Science.gov

Sample records for acrylic fiber manufacturing

  1. Electrocoagulation pretreatment of wet-spun acrylic fibers manufacturing wastewater to improve its biodegradability.

    PubMed

    Gong, Chenhao; Zhang, Zhongguo; Li, Haitao; Li, Duo; Wu, Baichun; Sun, Yuwei; Cheng, Yanjun

    2014-06-15

    The electrocoagulation (EC) process was used to pretreat wastewater from the manufacture of wet-spun acrylic fibers, and the effects of varying the operating parameters, including the electrode area/wastewater volume (A/V) ratio, current density, interelectrode distance and pH, on the EC treatment process were investigated. About 44% of the total organic carbon was removed using the optimal conditions in a 100 min procedure. The optimal conditions were a current density of 35.7 mA cm(-2), an A/V ratio of 0.28 cm(-1), a pH of 5, and an interelectrode distance of 0.8 cm. The biodegradability of the contaminants in the treated water was improved by the EC treatment (using the optimal conditions), increasing the five-day biological oxygen demand/chemical oxygen demand ratio to 0.35, which could improve the effectiveness of subsequent biological treatments. The improvement in the biodegradability of the contaminants in the wastewater was attributed to the removal and degradation of aromatic organic compounds, straight-chain paraffins, and other organic compounds, which we identified using gas chromatography-mass spectrometry and Fourier transform infrared spectroscopy. The EC process was proven to be an effective alternative pretreatment for wastewater from the manufacture of wet-spun acrylic fibers, prior to biological treatments. PMID:24813666

  2. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry.

    PubMed

    Zheng, Tianlong; Wang, Qunhui; Zhang, Tao; Shi, Zhining; Tian, Yanli; Shi, Shanshan; Smale, Nicholas; Wang, Juan

    2015-04-28

    This work investigated microbubble-ozonation for the treatment of a refractory wet-spun acrylic fiber wastewater in comparison to macrobubble-ozonation. CODcr, NH3-N, and UV254 of the wastewater were removed by 42%, 21%, and 42%, respectively in the microbubble-ozonation, being 25%, 9%, and 35% higher than the removal rates achieved by macrobubble-ozonation at the same ozone dose. The microbubbles (with average diameter of 45μm) had a high concentration of 3.9×10(5) counts/mL at a gas flow rate of 0.5L/min. The gas holdup, total ozone mass-transfer coefficient, and average ozone utilization efficiency in the microbubble-ozonation were 6.6, 2.2, and 1.5 times higher than those of the macrobubble-ozonation. Greater generation of hydroxyl radicals and a higher zeta potential of the bubbles were also observed in the microbubble ozonation process. The biodegradability of the wastewater was also significantly improved by microbubble-ozonation, which was ascribed to the enhanced degradation of alkanes, aromatic compounds, and the many other bio-refractory organic compounds in the wastewater. Microbubble-ozonation can thus be a more effective treatment process than traditional macrobubble-ozonation for refractory wastewater produced by the acrylic fiber manufacturing industry. PMID:25681716

  3. A simple solubility tests for the discrimination of acrylic and modacrylic fibers.

    PubMed

    Suga, Keisuke; Narita, Yuji; Suzuki, Shinichi

    2014-05-01

    In a crime scene investigation, single fibers play an important role as significant trace physical evidence. Acrylic fibers are frequently encountered in forensic analysis. Currently, acrylic and modacrylic are not discriminated clearly in Japan. Only results of FT-IR, some of acrylics were difficult to separate clearly to acrylic and modacrylic fibers. Solubility test is primitive but convenient useful method, and Japan Industrial Standards (JIS) recommends FT-IR and solubility test to distinguish acrylic and modacrylic fibers. But recommended JIS dissolving test using 100% N,N-dimethylformamide (DMF) as a solvent, some acrylics could not be discriminated. In this report, we used DMF and ethanol (90:10, v/v) solvent. The JIS method could not discriminate 6 acrylics in 60 acrylics; hence, DMF and ethanol (90:10, v/v) solvent discriminated 59 of the 60 fibers (43 acrylic and 16 modacrylic fibers) clearly, but only one modacrylic fiber incorrectly identified as acrylic. PMID:24673494

  4. Research of morphology structure and properties of bamboo charcoal acrylic fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjiu; Feng, Aifen

    2015-07-01

    In order to understand the properties of bamboo charcoal acrylic fiber, the tensile properties, friction properties and hygroscopicity of it, the bamboo charcoal acrylic fiber and the ordinary acrylic fiber were tested, compared and analyzed. The burning behaviors of the two kinds of fibers were observed by burning test, and their cross-sectional and longitudinal morphology was observed with scanning electron microscope (SEM). The SEM pictures showed that there are the uneven sizes of microspores on the surface of bamboo charcoal acrylic fiber and in it. It was found that the friction coefficients of the bamboo charcoal acrylic fiber are smaller and its tensile and moisture absorption are better than those of the ordinary acrylic fiber. However, there are no obvious differences of the burning behaviors between the two fibers.

  5. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance.

    PubMed

    Vallittu, P K; Lassila, V P; Lappalainen, R

    1994-06-01

    This study tested the effect on the fracture resistance of acrylic resin test specimens when different amounts of fibers were incorporated in the resin matrix. The fibers used included glass, carbon, and aramid fibers, with 30 test specimens of each concentration of fibers. Transverse sections of the specimens were studied by scanning electron microscope to establish how the fibers behave in the polymerization process. The results indicated that an increase in the amount of fibers enhanced the fracture resistance of the test specimens (p < 0.001). The SEM micrographs of transverse sections of test polymerized specimens revealed void spaces of different sizes inside the fiber roving. PMID:8040825

  6. 40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87)...

  7. 40 CFR 721.10530 - Acrylate manufacture byproduct distillation residue (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... distillation residue (generic). 721.10530 Section 721.10530 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.10530 Acrylate manufacture byproduct distillation... substance is identified generically as acrylate manufacture byproduct distillation residue (PMN P-12-87)...

  8. Manufactured Textile Fibers

    NASA Astrophysics Data System (ADS)

    Gupta, Bhupender S.

    The first conversion of naturally occurring fibers into threads strong enough to be looped into snares, knit to form nets, or woven into fabrics is lost in prehistory. Unlike stone weapons, such threads, cords, and fabrics—being organic in nature—have in most part disappeared, although in some dry caves traces remain. There is ample evidence to indicate that spindles used to assist in the twisting of fibers together had been developed long before the dawn of recorded history. In that spinning process, fibers such as wool were drawn out of a loose mass, perhaps held in a distaff, and made parallel by human fingers. (A maidservant so spins in Giotto's The Annunciation to Anne, ca. A.D. 1306, Arena Chapel, Padua, Italy.1) A rod (spindle), hooked to the lengthening thread, was rotated so that the fibers while so held were twisted together to form additional thread. The finished length then was wound by hand around the spindle, which, in becoming the core on which the finished product was accumulated, served the dual role of twisting and storing, and, in so doing, established a principle still in use today.

  9. Solventless, radiation-cured acrylate formulations for magnetic tape manufacturer

    NASA Astrophysics Data System (ADS)

    Huh, Jin Young

    Significant progress was made toward identifying a binder materials package that would enable a solventless magnetic tape manufacturing process that would eliminate the possibility of air pollution. Mixtures of commercial acrylate monomers and acrylate-terminated urethane oligomers gave electron beam cured films with good tensile properties. The binder polymers suffered no significant decrease in tensile strength after accelerated aging at 60°C and 90% relative humidity. Commercial magnetic particles were treated with silane coupling agents, which enabled the preparation of dispersions with rheological properties that approach those of conventional solvent-based formulations. A methacylate functionalized silane coupling agent provided the best rheological properties. Branched silane coupling agents provided steric barriers against magnetic attraction forces between particles. Magnetic particles acted as reinforcing fillers in a magnetic tape. Silane treated particles provided 20--30% increase in tensile strength and Young's modulus over untreated particles. UV could cure the magnetic tape containing 70 wt% particles. This was done with the help of silane coupling agents which acted as dispersion stabilizing agents.

  10. SOURCE ASSESSMENT: ACRYLIC ACID MANUFACTURE; STATE-OF-THE-ART

    EPA Science Inventory

    This report summarizes data on air emissions from the production of acrylic acid. Hydrocarbons, carbon monoxide, and nitrogen oxide are emitted from various operations. Hydrocarbon emissions consist of acetaldehyde, acetic acid, acetone acrolein, acrylic acid, benzene, phenol, pr...

  11. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  12. Effect of MMA-g-UHMWPE grafted fiber on mechanical properties of acrylic bone cement.

    PubMed

    Yang, J M; Huang, P Y; Yang, M C; Lo, S K

    1997-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) fibers were treated with argon plasma for 5 min, followed by uv irradiation in methyl methacrylate (MMA)-chloroform solution for 5 h to obtain MMA-g-UHMWPE grafted fiber. The grafting content was estimated by the titration of esterification method. The grafting amount of 5280 nmol/g was the largest for the MMA concentration at 18.75 vol%. To improve the mechanical properties of acrylic bone cement, pure UHMWPE fiber and MMA-g-UHMWPE fiber were added to the surgical Simplex. P radiopaque bone cement. The mechanical properties including tensile strength, tensile modulus, compressive strength, bending strength, and bending stiffness were measured. Dynamic mechanical analysis was also performed. By comparing the effect of the pure UHMWPE fiber and MMA-g-UHMWPE grafted fiber on the mechanical properties of acrylic bone cement, it was found that the acrylic bone cement with MMA-g-UHMWPE grafted fiber had a more significant reinforcing effect than that with untreated UHMWPE fiber. This might be due to the improvement of the interfacial bonding between the grafted fibers and the acrylic bone cement matrix. PMID:9421758

  13. Nitrile Hydratase and Amidase from Rhodococcus rhodochrous Hydrolyze Acrylic Fibers and Granular Polyacrylonitriles

    PubMed Central

    Tauber, M. M.; Cavaco-Paulo, A.; Robra, K.-H.; Gübitz, G. M.

    2000-01-01

    Rhodococcus rhodochrous NCIMB 11216 produced nitrile hydratase (320 nkat mg of protein−1) and amidase activity (38.4 nkat mg of protein−1) when grown on a medium containing propionitrile. These enzymes were able to hydrolyze nitrile groups of both granular polyacrylonitriles (PAN) and acrylic fibers. Nitrile groups of PAN40 (molecular mass, 40 kDa) and PAN190 (molecular mass, 190 kDa) were converted into the corresponding carbonic acids to 1.8 and 1.0%, respectively. In contrast, surfacial nitrile groups of acrylic fibers were only converted to the corresponding amides. X-ray photoelectron spectroscopy analysis showed that 16% of the surfacial nitrile groups were hydrolyzed by the R. rhodochrous enzymes. Due to the enzymatic modification, the acrylic fibers became more hydrophilic and thus, adsorption of dyes was enhanced. This was indicated by a 15% increase in the staining level (K/S value) for C.I. Basic Blue 9. PMID:10742253

  14. Forest products: Fiber loading for paper manufacturing

    SciTech Connect

    1999-09-29

    Fact sheet on manufacturing filler during paper manufacturing written for the NICE3 Program. With its new fiber loading process, Voith Sulzer, Inc., is greatly improving the efficiency of paper production and recycling. Fiber loading produces precipitated calcium carbonate (PCC) filler in the pulp recycling process at costs below conventional means. Fiber loading allows papermakers to use as much filler, like PCC, as possible because it costs 80% less than fiber. In addition, increased filler and fines retention due to fiber loading reduces the quantity of greenhouse gas emissions, deinking sludge, and other waste while substantially lowering energy costs. Currently, the most efficient way to produce PCC as filler is to make it in a satellite plant adjacent to a paper mill. Satellite plants exist near large scale paper mills (producing 700 tons per day) because the demand at large mills justifies building a costly ($15 million, average) satellite plant. This new fiber loading process combines the PCC manufacturing technology used in a satellite plant with the pulp processing operations of a paper mill. It is 33% less expensive to augment an existing paper mill with fiber loading technology than to build a satellite plant for the same purpose. This technology is applicable to the manufacturing of all printing and writing paper, regardless of the size or capacity of the paper mill.

