were successfully released on soaking in ionic solutions (HPO4(2-) and Cl(-) aqueous). The superior capability of the biocompatible LDH materials for loading, encapsulation, and releasing large quantities of proteins was clearly demonstrated.

  8. Experimental and Numerical Analysis of Notched Composites Under Tension Loading

    NASA Astrophysics Data System (ADS)

    Aidi, Bilel; Case, Scott W.

    2015-12-01

    Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.

  9. Analysis of interlaminar fracture in composites under combined loading

    NASA Technical Reports Server (NTRS)

    Armanios, Erian A.

    1989-01-01

    Delamination is a predominant failure mode in continuous fiber reinforced laminated composite structures. One type of delamination is the transverse crack tip delamination which originates at the tip of transverse matrix cracks. An analytical model based on the sublaminate approach and fracture mechanics is developed to study the growth of such delaminations. Plane strain conditions are assumed and estimates are provided for the total strain energy release rate as well as the mode 1 and mode 2 contribution. The energy release rate estimates are used in combination with a simple failure law to predict critical delamination growth strains and stresses. These predictions are compared with experimental data on T300/934 Graphite Epoxy (+ or - 25/90 nano seconds) laminates in the range n=.5 to 8. A good agreement is demonstrated for the range of n where the experimental observations indicate transverse crack tip delamination to be the predominant failure mode.

  10. Evaluation of flawed composite structural components under static and cyclic loading. [fatigue life of graphite-epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1979-01-01

    The effects of initial defects on the fatigue and fracture response of graphite-epoxy composite laminates are presented. The structural laminates investigated were a typical angle ply laminate, a polar/hoop wound pressure vessel laminate, and a typical engine fan blade laminate. Defects investigated were full and half penetration circular holes, full and half penetration slits, and countersink holes. The effects of the defect size and type on the static fracture strength, fatigue performance, and residual static strength are shown as well as the results of loadings on damage propagation in composite laminates. The data obtained were used to define proof test levels as a qualification procedure in composite structure subjected to cyclic loading.

  11. A review on the response of blast loaded laminated composite plates

    NASA Astrophysics Data System (ADS)

    Kazancı, Zafer

    2016-02-01

    This review is conducted with emphasis on the analysis performed for laminated composite plates that are subjected to blast loads. A general discussion and classification of the different laminated plate theories is also given. Various types of time-dependent external blast pulse models that are widely used in the literature are summarized. Main aim is to categorize previous laminated plate theories in a general sense and give an overview on the development, characteristics and applications of numerical methods on the response of laminated composite plates subjected to blast loads. This review article contains 142 references.

  12. Some important aspects in testing high-modulus fiber composite tubes designed for multiaxial loading.

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Chamis, C. C.

    1972-01-01

    Tubular specimens were potted in metal grips to determine the feasibility of this gripping method in applying multiaxial loads. Strain gage rosettes were used to assess grip transitional strains, through thickness strain variation and strain variations along the tube length and circumference. The investigation was limited to loading 0, 45, plus or minus 45, and 90 deg graphite/epoxy and glass/epoxy tubes in axial tension. Results include modifications made to the grips to reduce transitional strains, illustrations of the tube failure modes, and some material properties. The gripping concept shows promise as a satisfactory technique for applying multiaxial loads to high-strength, high-modulus fiber composite tubes.

  13. Some important aspects in testing high-modulus fiber composite tubes designed for multiaxial loading

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.; Chamis, C. C.

    1972-01-01

    Tubular specimens were potted in metal grips to determine the feasibility of this gripping method in applying multiaxial loads. Strain gage rosettes were used to assess grip transitional strains, through thickness strain variation and strain variations along the tube length and circumference. The investigation was limited to loading 0 deg, + or - 45 deg, and 90 deg graphite/epoxy and glass/epoxy tubes in axial tension. Results include modifications made to the grips to reduce transitional strains, illustrations of the tube failure modes, and some material properties. The gripping concept shows promise as a satisfactory technique for applying multiaxial loads to high strength, high modulus fiber composite tubes.

  14. Load-Bearing Capacity of Fiber-Reinforced Composite Abutments and One-Piece Implants.

    PubMed

    Etxeberria, Marina; Abdulmajeed, Aous A; Escuin, Tomas; Vinas, Miguel; Lassila, Lippo V J; Närhi, Timo O

    2015-06-01

    Fiber-reinforced composites (FRC) can potentially help in a physiologic stress transmission due to its excellent biomechanical matching with living tissues. Novel one-piece FRC implants and abutments with two different fiber orientations were loaded until failure to assess the load-bearing capacity, fracture patterns, and precision of fit. The one-piece FRC implants showed significantly higher load-bearing capacity compared to FRC abutments regardless of the fiber orientation (p < 0.001). For FRC abutments, bidirectional abutments showed significantly higher loads compared to unidirectional abutments (p < 0.001). The type of structure and fiber orientation are strong determinant factors of the load-bearing capacity of FRC implants and abutments. PMID:26373199

  15. A review of failure models for unidirectional ceramic matrix composites under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  16. A review of failure models for ceramic matrix composite laminates under monotonic loads

    NASA Technical Reports Server (NTRS)

    Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.

    1989-01-01

    Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.

  17. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading.

    PubMed

    Ku-Herrera, J J; Pacheco-Salazar, O F; Ríos-Soberanis, C R; Domínguez-Rodríguez, G; Avilés, F

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location.

  18. Self-Sensing of Damage Progression in Unidirectional Multiscale Hierarchical Composites Subjected to Cyclic Tensile Loading

    PubMed Central

    Ku-Herrera, J. J.; Pacheco-Salazar, O. F.; Ríos-Soberanis, C. R.; Domínguez-Rodríguez, G.; Avilés, F.

    2016-01-01

    The electrical sensitivity of glass fiber/multiwall carbon nanotube/vinyl ester hierarchical composites containing a tailored electrically-percolated network to self-sense accumulation of structural damage when subjected to cyclic tensile loading-unloading is investigated. The hierarchical composites were designed to contain two architectures differentiated by the location of the multiwall carbon nanotubes (MWCNTs), viz. MWCNTs deposited on the fibers and MWCNTs dispersed within the matrix. The changes in electrical resistance of the hierarchical composites are associated to their structural damage and correlated to acoustic emissions. The results show that such tailored hierarchical composites are able to self-sense damage onset and accumulation upon tensile loading-unloading cycles by means of their electrical response, and that the electrical response depends on the MWCNT location. PMID:26999158

  19. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  20. Cyclic mechanical loading promotes bacterial penetration along composite restoration marginal gaps

    PubMed Central

    Khvostenko, D.; Salehi, S.; Naleway, S. E.; Hilton, T. J.; Ferracane, J. L.; Mitchell, J. C.; Kruzic, J. J.

    2015-01-01

    Objectives Secondary caries is the most common reason for composite restoration replacement and usually forms between dentin and the filling. The objective of this study was to investigate the combined effect of cyclic loading and bacterial exposure on bacterial penetration into gaps at the interface between dentin and resin composite restorative material using a novel bioreactor system and test specimen design. Methods Human molars were machined into 3 mm thick disks with 2 mm deep × 5 mm diameter cavity preparations into which composite restorations were placed. A ∼15-30 micrometer (small) or ∼300 micrometer wide (large) dentin-restoration gap was introduced along half of the interface between the dentin and restoration. Streptococcus mutans UA 159 biofilms were grown on each sample prior to testing in a bioreactor both with and without cyclic loading. Both groups of samples were tested for 2 weeks and post-test biofilm viability was confirmed with a live-dead assay. Samples were fixed, mounted and cross-sectioned to reveal the gaps and observe the depth of bacterial penetration. Results It was shown that for large gap samples the bacteria easily penetrated to the full depth of the gap independent of loading or non-loading conditions. The results for all cyclically loaded small gap samples show a consistently deep bacterial penetration down 100% of the gap while the average penetration depth was only 67% for the non-loaded samples with only two of six samples reaching 100%. Significance A new bioreactor was developed that allows combining cyclic mechanical loading and bacterial exposure of restored teeth for bacterial biofilm and demineralization studies. Cyclic loading was shown to aid bacterial penetration into narrow marginal gaps, which could ultimately promote secondary caries formation. PMID:25900624

  1. Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load

    NASA Astrophysics Data System (ADS)

    Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong

    2015-12-01

    Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.

  2. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences

  3. Load-induced debonding of FRP composites applied to reinforced concrete

    NASA Astrophysics Data System (ADS)

    Blok, Joel; Brown, Jeff

    2009-05-01

    Fiber-reinforced polymer (FRP) composites are widely used to increase the flexural and shear capacity of reinforced concrete (RC) elements. One potential disadvantage is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for monitoring and evaluating load-induced delamination of FRP composites applied to small scale RC beams. Two beams (3.5 in x 4.5 in x 58 in) were loaded monotonically to failure. Infrared thermography (IRT) inspections were performed at various load levels through failure using a composite phase imaging technique. Two similar beams were tested in fatigue and periodic IRT inspections were performed at 50,000-cycle intervals. Individual phase values for each pixel were designated as "well-bonded", "suspect" or "unbonded" to indicate the quality of FRP bond. Suspect areas included regions of excess thickened-epoxy tack-coat and smaller installation defects in the unloaded specimens. The long-term objective of this research is to develop a practical framework for conducting quantitative IRT inspections of FRP composites applied to RC and incorporating these results into acceptance criteria for new installations and predictions for the remaining service life of in-service FRP systems. This method may also offer insight into the necessity for repairs to in-service systems.

  4. Dynamic Stability Optimization of Laminated Composite Plates under Combined Boundary Loading

    NASA Astrophysics Data System (ADS)

    Shafei, Erfan; Kabir, Mohammad Zaman

    2011-12-01

    Dynamic stability and design optimization of laminated simply supported plates under planar conservative boundary loads are investigated in current study. Examples can be found in internal connecting elements of spacecraft and aerospace structures subjected to edge axial and shear loads. Designation of such elements is function of layup configuration, plate aspect ratio, loading combinations, and layup thickness. An optimum design aims maximum stability load satisfying a predefined stable vibration frequency. The interaction between compound loading and layup angle parameter affects the order of merging vibration modes and may stabilize the dynamic response. Laminated plates are assumed to be angle-plies symmetric to mid-plane surface. Dynamic equilibrium PDE has been solved using kernel integral transformation for modal frequency values and eigenvalue-based orthogonal functions for critical stability loads. The dictating dynamic stability mode is shown to be controlled by geometric stiffness distributions of composite plates. Solution of presented design optimization problem has been done using analytical approach combined with interior penalty multiplier algorithm. The results are verified by FEA approach and stability zones of original and optimized plates are stated as final data. Presented method can help designers to stabilize the dynamic response of composite plates by selecting an optimized layup orientation and thickness for prescribed design circumstances.

  5. A test method to measure the response of composite materials under reversed cyclic loads

    NASA Technical Reports Server (NTRS)

    Bakis, Charles E.; Simonds, Robert A.; Stinchcomb, Wayne W.

    1989-01-01

    A test method to measure the response of composite materials under reversed cyclic loads is described. The method approximates the long-term response of a component by permitting the composite specimen to respond to the imposed loads and fail in an unconstrained mode rather than in a constrained mode. The method has been successfully used for the reversed cyclic loading of unnotched and notched graphite/epoxy and graphite/PEEK laminates of various stacking sequences. Included in the paper are monotonic tensile and compressive stiffness and strength data at several points in the fatigue lifetime, and damage development information obtained via X-ray radiography for quasi-isotropic T300/5208 and AS4/PEEK laminates with unloaded circular holes.

  6. Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors.

    PubMed

    Kougias, P G; Boe, K; Angelidaki, I

    2013-09-01

    Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed. PMID:23850819

  7. Development of a fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1973-01-01

    This experimental program was undertaken to establish a fracture control method for composite tanks with load sharing liners. Uniaxial specimens containing surface flaws were loaded to failure (static fractured) and cycled to failure and the results were compared with burst tests and cyclic life tests of composite tanks having surface flaws present in the load sharing metal liners. The liner materials investigated were Inconel X750 STA, 2219-T62 aluminum and cryostretched 301 stainless steel at room temperature and at 78 K (-320 F) in liquid nitrogen. Differences were observed in comparing the uniaxial and tank test results. These differences should be resolved if an adequate fracture control method is to be developed.

  8. IGFC response to initial fuel cell load for various syngas compositions

    SciTech Connect

    Tucker, David; Hughes, Dimitri O.; Haynes, Comas L.

    2012-01-01

    The system response to an initial electric load of the fuel cell during the startup of a direct-fired fuel cell turbine power system was studied using the Hybrid Performance (Hyper) project hardware-based simulation facility at the U.S. Department of Energy, National Energy Technology Laboratory for a range of input fuel compositions. The facility was brought to a steady condition at a temperature deemed adequate to minimize stress on the fuel cell during the initial load transient. A 1D distributed fuel cell model operating in real-time was used to produce individual cell transient temperature profiles during the course of the load change. The process was conducted with humidified hydrogen, and then repeated with various syngas compositions representative of different gasifier technologies. The results provide insight into control strategy requirements for mitigation of expected fuel cell failure modes relevant to available gasifier technology.

  9. On core compressibility of sandwich composite panels subjected to intense underwater shock loads

    NASA Astrophysics Data System (ADS)

    Ghoshal, Ritwik; Mitra, Nilanjan

    2014-01-01

    Novel analytical models have been proposed in this study which extends current available fluid-structure interaction (FSI) theories for explosion induced shock loading on monolithic and laminated composite plates to sandwich composite panels, featuring core compression. The proposed models have been asymptotically validated against other FSI existing theories in low pressure range. A qualitative comparative analysis of the proposed models has been made with other existing FSI theories from the viewpoint of energy conservation. Core compression as predicted by the proposed models can be utilized for more economical, robust design of blast resistant sandwich composite structures.

  10. Novel antibacterial composite of coal/LLDPE loaded with silver ions

    SciTech Connect

    Zhou, A.N.; Yu, Z.J.

    2007-08-15

    A novel antibacterial composite of coal/LLDPE (linear low density polyethylene) loaded with silver ions (ACCPE) was prepared by means of solid liquid phase adsorption and extrusion. The composite was characterized by IR, XRD and SEM, and the mechanical, rheological, and Ag{sup +}-releasing, and antibacterial properties of the composite were investigated. We discover that the ACCPE shows favorable mechanical properties, features a higher processability and antibacterial activity, and the coal and silver ion possess superimposed effect on antibacterial activity against Escherichia coli.

  11. Behaviour of hybrid jute-glass/epoxy composite tubes subjected to lateral loading

    NASA Astrophysics Data System (ADS)

    Khalid, A. A.

    2015-12-01

    Experimental work on hybrid and non-hybrid composite tubes subjected to lateral loading has been carried out using jute, glass and hybrid jute-glass/epoxy materials. Tubes of 200 mm length with 110 mm inner diameter were fabricated by hand lay-up method to investigate the effect of material used and the number of layers on lateral-load-displacement relations and on the failure mode. Crush force efficiency and the specific energy absorption of the composite tubes were calculated. Results show that the six layers glass/epoxy tubes supported load higher 10.6% than that of hybrid jute-glass/ epoxy made of two layers of jute/epoxy four layers of glass/epoxy. It has been found that the specific energy absorption of the glass/epoxy tubes is found higher respectively 11.6% and 46% than hybrid jute-glass/epoxy and jute/epoxy tubes. The increase in the number of layers from two to six increases the maximum lateral load from 0.53KN to 1.22 KN for jute/epoxy and from 1.35 KN to 3.87 KN for the glass/epoxy tubes. The stacking sequence of the hybrid tubes influenced on the maximum lateral load and the absorbed energy. The maximum load obtained for the six layers jute-glass/epoxy tubes of different staking sequence varies between 1.88 KN to 3.46 KN. Failure mechanisms of the laterally loaded composite tubes were also observed and discussed.

  12. Testing and Analysis of Composite Skin/Stringer Debonding Under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael K.; O'Brien, T. Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from skin. In a second step, a two dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location, Hence. Unstable delamination propagation is likely to occur as

  13. Testing and Analysis of Composite Skin/Stringer Debonding under Multi-Axial Loading

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Cvitkovich, Michael; OBrien, Kevin; Minguet, Pierre J.

    2000-01-01

    A consistent step-wise approach is presented to investigate the damage mechanism in composite bonded skin/stringer constructions under uniaxial and biaxial (in-plane/out-of-plane) loading conditions. The approach uses experiments to detect the failure mechanism, computational stress analysis to determine the location of first matrix cracking and computational fracture mechanics to investigate the potential for delamination growth. In a first step, tests were performed on specimens, which consisted of a tapered composite flange, representing a stringer or frame, bonded onto a composite skin. Tests were performed under monotonic loading conditions in tension, three-point bending, and combined tension/bending to evaluate the debonding mechanisms between the skin and the bonded stringer. For combined tension/bending testing, a unique servohydraulic load frame was used that was capable of applying both in-plane tension and out-of-plane bending loads simultaneously. Specimen edges were examined on the microscope to document the damage occurrence and to identify typical damage patterns. For all three load cases, observed failure initiated in the flange, near the flange tip, causing the flange to almost fully debond from the skin. In a second step, a two-dimensional plane-strain finite element model was developed to analyze the different test cases using a geometrically nonlinear solution. For all three loading conditions, computed principal stresses exceeded the transverse strength of the material in those areas of the flange where the matrix cracks had developed during the tests. In a third step, delaminations of various lengths were simulated in two locations where delaminations were observed during the tests. The analyses showed that at the loads corresponding to matrix ply crack initiation computed strain energy release rates exceeded the values obtained from a mixed mode failure criterion in one location. Hence, unstable delamination propagation is likely to occur as

  14. Onset of failure in finitely strained layered composites subjected to combined normal and shear loading

    NASA Astrophysics Data System (ADS)

    Nestorović, M. D.; Triantafyllidis, N.

    2004-04-01

    A limiting factor in the design of fiber-reinforced composites is their failure under axial compression along the fiber direction. These critical axial stresses are significantly reduced in the presence of shear stresses. This investigation is motivated by the desire to study the onset of failure in fiber-reinforced composites under arbitrary multi-axial loading and in the absence of the experimentally inevitable imperfections and finite boundaries. By using a finite strain continuum mechanics formulation for the bifurcation (buckling) problem of a rate-independent, perfectly periodic (layered) solid of infinite extent, we are able to study the influence of load orientation, material properties and fiber volume fraction on the onset of instability in fiber-reinforced composites. Two applications of the general theory are presented in detail, one for a finitely strained elastic rubber composite and another for a graphite-epoxy composite, whose constitutive properties have been determined experimentally. For the latter case, extensive comparisons are made between the predictions of our general theory and the available experimental results as well as to the existing approximate structural theories. It is found that the load orientation, material properties and fiber volume fraction have substantial effects on the onset of failure stresses as well as on the type of the corresponding mode (local or global).

  15. Buckling and Failure of Compression-loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.

    2005-01-01

    Results from a numerical and experimental study that illustrate the effects of selected cutout reinforcement configurations on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of reinforcement size, thickness, and orthotropy on the overall response of compression-loaded shells are described. In general, reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response and material failure near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause a significant increase in the local interlaminar failures that can accumulate near the free edges of a cutout during a local buckling event.

  16. A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading

    NASA Technical Reports Server (NTRS)

    Rui, Yuting; Sun, C. T.

    1990-01-01

    Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.

  17. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  18. FT-IR and FT-Raman studies of cross-linking processes with Ca(2+) ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch--part I.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-25

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca(2+) ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca(2+) ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  19. FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - Part I

    NASA Astrophysics Data System (ADS)

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina

    2015-01-01

    FT-IR and FT-Raman spectroscopic methods allowed to identify the cross-linking process of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) applied as a binder for moulding sands. The cross-linking was performed by chemical methods by introducing cross-linking substances with Ca2+ ions or glutaraldehyde and by physical way, applying the microwave radiation. It was found that Ca2+ ions cause formation of cross-linking ionic bonds within carboxyl and carboxylate groups. Glutaraldehyde generates formation of cross-linking bonds with hemiacetal and acetal structures. Whereas in the microwave radiation field, due to dehydration, lattices are formed by anhydride bonds.

  20. Loading and utilization of active material in nickel composite electrodes: optimization

    SciTech Connect

    Lee, W.W.; Ferrando, W.A.; Sutula, R.A.

    1984-12-01

    As an attempt to reduce nickel battery weight, the nickel composite electrode, has been under development. Investigations were undertaken to determine the optimum conditions for loading and utilizing nickel hydroxide active material in nickel composite electrodes. The main emphasis was placed on the improvement of both loading efficiency by electrochemical impregnation and utilization efficiency of the Ni(OH)2 active material. The efficiencies were examined as functions of such electrochemical conditions as current density, nickel concentration, pH, temperature of the impregnating bath, the continuity of current flow and manner of adding Co(OH)S additive. Also studied was the loading efficiency of chemical impregnation (polarization method) and the suspension method which enables a direct loading of externally prepared active material into the composite body. The most important factor for a quick utilization of the active material was found to be the additive distribution. A model of the additive distribution in the active material is proposed to account for different patterns of utilization exhibited by the electrodes.

  1. A Numerical and Experimental Study of Compression-Loaded Composite Panels With Cutouts

    NASA Technical Reports Server (NTRS)

    Thornburgh, Robert P.; Hilburger, Mark W.

    2006-01-01

    Results from a numerical and experimental study on the effects of laminate orthotropy and circular cutout size on the response of compression-loaded composite curved panels are presented. Several 60-in-radius composite panels with four different laminate configurations were tested with cutout diameters that range from 10% to 60% of the panel width. Finite-element analyses were performed for each panel in order to identify the effects boundary conditions, measured initial geometric imperfections and thickness variations had on the nonlinear and buckling behavior of the panels. The compression-loaded panels considered herein exhibited two separate types of behavior depending on the laminate stacking sequence and cutout size. More specifically, some of the panels exhibited the classical snap-through type buckling response; however, some of the panels exhibited a monotonically increasing stable response and achieved compressive loads in excess of twice the predicted linear bifurcation buckling load. In general, the finite-element analyses were able to predict accurately the nonlinear response and buckling loads of the panels and the prebuckling and postbuckling out-of-plane deformations and strains.

  2. Modelling of Fiber/Matrix Debonding of Composites Under Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Naghipour, Paria; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    The micromechanics theory, generalized method of cells (GMC), was employed to simulate the debonding of fiber/matrix interfaces, within a repeating unit cell subjected to global, cyclic loading, utilizing a cyclic crack growth law. Cycle dependent, interfacial debonding was implemented as a new module to the available GMC formulation. The degradation of interfacial stresses, with applied load cycles, was achieved via progressive evolution of the interfacial compliance. A periodic repeating unit cell, representing the fiber/matrix architecture of a composite, was subjected to combined normal and shear loadings, and degradation of the global transverse stress in successive cycles was monitored. The obtained results were compared to values from a corresponding finite element model. Reasonable agreement was achieved for combined normal and shear loading conditions, with minimal variation for pure loading cases. The local effects of interfacial debonding, and fatigue damage will later be combined as sub-models to predict the experimentally obtained fatigue life of Ti-15-3/Sic composites at the laminate level.

  3. In vivo drug release and antibacterial properties of vancomycin loaded hydroxyapatite/chitosan composite.

    PubMed

    Zhang, Jingzhe; Wang, Chenyu; Wang, Jincheng; Qu, Yang; Liu, Guangyao

    2012-01-01

    The present study was designed to investigate the in vivo drug release and antibacterial properties of a novel mesoporous hydroxyapatite/chitosan (mesoHA-CS) composite loaded with vancomycin (VCM). VCM-mesoHA/CS composite was prepared via a freeze-drying method. The successful loading of VCM in the composite scaffold was verified by FT IR analyses. SEM observation revealed the mesoporous structure of the VCM-mesoHA/CS composite with the pore size of 50-100 µm. Medicated composites were then implanted into the muscular pockets of extremity in rabbits. The results demonstrated that local VCM concentration in muscle tissue could maintain higher than the minimum inhibitory concentration at the site of implantation for long time (i.e. 4 weeks). As a result, the number of viable methicillin-resistant Staphylococcus aureus (MRSA) on mesoHA/CS could be significantly suppressed after the VCM-mesoHA/CS implantation. These results indicated that the mesoHA/CS composite may be promising scaffold as drug storage and release vehicle applied for local antibacterial drug release and bone repair.

  4. Magnetoelectric coupling of multiferroic composites under combined magnetic and mechanical loadings

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhou, Y. Y.; Xu, Y. T.; Jing, W. Q.; Yang, W.

    2013-07-01

    Multiferroic composites are of particular interest because of their high magnetoelectric (ME) coupling at room temperature. In multiferroic composites, ME coupling is a strain mediated effect achieved via the interfaces between the magnetic and electrical subsystems through elastic deformation. In this paper, ME coupling of laminate composites is investigated under combined magnetic and mechanical loadings. Three types of laminate composites are used, with piezoelectric phase layers of PZT plates and the magnetic phase layers comprising Terfenol-D, Ni and Metglas, respectively. As the applied compressive stress increases, the ME coefficient (αME) decreases monotonically for Terfenol-D/PZT/Terfenol-D and Metglas/PZT/Metglas, while it slightly increases for Ni/PZT/Ni laminate. To reveal the influence of the magnetic layers on the ME coupling, measurements of magnetostriction under combined magnetic and compressive loadings are carried out for Terfenol-D, Ni and Metglas. Based on the equivalent circuit model, the peak values of the ME coefficient for different compressive stresses are predicted for the laminate composites; these agree well with the experimental data. It is suggested that the compressive stress-induced strain, as well as the magnetostrictive response of the magnetic material, mainly contribute to the mechanical-magnetic-electrical coupling behavior of the multiferroic composites.

  5. Dynamic delamination in curved composite laminates under quasi-static loading

    NASA Astrophysics Data System (ADS)

    Uyar, I.; Gozluklu, B.; Coker, D.

    2014-06-01

    In the wind energy industry, new advances in composite manufacturing technology and high demand for lightweight structures are fostering the use of composite laminates in a wide variety of shapes as primary load carrying elements. However, once a moderately thick laminate takes highly curved shape, such as an L-shape, Interlaminar Normal Stresses (ILNS) are induced together with typical Interlaminar Shear Stresses (ILSS) on the interfaces between the laminas. The development of ILNS promotes mode-I type of delamination propagation in the curved part of the L-shaped structure, which is a problem that has recently raised to the forefront in in-service new composite wind turbines. Delamination propagation in L-shaped laminates can be highly dynamic even though the loading is quasistatic. An experimental study to investigate dynamic delamination under quasi-static loading is carried out using a million fps high speed camera. Simulations of the experiments are conducted with a bilinear cohesive zone model implemented in user subroutine of the commercial FEA code ABAQUS/explicit. The experiments were conducted on a 12-layered woven L-shaped CFRP laminates subjected to shear loading perpendicular to the arm of the specimen with a free-sliding fixture to match the boundary conditions used in the FEA. A single delamination is found to initiate at the 5th interface during a single drop in the load. The delamination is then observed to propagate to the arms at intersonic speed of 2200m/s. The results obtained using cohesive zone models in the numerical simulations were found to be in good agreement with experimental results in terms of load displacement behavior and delamination history.

  6. Dynamic Response of a Stiffened Laminated Composite Plate Subjected to Blast Load

    NASA Astrophysics Data System (ADS)

    Türkmen, H. S.; Mecitoğlu, Z.

    1999-04-01

    This paper is concerned with the experimental and numerical study of stiffened laminated composite plates exposed to a normal blast shock wave. For this purpose a detonation is developed from the reaction of LPG-O2mixtures in a long circular cylindrical shock tube. The detonation wave goes through into the atmosphere from the open end of the shock tube and acts as a blast load on the stiffened laminated composite plate which is placed in front of the detonation tube. Mounting of the target plate on a steel frame is designed with the object of providing clamped boundary conditions. The air blast pressure distribution is obtained by the use of quartz crystal pressure transducers placed on the wooden model. Strains are measured at the different points on the stiffened laminated composite plate and stiffener. In the experiment and analysis two different load cases are examined. Furthermore, a finite element modelling and analysis of the blast loaded stiffened composite plate are presented and the numerical results are compared with the experimental ones. An agreement is found between the experimental and finite element results in both linear and non-linear ranges. A good prediction is performed for the peak strain in the plate. However a discrepancy is shown between the measured and predicted strains on the stiffener because of the adhesive layer between the plate and stiffener. Prediction of the response frequency that has a great importance in the dynamic phenomena correlates well with the experimental results. The effects of stiffener and loading conditions on the dynamic behavior are examined. Large deformation effects are taken into account for the second loading condition.

  7. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiaohua

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  8. Stress and reliability analyses of multilayered composite cylinder under thermal and mechanical loads

    SciTech Connect

    Wang, X.

    1992-01-01

    The coupling resulting from the mutual influence of material thermal and mechanical parameters is examined in the thermal stress analysis of a multilayered isotropic composite cylinder subjected to sudden axisymmetric external and internal temperature. The method of complex frequency response functions together with the Fourier transform technique is utilized. Because the coupling parameters for some composite materials, such as carbon-carbon, are very small, the effect of coupling is neglected in the orthotropic thermal stress analysis. The stress distributions in multilayered orthotropic cylinders subjected to sudden axisymmetric temperature loading combined with dynamic pressure as well as asymmetric temperature loading are also obtained. The method of Fourier series together with the Laplace transform is utilized in solving the heat conduction equation and thermal stress analysis. For brittle materials, like carbon-carbon composites, the strength variability is represented by two or three parameter Weibull distributions. The 'weakest link' principle which takes into account both the carbon-carbon composite cylinders. The complex frequency response analysis is performed on a multilayered orthotropic cylinder under asymmetrical thermal load. Both deterministic and random thermal stress and reliability analyses can be based on the results of this frequency response analysis. The stress and displacement distributions and reliability of rocket motors under static or dynamic line loads are analyzed by an elasticity approach. Rocket motors are modeled as long hollow multilayered cylinders with an air core, a thick isotropic propellant inner layer and a thin orthotropic kevlar-epoxy case. The case is treated as a single orthotropic layer or a ten layered orthotropic structure. Five material properties and the load are treated as random variable with normal distributions when the reliability of the rocket motor is analyzed by the first-order, second-moment method (FOSM).

  9. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  10. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  11. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  12. Stress Analysis of Laminated Composite Cylinders Under Non-Axisymmetric Loading

    SciTech Connect

    Starbuck, J.M.

    1999-10-26

    The use of thick-walled composite cylinders in structural applications has seen tremendous growth over the last decade. Applications include pressure vessels, flywheels, drive shafts, spoolable tubing, and production risers. In these applications, the geometry of a composite cylinder is axisymmetric but in many cases the applied loads are non-axisymmetric and more rigorous analytical tools are required for an accurate stress analysis. A closed-form solution is presented for determining the layer-by-layer stresses, strains, and displacements and first-ply failure in laminated composite cylinders subjected to non-axisymmetric loads. The applied loads include internal and external pressure, axial force, torque, axial bending moment, uniform temperature change, rotational velocity, and interference fits. The formulation is based on the theory of anisotropic elasticity and a state of generalized plane deformation along the axis of the composite cylinder. Parametric design trade studies can be easily and quickly computed using this closed-form solution. A computer program that was developed for performing the numerical calculations is described and results from specific case studies are presented.

  13. PHEMA based composite cryogels with loaded hydrophobic beads for lysozyme purification.

    PubMed

    Türkmen, Deniz; Denizli, Adil

    2014-11-01

    The purpose of this study is to synthesize megaporous cryogel loaded with hydrophobic affinity beads which can be utilized for the purification of lysozyme from chicken egg-white. N-methacryloyl-(L)-tryptophan methylester (MATrp) was used as the hydrophobic ligand. In the first step, poly(glycidyl methacrylate-N-methacryloyl-(L)-tryptophan methyl-ester) [PGMATrp] beads (2.2 μm in diameter) were produced by dispersion polymerization. In the second step, the poly(2-hydroxyethyl methacrylate) (PHEMA) cryogel loaded with PGMATrp beads [PHEMA/PGMATrp composite cryogel] was polymerized initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) at -12°C. Lysozyme adsorption capacity of the PHEMA/PGMATrp composite cryogel (332.7 mg/g polymer) was improved significantly due to the loading of PGMATrp beads into the cryogel structure. The hydrophobic MATrp comonomer played a vital role in this binding mechanism. The PHEMA/PGMATrp composite cryogel could be used many times without decreasing the lysozyme adsorption amount significantly. The main advantage of the PHEMA/PGMATrp composite cryogel is the high adsorption capacity. PMID:25454758

  14. Experimental Observations of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.

    1998-01-01

    A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.

  15. Nonlinear dynamic response of laminated composite plates subjected to pulse loading

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. K.; Pandey, Ramesh; Shukla, K. K.

    2011-11-01

    An analytical solution methodology for the non-linear dynamic displacement response of laminated composite plates subjected to different types of pulse loading is presented. The mathematical formulation is based on third-order shear deformation plate theory and von-Karman non-linear kinematics. Fast-converging finite double Chebyshev series is employed for evaluating the displacement response. Houbolt time marching scheme is used for temporal discretization and quadratic extrapolation technique is used for linearization. The effects of magnitude and duration of the pulse load, boundary conditions and plate parameters on the central displacement and bending moment responses are studied.

  16. Delaminations in composite plates under transverse static or impact loads - A model

    NASA Technical Reports Server (NTRS)

    Finn, Scott R.; Springer, George S.

    1993-01-01

    A method is presented for calculating the locations, shapes, and sizes of delaminations which occur in a fiber reinforced composite plate subjected to transverse static or dynamic (impact) loads. The plate may be simply supported, clamped, or free along its edges. A model of the delamination formation was developed. This model was then coupled with a finite element analysis. The model and the finite element analysis were implemented by a computer code which can be used to estimate the load at which damage is initiated as well as the locations, shapes, and sizes of the delaminations.

  17. Dynamic stability of simply supported composite cylindrical shells under partial axial loading

    NASA Astrophysics Data System (ADS)

    Dey, Tanish; Ramachandra, L. S.

    2015-09-01

    The parametric vibration of a simply supported composite circular cylindrical shell under periodic partial edge loadings is discussed in this article. Donnell's nonlinear shallow shell theory considering first order shear deformation theory is used to model the shell. The applied partial edge loading is represented in terms of a Fourier series and stress distributions within the cylindrical shell are determined by prebuckling analysis. The governing equations of the dynamic instability of shells are derived in terms of displacements (u-v-w) and rotations (φx, φθ). Employing the Galerkin and Bolotin methods the dynamic instability regions are computed. Using the expression for the stress function derived in this paper, the pre-buckling stresses in the cylindrical shell due to partial loading can be calculated explicitly. Numerical results are presented to show the influence of radius-to-thickness ratio, different partial edge loading distributions and shear deformation on the dynamic instability regions. The linear and nonlinear responses in the stable and unstable regions are presented to bring out the characteristic features of the dynamic instability regions, such as the existence of beats, its dependence on forcing frequency and effect of nonlinearity on the response. The effect of dynamic load amplitude on the nonlinear response is also studied. It is found that for higher values of dynamic loading, the shell exhibits chaotic behavior.

  18. Monotonic and fatigue properties of kenaf /glass hybrid composites under fully reversed cyclic loading

    NASA Astrophysics Data System (ADS)

    Sharba, M. J.; Leman, Z.; Sultan, M. T. H.; Ishak, M. R.; Hanim, M. A. A.

    2015-12-01

    The aim of this work is to investigate the effect of hybridization of kenaf-glass fibers reinforced unsaturated polyester on fatigue life. Three types of composites were fabricated using hands lay-up method, namely, kenaf, glass, and hybrid composites with 30% of weight fraction, the hybrid was mixed with a ratio of kenaf: glass 10:20. Monotonic tests were achieved (Tensile and compression) to determine the fatigue stress levels. Fully reversed fatigue loading was conducted with a stress ratio of -1 and stress levels 55-85% of the ultimate static stresses, all tests were conducted at 10 Hz of frequency. The results proof a positive hybrid composite; also agree with the rule of mixture that can predict the final composite properties. Moreover, it's been observed an improvement in overall mechanical properties of hybrid compared to individual ones.

  19. Failure mechanisms of laminated carbon-carbon composites; 2: Under shear loads

    SciTech Connect

    Anand, K.; Gupta, V.; Dartford, D. . Thayer School of Engineering)

    1994-03-01

    Failure mechanisms under both interlaminar and in-plane shear loading are determined for two-dimensional carbon-carbon composites by using a direct shear set-up. This set-up is applicable for both types of shear loading as manufactured laminate thickness can be tested without the need to make long samples by gluing different pieces together. A detailed finite element analysis, which considers the microstructure of the composite shows that for woven laminates, the initial crimp angle morphology does not allow the composite to deform in a state of simple shear. In fact, normal tensile and compressive stresses of almost twice the magnitude of the peak shear stress are produced in the vicinity of the crimped bundles. Consistent with these predictions, the authors observed the shear fault following the crimp boundaries in 0[degree]/90[degree] and quasi-isotropic laminates. Therefore, experimental techniques which can secure a state of pure shear stress in aligned, unkinked, uniaxial fiber composites cannot do so in woven laminated composites.

  20. Local stresses in metal matrix composites subjected to thermal and mechanical loading

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.

    1990-01-01

    An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.

  1. Meshless Analysis of Laminated Composite and Sandwich Plates Subjected to Various Types of Loads

    NASA Astrophysics Data System (ADS)

    Singh, Jeeoot; Singh, Sandeep; Shukla, K. K.

    2014-03-01

    The bending analysis of laminated composite and sandwich plates using different radial basis functions and higher-order shear deformation theory is presented. This meshfree technique is insensitive to spatial dimension and considers only a cloud of nodes (centers) for the spatial discretization of both the problem domain and the boundary. Numerical results for simply supported isotropic, symmetric cross-ply composite and sandwich plate are presented. The results are compared with other available results. It is observed that convergence of the polynomial function is faster as compared to other radial basis functions, whereas Gaussian function takes the least solution time. The effect of various types of loadings on sandwich plate is presented.

  2. Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.

    2001-01-01

    Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.

  3. Optimum Design of Composite Sandwich Structures Subjected to Combined Torsion and Bending Loads

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Li, Gangyan; Wang, Chun H.; You, Min

    2012-06-01

    This research is motivated by the increase use of composite sandwich structures in a wide range of industries such as automotive, aerospace and civil infrastructure. To maximise stiffness at minimum weight, the paper develops a minimum weight optimization method for sandwich structure under combined torsion and bending loads. We first extend the minimum-weight design of sandwich structures under bending load to the case of torsional deformation and then present optimum solutions for the combined requirements of both bending and torsional stiffness. Three design cases are identified for a sandwich structure required to meet multiple design constraints of torsion and bending stiffness. The optimum solutions for all three cases are derived. To illustrate the newly developed optimum design solutions, numerical examples are presented for sandwich structures made of either isotropic face skins or orthotropic composite face skins.

  4. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  5. Elastic buckling analysis for composite stiffened panels and other structures subjected to biaxial inplane loads

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    An exact linear analysis method is presented for predicting buckling of structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Element edges normal to the longitudinal axes are assumed to be simply supported. Arbitrary boundary conditions may be specified on any external longitudinal edge of plate-strip elements. The structure or selected elements may be loaded in any desired combination of inplane transverse compression or tension side load and axial compression load. The analysis simultaneously considers all possible modes of instability and is applicable for the buckling of laminated composite structures. Numerical results correlate well with the results of previous analysis methods.

  6. Predicting the residual strength of open-hole (OH) composite specimens subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Ceparano, Angelo; Dell'Aversano, Raffaella

    2016-05-01

    A procedure is reported that allows the prediction of the fatigue life and the residual strength of "open hole" composite specimens subjected to constant amplitude cyclic loadings. Based on a two-parameter phenomenological model explicitly accounting for the maximum applied stress, σmax, and the stress ratio, R, the procedure relies on a relatively small set of experimental fatigue life data. The approach reliability is checked in predicting the fatigue life and residual strength of AS4 carbon/epoxy 3k/E7K8 Plain Weave Fabric "open-hole" (OH) samples subjected to a very broad loading conditions from prevailing tension (R=0 and R=-0.2) to compression (R=5) to mixed tension/compression (R=-1) loadings.

  7. Structural effects of three-dimensional angle-interlock woven composite undergoing bending cyclic loading

    NASA Astrophysics Data System (ADS)

    Jin, LiMin; Yao, Yao; Yu, YiMin; Rotich, Gideon; Sun, BaoZhong; Gu, BoHong

    2014-03-01

    This paper reports the structural effects of three-dimensional (3-D) angle-interlock woven composite (3DAWC) undergoing three-point bending cyclic loading from experimental and finite element analysis (FEA) approaches. In experiment, the fatigue tests were conducted to measure the bending deflection and to observe the damage morphologies. By the FEA approach, a micro-structural unit-cell model of the 3DAWC was established at the yarn level to simulate the fatigue damage. The stress degradation at the loading condition of constant deformation amplitude was calculated to show the degradation of mechanical properties. In addition, the stress distribution, fatigue damage evolution and critical damage regions were also obtained to qualitatively reveal the structural effects and damage mechanisms of the 3DAWC subjected to three-point bending cyclic loading.

  8. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    NASA Technical Reports Server (NTRS)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  9. Investigation and characterization of constraint effects on flaw growth during fatigue loading of composite materials

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Reifsnider, K. L.; Yeung, P.; Gibbins, M. N.

    1979-01-01

    An investigative program is presented in an attempt to add to the current understanding of constraint effects on the response of composite materials under cyclic loading. The objectives were: (1) to use existing data and to develop additional data in order to establish an understanding and quantitative description of flaw growth in unidirectional lamina under cyclic loading at different load direction to fiber direction angles; (2) to establish a similar understanding and description of flaw growth in lamina which are embedded in laminates between other unflawed lamina; (3) to determine the nature of the influence of constraint on flaw growth by quantitatively comparing the results of the tests; and (4) to develop a model and philosophy of constraints effects based on our investigative results.

  10. Multiple spatio-temporal scale modeling of composites subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Crouch, Robert; Oskay, Caglar; Clay, Stephen

    2013-01-01

    This manuscript presents a multiscale modeling methodology for failure analysis of composites subjected to cyclic loading conditions. Computational homogenization theory with multiple spatial and temporal scales is employed to devise the proposed methodology. Multiple spatial scales address the disparity between the length scale of material heterogeneities and the overall structure, whereas multiple temporal scales with almost periodic fields address the disparity between the load period and overall life under cyclic loading. The computational complexity of the multiscale modeling approach is reduced by employing a meso-mechanical model based on eigendeformation based homogenization with symmetric coefficients in the space domain, and an adaptive time stepping strategy based on a quadratic multistep method with error control in the time domain. The proposed methodology is employed to simulate the response of graphite fiber-reinforced epoxy composites. Model parameters are calibrated using a suite of experiments conducted on unidirectionally reinforced specimens subjected to monotonic and cyclic loading. The calibrated model is employed to predict damage progression in quasi-isotropic specimens. The capabilities of the model are validated using acoustic emission testing.

  11. Effects of Imperfections on the Buckling Response of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2000-01-01

    The results of an experimental and numerical study of the effects of imperfections on the buckling response of unstiffened thin-walled composite cylindrical shells are presented. Results that identify the individual and combined effects of traditional initial geometric shell-wall imperfections and non-traditional shell-wall thickness variations, shell-end geometric imperfections and variations in loads applied to the ends of the shells on the shell buckling response are included. In addition, results illustrating the effects of manufacturing flaws in the form of gaps between adjacent pieces of graphite-epoxy tape in some of the laminate plies are presented in detail. The shells have been analyzed with a nonlinear finite-element analysis code that accurately accounts for these effects on the buckling and nonlinear responses of the shells. The numerical results indicate that traditional and nontraditional initial imperfections can cause a significant reduction in the buckling load of a compression-loaded composite shell. Furthermore, the results indicate that the imperfections couple in a nonlinear manner. The numerical results correlate well with the experimental results. The nonlinear analysis results are also compared to the results from a traditional linear bifurcation buckling analysis. The results suggest that the nonlinear analysis procedure can be used for determining accurate, high-fidelity design knockdown factors for shell buckling and collapse. The results can also be used to determine the effects of manufacturing tolerances on the buckling response of composite shells.

  12. Simulation of Complex Cracking in Plain Weave C/SiC Composite under Biaxial Loading

    NASA Technical Reports Server (NTRS)

    Cheng, Ron-Bin; Hsu, Su-Yuen

    2012-01-01

    Finite element analysis is performed on a mesh, based on computed geometry of a plain weave C/SiC composite with assumed internal stacking, to reveal the pattern of internal damage due to biaxial normal cyclic loading. The simulation encompasses intertow matrix cracking, matrix cracking inside the tows, and separation at the tow-intertow matrix and tow-tow interfaces. All these dissipative behaviors are represented by traction-separation cohesive laws. Not aimed at quantitatively predicting the overall stress-strain relation, the simulation, however, does not take the actual process of fiber debonding into account. The fiber tows are represented by a simple rule-of-mixture model where the reinforcing phase is a hypothetical one-dimensional material. Numerical results indicate that for the plain weave C/SiC composite, 1) matrix-crack initiation sites are primarily determined by large intertow matrix voids and interlayer tow-tow contacts, 2) the pattern of internal damage strongly depends on the loading path and initial stress, 3) compressive loading inflicts virtually no damage evolution. KEY WORDS: ceramic matrix composite, plain weave, cohesive model, brittle failure, smeared crack model, progressive damage, meso-mechanical analysis, finite element.

  13. Damage Tolerance of Pre-Stressed Composite Panels Under Impact Loads

    NASA Astrophysics Data System (ADS)

    Johnson, Alastair F.; Toso-Pentecôte, Nathalie; Schueler, Dominik

    2014-02-01

    An experimental test campaign studied the structural integrity of carbon fibre/epoxy panels preloaded in tension or compression then subjected to gas gun impact tests causing significant damage. The test programme used representative composite aircraft fuselage panels composed of aerospace carbon fibre toughened epoxy prepreg laminates. Preload levels in tension were representative of design limit loads for fuselage panels of this size, and maximum compression preloads were in the post-buckle region. Two main impact scenarios were considered: notch damage from a 12 mm steel cube projectile, at velocities in the range 93-136 m/s; blunt impact damage from 25 mm diameter glass balls, at velocities 64-86 m/s. The combined influence of preload and impact damage on panel residual strengths was measured and results analysed in the context of damage tolerance requirements for composite aircraft panels. The tests showed structural integrity well above design limit loads for composite panels preloaded in tension and compression with visible notch impact damage from hard body impact tests. However, blunt impact tests on buckled compression loaded panels caused large delamination damage regions which lowered plate bending stiffness and reduced significantly compression strengths in buckling.

  14. Doxorubicin-loaded mesoporous silica nanoparticle composite nanofibers for long-term adjustments of tumor apoptosis

    NASA Astrophysics Data System (ADS)

    Yuan, Ziming; Pan, Yue; Cheng, Ruoyu; Sheng, Lulu; Wu, Wei; Pan, Guoqing; Feng, Qiming; Cui, Wenguo

    2016-06-01

    There is a high local recurrence (LR) rate in breast-conserving therapy (BCT) and enhancement of the local treatment is promising as a way to improve this. Thus we propose a drug delivery system using doxorubicin (DOX)-loaded mesoporous silica nanoparticle composite nanofibers which can release anti-tumor drugs in two phases—burst release in the early stage and sustained release at a later stage—to reduce the LR of BCT. In the present study, we designed a novel composite nanofibrous scaffold to realize the efficient release of drugs by loading both DOX and DOX-loaded mesoporous silica nanoparticles into an electrospun PLLA nanofibrous scaffold. In vitro results demonstrated that this kind of nanomaterial can release DOX in two phases, and the results of in vivo experiments showed that this hybrid nanomaterial significantly inhibited the tumor growth in a solid tumor model. Histopathological examination demonstrated that the apoptosis of tumor cells in the treated group over a 10 week period was significant. The anti-cancer effects were also accompanied with decreased expression of Bcl-2 and TNF-α, along with up-regulation of Bax, Fas and the activation of caspase-3 levels. The present study illustrates that the mesoporous silica nanoparticle composite nanofibrous scaffold could have anti-tumor properties and could be further developed as adjuvant therapeutic protocols for the treatment of cancer.

  15. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Wu, Guojian; Ruan, Cong; Zhou, Qi; Wang, Yan; Doherty, Winston; Xie, Kui; Wu, Yucheng

    2014-05-01

    The use of composite electrodes based on La0.7Sr0.3VO3 (LSV) for steam electrolysis has uncovered the tremendous potential and capacity inherent in this material. Unfortunately, this material has a major setback of inefficient electrolysis triggered by limited electrocatalytic activity. In this work, an infiltration method is employed to load catalytic-active metal nanoparticles onto the composite electrodes in order to achieve an activity-enhanced electrode performance. The electrical properties of LSV are methodically explored and correlated to electrode performance. At 800 °C in either pure H2 or low hydrogen partial pressure (pH2) of 5%H2/N2, the polarization resistance of symmetrical cells with Ni-loaded LSV (LSV-Ni) cathode is largely enhanced, in contrast to bare LSV cathode. Similar improvement is also achieved for the Fe-loaded LSV (LSV-Fe) cathode in a wide range of hydrogen partial pressures of 5%-100%. The Faraday efficiencies of LSV-Ni and LSV-Fe composite cathodes were remarkably improved for electrolysis in either 3%H2O/4.7H2/Ar or 3%H2O/Ar at 800 °C.

  16. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  17. Mechanically fastened composite laminates subjected to combined bearing-bypass and shear loading

    NASA Technical Reports Server (NTRS)

    Madenci, Erdogan

    1993-01-01

    Bolts and rivets provide a means of load transfer in the construction of aircraft. However, they give rise to stress concentrations and are often the source and location of static and fatigue failures. Furthermore, fastener holes are prone to cracks during take-off and landing. These cracks present the most common origin of structural failures in aircraft. Therefore, accurate determination of the contact stresses associated with such loaded holes in mechanically fastened joints is essential to reliable strength evaluation and failure prediction. As the laminate is subjected to loading, the contact region, whose extent is not known, develops between the fastener and the hole boundary through this contact region, which consists of slip and no-slip zones due to friction. The presence of the unknown contact stress distribution over the contact region between the pin and the composite laminate, material anisotropy, friction between the pin and the laminate, pin-hole clearance, combined bearing-bypass and shear loading, and finite geometry of the laminate result in a complex non-linear problem. In the case of bearing-bypass loading in compression, this non-linear problem is further complicated by the presence of dual contact regions. Previous research concerning the analysis of mechanical joints subjected to combined bearing-bypass and shear loading is non-existent. In the case of bearing-bypass loading only, except for the study conducted by Naik and Crews (1991), others employed the concept of superposition which is not valid for this non-linear problem. Naik and Crews applied a linear finite element analysis with conditions along the pin-hole contact region specified as displacement constraint equations. The major shortcoming of this method is that the variation of the contract region as a function of the applied load should be known a priori. Also, their analysis is limited to symmetric geometry and material systems, and frictionless boundary conditions. Since the

  18. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  19. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells with Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2002-01-01

    Results from a numerical study of the response of thin-wall compression-loaded quasi-isotropic laminated composite cylindrical shells with reinforced and unreinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A high-fidelity nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable dynamic buckling response characteristics. The results illustrate how a compression-loaded shell with an unreinforced cutout can exhibit a complex nonlinear response. In particular, a local buckling response occurs in the shell near the cutout and is caused by a complex nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, the addition of reinforcement around a cutout in a compression-loaded shell can retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell, as expected. However, results are presented that show how certain reinforcement configurations can actually cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved response characteristics.

  20. Buckling Behavior of Compression-Loaded Composite Cylindrical Shells With Reinforced Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Sarnes, James H., Jr.

    2004-01-01

    Results from a numerical study of the response of thin-walled compression-loaded quasi-isotropic laminated composite cylindrical shells with unreinforced and reinforced square cutouts are presented. The effects of cutout reinforcement orthotropy, size, and thickness on the nonlinear response of the shells are described. A nonlinear analysis procedure has been used to predict the nonlinear response of the shells. The results indicate that a local buckling response occurs in the shell near the cutout when subjected to load and is caused by a nonlinear coupling between local shell-wall deformations and in-plane destabilizing compression stresses near the cutout. In general, reinforcement around a cutout in a compression-loaded shell is shown to retard or eliminate the local buckling response near the cutout and increase the buckling load of the shell. However, some results show that certain reinforcement configurations can cause an unexpected increase in the magnitude of local deformations and stresses in the shell and cause a reduction in the buckling load. Specific cases are presented that suggest that the orthotropy, thickness, and size of a cutout reinforcement in a shell can be tailored to achieve improved buckling response characteristics.

  1. Experimental studies on fatigue behavior of macro fiber composite (MFC) under mechanical loading

    NASA Astrophysics Data System (ADS)

    Pandey, Akash; Arockiarajan, A.

    2016-04-01

    Macro fiber Composite (MFC) finds its application in active control, vibration control and sensing elements. MFC can be laminated to surfaces or embedded in the structures to be used as an actuator and sensors. Due to its attractive properties and applications, it may be subjected to continuous loading, which leads to the deterioration of the properties. This study is focused on the fatigue lifetime of MFC under tensile and compressive loading at room temperature. Experiments were performed using 4 point bending setup, with MFC pasted at the center of the mild steel beam, to maintain constant bending stress along MFC. MFC is pasted using vacuum bagging technique. Sinusoidal loading is given to sample while maintaining R=0.13 (for tensile testing) and R=10 (for compressive testing). For d31 and d33 type of MFC, test was conducted for the strain values of 727 μ strain, 1400 μ strain, 1700 μ strain and 1900 μ strain for fatigue under tensile loading. For fatigue under compressive loading, both d33 and d31, was subjected to minimum strain of -2000 μ strain. Decrease in the slope of dielectric displacement vs. strain is the measure for the degradation. 10 percent decrease in the slope is set as the failure criteria. Experimental results show that MFC is very reliable below 1700 μ strain (R=0.13) at the room temperature.

  2. Loading Analysis of Composite Wind Turbine Blade for Fatigue Life Prediction of Adhesively Bonded Root Joint

    NASA Astrophysics Data System (ADS)

    Salimi-Majd, Davood; Azimzadeh, Vahid; Mohammadi, Bijan

    2015-06-01

    Nowadays wind energy is widely used as a non-polluting cost-effective renewable energy resource. During the lifetime of a composite wind turbine which is about 20 years, the rotor blades are subjected to different cyclic loads such as aerodynamics, centrifugal and gravitational forces. These loading conditions, cause to fatigue failure of the blade at the adhesively bonded root joint, where the highest bending moments will occur and consequently, is the most critical zone of the blade. So it is important to estimate the fatigue life of the root joint. The cohesive zone model is one of the best methods for prediction of initiation and propagation of debonding at the root joint. The advantage of this method is the possibility of modeling the debonding without any requirement to the remeshing. However in order to use this approach, it is necessary to analyze the cyclic loading condition at the root joint. For this purpose after implementing a cohesive interface element in the Ansys finite element software, one blade of a horizontal axis wind turbine with 46 m rotor diameter was modelled in full scale. Then after applying loads on the blade under different condition of the blade in a full rotation, the critical condition of the blade is obtained based on the delamination index and also the load ratio on the root joint in fatigue cycles is calculated. These data are the inputs for fatigue damage growth analysis of the root joint by using CZM approach that will be investigated in future work.

  3. Dynamic Fracture of Nanocomposites and Response of Fiber Composite Panels to Shock Loading

    NASA Astrophysics Data System (ADS)

    Shukla, Arun

    2009-06-01

    This lecture will present studies on the response of novel engineering materials to extreme dynamic loadings. In particular, the talk will focus on the behavior of sandwich composite materials to shock loading and dynamic fracture of nano-composite materials. Results from an experimental study on the response of sandwich materials to controlled blast loading will be presented. In this study, a shock tube facility was utilized to apply blast loading to simply supported plates of E-glass vinyl ester/PVC foam sandwich composite materials. Pressure sensors were mounted at the end of the muzzle section of the shock tube to measure the incident pressure and the reflected pressure profiles during the experiment. A high speed digital camera was utilized to capture the real time side deformation of the materials, as well as the development and progression of damage. Macroscopic and microscopic examination was then implemented to study the post-mortem damage. Conclusions on the relative performance of sandwich composites under blast loadings will also be discussed. Results from an experimental investigation conducted to evaluate the mechanical properties of novel materials fabricated using nano sized particles in polymer matrix will also be presented. Unsaturated polyester resin specimens embedded with small loadings of nano sized particles of TiO2 and Al2O3 were fabricated using a direct ultrasonification method to study the effects of nanosized particles on nanocomposite fracture properties. The ultrasonification method employed produced nanocomposites with excellent particle dispersion as verified by TEM. Experiments were conducted to investigate the dynamic crack initiation and rapid crack propagation in theses particle reinforced materials. High-speed digital imaging was employed along with dynamic photoelasticity to obtain real time, full-field quantification of the stress field associated with the dynamic fracture process. Birefringent coatings were used to conduct

  4. The deformation response of three-dimensional woven composites subjected to high rates of loading

    NASA Astrophysics Data System (ADS)

    Pankow, Mark Robert

    The use of polymer matrix composites is widespread, with development in automotive, aerospace and recreational equipment. These applications have produced loading scenarios which are unfamiliar and not well understood. Several applications involve impact loading, which produces large strain rates and delamination failure. New manufacturing methods have led to three dimensional (3D) weave geometries that provide composites with damage protection. This is accomplished through elimination of delamination, and localizing the extent of damage. The present work is a combined experimental and computational study aimed at developing a mechanism based deformation response model for 3D woven composites, including the prediction of failure strengths at high loading rates. Three unique experimental configurations have been developed; along with finite element based simulations to predict the material response and failure mechanisms that are experimentally observed. End Notch Flexure (ENF) tests were used to determine the effectiveness of the Z-fiber at resisting crack propagation. The crack propagation was found to have rate dependent properties, with architecture based parameters required to predict the strength and resistance. The computational results reinforced the experimental observations. A new FE implementation captured the effectiveness of the Z-fiber reinforcement bridging the growing crack. Shock impact testing was performed to simulate the effects of blast loading on the material. New experimental measurement methods were utilized to record the deformations and strains which led to observations of matrix micro-cracking, the first failure mode. Computational models were developed to predict the material behavior subjected to shock loading, including matrix micro-cracking, which was predicted accurately. Finally, split Hopkinson pressure bar (SHPB) testing was done to understand the high strain rate behavior of the material in compression in all three directions. The

  5. A nonlinear solid shell element formulation for analysis of composite panels under blast wave pressure loading

    NASA Astrophysics Data System (ADS)

    Park, Hun

    A comprehensive methodology to accurately predict the dynamic response of composite panels under blast wave pressure loading has been successfully developed for the first time. It includes the modeling of geometrically nonlinear dynamic effect, progressive failure and strain-rate effect on constitutive equation and strength. For dynamic analysis, a nonlinear solid shell element formulation is combined with the trapezoidal rule for numerical integration in time. The progressive damage incorporates the effect of the material failure, such as fiber failure, matrix cracking and fiber-matrix shearing failure on the stiffness and strength. Material degradation models based on the rule of mixtures are proposed for each failure mode. To implement the strain-rate effect on the constitutive equation of the material, a viscoplastic model is adopted. In this model, three material parameters are determined by conducting uniaxial tension tests on off-axis specimen. The effect of strain rates on material strength is implemented via the linear least square fit of the test data. A key ingredient of the analysis is a geometrically nonlinear solid shell element based on the assumed strain formulation to alleviate element locking. In this approach, the composite shell is treated as a three-dimensional solid. Accordingly, the change of shell thickness is allowed and the kinematics of deformation is described by six vector components at a point on the shell midsurface. The mass matrix always remains constant during the analysis. Example problems under static and dynamic loadings are solved to investigate the behavior of composite panels undergoing large deformation while experiencing material damage. The analysis results are compared with the test data available. Results of the numerical analysis show that the effect of the progressive failure and strain-rates on structural responses are considerable. For a composite plate under static pressure loadings, maximum displacement and

  6. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  7. [Preparation and clinical application of polyvinyl alcohol/drug-loaded chitosan microsphere composite wound dressing].

    PubMed

    Zhang, Xiuju; Lin, Zhidan; Chen, Wenbin; Song, Ying; Li, Zhizhong

    2011-04-01

    In order to prepare and apply the polyvinyl alcohol/drug-loaded chitosan microspheres composite wound dressing, we first prepared chitosan microspheres by emulsion cross-linking method, and then added chitosan microspheres into the reactants during the acetalization of polyvinyl alcohol and formaldehyde. We further studied the morphology, water absorption, swelling degree, mechanical properties and in vitro release of the sponge with different amount of chitosan microspheres. The results showed that polyvinyl alcohol/drug-loaded chitosan composite sponge has porous structure with connectionism. Increasing the amount of chitosan microspheres would make the apertures smaller, so that the water absorption and the swelling of sponge decreased, but the tensile strength and compressive strength increased. With the increase of the amount of chitosan microspheres, the drug absorption of cefradine and the release rate increase, and the release time become longer. With the results of toxicity grade of 0 to 1, this type of composite sponge is non-toxic and meets the requirement of biocompatibility. The observation of rabbit nasal cavity after surgical operation suggested that polyvinyl acetal sponge modified with the chitosan has antiphlogistic, hemostatic and non-adherent characteristic, and can promote the healing and recovering of the nasalmucosa. After using this composite material, best growing surroundings for patients' granulation tissue were provided. Exposed bone and tendon were covered well with granulation tissue.

  8. Nonlinear Viscoelastic Response of Unidirectional Polymeric Laminated Composite Plates Under Bending Loads

    NASA Astrophysics Data System (ADS)

    Falahatgar, S. R.; Salehi, Manouchehr

    2011-12-01

    Nonlinear bending analysis of polymeric laminated composite plate is examined considering material nonlinearity for viscoelastic matrix material through a Micro-macro approach. The micromechanical Simplified Unit Cell Method (SUCM) in three-dimensional closed-form solution is used for the overall behavior of the unidirectional composite in any combination of loading conditions. The elastic fibers are transversely isotropic where Schapery single integral equation in multiaxial stress state describes the matrix material by recursive-iterative formulation. The finite difference Dynamic Relaxation (DR) method is utilized to study the bending behavior of Mindlin annular sector plate including geometric nonlinearity under uniform lateral pressure with clamped and hinged edge constraints. The unsymmetrical laminated plate deflection is predicted for different thicknesses and also various pressures in different time steps and they are compared with elastic finite element results. As a main objective, the deflection results of viscoelastic laminated sector plate are obtained for various fiber volume fractions in the composite system.

  9. Achieving highly dispersed nanofibres at high loading in carbon nanofibre-metal composites

    NASA Astrophysics Data System (ADS)

    Kang, Jianli; Nash, Philip; Li, Jiajun; Shi, Chunsheng; Zhao, Naiqin

    2009-06-01

    In order to tap into the advantages of the properties of carbon nanotubes (CNTs) or carbon nanofibres (CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. In the current work, a novel approach, consisting of in situ synthesis of CNFs within the Cu powders and mixing Cu ions with the in situ CNF(Ni/Y)-Cu composite powders in a solvent, was developed to highly disperse CNFs in a Cu matrix. The composite, produced by vacuum hot pressing, shows extremely high strength, 3.6 times more than that of the matrix material alone. It is worth mentioning that this method can disperse CNFs at high loading in a metal matrix, inferring good potential for applications, such as electronic packaging materials.

  10. Models for predicting damage evolution in metal matrix composites subjected to cyclic loading

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-03-01

    A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.

  11. Effect of Piezoelectric Implant on the Structural Integrity of Composite Laminates Subjected to Tensile Loads

    NASA Astrophysics Data System (ADS)

    Masmoudi, Sahir; El Mahi, Abderrahim; Turki, Saïd

    2016-07-01

    The embedment of sensors within composite structures gives the opportunity to develop smart materials for health and usage monitoring systems. This study investigates the use of acoustic emission monitoring with embedded piezoelectric sensor during mechanical tests in order to identify the effects of introducing the sensor into the composite materials. The composite specimen with and without embedded sensor were subject to tensile static and fatigue loading. The analysis and observation of AE signals show that the integration of a sensor presents advantage of the detection of the acoustic events and also show the presence of three or four types of damage during tests. The incorporation of piezoelectric sensor has a negligible influence on the mechanical properties of materials.

  12. Combined effects of organic aerosol loading and fog processing on organic aerosols oxidation and composition

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Tripathi, Sachchida; Gupta, Tarun

    2016-04-01

    Fog is a natural meteorological phenomenon that occurs throughout the world, it contains substantial quantity of liquid water and generally seen as a natural cleansing agent but it also has the potential to form highly oxidized secondary organic aerosols (SOA) via aqueous processing of ambient aerosols. On the other hand higher organic aerosols (OA) loading tend to decrease the overall oxidation level (O/C) of the particle phase organics, due to enhanced partitioning of less oxidized organics from gas to particle phase. However, combined impact of these two parameters; aqueous oxidation and OA loading, on the overall oxidation ratio (O/C) of ambient OA has never been studied. To assess this, real time ambient sampling using HR-ToF-AMS was carried out at Kanpur, India from 15 December 2014 - 10 February 2015. In first 3 weeks of this campaign, very high OA loading is (134 ± 42 μg/m3) observed (termed as high loading or HL period) while loading is substantially reduced from 2nd January, 2016 (56 ± 20 μg/m3, termed as low loading or LL period) . However, both the loading period was affected by several fog episodes (10 in HL and 7 in LL), thus providing the opportunity of studying the combined effects of fog and OA loading on OA oxidation. It is found that O/C ratio is very strongly anti-correlated with OA loading in both the loading period, however, slope of this ant-correlation is much steep during HL period than in LL period. Source apportionment of OA revealed that there is drastic change in the types of OA from HL to LL period, clearly indicating difference in OA composition from HL to LL period. During foggy night continuous oxidation of OA is observed from early evening to early morning with 15-20% enhancement in O/C ratio, while the same is absent during non-foggy period, clearly indicating the efficient fog processing of ambient OA. It is also found that night time fog aqueous oxidation can be as effective as daytime photo chemistry in oxidation of OA. Fog

  13. Buckling analysis of curved composite sandwich panels subjected to inplane loadings

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.

    1993-01-01

    Composite sandwich structures are being considered for primary structure in aircraft such as subsonic and high speed civil transports. The response of sandwich structures must be understood and predictable to use such structures effectively. Buckling is one of the most important response mechanisms of sandwich structures. A simple buckling analysis is derived for sandwich structures. This analysis is limited to flat, rectangular sandwich panels loaded by uniaxial compression (N(sub x)) and having simply supported edges. In most aerospace applications, however, the structure's geometry, boundary conditions, and loading are usually very complex. Thus, a general capability for analyzing the buckling behavior of sandwich structures is needed. The present paper describes and evaluates an improved buckling analysis for cylindrically curved composite sandwich panels. This analysis includes orthotropic facesheets and first-order transverse shearing effects. Both simple support and clamped boundary conditions are also included in the analysis. The panels can be subjected to linearly varying normal loads N(sub x) and N(sub y) in addition to a constant shear load N(sub xy). The analysis is based on the modified Donnell's equations for shallow shells. The governing equations are solved by direct application of Galerkin's method. The accuracy of the present analysis is verified by comparing results with those obtained from finite element analysis for a variety of geometries, loads, and boundary conditions. The limitations of the present analysis are investigated, in particular those related to the shallow shell assumptions in the governing equations. Finally, the computational efficiency of the present analysis is considered.

  14. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  15. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  16. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions.

  17. Analytical Study of Two Pin-Loaded Holes in Unidirectional Fiber-Reinforced Composites.

    PubMed

    Mahdi Attar, Mohammad

    2013-03-01

    The objective of this paper is to investigate the effects of geometrical parameters such as the edge distance-to-hole diameter ratio {e/d}, plate width-to-hole diameter ratio {w/d}, and the distance between two holes-to-hole diameter ratio {l/d} on stress distribution in a unidirectional composite laminate with two serial pin-loaded holes, analytically and numerically. It is assumed that all short and long fibers lie in one direction while loaded by a force po at infinity. To derive differential equations based on a shear lag model, a hexagonal fiber-array model is considered. The resulting pin loads on composite plate are modeled through a series of spring elements accounting for pin elasticity. The analytical solutions are, moreover, compared with the detailed 3D finite element values. A close match is observed between the two methods. The presence of the pins on shear stress distribution in the laminate is also examined for various pin diameters. PMID:24891726

  18. Influence of surface preparation on fracture load of resin composite-based repairs

    PubMed Central

    Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-01-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering. PMID:25810848

  19. Influence of surface preparation on fracture load of resin composite-based repairs.

    PubMed

    Agustín-Panadero, Rubén; Mateos-Palacios, Rocío; Román-Rodríguez, Juan-Luis; Solá-Ruíz, María-Fernanda; Fons-Font, Antonio

    2015-02-01

    The purpose of the present study is to evaluate the fracture load of composite-based repairs to fractured zirconium oxide (Z) crowns and to ceramic-fused-to-metal (CM) crowns, comparing different mechanical surface preparation methods. A total of 75 crowns were repaired; samples then underwent dynamic loading and thermocycling. Final fracture load values for failure of the repaired crowns were measured and the type of fracture registered. Group I: CM: Surface preparation with a diamond bur + 9.5% Hydrofluoric Acid (HF) etching; Group II): CM: air-particle (Al2O3) + 9.5% HF; Group III: CM: Silica coating (SiO2); Group IV): Z: air-particle (Al2O3) + HF 9.5%; Group V) Z: Silica coating (SiO2). Of the three CM groups, Group I (CM-diamond bur) showed the highest mean failure value, with significant difference in comparison with Group III (CM-silica coating). For the zirconia groups, the highest value was obtained by Group V (silica coating). Key words:Crown, ceramic-fused-to-metal, zirconia, resin-composite, ceramic covering.

  20. Coating morphology and surface composition of acrylic terpolymers with pendant catechol, OEG and perfluoroalkyl groups in varying ratio and the effect on protein adsorption.