  15. Manufacturing of Smart Structures Using Fiber Placement Manufacturing Processes

    NASA Technical Reports Server (NTRS)

    Thomas, Matthew M.; Glowasky, Robert A.; McIlroy, Bruce E.; Story, Todd A.

    1996-01-01

    Smart structures research and development, with the ultimate aim of rapid commercial and military production of these structures, are at the forefront of the Synthesis and Processing of Intelligent Cost-Effective Structures (SPICES) program. As part of this ARPA-sponsored program, MDA-E is using fiber placement processes to manufacture integrated smart structure systems. These systems comprise advanced composite structures with embedded fiber optic sensors, shape memory alloys, piezoelectric actuators, and miniature accelerometers. Cost-effective approaches and solutions to smart material synthesis in the fiber-placement process, based upon integrated product development, are discussed herein.

  16. Glass fiber manufacturing and fiber safety: the producer's perspective.

    PubMed Central

    Bender, J R; Hadley, J G

    1994-01-01

    Historically, the potential health effects of airborne fibers have been associated with the dose, dimension, and durability. Increasing focus is being placed on the latter category. Concern about airborne fiber safety could be reduced by manufacturing fibers that are not respirable; however, due to performance and manufacturing constraints on glasswool insulations, this is not possible today. These products are an important part of today's economy and as a major manufacturer, Owens-Corning is committed to producing and marketing materials that are both safe and effective in their intended use. To this end, manufacturing technology seeks to produce materials that generate low concentrations of airborne fibers, thus minimizing exposure and irritation. The range of fiber diameters is controlled to assure effective product performance and, as far as possible, to minimize respirability. Glass compositions are designed to allow effective fiber forming and ultimate product function. Fiber dissolution is primarily a function of composition; this too, can be controlled within certain constraints. Coupled with these broad parameters is an extensive product stewardship program to assure the safety of these materials. This article will discuss the factors that influence glasswool insulation production, use, and safety. PMID:7882953

  17. Thermoresponsive fibers containing n-stearyl acrylate groups for shape memory effect

    NASA Astrophysics Data System (ADS)

    Chen, L.; Yu, X.; Feng, X.; Han, Y. L.; Liu, M.; Lin, T. X.

    2007-07-01

    A novel kind of thermoresponsive shape memory fiber was prepared by mixing the P(SA-co-AA) copolymers of stearyl acrylate (SA), and acrylic acid (AA), with PVA polyvinyl alcohol through chemically crosslinking after spinning. The molecular structure, thermomechanical properties and shape memory behaviors were investigated. It was found that the mixed P(SA-co-AA)/PVA fibers had crystalline structures and showed a dramatic change in Young's modulus at melting temperature (Tm) due to the reversible order-disorder transition. The mixed P(SA-co-AA)/PVA fibers also showed a good shape memory effect, through which the deformed fibers could recover to their original shapes and sizes within 40 seconds after they were heated above their Tm again.

  18. Carbon fiber manufacturing via plasma technology

    DOEpatents

    Paulauskas, Felix L.; Yarborough, Kenneth D.; Meek, Thomas T.

    2002-01-01

    The disclosed invention introduces a novel method of manufacturing carbon and/or graphite fibers that avoids the high costs associated with conventional carbonization processes. The method of the present invention avoids these costs by utilizing plasma technology in connection with electromagnetic radiation to produce carbon and/or graphite fibers from fully or partially stabilized carbon fiber precursors. In general, the stabilized or partially stabilized carbon fiber precursors are placed under slight tension, in an oxygen-free atmosphere, and carbonized using a plasma and electromagnetic radiation having a power input which is increased as the fibers become more carbonized and progress towards a final carbon or graphite product. In an additional step, the final carbon or graphite product may be surface treated with an oxygen-plasma treatment to enhance adhesion to matrix materials.

  19. Reinforcement of acrylic denture base resin by incorporation of various fibers.

    PubMed

    Chen, S Y; Liang, W M; Yen, P S

    2001-01-01

    This study was designed to evaluate improvements in the mechanical properties of acrylic resin following reinforcement with three types of fiber. Polyester fiber (PE), Kevlar fiber (KF), and glass fiber (GF) were cut into 2, 4, and 6 mm lengths and incorporated at concentrations of 1, 2, and 3% (w/w). The mixtures of resin and fiber were cured at 70 degrees C in a water bath for 13 h, then at 90 degrees C for 1 h, in 70 x 25 x 15 mm stone molds, which were enclosed by dental flasks. The cured resin blocks were cut to an appropriate size and tested for impact strength and bending strength following the methods of ASTM Specification No. 256 and ISO Specification No. 1567, respectively. Specimens used in the impact strength test were reused for the Knoop hardness test. The results showed that the impact strength tended to be enhanced with fiber length and concentration, particularly PE at 3% and 6 mm length, which was significantly stronger than other formulations. Bending strength did not change significantly with the various formulations when compared to a control without fiber. The assessment of Knoop hardness revealed a complex pattern for the various formulations. The Knoop hardness of 3%, 6 mm PE-reinforced resin was comparable to that of the other formulations except for the control without fiber, but for clinical usage this did not adversely affect the merit of acrylic denture base resin. It is concluded that, for improved strength the optimum formulation to reinforce acrylic resin is by incorporation of 3%, 6 mm length PE fibers. PMID:11241340

  20. Radiation grafting of acrylic and methacrylic acid to cellulose fibers to impart high water sorbency

    SciTech Connect

    Zahran, A.H.; Williams, J.L.; Stannett, V.T.

    1980-04-01

    Acrylic and methacrylic acids have been directly grafted to rayon and cotton using the preirradiation technique with /sup 60/ Co gamma rays. The rate of grafting increased with increasing temperature and monomer concentration, as did the final degree of grafting. The amount and rate of grafting also increased with the total irradiation dose but tended to level off at higher doses, in agreement with the leveling off of the radical content reported previously. Methacrylic acid grafted more and faster than acrylic acid to both rayon and cotton. Methacrylic acid grafted more with rayon than cotton, but acrylic acid gave somewhat similar yields with both fibers. The water abosrbency of the grafted fibers depended strongly on their posttreatment. Decrystallizing with 70% zinc chloride or with hot sodium hydroxidy developed supersorbency. The two treatments in succession, respectively, gave the highest values. Metacrylic acid brought about less sorbency than the corrsponding acrylic acid grafts. Useful levels of grafting and supersorbency could be readily and practically achieved by the methods described.

  1. Manufacturing of Nanocomposite Carbon Fibers and Composite Cylinders

    NASA Technical Reports Server (NTRS)

    Tan, Seng; Zhou, Jian-guo

    2013-01-01

    Pitch-based nanocomposite carbon fibers were prepared with various percentages of carbon nanofibers (CNFs), and the fibers were used for manufacturing composite structures. Experimental results show that these nanocomposite carbon fibers exhibit improved structural and electrical conductivity properties as compared to unreinforced carbon fibers. Composite panels fabricated from these nanocomposite carbon fibers and an epoxy system also show the same properties transformed from the fibers. Single-fiber testing per ASTM C1557 standard indicates that the nanocomposite carbon fiber has a tensile modulus of 110% higher, and a tensile strength 17.7% times higher, than the conventional carbon fiber manufactured from pitch. Also, the electrical resistance of the carbon fiber carbonized at 900 C was reduced from 4.8 to 2.2 ohm/cm. The manufacturing of the nanocomposite carbon fiber was based on an extrusion, non-solvent process. The precursor fibers were then carbonized and graphitized. The resultant fibers are continuous.

  2. Improvement of mechanical properties of acrylic bone cement by fiber reinforcement.

    PubMed

    Saha, S; Pal, S

    1984-01-01

    Acrylic bone cement is significantly weaker and less stiff than compact bone. Bone cement is also weaker in tension than in compression. This limits its use in orthopaedics to areas where tensile stresses are minimum. We have attempted to improve the mechanical properties of PMMA by reinforcing it with metal wires, and graphite and aramid fibers. Normal, carbon fiber reinforced and aramid fiber reinforced bone cement specimens were tested in compression. Addition of a small percentage (1-2% by weight for carbon and up to 6% for aramid) of these fibers improved the mechanical properties significantly. Due to the improved mechanical properties of fiber reinforced bone cement, its clinical use may reduce the incidence of cement fracture and thus loosening of the prosthesis. PMID:6480622

  3. [Capability and microbial community analysis of a membrane bioreactor for acrylic fiber wastewater treatment].

    PubMed

    Wei, Jian; Song, Yong-Huil; Zhao, Le

    2014-12-01

    Sequencing batch membrane bioreactor (SBMBR) was used for the treatment of acrylic fiber polymerization wastewater and acrylonitrile wastewater. The operation efficiencies of SBMBR under different wastewater ratios and operation conditions were investigated, and the microbial community structure of the SBMBR system was analyzed by using PCR-DGGE technology. The results showed that SBMBR had a high removal efficiency on pollutants in acrylic fiber wastewater, and the lacking of carbon source and alkalinity were the main limiting factors for nitrogen removal. Under the designed operation conditions of 90 min anoxic/150 min aerobic cyclic operation and HRT of 24 h, the average COD, NH4(+) -N and TN removal efficiencies were 82.5%, 98.7% and 74.6%, respectively. The effluent of the SBMBR could steadily meet the Grade I standards of the Wastewater Comprehensive Discharge Standard of China (GB 8978-1996). The PCR-DGGE analyses showed that the microbial communities in SBMBR had a significant shift with the changes of influent characteristics and operation conditions. By cloning and sequencing analyses of selected dominant bacteria, 22 16S rDNA sequence were successfully identified from 9 sludge samples, from which 7 dominant functional microorganisms for the degradation of organic pollutants in acrylic fiber wastewater were screened out. PMID:25826932

  4. Femtosecond fiber laser additive manufacturing of tungsten

    NASA Astrophysics Data System (ADS)

    Bai, Shuang; Liu, Jian; Yang, Pei; Zhai, Meiyu; Huang, Huan; Yang, Lih-Mei

    2016-04-01

    Additive manufacturing (AM) is promising to produce complex shaped components, including metals and alloys, to meet requirements from different industries such as aerospace, defense and biomedicines. Current laser AM uses CW lasers and very few publications have been reported for using pulsed lasers (esp. ultrafast lasers). In this paper, additive manufacturing of Tungsten materials is investigated by using femtosecond (fs) fiber lasers. Various processing conditions are studied, which leads to desired characteristics in terms of morphology, porosity, hardness, microstructural and mechanical properties of the processed components. Fully dense Tungsten part with refined grain and increased hardness was obtained and compared with parts made with different pulse widths and CW laser. The results are evidenced that the fs laser based AM provides more dimensions to modify mechanical properties with controlled heating, rapid melting and cooling rates compared with a CW or long pulsed laser. This can greatly benefit to the make of complicated structures and materials that could not be achieved before.