    PubMed

    Zhong, Jun; Ji, Hua; Duan, Jiang; Tu, Haiyang; Zhang, Aidong

    2016-04-01

    This work aims at developing versatile low-biofouling polymeric coatings by using acrylic terpolymers (DOFs) that bear pendant catechol (D), oligo(ethylene glycol) (O), and perfluoroalkyl (F) groups in varying ratios. The polymers were endowed with the ability to form firmly coatings on virtually any surfaces and undergo surface microphase separation and self-assembly, as revealed by the surface enrichment of F pendants and the morphology variation from irregular solid domains to discrete crater-type aggregates of different size. The effect on protein adsorption was investigated using bovine serum albumin (BSA) and adhesive fibrinogen (Fib) as model proteins. The coating of DOF164 (low F content), which has morphology of discrete crater-type aggregates of ∼ 400 nm in size, adsorbed a least amount of protein but with a highest protein unit activity as determined by SPR and immunosorbent assay; whereas the coating of DOF1612 (high F content) showed a 12.3-fold higher adsorption capacity toward Fib. Interestingly, a 2.2-fold lower adsorption amount but with a 1.8-fold higher unit activity was found for Fib adsorbed on the DOF164 surface than on DOF250 (without F fraction), whose OEG segments being a widely recognized protein compatible material. The features of the DOF164 terpolymer presenting a robust coating ability and a minimal protein adsorption capacity while with a high protein unit activity suggest its potential application as a non-fouling surface-modifier for medical antifouling coatings and as a matrix material for selective protein immobilization and activity preservation in biosensor construction. PMID:26764109

  1. Fatigue degradation in compressively loaded composite laminates. [graphite-epoxy composites

    NASA Technical Reports Server (NTRS)

    Ramkumar, R. L.

    1981-01-01

    The effect of imbedded delaminations on the compression fatigue behavior of quasi-isotropic, T300/5208, graphite/epoxy laminates was investigated. Teflon imbedments were introduced during panel layup to create delaminations. Static and constant amplitude (R=10, omega = 10 Hz) fatigue tests were conducted. S-N data and half life residual strength data were obtained. During static compression loading, the maximum deflection of the buckled delaminated region was recorded. Under compression fatigue, growth of the imbedded delamination was identified as the predominant failure mode in most of the test cases. Specimens that exhibited others failures had a single low stiffness ply above the Teflon imbedment. Delamination growth during fatigue was monitored using DIB enhanced radiography. In specimens with buried delaminations, the dye penetrant (DIB) was introduced into the delaminated region through a minute laser drilled hole, using a hypodermic needle. A low kV, microfocus, X-ray unit was mounted near the test equipment to efficiently record the cyclic growth of buried delaminations on Polaroid film.

  2. Electrical and thermal response of carbon nanotube composites under quasi-static and dynamic loading

    NASA Astrophysics Data System (ADS)

    O'Connell, Christopher D.

    Carbon nanotube (CNT) composites have attracted much interest due to their possible technical applications as conductive polymers and sensory materials. This study will consist of two major objectives: 1.) to investigate the thermal conductivity and thermal response of multi-wall carbon nanotube (MWCNT) composites under quasi-static loading, and 2.) to investigate the electrical response of carboxyl-terminated butadiene (CTBN) rubber-reinforced MWCNT/Epoxy composites under quasi-static and dynamic loading. Similar studies have shown that the electrical conductivity of CNT/Epoxy composites dramatically increases with compressive strains up to 15%. Part 1 seeks to find out if thermal conductivity show a similar response to electrical conductivity under an applied load. Part 2 seeks to investigate how the addition of rubber affects the mechanical and electrical response of the composite subjected to quasi-static and dynamic loading. By knowing how thermal and electrical properties change under a given applied strain, we attempt to broaden the breadth of understanding of CNT/epoxy composites and inqure the microscopic interactions occurring between the two. Electrical experiments sought to investigate the electrical response of rubber-reinforced carbon nanotube epoxy composites under quasi-static and dynamic loading. Specimens were fabricated with CTBN rubber content of 10 parts per hundredth resin (phr), 20 phr, 30 phr and 0 phr for a basis comparison. Both quasi-static and dynamic mechanical response showed a consistent decrease in peak stress and Young's modulus with increasing rubber content. Trends in the electrical response between each case were clearly observed with peak resistance changes ranging from 58% to 73% and with each peak occurring at a higher value with increasing rubber content, with the exception of the rubber-free specimens. It was concluded that among the rubber-embedded specimens, the addition of rubber helped to delay micro-cracking and

  3. Temperature effects on polymer-carbon composite sensors: evaluating the role of polymer molecular weight and carbon loading

    NASA Technical Reports Server (NTRS)

    Homer, M. L.; Lim, J. R.; Manatt, K.; Kisor, A.; Lara, L.; Jewell, A. D.; Yen, S. -P. S.; Shevade, A. V.; Ryan, M. A.

    2003-01-01

    We report the effect of environmental condtions coupled with varying polymer properties and carbon loadings on the performance of polymer-carbon black composite film, used as sensing medium in the JPL Electronic Nose.

  4. The Effect of Delamination on Damage Path and Failure Load Prediction for Notched Composite Laminates

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Chunchu, Prasad B.

    2007-01-01

    The influence of delamination on the progressing damage path and initial failure load in composite laminates is investigated. Results are presented from a numerical and an experimental study of center-notched tensile-loaded coupons. The numerical study includes two approaches. The first approach considers only intralaminar (fiber breakage and matrix cracking) damage modes in calculating the progression of the damage path. In the second approach, the model is extended to consider the effect of interlaminar (delamination) damage modes in addition to the intralaminar damage modes. The intralaminar damage is modeled using progressive damage analysis (PDA) methodology implemented with the VUMAT subroutine in the ABAQUS finite element code. The interlaminar damage mode has been simulated using cohesive elements in ABAQUS. In the experimental study, 2-3 specimens each of two different stacking sequences of center-notched laminates are tensile loaded. The numerical results from the two different modeling approaches are compared with each other and the experimentally observed results for both laminate types. The comparisons reveal that the second modeling approach, where the delamination damage mode is included together with the intralaminar damage modes, better simulates the experimentally observed damage modes and damage paths, which were characterized by splitting failures perpendicular to the notch tips in one or more layers. Additionally, the inclusion of the delamination mode resulted in a better prediction of the loads at which the failure took place, which were higher than those predicted by the first modeling approach which did not include delaminations.

  5. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick

    1993-01-01

    The NLPAN computer code uses a finite-strip approach to the analysis of thin-walled prismatic composite structures such as stiffened panels. The code can model in-plane axial loading, transverse pressure loading, and constant through-the-thickness thermal loading, and can account for shape imperfections. The NLPAN code represents an attempt to extend the buckling analysis of the VIPASA computer code into the geometrically nonlinear regime. Buckling mode shapes generated using VIPASA are used in NLPAN as global functions for representing displacements in the nonlinear regime. While the NLPAN analysis is approximate in nature, it is computationally economical in comparison with finite-element analysis, and is thus suitable for use in preliminary design and design optimization. A comprehensive description of the theoretical approach of NLPAN is provided. A discussion of some operational considerations for the NLPAN code is included. NLPAN is applied to several test problems in order to demonstrate new program capabilities, and to assess the accuracy of the code in modeling various types of loading and response. User instructions for the NLPAN computer program are provided, including a detailed description of the input requirements and example input files for two stiffened-panel configurations.

  6. Characterization of static- and fatigue-loaded carbon composites by X-ray CT

    SciTech Connect

    Savona, V.; Martz, H.E.; Brand, H.R.; Groves, S.E.; DeTeresa, S.J.

    1995-08-31

    The development and improvement of advanced materials is strictly connected to the understanding of the properties and behavior of such materials as a function of both their macro and micro-structures. The application of X-ray computed tomography (CT) to these materials allows for a better understanding of the materials properties and behavior on either macro or micro-structure scales. The authors applied CT to study a set of aerospace grade carbon fiber/thermoplastic matrix composites. Samples of APC-2 (PEEK/AS4) were subjected to either static or high-stress fatigue loading in tension. Both notched (central circular hole) and unnotched specimens were examined. They are investigating a high-temperature thermoplastic polyimide composite sample by acquiring CT data sets before, during (at set intervals), and after full-reversal (tension-compression), low-stress fatigue loading at the upper use temperature. The CT scanner employed and the results obtained in the analysis of 3D CT data sets to study the defects and other features within the different composites are presented in this report.

  7. Tribological Performance of NiAl Self-lubricating Matrix Composite with Addition of Graphene at Different Loads

    NASA Astrophysics Data System (ADS)

    Xiao, Yecheng; Shi, Xiaoliang; Zhai, Wenzheng; Yao, Jie; Xu, Zengshi; Chen, Long; Zhu, Qingshuai

    2015-08-01

    This research was carried out on the beneficial effect of graphene additive in self-lubricating composites for use at different loads of tribological application. The dry friction and wear behaviors of NiAl self-lubricating matrix composite with graphene (NSMG) were investigated at different loads at room temperature. Finite element method served as aided method to analyze the stress condition of contact pair, which would provide another perspective to comprehend the relationship between tribological behaviors and different degrees of load-induced deformation. In the load range of 2-16 N, the results indicated that NSMG showed excellent tribological performance at load of 16 N due to the formation of anti-friction tribo-film on the worn surface. Moreover, suitable load would lead to the contact situation transfer from multi-point contact to area contact, which could contribute to the beneficial effect on friction behavior of NSMG.

  8. [Acrylic resin removable partial dentures].

    PubMed

    de Baat, C; Witter, D J; Creugers, N H J

    2011-01-01

    An acrylic resin removable partial denture is distinguished from other types of removable partial dentures by an all-acrylic resin base which is, in principle, solely supported by the edentulous regions of the tooth arch and in the maxilla also by the hard palate. When compared to the other types of removable partial dentures, the acrylic resin removable partial denture has 3 favourable aspects: the economic aspect, its aesthetic quality and the ease with which it can be extended and adjusted. Disadvantages are an increased risk of caries developing, gingivitis, periodontal disease, denture stomatitis, alveolar bone reduction, tooth migration, triggering of the gag reflex and damage to the acrylic resin base. Present-day indications are ofa temporary or palliative nature or are motivated by economic factors. Special varieties of the acrylic resin removable partial denture are the spoon denture, the flexible denture fabricated of non-rigid acrylic resin, and the two-piece sectional denture. Furthermore, acrylic resin removable partial dentures can be supplied with clasps or reinforced by fibers or metal wires.

  9. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    DOE PAGES

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cagın, T.; Goddard, III, W. A.

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. Themore » CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.« less

  10. Test and Modelling of Impact on Pre-Loaded Composite Panels

    NASA Astrophysics Data System (ADS)

    Pickett, A. K.; Fouinneteau, M. R. C.; Middendorf, P.

    2009-08-01

    Currently test and simulation of low and high speed impact of Aerospace composite structures is undertaken in an unloaded state. In reality this may not be the case and significant internal stresses could be present during an impact event such as bird strike during landing, or takeoff. In order to investigate the effects of internal loading on damage and failure of composite materials a series of experimental and simulation studies have been undertaken on three composite types having different fibres, resins and lay-ups. For each composite type panels have been manufactured and transversely impacted under the condition of ‘unloading’ or ‘pre-loading’. For preloading a rig has been constructed that can impose a constant in plane strain of up to 0.25% prior to impact. Results have clearly shown that preloading does lower the composite impact tolerance and change the observed failure modes. Simulation of experiments have also been conducted and have provided an encouraging agreement with test results in terms of both impact force time histories and prediction of the observed failure mechanisms.

  11. Dynamic response of phenolic resin and its carbon-nanotube composites to shock wave loading

    SciTech Connect

    Arman, B.; An, Q.; Luo, S. N.; Desai, T. G.; Tonks, D. L.; Cagın, T.; Goddard, III, W. A.

    2011-01-04

    We investigate with nonreactive molecular dynamics simulations the dynamic response of phenolic resin and its carbon-nanotube (CNT) composites to shock wave compression. For phenolic resin, our simulations yield shock states in agreement with experiments on similar polymers except the “phase change” observed in experiments, indicating that such phase change is chemical in nature. The elastic–plastic transition is characterized by shear stress relaxation and atomic-level slip, and phenolic resin shows strong strain hardening. Shock loading of the CNT-resin composites is applied parallel or perpendicular to the CNT axis, and the composites demonstrate anisotropy in wave propagation, yield and CNT deformation. The CNTs induce stress concentrations in the composites and may increase the yield strength. Our simulations indicate that the bulk shock response of the composites depends on the volume fraction, length ratio, impact cross-section, and geometry of the CNT components; the short CNTs in current simulations have insignificant effect on the bulk response of resin polymer.

  12. The behavior of elastic anisotropic laminated composite flat structures subjected to deterministic and random loadings

    NASA Technical Reports Server (NTRS)

    Librescu, Liviu

    1990-01-01

    Within this research project, the following topics were studied: (1) foundation of the refined theory of flat cross-ply laminated composite flat and curved panels as well as their static and dynamic response analysis; (2) foundation of a geometrically-nonlinear shear-deformable theory of composite laminated flat panels including the effect of initial geometric imperfections and its application in the postbuckling analysis; (3) the study of the dynamic response of shear deformable elastic laminated composite panels to deterministic time-dependent external excitations as the sonic boom and explosive blast type-loadings; (4) the study of the dynamic response of shear deformable elastic laminated composite panels to random excitation as e.g. the one produced by a jet noise or by any time-dependent external excitation whose characteristics are expressed in a statistical sense; and (5) the dynamic stability of fiber-reinforced composite flat panels whose materials (due to e.g. an ambient high temperature field) exhibit a time-dependent physical behavior.

  13. Macroscopic Mechanical Characterization of SMAs Fiber-Reinforced Hybrid Composite Under Uniaxial Loading

    NASA Astrophysics Data System (ADS)

    Lei, Hongshuai; Wang, Zhenqing; Tong, Liyong; Tang, Xiaojun

    2013-10-01

    This paper presents an experimental and theoretical investigation on the macroscopic mechanical behavior of shape memory alloys (SMAs) fiber-reinforced glass/resin composite subject to uniaxial loading at ambient temperature. A series of unidirectional SMAs reinforced composite laminates is fabricated through vacuum-assisted resin injection. Scanning electron microscopy is conducted to evaluate the interfacial cohesive quality between SMAs fiber and matrix. A theoretical model is proposed based on the SMAs phase transformation model and rule of mixture. Uniaxial tensile tests are performed to study the effects of weak interface and SMAs fiber volume fraction on the effective modulus of composite. Failure morphology of composite is discussed based on the observation using digital HF microscope. Due to the effects of phase transformation and weak interface, the overall stiffness of SMAs composite at the second stage is on average 10% lower than theoretical results. The rupture elongation of experimental result is approximately 13% higher than theoretical result. The local interfacial debonding between SMAs fiber and glass/resin matrix is the main failure mode.

  14. Development of Composite Scaffolds for Load-Bearing Segmental Bone Defects

    PubMed Central

    2013-01-01

    The need for a suitable tissue-engineered scaffold that can be used to heal load-bearing segmental bone defects (SBDs) is both immediate and increasing. During the past 30 years, various ceramic and polymer scaffolds have been investigated for this application. More recently, while composite scaffolds built using a combination of ceramics and polymeric materials are being investigated in a greater number, very few products have progressed from laboratory benchtop studies to preclinical testing in animals. This review is based on an exhaustive literature search of various composite scaffolds designed to serve as bone regenerative therapies. We analyzed the benefits and drawbacks of different composite scaffold manufacturing techniques, the properties of commonly used ceramics and polymers, and the properties of currently investigated synthetic composite grafts. To follow, a comprehensive review of in vivo models used to test composite scaffolds in SBDs is detailed to serve as a guide to design appropriate translational studies and to identify the challenges that need to be overcome in scaffold design for successful translation. This includes selecting the animal type, determining the anatomical location within the animals, choosing the correct study duration, and finally, an overview of scaffold performance assessment. PMID:23984363

  15. The creep behavior of acrylic denture base resins.

    PubMed

    Sadiku, E R; Biotidara, F O

    1996-01-01

    The creep behavior of acrylic dental base resins, at room temperature and at different loading conditions, has been examined. The behaviors of these resins are similar to that of "commercial perspex" at room temperature over a period of 1000 seconds. The pseudo-elastic moduli of the blends of PMMA VC show a significant increase compared with PMMA alone. The addition of the PVC powder to the heat-cured acrylic resin increased the time-dependent elastic modulus. This increase in elastic modulus is advantageous in the production of denture based resins of improv mechanical properties.

  16. Buckling and Failure of Compression-Loaded Composite Laminated Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2007-01-01

    Results from a numerical and experimental study that illustrate the effects of laminate orthotropy on the buckling and failure response of compression-loaded composite cylindrical shells with a cutout are presented. The effects of orthotropy on the overall response of compression-loaded shells is described. In general, preliminary numerical results appear to accurately predict the buckling and failure characteristics of the shell considered herein. In particular, some of the shells exhibit stable post-local-buckling behavior accompanied by interlaminar material failures near the free edges of the cutout. In contrast another shell with a different laminate stacking sequence appears to exhibit catastrophic interlaminar material failure at the onset of local buckling near the cutout and this behavior correlates well with corresponding experimental results.

  17. Damage Simulation in Non-Crimp Fabric Composite Plates Subjected to Impact Loads

    NASA Technical Reports Server (NTRS)

    Satyanarayana, Arunkumar; Bogert, Philip B.; Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid

    2014-01-01

    Progressive failure analysis (PFA) of non-crimp fabric (NCF) composite laminates subjected to low velocity impact loads was performed using the COmplete STress Reduction (COSTR) damage model implemented through VUMAT and UMAT41 user subroutines in the frame works of the commercial finite element programs ABAQUS/Explicit and LS-DYNA, respectively. To validate the model, low velocity experiments were conducted and detailed correlations between the predictions and measurements for both intra-laminar and inter-laminar failures were made. The developed material and damage model predicts the peak impact load and duration very close with the experimental results. Also, the simulation results of delamination damage between the ply interfaces, in-plane matrix damages and fiber damages were all in good agreement with the measurements from the non-destructive evaluation data.

  18. Composite load bearing outer skin for an arctic structure and a method for erecting same

    SciTech Connect

    Chen, J.; Birdy, J. N.; Watt, B. J.

    1985-08-27

    The load bearing outer skin contains an inner assembly and an outer assembly. Both the inner and outer assemblies include a skin plate member which is stiffened by stiffeners welded to one side of the skin plate member. The stiffeners are located at spaced intervals from each other and are disposed substantially perpendicular to the skin plate member. The inner and outer assembly are placed substantially parallel to each other to form a composite structure having an internal cavity defined by the inner and outer plates. The stiffeners of the inner assembly and the outer assembly are disposed in the cavity at a spaced relation to each other and extend partly into the cavity. A cementitious material substantially fills the cavity thereby completing the load bearing outer skin structure. The stiffeners may be flat steel plates or may have the profile of structural shapes such as angles or T's among others.

  19. Damage Evolution in Composite Materials and Sandwich Structures Under Impulse Loading

    NASA Astrophysics Data System (ADS)

    Silva, Michael Lee

    Damage evolution in composite materials is a rather complex phenomenon. There are numerous failure modes in composite materials stemming from the interaction of the various constituent materials and the particular loading conditions. This thesis is concerned with investigating damage evolution in sandwich structures under repeated transient loading conditions associated with impulse loading due to hull slamming of high-speed marine craft. To fully understand the complex stress interactions, a full field technique to reveal stress or strain is required. Several full field techniques exist but are limited to materials with particular optical properties. A full field technique applicable to most materials is known as thermoelastic stress analysis (TSA) and reveals the variation in sum of principal stresses of a cyclically loaded sample by correlating the stresses to a small temperature change occurring at the loading frequency. Digital image correlation (DIC) is another noncontact full field technique that reveals the deformation field by tracking the motion of subsets of a random speckle pattern during the loading cycles. A novel experimental technique to aid in the study of damage progression that combines TSA and DIC simultaneously utilizing a single infrared camera is presented in this thesis. A technique to reliably perform DIC with an infrared (IR) camera is developed utilizing variable emissivity paint. The thermal data can then be corrected for rigid-body motion and deformation such that each pixel represents the same material point in all frames. TSA is then performed on this corrected data, reducing motion blur and increasing accuracy. This combined method with a single infrared camera has several advantages, including a straightforward experimental setup without the need to correct for geometric effects of two spatially separate cameras. Additionally, there is no need for external lighting in TSA as the measured electromagnetic radiation is emitted by the

  20. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  1. Fate of alkylphenolic compounds during activated sludge treatment: impact of loading and organic composition.

    PubMed

    McAdam, Ewan J; Bagnall, John P; Soares, Ana; Koh, Yoong K K; Chiu, Tze Y; Scrimshaw, Mark D; Lester, John N; Cartmell, Elise

    2011-01-01

    The impact of loading and organic composition on the fate of alkylphenolic compounds in the activated sludge plant (ASP) has been studied. Three ASP designs comprising carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification treatment were examined to demonstrate the impact of increasing levels of process complexity and to incorporate a spectrum of loading conditions. Based on mass balance, overall biodegradation efficiencies for nonylphenol ethoxylates (NPEOs), short chain carboxylates (NP(1-3)EC) and nonylphenol (NP) were 37%, 59%, and 27% for the carbonaceous, carbonaceous/nitrification, and carbonaceous/nitrification/denitrification ASP, respectively. The presence of a rich community of ammonia oxidizing bacteria does not necessarily facilitate effective alkylphenolic compound degradation. However, a clear correlation between alkylphenolic compound loading and long chain ethoxylate compound biodegradation was determined at the three ASPs, indicating that at higher initial alkylphenolic compound concentrations (or load), greater ethoxylate biotransformation can occur. In addition, the impact of settled sewage organic composition on alkylphenolic compound removal was evaluated. A correlation between the ratio of chemical oxygen demand (COD) to alkylphenolic compound concentration and biomass activity was determined, demonstrating the inhibiting effect of bulk organic matter on alkylphenol polyethoxylate transformation activity. At all three ASPs the biodegradation pathway proposed involves the preferential biodegradation of the amphiphilic ethoxylated compounds, after which the preferential attack of the lipophilic akylphenol moiety occurs. The extent of ethoxylate biodegradation is driven by the initial alkylphenolic compound concentration and the proportion of COD constituted by the alkylphenol polyethoxylates (APEOs) and their metabolites relative to the bulk organic concentration of the sewage composed of proteins, acids, fats

  2. Interpreting the "g" Loadings of Intelligence Test Composite Scores in Light of Spearman's Law of Diminishing Returns

    ERIC Educational Resources Information Center

    Reynolds, Matthew R.

    2013-01-01

    The linear loadings of intelligence test composite scores on a general factor ("g") have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the "g" loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a)…

  3. Real time acousto-ultrasonic NDE technique for monitoring damage in ceramic composites under dynamic loads

    NASA Technical Reports Server (NTRS)

    Tiwari, Anil

    1995-01-01

    Research effort was directed towards developing a near real-time, acousto-ultrasonic (AU), nondestructive evaluation (NDE) tool to study the failure mechanisms of ceramic composites. Progression of damage is monitored in real-time by observing the changes in the received AU signal during the actual test. During the real-time AU test, the AU signals are generated and received by the AU transducers attached to the specimen while it is being subjected to increasing quasi-static loads or cyclic loads (10 Hz, R = 1.0). The received AU signals for 64 successive pulses were gated in the time domain (T = 40.96 micro sec) and then averaged every second over ten load cycles and stored in a computer file during fatigue tests. These averaged gated signals are representative of the damage state of the specimen at that point of its fatigue life. This is also the first major attempt in the development and application of real-time AU for continuously monitoring damage accumulation during fatigue without interrupting the test. The present work has verified the capability of the AU technique to assess the damage state in silicon carbide/calcium aluminosilicate (SiC/CAS) and silicon carbide/ magnesium aluminosilicate (SiC/MAS) ceramic composites. Continuous monitoring of damage initiation and progression under quasi-static ramp loading in tension to failure of unidirectional and cross-ply SiC/CAS and quasi-isotropic SiC/MAS ceramic composite specimens at room temperature was accomplished using near real-time AU parameters. The AU technique was shown to be able to detect the stress levels for the onset and saturation of matrix cracks, respectively. The critical cracking stress level is used as a design stress for brittle matrix composites operating at elevated temperatures. The AU technique has found that the critical cracking stress level is 10-15% below the level presently obtained for design purposes from analytical models. An acousto-ultrasonic stress-strain response (AUSSR) model

  4. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This report documents the outcome of the assessment.

  5. Description of the HiMAT Tailored composite structure and laboratory measured vehicle shape under load

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.

    1981-01-01

    The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.

  6. Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    PubMed Central

    Aggelis, D. G.; Dassios, K. G.; Kordatos, E. Z.; Matikas, T. E.

    2013-01-01

    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism. PMID:24381524

  7. Interaction of mixed mode loading on cyclic debonding in adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mall, S.; Rezaizadeh, M. A.; Ramamurthy, G.

    1985-01-01

    A combined experimental and analytical investigation of an adhesively-bonded composite joint was conducted to characterize the fracture mode dependence of cyclic debonding. The system studied consisted of graphite/epoxy adherends bonded with EC 3445 adhesive. Several types of specimens are tested which provide the cyclic debond growth rate measurements under various load conditions: mode 1, mixed mode 1 to 2, and mostly mode 2. This study shows that the total strain-energy-release rate is the governing factor for cyclic debonding.

  8. ANISAP: A three-dimensional finite element program for laminated composites subjected to mechanical loading

    NASA Technical Reports Server (NTRS)

    Burns, S. W.; Mathison, S.; Herakovich, C. T.

    1986-01-01

    ANISAP is a 3-D finite element FORTRAN 77 computer code for linear elastic, small strain, analysis of laminated composites with arbitrary geometry including free edges and holes. Individual layers may be isotropic or transversely isotropic in material principal coordinates; individual layers may be rotated off-axis about a global z-axis. The laminate may be a hybrid. Three different isoparametric elements, variable order of gaussian integration, calculation of stresses at element boundaries, and loading by either nodal displacement of forces are included in the program capability. Post processing capability includes failure analysis using the tensor polynominal failure criterion.

  9. Characterization of failure processes in tungsten copper composites under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Kim, Yong-Suk; Verrilli, Michael J.; Gabb, Timothy P.

    1989-01-01

    A fractographic and metallographic investigation was performed on specimens of a tungsten fiber reinforced copper matrix composite (9 vol percent), which had experienced fatigue failures at elevated temperatures. Major failure modes and possible failure mechanisms, with an emphasis placed on characterizing fatigue damage accumulation, were determined. Metallography of specimens fatigued under isothermal cyclic loading suggested that fatigue damage initiates in the matrix. Cracks nucleated within the copper matrix at grain boundaries, and they propagated through cavity coalescence. The growing cracks subsequently interacted with the reinforcing tungsten fibers, producing a localized ductile fiber failure. Examinations of interrupted tests before final failure confirmed the suggested fatigue damage processes.

  10. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. [Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  11. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading: Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approx. 9 inches from the source) dominated by direct wave propagation, mid-field environment (approx. 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  12. Progressive damage and delamination in composite plates under dynamic loading: Analytical modeling and experimental validation

    NASA Astrophysics Data System (ADS)

    Bamford, David Jennings

    A general methodology for determining and tracking progressive damage in woven fabric laminated composite plates subjected to dynamic loads has been developed and experimentally validated. The progressive damage theory is based on three-dimensional rate-dependent elasticity and nonlinear anisotropic plasticity which utilizes distinct in-plane and transverse failure criteria and post failure behavior. Delamination is accounted for using two different methods (shear degradation and cohesive layer modeling) and the relative merits of these two approaches are evaluated. The progressive damage theory and delamination modeling capability are implemented in a commercial finite element (FE) code and used to perform validation simulations. Results from off-axis tension tests at different loading rates were used to determine the in-plane material properties for the progressive damage theory. FE simulations of the off-axis tension tests demonstrate that the theory is able to reproduce the observed test results very well over two orders of magnitude of strain rate and at high strains (up to 15%). This includes tracking of the nonlinear stress-strain behavior, prediction of failure load and prediction of the failure mechanism. Results from short beam shear tests are used to determine the transverse material properties for the progressive damage theory and to provide experimental validation of the three-dimensional theory with delamination modeling included. A novel method to determine transverse shear properties based on a 0° short beam shear test is developed and used. Simulations of additional off-axis short beam shear tests with delamination modeling are performed and compared to experimental results for validation. Excellent agreement between the test and simulation results is obtained. Additional validation of the progressive damage theory with delamination modeling was conducted using transversely loaded thick composite disk specimens. The loading rate was adjusted to

  13. A Damage Model for the Simulation of Delamination in Advanced Composites under Variable-Mode Loading

    NASA Technical Reports Server (NTRS)

    Turon, A.; Camanho, P. P.; Costa, J.; Davila, C. G.

    2006-01-01

    A thermodynamically consistent damage model is proposed for the simulation of progressive delamination in composite materials under variable-mode ratio. The model is formulated in the context of Damage Mechanics. A novel constitutive equation is developed to model the initiation and propagation of delamination. A delamination initiation criterion is proposed to assure that the formulation can account for changes in the loading mode in a thermodynamically consistent way. The formulation accounts for crack closure effects to avoid interfacial penetration of two adjacent layers after complete decohesion. The model is implemented in a finite element formulation, and the numerical predictions are compared with experimental results obtained in both composite test specimens and structural components.

  14. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  15. Effects of Nesting on Compression-Loaded 2-D Woven Textile Composites

    NASA Technical Reports Server (NTRS)

    Adams, Daniel OHare; Breiling, Kurtis B.; Verhulst, Mark A.

    1995-01-01

    Layer nesting was investigated in five harness satin weave textile composite laminates under static compression loading. Two carbon/epoxy material systems, AS4/3501-6 and IM7/8551-7A were considered. Laminates were fabricated with three idealized nesting cases: stacked, split-span and diagonal. Similar compression strength reductions due to the effects of idealized nesting were identified for each material. The diagonal nesting geometry produced the largest reduction in static strength when compared to the compression strength of a conventional textile composite. All three nesting cases produced reductions in strength and ultimate strain due to the effects of idealized nesting. Finite element results showed consistent strength reduction trends for the idealized nesting cases, however the magnitudes of compressive strengths were overpredicted.

  16. Axisymmetric micromechanics of elastic-perfectly plastic fibrous composites under uniaxial tension loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1993-01-01

    The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.

  17. Diet and Environment Shape Fecal Bacterial Microbiota Composition and Enteric Pathogen Load of Grizzly Bears

    PubMed Central

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M.; Stenhouse, Gordon B.; Gänzle, Michael

    2011-01-01

    Background Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Methodology/Principal Findings Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. Conclusion This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens. PMID:22194798

  18. Hygrothermal Analysis and Failure Analysis of Composite Beams under Moving Loads

    NASA Astrophysics Data System (ADS)

    Hanif, Moiz

    Excellent combination of high structural stiffness and low weight are the qualities of composite material leading to the extensive work on such materials. In order to achieve the desired performance requirements, the designer has to take into consideration the structural requirements and the functional characteristics. Thus, in this study, the effect of hygrothermal conditions on fiber reinforced composite laminates with moving loads have been extensively studied and has been carried out that accompanies Classical Laminate Plate Theory (CLPT) as well as First Order Shear Deformation Theory (FSDT) on MATLAB. A glass/epoxy composite system has been chosen for study with which similar results may be expected for other laminated composites. The hygrothermal effect is incorporated by adjusting the stiffness coefficients of the laminate to its level of moisture concentration using empirical relations. The failure analysis is done using the maximum normal stress criterion and the factor of safety for the lamina calculated and compared with respect to the corresponding maximum stresses and strengths. Different fiber volume fraction with varying fiber orientation of the plies in the laminate were modeled and studied. The results presented show the effect of stresses and strains in dry conditions, whereas for hygrothermal analysis, they also indicate that not all the laminates behave in a similar fashion and so it is possible by selecting the proper laminate configuration, the effect of moisture can be reduced. Also deducing, that due to hygrothermal effects, changes in the stiffness coefficients of a laminate do not appear to affect the deflection results significantly.

  19. Elastic response of water-filled fiber composite tubes under shock wave loading

    SciTech Connect

    Perotti, Luigi E.; Deiterding, Ralf; Inaba, Kazuaki; Shepherd, Joseph E; Ortiz, Michael

    2013-01-01

    We experimentally and numerically investigate the response of fluid-filled filament-wound composite tubes subjected to axial shock wave loading in water. Our study focuses on the fluid structure interaction occurring when the shock wave in the fluid propagates parallel to the axis of the tube, creating pressure waves in the fluid coupled to flexural waves in the shell. The in-house-developed computational scheme couples an Eulerian fluid solver with a Lagrangian shell solver, which includes a new and simple material model to capture the response of fiber composites in finite kinematics. In the experiments and simulations we examine tubes with fiber winding angles equal to 45 and 60 , and we measure the precursor and primary wave speeds, hoop and longitudinal strains, and pressure. The experimental and computational results are in agreement, showing the validity of the computational scheme in complex fluid structure interaction problems involving fiber composite materials subjected to shock waves. The analyses of the measured quantities show the strong coupling of axial and hoop deformations and the significant effect of fiber winding angle on the composite tube response, which differs substantially from that of a metal tube in the same configuration.

  20. Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy (ALOX).

    SciTech Connect

    Montgomery, Stephen Tedford; Ahn, Sung K. (Washington State University, Pullman, WA); Lee, Moo Yul

    2006-02-01

    Detailed statistical analysis of the experimental data from testing of alumina-loaded epoxy (ALOX) composites was conducted to better understand influences of the selected compositional properties on the compressive strength of these ALOX composites. Analysis of variance (ANOVA) for different models with different sets of parameters identified the optimal statistical model as, y{sub l} = -150.71 + 29.72T{sub l} + 204.71D{sub l} + 160.93S{sub 1l} + 90.41S{sub 2l}-20.366T{sub l}S{sub 2l}-137.85D{sub l}S{sub 1l}-90.08D{sub l}S{sub 2l} where y{sub l} is the predicted compressive strength, T{sub l} is the powder type, D{sub l} is the density as the covariate for powder volume concentration, and S{sub il}(i=1,2) is the strain rate. Based on the optimal statistical model, we conclude that the compressive strength of the ALOX composite is significantly influenced by the three main factors examined: powder type, density, and strain rate. We also found that the compressive strength of the ALOX composite is significantly influenced by interactions between the powder type and the strain rate and between the powder volume concentration and the strain rate. However, the interaction between the powder type and the powder volume concentration may not significantly influence the compressive strength of the ALOX composite.

  1. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    energy of 23.49 kJ/mol for acrylate and 57 kJ/mol for epoxide moeities. Then, hybrid systems pairing hydroxyl-containing acrylates with epoxides were formulated to promote the faster AM mechanism. Monomer composition was changed in the presence of hydroxyl-containing acrylate, and initiators were carefully selected in order to control phase separation. The conversion of acrylate and epoxide was monitored in real time by Raman spectroscopy. The physical and mechanical properties were monitored using dynamic mechanical analysis. Epoxide conversion and rate of polymerization in epoxide-acrylate hybrid monomer systems were shown to increase through the introduction of a hydroxyl group on the meth/acrylate monomer, taking advantage of the faster AM mechanism. In addition, this covalent bond linking the epoxide network to the meth/acrylate polymer chains resulted in little or no phase separation and a reduction of the Tg for the hybrid polymer compared to the neat epoxide. Fundamental knowledge gained from this research will enable the use of epoxy-acrylate hybrid resins in variety of applications. For instance, shrinkage may be reduced in dental fillings, noise and vibration problems in aircraft and other machinery may be controlled, and photopolymerization cost could be reduced in thin film applications.