  5. The Importance of Carbon Fiber to Polymer Additive Manufacturing

    SciTech Connect

    Love, Lonnie J; Kunc, Vlastimil; Rios, Orlando; Duty, Chad E; Post, Brian K; Blue, Craig A

    2014-01-01

    Additive manufacturing holds tremendous promise in terms of revolutionizing manufacturing. However, fundamental hurdles limit mass adoption of the technology. First, production rates are extremely low. Second, the physical size of parts is generally small, less than a cubic foot. Third, while there is much excitement about metal additive manufacturing, the major growth area is in polymer additive manufacturing systems. Unfortunately, the mechanical properties of the polymer parts are poor, limiting the potential for direct part replacement. To address this issue, we describe three benefits of blending carbon fiber with polymer additive manufacturing. First, development of carbon fiber reinforced polymers for additive manufacturing achieves specific strengths approaching aerospace quality aluminum. Second, carbon fiber radically changes the behavior of the material during deposition, enabling large scale, out-of-the-oven, high deposition rate manufacturing. Finally, carbon fiber technology and additive manufacturing complement each other. Merging the two manufacturing processes enables the construction of complex components that would not be possible otherwise.

  6. Adhesion enhancement of steel fibers to acrylic bone cement through a silane coupling agent.

    PubMed

    Kotha, S P; Lieberman, M; Vickers, A; Schmid, S R; Mason, J J

    2006-01-01

    The use of a silane coupling agent (methacryloxypropyl-trichlorosilane) to improve the mechanical properties of steel fiber-reinforced acrylic bone cements was assessed. Changes to the tensile and fracture properties of bone cements reinforced with silane-coated or uncoated 316L stainless steel fibers of different aspect ratios were studied. Contact-angle measurements indicated that the coupling agent coats the metal surface through room temperature treatments in a short time (within 2 h). Push-out tests indicated that the interfacial shear strength of silane-coated 316L stainless steel rods is 141% higher than the uncoated rods. The elastic moduli, ultimate stresses, and fracture toughness of the silane-coated, steel fiber-reinforced bone cements are significantly higher than the bone cements reinforced with uncoated steel fibers. There were no differences in the tensile mechanical properties of the silane-coated or uncoated, steel fiber-reinforced cements after aging in a physiological saline solution, indicating that the bonding effectiveness is decreased by the intrusion of water at the metal-polymer interface. Because of possible biocompatibility issues with leaching of the silane coupling agent and no long-term mechanical benefit in simulated aging experiments, the use of these agents is not recommended for in vivo use. PMID:16224777

  7. Workplace for manufacturing devices based on optical fiber tapers

    NASA Astrophysics Data System (ADS)

    Martan, Tomáš; Honzátko, Pavel; Kaňka, Jiři; Novotný, Karel

    2007-04-01

    Many important optical fiber components are based on tapered optical fibers. A taper made from a single-mode optical fiber can be used, e.g., as a chemical sensor, bio-chemical sensor, or beam expander. A fused pair of tapers can be used as a fiber directional coupler. Fiber tapers can be fabricated in several simple ways. However, a tapering apparatus is required for more sophisticated fabrication of fiber tapers. The paper deals with fabrication and characterization of fiber tapers made from a single-mode optical fiber. A tapering apparatus was built for producing devices based on fiber tapers. The apparatus is universal and enables one to taper optical fibers of different types by a method utilizing stretching a flame-heated section of a silica fiber. Fiber tapers with constant waist length and different waist diameters were fabricated. The transition region of each fiber taper monotonically decreased in diameter along its length from the untapered fiber to the taper waist. The fiber tapers were fabricated with a constant drawing velocity, while the central zone of the original single-mode fiber was heated along a constant length. The spectral transmissions of the manufactured fiber tapers with different parameters were measured by the cut-back method.

  8. Transformation characteristics of organic pollutants in Fered-Fenton process for dry-spun acrylic fiber wastewater treatment.

    PubMed

    Wei, Jian; Song, Yonghui; Meng, Xiaoguang; Tu, Xiang; Pic, Jean-Stéphane

    2014-01-01

    The Fered-Fenton process using Ti sheet as cathode and RuO2/Ti as anode was employed for the pretreatment of dry-spun acrylic fiber manufacturing wastewater. The effects of feeding mode and concentration of H2O2 on chemical oxygen demand (COD) removal efficiency as well as the biodegradability variation during the Fered-Fenton process were investigated. The feeding mode of H2O2 had significant influence on COD removal efficiency: the removal efficiency was 44.8% if all the 60.0 mM H2O2 was fed at once, while it could reach 54.1% if the total H2O2 was divided into six portions and fed six times. The biochemical oxygen demand/COD ratio increased from 0.29 to above 0.68 after 180 min treatment. The transformation characteristics of organic pollutants during the Fered-Fenton process were evaluated by using gas chromatography-mass spectrometry (GC-MS), Fourier transform infrared spectroscopy (FTIR) and fluorescence excitation-emission matrix (EEM) spectroscopy. Most of the refractory organic pollutants with aromatic structure or large molecular weight were decomposed during the Fered-Fenton process. PMID:25521133

  9. High Power Fiber Lasers and Applications to Manufacturing

    NASA Astrophysics Data System (ADS)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  10. BN Bonded BN fiber article and method of manufacture

    DOEpatents

    Hamilton, Robert S.

    1981-08-18

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising a bonding compound selected from boron oxide and boric acid and a structural fiber selected from the group consisting of boron oxide, boron nitride and partially nitrided boron oxide fibers, heating the composition in an anhydrous gas to a temperature above the melting point of the compound and nitriding the resulting article in ammonia gas.

  11. Process for the manufacture of carbon or graphite fibers

    NASA Technical Reports Server (NTRS)

    Overhoff, D.; Winkler, E.; Mueller, D.

    1979-01-01

    Carbon or graphite fibers are manufactured by heating polyacrylonitrile fiber materials in various solutions and gases. They are characterized in that the materials are heated to temperatures from 150 to 300 C in a solution containing one or more acids from the group of carbonic acids, sulfonic acids, and/or phenols. The original molecular orientation of the fibers is preserved by the cyclization that occurs before interlacing, which gives very strong and stiff carbon or graphite fibers without additional high temperature stretching treatments.

  12. Method of manufacture of bonded fiber flywheel

    SciTech Connect

    Weyler, G.M. Jr.

    1981-02-01

    Layers of fiberglass cloth, generally forming a circular mass, are prestressed by rotation during the curing of epoxy which surrounds and thereby couples together fibers and layers of the cloth. Official Gazette of the U.S. Patent and Trademark Office

  13. Containerless Manufacture of Glass Optical Fibers

    NASA Technical Reports Server (NTRS)

    Naumann, R. J.; Ethridge, E. C.

    1985-01-01

    Contamination and crystallization reduced in proposed process. Solid optical fiber drawn from an acoustically levitated lump of molten glass. New material added in solid form, melted and then moved into main body of molten glass. Single axis acoustic levitation furnances levitate glass melts at temperature up to about 700 degrees C. Processing in unit limited to low-melting temperature glasses.

  14. Acrylic and metal based Y-branch plastic optical fiber splitter with optical NOA63 polymer waveguide taper region

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Rahman, Mohd Kamil Abd.

    2011-01-01

    We proposed a simple low-cost acrylic and metal-based Y-branch plastic optical fiber (POF) splitter which utilizes a low cost optical polymer glue NOA63 as the main waveguiding medium at the waveguide taper region. The device is composed of three sections: an input POF waveguide, a middle waveguide taper region and output POF waveguides. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical devices. Short POF fibers are inserted into the engraved slots at the input and output ports. UV curable optical polymer glue NOA63 is injected into the waveguide taper region and cured. The assembling is completed when the top plate is positioned to enclose the device structure and connecting screws are secured. Both POF splitters have an average insertion loss of 7.8 dB, coupling ratio of 55: 45 and 57: 43 for the acrylic and metal-based splitters respectively. The devices have excess loss of 4.82 and 4.73 dB for the acrylic and metal-based splitters respectively.

  15. New Manufacturing Method for Paper filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2011-11-22

    The study compares commercial available filler products with a new developed “Hybrid Fiber Filler Composite Material” and how main structural, optical and strength properties are affected by increasing the filler content of at least 5% over commercial values. The study consists of: (i) an overview of paper filler materials used in the paper production process, (ii) discusses the manufacturing technology of lime based filler materials for paper applications, (iii) gives an overview of new emerging paper filler technologies, (iv) discusses a filler evaluation of commercial available digital printing paper products, (v) reports from a detailed handsheet study and 12” pilot plant paper machine trial runs with the new Hybrid Fiber Filler Composite Material, and (vi) evaluates and compares commercial filler products and the new Hybrid Fiber Filler Composite Material with a life cycle analyses that explains manufacturing, economic and environmental benefits as they are applied to uncoated digital printing papers.

  16. Removal of reactive dyes from textile wastewater by immobilized chitosan upon grafted Jute fibers with acrylic acid by gamma irradiation

    NASA Astrophysics Data System (ADS)

    Hassan, Mahmoud S.

    2015-10-01

    Jute fibers were grafted with acrylic acid by gamma irradiation technique. Chitosan was immobilized upon the grafted Jute fibers to be used as an adsorbent for waste reactive dye. The treated Jute fibers were characterized by using of Fourier-transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effect of Jute treatment on its thermal stability by using thermogravimetric analysis (TGA) and its mechanical properties were investigated. The adsorption isotherm and the different factors affecting the dye adsorption such as pH and contact time were also studied. It was found that the dye adsorption was enhanced in the low pH range and increased with increasing of the contact time, regardless of temperature change.

  17. Development of multifunctional carbon fiber reinforced composites (CFRCs) - Manufacturing process

    NASA Astrophysics Data System (ADS)

    Guadagno, Liberata; Raimondo, Marialuigia; Vietri, Umberto; Barra, Giuseppina; Vertuccio, Luigi; Volponi, Ruggero; Cosentino, Giovanni; De Nicola, Felice; Grilli, Andrea; Spena, Paola

    2014-05-01

    This work describes a successful attempt toward the development of CFRCs based on nanofilled epoxy resins. The epoxy matrix was prepared by mixing a tetrafunctional epoxy precursor with a reactive diluent which allows to reduce the viscosity of the initial epoxy precursor and facilitate the nanofiller dispersion step. As nanofiller, multiwall carbon nanotubes (MWCNTs) were embedded in the epoxy matrix with the aim of improving the electrical properties of the resin used to manufacture CFRCs. Panels were manufactured by Resin Film Infusion (RFI) using a non-usual technique to infuse a nano-filled resin into a carbon fiber dry preform.