  2. Antitumor Activity of Doxorubicin-Loaded Carbon Nanotubes Incorporated Poly(Lactic-Co-Glycolic Acid) Electrospun Composite Nanofibers

    NASA Astrophysics Data System (ADS)

    Yu, Yuan; Kong, Lijun; Li, Lan; Li, Naie; Yan, Peng

    2015-08-01

    The drug-loaded composite electrospun nanofiber has attracted more attention in biomedical field, especially in cancer therapy. In this study, a composite nanofiber was fabricated by electrospinning for cancer treatment. Firstly, the carbon nanotubes (CNTs) were selected as carriers to load the anticancer drug—doxorubicin (DOX) hydrochloride. Secondly, the DOX-loaded CNTs (DOX@CNTs) were incorporated into the poly(lactic-co-glycolic acid) (PLGA) nanofibers via electrospinning. Finally, a new drug-loaded nanofibrous scaffold (PLGA/DOX@CNTs) was formed. The properties of the prepared composite nanofibrous mats were characterized by various techniques. The release profiles of the different DOX-loaded nanofibers were measured, and the in vitro antitumor efficacy against HeLa cells was also evaluated. The results showed that DOX-loaded CNTs can be readily incorporated into the nanofibers with relatively uniform distribution within the nanofibers. More importantly, the drug from the composite nanofibers can be released in a sustained and prolonged manner, and thereby, a significant antitumor efficacy in vitro is obtained. Thus, the prepared composite nanofibrous mats are a promising alternative for cancer treatment.

  3. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.

    PubMed

    Chen, Qiang; Li, Wei; Goudouri, Ourania-Menti; Ding, Yaping; Cabanas-Polo, Sandra; Boccaccini, Aldo R

    2015-06-01

    Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules.

  4. Progressive Fracture of Fiber Composite Thin Shell Structures Under Internal Pressure and Axial Loads

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon

    1996-01-01

    Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.

  5. Geometrically nonlinear bending analysis of Metal-Ceramic composite beams under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Torabizadeh, Mohammad Amin

    2013-07-01

    A new method is developed to derive equilibrium equations of Metal-Ceramic beams based on first order shear deformation plate theory which is named first order shear deformation beam theory2(FSDBT2). Equilibrium equations obtained from conventional method (FSDBT1) is compared with FSDBT2 and the case of cylindrical bending of Metal-Ceramic composite plates for non-linear thermomechanical deformations and various loadings and boundary conditions. These equations are solved by using three different methods (analytical, perturbation technique and finite element solution). The through-thickness variation of the volume fraction of the ceramic phase in a Metal-Ceramic beam is assumed to be given by a power-law type function. The non-linear strain-displacement relations in the von-Kármán sense are used to study the effect of geometric non-linearity. Also, four other representative averaging estimation methods, the linear rule, Mori-Tanaka, Self-Consistent and Wakashima-Tsukamoto schemes, by comparing with the power-law type function are also investigated. Temperature distribution through the thickness of the beams in thermal loadings is obtained by solving the one-dimensional heat transfer equation. Finally it is concluded that for Metal-Ceramic composites, these two theories result in identical static responses. Also the displacement field and equilibrium equations in the case of cylindrical bending of Metal-Ceramic plates are the same as those supposed in FSDBT2.

  6. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  7. Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential.

    PubMed

    Chen, Qiang; Li, Wei; Goudouri, Ourania-Menti; Ding, Yaping; Cabanas-Polo, Sandra; Boccaccini, Aldo R

    2015-06-01

    Electrophoretic deposition (EPD) technique has been developed for the fabrication of antibiotic-loaded PHBV microsphere (MS)-alginate antibacterial coatings. The composite coatings deposited from suspensions with different MS concentrations were produced in order to demonstrate the versatility of the proposed method for achieving functional coatings with tailored drug loading and release profiles. Linearly increased deposit mass with increasing MS concentrations was obtained, and MS were found to be homogeneously stabilized in the alginate matrix. Chemical composition, surface roughness and wettability of the deposited coatings were measured by Fourier transform infrared (FTIR) spectroscopy, laser profilometer and water contact angle instruments, respectively. The co-deposition mechanism was described by two separate processes according to the results of relevant measurements: (i) the deposition of alginate-adsorbed MS and (ii) the non-adsorbed alginate. Qualitative antibacterial tests indicated that MS containing coatings exhibit excellent inhibition effects against E. coli (gram-negative bacteria) after 1h of incubation. The proposed coating system combined with the simplicity of the EPD technique can be considered a promising surface modification approach for the controlled in situ delivery of drug or other biomolecules. PMID:25921640

  8. Evaluation of thermal and mechanical loading effects on the structural behavior of a SiC/titanium composite

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Lerch, Bradley A.

    1990-01-01

    Composite specimens of titanium-15-3 matrix reinforced with continuous SCS-6 silicon carbide fibers were tested under a variety of thermal and mechanical loadings. A combined experimental/finite element approach was used to estimate the effective in-situ modulus of the matrix material and to evaluate changes in modulus due to the applied loads. Several fiber orientations were tested. Results indicate that the effect of the thermal loads on composite stiffness varies with fiber orientation. Applications of this method to test specimens damaged by uniaxial tension, thermal cycling, and isothermal fatigue loadings are used to illustrate that by monitoring overall structural behavior, changes in stiffness caused by thermomechanical loading can be detected.

  9. Edge delamination of composite laminates subject to combined tension and torsional loading

    NASA Technical Reports Server (NTRS)

    Hooper, Steven J.

    1990-01-01

    Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.

  10. Ultrasonic Monitoring of Ply Crack and Delamination Formation in Composite Tube Under Torsion Load

    NASA Technical Reports Server (NTRS)

    Johnston, P. H.; Wright, C. W.; Zalameda, J. N.; Seebo, J. P.

    2010-01-01

    As a simple model of a rotor spar, a circular graphite-epoxy composite laminate cylinder was subjected to cyclic torsional load. The test section of the cylindrical specimen varied from four to six plies of plus or minus 45 degree fibers, due to intentional ply overlaps and gaps. A layer of 13-micrometer Teflon film was inserted between plies at three locations to serve as delamination initiators. A commercial X-Y scanner was mounted to the load frame to enable ultrasonic inspection without removing the specimen. A focused immersion probe was mounted in a captive water column with a rugged Nitrile membrane tip, which was coupled to the cylinder using a mist of soapy water. The transducer was aligned normal to the cylinder surface using the X-axis. Scanning was performed along the length of the specimen with the Y-axis and the specimen was incrementally rotated by the torsion head of the load frame. After 350k cycles of torsion, several linear 45 degree diagonal indications appeared as 5-40% attenuation of the back wall echo, with no apparent echoes from the interior of the composite, suggesting through-ply cracks in the innermost ply. Crack indications grew and new cracks appeared as torsion cycling continued. Internal reflections from delaminations associated with the growing ply cracks appeared after 500k cycles. Three areas of extensive multi-layer delaminations appeared after 1150k cycles. Failure of the specimen occurred at 1600k cycles. The observed progressive damage was not associated with the Teflon inclusions. Concurrent thermographic measurements provided lower resolution confirmation of the damage observed.

  11. The Development of a Conical Composite Energy Absorber for Use in the Attenuation of Crash/Impact Loads

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.

    2014-01-01

    A design for a novel light-weight conical shaped energy absorbing (EA) composite subfloor structure is proposed. This composite EA is fabricated using repeated alternating patterns of a conical geometry to form long beam structures which can be implemented as aircraft subfloor keel beams or frame sections. The geometrical features of this conical design, along with the hybrid composite materials used in the manufacturing process give a strength tailored to achieve a constant 25-40 g sustained crush load, small peak crush loads and long stroke limits. This report will discuss the geometrical design and fabrication methods, along with results from static and dynamic crush testing of 12-in. long subcomponents.

  12. In vitro release studies of vitamin B 12 from poly N-vinyl pyrrolidone/starch hydrogels grafted with acrylic acid synthesized by gamma radiation

    NASA Astrophysics Data System (ADS)

    Eid, M.

    2008-12-01

    Co-polymeric hydrogels containing N-vinyl pyrrolidone and starch grafted with acrylic acid were synthesized by gamma radiation to be used as drug delivery system. Their gel contents, grafting swelling and thermal gravimetric analysis were evaluated. The gel content increases by increasing the irradiation dose up to 50 kGy, then decreases. The grafting percent increases by the increasing of acrylic acid. The thermal stability and the rate of the thermal decomposition changed according to the different compositions. The maximum rate of the thermal decomposition decreases by increasing the irradiation dose from 20 to 30 kGy and increases by increasing the irradiation dose from 30 to 70 kGy. The hydrogels loaded with vitamin B 12 demonstrated a decrease release in acidic medium than the neutral one.

  13. Prediction of damage evolution in continuous fiber metal matrix composites subjected to fatigue loading

    SciTech Connect

    Allen, D.; Helms, K.; Lagoudas, D.

    1995-08-01

    A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

  14. An Investigation of SiC/SiC Woven Composite Under Monotonic and Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Singh, M.; Lua, J.

    1997-01-01

    The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21 st-century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. The scope of this paper is to report on the material and mechanical characterization of the CMCs subjected to this process and to predict the behavior through an analytical model. An investigation of the SiC/SiC 8-harness woven composite is ongoing and its tensile strength and fatigue behavior is being characterized for room and elevated temperatures. The investigation is being conducted at below and above the matrix cracking stress once these parameters are identified. Fractography and light microscopy results are being studied to characterize the failure modes resulting from pure uniaxial loading. A numerical model is also being developed to predict the laminate properties by using the constituent material properties and tow undulation.

  15. Uncertainty in nutrient loads from tile-drained landscapes: Effect of sampling frequency, calculation algorithm, and compositing strategy

    NASA Astrophysics Data System (ADS)

    Williams, Mark R.; King, Kevin W.; Macrae, Merrin L.; Ford, William; Van Esbroeck, Chris; Brunke, Richard I.; English, Michael C.; Schiff, Sherry L.

    2015-11-01

    Accurate estimates of annual nutrient loads are required to evaluate trends in water quality following changes in land use or management and to calibrate and validate water quality models. While much emphasis has been placed on understanding the uncertainty of nutrient load estimates in large, naturally drained watersheds, few studies have focused on tile-drained fields and small tile-drained headwater watersheds. The objective of this study was to quantify uncertainty in annual dissolved reactive phosphorus (DRP) and nitrate-nitrogen (NO3-N) load estimates from four tile-drained fields and two small tile-drained headwater watersheds in Ohio, USA and Ontario, Canada. High temporal resolution datasets of discharge (10-30 min) and nutrient concentration (2 h to 1 d) were collected over a 1-2 year period at each site and used to calculate a reference nutrient load. Monte Carlo simulations were used to subsample the measured data to assess the effects of sample frequency, calculation algorithm, and compositing strategy on the uncertainty of load estimates. Results showed that uncertainty in annual DRP and NO3-N load estimates was influenced by both the sampling interval and the load estimation algorithm. Uncertainty in annual nutrient load estimates increased with increasing sampling interval for all of the load estimation algorithms tested. Continuous discharge measurements and linear interpolation of nutrient concentrations yielded the least amount of uncertainty, but still tended to underestimate the reference load. Compositing strategies generally improved the precision of load estimates compared to discrete grab samples; however, they often reduced the accuracy. Based on the results of this study, we recommended that nutrient concentration be measured every 13-26 h for DRP and every 2.7-17.5 d for NO3-N in tile-drained fields and small tile-drained headwater watersheds to accurately (±10%) estimate annual loads.

  16. Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading

    NASA Astrophysics Data System (ADS)

    Wade, Bonnie

    different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure

  17. Geochemical composition of river loads in the Tropical Andes: first insights from the Ecuadorian Andes

    NASA Astrophysics Data System (ADS)

    Tenorio Poma, Gustavo; Govers, Gerard; Vanacker, Veerle; Bouillon, Steven; Álvarez, Lenín; Zhiminaicela, Santiago

    2015-04-01

    Processes governing the transport of total suspended material (TSM), total dissolved solids (TDS) and particulate organic carbon (POC) are currently not well known for Tropical Andean river systems. We analyzed the geochemical behavior and the budgets of the particulate and dissolved loads for several sub-catchments in the Paute River basin in the southern Ecuadorian Andes, and examined how anthropogenic activities influenced the dynamics of riverine suspended and dissolved loads. We gathered a large dataset by regularly sampling 8 rivers for their TSM, POC, and TDS. Furthermore, we determined the major elements in the dissolved load and stable isotope composition (δ13C) of both the POC, and the dissolved inorganic carbon (DIC). The rivers that were sampled flow through a wide range of land uses including: 3 nature conservation areas (100 - 300 Km²), an intensive grassland and arable zone (142 Km²); downstream of two cities (1611 and 443 Km²), and 2 degraded basins (286 and 2492 Km²). We described the geochemical characteristics of the river loads both qualitatively and quantitatively. Important differences in TSM, POC and TDS yields were found between rivers: the concentration of these loads increases according with human activities within the basins. For all rivers, TSM, TDS and POC concentrations were dependent on discharge. Overall, a clear relation between TSM and POC (r²=0.62) was observed in all tributaries. The C:N ratios and δ13CPOC suggest that the POC in most rivers is mainly derived from soil organic matter eroded from soils dominated by C3 vegetation (δ13CPOC < -22‰). Low Ca:Si ratios (<1)and high δ13CDIC (-9 to -4) in the Yanuncay, Tomebamba1 and Machángara, rivers suggest that weathering of silica rocks is dominant in these catchments, and that the DIC is mainly derived from the soil or atmospheric CO2. In contrast, the Ca:Si ratio was high for the Burgay and Jadán rivers (1-13), and the low δ13CDIC values (-9 to -15) suggest that

  18. Characterization of light emission from mechanoluminescent composites subjected to high-rate compressive loading (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Castaño, Nicolas; Bhakta, Raj; Romero, Michael; Kimberley, Jamie

    2016-04-01

    This study aims to devise multifunctional composites using fracto-mechanoluminescent (FML) materials and photoactive sensing thin films for autonomous and self-powered impact damage detection. In previous studies, multifunctional photoactive thin films were suggested as a strain sensor that does not require any external electrical source. Instead, the photoactive thin films generated direct current (DC) (or photocurrent) under ambient light, whose magnitude varied linearly with applied strain. In this study, multifunctional FML materials-photoactive thin film composites will be devised for autonomously sensing high-speed compressive strains without supplying any external photonic or electrical energy. FML materials exhibit transformative properties that emit light when its crystalline structures are fractured. The developed photoactive strain sensing thin film will be integrated with the FML materials. Thus, it is envisioned that the FML materials will emit light, which will be supplied to the photoactive sensing thin films when the high-speed compressive loadings break FML materials' crystalline structures. First, synthesized europium tetrakit(dibenzoylmethide) triethylammonium (EuD4TEA) crystals will be embedded in the elastomeric and transparent polydimethylsiloxane (PDMS) matrix to prepare test specimens. Second, the FML properties of the EuD4TEA-PDMS composites will be characterized at various compressive strains, which will be applied by Kolsky bar testing setup. Light emission from the EuD4TEA-PDMS test specimens will be recorded using a high-speed camera. Intensity of the light emissions will be quantified via image processing techniques by taking into account pixel profiles of the high-speed camera captured images (e.g., pixel values, counts of pixels, and RGB values) at various levels of compressive strains. Lastly, the autonomous high-speed compressive sensor modules will be fabricated by integrating the EuD4TEA-PDMS composites with the photoactive thin

  19. Composite bone cements loaded with a bioactive and ferrimagnetic glass-ceramic: Leaching, bioactivity and cytocompatibility.

    PubMed

    Verné, Enrica; Bruno, Matteo; Miola, Marta; Maina, Giovanni; Bianco, Carlotta; Cochis, Andrea; Rimondini, Lia

    2015-08-01

    In this work, composite bone cements, based on a commercial polymethylmethacrylate matrix (Palamed®) loaded with ferrimagnetic bioactive glass-ceramic particles (SC45), were produced and characterized in vitro. The ferrimagnetic bioactive glass-ceramic belongs to the system SiO2-Na2O-CaO-P2O5-FeO-Fe2O3 and contains magnetite (Fe3O4) crystals into a residual amorphous bioactive phase. Three different formulations (containing 10, 15 and 20 wt.% of glass-ceramic particles respectively) have been investigated. These materials are intended to be applied as bone fillers for the hyperthermic treatment of bone tumors. The morphological, compositional, calorimetric and mechanical properties of each formulation have been already discussed in a previous paper. The in vitro properties of the composite bone cements described in the present paper are related to iron ion leaching test (by graphite furnace atomic absorption spectrometer), bioactivity (i.e. the ability to stimulate the formation of a hydroxyapatite - HAp - layer on their surface after soaking in simulated body fluid SBF) and cytocompatibility toward human osteosarcoma cells (ATCC CRL-1427, Mg63). Morphological and chemical characterizations by scanning electron microscopy and energy dispersion spectrometry have been performed on the composite samples after each test. The iron release was negligible and all the tested samples showed the growth of HAp on their surface after 28 days of immersion in a simulated body fluid (SBF). Cells showed good viability, morphology, adhesion, density and the ability to develop bridge-like structures on all investigated samples. A synergistic effect between bioactivity and cell mineralization was also evidenced.

  20. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  1. Evaluation of interlaminar shear strength of a unidirectional carbon/epoxy laminated composite under impact loading

    NASA Astrophysics Data System (ADS)

    Yokoyama, T.; Nakai, K.

    2006-08-01

    The interlaminar shear strength (ILSS) of a unidirectional carbon/epoxy (T700/2521) laminated composite under impact loading is determined using the conventional split Hopkinson pressure bar. Double-notch shear (DNS) specimens with lateral constraint from a supporting jig are used in the static and impact interlaminar compressive shear tests. Short-beam shear specimens are also used under static 3-point bending. Numerical stress analyses are performed to determine the shear stress and normal stress distributions on the expected failure plane in the DNS specimen using the MSC/NASTRAN package. The effect of deformation rate on the ILSS and failure mode is investigated. It is observed that the ILSS is independent of the deformation rate up to nearly 1.5m/s (dotγ ≈ 780/s). The validity of the test results is confirmed by microscopic examinations of both static and impact failure surfaces for the DNS specimens.

  2. Nonlinear dynamic behavior of simply supported laminated composite plates subjected to blast load

    NASA Astrophysics Data System (ADS)

    Kazancı, Zafer; Mecitoğlu, Zahit

    2008-11-01

    This paper deals with the analysis and discussion of nonlinear dynamic response of a laminated composite plate subjected to blast load. Dynamic equations of the plate are derived by the use of the virtual work principle. The geometric nonlinearity effects are taken into account with the von Kármán large deflection theory of thin plates. Approximate solutions for a simply supported plate are assumed for the space domain. The single term approximation functions are selected by considering the nonlinear static deformations of plate, which is obtained using finite element method. The Galerkin Method is used to obtain the nonlinear differential equations in the time domain. The finite difference method is applied to solve the system of coupled nonlinear equations. The results of approximate-numerical analysis are obtained and compared with the literature and finite element results. Good agreement is found for the character and frequencies of vibrations.

  3. Postbuckling of multilayered composite plates subjected to combined axial and thermal loads

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1992-01-01

    A study is made of the postbuckling response of composite plates subjected to combined axial and thermal loadings. The analysis is based on a first-order shear deformation, von Karman type of nonlinear plate theory. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the plate. An efficient reduction method is used in conjunction with mixed finite element models for determining the stability boundary and the postbuckling response of the plate. Sensitivity derivatives are evaluated and used to study the sensitivity of the postbuckling response to variations in the different lamination and material parameters of the plate. For quasi-isotropic plates, numerical results are presented showing the effects of variations in the material characteristics and fiber orientation of individual layers on the postbuckling response of the plate.

  4. A method for the geometrically nonlinear analysis of compressively loaded prismatic composite structures

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.

    1991-01-01

    A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite

  5. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  6. Fatty acid composition of an oral load affects chylomicron size in human subjects.

    PubMed

    Sakr, S W; Attia, N; Haourigui, M; Paul, J L; Soni, T; Vacher, D; Girard-Globa, A

    1997-01-01

    HDL-phospholipids are determinants in reverse cholesterol transport. They are mostly derived from triacylglycerol (TG)-rich lipoproteins. Chylomicron size is important, therefore, because it is related to the ratio surface phospholipids: core TG and, thus, determines the availability of postprandial phospholipids for transfer to HDL. Eleven healthy young women each ingested four different fat loads supplemented with retinyl palmitate and containing 60 g sunflower oil (SO), oleic-sunflower oil (OSO), mixed oil (MO; (g/kg) linoleic acid 480, oleic acid 380, linolenic acid 13) or beef tallow (BT). At the peak of TG absorption for all loads (4 h) chylomicron diameters, determined by agarose-gel filtration, were larger after SO compared with OSO (P < 0.05) and BT (P = 0.06) and after MO compared with BT (P < 0.05). At 6 h chylomicron size was larger after the vegetable oils compared with BT (P < 0.05 in each case). After each fat load chylomicron size decreased at 6 and 8 h compared with that at 4 h (P < 0.05) except for OSO. Retinyl ester and TG concentrations were lower in chylomicrons after BT than after the other fats but not in the chylomicron-free serum (containing chylomicron remnants), suggesting absorption in the form of very small particles. Compared with the fasting value, the concentration of the Svedberg unit of flotation 20-400 fraction, which contains VLDL and chylomicron remnants, was lower 8 h after MO, the only fat to contain significant amounts of linolenic acid. We conclude that chylomicron size is dependent on the fatty acid composition of ingested fats and the time-course of digestion, being larger for polyunsaturated fatty acid-rich fats and in the early phase of digestion. On the basis of retinyl ester concentration there were no differences between fats in chylomicron-remnant clearance.

  7. Bonding auto-polymerising acrylic resin to acrylic denture teeth.

    PubMed

    Nagle, Susan; Ray, Noel J; Burke, Francis M; Gorman, Catherine M

    2009-09-01

    This study investigated the effect of surface treatments on the shear bond strength of an auto-polymerising acrylic resin cured to acrylic denture teeth. The surface treatments included a combination of grit-blasting and/or wetting the surface with monomer. Samples were prepared and then stored in water prior to shear testing. The results indicated that the application of monomer to the surface prior to bonding did not influence the bond strength. Grit blasting was found to significantly increase the bond strength. PMID:19839190

  8. Structural Performance of a Compressively Loaded Foam-Core Hat-Stiffened Textile Composite Panel

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Dexter, Benson H.

    1996-01-01

    A structurally efficient hat-stiffened panel concept that utilizes a structural foam as a stiffener core material has been designed and developed for aircraft primary structural applications. This stiffener concept is fabricated from textile composite material forms with a resin transfer molding process. This foam-filled hat-stiffener concept is structurally more efficient than most other prismatically stiffened panel configurations in a load range that is typical for both fuselage and wing structures. The panel design is based on woven/stitched and braided graphite-fiber textile preforms, an epoxy resin system, and Rohacell foam core. The structural response of this panel design was evaluated for its buckling and postbuckling behavior with and without low-speed impact damage. The results from single-stiffener and multi-stiffener specimen tests suggest that this structural concept responds to loading as anticipated and has excellent damage tolerance characteristics compared to a similar panel design made from preimpregnated graphite-epoxy tape material.

  9. Effect of adherend thickness and mixed mode loading on debond growth in adhesively bonded composite joints

    NASA Technical Reports Server (NTRS)

    Mangalgiri, P. D.; Johnson, W. S.; Everett, R. A., Jr.

    1986-01-01

    Symmetric and unsymmetric double cantilever beam (DCB) specimens were tested and analyzed to assess the effect of: (1) adherend thickness, and (2) a predominantly mode I mixed mode loading on cyclic debond growth and static fracture toughness. The specimens were made of unidirectional composite (T300/5208) adherends bonded together with EC3445 structural adhesive. The thickness was 8, 16, or 24 plies. The experimental results indicated that the static fracture toughness increases and the cyclic debond growth rate decreases with increasing adherend thickness. This behavior was related to the length of the plastic zone ahead of the debond tip. For the symmetric DCB specimens, it was further found that displacement control tests resulted in higher debond growth rates than did load control tests. While the symmetric DCB tests always resulted in cohesive failures in the bondline, the unsymmetric DCB tests resulted in the debond growing into the thinner adherend and the damage progressing as delamination in that adherend. This behavior resulted in much lower fracture toughness and damage growth rates than found in the symmetric DCB tests.

  10. Modeling Delamination in Postbuckled Composite Structures Under Static and Fatigue Loads

    NASA Technical Reports Server (NTRS)

    Bisagni, Chiara; Brambilla, Pietro; Bavila, Carlos G.

    2013-01-01

    The ability of the Abaqus progressive Virtual Crack Closure Technique (VCCT) to model delamination in composite structures was investigated for static, postbuckling, and fatigue loads. Preliminary evaluations were performed using simple Double Cantilever Beam (DCB) and Mixed-Mode Bending (MMB) specimens. The nodal release sequences that describe the propagation of the delamination front were investigated. The effect of using a sudden or a gradual nodal release was evaluated by considering meshes aligned with the crack front as well as misaligned meshes. Fatigue simulations were then performed using the Direct Cyclic Fatigue (DCF) algorithm. It was found that in specimens such as the DCB, which are characterized by a nearly linear response and a pure fracture mode, the algorithm correctly predicts the Paris Law rate of propagation. However, the Abaqus DCF algorithm does not consider different fatigue propagation laws in different fracture modes. Finally, skin/stiffener debonding was studied in an aircraft fuselage subcomponent in which debonding occurs deep into post-buckling deformation. VCCT was shown to be a robust tool for estimating the onset propagation. However, difficulties were found with the ability of the current implementation of the Abaqus progressive VCCT to predict delamination propagation within structures subjected to postbuckling deformations or fatigue loads.

  11. Numerical simulation of the nonlinear response of composite plates under combined thermal and acoustic loading

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Moorthy, Jayashree

    1995-01-01

    A time-domain study of the random response of a laminated plate subjected to combined acoustic and thermal loads is carried out. The features of this problem also include given uniform static inplane forces. The formulation takes into consideration a possible initial imperfection in the flatness of the plate. High decibel sound pressure levels along with high thermal gradients across thickness drive the plate response into nonlinear regimes. This calls for the analysis to use von Karman large deflection strain-displacement relationships. A finite element model that combines the von Karman strains with the first-order shear deformation plate theory is developed. The development of the analytical model can accommodate an anisotropic composite laminate built up of uniformly thick layers of orthotropic, linearly elastic laminae. The global system of finite element equations is then reduced to a modal system of equations. Numerical simulation using a single-step algorithm in the time-domain is then carried out to solve for the modal coordinates. Nonlinear algebraic equations within each time-step are solved by the Newton-Raphson method. The random gaussian filtered white noise load is generated using Monte Carlo simulation. The acoustic pressure distribution over the plate is capable of accounting for a grazing incidence wavefront. Numerical results are presented to study a variety of cases.

  12. Matrix Dominated Failure of Fiber-Reinforced Composite Laminates Under Static and Dynamic Loading

    NASA Astrophysics Data System (ADS)

    Schaefer, Joseph Daniel

    Hierarchical material systems provide the unique opportunity to connect material knowledge to solving specific design challenges. Representing the quickest growing class of hierarchical materials in use, fiber-reinforced polymer composites (FRPCs) offer superior strength and stiffness-to-weight ratios, damage tolerance, and decreasing production costs compared to metals and alloys. However, the implementation of FRPCs has historically been fraught with inadequate knowledge of the material failure behavior due to incomplete verification of recent computational constitutive models and improper (or non-existent) experimental validation, which has severely slowed creation and development. Noted by the recent Materials Genome Initiative and the Worldwide Failure Exercise, current state of the art qualification programs endure a 20 year gap between material conceptualization and implementation due to the lack of effective partnership between computational coding (simulation) and experimental characterization. Qualification processes are primarily experiment driven; the anisotropic nature of composites predisposes matrix-dominant properties to be sensitive to strain rate, which necessitates extensive testing. To decrease the qualification time, a framework that practically combines theoretical prediction of material failure with limited experimental validation is required. In this work, the Northwestern Failure Theory (NU Theory) for composite lamina is presented as the theoretical basis from which the failure of unidirectional and multidirectional composite laminates is investigated. From an initial experimental characterization of basic lamina properties, the NU Theory is employed to predict the matrix-dependent failure of composites under any state of biaxial stress from quasi-static to 1000 s-1 strain rates. It was found that the number of experiments required to characterize the strain-rate-dependent failure of a new composite material was reduced by an order of

  13. Numerical and experimental analysis on load sharing & optimization of the joint parameters of polymer composite multi bolted joints

    NASA Astrophysics Data System (ADS)

    Latha Shankar, B.; Sudeep Kumar, T.; Shiva Shankar, G. S.

    2016-09-01

    In the present work, the bearing failure of composite bolted connections of composite laminates was analysed both experimentally and numerically. The glass fiber woven mat 600GSM/ epoxy composite laminates were prepared using wet-layup technique. The process parameters were taken care during preparation of laminates. Examination is done for various estimations of edge-to-hole diameter and width-to-hole diameter proportion. Stress is evaluated in laminates by utilizing Hart-Smith criteria. Ideal estimation of e/d proportion, d/w proportion is recommended for most extreme effectiveness. A numerical technique is utilized for the rough determination of a load shared by bolts in a numerous "bolted" joints loaded in tension were investigated experimentally and numerically. The effect of un-evenness in load shearing is suggested.

  14. Scale effects in the response and failure of fiber reinforced composite laminates loaded in tension and in flexure

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Morton, John

    1992-01-01

    The feasibility of using scale model testing for predicting the full-scale behavior of flat composite coupons loaded in tension and beam-columns loaded in flexure is examined. Classical laws of similitude are applied to fabricate and test replica model specimens to identify scaling effects in the load response, strength, and mode of failure. Experiments were performed on graphite-epoxy composite specimens having different laminate stacking sequences and a range of scaled sizes. From the experiments it was deduced that the elastic response of scaled composite specimens was independent of size. However, a significant scale effect in strength was observed. In addition, a transition in failure mode was observed among scaled specimens of certain laminate stacking sequences. A Weibull statistical model and a fracture mechanics based model were applied to predict the strength scale effect since standard failure criteria cannot account for the influence of absolute specimen size on strength.

  15. Damage and failure mechanisms of a 3-directional carbon/carbon composite under uniaxial tensile and shear loads

    SciTech Connect

    Siron, O.; Lamon, J.

    1998-11-20

    The mechanical behavior of a three-directional carbon/carbon (C/C) composite under tensile and shear loads is investigated in relation with the failure mechanisms and, the fiber architecture. This three-directional C/C composite was produced by Chemical Vapor Infiltration of a needled fiber preform of multiple layers of satin woven tows. The C/C composite exhibited several interesting features including an essentially non-linear stress-strain behavior and permanent deformations. Three families of matrix cracks were identified under tensile and shear loads, including microcracks in the tows, intertow delamination and cracks across the longitudinal tows. It was found that the delamination cracks affect preponderantly the stress-strain behavior and the mechanical properties. Similar features in the mechanical behavior and the failure mechanisms were highlighted under tension and under shear loading.

  16. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite

    NASA Astrophysics Data System (ADS)

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-01

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite.

  17. Effective load transfer by a chromium carbide nanostructure in a multi-walled carbon nanotube/copper matrix composite.

    PubMed

    Cho, Seungchan; Kikuchi, Keiko; Kawasaki, Akira; Kwon, Hansang; Kim, Yangdo

    2012-08-10

    Multi-walled carbon nanotube (MWCNT) reinforced copper (Cu) matrix composites, which exhibit chromium (Cr) carbide nanostructures at the MWCNT/Cu interface, were prepared through a carbide formation using CuCr alloy powder. The fully densified and oriented MWCNTs dispersed throughout the composites were prepared using spark plasma sintering (SPS) followed by hot extrusion. The tensile strengths of the MWCNT/CuCr composites increased with increasing MWCNTs content, while the tensile strength of MWCNT/Cu composite decreased from that of monolithic Cu. The enhanced tensile strength of the MWCNT/CuCr composites is a result of possible load-transfer mechanisms of the interfacial Cr carbide nanostructures. The multi-wall failure of MWCNTs observed in the fracture surface of the MWCNT/CuCr composites indicates an improvement in the load-bearing capacity of the MWCNTs. This result shows that the Cr carbide nanostructures effectively transferred the tensile load to the MWCNTs during fracture through carbide nanostructure formation in the MWCNT/Cu composite. PMID:22797555

  18. Tin nanoparticle-loaded porous carbon nanofiber composite anodes for high current lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Shen, Zhen; Hu, Yi; Chen, Yanli; Zhang, Xiangwu; Wang, Kehao; Chen, Renzhong

    2015-03-01

    Metallic Sn is a promising high-capacity anode material for use in lithium-ion batteries (LIBs), but its huge volume variation during lithium ion insertion/extraction typically results in poor cycling stability. To address this, we demonstrate the fabrication of Sn nanoparticle-loaded porous carbon nanofiber (Sn-PCNF) composites via the electrospinning of Sn(II) acetate/mineral oil/polyacrylonitrile precursors in N,N-dimethylformamide solvent and their subsequent carbonization at 700 °C under an argon atmosphere. This is shown to result in an even distribution of pores on the surface of the nanofibers, allowing the Sn-PCNF composite to be used directly as an anode in lithium-ion batteries without the need to add non-active materials such as polymer binders or electrical conductors. With a discharge capacity of around 774 mA h g-1 achieved at a high current of 0.8 A g-1 over 200 cycles, this material clearly has a high rate capability and excellent cyclic stability, and thanks to its unique structure and properties, is an excellent candidate for use as an anode material in high-current rechargeable lithium-ion batteries.

  19. Micro/nano composited tungsten material and its high thermal loading behavior

    NASA Astrophysics Data System (ADS)

    Fan, Jinglian; Han, Yong; Li, Pengfei; Sun, Zhiyu; Zhou, Qiang

    2014-12-01

    Tungsten (W) is considered as promising candidate material for plasma facing components (PFCs) in future fusion reactors attributing to its many excellent properties. Current commercial pure tungsten material in accordance with the ITER specification can well fulfil the performance requirements, however, it has defects such as coarse grains, high ductile-brittle transition temperature (DBTT) and relatively low recrystallization temperature compared with its using temperature, which cannot meet the harsh wall loading requirement of future fusion reactor. Grain refinement has been reported to be effective in improving the thermophysical and mechanical properties of W. In this work, rare earth oxide (Y2O3/La2O3) and carbides (TiC/ZrC) were used as dispersion phases to refine W grains, and micro/nano composite technology with a process of 'sol gel - heterogeneous precipitation - spray drying - hydrogen reduction - ordinary consolidation sintering' was invented to introduce these second-phase particles uniformly dispersed into W grains and grain-boundaries. Via this technology, fine-grain W materials with near-full density and relatively high mechanical properties compared with traditional pure W material were manufactured. Preliminary transient high-heat flux tests were performed to evaluate the thermal response under plasma disruption conditions, and the results show that the W materials prepared by micro/nano composite technology can endure high-heat flux of 200 MW/m2 (5 ms).

  20. Preparation and Characterization of New Nano-Composite Scaffolds Loaded With Vascular Stents

    PubMed Central

    Xu, Hongzhen; Su, Jiansheng; Sun, Jun; Ren, Tianbin

    2012-01-01

    In this study, vascular stents were fabricated from poly (lactide-ɛ-caprolactone)/collagen/nano-hydroxyapatite (PLCL/Col/nHA) by electrospinning, and the surface morphology and breaking strength were observed or measured through scanning electron microscopy and tensile tests. The anti-clotting properties of stents were evaluated for anticoagulation surfaces modified by the electrostatic layer-by-layer self-assembly technique. In addition, nano-composite scaffolds of poly (lactic-co-glycolic acid)/polycaprolactone/nano-hydroxyapatite (PLGA/PCL/nHA) loaded with the vascular stents were prepared by thermoforming-particle leaching and their basic performance and osteogenesis were tested in vitro and in vivo. The results show that the PLCL/Col/nHA stents and PLGA/PCL/nHA nano-composite scaffolds had good surface structures, mechanical properties, biocompatibility and could guide bone regeneration. These may provide a new way to build vascularized-tissue engineered bone to repair large bone defects in bone tissue engineering. PMID:22489156

  1. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  2. Frequency and load ratio effects on critical strain energy release rate Gc thresholds of graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Adams, Donald F.; Zimmerman, richard S.; Odom, Edwin M.