  18. The analysis of colored acrylic, cotton, and wool textile fibers using micro-Raman spectroscopy. Part 2: comparison with the traditional methods of fiber examination.

    PubMed

    Buzzini, Patrick; Massonnet, Genevieve

    2015-05-01

    In the second part of this survey, the ability of micro-Raman spectroscopy to discriminate 180 fiber samples of blue, black, and red cottons, wools, and acrylics was compared to that gathered with the traditional methods for the examination of textile fibers in a forensic context (including light microscopy methods, UV-vis microspectrophotometry and thin-layer chromatography). This study shows that the Raman technique plays a complementary and useful role to obtain further discriminations after the application of light microscopy methods and UV-vis microspectrophotometry and assure the nondestructive nature of the analytical sequence. These additional discriminations were observed despite the lower discriminating powers of Raman data considered individually, compared to those of light microscopy and UV-vis MSP. This study also confirms that an instrument equipped with several laser lines is necessary for an efficient use as applied to the examination of textile fibers in a forensic setting. PMID:25731068

  19. An additive manufacturing acrylic for use in the 32 Tesla all superconducting magnet

    NASA Astrophysics Data System (ADS)

    Johnson, Zachary

    The National High Magnetic Field Laboratory is building a world record all superconducting magnet known as the "32T". It requires many thousands of parts, but in particular one kind is unusually expensive to manufacture, called "heater lead covers". These parts are traditionally made out of a glass filled epoxy known as G-10, and conventionally machined. The machining is the expensive portion, as there are many tight tolerance details. The proposal in this paper is to change the material and manufacturing method to additive manufacturing with the material called "RGD 430". The cost per part with traditional machining is approximately 1,500 each. The cost per part with additive manufacturing of RGD 430 is approximately 32.5 each. There will be at least 14 of this style of part on the completed 32T project. Thus the total cost for the project will be reduced from 21,000 to 455, a 98% cost savings. The additive manufacturing also allows the machine designers to expand the dimensions of the part to any shape possible. Through testing of the material it was found to follow the common polymer characteristics. Its linear elastic modulus at cryogenic temperatures approached 10 GPa. The yield strength was always over 100 MPa, when not damaged. The fracture mechanism was repeatable, and brittle in cryogenic environments. The geometric tolerancing of the additive manufacturing process are, as expected extremely precise. The final tolerances for dimensions in the profile of the printer are more precise than +/- 0.10mm. The final tolerances for dimensions in the thickness of the printer are more precise than +/-0.25mm. Before utilizing the material, there should be a few additional tests run on it to ensure it will work in-situ. Those tests are outside the scope of this thesis.

  20. 16 CFR 303.8 - Procedure for establishing generic names for manufactured fibers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... manufactured fibers. 303.8 Section 303.8 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.8 Procedure for establishing generic names for manufactured fibers. (a) Prior to the marketing or handling...

  1. Assessment of different dietary fibers (tomato fiber, beet root fiber, and inulin) for the manufacture of chopped cooked chicken products.

    PubMed

    Cava, Ramón; Ladero, Luis; Cantero, V; Rosario Ramírez, M

    2012-04-01

    Three dietary fibers (tomato fiber [TF], beet root fiber [BRF], and inulin) at 3 levels of addition (1%, 2%, and 3%) were assessed for the manufacture of chopped, cooked chicken products and compared with a control product without fiber added. The effect of fiber incorporation on (i) batters, (ii) cooked (30 min at 70 °C), and (iii) cooked and stored (for 10 d at 4 °C) chicken products were studied. The addition of the fiber to chicken meat products reduced the pH of chicken batters in proportional to the level of fiber addition. Fiber incorporation increased water-holding capacity but only the addition of TF reduced cook losses. The color of batters and cooked products was significantly modified by the type and level of fiber added. These changes were more noticeable when TF was added. Texture parameters were affected by the incorporation of TF and BRF; they increased the hardness in proportional to the level of addition. The addition of tomato and BRF to chicken meat products reduced lipid oxidation processes. These changes were dependent on the level of fiber added. The reduction of lipid oxidation processes was more marked in TF meat products than in products with other types of fibers. In contrast, the addition level of inulin increased TBA-RS numbers in chicken meat products. Although the addition of TF increased the redness of the meat products, the use of this fiber was more suitable as it reduced the extent of lipid oxidation processes. INDUSTRIAL APPLICATION: Nowadays, the reduction of fat and the increase of fiber content in meat products is one of the main goals of meat industry. Numerous sources of fiber can be added to the meat products; however, before that it is necessary to study their technological effect on raw and cooked meat products in order to evaluate their suitability for meat products manufacture. In addition, some of them could have beneficial effect on meat products conservation that could also increase their shelf life. PMID:22352766

  2. 16 CFR 303.8 - Procedure for establishing generic names for manufactured fibers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... manufactured fibers. 303.8 Section 303.8 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.8... § 303.7 of this part; (2) The chemical composition of the fiber, including the fiber-forming...

  3. 16 CFR 303.8 - Procedure for establishing generic names for manufactured fibers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... manufactured fibers. 303.8 Section 303.8 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.8... § 303.7 of this part; (2) The chemical composition of the fiber, including the fiber-forming...

  4. 16 CFR 303.8 - Procedure for establishing generic names for manufactured fibers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... manufactured fibers. 303.8 Section 303.8 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.8... § 303.7 of this part; (2) The chemical composition of the fiber, including the fiber-forming...

  5. 16 CFR 303.33 - Country where textile fiber products are processed or manufactured.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Country where textile fiber products are... UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT § 303.33 Country where textile fiber products are processed or manufactured. (a) In addition...

  6. Manufacturing of robust natural fiber preforms utilizing bacterial cellulose as binder.

    PubMed

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  7. Manufacturing Of Robust Natural Fiber Preforms Utilizing Bacterial Cellulose as Binder

    PubMed Central

    Lee, Koon-Yang; Shamsuddin, Siti Rosminah; Fortea-Verdejo, Marta; Bismarck, Alexander

    2014-01-01

    A novel method of manufacturing rigid and robust natural fiber preforms is presented here. This method is based on a papermaking process, whereby loose and short sisal fibers are dispersed into a water suspension containing bacterial cellulose. The fiber and nanocellulose suspension is then filtered (using vacuum or gravity) and the wet filter cake pressed to squeeze out any excess water, followed by a drying step. This will result in the hornification of the bacterial cellulose network, holding the loose natural fibers together. Our method is specially suited for the manufacturing of rigid and robust preforms of hydrophilic fibers. The porous and hydrophilic nature of such fibers results in significant water uptake, drawing in the bacterial cellulose dispersed in the suspension. The bacterial cellulose will then be filtered against the surface of these fibers, forming a bacterial cellulose coating. When the loose fiber-bacterial cellulose suspension is filtered and dried, the adjacent bacterial cellulose forms a network and hornified to hold the otherwise loose fibers together. The introduction of bacterial cellulose into the preform resulted in a significant increase of the mechanical properties of the fiber preforms. This can be attributed to the high stiffness and strength of the bacterial cellulose network. With this preform, renewable high performance hierarchical composites can also be manufactured by using conventional composite production methods, such as resin film infusion (RFI) or resin transfer molding (RTM). Here, we also describe the manufacturing of renewable hierarchical composites using double bag vacuum assisted resin infusion. PMID:24893649

  8. New Manufacturing Method for Paper Filler and Fiber Material

    SciTech Connect

    Doelle, Klaus

    2013-08-25

    The use of fillers in printing and writing papers has become a prerequisite for competing in a global market to reduce the cost of materials. Use of calcium carbonates (ranging from 18% to 30%) as filler is a common practice in the paper industry but the choices of fillers for each type of papers vary widely according to its use. The market for uncoated digital printing paper is one that continues to introduce exciting growth projections. and it is important to understand the effect that new manufacturing methods of calcium carbonates have on the energy efficiency and paper production. Research conducted under this award showed that the new fiber filler composite material has the potential to increase the paper filler content by up to 5% without losing mechanical properties. Benefits of the technology can be summarized as follows for a 1% filler increase per metric ton of paper produced: (i) production cost savings over $12, (ii) Energy savings of 100,900 btu, (iii) CO{sub 2} emission savings of 33 lbs, and additional savings for wood preparation, pulping, recovery of 203593 btu with a 46lbs of CO{sub 2} emission savings per 1% filler increase. In addition the technology has the potential to save: (i) additional $3 per ton of bleached pulp produced, (ii) bleaching energy savings of 170,000 btu, (iii) bleaching CO{sub 2} emission savings of 39 lbs, and (iv) additional savings for replacing conventional bleaching chemicals with a sustainable bleaching chemical is estimated to be 900,000 btu with a 205 lbs of CO{sub 2} emission savings per ton of bleached pulp produced. All the above translates to a estimated annual savings for a 12% filler increase of 296 trillion buts or 51 million barrel of oil equivalent (BOE) or 13.7% of the industries energy demand. This can lead to a increase of renewable energy usage from 56% to close to 70% for the industry sector. CO{sub 2} emission of the industry at a 12% filler increase could be lowered by over 39 million tons annually

  9. Monitoring techniques for the manufacture of tapered optical fibers.

    PubMed

    Mullaney, Kevin; Correia, Ricardo; Staines, Stephen E; James, Stephen W; Tatam, Ralph P

    2015-10-01

    The use of a range of optical techniques to monitor the process of fabricating optical fiber tapers is investigated. Thermal imaging was used to optimize the alignment of the optical system; the transmission spectrum of the fiber was monitored to confirm that the tapers had the required optical properties and the strain induced in the fiber during tapering was monitored using in-line optical fiber Bragg gratings. Tapers were fabricated with diameters down to 5 μm and with waist lengths of 20 mm using single-mode SMF-28 fiber. PMID:26479631

  10. The PMAS Fiber Module: Design, Manufacture and Performance Optimization

    NASA Astrophysics Data System (ADS)

    Kelz, Andreas; Roth, Martin M.; Becker, Thomas; Bauer, Svend-Marian

    2003-02-01

    PMAS, the Potsdam Multi-Aperture Spectrophotometer, is a new integral field (IF or 3D) instrument. It features a lenslet/optical fiber type integral field module and a dedicated fiber spectrograph. As the instrumental emphasis is on photometric stability and high efficiency, good flat field characteristic across the integral field is needed. The PMAS fiber module is unique in the sense that the design allows the replacement of individual fibers. This property, together with the fact that the fibers are index-matched at both ends, makes it possible to achieve and maintain a high efficiency. We present the opto-mechanical design for this fiber-module and, using various data sets from previous observing runs, demonstrate the increase of performance as a result of the optimization of the fiber-components.

  11. Strength degradation of SiC fiber during manufacture of titanium matrix composites by plasma spraying and hot pressing

    NASA Astrophysics Data System (ADS)

    Baik, K. H.; Grant, P. S.