    1987-01-01

    Graphite/epoxy composite laminates of T300/BP907 and AS6/HST-7 were axial-tension fatigue tested. Tests were conducted at 5 and 10 Hz, and at loading ratios of R = 0.1 and R = 0.5. Edge delamination was monitored as a function of number of fatigue cycles by monitoring stiffness reduction during fatigue testing. Delamination was confirmed and documented using dye-enhanced X-ray and optical photography. Critical strain energy release rates were then calculated. The composites delaminated readily, with loading ratio having a significant influence. Frequency effects were negligible.

  3. Physical properties, chemical composition, and cloud forming potential of particulate emissions from a marine diesel engine at various load conditions.

    PubMed

    Petzold, A; Weingartner, E; Hasselbach, J; Lauer, P; Kurok, C; Fleischer, F

    2010-05-15

    Particulate matter (PM) emissions from one serial 4-stroke medium-speed marine diesel engine were measured for load conditions from 10% to 110% in test rig studies using heavy fuel oil (HFO). Testing the engine across its entire load range permitted the scaling of exhaust PM properties with load. Emission factors for particle number, particle mass, and chemical compounds were determined. The potential of particles to form cloud droplets (cloud condensation nuclei, CCN) was calculated from chemical composition and particle size. Number emission factors are (3.43 +/- 1.26) x 10(16) (kg fuel)(-1) at 85-110% load and (1.06 +/- 0.10) x 10(16) (kg fuel)(-1) at 10% load. CCN emission factors of 1-6 x 10(14) (kg fuel)(-1) are at the lower bound of data reported in the literature. From combined thermal and optical methods, black carbon (BC) emission factors of 40-60 mg/(kg fuel) were determined for 85-100% load and 370 mg/(kg fuel) for 10% load. The engine load dependence of the conversion efficiency for fuel sulfur into sulfate of (1.08 +/- 0.15)% at engine idle to (3.85 +/- 0.41)% at cruise may serve as input to global emission calculations for various load conditions.

  4. Biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites.

    PubMed

    Gu, Jisheng; Wang, Teng; Fan, Guoxin; Ma, Junhua; Hu, Wei; Cai, Xiaobing

    2016-04-01

    The aim of this study was to evaluate the in vitro and in vivo biocompatibility of artificial bone based on vancomycin loaded mesoporous silica nanoparticles and calcium sulfate composites. In vitro cytotoxicity tests by cholecystokinin octapeptide (CCK-8) assay showed that the 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements were cytocompatible for mouse osteoblastic cell line MC3T3-E1. The microscopic observation confirmed that MC3T3-E1cells incubated with Van-CaSO4 group and 5%Van-MSN-CaSO4 group exhibited clear spindle-shaped changes, volume increase and maturation, showing that these cements supported adhesion of osteoblastic cells on their surfaces. In addition, the measurement of alkaline phosphatase activity revealed the osteoconductive property of these biomaterials. In order to assess in vivo biocompatibility, synthesized cements were implanted into the distal femur of twelve adult male and female New Zealand rabbits. After implantation in artificial defects of the distal femur, 5%Van-MSN-CaSO4 and Van-CaSO4 bone cements did not damage the function of main organs of rabbits. In addition, the Van-MSN-CaSO4 composite allowed complete repair of bone defects with new bone formation 3 months after implantation. These results show potential application of Van-MSN-CaSO4 composites as bone graft materials for the treatment of open fracture in human due to its mechanical, osteoconductive and potential sustained drug release characteristics and the absence of adverse effects on the body.

  5. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  7. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  8. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  9. Interpreting the g loadings of intelligence test composite scores in light of Spearman's law of diminishing returns.

    PubMed

    Reynolds, Matthew R

    2013-03-01

    The linear loadings of intelligence test composite scores on a general factor (g) have been investigated recently in factor analytic studies. Spearman's law of diminishing returns (SLODR), however, implies that the g loadings of test scores likely decrease in magnitude as g increases, or they are nonlinear. The purpose of this study was to (a) investigate whether the g loadings of composite scores from the Differential Ability Scales (2nd ed.) (DAS-II, C. D. Elliott, 2007a, Differential Ability Scales (2nd ed.). San Antonio, TX: Pearson) were nonlinear and (b) if they were nonlinear, to compare them with linear g loadings to demonstrate how SLODR alters the interpretation of these loadings. Linear and nonlinear confirmatory factor analysis (CFA) models were used to model Nonverbal Reasoning, Verbal Ability, Visual Spatial Ability, Working Memory, and Processing Speed composite scores in four age groups (5-6, 7-8, 9-13, and 14-17) from the DAS-II norming sample. The nonlinear CFA models provided better fit to the data than did the linear models. In support of SLODR, estimates obtained from the nonlinear CFAs indicated that g loadings decreased as g level increased. The nonlinear portion for the nonverbal reasoning loading, however, was not statistically significant across the age groups. Knowledge of general ability level informs composite score interpretation because g is less likely to produce differences, or is measured less, in those scores at higher g levels. One implication is that it may be more important to examine the pattern of specific abilities at higher general ability levels.

  10. Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads

    SciTech Connect

    Bottollier-Curtet, H.; Argouarch, A.; Vulliez, K.; Becoulet, A.; Litaudon, X.; Magne, R.; Champeaux, S.; Gouard, Ph.; Primout, M.; Le Gallou, J.-H.

    2009-11-26

    Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These 'water' loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads). Preliminary results are very encouraging.

  11. Composite Materials and Meta Materials for a New Approach to ITER ICRH Loads

    NASA Astrophysics Data System (ADS)

    Bottollier-Curtet, H.; Argouarch, A.; Champeaux, S.; Gouard, Ph.; Le Gallou, J.-H.; Primout, M.; Vulliez, K.; Bécoulet, A.; Litaudon, X.; Magne, R.

    2009-11-01

    Preliminary laboratory testing of ICRH antennas is a very useful step before their commissioning. Traditionally, pure water, salt water or baking soda water loads are used. These "water" loads are convenient but strongly limited in terms of performance testing. We have started two feasibility studies for advanced ICRH loads made of ferroelectric ceramics (passive loads) and meta materials (active loads) [1]. Preliminary results are very encouraging.

  12. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  13. A Study on Response of a Contoured Composite Panel with Co-cured Stiffeners Under Transient Loading

    NASA Astrophysics Data System (ADS)

    Begum, Shahnaaz; Jain, Prakash Chand; Venkatesh, Siddu

    2016-07-01

    Composite materials are emerging to be the best applied materials for aerospace applications. With rapid improvement in computational facilities, it is now possible to design the best composite lay up for a particular kind of application. This paper presents the development of a Finite Element model of a contoured composite panel with co-cured stiffeners using Finite Element Simulation. Commercial package ANSYS 15.0 is used for this study. Such half contoured panels find wide application in Aerospace industry. The panel is hinged at one of the ends and dynamically loaded at the other end over a relatively small surface area by transverse load. The response of the panel is observed for variation in stresses, deflections and failure criteria. The panel is expected to rotate about the hinge point by 4° from the initial point. The transient response of the composite panel has been observed for expected load and two test load cases and results reported in this paper. Analysis has become useful input for the design of panel.

  14. Modeling for Fatigue Hysteresis Loops of Carbon Fiber-Reinforced Ceramic-Matrix Composites under Multiple Loading Stress Levels

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    In this paper, the fatigue hysteresis loops of fiber-reinforced ceramic-matrix composites (CMCs) under multiple loading stress levels considering interface wear has been investigated using micromechanical approach. Under fatigue loading, the fiber/matrix interface shear stress decreases with the increase of cycle number due to interface wear. Upon increasing of fatigue peak stress, the interface debonded length would propagate along the fiber/matrix interface. The difference of interface shear stress existed in the new and original debonded region would affect the interface debonding and interface frictional slipping between the fiber and the matrix. Based on the fatigue damage mechanism of fiber slipping relative to matrix in the interface debonded region upon unloading and subsequent reloading, the interface slip lengths, i.e., the interface debonded length, interface counter-slip length and interface new-slip length, are determined by fracture mechanics approach. The fatigue hysteresis loops models under multiple loading stress levels have been developed. The effects of single/multiple loading stress levels and different loading sequences on fatigue hysteresis loops have been investigated. The fatigue hysteresis loops of unidirectional C/SiC composite under multiple loading stress levels have been predicted.

  15. Characterization of unidirectional carbon fiber reinforced polyamide-6 thermoplastic composite under longitudinal compression loading at high strain rate

    NASA Astrophysics Data System (ADS)

    Ploeckl, Marina; Kuhn, Peter; Koerber, Hannes

    2015-09-01

    In the presented work, an experimental investigation has been performed to characterize the strain rate dependency of unidirectional carbon fiber reinforced polyamide-6 composite for longitudinal compression loading. An end-loaded compression specimen geometry, suitable for contactless optical strain measurement via digital image correlation and dynamic loading in a split-Hopkinson pressure bar, was developed. For the dynamic experiments at a constant strain rate of 100 s-1 a modified version of the Dynamic Compression Fixture, developed by Koerber and Camanho [Koerber and Camanho, Composites Part A, 42, 462-470, 2011] was used. The results were compared with quasi-static test results at a strain rate of 3 · 10-4 s-1 using the same specimen geometry. It was found that the longitudinal compressive strength increased by 61% compared to the strength value obtained from the quasi-static tests.

  16. Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix.

    PubMed

    Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero

    2015-06-15

    This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering.

  17. Efficient inhibition of colorectal peritoneal carcinomatosis by drug loaded micelles in thermosensitive hydrogel composites

    NASA Astrophysics Data System (ADS)

    Gong, Changyang; Wang, Cheng; Wang, Yujun; Wu, Qinjie; Zhang, Doudou; Luo, Feng; Qian, Zhiyong

    2012-05-01

    In this work, we aim to develop a dual drug delivery system (DDDS) of self-assembled micelles in thermosensitive hydrogel composite to deliver hydrophilic and hydrophobic drugs simultaneously for colorectal peritoneal carcinomatosis (CRPC) therapy. In our previous studies, we found that poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCEC) copolymers with different molecular weight and PEG/PCL ratio could be administered to form micelles or thermosensitive hydrogels, respectively. Therefore, the DDDS was constructed from paclitaxel (PTX) encapsulated PCEC micelles (PTX-micelles) and a fluorouracil (Fu) loaded thermosensitive PCEC hydrogel (Fu-hydrogel). PTX-micelles were prepared by self-assembly of biodegradable PCEC copolymer (Mn = 3700) and PTX without using any surfactants or excipients. Meanwhile, biodegradable and injectable thermosensitive Fu-hydrogel (Mn = 3000) with a lower sol-gel transition temperature at around physiological temperature was also prepared. The obtained PTX-micelles in thermosensitive Fu-hydrogel (PTX-micelles-Fu-hydrogel) composite is a free-flowing sol at ambient temperature and rapidly turned into a non-flowing gel at physiological temperature. In addition, the results of cytotoxicity, hemolytic study, and acute toxicity evaluation suggested that the PTX-micelles-Fu-hydrogel was non-toxic and biocompatible. In vitro release behaviors of PTX-micelles-Fu-hydrogel indicated that both PTX and Fu have a sustained release behavior. Furthermore, intraperitoneal application of PTX-micelles-Fu-hydrogel effectively inhibited growth and metastasis of CT26 peritoneal carcinomatosis in vivo (p < 0.001), and induced a stronger antitumor effect than that of Taxol® plus Fu (p < 0.001). The pharmacokinetic study indicated that PTX-micelles-Fu-hydrogel significantly increased PTX and Fu concentration and residence time in peritoneal fluids compared with Taxol® plus Fu group. Thus, the results suggested the micelles-hydrogel DDDS may

  18. Analyses of quasi-isotropic composite plates under quasi-static point loads simulating low-velocity impact phenomena

    NASA Technical Reports Server (NTRS)

    Kelkar, A. D.

    1984-01-01

    In thin composite laminates, the first level of visible damage occurs in the back face and is called back face spalling. A plate-membrane coupling model, and a finite element model to analyze the large deformation behavior of eight-ply quasi-isotropic circular composite plates under impact type point loads are developed. The back face spalling phenomenon in thin composite plates is explained by using the plate-membrane coupling model and the finite element model in conjunction with the fracture mechanics principles. The experimental results verifying these models are presented. Several conclusions concerning the deformation behavior are reached and discussed in detail.

  19. Development of a multi-component fiber-reinforced composite implant for load-sharing conditions.

    PubMed

    Zhao, D S; Moritz, N; Laurila, P; Mattila, R; Lassila, L V J; Strandberg, N; Mäntylä, T; Vallittu, P K; Aro, H T

    2009-05-01

    Fiber-reinforced composites (FRC) have the potential for use as load-bearing orthopaedic implants if the high strength and elastic modulus of FRC implant can be matched with local requirements. This study tested the in vivo performance of novel FRC implants made of unidirectional glass fibers (E-glass fibers in Bis-GMA and TEGDMA polymeric matrix). The implant surface was covered with bioactive glass granules. Control implants were made of surface-roughened titanium. Stress-shielding effects of the implants were predicted by finite element modelling (FEM). Surgical stabilization of bone metastasis in the subtrochanteric region of the femur was simulated in 12 rabbits. An oblong subtrochanteric defect of a standardized size (reducing the torsional strength of the bones approximately by 66%) was created and an intramedullary implant made of titanium or the FRC composite was inserted. The contralateral femur served as the intact control. At 12 weeks of healing, the femurs were harvested and analyzed by radiography, torsional testing, micro-CT imaging and hard tissue histology. The functional recovery was unremarkable in both groups, although the final analysis revealed two healed undisplaced peri-implant fractures in the group of FRC implants. FEM studies demonstrated differences in stress-shielding effects of the titanium and FRC implants, but the expected biological consequences did not become evident during the follow-up time of the animal study. Biomechanical testing of the retrieved femurs showed no significant differences between the groups. The torsional strength of the fixed bones had returned the level of contralateral intact femurs. Both implants showed ongrowth of intramedullary new bone. No adverse tissue reactions were observed. Based on these favorable results, a large-scale EU-project (NewBone, www.hb.se/ih/polymer/newbone) has been launched for development of orthopaedic FRC implants. PMID:19109047

  20. Developing the potential ophthalmic applications of pilocarpine entrapped into polyvinylpyrrolidone-poly(acrylic acid) nanogel dispersions prepared by γ radiation.

    PubMed

    Abd El-Rehim, Hassan A; Swilem, Ahmed E; Klingner, Anke; Hegazy, El-Sayed A; Hamed, Ashraf A

    2013-03-11

    The aim of this study was to improve the stability and bioavailability of pilocarpine in order to maintain an adequate concentration of the pilocarpine at the site of action for prolonged period of time. Thus, pH-sensitive polyvinylpyrrolidone-poly(acrylic acid) (PVP/PAAc) nanogels prepared by γ radiation-induced polymerization of acrylic acid (AAc) in an aqueous solution of polyvinylpyrrolidone (PVP) as a template polymer were used to encapsulate pilocarpine. Factors affecting size and encapsulation efficiency were optimized to obtain nanogel suitable for entrapping drug efficiently. The PVP/PAAc nanogel particles were characterized by dynamic light scattering (DLS), zeta potential, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), and their size can be controlled by the feed composition and concentration as well as the irradiation dose. Pilocarpine was loaded into the nanogel particles through electrostatic interactions where the AAc-rich nanogels exhibited the highest loading efficiency. The transmittance, mucoadhesion, and rheological characteristics of the nanogel particles were studied to evaluate their ocular applicability. The in vitro release study conducted in simulated tear fluid showed a relatively long sustained release of pilocarpine from the prepared PVP/PAAc nanogel particles if compared with pilocarpine in solution.

  1. Using NMR chemical shift imaging to monitor swelling and molecular transport in drug-loaded tablets of hydrophobically modified poly(acrylic acid): methodology and effects of polymer (in)solubility.

    PubMed

    Knöös, Patrik; Topgaard, Daniel; Wahlgren, Marie; Ulvenlund, Stefan; Piculell, Lennart

    2013-11-12

    A new technique has been developed using NMR chemical shift imaging (CSI) to monitor water penetration and molecular transport in initially dry polymer tablets that also contain small low-molecular weight compounds to be released from the tablets. Concentration profiles of components contained in the swelling tablets could be extracted via the intensities and chemical shift changes of peaks corresponding to protons of the components. The studied tablets contained hydrophobically modified poly(acrylic acid) (HMPAA) as the polymer component and griseofulvin and ethanol as hydrophobic and hydrophilic, respectively, low-molecular weight model compounds. The water solubility of HMPAA could be altered by titration with NaOH. In the pure acid form, HMPAA tablets only underwent a finite swelling until the maximum water content of the polymer-rich phase, as confirmed by independent phase studies, had been reached. By contrast, after partial neutralization with NaOH, the polyacid became fully miscible with water. The solubility of the polymer affected the water penetration, the polymer release, and the releases of both ethanol and griseofulvin. The detailed NMR CSI concentration profiles obtained highlighted the clear differences in the disintegration/dissolution/release behavior for the two types of tablet and provided insights into their molecular origin. The study illustrates the potential of the NMR CSI technique to give information of importance for the development of pharmaceutical tablets and, more broadly, for the general understanding of any operation that involves the immersion and ultimate disintegration of a dry polymer matrix in a solvent.

  2. Dynamic load capacities of graphite fiber: Polyimide composites in oscillating plain bearings to 340 C (650 F)

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.; Munson, H. E.

    1975-01-01

    Load capacities were determined for plain spherical bearings with self-lubricating spherical elements of graphite-fiber-reinforced-polyimide, and for plain cylindrical bearings with thin-wall liners of the composite in the bearing bores. Composites consisted of a 1-to-1 weight ratio of graphite fibers and polyimide. Oscillation was at an amplitude of + or - 15 deg at a frequency of 1 hertz. Bearings with composite ball material had a load capacity of approximately 69 MN/sq m (10 000 psi) at room temperature 25 MN/sq m (3600 psi) at 340 C (650 F). Bearings with thin-wall composite liners had much higher load capacities of 280 MN/sq m (40 000 psi) at room temperature amd 240 MN/sq m (35 000 psi) at 320 C (600 F). Friction coefficients were in the range of 0.12 to 0.19. The addition of 10 wt.% graphite fluoride solid lubricant to the composition of the thin-wall liners reduced friction coefficients into the range of 0.10 to 0.12.

  3. Dexamethasone-loaded poly(ε-caprolactone)/silica nanoparticles composites prepared by supercritical CO2 foaming/mixing and deposition.

    PubMed

    de Matos, M B C; Piedade, A P; Alvarez-Lorenzo, C; Concheiro, A; Braga, M E M; de Sousa, H C

    2013-11-18

    A supercritical carbon dioxide (scCO2)-assisted foaming/mixing method (SFM) was implemented for preparing dexamethasone (DXMT)-loaded poly(ε-caprolactone)/silica nanoparticles (PCL/SNPs) composite materials suitable for bone regeneration. The composites were prepared from PCL and mesoporous SNPs (MCM-41/SBA-15) by means of scCO2-assisted SFM at several operational pressures, processing times and depressurization conditions. DXMT was loaded into SNPs (applying a scCO2 solvent impregnation/deposition method - SSID) and into PCL/SNPs composites (using the SFM method). The effects of the employed operational and compositional variables on the physicochemical and morphological features as well as in the in vitro release profiles of DXMT were analyzed in detail. This work demonstrates that the above-referred scCO2-based methods can be very useful for the preparation of DXMT-loaded PCL/SNPs composites with tunable physicochemical, thermomechanical, morphological and drug release properties and suitable for hard-tissue regeneration applications.

  4. An Experimental Study of a Stitched Composite with a Notch Subjected to Combined Bending and Tension Loading

    NASA Technical Reports Server (NTRS)

    Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.

    1999-01-01

    A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.

  5. Damage of Elastomeric Matrix Composites (EMC-rubbers) Under Static Loading Conditions: Experimental and Numerical Study

    SciTech Connect

    Ayari, F.

    2011-01-17

    Elastomeric matrix composites (EMC-rubbers) are considered as isotropic hyper elastic incompressible materials under static loading conditions. As a rubber material element cannot be extended to an infinite stretch ratio, a damage mechanism at large strain is considered. The phenomenon of cavitation plays an important role in the damage of EMCs and influences the toughening mechanism of rubber-modified plastics. Indeed, cavitation in elastomers is thought to be initiated from flaws, which grow primarily due to a hydrostatic tensile stress and ahead of the crack; there will not only be a high stress perpendicular to the plane of the crack but also significant stress components in the other direction. However, there exists historically much discussion on the evolution of the cavitation in elastomers under monotonic and/or static solicitation. Mainly, cavitation instability occurs when the stress levels are sufficiently high so that the void expansion rate becomes infinitely large. Many research works have been performed to understand the effects of rubber cavitation on toughening of plastics. In fact, the cavitation phenomenon is not well known in detail. The most popular idea states that the cavitation is related to the existence of the gas bubbles trapped in the material during the production stage and the growing of the cavities would then be the result of the growing gas bubbles. Further, instable failure mechanism at the end of the cavitation is not well known too.

  6. Effect of mass loading on ionic polymer metal composite actuators and sensors

    NASA Astrophysics Data System (ADS)

    Sakthi Swarrup, J.; Ganguli, Ranjan

    2015-04-01

    Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

  7. Optimization of the preparation of nalmefene-loaded sustained-release microspheres using central composite design.

    PubMed

    Wu, Xiang-Gen; Li, Gao; Gao, Yong-Liang

    2006-07-01

    Nalmefene-loaded poly(lactic-co-glycolic acid) microspheres were prepared by O/O emulsification/solvent evaporation method. The central composite design-response surface methodology was used to optimize and predict the preparation microspheres. Effects of three independent variable variables i.e., Span80 concentration in outer phase, poly(lactic-co-glycolic acid) concentration in inner phase and theoretical drug content were evaluated on a number of response variables. Response variables selected in this study were drug content, encapsulation efficiency, mean diameter, diameter span and the cumulative percentage of the drug released in the first day after incubation (marked as F1d, and it was also calculated as the initial burst). Multiple linear regression and second-order polynomial model were fitted to the data, and the resulting equations were used to produce five dimensional response graphs, by which optimal experimental conditions were selected. The results showed that all response variables were greatly dependent on three independent variables, and the optimal conditions were Span80 concentration 1.5%, poly(lactic-co-glycolic acid) concentration 17.5%, and theoretical drug content 6%. According to the optimal conditions, the drug content, encapsulation efficiency, mean diameter, diameter span and F1d of prepared microspheres were 4.37%, 72.8%, 64.1 microm, 1.36 and 8.93%, respectively.

  8. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  9. Failure mechanism analysis under compression loading of unidirectional carbon/epoxy composites using micromechanical modelling

    NASA Astrophysics Data System (ADS)

    Effendi, R. R.; Barrau, J.-J.; Guedra-Degeorges, D.

    An experimental study of the compression fracture of unidirectional composites (T300/914, T800/5245C, M40J/913, GY70/V108 and AS4/PEEK) shows that fiber kinking is the main failure mode. All materials tested exhibited a non-linear elastic behavior characterized by a continuous decrease of the tangent modulus as soon as the load was applied. A micromechanical model taking into account initial geometric imperfections was developed. Stress evolution in the constituents was analysed and then compared with their strength. Two failure modes were distinguished: failure due to the fracture of fibers and failure due to the fracture of matrix. This model demonstrates that the non-linear behavior is not due to the initial geometric imperfections. To refine modelling, a numerical analysis using a finite element method with elastoplastic and large displacement hypothesis was developed. This model not only shows the principals governing failure parameters: initial geometric impertions, yield stress of matrix and fiber compressive strength, but also demonstrates two failure mechanisms: fracture of fibers in compression and fiber kinking. This model confirms that the non-linear behavior is not attributed to the initial geometric imperfections.

  10. Yield and failure criteria for composite materials under static and dynamic loading

    NASA Astrophysics Data System (ADS)

    Daniel, Isaac M.

    2016-02-01

    To facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measured macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.

  11. Development of a micromechanics based failure criteria for transversely loaded composite materials

    NASA Astrophysics Data System (ADS)

    Foster, Dean Curtis

    2008-10-01

    The present work has identified two competing failure initiation mechanisms occurring in a unidirectional model composite system when loaded transverse to the direction of the fibers. Matrix cavitation and fiber-matrix debonding are the failure modes that have manifested themselves as a function of fiber spacing in multi-fiber cruciform specimens. The model composite system used two transparent epoxy systems, a linear room temperature cured 828/D-230 system and a nonlinear high temperature cured 862/W system, with five 0.36 mm diameter stainless steel wires as fibers. The fibers were arranged such that a single fiber was placed at the intersection of the face diagonals of four fibers located at the corners of a square. Seven different fiber spacing groups were tested ranging in volume fraction from 64% to 4%. Failure initiation was optically detected in-situ via the reflected light method using multiple high resolution, high magnification microscope video cameras. Three dimensional (3-D) finite element models (FEM) for all fiber spacing groups tested were used to analyze the stress state in the cruciform specimen at failure initiation. Residual stresses of both epoxy systems were measured by photoelasticity methods for incorporation into the micromechanical FEM. Analytical results of the individual cruciform 3-D FEMs in conjunction with the experimental observations were used to evaluate fiber-matrix debond and matrix failure criteria. A linear interaction debond criterion expressed as the sum of the ratios of the interfacial normal stress to tensile strength and interfacial shear stress to shear strength best validated the observed debond limits at the fiber spacing exhibiting fiber-matrix debonding as failure initiation. For the matrix failure criterion, analytical results indicated that the Mohr-Coulomb criterion validated the fiber spacing exhibiting cavitation. This work has developed failure criteria that correctly identified the two competing failure

  12. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads.

    PubMed

    Otani, T; Whiteside, L A; White, S E

    1993-05-01

    This study investigated strain distribution changes in the proximal femur after implantation of a flexible composite femoral component (carbon composite material, modulus of elasticity = 18.6 GPa), a titanium alloy implant (E = 100 GPa), and a stainless steel implant (E = 200 GPa). Transverse as well as longitudinal strain was measured using bipolar strain gauges at eight locations on the proximal femur under both physiologic axial (1000 N and 2000 N) and physiologic torsional (10 N-m and 20 N-m) loads. Under axial load, longitudinal compressive strain at the calcar region was significantly greater in intact femurs and the carbon composite stem specimens than in the two metal stem specimens. The difference between intact femurs and the carbon composite stem specimens was not significant. Stress shielding in the proximal lateral region of the femur, however, was still apparent even in the carbon composite stem specimens. Without seating of the stem collar on the femoral neck, longitudinal compressive strain was not generated at the calcar region, and transverse tensile strain at this region was increased. With conventional implant design, the stem collar was still necessary even in the flexible composite stem to provide near normal longitudinal compressive strain in the calcar region. Under torsional load, proximal strain in intact femurs was small and the proximal strain levels observed after either carbon composite or titanium alloy stem implantation were greater than strain levels before implantation. It seemed unlikely that torsional stress relief played a significant role in proximal bone loss after total hip arthroplasty. Both longitudinal and transverse strains at the calcar region under torsional load were significantly greater in the carbon composite stem specimens than in both intact femurs and the titanium alloy stem specimens, suggesting that these abnormally high proximal stresses may cause high proximal micromotion of the implant, and even bone

  13. The Estimation of Total Nitrogen and Phosphorus Outflow Loads from Kahokugata Watersheds, Ishikawa Prefecture, Using Composite Reservoir Model

    NASA Astrophysics Data System (ADS)

    Takimoto, Hiroshi; Murashima, Kazuo; Hashimoto, Iwao; Maruyama, Toshisuke

    The amounts of the outflow loads of nitrogen and phosphorus from the Kahokugata watersheds were estimated, and measures for the pollution load reduction were examined. Composite reservoir model was used to estimate the runoff discharge from watersheds. Parameter of the composite tank model was determined by the discharge and N and P observation data of Omiya river which was small one located in Kahokugata basin. Simulation results show the good fitting of the curve representing between observed and calculated discharge. Amounts of the outflow loads of total nitrogen(T-N) and total phosphorus(T-P) were estimated by using two methods, one was the pollutant load factors of paddy, upland, forest and urban area and the other method was L(load)and Q (discharge)relation method. Based upon the loading estimates from 1998 to 2002, Kahokugata basin received approximately 678 t year-1 of T-N and 92.2 t year-1 of T-P by former method and 661 t year-1 of T-N and 31 t year-1 by the latter method. It was clear that the land use of domestic, agriculture and forest contributed to the pollution. Moreover, about the total nitrogen loads, the load factor method and LQ equation method were compared on the forest watersheds and lowland areas. A high correlation was obtained between the both methods in the forest watersheds, but the result of lowland areas was not so good. As consideration, the effect of nitrogen pollutant reduction by repeating use of irrigation water at the forest watersheds was examined.

  14. Structure and properties of binary polystyrene-epoxy acrylate oligomer mixtures irradiated by electron beams

    SciTech Connect

    Lomonosova, N.V.

    1995-03-01

    The change in the structure of oriented polymer-oligomer systems based on polystyrene (PS) with M > 10{sup 6} and epoxy acrylate oligomers (aliphatic and aromatic) under irradiation by accelerated electrons was studied using birefringence, isometric heating, IR dichroism, and thermooptical analysis. Mechanical properties of these systems were investigated. It was found that, by adding aliphatic epoxy acrylate to PS and further irradiating this mixture, one can obtain both isotropic and oriented composites with higher strengths, elasticity moduli, and glass transition temperatures.

  15. The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor.

    PubMed

    Xia, Siqing; Li, Jixiang; He, Shuying; Xie, Kang; Wang, Xiaojia; Zhang, Yanhao; Duan, Liang; Zhang, Zhiqiang

    2010-09-01

    The effect of organic loading on bacterial community composition of membrane biofilms was investigated using a submerged polyvinyl chloride membrane bioreactor. The low and high loadings were set at 0.33 and 0.52 gCOD/(gVSSd), respectively. The results showed that membrane fouling occurred earlier and faster under the high loading conditions. Denaturing gradient gel electrophoresis (DGGE) analysis revealed that the similarity of bacterial community in the membrane biofilms between the two loadings was 0.67, higher than that in the mixed liquors (0.52-0.55), which indicated that some specific bacteria were selected preferentially on the membranes. Clone library analysis of the membrane biofilms indicated that Betaproteobacteria and Bacteroidetes under the high loading were 54.72% and 19.81%, respectively. Microarray results further confirmed that the two bacteria were the dominant microorganisms in the high loading biofilm. The severe membrane fouling may be aroused mainly by the enrichment of the two bacteria under the high loading.

  16. The Velocity and Attenuation of Acoustic Emission Waves in SiC/SiC Composites Loaded in Tension

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.; Gyekenyesi, Andrew L.; Gray, Hugh R. (Technical Monitor)

    2002-01-01

    The behavior of acoustic waves produced by microfracture events and from pencil lead breaks was studied for two different silicon carbide fiber-reinforced silicon carbide matrix composites. The two composite systems both consisted of Hi-Nicalon (trademark) fibers and carbon interfaces but had different matrix compositions that led to considerable differences in damage accumulation and acoustic response. This behavior was primarily due to an order of magnitude difference in the interfacial shear stress for the two composite systems. Load/unload/reload tensile tests were performed and measurements were made over the entire stress range in order to determine the stress-dependence of acoustic activity for increasing damage states. It was found that using the extensional wave velocities from acoustic emission (AE) events produced from pencil lead breaks performed outside of the transducers enabled accurate measurements of the stiffness of the composite. The extensional wave velocities changed as a function of the damage state and the stress where the measurement was taken. Attenuation for AE waveforms from the pencil lead breaks occurred only for the composite possessing the lower interfacial shear stress and only at significantly high stresses. At zero stress after unloading from a peak stress, no attenuation occurred for this composite because of crack closure. For the high interfacial stress composite no attenuation was discernable at peak or zero stress over the entire stress-range of the composite. From these observations, it is believed that attenuation of AE waveforms is dependent on the magnitude of matrix crack opening.

  17. Long–Term Effects of High-and Low-Glycemic Load Energy-Restricted Diets on Metabolic Adaptation and the Composition of Weight Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of high glycemic load (HG) and low glycemic load (LG) diets on resting metabolic rate (RMR) and body composition changes in response to caloric restriction (CR) remains controversial. Objective To examine the effects of two CR diets differing primarily in glycemic load on RMR and the % o...

  18. [Road dust loading and chemical composition at major cities in Fujian Province].

    PubMed

    Zheng, An; Yang, Bing-yu; Wu, Shui-ping; Wang, Xin-hong; Chen, Xiao-qiu

    2013-05-01

    A total of 57 road dust and 16 urban soil samples were collected from four cities, Xiamen, Zhangzhou, Quanzhou and Putian in Fujian Province, China. Twenty-six elements, eight water soluble ions, organic carbon and elemental carbon in the fraction of particulate diameter less than 2.5 microm (PM2.5) derived through a suspension chamber were analyzed. The average loading of road dust with diameter less than 100 microm in the four cities ranged from 6.99 g x m(-2) to 10.11 g x m(-2), while the loading of PM2.5 ranged from 4.0 mg x m(-2) to 12.5 mg x m(-2). Both the soil and road dust samples were characterized with much higher concentrations of Si, Ca, Al, Fe and K. But for the anthropogenic elements such as Cu, Pb, Zn,Cr and Ti, much lower levels were found in the soil PM2.5, than those in the road dust PM2.5. Significantly higher levels of NH4+, NO3- and SO4(2-) were found in the road dust PM2.5 from Zhangzhou in comparison with those from other cities in this study. The calcium ion (Ca2+) content was significantly positively correlated with the Mg2+ content in the road dust PM2.5 from Xiamen, Zhangzhou and Quanzhou. The levels of organic carbon (OC) in the road dust PM2.5 in these four cities were higher than those reported in Ji'nan, Shijiazhuang and Beijing while the levels of elemental carbon (EC) were all lower than those in the urban road dust from Beijing, Significant positive correlation between EC and OC was found in samples from Quanzhou and Putian, suggesting the same and/or similar sources. The result of mass balance indicated that higher percentage compositions were soil and OM in both Quanzhou and Putian. Based on the cluster analysis, the 57 road dust samples were divided into four types: influenced by atmospheric deposition, influenced by soil dust, influenced by atmospheric deposition and soil dust, and influenced by soil and construction dust.

  19. Mode interaction in stiffened composite shells under combined mechanical and thermal loadings

    NASA Technical Reports Server (NTRS)

    Sridharan, Srinivasan

    1992-01-01

    Stiffened shells of various configurations fabricated out of composite materials find extensive applications in aircraft structures. Two distinctive modes of buckling dominate structural response of stiffened panels, viz. the short-wave local mode in which the shell skin buckles essentially between the stiffeners and the long-wave overall mode in which the shell skin buckles carrying the stiffeners with it. In optimized designs, the critical stresses corresponding to these modes of buckling would be close to each other. This leads to a nonlinear mode interaction which is recognized to be the principal cause of the failure of stiffened structures. If the structure is subjected to through-the-thickness thermal gradients, then large-wave bending effects would begin to occur well below the overall critical load and these would play the role of overall imperfections. The load carrying capacity would be significantly diminished as a result of interaction of local buckling with overall thermal distortions. The analysis of this problem using standard finite element techniques can be shown to be prohibitively expensive for design iterations. A concept which would greatly facilitate the analysis of mode interaction is advanced. We note that the local buckling occurs in a more or less periodic pattern in a structure having regular spacings of stiffeners. Thus it is a relatively simple matter to analyze the local buckling and the second order effects (which are essential for modeling postbuckling phenomena) using a unit cell of the structure. Once analyzed, these dormations are embedded in a shell element. Thus, a shell element could span several half-waves of local buckling and still be able to depict local buckling effects with requisite accuracy. A major consequence of the interaction of overall buckling/bending is the slow variation of the local buckling amplitude across the structure - the phenomenon of 'amplitude modulation' - and this is accounted for in the present

  20. Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on a rigorous buckling analysis

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Agranoff, N.; Anderson, M. S.