    2001-12-01

    Titanium matrix composites (TMCs) reinforced with Sigma 1140+ SiC fiber have been manufactured by a combination of low pressure plasma spraying (LPPS spray/wind) and simultaneous fiber winding, followed by vacuum hot pressing (VHP). Fiber damage during TMC manufacture has been evaluated by measuring fiber tensile strength after fiber extraction from the TMCs at various processing stages, followed by fitting of these data to a Weibull distribution function. The LPPS spray/wind processing caused a decrease in mean fiber strength and Weibull modulus in comparison with as-received fibers. A number of fiber surface flaws, primarily in the outer C layer of the fiber, formed as a result of mechanical impact of poorly melted particles from the plasma spray. Coarse feedstock powders promoted an increase in the population of fiber surface flaws, leading to significant reduction in fiber strength. The VHP consolidation promoted further development of fiber surface flaws by fiber bending and stress localization because of nonuniform matrix shrinkage, resulting in further degradation in fiber strength. In the extreme case of fibers touching, the stress concentration on the fibers was sufficient to cause fiber cracking. Fractographic studies revealed that low strength fibers failed by surface flaw induced failure and contained a large fracture mirror zone. Compared with the more widely investigated foil-fiber-foil route to manufacture TMCs, LPPS/VHP resulted in less degradation in fiber strength for Sigma 1140+ fiber. Preliminary results for Textron SCS-6 fiber indicated a much greater tolerance to LPPS/VHP damage.

  12. 16 CFR 303.8 - Procedure for establishing generic names for manufactured fibers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 1 2011-01-01 2011-01-01 false Procedure for establishing generic names for manufactured fibers. 303.8 Section 303.8 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULES AND REGULATIONS UNDER THE TEXTILE FIBER PRODUCTS IDENTIFICATION ACT §...

  13. A New Fiber Preform with Nanocarbon Binder for Manufacturing Carbon Fiber Reinforced Composite by Liquid Molding Process.

    PubMed

    Seong, Dong Gi; Ha, Jong Rok; Lee, Jea Uk; Lee, Wonoh; Kim, Byung Sun

    2015-11-01

    Carbon fiber reinforced composite has been a good candidate of lightweight structural component in the automotive industry. As fast production speed is essential to apply the composite materials for the mass production area such as automotive components, the high speed liquid composite molding processes have been developed. Fast resin injection through the fiber preform by high pressure is required to improve the production speed, but it often results in undesirable deformations of the fiber preform which causes defectives in size and properties of the final composite products. In order to prevent the undesirable deformation and improve the stability of preform shape, polymer type binder materials are used. More stable fiber preform can be obtained by increasing the amount of binder material, but it disturbs the resin impregnation through the fiber preform. In this study, carbon nanomaterials such as graphene oxide were embedded on the surface of carbon fiber by electrophoretic deposition method in order to improve the shape stability of fiber preform and interfacial bonding between polymer and the reinforcing fiber. Effects of the modified reinforcing fiber were investigated in two respects. One is to increase the binding energy between fiber tows, and the other is to increase the interfacial bonding between polymer matrix and fiber surface. The effects were analyzed by measuring the binding force of fiber preform and interlaminar shear strength of the composite. This study also investigated the high speed liquid molding process of the composite materials composed of polymer matrix and the carbon fiber preforms embedded by carbon nanomaterials. Process parameter such as permeability of fiber preform was measured to investigate the effect of nanoscale surface modification on the macroscale processing condition for composite manufacturing. PMID:26726642

  14. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    NASA Technical Reports Server (NTRS)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  15. Presence of tungsten-containing fibers in tungsten refining and manufacturing processes.

    PubMed

    McKernan, John L; Toraason, Mark A; Fernback, Joseph E; Petersen, Martin R

    2009-04-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 microm, diameter >0.01 microm and aspect ratios > or =3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length approximately 3 microm and diameter approximately 0.3 microm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter < or = 10 microm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting 'B' rules (length > 5 microm, diameter < 3 microm and aspect ratio > or = 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm(-3), with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The

  16. Flame-resistant kapok fiber manufactured using gamma ray

    NASA Astrophysics Data System (ADS)

    Chung, Byung Yeoup; Hyeong, Min Ho; An, Byung Chull; Lee, Eun Mi; Lee, Seung Sik; Kim, Jin-Hong; Kim, Jae-Sung; Kim, Tae-Hoon; Cho, Jae-Young

    2009-07-01

    Owing to homogeneous hollow tube shape and hydrophobicity of kapok fiber, the usages of this fiber are various such as fiberfill in pillows, quilts, non-woven fabric for oil spill cleanup and plastic green house. Even though kapok fiber is able to apply various industrial usages, it has a serious disadvantage which is the extreme sensitivity to spark or flame. Therefore, we try to make flame-resistant kapok fiber using gamma ray. The radiation caused loss of hydrophobic compounds in kapok fiber and no morphological change, especially fine hollow tube shape, was observed. The lignin contents were negligible changed after gamma irradiation. However, the building units of lignin polymer such as coniferyl alcohol, and sinapyl alcohol were significantly changed that is, functional group as a methoxyl group from lignin polymer was cleaved by gamma irradiation. Based on the results of removal of hydrophobic compounds and cleavage of methoxyl group from lignin polymer, kapok fiber can be converted into a flame-resistant fiber by gamma ray treatment.

  17. Mechanical Properties of Carbon Fiber-Reinforced Aluminum Manufactured by High-Pressure Die Casting

    NASA Astrophysics Data System (ADS)

    Kachold, Franziska; Singer, Robert

    2016-03-01

    Carbon fiber reinforced aluminum was produced by a specially adapted high-pressure die casting process. The MMC has a fiber volume fraction of 27%. Complete infiltration was achieved by preheating the bidirectional, PAN-based carbon fiber body with IR-emitters to temperatures of around 750 °C. The degradation of the fibers, due to attack of atmospheric oxygen at temperatures above 600 °C, was limited by heating them in argon-rich atmosphere. Additionally, the optimization of heating time and temperature prevented fiber degradation. Only the strength of the outer fibers is reduced by 40% at the most. The fibers in core of fiber body are nearly undamaged. In spite of successful manufacturing, the tensile strength of the MMC is below strength of the matrix material. Also unidirectional MMCs with a fiber volume fraction of 8% produced under the same conditions, lack of the reinforcing effect. Two main reasons for the unsatisfactory mechanical properties were identified: First, the fiber-free matrix, which covers the reinforced core, prevents effective load transfer from the matrix to the fibers. And second, the residual stresses in the fiber-free zones are as high as 100 MPa. This causes premature failure in the matrix. From this, it follows that the local reinforcement of an actual part is limited. The stress distribution caused by residual stresses and by loading needs to be known. In this way, the reinforcing phase can be placed and aligned accordingly. Otherwise delamination and premature failure might occur.

  18. Basalt fiber manufacturing technology and the possibility of its use in dentistry

    NASA Astrophysics Data System (ADS)

    Karavaeva, E.; Rogozhnikov, A.; Nikitin, V.; Cherepennikov, Yu; Lysakov, A.

    2015-11-01

    The article touches upon the technology of basalt fiber manufacturing and prospects of its use in dental practice. Two kinds of construction using basalt fiber have been proposed. The first one is a splinting construction for mobile teeth and the second one is the reinforced base for removable plate-denture. The work presents the results of the investigation of physical and mechanical properties of the constructions based on basalt fiber. It also describes the aspects of biomechanical modeling of such constructions in the ANSYS software package. The results of the investigation have proved that applying constructions using basalt fiber is highly promising for prosthetic dentistry practice.

  19. Method of Manufacturing Carbon Fiber Reinforced Carbon Composite Valves

    NASA Technical Reports Server (NTRS)

    Rivers, H. Kevin (Inventor); Ransone, Philip O. (Inventor); Northam, G. Burton (Inventor)

    1998-01-01

    A method for forming a carbon composite valve for internal combustion engines is discussed. The process includes the steps of braiding carbon fiber into a rope thereby forming a cylindrically shaped valve stem portion and continuing to braid said fiber while introducing into the braiding carbon fiber rope a carbon matrix plug having an outer surface in a net shape of a valve head thereby forming a valve head portion. The said carbon matrix plug acting as a mandrel over which said carbon fiber rope is braided, said carbon fiber rope and carbon matrix plug forming a valve head portion suitable for mating with a valve seat; cutting said braided carbon valve stem portion at one end to form a valve tip and cutting said braided carbon fiber after said valve head portion to form a valve face and thus provide a composite valve preform; and densifying said preform by embedding the braided carbon in a matrix of carbon to convert said valve stem portion to a valve stem and said valve head portion to a valve head thereby providing said composite valve.

  20. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2015-10-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  1. Fiber Volume Fraction Influence on Fiber Compaction in Tapered Resin Injection Pultrusion Manufacturing

    NASA Astrophysics Data System (ADS)

    Masuram, N. B.; Roux, J. A.; Jeswani, A. L.

    2016-06-01

    Liquid resin is injected into the tapered injection chamber through the injection slots to completely wetout the fiber reinforcements in a resin injection pultrusion process. As the resin penetrates through the fibers, the resin also pushes the fibers away from the wall towards the centerline causing compaction of the fiber reinforcements. The fibers are squeezed together due to compaction, making resin penetration more difficult; thus higher resin injection pressures are required to effectively penetrate through the fibers and achieve complete wetout. Fiber volume fraction in the final pultruded composite is a key to decide the mechanical and/or chemical properties of the composite. If the fiber volume fraction is too high, more fibers are squeezed together creating a fiber lean region near the wall and fiber rich region away from the wall. Also, the design of the injection chamber significantly affects the minimum injection pressure required to completely wet the fibers. A tapered injection chamber is considered such that wetout occurs at lower injection pressures due to the taper angle of the injection chamber. In this study, the effect of fiber volume fraction on the fiber reinforcement compaction and complete fiber wetout for a tapered injection chamber is investigated.

  2. Presence of airborne fibers in tungsten refining and manufacturing processes: preliminary characterization.

    PubMed

    McKernan, John L; Toraason, Mark A; Fernback, Joseph E

    2008-07-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides (WO(X)) are typically formed as intermediates in the production of tungsten powder. Studies in the Swedish tungsten refining and manufacturing industry have shown that intermediate tungsten refining processes can create WO(X) fibers. The purpose of the present study was to identify and provide a preliminary characterization of airborne tungsten-containing fiber dimensions, elemental composition, and concentrations in the U.S. tungsten refining and manufacturing industry. To provide the preliminary characterization, 10 static air samples were collected during the course of normal employee work activities and analyzed using standard fiber sampling and counting methods. Results from transmission electron microscopy analyses conducted indicate that airborne fibers with length > 0.5 microm, diameter > 0.01 microm, and aspect ratio > or = 3:1, with a geometric mean (GM) length of approximately 2.0 microm and GM diameter of approximately 0.25 microm, were present on 9 of the 10 air samples collected. Energy dispersive X-ray spectrometry results indicate that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Results from an air sample collected at the carburization process indicated the presence of fibers composed primarily of tungsten with oxygen and carbon, and traces of other elements. Based on National Institute for Occupational Safety and Health standard fiber counting rules, airborne fiber concentrations ranged from below the limit of detection to 0.14 f/cm(3). The calcining process was associated with the highest airborne fiber concentrations. More than 99% (574/578) of the airborne fibers identified had an aerodynamic diameter

  3. Coated metal fiber coalescing cell

    SciTech Connect

    Rutz, W.D.; Swain, R.J.