    1977-01-01

    A procedure is presented for designing uniaxially stiffened panels made of composite material and subjected to combined inplane loads. The procedure uses a rigorous buckling analysis and nonlinear mathematical programing techniques. Design studies carried out with the procedure consider hat-stiffened and corrugated panels made of graphite-epoxy material. Combined longitudinal compression and shear and combined longitudinal and transverse compression are the loadings used in the studies. The capability to tailor the buckling response of a panel is also explored. Finally, the adequacy of another, simpler, analysis-design procedure is examined.

  1. Minimum-mass design of filamentary composite panels under combined loads: Design procedure based on simplified buckling equations

    NASA Technical Reports Server (NTRS)

    Stroud, W. J.; Agranoff, N.

    1976-01-01

    An analytical procedure is presented for designing hat stiffened and corrugated panels made of composite material and subjected to longitudinal (in the direction of the stiffeners) compression and shear loadings. The procedure is based on nonlinear mathematical programming techniques and a simplified set of buckling equations. Design requirements considered are buckling, strength, and extensional and shear stiffness. The effects of specified thickness, variation of cross-section dimensions, stiffness requirements, local buckling boundary conditions, and the effect of combined compression and shear loadings are shown.

  2. Marginal and internal adaptation of Class II ormocer and hybrid resin composite restorations before and after load cycling.

    PubMed

    Kournetas, N; Chakmakchi, M; Kakaboura, A; Rahiotis, C; Geis-Gerstorfer, J

    2004-09-01

    To overcome the shortcomings of the conventional composite restorative materials, ormocer materials have been introduced over the past few years. The purpose of this study was to evaluate the marginal and internal adaptation of two ormocer restorative systems (Admira, Voco and Definite, Degussa) compared to a hybrid composite one (TPH Spectrum, Dentsply/ DeTrey), before and after load cycling in Class II restorations. Standardized Class II restorations with cervical margins on enamel were divided into three groups ( n=16). Teeth of each group were filled with one of the restoratives tested and its respective bonding agent. Each group was divided into two equal subgroups. The marginal and internal adaptation of the first subgroup was evaluated after 7-day water storage at room temperature and of the second after cyclic loading in a mastication simulator (1.2x10(6) cycles, 49 N, 1.6 Hz). The occlusal and cervical marginal evaluation was conducted by videomicroscope and ranked as "excellent" and "not excellent". One thin section (150 microm), in mesial-distal direction, of each restoration, was examined under metallographic microscope to determine the quality of internal adaptation. The occlusal and cervical adaptation of both ormocer restorative systems was similar and clearly worse compared with the hybrid composite restorative one before as well as after load cycling. Concerning internal adaptation, no gap-free ormocer restorations were detected, whereas all Spectrum restorations presented perfect adaptation. The bonding agents of the ormocers formed layers with unacceptable features (pores, fractures) whereas that of the hybrid composite achieved perfect bonding layer even after loading. The rheological characteristics of the bonding agents of the ormocer restorative systems are proposed to be responsible for their inferior marginal and internal quality in Class II restorations compared with the hybrid composite one.

  3. Methotrexate-loaded glass ionomer cements for drug release in the skeleton: An examination of composition-property relationships.

    PubMed

    Kiri, Lauren; Filiaggi, Mark; Boyd, Daniel

    2016-01-01

    Chemotherapeutic-loaded bone cement may be an effective method of drug delivery for the management of cancer-related vertebral fractures that require cement injection for pain relief. Recent advancements in the development of aluminum-free glass ionomer cements (GICs) have rendered this class of biomaterials clinically viable for such applications. To expand the therapeutic benefits of these materials, this study examined, for the first time, their drug delivery potential. Through incrementally loading the GIC with methotrexate (MTX) by up to 10-wt%, composition-property relationships were established, correlating MTX loading with working time and setting time, as well as compressive strength, drug release, and cytotoxic effect over 31 days. The most significant finding of this study was that MTX was readily released from the GIC, while maintaining cytotoxic activity. Release correlated linearly with initial loading and appeared to be diffusion mediated, delivering a total of 1-2% of the incorporated drug. MTX loading in this range exerted minimal effects to handling and strength, indicating the clinical utility of the material was not compromised by MTX loading. The MTX-GIC systems examined herein are promising materials for combined structural delivery applications.

  4. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  5. Plasmonic, Targeted, and Dual Drugs-Loaded Polypeptide Composite Nanoparticles for Synergistic Cocktail Chemotherapy with Photothermal Therapy.

    PubMed

    Wu, Xingjie; Zhou, Linzhu; Su, Yue; Dong, Chang-Ming

    2016-07-11

    To integrate cocktail chemotherapy with photothermal therapy into one biocompatible and biodegradable nanocarrier, the plasmonic, lactose-targeted, and dual anticancer drugs-loaded polypeptide composite nanoparticles were for the first time fabricated under mild conditions. The glyco-PEGylated polypeptide micelles that self-assembled from the lactose (LAC) and PEG grafted polycysteine terpolymer were used as templates to generate the plasmonic composite nanoparticles, as mainly characterized by DLS, TEM, SEM, and XPS. These composite nanoparticles showed a broad and strong near-infrared (NIR) absorption at 650-1100 nm and increased the temperature of phosphate buffer solution by 30.1 °C upon a continuous-wave laser irradiation (808 nm, 5 min, 2 W·cm(-2)), while the same dose of NIR-mediated heating completely killed HepG2 cancer cells in vitro, presenting excellent photothermal properties. Two anticancer drugs, doxorubicin (DOX) and 6-mercaptopurine (6-MP), were loaded into the composite nanoparticles through physical interactions and Au-S bond, respectively. The dual drugs-loaded composite nanoparticles exhibited reduction-sensitive and NIR-triggered cocktail drugs release profiles and trigger-enhanced cytotoxicity. As evidenced by flow cytometry, fluorescence microscopy, and MTT assay, the LAC-coated composite nanoparticles were more internalized by the HepG2 than the HeLa cell line, demonstrating a LAC-targeting enhanced cytotoxicity toward HepG2. The combination cocktail chemo-photothermal therapy produced a lower half maximal inhibitory concentration than cocktail chemotherapy or photothermal therapy alone, displaying a good synergistic antitumor effect. PMID:27310705

  6. Controlled release and antibacterial activity of antibiotic-loaded electrospun halloysite/poly(lactic-co-glycolic acid) composite nanofibers.

    PubMed

    Qi, Ruiling; Guo, Rui; Zheng, Fuyin; Liu, Hui; Yu, Jianyong; Shi, Xiangyang

    2013-10-01

    Fabrication of nanofiber-based drug delivery system with controlled release property is of general interest in biomedical sciences. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded halloysite nanotubes/poly(lactic-co-glycolic acid) composite nanofibers (TCH/HNTs/PLGA), and evaluated the drug release and antibacterial activity of this drug delivery system. The structure, morphology, and mechanical properties of the formed electrospun TCH/HNTs/PLGA composite nanofibrous mats were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy, and tensile testing. We show that the incorporation of TCH-loaded HNTs within the PLGA nanofibers is able to improve the tensile strength and maintain the three-dimensional structure of the nanofibrous mats. In vitro viability assay and SEM morphology observation of mouse fibroblast cells cultured onto the fibrous scaffolds demonstrate that the developed TCH/HNTs/PLGA composite nanofibers are cytocompatible. More importantly, the TCH/HNTs/PLGA composite nanofibers are able to release the antibacterial drug TCH in a sustained manner for 42 days and display antimicrobial activity solely associated with the encapsulated TCH drug. With the improved mechanical durability, sustained drug release profile, good cytocompatibility, and non-compromised therapeutic efficacy, the developed composite electrospun nanofibrous drug delivery system may be used as therapeutic scaffold materials for tissue engineering and drug delivery applications.

  7. Preparation and characterization of TAM-loaded HPMC/PAN composite fibers for improving drug-release profiles.

    PubMed

    Shen, Xiaxia; Yu, Dengguang; Zhang, Xiaofei; Branford-White, Christopher; Zhu, Limin

    2011-01-01

    The present paper reports the preparation and characterization of composite hydroxypropyl methylcellulose/polyacrylonitrile (HPMC/PAN)-medicated fibers via a wet spinning technique. Tamoxifen (TAM) was selected as a model drug. Numerous analyses were conducted to characterize the mechanical, structure and morphology properties of the composite fibers. The drug content and in vitro dissolution behavior were also investigated. SEM images showed that the TAM-loaded HPMC/PAN composite fibers had a finger-like outer skin and a porous structure. FT-IR spectra demonstrated that there was a good compatibility between polymer and drug. Results from X-ray diffraction and DSC suggested that most of the incorporated TAM was evenly distributed in the fiber matrix in an amorphous state, except for a minority that aggregated on the surface of fibers. The drug content in the fibers was lower than that in the spinning solution and about 10% of TAM was lost during spinning process. In vitro dissolution results indicated that, compared to TAM-PAN fibers, HPMC/PAN composite systems had weaker initial burst release effects and more drug-loading. The combination of hydrophilic polymer HPMC with PAN could improve the performance of polymer matrix composite fibers in regulating the drug-release profiles.

  8. Stress Analysis and Structural Optimization of a Three-Layer Composite Cladding Tube Under Thermo-Mechanical Loads

    SciTech Connect

    S.-S. Zhou; X.-L. Gao; G. W. Griffith

    2012-07-01

    A general solution for the stress and strain fields in a three-layer composite tube subjected to internal and external pressures and temperature changes is first derived using thermo-elasticity. The material in each layer is treated as orthotropic, and the composite tube is regarded to be in a generalized plane strain state. A three-layer ZRY4-SiCf/SiCSiC composite cladding tube under a combined pressure and thermal loading is then analyzed and optimized by applying the general solution. The effects of temperature changes, applied pressures, and layer thickness on the mechanical behavior of the tube are quantitatively studied. The von Mises failure criterion for isotropic materials and the Tsai-Wu's failure theory for composites are used, respectively, to predict the failure behavior of the monolithic ZRY4 (i.e., Zircaloy-4) inner layer and SiC outer layer and the composite SiCf/SiC core layer of the three-layer tube. The numerical results reveal that the maximum radial and circumferential stresses in each layer always occur on the bonding surfaces. By adjusting the thickness of each layer, the effective stress in the three-layer cladding tube under the prescribed thermal-mechanical loading can be changed, thereby making it possible to optimally design the cladding tube.

  9. Evaluation of a strain based failure criterion for the multi-constituent composite model under shock loading

    NASA Astrophysics Data System (ADS)

    Key, Christopher T.; Schumacher, Shane C.; Alexander, C. Scott

    2015-09-01

    This study details and demonstrates a strain-based criterion for the prediction of polymer matrix composite material damage and failure under shock loading conditions. Shock loading conditions are characterized by high-speed impacts or explosive events that result in very high pressures in the materials involved. These material pressures can reach hundreds of kbar and often exceed the material strengths by several orders of magnitude. Researchers have shown that under these high pressures, composites exhibit significant increases in stiffness and strength. In this work we summarize modifications to a previous stress based interactive failure criterion based on the model initially proposed by Hashin, to include strain dependence. The failure criterion is combined with the multi-constituent composite constitutive model (MCM) within a shock physics hydrocode. The constitutive model allows for decomposition of the composite stress and strain fields into the individual phase averaged constituent level stress and strain fields, which are then applied to the failure criterion. Numerical simulations of a metallic sphere impacting carbon/epoxy composite plates at velocities up to 1000 m/s are performed using both the stress and strain based criterion. These simulation results are compared to experimental tests to illustrate the advantages of a strain-based criterion in the shock environment.

  10. Dye-loaded zeolite L @silica core-shell composite functionalized with europium(III) complexes for dipicolinic acid detection.

    PubMed

    Wang, Yige; Yue, Yuping; Li, Huanrong; Zhao, Qi; Fang, Yi; Cao, Pengpeng

    2011-01-01

    Novel core-shell composites have been developed by immobilization of non-luminescent europium(III) complexes onto the surface of silica shells that are coated on the surface of luminescent dye-loaded zeolite L nano-crystals. The obtained core-shell composites were used for the ratiometric detection of dipicolinic acid (DPA) molecules. The dyes located in the channels of the zeolite L host are protected from any interaction with the environment of the particles and therefore provide a stable reference signal which can eliminate the need for instrument-specific calibration curves for DPA quantification in an analyte.

  11. Analytical Study of a Pin-Loaded Hole in Unidirectional Laminated Composites With Triangular and Circular Fibers.

    PubMed

    Robati, Hossein; Mahdi Attar, Mohammad

    2013-03-01

    The problem of stress concentrations in the vicinity of pin-loaded holes is of particular importance in the design of multilayered composite structures made of triangular or circular glass fibers. It is assumed that all of the fibers in the laminate lie in one direction while loaded by a force p0 at infinity, parallel to the direction of the fibers. According to the shear lag model, equilibrium equations are derived for both types of fibers. A rectangular arrangement is postulated in either case. Upon the proper use of boundary and bondness conditions, stress fields are derived within the laminate, along with the surrounding pinhole. The analytical results are compared to those of the finite element values. A very good agreement is observed between the two methods. According to the results, composite structures made of triangular glass fibers result in lower values of stress concentrations around the pin, as opposed to those of circular glass fibers. PMID:24891727

  12. Dynamic analysis of composite beam subjected to harmonic moving load based on the third-order shear deformation theory

    NASA Astrophysics Data System (ADS)

    Rezvanil, Mohammad Javad; Kargarnovin, Mohammad Hossein; Younesian, Davood

    2011-12-01

    The response of an infinite Timoshenko beam subjected to a harmonic moving load based on the thirdorder shear deformation theory (TSDT) is studied. The beam is made of laminated composite, and located on a Pasternak viscoelastic foundation. By using the principle of total minimum potential energy, the governing partial differential equations of motion are obtained. The solution is directed to compute the deflection and bending moment distribution along the length of the beam. Also, the effects of two types of composite materials, stiffness and shear layer viscosity coefficients of foundation, velocity and frequency of the moving load over the beam response are studied. In order to demonstrate the accuracy of the present method, the results TSDT are compared with the previously obtained results based on first-order shear deformation theory, with which good agreements are observed.

  13. Micromechanics of ambient temperature cyclic fatigue loading in a composite of CAS glass ceramic reinforced with Nicalon fibers

    SciTech Connect

    Rousseau, C.Q.; Davidson, D.L.; Campbell, J.B. )

    1994-04-01

    The behavior of a Nicalon fiber reinforced glass ceramic composite cyclicly loaded has been evaluated at ambient temperature using high-resolution micromechanical test methods. On this basis, the events leading to fracture have been found to be similar to those accompanying fracture in unidirectional tension tests. Matrix strains were determined locally at the point of matrix fracture. Crack opening displacements (CODs) were measured as a function of loading cycles, and fiber strains were determined, in some cases. It is concluded that debonding of fibers begins at the point of matrix cracking and rapidly increases. Most of the cyclic lifetime of the material is spent with fibers debonded over large distances (fractions of a millimeter); these fibers are pulled out of the matrix on each loading cycle. Final debond length, as determined by fractography, is a function of the number of cycles to fracture, and of the applied stress level. 23 refs.

  14. Esterification of acrylic acid with methanol

    SciTech Connect

    Chubarov, G.A.; Danov, S.M.; Logutov, V.I.; Obmelyukhina, T.N.

    1984-01-01

    The esterification of acrylic acid with methanol in the absence of catalysis by strong mineral acids has been studied. The esterification rate was estimated from the amount of methyl acrylate formed at the end of a definite time, and the reaction rate was found to be first order with respect to methanol and second order with respect to acrylic acid. Mathematical relationships in good agreement with experimental data were derived from the results of the kinetic studies.

  15. The Study of Stability of Compression-Loaded Multispan Composite Panel Upon Failure of Elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, accomplished in 1996, 1997, and 1998, respectively). The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  16. Poly(amide-graft-acrylate) interfacial compounds

    NASA Astrophysics Data System (ADS)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  17. Bearing-bypass loading in composite joints - Testing and stress analysis

    NASA Technical Reports Server (NTRS)

    Crews, John H., Jr.; Naik, Rajiv A.

    1989-01-01

    A combined experimental and analytical study of bearing and bypass loading on single-fastener specimens of a 16-ply, quasi-isotropic T300/5208 graphite/epoxy laminate with a centrally located hole is reported. The specimens were loaded in either tension or compression, and onset damage, ultimate strengths, and corresponding failure modes were determined. The tension data showed the expected linear interaction for combined bearing-bypass loading with damage developing in the net-section tension mode. However, the bearing-onset strengths showed an unexpected interaction of the bearing and compressive bypass loads in which the latter reduced the bearing-onset strength. A linear finite element analysis showed that bearing-bypass loading had a marked influence on the bolt-hole contact which in turn had a significant effect on local stresses.

  18. Predicting Failure Progression and Failure Loads in Composite Open-Hole Tension Coupons

    NASA Technical Reports Server (NTRS)

    Arunkumar, Satyanarayana; Przekop, Adam

    2010-01-01

    Failure types and failure loads in carbon-epoxy [45n/90n/-45n/0n]ms laminate coupons with central circular holes subjected to tensile load are simulated using progressive failure analysis (PFA) methodology. The progressive failure methodology is implemented using VUMAT subroutine within the ABAQUS(TradeMark)/Explicit nonlinear finite element code. The degradation model adopted in the present PFA methodology uses an instantaneous complete stress reduction (COSTR) approach to simulate damage at a material point when failure occurs. In-plane modeling parameters such as element size and shape are held constant in the finite element models, irrespective of laminate thickness and hole size, to predict failure loads and failure progression. Comparison to published test data indicates that this methodology accurately simulates brittle, pull-out and delamination failure types. The sensitivity of the failure progression and the failure load to analytical loading rates and solvers precision is demonstrated.

  19. SYNTHESIS AND IN VITRO CHARACTERIZATION OF HYDROXYPROPYL METHYLCELLULOSE-GRAFT-POLY (ACRYLIC ACID/2-ACRYLAMIDO-2-METHYL-1-PROPANESULFONIC ACID) POLYMERIC NETWORK FOR CONTROLLED RELEASE OF CAPTOPRIL.

    PubMed

    Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid

    2016-01-01

    A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension. PMID:27008813

  20. Behavior of Compression-Loaded Composite Panels with Stringer Terminations and Impact Damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    1998-01-01

    The results of an analytical and experimental study of graphite-epoxy stiffened panels with impact-damaged stringer terminations are presented. Five stitched graphite-epoxy panels with stiffeners with a gradual reduction in either thickness or height were examined. Panels were analyzed using finite element analysis and tested by loading them in axial compression to a predetermined load. The panels were then subjected to impact damage and loaded to failure. Axial midplane strains, surface strains, interlaminar strains and failure results are discussed.

  1. Damage and fracture mechanisms in cross-woven C/SiC composite subjected to tensile loading

    SciTech Connect

    Wang, M.; Laird, C.

    1994-12-31

    In order to investigate the structure sensitivity of composite behavior, tensile tests were conducted on CVI processed cross-woven C/SiC composites. Tensile damage mechanisms were observed using SEM on loaded and then unloaded samples. The damage modes identified include bundle matrix cracking, fiber/matrix debonding, fiber breaking delamination and bundle splitting. Because of the inhomogeneous SiC distribution in the fiber bundles, matrix cracking was observed to develop three dimensionally, including the following processes: lateral growth in matrix dominated regions such as bundle coatings, and crack arrest due to the decrease in matrix volume fraction, followed by formation of new matrix cracks inside the bundle, producing a damage zone characterized by a high density of small inter-fiber cracks. Final failure of the composite resulted from fiber breaks at different locations across the fiber bundles, producing in a rugged fracture surface.

  2. Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs.

    PubMed

    Eshel-Green, Tal; Bianco-Peled, Havazelet

    2016-03-01

    Blockpolymer micelles having acrylated end groups were fabricated for the development of mucoadhesive drug loaded vehicle. The critical micelle concentration (CMC) of Pluronic(®) F127 modified with acrylate end groups (F127DA) was found to be similar to that of the unmodified Pluronic(®) F127 (F127). Small angle X-ray scattering verified existence of micelles with an inner core of 4.9±0.2 and 5.5±0.3 for F127 and F127DA respectively. Indomethacin, a hydrophobic drug, was incorporated into the micelles using the thin-film hydration method. In vitro drug release assay demonstrated that the micelles sustained the release of the drug in comparison with free drug in solution. Several methods were used for mucoadhesion evaluation. Viscosity profiling was performed by shear rate sweep experiment of hydrated commercial mucin, F127 or F127DA, and combination of both mucin and a copolymer. Elevated viscosity was achieved for acrylated micelles with mucin compared to mixtures of non-acrylated micelles with mucin. The mucoadhesivity of the acrylated micelles was further characterized using nuclear magnetic resonance (NMR); data affirmed the Michael type addition reaction occurred between acrylates on the micelles corona and thiols present in the mucin. SAXS scattering data further showed a modification in the scattering of F127DA micelles with the addition of pig gastric mucin. Cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) data detected increase in the aggregates size while using acrylated micelles enhance mucoadhesion. Thus acrylated F127DA micelles were found to be mucoadhesive, and a suitable and preferred candidate for micellar drug delivery to mucosal surfaces. PMID:26700232

  3. Approximate evaluation of loading parameters in composite materials with strong shock waves

    SciTech Connect

    Pai, V.V.; Kuz`min, G.E.; Yakovlev, I.V.

    1995-11-01

    A simple and sufficiently accurate method is proposed for estimating the parameters of shockwave loading of porous materials under conditions of complete compaction of the material to the density of a monolith.

  4. Poly(acrylic acid) modified lanthanide-doped GdVO4 hollow spheres for up-conversion cell imaging, MRI and pH-dependent drug release.

    PubMed

    Kang, Xiaojiao; Yang, Dongmei; Dai, Yunlu; Shang, Mengmeng; Cheng, Ziyong; Zhang, Xiao; Lian, Hongzhou; Ma, Ping'an; Lin, Jun

    2013-01-01

    In this study, multifunctional poly(acrylic acid) modified lanthanide-doped GdVO(4) nanocomposites [PAA@GdVO(4): Ln(3+) (Ln = Yb/Er, Yb/Ho, Yb/Tm)] were constructed by filling PAA hydrogel into GdVO(4) hollow spheres via photoinduced polymerization. The up-conversion (UC) emission colors (green, red and blue) can be tuned by changing the codopant compositions in the matrices. The composites have potential applications as bio-probes for cell imaging. Meanwhile, the hybrid spheres can act as T(1) contrast agents for magnetic resonance imaging (MRI) owing to the existence of Gd(3+) ions on the surface of composites. Due to the nature of PAA, DOX-loaded PAA@GdVO(4):Yb(3+)/Er(3+) system exhibits pH-dependent drug releasing kinetics. A lower pH offers a faster drug release rate. Such character makes the loaded DOX easily released at cancer cells. The cell uptake process of drug-loaded composites was observed by using confocal laser scanning microscopy (CLSM). The results indicate the potential application of the multifunctional composites as theragnostics (effective bimodal imaging probes and pH-responsive drug carriers).

  5. Compression-Loaded Composite Panels With Elastic Edge Restraints and Initial Prestress

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Nemeth, Michael P.; Riddick, Jaret C.; Thornburgh, Robert P.

    2005-01-01

    A parametric study of the effects of test-fixture-induced initial prestress and elastic edge restraints on the prebuckling and buckling responses of a compression-loaded, quasi-isotropic curved panel is presented. The numerical results were obtained by using a geometrically nonlinear finite element analysis code with high-fidelity models. The results presented show that a wide range of prebuckling and buckling behavior can be obtained by varying parameters that represent circumferential loaded-edge restraint and rotational unloaded-edge restraint provided by a test fixture and that represent the mismatch in specimen and test-fixture radii of curvature. For a certain range of parameters, the panels exhibit substantial nonlinear prebuckling deformations that yield buckling loads nearly twice the corresponding buckling load predicted by a traditional linear bifurcation buckling analysis for shallow curved panels. In contrast, the results show another range of parameters exist for which the nonlinear prebuckling deformations either do not exist or are relatively benign, and the panels exhibit buckling loads that are nearly equal to the corresponding linear bifurcation buckling load. Overall, the results should be of particular interest to scientists, engineers, and designers involved in simulating flight-hardware boundary conditions in structural verification and certification tests, involved in validating structural analysis tools, and interested in tailoring buckling performance.

  6. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. Link to an amendment published at 79 FR 34637, June 18, 2014. (a) Chemical substance and... ester (PMN P-96-824) is subject to reporting under this section for the significant new uses...

  7. Design and characterization of a composite material based on Sr(II)-loaded clay nanotubes included within a biopolymer matrix.

    PubMed

    Del Buffa, Stefano; Bonini, Massimo; Ridi, Francesca; Severi, Mirko; Losi, Paola; Volpi, Silvia; Al Kayal, Tamer; Soldani, Giorgio; Baglioni, Piero

    2015-06-15

    This paper reports on the preparation, characterization, and cytotoxicity of a hybrid nanocomposite material made of Sr(II)-loaded Halloysite nanotubes included within a biopolymer (3-polyhydroxybutyrate-co-3-hydroxyvalerate) matrix. The Sr(II)-loaded inorganic scaffold is intended to provide mechanical resistance, multi-scale porosity, and to favor the in-situ regeneration of bone tissue thanks to its biocompatibility and bioactivity. The interaction of the hybrid system with the physiological environment is mediated by the biopolymer coating, which acts as a binder, as well as a diffusional barrier to the Sr(II) release. The degradation of the polymer progressively leads to the exposure of the Sr(II)-loaded Halloysite scaffold, tuning its interaction with osteogenic cells. The in vitro biocompatibility of the composite was demonstrated by cytotoxicity tests on L929 fibroblast cells. The results indicate that this composite material could be of interest for multiple strategies in the field of bone tissue engineering. PMID:25778738

  8. Compression creep rupture of an E-glass/vinyl ester composite subjected to combined mechanical and fire loading conditions

    NASA Astrophysics Data System (ADS)

    Boyd, Steven Earl

    Polymer matrix composites are seeing increasing use in structural systems (e.g. ships, bridges) and require a quantitative basis for describing their performance under combined mechanical load and fire. Although much work has been performed to characterize the flammability, fire resistance and toxicity of these composite systems, an understanding of the structural response of sandwich type structures and laminate panels under combined mechanical and thermal loads (simulating fire conditions) is still largely unavailable. Therefore a research effort to develop a model to describe the structural response of these glass/vinyl esters systems under fire loading conditions is relevant to the continuing and future application of polymer matrix composites aboard naval ships. The main goal of the effort presented here is to develop analytical models and finite element analysis methods and tools to predict limit states such as local compression failures due to micro-buckling, residual strength and times to failure for composite laminates at temperatures in the vicinity of the glass transition where failure is controlled by viscoelastic effects. Given the importance of compression loading to a structure subject to fire exposure, the goals of this work are succinctly stated as the: (a) Characterization of the non-linear viscoelastic and viscoplastic response of the E-glass/vinyl ester composite above Tg. (b) Description of the laminate compression mechanics as a function of stress and temperature including viscoelasticity. (c) Viscoelastic stress analysis of a laminated panel ([0/+45/90/-45/0] S) using classical lamination theory (CLT). Three manuscripts constitute this dissertation which is representative of the three steps listed above. First, a detailed characterization of the nonlinear thermoviscoelastic response of Vetrotex 324/Derakane 510A--40 through Tg was conducted using the Time--Temperature--Stress--Superposition Principle (TTSSP) and Zapas--Crissman model. Second

  9. Pluronic-poly (acrylic acid)-cysteine/Pluronic L121 mixed micelles improve the oral bioavailability of paclitaxel.

    PubMed

    Zhao, Yanli; Li, Yanli; Ge, Jianjun; Li, Na; Li, Ling-Bing

    2014-11-01

    The aim of the study is to synthesize a thiolated Pluronic copolymer, Pluronic-poly (acrylic acid)-cysteine copolymer, to construct a mixed micelle system with the Pluronic-poly (acrylic acid)-cysteine copolymer and Pluronic L121 (PL121) and to evaluate the potential of these mixed micelles as an oral drug delivery system for paclitaxel. Compared with Pluronic-poly (acrylic acid)-cysteine micelles, drug-loading capacity of Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles was increased from 0.4 to 2.87%. In vitro release test indicated that Pluronic-poly (acrylic acid)-cysteine/PL121 mixed micelles exhibited a pH sensitivity. The permeability of drug-loaded micelles in the intestinal tract was studied with an in situ perfusion method in rats. The presence of verapamil and Pluronic both improved the intestinal permeability of paclitaxel, which further certified the inhibition effect of thiolated Pluronic on P-gp. In pharmacokinetic study, the area under the plasma concentration-time curve (AUC0→∞) of paclitaxel-loaded mixed micelles was four times greater than that of the paclitaxel solution (p < 0.05). In general, Pluronic-poly (acrylic acid)-cysteine/PL121 micelles were proven to be a potential oral drug delivery system for paclitaxel.

  10. Effects of load proportioning on the capacity of multiple-hole composite joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Chastain, P. A.

    1985-01-01

    This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.

  11. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    PubMed

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study.

  12. Carbonaceous composition changes of heavy-duty diesel engine particles in relation to biodiesels, aftertreatments and engine loads.

    PubMed

    Cheng, Man-Ting; Chen, Hsun-Jung; Young, Li-Hao; Yang, Hsi-Hsien; Tsai, Ying I; Wang, Lin-Chi; Lu, Jau-Huai; Chen, Chung-Bang

    2015-10-30

    Three biodiesels and two aftertreatments were tested on a heavy-duty diesel engine under the US FTP transient cycle and additional four steady engine loads. The objective was to examine their effects on the gaseous and particulate emissions, with emphasis given to the organic and elemental carbon (OC and EC) in the total particulate matter. Negligible differences were observed between the low-sulfur (B1S50) and ultralow-sulfur (B1S10) biodiesels, whereas small reductions of OC were identified with the 10% biodiesel blend (B10). The use of diesel oxidation catalyst (DOC1) showed moderate reductions of EC and particularly OC, resulting in the OC/EC ratio well below unity. The use of DOC plus diesel particulate filter (DOC2+DPF) yielded substantial reductions of OC and particularly EC, resulting in the OC/EC ratio well above unity. The OC/EC ratios were substantially above unity at idle and low load, whereas below unity at medium and high load. The above changes in particulate OC and EC are discussed with respect to the fuel content, pollutant removal mechanisms and engine combustion conditions. Overall, the present study shows that the carbonaceous composition of PM could change drastically with engine load and aftertreatments, and to a lesser extent with the biodiesels under study. PMID:25974660

  13. Testing and Analysis of a Composite Non-Cylindrical Aircraft Fuselage Structure. Part 1; Ultimate Design Loads

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Lovejoy, Andrew E.; Rouse, Marshall; Wu, Hsi-Yung T.

    2016-01-01

    The Environmentally Responsible Aviation Project aimed to develop aircraft technologies enabling significant fuel burn and community noise reductions. Small incremental changes to the conventional metallic alloy-based 'tube and wing' configuration were not sufficient to achieve the desired metrics. One airframe concept identified by the project as having the potential to dramatically improve aircraft performance was a composite-based hybrid wing body configuration. Such a concept, however, presented inherent challenges stemming from, among other factors, the necessity to transfer wing loads through the entire center fuselage section which accommodates a pressurized cabin confined by flat or nearly flat panels. This paper discusses finite element analysis and testing of a large-scale hybrid wing body center section structure developed and constructed to demonstrate that the Pultruded Rod Stitched Efficient Unitized Structure concept can meet these challenging demands of the next generation airframes. Part I of the paper considers the five most critical load conditions, which are internal pressure only and positive and negative g-loads with and without internal pressure. Analysis results are compared with measurements acquired during testing. Performance of the test article is found to be closely aligned with predictions and, consequently, able to support the hybrid wing body design loads in pristine and barely visible impact damage conditions.

  14. Production and characterization of cut resistant acrylic/copolyaramid fibers via bicomponent wet spinning

    NASA Astrophysics Data System (ADS)

    Hipp, Stephen James

    A composite fiber system consisting of a sheath core bicomponent polymer fiber loaded with hard ceramic particles was developed and characterized for use in cut protective clothing. The core component was comprised of a copolyaramid in order to provide high base cut resistance. An acrylic-copolyaramid polymer blend was used for the sheath component to improve processability and provide potential benefits such as dyeability. Lastly, aluminum oxide particles were incorporated into the fiber core to deflect and deform the cutting edge, further improving cut resistance. A series of designed experiments was used to explore the effects of the wet spinning and heat treatment processes on the structure and properties of the bicomponent fiber. Cut strength of the as-spun fibers was highest when the coagulation rate was slow, promoting the formation of a dense, macrovoid free fiber structure. Upon drawing, fibrillar domains developed within the fiber, further improving cut performance. Cut strength was greatly improved by the heat treatment process despite the fibers becoming highly anisotropic. Addition of the hard particle fillers to the bicomponent fibers showed a decrease in cut strength at the fiber level but nearly doubled the cut strength of resulting fabrics. Finally, the processability of the particle loaded bicomponent fibers was evaluated.

  15. New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load

    NASA Astrophysics Data System (ADS)

    Visa, Maria; Isac, Luminita; Duta, Anca

    2015-06-01

    The goal of this paper was to develop a new composite obtained in mild hydrothermal conditions starting from fly ash (a waste raising significant environmental problems), and TiO2. The composite was characterized through XRD, SEM/EDX, AFM, and BET surface measurements. The composite was further used for the advanced treatment of wastewaters with multiple-pollutants load. The photocatalytic efficiency of the powder composite was tested on synthetic solutions containing a heavy metal cation (copper), a dye (methyl orange), and a surfactant (sodium dodecylbenzenesulfonate), under UV and simulated solar radiation. Comparative experiments were done in systems with and without H2O2 showing a significant increase in efficiency for methyl orange removal from mono-, bi-, and tri-pollutants solutions. The process parameters were optimized and the adsorption mechanisms are discussed, outlining that adsorption is the limiting step. Experiments also outlined that homogeneous photocatalysis (using H2O2) is less efficient then the heterogeneous process using the novel composite, both under UV and simulated solar radiation.

  16. Observation of the initiation and progression of damage in compressively loaded composite plates containing a cutout

    NASA Technical Reports Server (NTRS)

    Waas, A.; Babcock, C., Jr.

    1986-01-01

    A series of experiments was carried out to determine the mechanism of failure in compressively loaded laminated plates with a circular cutout. Real time holographic interferometry and photomicrography are used to observe the progression of failure. These observations together with post experiment plate sectioning and deplying for interior damage observation provide useful information for modelling the failure process. It is revealed that the failure is initiated as a localised instability in the zero layers, at the hole surface. With increasing load extensive delamination cracking is observed. The progression of failure is by growth of these delaminations induced by delamination buckling. Upon reaching a critical state, catastrophic failure of the plate is observed. The levels of applied load and the rate at which these events occur depend on the plate stacking sequence.