    1980-12-23

    A cell is described for coalescing oil droplets dispersed in a water emulsion including an elongated perforated tube core into which the emulsion is injected, layers of oleophilic plastic covered metal mat wound about the core through which the emulsion is forced to pass, the fibers of the metal mat being covered by oleophilic plastic such as vinyl, acrylic, polypropylene, polyethylene, polyvinyl chloride, the metal being in the form of layers of expanded metal or metal fibers, either aluminum or stainless steel. In manufacturing the cell a helix wound wire is formed around the cylindrical plastic coated metal to retain it in place and resist pressure drop of fluid flowing through the metal fibers. In addition, the preferred arrangement includes the use of an outer sleeve formed of a mat of fibrous material such as polyester fibers, acrylic fibers, modacrylic fibers and mixtures thereof.

  4. Study of tile/fiber systems manufactured from Kharkov injection molded and Kuraray SCSN-81 scintillators

    NASA Astrophysics Data System (ADS)

    Nemashkalo, A.; Popov, V.; Rubashkin, A.; Sorokin, P.; Zatserklianiy, A.; Borisenko, A.; Senchishin, V.; Skrebtsov, O.; Bolotov, V.

    1998-12-01

    We present the measurements of light output, light yield uniformity, and recovery after radiation damage of the tile/fiber systems made from the Kharkov injection molded and Kuraray SCSN-81 scintillators. The tiles were trapezoidal in shape, 131×90×122 mm3, with a Kuraray Y11 multiclad WLS read-out. The results are compared with those obtained using the tile/fiber systems manufactured from the Kuraray SCSN-81 scintillator and tested under the same conditions.

  5. Manufacture of fiber-epoxy test specimens: Including associated jigs and instrumentation

    NASA Technical Reports Server (NTRS)

    Mathur, S. B.; Felbeck, D. K.

    1980-01-01

    Experimental work on the manufacture and strength of graphite-epoxy composites is considered. The correct data and thus a true assessment of the strength properties based on a proper and scientifically modeled test specimen with engineered design, construction, and manufacture has led to claims of a very broad spread in optimized values. Such behavior is in the main due to inadequate control during manufacture of test specimen, improper curing, and uneven scatter in the fiber orientation. The graphite fibers are strong but brittle. Even with various epoxy matrices and volume fraction, the fracture toughness is still relatively low. Graphite-epoxy prepreg tape was investigated as a sandwich construction with intermittent interlaminar bonding between the laminates in order to produce high strength, high fracture toughness composites. The quality and control of manufacture of the multilaminate test specimen blanks was emphasized. The dimensions, orientation and cure must be meticulous in order to produce the desired mix.

  6. Innovative design of composite structures: Design, manufacturing, and testing of plates utilizing curvilinear fiber trajectories

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Rust, R. J.; Waters, W. A., Jr.

    1994-01-01

    As a means of improving structural design, the concept of fabricating flat plates containing holes by incorporating curvilinear fiber trajectories to transmit loads around the hole is studied. In the present discussion this concept is viewed from a structural level, where access holes, windows, doors, and other openings are of significant size. This is opposed to holes sized for mechanical fasteners. Instead of cutting the important load-bearing fibers at the hole edge, as a conventional straightline design does, the curvilinear design preserves the load-bearing fibers by orienting them in smooth trajectories around the holes, their loading not ending abruptly at the hole edge. Though the concept of curvilinear fiber trajectories has been studied before, attempts to manufacture and test such plates have been limited. This report describes a cooperative effort between Cincinnati Milacron Inc., NASA Langley Research Center, and Virginia Polytechnic Institute and State University to design, manufacture, and test plates using the curvilinear fiber trajectory concept. The paper discusses details of the plate design, details of the manufacturing, and a summary of results from testing the plates with inplane compressive buckling loads and tensile loads. Comparisons between the curvilinear and conventional straightline fiber designs based on measurements and observation are made. Failure modes, failure loads, strains, deflections, and other key responses are compared.

  7. Automated fiber placement composite manufacturing: The mission at MSFC's Productivity Enhancement Complex

    NASA Technical Reports Server (NTRS)

    Vickers, John H.; Pelham, Larry I.

    1993-01-01

    Automated fiber placement is a manufacturing process used for producing complex composite structures. It is a notable leap to the state-of-the-art in technology for automated composite manufacturing. The fiber placement capability was established at the Marshall Space Flight Center's (MSFC) Productivity Enhancement Complex in 1992 in collaboration with Thiokol Corporation to provide materials and processes research and development, and to fabricate components for many of the Center's Programs. The Fiber Placement System (FPX) was developed as a distinct solution to problems inherent to other automated composite manufacturing systems. This equipment provides unique capabilities to build composite parts in complex 3-D shapes with concave and other asymmetrical configurations. Components with complex geometries and localized reinforcements usually require labor intensive efforts resulting in expensive, less reproducible components; the fiber placement system has the features necessary to overcome these conditions. The mechanical systems of the equipment have the motion characteristics of a filament winder and the fiber lay-up attributes of a tape laying machine, with the additional capabilities of differential tow payout speeds, compaction and cut-restart to selectively place the correct number of fibers where the design dictates. This capability will produce a repeatable process resulting in lower cost and improved quality and reliability.

  8. Presence of Tungsten-Containing Fibers in Tungsten Refining and Manufacturing Processes

    PubMed Central

    Mckernan, John L.; Toraason, Mark A.; Fernback, Joseph E.; Petersen, Martin R.

    2009-01-01

    In tungsten refining and manufacturing processes, a series of tungsten oxides are typically formed as intermediates in the production of tungsten powder. The present study was conducted to characterize airborne tungsten-containing fiber dimensions, elemental composition and concentrations in the US tungsten refining and manufacturing industry. During the course of normal employee work activities, seven personal breathing zone and 62 area air samples were collected and analyzed using National Institute for Occupational Safety and Health (NIOSH) fiber sampling and counting methods to determine dimensions, composition and airborne concentrations of fibers. Mixed models were used to identify relationships between potential determinants and airborne fiber concentrations. Results from transmission electron microscopy analyses indicated that airborne fibers with length >0.5 μm, diameter >0.01 μm and aspect ratios ≥3:1 were present on 35 of the 69 air samples collected. Overall, the airborne fibers detected had a geometric mean length ≈3 μm and diameter ≈0.3 μm. Ninety-seven percent of the airborne fibers identified were in the thoracic fraction (i.e. aerodynamic diameter ≤ 10 μm). Energy dispersive X-ray spectrometry results indicated that airborne fibers prior to the carburization process consisted primarily of tungsten and oxygen, with other elements being detected in trace quantities. Based on NIOSH fiber counting ‘B’ rules (length > 5 μm, diameter < 3 μm and aspect ratio ≥ 5:1), airborne fiber concentrations ranged from below the limit of detection to 0.085 fibers cm−3, with calcining being associated with the highest airborne concentrations. The mixed model procedure indicated that process temperature had a marginally significant relationship to airborne fiber concentration. This finding was expected since heated processes such as calcining created the highest airborne fiber concentrations. The finding of airborne tungsten-containing fibers in

  9. Influence of thermal history on the mechanical properties of carbon fiber-acrylate composites cured by electron beam and thermal processes

    SciTech Connect

    Vautard, Frederic; Ozcan, Soydan; Poland, Laura E; Meyer III, Harry M

    2013-01-01

    The mechanical properties of an acrylate resin and its carbon fiber composite, as well as the adhesion strength between them, were characterized in the case of thermal and electron beam curing. The thermal history during the cure was also recorded. It was shown that the properties of the matrix were similar but that the thermal history during the curing had a direct influence on the type of interactions that were generated at the interface, leading to different level of adhesion strength and level of performance for the associated composites. In the case of a thermal cure, the thermal profile allowed the generation of covalent bonding at the interface, leading to a high level of adhesion strength, which was not the case for electron beam curing. The thermal history during the cure appeared to be a determining parameter for the level of performance of composites cured by electron beam.

  10. Highly Aligned Carbon Fiber in Polymer Composite Structures via Additive Manufacturing

    DOE PAGESBeta

    Tekinalp, Halil L; Kunc, Vlastimil; Velez-Garcia, Gregorio M; Duty, Chad E; Love, Lonnie J; Naskar, Amit K; Blue, Craig A; Ozcan, Soydan

    2014-01-01

    Additive manufacturing, diverging from traditional manufacturing techniques, such as casting and machining materials, can handle complex shapes with great design flexibility without the typical waste. Although this technique has been mainly used for rapid prototyping, interest is growing in using this method to directly manufacture actual parts of complex shape. To use 3D-printing additive manufacturing in wide spread applications, the technique and the feedstock materials require improvements to meet the mechanical requirements of load-bearing components. Thus, we investigated the short fiber (0.2 mm to 0.4 mm) reinforced acrylonitrile-butadiene-styrene composites as a feedstock for 3D-printing in terms of their processibility, microstructuremore » and mechanical performance; and also provided comparison with traditional compression molded composites. The tensile strength and modulus of 3D-printed samples increased ~115% and ~700%, respectively. 3D-printer yielded samples with very high fiber orientation in printing direction (up to 91.5 %), whereas, compression molding process yielded samples with significantly less fiber orientation. Microstructure-mechanical property relationships revealed that although the relatively high porosity is observed in the 3D-printed composites as compared to those produced by the conventional compression molding technique, they both exhibited comparable tensile strength and modulus. This phenomena is explained based on the changes in fiber orientation, dispersion and void formation.« less

  11. Design and Manufacturing of Tow-Steered Composite Shells Using Fiber Placement

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Tatting, Brian F.; Smith, Brett H.; Stevens, Randy S.; Occhipiniti, Gina P.; Swift, Jonathan B.; Achary, David C.; Thornburgh, Robert P.

    2009-01-01

    Advanced composite shells that may offer the potential to improve the structural performance of future aircraft fuselage structures were developed under this joint NASA-industry collaborative effort. Two cylindrical shells with tailored, tow-steered layups and continuously varying fiber angle orientations were designed and built at the National Center for Advanced Manufacturing - Louisiana Partnership. The shells were fabricated from unidirectional IM7/8552 graphite-epoxy pre-preg slit tape material fiber-placed on a constant-diameter mandrel. Each shell had the same nominal 8-ply [plus or minus 45/plus or minus Theta]s layup, where the nominal fiber angle in the tow-steered plies varied continuously from 10 degrees along the crown to 45 degrees on each side, then back to 10 degrees on the keel. One shell was fabricated with all 24 tows placed during each pass of the fiber placement machine, resulting in many tow overlaps on the shell surface. The fiber placement machine's individual tow cut/restart capability was also used to manufacture a second shell with tow drops and a more uniform laminate thickness. This paper presents an overview of the detailed design and manufacturing processes for these shells, and discusses issues encountered during their fabrication and post-cure evaluation. Future plans for structural testing and analyses of the shells are also discussed.

  12. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    PubMed Central

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-01-01

    Background: Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Results: Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins. PMID:23946739

  13. Effect of different palatal vault shapes on the dimensional stability of glass fiber-reinforced heat-polymerized acrylic resin denture base material

    PubMed Central

    Dalkiz, Mehmet; Arslan, Demet; Tuncdemir, Ali Riza; Bilgin, M.Selim; Aykul, Halil

    2012-01-01

    Objective: The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base material. Methods: Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A–B, A–C, A–D and B–C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recorded. Results: No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>.05). Significant difference of linear dimension were found in all experimental groups (P<.01) between measurements made 24 h after polymerization of specimens and 30 days after water storage. Conclusion: Palatal vault shape and fiber impregnation into the acrylic resin bases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces. PMID:22229010

  14. Energy Saving Method of Manufacturing Ceramic Products from Fiber Glass Waste

    SciTech Connect

    Michael J. Haun

    2005-07-15

    The U.S. fiber glass industry disposes of more than 260,000 tons of industrial fiber glass waste in landfills annually. New technology is needed to reprocess this industrial waste into useful products. A low-cost energy-saving method of manufacturing ceramic tile from fiber glass waste was developed. The technology is based on sintering fiber glass waste at 700-900 degrees C to produce products which traditionally require firing temperatures of >1200 degrees C, or glass-melting temperatures >1500 degrees C. The process also eliminates other energy intensive processing steps, including mining and transportation of raw materials, spray-drying to produce granulated powder, drying pressed tile, and glazing. The technology completely transforms fiber glass waste into a dense ceramic product, so that all future environmental problems in the handling and disposal of the fibers is eliminated. The processing steps were developed and optimized to produce glossy and matte surface finishes for wall and floor tile applications. High-quality prototype tile samples were processed for demonstration and tile standards testing. A Market Assessment confirmed the market potential for tile products produced by the technology. Manufacturing equipment trials were successfully conducted for each step of the process. An industrial demonstration plant was designed, including equipment and operating cost analysis. A fiber glass manufacturer was selected as an industrial partner to commercialize the technology. A technology development and licensing agreement was completed with the industrial partner. Haun labs will continue working to transfer the technology and assist the industrial partner with commercialization beyond the DOE project.

  15. LOW-COST COMPOSITES IN VEHICLE MANUFACTURE - Natural-fiber-reinforced polymer composites in automotive applications.

    SciTech Connect

    Holbery, Jim; Houston, Dan

    2006-11-01

    In the last decade, natural fiber composites have experienced rapid growth in the European automotive market, and this trend appears to be global in scale, provided the cost and performance is justified against competing technologies. However, mass reduction, recyclability, and performance requirements can be met today by competing systems such as injection-molded unreinforced thermoplastics; natural fiber composites will continue to expand their role in automotive applications only if such technical challenges as moisture stability, fiber-polymer interface compatibility, and consistent, repeatable fiber sources are available to supply automotive manufacturers. Efforts underway by Tier I and II automotive suppliers to explore hybrid glass-natural fiber systems, as well as applications that exploit such capabilities as natural fiber sound dampening characteristics, could very well have far-reaching effects. In addition, the current development underway of bio-based resins such as Polyhydroxyalkanoate (PHA) biodegradable polyesters and bio-based polyols could provide fully bio-based composite options to future automotive designers. In short, the development of the natural fiber composite market would make a positive impact on farmers and small business owners on a global scale, reduce US reliance on foreign oil, improve environmental quality through the development of a sustainable resource supply chain, and achieve a better CO2 balance over the vehicle?s lifetime with near-zero net greenhouse gas emissions.

  16. A low-cost, manufacturable method for fabricating capillary and optical fiber interconnects for microfluidic devices.

    PubMed

    Hartmann, Daniel M; Nevill, J Tanner; Pettigrew, Kenneth I; Votaw, Gregory; Kung, Pang-Jen; Crenshaw, Hugh C

    2008-04-01

    Microfluidic chips require connections to larger macroscopic components, such as light sources, light detectors, and reagent reservoirs. In this article, we present novel methods for integrating capillaries, optical fibers, and wires with the channels of microfluidic chips. The method consists of forming planar interconnect channels in microfluidic chips and inserting capillaries, optical fibers, or wires into these channels. UV light is manually directed onto the ends of the interconnects using a microscope. UV-curable glue is then allowed to wick to the end of the capillaries, fibers, or wires, where it is cured to form rigid, liquid-tight connections. In a variant of this technique, used with light-guiding capillaries and optical fibers, the UV light is directed into the capillaries or fibers, and the UV-glue is cured by the cone of light emerging from the end of each capillary or fiber. This technique is fully self-aligned, greatly improves both the quality and the manufacturability of the interconnects, and has the potential to enable the fabrication of interconnects in a fully automated fashion. Using these methods, including a semi-automated implementation of the second technique, over 10,000 interconnects have been formed in almost 2000 microfluidic chips made of a variety of rigid materials. The resulting interconnects withstand pressures up to at least 800psi, have unswept volumes estimated to be less than 10 femtoliters, and have dead volumes defined only by the length of the capillary. PMID:18369517

  17. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  18. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  19. Femtosecond fiber laser additive manufacturing and welding for 3D manufacturing

    NASA Astrophysics Data System (ADS)

    Huang, Huan; Nie, Bai; Wan, Peng; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2015-03-01

    Due to the unique ultra-short pulse duration and high peak power, femtosecond (fs) laser has emerged as a powerful tool for many applications but has rarely been studied for 3D printing. In this paper, welding of both bulk and powder materials is demonstrated for the first time by using high energy and high repetition rate fs fiber lasers. It opens up new scenarios and opportunities for 3D printing with the following advantages - greater range of materials especially with high melting temperature, greater-than-ever level of precision (sub-micron) and less heat-affected-zone (HAZ). Mechanical properties (strength and hardness) and micro-structures (grain size) of the fabricated parts are investigated. For dissimilar materials bulk welding, good welding quality with over 210 MPa tensile strength is obtained. Also full melting of the micron-sized refractory powders with high melting temperature (above 3000 degree C) is achieved for the first time. 3D parts with shapes like ring and cube are fabricated. Not only does this study explore the feasibility of melting dissimilar and high melting temperature materials using fs lasers, but it also lays out a solid foundation for 3D printing of complex structure with designed compositions, microstructures and properties. This can greatly benefit the applications in automobile, aerospace and biomedical industries, by producing parts like nozzles, engines and miniaturized biomedical devices.

  20. 40 CFR 414.30 - Applicability; description of the other fibers subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... those fibers and fiber groups listed below. Product groups are indicated with an asterisk (*). *Acrylic...) *Polyaramid (Kevlar) Resin-Fibers *Polyaramid (Nomex) Resin-Fibers *Polyester Fibers *Polyethylene...

  1. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  2. Effects of manufacturing techniques on the flexural behavior of steel fiber-reinforced concrete

    SciTech Connect

    Toutanji, H.; Bayasi, Z.

    1998-01-01

    This paper presents experimental research investigating the effects of manufacturing techniques on the mechanical properties of steel fiber-reinforced concrete. Both the effects of curing environments and that of testing direction relative to casting direction on the mechanical properties of fiber-reinforced concrete are reported. Specimens were cured in three different environmental conditions: steam, moisture, and air. Results show that steam curing, as compared to moisture curing, does not enhance the flexural strength of steel fibrous concrete but does reduce flexural toughness. As expected, air curing shows detrimental effects on all aspects of the test results, as compared to steam and moisture curing. The flexural behavior of steel fiber-reinforced concrete is strongly affected by testing direction. When testing direction is perpendicular to casting direction, specimens exhibit reductions in both flexural strength and toughness compared to the case when testing and casting directions are parallel. The effect of testing direction relative to casting direction on flexural strength and toughness increases with increasing the flowability (workability) of the fibrous mixture, which encourages fiber settlement during placement.

  3. Development and implementation of a safety evaluation program for chemical fibers.

    PubMed

    Robatto, G; Malinverno, G; Bootman, J

    1993-04-01

    Polyester and acrylic fibers often have prolonged contact with human skin: the sucking of childrens' toys may lead to ingestion. During manufacture, occupational exposure to fiber components may occur. An evaluation of these possible hazards was undertaken by data appraisal, chemical analyses, and animal plus human testing. Occupational exposure limits have already been set for the chemicals used in polymer manufacture. Finishing agents (applied to the fibers) were examined in bacterial mutation and rat acute oral toxicity tests. Finished fibers were tested for acute toxicity and then for sensitizing potential (on guinea pig skin). Human volunteer trials for skin irritance and sensitization followed. No adverse reactions were seen. Only when fibers were burnt was toxicity seen: smoke from acrylic fiber proved more toxic than that from polyester fiber (due principally to hydrogen cyanide release). Migration tests showed that little material leached out from the fibers: < 1 mg/dm2 surface area in saline, 0.4 mg/dm2 from acrylic fibers in methanol, 3.6 mg/dm2 from polyester fibers in chloroform. Analysis showed only fiber polymer components and finish in saline and methanol leachates. Whilst further testing may be required for areas of special concern, since only a limited range of biological endpoints have been addressed, it is concluded that current and foreseeable future uses of these chemical fibers pose little or no toxicological hazard. PMID:8484027

  4. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery.

    PubMed

    Krogstad, Emily A; Woodrow, Kim A

    2014-11-20

    Electrospun fibers containing antiretroviral drugs have recently been investigated as a new dosage form for topical microbicides against HIV-1. However, little work has been done to evaluate the scalability of the fiber platform for pharmaceutical production of medical fabrics. Scalability and cost-effectiveness are essential criteria in developing fibers as a practical platform for use as a microbicide and for translation to clinical use. To address this critical gap in the development of fiber-based vaginal dosage forms, we assessed the scale-up potential of drug-eluting fibers delivering tenofovir (TFV), a nucleotide reverse transcriptase inhibitor and lead compound for topical HIV-1 chemoprophylaxis. Here we describe the process of free-surface electrospinning to scale up production of TFV fibers, and evaluate key attributes of the finished products such as fiber morphology, drug crystallinity, and drug loading and release kinetics. Poly(vinyl alcohol) (PVA) containing up to 60 wt% TFV was successfully electrospun into fibers using a nozzle-free production-scale electrospinning instrument. Actual TFV loading in fibers increased with increasing weight percent TFV in solution, and encapsulation efficiency was improved by maintaining TFV solubility and preventing drug sedimentation during batch processing. These results define important solution and processing parameters for scale-up production of TFV drug-eluting fibers by wire electrospinning, which may have significant implications for pharmaceutical manufacturing of fiber-based medical fabrics for clinical use. PMID:25169075

  5. Manufacturing scale-up of electrospun poly(vinyl alcohol) fibers containing tenofovir for vaginal drug delivery

    PubMed Central

    Krogstad, Emily A.; Woodrow, Kim A.