  17. Buckling and Failure of Compression-Loaded Composite Cylindrical Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of an experimental and numerical study of the effects of initial imperfections on the buckling response and failure of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have six different orthotropic or quasi-isotropic shell-wall laminates and two different shell-radius-to-thickness ratios. The numerical results include the effects of geometric shell-wall mid-surface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform end loads, and the effects of elastic boundary conditions. Selected cylinder parameter uncertainties were also considered. Results that illustrate the effects of imperfections and uncertainties on the nonlinear response characteristics, buckling loads and failure the shells are presented. In addition, a common failure analysis is used to predict material failures in the shells.

  18. Parametric Study on the Response of Compression-Loaded Composite Shells With Geometric and Material Imperfections

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2004-01-01

    The results of a parametric study of the effects of initial imperfections on the buckling and postbuckling response of three unstiffened thinwalled compression-loaded graphite-epoxy cylindrical shells with different orthotropic and quasi-isotropic shell-wall laminates are presented. The imperfections considered include initial geometric shell-wall midsurface imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these imperfections on the nonlinear responses and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts stable response characteristics of the shells and a nonlinear transient analysis that predicts unstable response characteristics.

  19. Effects of method of loading and specimen configuration on compressive strength of graphite/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Clark, R. K.; Lisagor, W. B.

    1980-01-01

    Three test schemes were examined for testing graphite/epoxy (Narmco T300/5208) composite material specimens to failure in compression, including an adaptation of the IITRI "wedge grip" compression fixture, a face-supported-compression fixture, and an end-loaded-coupon fixture. The effects of specimen size, specimen support arrangement and method of load transfer on compressive behavior of graphite/epoxy were investigated. Compressive stress strain, strength, and modulus data obtained with the three fixtures are presented with evaluations showing the effects of all test parameters, including fiber orientation. The IITRI fixture has the potential to provide good stress/strain data to failure for unidirectional and quasi-isotropic laminates. The face supported fixture was found to be the most desirable for testing + or - 45 s laminates.

  20. Short-wavelength buckling and shear failures for compression-loaded composite laminates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.

    1985-01-01

    The short-wavelength buckling (or the microbuckling) and the interlaminar and inplane shear failures of multi-directional composite laminates loaded in uniaxial compression are investigated. A laminate model is presented that idealizes each lamina. The fibers in the lamina are modeled as a plate, and the matrix in the lamina is modeled as an elastic foundation. The out-of-plane w displacement for each plate is expressed as a trigonometric series in the half-wavelength of the mode shape for laminate short-wavelength buckling. Nonlinear strain-displacement relations are used. The model is applied to symmetric laminates having linear material behavior. The laminates are loaded in uniform end shortening and are simply supported. A linear analysis is used to determine the laminate stress, strain, and mode shape when short-wavelength buckling occurs. The equations for the laminate compressive stress at short-wavelength buckling are dominated by matrix contributions.

  1. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.

    PubMed

    Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah

    2015-01-01

    The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers. PMID:26636021

  2. A compact very wideband amplifying filter based on RTD loaded composite right/left-handed transmission lines.

    PubMed

    Abu-Marasa, Mahmoud O Mahmoud; El-Khozondar, Hala Jarallah

    2015-01-01

    The composite right/left-handed (CRLH) transmission line (TL) is presented as a general TL possessing both left-handed (LH) and right-handed (RH) natures. RH materials have both positive permittivity and positive permeability, and LH materials have both negative permittivity and negative permeability. This paper aims to design and analyze nonlinear CRLH-TL transmission line loaded with resonant tunneling diode (RTD). The main application of this design is a very wideband and compact filter that amplifies the travelling signal. We used OrCAD and ADS software to analyze the proposed circuit. CRLH-TL consists of a microstrip line which is loaded with complementary split-rings resonators (CSRRs), series gaps, and shunt inductor connected parallel to the RTD. The designed structure possess a wide band that ranges from 5 to 10.5 GHz and amplifies signal up to 50 %. The proposed design is of interest to microwave compact component designers.

  3. Fatigue Damage in Notched Composite Laminates Under Tension-Tension Cyclic Loads

    NASA Technical Reports Server (NTRS)

    Stinchcomb, W. W.; Henneke, E. G.; Reifsnider, K. L.; Kress, G. R.

    1985-01-01

    The results are given of an investigation to determine the damage states which develop in graphite epoxy laminates with center holes due to tension-tension cyclic loads, to determine the influence of stacking sequence on the initiation and interaction of damage modes and the process of damage development, and to establish the relationships between the damage states and the strength, stiffness, and life of the laminates. Two quasi-isotropic laminates were selected to give different distributions of interlaminar stresses around the hole. The laminates were tested under cyclic loads (R=0.1, 10 Hz) at maximum stresses ranging between 60 and 95 percent of the notched tensile strength.

  4. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  5. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  6. Research on the exploitation of advanced composite materials to lightly loaded structures

    NASA Technical Reports Server (NTRS)

    Mar, J. W.

    1976-01-01

    The objective was to create a sailplane which could fly in weaker thermals than present day sailplanes (by being lighter) and to fly in stronger thermals than present sailplanes (by carrying more water ballast). The research was to tackle the interaction of advanced composites and the aerodynamic performance, the interaction of fabrication procedures and the advanced composites, and the interaction of advanced composites and the design process. Many pieces of the overall system were investigated but none were carried to the resolution required for engineering application. Nonetheless, interesting and useful results were obtained and are here reported.

  7. Empirical Model Development for Predicting Shock Response on Composite Materials Subjected to Pyroshock Loading. Volume 2, Part 1; Appendices

    NASA Technical Reports Server (NTRS)

    Gentz, Steven J.; Ordway, David O.; Parsons, David S.; Garrison, Craig M.; Rodgers, C. Steven; Collins, Brian W.

    2015-01-01

    The NASA Engineering and Safety Center (NESC) received a request to develop an analysis model based on both frequency response and wave propagation analyses for predicting shock response spectrum (SRS) on composite materials subjected to pyroshock loading. The model would account for near-field environment (approximately 9 inches from the source) dominated by direct wave propagation, mid-field environment (approximately 2 feet from the source) characterized by wave propagation and structural resonances, and far-field environment dominated by lower frequency bending waves in the structure. This document contains appendices to the Volume I report.

  8. The Study of Stability of Compression-loaded Multispan Composite Panel Upon Failure of elements Binding it to Panel Supports

    NASA Technical Reports Server (NTRS)

    Zamula, G. N.; Ierusalimsky, K. M.; Fomin, V. P.; Grishin, V. I.; Kalmykova, G. S.

    1999-01-01

    The present document is a final technical report under the NCC-1-233 research program (dated September 15, 1998; see Appendix 5) carried out within co-operation between United States'NASA Langley RC and Russia's Goskomoboronprom in aeronautics, and continues similar programs, NCCW-73, NCC-1-233 and NCCW 1-233 accomplished in 1996, 1997, and 1998, respectively. The report provides results of "The study of stability of compression-loaded multispan composite panels upon failure of elements binding it to panel supports"; these comply with requirements established at TsAGI on 24 March 1998 and at NASA on 15 September 1998.

  9. Development of a fatigue-life methodology for composite structures subjected to out-of-plane load components

    NASA Technical Reports Server (NTRS)

    Sumich, Mark; Kedward, Keith T.

    1991-01-01

    The efforts to identify and implement a fatigue life methodology applicable to demonstrate delamination failures for use in certifying composite rotor blades are presented. The RSRA/X-Wing vehicle was a proof-of-concept stopped rotor aircraft configuration which used rotor blades primarily constructed of laminated carbon fiber. Delamination of the main spar during ground testing demonstrated that significant interlaminar stresses were produced. Analysis confirmed the presence of out-of-plane load components. The wear out (residual strength) methodology and the requirements for its implementation are discussed.

  10. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property.

    PubMed

    Shao, Wei; Liu, Hui; Liu, Xiufeng; Wang, Shuxia; Wu, Jimin; Zhang, Rui; Min, Huihua; Huang, Min

    2015-11-01

    Sodium alginate (SA) and bacterial cellulose (BC) are widely used in many applications such as scaffolds and wound dressings due to its biocompatibility. Silver sulfadiazine (AgSD) is a topical antibacterial agents used as a topical cream on burns. In the study, novel BC/SA-AgSD composites were prepared and characterized by SEM, FTIR and TG analyses. These results indicate AgSD successfully impregnated into BC/SA matrix. The swelling behaviors in different pH were studied and the results showed pH-responsive swelling behaviors. The antibacterial performances of BC/SA-AgSD composites were evaluated with Escherichia coli, Staphylococcus aureus and Candida albicans. Moreover, the cytotoxicity of BC/SA-AgSD composites was performed on HEK 293 cells. The experimental results showed BC/SA-AgSD composites have excellent antibacterial activities and good biocompatibility, thus confirming its utility as potential wound dressings.

  11. Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing.

    PubMed

    Rezvanian, Masoud; Amin, Mohd Cairul Iqbal Mohd; Ng, Shiow-Fern

    2016-02-10

    Previously, studies have demonstrated that topical application of simvastatin can promote wound healing in diabetic mice via augmentation of angiogenesis and lymphangiogenesis. This study aimed to formulate and characterize simvastatin in alginate-based composite film wound dressings. Biopolymers used for composite films were sodium alginate blended with pectin or gelatin. The films were prepared and characterized based on their physical properties, surface morphology, mechanical strength and rheology. Then, in vitro drug releases from the films were investigated and, finally, the cell viability assay was performed to assess the cytotoxicity profile. From the pre-formulation studies, alginate/pectin composite film showed to possess desirable wound dressing properties and superior mechanical properties. The in vitro drug release profile revealed that alginate/pectin film produced a controlled release drug profile, and cell viability assay showed that the film was non-toxic. In summary, alginate/pectin composite film is suitable to be formulated with simvastatin as a potential wound dressing.

  12. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    NASA Astrophysics Data System (ADS)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  13. High loading of nanostructured ceramics in polymer composite thick films by aerosol deposition

    PubMed Central

    2012-01-01

    Low temperature fabrication of Al2O3-polyimide composite substrates was carried out by an aerosol deposition process using a mixture of Al2O3 and polyimide starting powders. The microstructures and dielectric properties of the composite thick films in relation to their Al2O3 contents were characterized by X-ray diffraction analysis. As a result, the crystallite size of α-Al2O3 calculated from Scherrer's formula was increased from 26 to 52 nm as the polyimide ratio in the starting powders increased from 4 to 12 vol.% due to the crushing of the Al2O3 powder being reduced by the shock-absorbing effect of the polyimide powder. The Al2O3-polyimide composite thick films showed a high loss tangent with a large frequency dependence when a mixed powder of 12 vol.% polyimide was used due to the nonuniform microstructure with a rough surface. The Al2O3-polyimide composite thick films showed uniform composite structures with a low loss tangent of less than 0.01 at 1 MHz and a high Al2O3 content of more than 75 vol.% when a mixed powder of 8 vol.% polyimide was used. Moreover, the Al2O3-polyimide composite thick films had extremely high Al2O3 contents of 95 vol.% and showed a dense microstructure close to that of the Al2O3 thick films when a mixed powder of 4 vol.% polyimide was used. PMID:22283973

  14. Determination of the composition, encapsulation efficiency and loading capacity in protein drug delivery systems using circular dichroism spectroscopy.

    PubMed

    Peng, Zhili; Li, Shanghao; Han, Xu; Al-Youbi, Abdulrahman O; Bashammakh, Abdulaziz S; El-Shahawi, Mohammad S; Leblanc, Roger M

    2016-09-21

    Peptides and proteins have become very promising drug candidates in recent decades due to their unique properties. However, the application of these drugs has been limited by their high enzymatic susceptibility, low membrane permeability and poor bioavailability when administered orally. Considerable efforts have been made to design and develop drug delivery systems that could transport peptides and proteins to targeted area. Although it is of great importance to determine the composition after loading a drug to the carrier, the ability to do so is significantly limited by current analytical methods. In this letter, five important proteins, α1-antitrypsin, hemoglobin human, human serum albumin, human transferrin and r-globulin were chemically conjugated to two model drug carriers, namely carbon dots and polymer O-(2-carboxyethyl) polyethylene glycol. A simple yet convenient method based on circular dichroism spectroscopy was developed to determine the compositions of the various protein-carrier conjugates. PMID:27590552

  15. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  16. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  17. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  18. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  19. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  20. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  1. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  2. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  3. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature.

    PubMed

    Kruefu, Viruntachar; Wisitsoraat, Anurat; Tuantranont, Adisorn; Phanichphant, Sukon

    2014-01-01

    In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed. PMID:25246871

  4. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature

    NASA Astrophysics Data System (ADS)

    Kruefu, Viruntachar; Wisitsoraat, Anurat; Tuantranont, Adisorn; Phanichphant, Sukon

    2014-09-01

    In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed.

  5. Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature

    PubMed Central

    2014-01-01

    In this work, a new poly (3-hexylthiophene):1.00 mol% Au-loaded zinc oxide nanoparticles (P3HT:Au/ZnO NPs) hybrid sensor is developed and systematically studied for ammonia sensing applications. The 1.00 mol% Au/ZnO NPs were synthesized by a one-step flame spray pyrolysis (FSP) process and mixed with P3HT at different mixing ratios (1:1, 2:1, 3:1, 4:1, and 1:2) before drop casting on an Al2O3 substrate with interdigitated gold electrodes to form thick film sensors. Particle characterizations by X-ray diffraction (XRD), nitrogen adsorption analysis, and high-resolution transmission electron microscopy (HR-TEM) showed highly crystalline ZnO nanoparticles (5 to 15 nm) loaded with ultrafine Au nanoparticles (1 to 2 nm). Film characterizations by XRD, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and atomic force microscopy (AFM) revealed the presence of P3HT/ZnO mixed phases and porous nanoparticle structures in the composite thick film. The gas sensing properties of P3HT:1.00 mol% Au/ZnO NPs composite sensors were studied for reducing and oxidizing gases (NH3, C2H5OH, CO, H2S, NO2, and H2O) at room temperature. It was found that the composite film with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibited the best NH3 sensing performances with high response (approximately 32 to 1,000 ppm of NH3), fast response time (4.2 s), and high selectivity at room temperature. Plausible mechanisms explaining the enhanced NH3 response by composite films were discussed. PMID:25246871

  6. Numerical Investigation of T-joints with 3D Four Directional Braided Composite Fillers Under Tensile Loading

    NASA Astrophysics Data System (ADS)

    Li, Xiao-kang; Liu, Zhen-guo; Hu, Long; Wang, Yi-bo; Lei, Bing; Huang, Xiang

    2016-08-01

    Numerical studied on T-joints with three-dimensional four directional (3D4D) braided composite fillers was presented in this article. Compared with conventional unidirectional prepreg fillers, the 3D braided composite fillers have excellent ability to prevent crack from penetrating trigone fillers, which constantly occurred in the conventional fillers. Meanwhile, the 3D braided composite fillers had higher fiber volume fraction and eliminated the fiber folding problem in unidirectional prepreg fillers. The braiding technology and mechanical performance of 3D4D braided fillers were studied. The numerical model of carbon fiber T-joints with 3D4D braided composite fillers was built by finite element analysis software. The damage formation, extension and failing process of T-joints with 3D4D braided fillers under tensile load were investigated. Further investigation was extended to the effect of 3D4D braided fillers with different braiding angles on mechanical behavior of the T-joints. The study results revealed that the filling area was the weakest part of the T-joints where the damage first appeared and the crack then rapidly spread to the glue film around the filling area and the interface between over-laminate and soleplate. The 3D4D braided fillers were undamaged and the braiding angle change induced a little effect on the bearing capacity of T-joints.

  7. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.

    PubMed

    Hu, Mingjun; Cai, Xiaobing; Guo, Qiuquan; Bian, Bin; Zhang, Tengyuan; Yang, Jun

    2016-01-26

    In this article, we describe a writable particle-free ink for fast fabrication of highly conductive stretchable circuits. The composite ink mainly consists of soluble silver salt and adhesive rubber. Low toxic ketone was employed as the main solvent. Attributed to ultrahigh solubility of silver salt in short-chain ketone and salt-assisted dissolution of rubber, the ink can be prepared into particle-free transparent solution. As-prepared ink has a good chemical stability and can be directly filled into ballpoint pens and use to write on different substrates to form well adhesive silver salt-based composite written traces as needed. As a result of high silver salt loading, the trace can be converted into highly conductive silver nanoparticle-based composites after in situ reduction. Because of the introduction of adhesive elastomeric rubber, the as-formed conductive composite written trace can not only maintain good adhesion to various substrates but also show good conductivity under various deformations. The conductivity of written traces can be enhanced by repeated writing-reduction cycles. Different patterns can be fabricated by either direct handwriting or hand-copying. As proof-of-concept demonstrations, a typical handwriting heart-like circuit was fabricated to show its capability to work under different deformations, and a pressure-sensitive switch was also manufactured to present pressure-dependent change of resistance. PMID:26624508

  8. Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits.

    PubMed

    Hu, Mingjun; Cai, Xiaobing; Guo, Qiuquan; Bian, Bin; Zhang, Tengyuan; Yang, Jun

    2016-01-26

    In this article, we describe a writable particle-free ink for fast fabrication of highly conductive stretchable circuits. The composite ink mainly consists of soluble silver salt and adhesive rubber. Low toxic ketone was employed as the main solvent. Attributed to ultrahigh solubility of silver salt in short-chain ketone and salt-assisted dissolution of rubber, the ink can be prepared into particle-free transparent solution. As-prepared ink has a good chemical stability and can be directly filled into ballpoint pens and use to write on different substrates to form well adhesive silver salt-based composite written traces as needed. As a result of high silver salt loading, the trace can be converted into highly conductive silver nanoparticle-based composites after in situ reduction. Because of the introduction of adhesive elastomeric rubber, the as-formed conductive composite written trace can not only maintain good adhesion to various substrates but also show good conductivity under various deformations. The conductivity of written traces can be enhanced by repeated writing-reduction cycles. Different patterns can be fabricated by either direct handwriting or hand-copying. As proof-of-concept demonstrations, a typical handwriting heart-like circuit was fabricated to show its capability to work under different deformations, and a pressure-sensitive switch was also manufactured to present pressure-dependent change of resistance.

  9. Study on the laser irradiation effects on carbon fiber reinforced resin composite subjected to tangential gas flow loading

    NASA Astrophysics Data System (ADS)

    Chen, Minsun; Jiang, Houman; Jiao, Luguang; Li, Junshen; Liu, Zejin

    2013-05-01

    The irradiation effects of 976nm continuous-wave laser on carbon fiber reinforced E-51 resin composite is studied experimentally, with a 0.4Ma tangential airflow or 0.4Ma tangential nitrogen gas flow on the target surface. In order to simulate the thermal response of fiber reinforced resin composite materials subjected to combined laser and tangential gas flow loading, a three-dimensional thermal response model of resin composite materials is developed. In the model, the thermal decomposition of resin is described by a multi-step model. The motion of the decomposition gas is assumed to be one-dimensional, for the case that the laser spot is significantly larger than the thickness of the sample. According the above assumption, the flow of the decomposition gas is considered in the three-dimensional model without introducing any mechanical quantities. The influences of the tangential gas flow, the outflow of the thermal decomposition gas and the ablation-including phase change ablation or oxidative ablation-of the surface material on the laser irradiation effects are included in the surface boundary conditions. The three-dimensional thermal response model is calculated numerically by use of the modified smooth particle hydrodynamics (MSPH) method which is coded with FORTRAN. The model is tested by experimentally measuring the temperature profiles during carbon fiber reinforced E-51 resin composite subjected to combined laser and tangential gas flow. The predicted temperature profiles are in good agreement with experimental temperatures obtained using thermocouples.

  10. Characterization and Analysis of Triaxially Braided Polymer Composites under Static and Impact Loads

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Roberts, Gary D.; Blinzler, Brina J.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2012-01-01

    In order to design impact resistant aerospace components made of triaxially-braided polymer matrix composite materials, a need exists to have reliable impact simulation methods and a detailed understanding of the material behavior. Traditional test methods and specimen designs have yielded unrealistic material property data due to material mechanisms such as edge damage. To overcome these deficiencies, various alternative testing geometries such as notched flat coupons have been examined to alleviate difficulties observed with standard test methods. The results from the coupon level tests have been used to characterize and validate a macro level finite element-based model which can be used to simulate the mechanical and impact response of the braided composites. In the analytical model, the triaxial braid unit cell is approximated by using four parallel laminated composites, each with a different fiber layup, which roughly simulates the braid architecture. In the analysis, each of these laminated composites is modeled as a shell element. Currently, each shell element is considered to be a smeared homogeneous material. Simplified micromechanics techniques and lamination theory are used to determine the equivalent stiffness properties of each shell element, and results from the coupon level tests on the braided composite are used to back out the strength properties of each shell element. Recent improvements to the model include the incorporation of strain rate effects into the model. Simulations of ballistic impact tests have been carried out to investigate and verify the analysis approach.

  11. High-Fidelity Nonlinear Analysis of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2001-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have four different shell-wall laminates and two different shell-radius-to-thickness ratios. The shell-wall laminates include two different orthotropic laminates and two different quasi-isotropic laminates. The shell-radius-to-thickness ratios include shell-radius-to-thickness ratios equal to 100 and 200. The results identify the effects of traditional and nontraditional initial imperfections on the nonlinear response characteristics and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The nontraditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these traditional and nontraditional imperfections on the nonlinear response characteristics and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts the stable response characteristics of the shells, and a nonlinear transient analysis that predicts the unstable response characteristics. The results of a local shell-wall stress analysis used to estimate failure stresses are also described.

  12. Innovative design of composite structures: Axisymmetric deformations of unsymmetrically laminated cylinders loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Paraska, P. J.

    1990-01-01

    The study focuses on the axisymmetric deformation response of unsymmetrically laminate cylinders loaded in axial compression by known loads. A geometrically nonlinear analysis is used. Though buckling is not studied, the deformations can be considered to be the prebuckling response. Attention is directed at three 16 layer laminates: a (90 sub 8/0 sub 8) sub T; a (0 sub 8/90 sub 8) sub T and a (0/90) sub 4s. The symmetric laminate is used as a basis for comparison, while the two unsymmetric laminates were chosen because they have equal but opposite bending-stretching effects. Particular attention is given to the influence of the thermally-induced preloading deformations that accompany the cool-down of any unsymmetric laminate from the consolidation temperature. Simple support and clamped boundary conditions are considered. It is concluded that: (1) The radial deformations of an unsymmetric laminate are significantly larger than the radial deformations of a symmetric laminate, although for both symmetric and unsymmetric laminates the large deformations are confined to a boundary layer near the ends of the cylinder; (2) For this nonlinear problem the length of the boundary layer is a function of the applied load; (3) The sign of the radial deformations near the supported end of the cylinder depends strongly on the sense (sign) of the laminate asymmetry; (4) For unsymmetric laminates, ignoring the thermally-induced preloading deformations that accompany cool-down results in load-induced deformations that are under predicted; and (5) The support conditions strongly influence the response but the influence of the sense of asymmetry and the influence of the thermally-induced preloading deformations are independent of the support conditions.

  13. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    PubMed Central

    Chandekar, Gautam S.; Kelkar, Ajit D.

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  14. Alginate-calcium microsphere loaded with thrombin: a new composite biomaterial for hemostatic embolization.

    PubMed

    Rong, Jing-jing; Liang, Ming; Xuan, Feng-qi; Sun, Jing-yang; Zhao, Li-jun; Zhen, Hui-zhen; Tian, Xiao-xiang; Liu, Dan; Zhang, Quan-yu; Peng, Cheng-fei; Yao, Tian-ming; Li, Fei; Wang, Xiao-zeng; Han, Ya-ling; Yu, Wei-ting

    2015-04-01

    To date, transcatheter arterial embolization (TAE) has become a standard treatment to control intracavitary bleeding as an alternative to surgery. Due to excellent biocompatibility and no residual in vivo, biodegradable materials are preferred in TAE. However, gelfoam is the only commercially available biodegradable embolic material used to treat blunt trauma of solid abdominal viscera until now, and controversial on its stability and reliability never stopped in the past five decades. In this study, a new biodegradable macromolecule material (thrombin-loaded alginate-calcium microspheres, TACMs) was prepared using electrostatic droplet techniques and a special method was developed for hemostatic embolization. Thrombin was successfully loaded into microspheres with high encapsulation efficiency and drug loading capacity. A burst release of TACMs was observed at early stage and sustained release later on, with the activity of thrombin preserved well. The strength of TACMs mixed thrombus, which was used as embolic agent, increased in a dose-dependent manner after TACMs were added. In addition, the TACMs were verified to be of no cytotoxicity and systemic toxicity, and biodegradable in vivo. Finally, the results of preliminary applications revealed that the TACMs could serve as an effective and promising embolic material for blunt trauma and hemorrhage of solid abdominal viscera. PMID:25583022

  15. Graphite/Polyimide Composites Subjected to Biaxial Loads at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Kumosa, Maciej S.; Sutter, J. K.

    2007-01-01

    First, we will review our most important research accomplishments from a five year study concerned with the prediction of mechanical properties of unidirectional and woven graphite/polyimide composites based on T650-35, M40J and M60J fibers embedded in either PMR-15 or PMR-II-50 polyimide resins. Then, an aging model recently developed for the composites aged in nitrogen will be proposed and experimentally verified on an eight harness satin (8HS) woven T650-35/PMR-15 composite aged in nitrogen at 315 C for up to 1500 hours. The study was supported jointly between 1999 and 2005 by the AFOSR, the NASA Glenn Research Center, and the National Science Foundation.

  16. Damage development in titanium metal matrix composites subjected to cyclic loading

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1992-01-01

    Several layups of SCS-6/Ti-15-3 composites were investigated. Fatigue tests were conducted and analyzed for both notched and unnotched specimens at room temperature and elevated temperatures. Thermo-mechanical fatigue results were analyzed. Test results indicated that the stress in the 0 degree fibers is the controlling factor in fatigue life. The static and fatigue strength of these materials is shown to be strongly dependent on the level of residual stresses and the fiber/matrix interfacial strength. Fatigue tests of notched specimens showed that cracks can initiate and grow many fiber spacings in the matrix materials without breaking fibers. Fiber bridging models were applied to characterize the crack growth behavior. The matrix cracks are shown to significantly reduce the residual strength of notched composites. The notch strength of these composites was accurately predicted using a micromechanics based methodology.

  17. Failure kinetic and scaling behavior of the composite materials: Fiber Bundle Model with the local load-sharing rule (LLS)

    NASA Astrophysics Data System (ADS)

    Hader, A.; Boughaleb, Y.; Achik, I.; Sbiaai, K.

    2013-11-01

    We investigate the spatial distribution of mechanical stresses of composite materials densely packed with thin glass fibers and yield so low transparency that the conventional method of photoelasticity testing fails to provide good quality birefringence fringes. The failure kinetic and the scaling behavior of theses materials are also studied. The calculations are done within the framework of the fiber bundle model with the local load-sharing rule (LLS) in which the load of the failing fiber is shared between only the nearest neighbor elements. We have found that the failure properties of these materials are characterized by the avalanche phenomena with two different timescales and the number of broken fibers presents a Boltzmann distribution. The failure time tf presents a power law with the applied force and the system size. The results show also that the failure kinetic of the composite materials is self-similar. The creep rupture is also investigated. The results show that these materials are characterized by a two creep regimes characterized by the Andrade's law with a two different exponents, and separated by a cross over time tm more consisting with the experiment results.

  18. Modeling of Nonlinear Mechanical Behavior for 3D Needled C/C-SiC Composites Under Tensile Load

    NASA Astrophysics Data System (ADS)

    Xie, Junbo; Fang, Guodong; Chen, Zhen; Liang, Jun

    2016-08-01

    This paper established a macroscopic constitutive model to describe the nonlinear stress-strain behavior of 3D needled C/C-SiC composites under tensile load. Extensive on- and off-axis tensile tests were performed to investigate the macroscopic mechanical behavior and damage characteristics of the composites. The nonlinear mechanical behavior of the material was mainly induced by matrix tensile cracking and fiber/matrix debonding. Permanent deformations and secant modulus degradation were observed in cyclic loading-unloading tests. The nonlinear stress-strain relationship of the material could be described macroscopically by plasticity deformation and stiffness degradation. In the proposed model, we employed a plasticity theory with associated plastic flow rule to describe the evolution of plastic strains. A novel damage variable was also introduced to characterize the stiffness degradation of the material. The damage evolution law was derived from the statistical distribution of material strength. Parameters of the proposed model can be determined from off-axis tensile tests. Stress-strain curves predicted by this model showed reasonable agreement with experimental results.

  19. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  20. A Numerical Simulation of Time-Dependent Interface Failure Under Shear and Compressive Loads in Single-Fiber Composites

    NASA Astrophysics Data System (ADS)

    Koyanagi, Jun; Yoshimura, Akinori; Kawada, Hiroyuki; Aoki, Yuichiro

    2010-02-01

    We performed a numerical simulation of a time-dependent interfacial failure accompanied by a fiber failure, and examined their evolution under shear and compressive loads in single-fiber composites. The compressive load on the interface consists of Poisson’s contraction for matrix resin subjected to longitudinal tensile load. As time progresses, compressive stress at the interface in the fiber radial direction relaxes under the constant longitudinal tensile strain condition for the specimen, directly causing the relaxation of the interface frictional stress. This relaxation facilitates the failure of the interface. In this analysis, a specific criterion for interface failure is applied; apparent interfacial shear strength is enhanced by compressive stress, which is referred as quasi-parabolic criterion in the present study. The results of the stress recovery profile around the fiber failure and the interfacial debonding length as a function of time simulated by the finite element analysis employing the criterion are very similar to experimental results obtained using micro-Raman spectroscopy.

  1. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    SciTech Connect

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  2. Structural degradation of acrylic bone cements due to in vivo and simulated aging.

    PubMed

    Hughes, Kerry F; Ries, Michael D; Pruitt, Lisa A

    2003-05-01

    Acrylic bone cement is the primary load-bearing material used for the attachment of orthopedic devices to adjoining bone. Degradation of acrylic-based cements in vivo results in a loss of structural integrity of the bone-cement-prosthesis interface and limits the longevity of cemented orthopedic implants. The purpose of this study is to investigate the effect of in vivo aging on the structure of the acrylic bone cement and to develop an in vitro artificial aging protocol that mimics the observed degradation. Three sets of retrievals are examined in this study: Palacos brand cement retrieved from hip replacements, and Simplex brand cement retrieved from both hip and knee replacement surgeries. In vitro aging is performed using oxidative and acidic environments on three acrylic-based cements: Palacos, Simplex, and CORE. Gel permeation chromatography (GPC) and Fourier transform infrared spectroscopy (FTIR) are used to examine the evolution of molecular weight and chemical species within the acrylic cements due to both in vivo and simulated aging. GPC analysis indicates that molecular weight is degraded in the hip retrievals but not in the knee retrievals. Artificial aging in an oxidative environment best reproduces this degradation mechanism. FTIR analysis indicates that there exists a chemical evolution within the cement due to in vivo and in vitro aging. These findings are consistent with scission-based degradation schemes in the cement. Based on the results of this study, a pathway for structural degradation of acrylic bone cement is proposed. The findings from this investigation have broad applicability to acrylic-based cements and may provide guidance for the development of new bone cements that resist degradation in the body.

  3. Effect of Embedded Piezoelectric Sensors on Fracture Toughness and Fatigue Resistance of Composite Laminates Under Mode I Loading

    NASA Technical Reports Server (NTRS)

    Murri, Gretchen B.

    2006-01-01

    Double-cantilevered beam (DCB) specimens of a glass/epoxy composite material with embedded piezoelectric sensors were tested both statically and under fatigue loading to determine the effect of the embedded material on the Mode I fracture toughness and fatigue resistance compared to baseline data without the embedded elements. A material known as LaRC-Macrofiber Composite (LaRC-MFC (TradeMark)), or MFC, was embedded at the midplane of the specimen during the layup. Specimens were manufactured with the embedded MFC material either at the loaded end of the specimen to simulate an initial delamination; or with the MFC material located at the delaminating interface, with a Teflon film at the loaded end to simulate an initial delamination. There were three types of specimens with the embedded material at the delaminating interface: co-cured with no added adhesive; cured with a paste adhesive applied to the embedded element; or cured with a film adhesive added to the embedded material. Tests were conducted with the sensors in both the passive and active states. Results were compared to baseline data for the same material without embedded elements. Interlaminar fracture toughness values (G(sub Ic)) for the passive condition showed little change when the MFC was at the insert end. Passive results varied when the MFC was at the delaminating interface. For the co-cured case and with the paste adhesive, G(sub Ic) decreased compared to the baseline toughness, whereas, for the film adhesive case, G(sub Ic) was significantly greater than the baseline toughness, but the failure was always catastrophic. When the MFC was in the active state, G(sub Ic) was generally lower compared to the passive results. Fatigue tests showed little effect of the embedded material whether it was active or passive compared to baseline values.

  4. Benefits of low kenaf loading in biobased composites of Poly (L-lactide) and kenaf fiber

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bast fibers from stems of kenaf (Hibiscus cannabinus L.), a warm-season herbaceous annual plant, were dispersed into Poly-L-Lactide (PLLA) matrix by melt mixing followed by compression molding. Low fiber fractions (1-5%) were investigated. The composites showed a slight lowering of thermal stabili...

  5. Crystal structure transformation in potassium acrylate

    NASA Astrophysics Data System (ADS)

    Pai Verneker, V. R.; Vasanthakumari, R.

    1983-10-01

    Potassium acrylate undergoes a reversible phase transformation around 335°K with an activation energy of 133 kcal/mole. Differential scanning calorimetry and high temperature X-ray powder diffraction techniques have been used to probe this phenomenon.

  6. Encapsulation of photocells with acrylic prepolymer

    SciTech Connect

    Avenel, M.; Evrard, P.; Leca, J.-P.

    1985-10-22

    Acrylic prepolymer comprising: from 10 to 50% by weight of units derived from at least one alkyl acrylate, the alkyl group having from 4 to 12 carbon atoms, from 30 to 60% by weight of units derived from at least one alkyl methacrylate, the alkyl group having from 1 to 5 carbon atoms, and from 10 to 40% by weight of units derived from methyl acrylate. The prepolymer is used to encapsulate photocells, connected to one another by conducting wires and positioned on a support plate, by casting a resin into the space located between the support plate and a second protective plate, the resin being obtained by mixing 100 parts of the acrylic prepolymer, from 0.1 to 4 parts of a vanadium arenesulphonate and from 0.5 to 4 parts of a free-radical initiator, at a temperature between 10 and 70 C. and for a sufficient time to solidify the polymeric resin at the temperature selected.

  7. Food composition and acid-base balance: alimentary alkali depletion and acid load in herbivores.

    PubMed

    Kiwull-Schöne, Heidrun; Kiwull, Peter; Manz, Friedrich; Kalhoff, Hermann

    2008-02-01

    Alkali-enriched diets are recommended for humans to diminish the net acid load of their usual diet. In contrast, herbivores have to deal with a high dietary alkali impact on acid-base balance. Here we explore the role of nutritional alkali in experimentally induced chronic metabolic acidosis. Data were collected from healthy male adult rabbits kept in metabolism cages to obtain 24-h urine and arterial blood samples. Randomized groups consumed rabbit diets ad libitum, providing sufficient energy but variable alkali load. One subgroup (n = 10) received high-alkali food and approximately 15 mEq/kg ammonium chloride (NH4Cl) with its drinking water for 5 d. Another group (n = 14) was fed low-alkali food for 5 d and given approximately 4 mEq/kg NH4Cl daily for the last 2 d. The wide range of alimentary acid-base load was significantly reflected by renal base excretion, but normal acid-base conditions were maintained in the arterial blood. In rabbits fed a high-alkali diet, the excreted alkaline urine (pH(u) > 8.0) typically contained a large amount of precipitated carbonate, whereas in rabbits fed a low-alkali diet, both pH(u) and precipitate decreased considerably. During high-alkali feeding, application of NH4Cl likewise decreased pH(u), but arterial pH was still maintained with no indication of metabolic acidosis. During low-alkali feeding, a comparably small amount of added NH4Cl further lowered pH(u) and was accompanied by a significant systemic metabolic acidosis. We conclude that exhausted renal base-saving function by dietary alkali depletion is a prerequisite for growing susceptibility to NH4Cl-induced chronic metabolic acidosis in the herbivore rabbit.

  8. The mechanisms of plastic strain accommodation and post critical behavior of heterogeneous reactive composites subject to dynamic loading

    NASA Astrophysics Data System (ADS)

    Olney, Karl L.

    The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine

  9. Improvements to a method for the geometrically nonlinear analysis of compressively loaded stiffened composite panels

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This report describes progress made during the period July 1991 to December 1991 on the tasks identified in the technical proposals for the subject grant. The plans for further effort on each of the tasks are outlined. The computer implementation of the method of analysis under development is referred to in this document as NLPAN. These tasks included: (1) implementation of continuation methods; (2) dynamic analysis capability; (3) additional boundary condition options for the panel ends; (4) transverse pressure loading; (5) second-order displacement fields; and (6) results for an i-stiffened panel with a complex cross section.

  10. Modelling and simulation of randomly oriented carbon fibre-reinforced composites under thermal load

    NASA Astrophysics Data System (ADS)

    Treffler, R.; Fröschl, J.; Drechsler, K.; Ladstätter, E.

    2016-03-01

    Carbon fibre-reinforced sheet moulding compounds (CF-SMC) already exhibit a complex material behaviour under uniaxial loads due to the random orientation of the fibres in the matrix resin. Mature material models for metallic materials are generally not transferable. This paper proposes an approach for modelling the fatigue behaviour of CF-SMC based on extensive static and cyclic tests using low cost secondary carbon fibres (SCF). The main focus is on describing the stiffness degradation considering the dynamic modulus of the material. Influence factors such as temperature, orientation, rate dependence and specimen thickness were additionally considered.

  11. Stable plasma-deposited acrylic acid surfaces for cell culture applications.

    PubMed

    Detomaso, Loredana; Gristina, Roberto; Senesi, Giorgio S; d'Agostino, Riccardo; Favia, Pietro

    2005-06-01

    Continuous and modulated glow discharges were used to deposit thin films from acrylic acid vapors. Different deposition regimes were investigated, and their effect on chemical composition, morphology and homogeneity of the coatings, as well as on their stability in water and resistance to sterilization. Stable films were utilized in cell adhesion experiments with human fibroblasts. PMID:15626431

  12. Prediction and measurement of composite tube twist and bending due to thermal loading

    NASA Astrophysics Data System (ADS)

    Bluth, A. Marcel; Tucker, James R.; Thompson, Troy

    2013-09-01

    Composite materials are applied in precision optical metering structures because of their low thermal expansion properties in concert with high specific stiffness. Twisting and bending of long composite tubes, such as the secondary mirror support structure for the JWST telescope, requires control and verification. A stochastic modeling method was applied that simulates the manufacturing process variability and estimates ranges for expected twist and bend over the tube length from ambient to cryogenic temperatures. A development strut for the JWST secondary mirror support structure was fabricated and a metrology system was designed and implemented that measured the bend and twist response from ambient to 30 K. Modeling methods and predictions are outlined. The test metrology and results are summarized, along with a comparison between test and prediction.

  13. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulas, M. M., Jr.

    1975-01-01

    Structural efficiency studies were made to determine the weight-saving potential of graphite/epoxy composite structures for compression panel applications. Minimum-weight hat-stiffened and open-corrugation configurations were synthesized using a nonlinear mathematical programing technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience to date suggests that most of the theoretical weight-saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  14. Delamination onset in polymeric composite laminates under thermal and mechanical loads

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.

    1991-01-01

    A fracture mechanics damage methodology to predict edge delamination is described. The methodology accounts for residual thermal stresses, cyclic thermal stresses, and cyclic mechanical stresses. The modeling is based on the classical lamination theory and a sublaminate theory. The prediction methodology determines the strain energy release rate, G, at the edge of a laminate and compares it with the fatigue and fracture toughness of the composite. To verify the methodology, isothermal static tests at 23, 125, and 175 C and tension-tension fatigue tests at 23 and 175 C were conducted on laminates. The material system used was a carbon/bismaleimide, IM7/5260. Two quasi-isotropic layups were used. Also, 24 ply unidirectional double cantilever beam specimens were tested to determine the fatigue and fracture toughness of the composite at different temperatures. Raising the temperature had the effect of increasing the value of G at the edge for these layups and also to lower the fatigue and fracture toughness of the composite. The static stress to edge delamination was not affected by temperature but the number of cycles to edge delamination decreased.

  15. Synthesis and physicochemical properties of organofluorine esters of acrylic, methacrylic, and maleic acids

    SciTech Connect

    Gol'din, G.S.; Averbakh, K.O.; Lavygin, I.A.; Nekrasova, L.A.

    1985-12-01

    The authors synthesize and study the physicochemical properties of organofluorine acrylates, methacrylates, and maleates. The organofluorine esters are colorless liquids; their composition and structure were confirmed by elemental analysis and IR spectra. The results of studies of the dependence of the density, surface tension, and viscosity of these compounds on temperature are presented. The results revealed the influence of the length of the fluorocarbon chain on the combination of the physicochemical properties of organofluorine acrylates, methacrylates, and maleates, and also provided a method for estimating certain thermophysical characteristics of such compounds without recourse to experimental measurements.

  16. Strontium isotopic compositions of dissolved and suspended loads from the main channel of the Yangtze River.

    PubMed

    Wang, Zhong-Liang; Zhang, Jing; Liu, Cong-Qiang

    2007-10-01

    The concentrations of Sr and (87)Sr/(86)Sr isotopic ratios have been measured in the dissolved loads from the main channel of the Yangtze River. The result shows that the Yangtze River mainstream water has considerably higher Sr concentration (202-330 microg kg(-1)) and slightly lower (87)Sr/(86)Sr ratio (0.7098-0.7108) than the global average runoff values of dissolved Sr (78 microg kg(-1)) and (87)Sr/(86)Sr ratio (0.7119). The (87)Sr/(86)Sr values of 0.7098-0.7108 in river waters result from the intense weathering of carbonate and evaporate rocks that enriched in the Yangtze River drainage basin. The calculated result based on the end-member mixing model shows that about 91% of total dissolved Sr are derived from the weathering of carbonate and evaporate rocks and the other 9% derived from the weathering of silicate rock. The Yangtze River transports about 1.86 x1 0(11)g yr(-1) (2.12 x 10(9)mol yr(-1)) of dissolved Sr annually to the East China Sea, with an average (87)Sr/(86)Sr of 0.7108. The calculated "(87)Sr(excess) flux" of the Yangtze River is about 2.12 x 10(7)mol yr(-1), indicating the important impact on seawater Sr isotope evolution. The measured (87)Sr/(86)Sr ratios of suspended particulate matters in the Yangtze River water ranging from 0.7178 to 0.7252, are about 0.015 higher than that of corresponding dissolved loads, reflecting more important contribution of silicate particles in suspended particulate matters and preferential dissolution of carbonate rocks during basin weathering.

  17. CHEMICAL COMPOSITION AND PCT DATA FOR THE INITIAL SET OF HANFORD ENHANCED WASTE LOADING GLASSES

    SciTech Connect

    Fox, K.; Edwards, T.

    2014-06-02

    In this report, the Savannah River National Laboratory provides chemical analyses and Product Consistency Test results for 20 simulated high level waste glasses fabricated by the Pacific Northwest National Laboratory. The results of these analyses will be used as part of efforts to revise or extend the validation ranges of the current Hanford Waste Treatment and Immobilization Plant glass property models to cover a broader span of waste compositions. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. Two components of the study glasses, fluorine and silver, were not measured since each of these species would have required the use of an additional preparation method and their measured values were likely to be near or below analytical detection limits. Some of the glasses were difficult to prepare for chemical analysis. A sodium peroxide fusion dissolution method was successful in completely dissolving the glasses. Components present in the glasses in minor concentrations can be difficult to measure using this dissolution method due to dilution requirements. The use of a lithium metaborate preparation method for the minor components (planned for use since it is typically successful in digesting Defense Waste Processing Facility HLW glasses) resulted in an unacceptable amount of undissolved solids remaining in the sample solutions. An acid dissolution method was used instead, which provided more thorough dissolution of the glasses, although a small amount of undissolved material remained for some of the study glasses. The undissolved material was analyzed to determine those components of the glasses that did not fully dissolve. These components (e.g., calcium and chromium) were present in sufficient quantities to be reported from the measurements resulting from the sodium peroxide fusion preparation method, which did not leave undissolved material. Overall, the analyses resulted in sums of

  18. Dynamic finite element analysis of the crack-inclusion interaction in aligned CNF composites under impact loading conditions

    NASA Astrophysics Data System (ADS)

    Ting, Huat Tung

    The interaction between a crack and an inclusion of microfiber in an aligned carbon nanofiber (CNF) toughened composite under impact loading conditions was studied by using dynamic finite element analysis (FEA). The nanocomposite material used in this study was T300/Epon 862 enhanced with aligned carbon nanofibers (CNFs). The dynamic stress intensity factors (DSIFs) were evaluated to describe the dynamic fracture behavior of the fracture model. In this study, a numerical homogenization model using FEA was first employed to determine the effective material properties of the equivalent matrix material of Epon 862 and aligned CNFs. The effects of T300 microfiber inclusion eccentricity and CNF alignment angle on the DSIFs were examined in this study. The displacement extrapolation method for monoclinic materials was utilized to calculate the DSIFs. The numerical results demonstrated a mechanism known as "crack-tip shielding" and demonstrated that the CNF alignment angle has an impact on the DSIFs.

  19. Axisymmetric thermo-elastic field in an annular plate of functionally graded multiferroic composites subjected to uniform thermal loadings

    NASA Astrophysics Data System (ADS)

    Shi, T. F.; Wang, C. J.; Liu, C.; Liu, Y.; Dong, Y. H.; Li, X. Y.

    2016-03-01

    This paper presents the thermo-magneto-electro-elastic (thermo-MEE) field in an annular plate of heterogeneous multiferroic composite medium subjected to thermal loadings uniformly distributed on the main boundaries. As a prior, the temperature distribution is determined by solving the thermo-conduction equation. Then, the direct displacement method is employed to derive the coupling thermo-MEE field. Finally, numerical calculations are performed to validate the present analysis and to investigate the influence of the material heterogeneity and the multi-field coupling. The present solutions can be readily reduced to those for circular plate upon letting the inner radius tend to zero. The obtained solutions may serve as a benchmark to various numerical codes and simplified analyzes, since no ad hoc hypothesis is adopted in the present work.

  20. CLFE2D: A generalized plane strain finite element program laminated composites subject to mechanical and hygrothermal loading

    NASA Technical Reports Server (NTRS)

    Buczek, M. B.; Gregory, M. A.; Herakovich, C. T.

    1983-01-01

    CLFE2D is a two dimensional generalized plane strain finite element code, using a linear, four node, general quadrilateral, isoparametric element. The program is developed to calculate the displacements, strains, stresses, and strain energy densities in a finite width composite laminate. CLFE2D offers any combination of the following load types: nodal displacements, nodal forces, uniform normal strain, or hygrothermal. The program allows the user to input one set of three dimensional orthotropic material properties. The user can then specify the angle of material principal orientation for each element in the mesh. Output includes displacements, stresses, strains and strain densities at points selected by the user. An option is also available to plot the underformed and deformed finite element meshes.

  1. Transparent bulk-size nanocomposites with high inorganic loading

    SciTech Connect

    Chen, Shi; Gaume, Romain

    2015-12-14

    With relatively high nanoparticle loading in polymer matrices, hybrid nanocomposites made by colloidal dispersion routes suffer from severe inhomogeneous agglomeration, a phenomenon that deteriorates light transmission even when the refractive indices of the inorganic and organic phases are closely matched. The dispersion of particles in a matrix is of paramount importance to obtain composites of high optical quality. Here, we describe an innovative, yet straightforward method to fabricate monolithic transparent hybrid nanocomposites with very high particle loading and high refractive index mismatch tolerance between the inorganic and organic constituents. We demonstrate 77% transmission at 800 nm in a 2 mm-thick acrylate polymer nanocomposite containing 61 vol. % CaF{sub 2} nanoparticles. Modeling shows that similar performance could easily be obtained with various inorganic phases relevant to a number of photonic applications.

  2. An Aerobic Weight-Loaded Pilot Exercise Intervention for Breast Cancer Survivors: Bone Remodeling and Body Composition Outcomes

    PubMed Central

    Knobf, M. Tish; Insogna, Karl; DiPietro, Loretta; Fennie, Kristopher; Thompson, A. Siobhan

    2012-01-01

    Objective Weight gain and bone loss are commonly reported in breast cancer survivors. The purpose of this pilot study is to assess feasibility and explore the effect of an aerobic weight-loaded exercise intervention on bone remodeling, weight, and body composition. Design A one-group pre-posttest design was used to test a 16–24-week supervised walking exercise intervention among women within 2 years of menopause. Through Weeks 1–4, time and weight were progressively increased. By Week 5 and through the end of the intervention, a waist belt was loaded with 5 lb and participants spent 45 min on the treadmill 3 times/week. Bone remodeling was measured by serum biomarkers (N-terminal propeptides of type I collagen [NTX] and serum osteocalcin). Dual-energy absorptiometry scans assessed body composition. Data were collected at baseline and 16 and 24 weeks. Results The majority of the 26 participants were married, well educated, and employed, with a mean age of 51.3 years (SD = 6.2). The high adherence (M = 88.2%, SD = 6.8) demonstrated feasiblity. There were no significant changes in serum osteocalcin (p = .67), serum NTX (p = .31), lean muscle mass (p = .08), or percent fat mass for the group as a whole (p = .14), but fat mass increased for women on adjuvant endocrine therapy (p = .04). The women maintained their weight. Conclusions This novel exercise intervention for breast cancer survivors was feasible, and women otherwise at high risk for weight gain and bone loss maintained their weight and bone mass. PMID:18705153

  3. Pattern of aerosol mass loading and chemical composition over the atmospheric environment of an urban coastal station

    NASA Astrophysics Data System (ADS)

    Bindu, G.; Nair, Prabha R.; Aryasree, S.; Hegde, Prashant; Jacob, Salu

    2016-02-01

    Aerosol sampling was carried out at four locations in and around Cochin (9°58‧ N, 76°17‧ E), an urban area, located on the southwest coast of India. The gravimetric estimates of aerosol mass loading showed wide range from 78 μg m-3 to >450 μg m-3, occasionally reaching values >500 μg m-3, associated with regional source characteristics. Most of the values were above the air quality standard. Both boundary layer and synoptic scale airflow pattern play role in the temporal features in aerosol mass loading and chemical composition. Chemical analysis of the aerosol samples were done for anionic species viz; F-, Cl-, Br-, NO2-,   NO3-,   PO43-,   SO42- and metallic/cationic species viz; Na, Ca, K, Mg, NH4+, Fe, Al, Cu, Mg, Pb, etc using Ion Chromatography, Atomic Absorption Spectroscopy (AAS) and Inductively Coupled Plasma- Atomic Emission Spectroscopy (ICP-AES). At all the locations, extremely high mass concentration of SO42- was observed with the mean value of 13±6.4 μg m-3 indicating the strong anthropogenic influence. Statistical analysis of the chemical composition data was carried out and the principal factors presented. Seasonal variation of these chemical species along with their percentage contributions and regional variations were also examined. Increase in level of Na in aerosol samples indicated the influence of monsoonal activity. Most of the species showed mass concentrations well above those measured over another coastal site Thiruvananthapuram (8°29‧ N, 76°57‧ E) situated ~220 km south of Cochin revealing the highly localized aerosol features.

  4. Demonstrate Scale-up Procedure for Glass Composite Material (GCM) for Incorporation of Iodine Loaded AgZ.

    SciTech Connect

    Nenoff, Tina M.; Garino, Terry J.; Croes, Kenneth James; Rodriguez, Mark A.

    2015-07-01

    Two large size Glass Composite Material (GCM) waste forms containing AgI-MOR were fabricated. One contained methyl iodide-loaded AgI-MOR that was received from Idaho National Laboratory (INL, Test 5, Beds 1 – 3) and the other contained iodine vapor loaded AgIMOR that was received from Oak Ridge National Laboratory (ORNL, SHB 2/9/15 ). The composition for each GCM was 20 wt% AgI-MOR and 80 wt% Ferro EG2922 low sintering temperature glass along with enough added silver flake to prevent any I2 loss during the firing process. The silver flake amounts were 1.2 wt% for the GCM with the INL AgI-MOR and 3 wt% for the GCM contained the ORNL AgI-MOR. The GCMs, nominally 100 g, were first uniaxially pressed to 6.35 cm (2.5 inch) diameter disks then cold isostatically pressed, before firing in air to 550°C for 1hr. They were cooled slowly (1°C/min) from the firing temperature to avoid any cracking due to temperature gradients. The final GCMs were ~5 cm in diameter (~2 inches) and non-porous with densities of ~4.2 g/cm³. X-ray diffraction indicated that they consisted of the amorphous glass phase with small amounts of mordenite and AgI. Furthermore, the presence of the AgI was confirmed by X-ray fluorescence. Methodology for the scaled up production of GCMs to 6 inch diameter or larger is also presented.

  5. A hierarchical carbon nanotube-loaded glass-filter composite paper interlayer with outstanding electrolyte uptake properties for high-performance lithium-sulphur batteries

    NASA Astrophysics Data System (ADS)

    Lee, Cho-Long; Kim, Il-Doo

    2015-06-01

    A hierarchical CNT-loaded GF composite paper interlayer was fabricated by a sonication method. In this study, the GF paper offers outstanding electrolyte uptake, which is essential for preserving dissolved polysulphides, and the CNT networks provide a fast electron pathway for insulating the active materials. The GF/CNT interlayer-loaded Li-S cell exhibited a high capacity and long-term cycling performance.A hierarchical CNT-loaded GF composite paper interlayer was fabricated by a sonication method. In this study, the GF paper offers outstanding electrolyte uptake, which is essential for preserving dissolved polysulphides, and the CNT networks provide a fast electron pathway for insulating the active materials. The GF/CNT interlayer-loaded Li-S cell exhibited a high capacity and long-term cycling performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02637g

  6. Buckling of Carbon Nanotube-Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings

    NASA Technical Reports Server (NTRS)

    Riddick, J. C.; Gates, T. S.; Frankland, S.-J. V.

    2005-01-01

    A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linking of intrinsic, nanoscale-material definitions to finite scale-structural properties is achieved via a hierarchical approach in which the elastic properties of the reinforced layers are predicted by an equivalent continuum modeling technique. Solutions for infinitely long symmetrically laminated nanotube-reinforced laminates with simply-supported or clamped edges subjected to axial compression and shear loadings are presented. The study focuses on the influence of nanotube volume fraction, length, orientation, and functionalization on finite-scale laminate response. Results indicate that for the selected laminate configurations considered in this study, angle-ply laminates composed of aligned, non-functionalized carbon nanotube-reinforced lamina exhibit the greatest buckling resistance with 1% nanotube volume fraction of 450 nm uniformly-distributed carbon nanotubes. In addition, hybrid laminates were considered by varying either the volume fraction or nanotube length through-the-thickness of a quasi-isotropic laminate. The ratio of buckling load-to-nanotube weight percent for the hybrid laminates considered indicate the potential for increasing the buckling efficiency of nanotube-reinforced laminates by optimizing nanotube size and proportion with respect to laminate configuration.

  7. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery.

  8. Biocompatibility and osteogenesis of calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres for bone tissue engineering.

    PubMed

    Zhang, Hao-Xuan; Xiao, Gui-Yong; Wang, Xia; Dong, Zhao-Gang; Ma, Zhi-Yong; Li, Lei; Li, Yu-Hua; Pan, Xin; Nie, Lin

    2015-10-01

    By utilizing a modified solid/oil/water (s/o/w) emulsion solvent evaporation technique, calcium phosphate composite scaffolds containing simvastatin-loaded PLGA microspheres (SIM-PLGA-CPC) were prepared in this study. We characterized the morphology, encapsulation efficiency and in vitro drug release of SIM-loaded PLGA microspheres as well as the macrostructure, pore size, porosity and mechanical strength of the scaffolds. Rabbit bone mesenchymal stem cells (BMSCs) were seeded onto SIM-PLGA-CPC scaffolds, and the proliferation, morphology, cell cycle and differentiation of BMSCs were investigated using the cell counting kit-8 (CCK-8) assay, scanning electron microscopy (SEM), flow cytometry, alkaline phosphatase (ALP) activity and alizarin red S staining, respectively. The results revealed that SIM-PLGA-CPC scaffolds were biocompatible and osteogenic in vitro. To determine the in vivo biocompatibility and osteogenesis of the scaffolds, both pure PLGA-CPC scaffolds and SIM-PLGA-CPC scaffolds were implanted in rabbit femoral condyles and microradiographically and histologically investigated. SIM-PLGA-CPC scaffolds exhibited good biocompatibility and could improve the efficiency of new bone formation. All these results suggested that the SIM-PLGA-CPC scaffolds fulfilled the basic requirements of bone tissue engineering scaffold and possessed application potentials in orthopedic surgery. PMID:25809455

  9. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    PubMed Central

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  10. Cyclic debonding of unidirectional composite bonded to aluminum sheet for constant-amplitude loading

    NASA Technical Reports Server (NTRS)

    Roderick, G. L.; Everett, R. A., Jr.; Crews, J. H., Jr.

    1976-01-01

    Cyclic debonding rates were measured during constant-amplitude loading of specimens made of graphite/epoxy bonded to aluminum and S-glass/epoxy bonded to aluminum. Both room-temperature and elevated-temperature curing adhesives were used. Debonding was monitored with a photoelastic coating technique. The debonding rates were compared with three expressions for strain-energy release rate calculated in terms of the maximum stress, stress range, or a combination of the two. The debonding rates were influenced by both adherent thickness and the cyclic stress ratio. For a given value of maximum stress, lower stress ratios and thicker specimens produced faster debonding. Microscopic examination of the debonded surfaces showed different failure mechanisms both for identical adherends bonded with different adhesive and, indeed, even for different adherends bonded with identical adhesives. The expressions for strain-energy release rate correlated the data for different specimen thicknesses and stress ratios quite well for each material system, but the form of the best correlating expression varied among material systems. Empirical correlating expressions applicable to one material system may not be appropriate for another system.

  11. Multiscale Failure Analysis of Laminated Composite Panels Subjected to Blast Loading Using FEAMAC/Explicit

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Waas, Anthony M.; Berdnarcyk, Brett A.; Arnold, Steven M.; Collier, Craig S.

    2009-01-01

    This preliminary report demonstrates the capabilities of the recently developed software implementation that links the Generalized Method of Cells to explicit finite element analysis by extending a previous development which tied the generalized method of cells to implicit finite elements. The multiscale framework, which uses explicit finite elements at the global-scale and the generalized method of cells at the microscale is detailed. This implementation is suitable for both dynamic mechanics problems and static problems exhibiting drastic and sudden changes in material properties, which often encounter convergence issues with commercial implicit solvers. Progressive failure analysis of stiffened and un-stiffened fiber-reinforced laminates subjected to normal blast pressure loads was performed and is used to demonstrate the capabilities of this framework. The focus of this report is to document the development of the software implementation; thus, no comparison between the results of the models and experimental data is drawn. However, the validity of the results are assessed qualitatively through the observation of failure paths, stress contours, and the distribution of system energies.

  12. Magnetoelectric coupling of laminated composites under combined thermal and magnetic loadings

    NASA Astrophysics Data System (ADS)

    Fang, F.; Xu, Y. T.; Yang, W.

    2012-01-01

    Laminated magnetoelectric (ME) composites are suitable for applications such as magnetic field sensors, transformers, and microwave resonators. Such applications frequently involve environments where the temperature alters. The present work investigates the temperature dependent ME coupling for three kinds of laminates, namely, Terfenol-D/PZT/Terfenol-D, Ni/PZT/Ni, and Metglas/PZT/Metglas. The Terfenol-D/PZT/Terfenol-D is shown to exhibit the best temperature stability. The peak value of the ME coefficient versus temperature curve is predicted for the laminates based on the equivalent circuit model, as well as the measurements of temperature dependent magnetostriction for Terfenol-D, Ni, and Metglas. The predictions agree well with the experimental data, implying that the piezomagnetic coefficient, d11,m, of the magnetic layer plays an important role in the temperature dependent ME coupling of the laminate.

  13. Progressive Fracture of [0/90/ + or - Theta]s Composite Structure Under Uniform Pressure Load

    NASA Technical Reports Server (NTRS)

    Gotsis, Pascalis K.; Chamis, Christos C.; Gotsis, Christos K.; Mouratidis, Ericos

    2007-01-01

    S-Glass/epoxy [0/90/plus or minus theta]s for theta =45 deg., 60 deg., and 75 deg. laminated fiber-reinforced composite stiffened plate was simulated to investigated for damage and fracture progression under uniform pressure. An integrated computer code was augmented for the simulation of the damage initiation, growth, accumulation, and propagation to fracture and to structural collapse. Results show in detail the damage progression sequence and structural fracture resistance during different degradation stages. Damage through the thickness of the laminate initiated first at [0/90/plus or minus 45]s at 15.168 MPa (2200 psi), followed by [0/90/plus or minus 60]s at 16.96 MPa (2460 psi) and finally by [0/90/plus or minus 75]s at 19.3 MPa (2800 psi). After damage initiation happened the cracks propagate rapidly to structural fracture.

  14. Adding glycaemic index and glycaemic load functionality to DietPLUS, a Malaysian food composition database and diet intake calculator.

    PubMed

    Shyam, Sangeetha; Wai, Tony Ng Kock; Arshad, Fatimah

    2012-01-01

    This paper outlines the methodology to add glycaemic index (GI) and glycaemic load (GL) functionality to food DietPLUS, a Microsoft Excel-based Malaysian food composition database and diet intake calculator. Locally determined GI values and published international GI databases were used as the source of GI values. Previously published methodology for GI value assignment was modified to add GI and GL calculators to the database. Two popular local low GI foods were added to the DietPLUS database, bringing up the total number of foods in the database to 838 foods. Overall, in relation to the 539 major carbohydrate foods in the Malaysian Food Composition Database, 243 (45%) food items had local Malaysian values or were directly matched to International GI database and another 180 (33%) of the foods were linked to closely-related foods in the GI databases used. The mean ± SD dietary GI and GL of the dietary intake of 63 women with previous gestational diabetes mellitus, calculated using DietPLUS version3 were, 62 ± 6 and 142 ± 45, respectively. These values were comparable to those reported from other local studies. DietPLUS version3, a simple Microsoft Excel-based programme aids calculation of diet GI and GL for Malaysian diets based on food records.

  15. Relationship Between Hysteresis Dissipated Energy and Temperature Rising in Fiber-Reinforced Ceramic-Matrix Composites Under Cyclic Loading

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2016-06-01

    In this paper, the relationship between hysteresis dissipated energy and temperature rising of the external surface in fiber-reinforced ceramic-matrix composites (CMCs) during the application of cyclic loading has been analyzed. The temperature rise, which is caused by frictional slip of fibers within the composite, is related to the hysteresis dissipated energy. Based on the fatigue hysteresis theories considering fibers failure, the hysteresis dissipated energy and a hysteresis dissipated energy-based damage parameter changing with the increase of cycle number have been investigated. The relationship between the hysteresis dissipated energy, a hysteresis dissipated energy-based damage parameter and a temperature rise-based damage parameter have been established. The experimental temperature rise-based damage parameter of unidirectional, cross-ply and 2D woven CMCs corresponding to different fatigue peak stresses and cycle numbers have been predicted. It was found that the temperature rise-based parameter can be used to monitor the fatigue damage evolution and predict the fatigue life of fiber-reinforced CMCs.

  16. Fabrication of a biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composite for high load bearing osteosynthesis applications.

    PubMed

    Ramsay, Scott D; Pilliar, Robert M; Santerre, J Paul

    2010-07-01

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past 2-3 decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however, with elastic constants up to 12-15 GPa at best, they fail to provide the initial stiffness required of devices for stabilizing fractures of major load-bearing bones. Our research has investigated the use of calcium polyphosphate (CPP), an inorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers for such applications. Initial studies indicated that composite samples formed as interpenetrating phase composites (IPC) exhibited suitable as-made strength and stiffness, however, they displayed a rapid loss of properties when exposed to in vitro aging. An investigation to determine the mechanism of this accelerated in vitro degradation for the IPCs as well as to identify possible design changes to overcome this drawback was undertaken using a model IPC system. It was found that strong interfacial strength and minimal swelling of the PVUC are very important for obtaining and maintaining appropriate mechanical properties in vitro.

  17. Fabrication of a biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composite for high load bearing osteosynthesis applications.

    PubMed

    Ramsay, Scott D; Pilliar, Robert M; Santerre, J Paul

    2010-07-01

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past 2-3 decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however, with elastic constants up to 12-15 GPa at best, they fail to provide the initial stiffness required of devices for stabilizing fractures of major load-bearing bones. Our research has investigated the use of calcium polyphosphate (CPP), an inorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers for such applications. Initial studies indicated that composite samples formed as interpenetrating phase composites (IPC) exhibited suitable as-made strength and stiffness, however, they displayed a rapid loss of properties when exposed to in vitro aging. An investigation to determine the mechanism of this accelerated in vitro degradation for the IPCs as well as to identify possible design changes to overcome this drawback was undertaken using a model IPC system. It was found that strong interfacial strength and minimal swelling of the PVUC are very important for obtaining and maintaining appropriate mechanical properties in vitro. PMID:20524193

  18. Radiation Shielding System Using a Composite of Carbon Nanotubes Loaded with Electropolymers

    NASA Technical Reports Server (NTRS)

    McKay, Chris; Chen, Bin

    2012-01-01

    Single-wall carbon nanotubes (SWCNTs) coated with a hydrogen-rich, electrically conducting polymer such as polyethylene, receive and dissipate a portion of incoming radiation pulse energy to electrical signals that are transmitted along the CNT axes, and are received at energy-dissipating terminals. In this innovation, an array of highly aligned nanowires is grown using a strong electric field or another suitable orientation procedure. Polyethylene (PE), polymethymlethacrylate (PMMA), or other electrically conducting polymer is spin-coated onto the SWCNTs with an average thickness of a few hundred nanometers to a few tenths of micrometers to form a PE/SWCNT composite. Alternatively, the polymer is spin-coated onto the nanowire array or an anodized alumina membrane (AAM) to form a PE/metal core shell structure, or PE can be electropolymerized using the SWCNTs or the metal nanowires as an electrode to form a PE/SWCNT core shell structure. The core shell structures can be extruded as anisotropic fibers. A monomer can be polymerized in the presence of SWCNTs to form highly cross-linked PE/SWCNT films. Alternatively, Pb colloid solution can be impregnated into a three-dimensional PE/SWCNT nanostructure to form a PW/SWCNT/Pb composite structure. A face-centered cubic (FCC) arrangement provides up to 12 interconnection channels connected to each core, with transverse channel dimensions up to 20 nm, with adequate mechanical compressive strength, and with an associated electrical conductivity of around 3 Seimens/cm for currents ranging from 0.01 to 10 mA. This threedimensional nanostructure is used as a host material to house appropriate radiation shielding material such as hydrogen- rich polymer/CNT structures, metal nanoparticles, and nanowires. Thicknesses of this material required to attenuate 10 percent, 50 percent, and 90 percent of an incident beam (gamma, X-ray, ultraviolet, neutron, proton, and electron) at energies in the range of 0 440 MeV are being determined

  19. FT-IR and FT-Raman studies of cross-linking processes with Ca²⁺ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch - In moulding sands, Part II.

    PubMed

    Grabowska, Beata; Sitarz, Maciej; Olejnik, Ewa; Kaczmarska, Karolina; Tyliszczak, Bozena

    2015-12-01

    The hardening process of moulding sands on quartz matrices bound by polymer binders containing carboxyl and hydroxyl groups can be carried out by using physical (microwave radiation, thermal holding) and chemical (Ca(2+) cations, glutaraldehyde) cross-linking agents. The highest hardening level obtain moulding sand samples containing binders in a form of the aqueous composition of poly(acrylic acid)/sodium salt of carboxymethyl starch (PAA/CMS-Na) within the microwave radiation field, for which the bending strength is of 1.6 MPa value even after 24h from ending the agent activity. The authors focused, in this study, on finding the reason of this effect. It was shown, by means of the FT-IR and FT-Raman spectroscopic methods, that the chemical adsorption process activated by microwaves plays an essential role. The applied microwaves activate the polar groups present in the polymer composition structure as well as the quartz crystals surfaces (silane groups). Then the chemical adsorption occurs in the binder-matrix system within the microwave radiation field and intermolecular lattices are formed with a participation of hydrogen bridges (SiOH⋯OC, SiOH⋯OH) and COSi type bonds. PMID:26125981

  20. Electrolytically exfoliated graphene-loaded flame-made Ni-doped SnO2 composite film for acetone sensing.

    PubMed

    Singkammo, Suparat; Wisitsoraat, Anurat; Sriprachuabwong, Chakrit; Tuantranont, Adisorn; Phanichphant, Sukon; Liewhiran, Chaikarn

    2015-02-11

    In this work, flame-spray-made SnO2 nanoparticles are systematically studied by doping with 0.1-2 wt % nickel (Ni) and loading with 0.1-5 wt % electrolytically exfoliated graphene for acetone-sensing applications. The sensing films (∼12-18 μm in thickness) were prepared by a spin-coating technique on Au/Al2O3 substrates and evaluated for acetone-sensing performances at operating temperatures ranging from 150 to 350 °C in dry air. Characterizations by X-ray diffraction, transmission/scanning electron microscopy, Brunauer-Emmett-Teller analysis, X-ray photoelectron spectroscopy and Raman spectroscopy demonstrated that Ni-doped SnO2 nanostructures had a spheriodal morphology with a polycrystalline tetragonal SnO2 phase, and Ni was confirmed to form a solid solution with SnO2 lattice while graphene in the sensing film after annealing and testing still retained its high-quality nonoxidized form. Gas-sensing results showed that SnO2 sensing film with 0.1 wt % Ni-doping concentration exhibited an optimal response of 54.2 and a short response time of ∼13 s toward 200 ppm acetone at an optimal operating temperature of 350 °C. The additional loading of graphene at 5 wt % into 0.1 wt % Ni-doped SnO2 led to a drastic response enhancement to 169.7 with a very short response time of ∼5.4 s at 200 ppm acetone and 350 °C. The superior gas sensing performances of Ni-doped SnO2 nanoparticles loaded with graphene may be attributed to the large specific surface area of the composite structure, specifically the high interaction rate between acetone vapor and graphene-Ni-doped SnO2 nanoparticles interfaces and high electronic conductivity of graphene. Therefore, the 5 wt % graphene loaded 0.1 wt % Ni-doped SnO2 sensor is a promising candidate for fast, sensitive and selective detection of acetone. PMID:25602118