    2014-01-01

    Electrospun fibers containing antiretroviral drugs have recently been investigated as a new dosage form for topical microbicides against HIV-1. However, little work has been done to evaluate the scalability of the fiber platform for pharmaceutical production of medical fabrics. Scalability and cost-effectiveness are essential criteria in developing fibers as a practical platform for use as a microbicide and for translation to clinical use. To address this critical gap in the development of fiber-based vaginal dosage forms, we assessed the scale-up potential of drug-eluting fibers delivering tenofovir (TFV), a nucleotide reverse transcriptase inhibitor and lead compound for topical HIV-1 chemoprophylaxis. Here we describe the process of free-surface electrospinning to scale up production of TFV fibers, and evaluate key attributes of the finished products such as fiber morphology, drug crystallinity, and drug loading and release kinetics. Poly(vinyl alcohol) (PVA) containing up to 60 wt% TFV was successfully electrospun into fibers using a nozzle-free production-scale electrospinning instrument. Actual TFV loading in fibers increased with increasing weight percent TFV in solution, and encapsulation efficiency was improved by maintaining TFV solubility and preventing drug sedimentation during batch processing. These results define important solution and processing parameters for scale-up production of TFV drug-eluting fibers by wire electrospinning, which may have significant implications for pharmaceutical manufacturing of fiber-based medical fabrics for clinical use. PMID:25169075

  6. CHARACTERIZATION OF CARBON FIBER EMISSIONS FROM CURRENT AND PROJECTED ACTIVITIES FOR THE MANUFACTURE AND DISPOSAL OF CARBON FIBER PRODUCTS

    EPA Science Inventory

    Composite materials formed by impregnating a carbon or graphite fiber mat with plastic binders are being used increasingly in military, aerospace, sports and automotive applications. Carbon fibers are formed primarily from synthetic fibers carbonized in the absence of oxygen. Pos...

  7. Develop Roll-to-Roll Manufacturing Process of ZrO2 Nanocrystals/Acrylic Nanocomposites for High Refractive Index Applications

    SciTech Connect

    Joshi, Pooran C.; Compton, Brett G.; Li, Jianlin; Jellison, Jr, Gerald Earle; Duty, Chad E; Chen, Zhiyun

    2015-04-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop and evaluate ZrO2/acrylic nanocomposite coatings for integrated optoelectronic applications. The formulations engineered to be compatible with roll-to-roll process were evaluated in terms of optical and dielectric properties. The uniform distribution of the ZrO2 nanocrystals in the polymer matrix resulted in highly tunable refractive index and dielectric response suitable for advanced photonic and electronic device applications.

  8. Design optimization, manufacture and response measurements for fast-neutron radiography converters made of scintillator and wavelength-shifting fibers

    NASA Astrophysics Data System (ADS)

    Li, Hang; Wu, Yang; Cao, Chao; Huo, Heyong; Tang, Bin

    2014-10-01

    In order to improve the image quality of fast neutron radiography, a converter made of scintillator and wavelength-shifting fibers has been developed. The appropriate parameters of the converter such as fibers arrangement, distance between fibers are optimized theoretically, and manufacture of the converter are also optimized. Fast neutron radiography experiments by 14 MeV neutrons are used to test this converter and kinds of traditional converters. The experiments' results matched the calculations. The novel converter's resolution is better than 1 mm and the light output is high.

  9. Neural network-based control for the fiber placement composite manufacturing process

    NASA Astrophysics Data System (ADS)

    Lichtenwalner, P. F.

    1993-10-01

    At McDonnell Douglas Aerospace (MDA), an artificial neural network-based control system has been developed and implemented to control laser heating for the fiber placement composite manufacturing process. This neurocontroller learns the inverse model of the process on-line to provide performance that improves with experience and exceeds that of conventional feedback control techniques. When untrained, the control system behaves as a proportional-integral (PI) controller. However, after learning from experience, the neural network feedforward control module provides control signals that greatly improve temperature tracking performance. Faster convergence to new temperature set points and reduced temperature deviation due to changing feed rate have been demonstrated on the machine. A cerebellar model articulation controller (CMAC) network is used for inverse modeling because of its rapid learning performance. This control system is implemented in an IBM-compatible 386 PC with an A/D board interface to the machine.

  10. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, Jr., Joseph K.; Gensse, Chantal

    1993-01-01

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials.

  11. Characterization of embedded fiber optic strain sensors into metallic structures via ultrasonic additive manufacturing

    NASA Astrophysics Data System (ADS)

    Schomer, John J.; Hehr, Adam J.; Dapino, Marcelo J.

    2016-04-01

    Fiber Bragg Grating (FBG) sensors measure deviation in a reflected wavelength of light to detect in-situ strain. These sensors are immune to electromagnetic interference, and the inclusion of multiple FBGs on the same fiber allows for a seamlessly integrated sensing network. FBGs are attractive for embedded sensing in aerospace applications due to their small noninvasive size and prospect of constant, real-time nondestructive evaluation. In this study, FBG sensors are embedded in aluminum 6061 via ultrasonic additive manufacturing (UAM), a rapid prototyping process that uses high power ultrasonic vibrations to weld similar and dissimilar metal foils together. UAM was chosen due to the desire to embed FBG sensors at low temperatures, a requirement that excludes other additive processes such as selective laser sintering or fusion deposition modeling. In this paper, the embedded FBGs are characterized in terms of birefringence losses, post embedding strain shifts, consolidation quality, and strain sensing performance. Sensors embedded into an ASTM test piece are compared against an exterior surface mounted foil strain gage at both room and elevated temperatures using cyclic tensile tests.

  12. 77 FR 73978 - Foreign-Trade Zone 148-Knoxville, TN, Toho Tenax America, Inc. (Carbon Fiber Manufacturing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... polyacrylonitrile fiber (Board Order 1868, 77 FR 69435, 11/19/2012). Board Order 1868 did not include authority to... Manufacturing Authority), Opening of Comment Period on New Evidence On November 7, 2012, the Foreign-Trade Zones... submission to the FTZ Board (incorporating information from TTA) that included new evidence in response...

  13. 78 FR 55057 - Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved; Foreign-Trade Subzone...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-09

    ... comment has been given in the Federal Register (75 FR 61696, 10/6/2010; 75 FR 74002, 11/30/2010; 77 FR 73978, 12/12/2012; and 77 FR 75972, 12/26/2012) and the application has been processed pursuant to the... Foreign-Trade Zones Board Authority To Manufacture Carbon Fiber for the U.S. Market Not Approved;...

  14. Three-phase Coupling of Air, Droplets and Fibers for the Spray Molding Manufacturing Process of Polyurethane-Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Diffo, P.; Wulf, P.; Breuer, M.

    2011-09-01

    In the present paper the authors present a multiphase flow simulation model of the interaction of a droplet-laden air flow with flexible fibers. This highly complex flow is occurring during a manufacturing process of fiber reinforced polyurethane based composites, where the liquid plastic polyurethane (PUR) is sprayed with air assistance in a tool form or on a substrate. Simultaneously chopped fibers are laterally inserted in the polyurethane-air spray cone for wetting before the entire mixture deposits on the substrate, where it starts curing. This investigation aims to compute the statistical fiber orientation and density distribution in the final composite, which will help modeling its anisotropic material properties. It is presumed that the final position and orientation of a fiber on a substrate results from its dynamics and coupled interactions with air, PUR-droplets and other fibers within the spray cone. Therefore, we present a new approach simplifying the multiply coupled interaction of the three phases. In this paper a model of the process is built, that computes the transient, 4-way-coupled behavior of the air-liquid droplets mixture with the CFD code ANSYS Fluent and the 1-way-air- and 1-way-droplet-coupled dynamics of the fibers with an extra code called FIDYST. Two approaches for the coupling of fibers with the air-droplets-mixture are presented: One considers the mixture as a pseudo-fluid ("homogenization"), the other computes a force for each of the phases separately, wherein the average momentum transfer for the fiber-droplet collision is estimated based on the probability of local collision events.

  15. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  16. Metal matrix coated fiber composites and the methods of manufacturing such composites

    DOEpatents

    Weeks, J.K. Jr.; Gensse, C.

    1993-09-14

    A fiber coating which allows ceramic or metal fibers to be wetted by molten metals is disclosed. The coating inhibits degradation of the physical properties caused by chemical reaction between the fiber and the coating itself or between the fiber and the metal matrix. The fiber coating preferably includes at least a wetting layer, and in some applications, a wetting layer and a barrier layer between the fiber and the wetting layer. The wetting layer promotes fiber wetting by the metal matrix. The barrier layer inhibits fiber degradation. The fiber coating permits the fibers to be infiltrated with the metal matrix resulting in composites having unique properties not obtainable in pure materials. 8 figures.

  17. [Use of algarrobo (Prosopis chilensis (Mol) Stuntz) flour as protein and dietary fiber source in cookies and fried chips manufacture].

    PubMed

    Escobar, Berta; Estévez, Ana María; Fuentes, Carolina; Venegas, Daniela

    2009-06-01

    Limiting amino acids of the protein from chilean "algarrobo" are isoleucine, theronine and methionine/cyteine. Cereals and legume blends allow to improve the amino acid balance, since legume have more lysine, and cereals are richer in sulphur amino acids. Due to the nutritional interest of "algarrobo" cotyledons, the use of "algarrobo cotyledon" flour (ACF) in sweet and salty snack manufacture was evaluated. Cookies and fried salty chips with 0%, 10% and 20% ACF were prepared. Flours were analyzed for color, particle size, moisture, proximate composition, available lysine, and soluble, insoluble and total dietary fiber. Cookies and chips were analyzed for the same characteristics (except for particle size); besides there were determined water activity, weight and size of the units, and also, the caloric value was computed. Sensory quality and acceptance of both products were evaluated. It is noticeable the high amount of protein, lipids, ash, crude fiber (63.6; 10.2; 4.3 and 4.2 g/100 g dmb, respectively), available lysine (62.4 mg/g protein) and total dietary fiber (24.2 g/100 g dmb) of ACF. Both, cookies and chips with ACF, showed a significant increase in the amount of protein, lipids, ash, crude fiber and, available lysine (from 15.5 to 19,3 and from 20.3 a 29.6 mg lisina/g protein, respectively), and total dietary fiber (from 1.39 to 2.80 and from 1.60 a 5.60 g/100 g dmb, respectively). All of the cookies trials were well accepted ("I like it very much"); chips with 10% of AFC showed the highest acceptance ("I like it"). It can be concluded that the use of ACF in cookies and chips manufacture increases the contribution of available lysine; their protein and dietary fiber content, improving the soluble/insoluble fiber ratio, without affect neither their physical nor their sensory acceptance. PMID:19719017

  18. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    NASA Technical Reports Server (NTRS)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  19. Product stewardship and science: safe manufacture and use of fiber glass.

    PubMed

    Hesterberg, Thomas W; Anderson, Robert; Bernstein, David M; Bunn, William B; Chase, Gerald A; Jankousky, Angela Libby; Marsh, Gary M; McClellan, Roger O

    2012-03-01

    This paper describes a proactive product stewardship program for glass fibers. That effort included epidemiological studies of workers, establishment of stringent workplace exposure limits, liaison with customers on safe use of products and, most importantly, a research program to evaluate the safety of existing glass fiber products and guide development of new even safer products. Chronic inhalation exposure bioassays were conducted with rodents and hamsters. Amosite and crocidolite asbestos produced respiratory tract cancers as did exposure to "biopersistent" synthetic vitreous fibers. "less biopersistent" glass fibers did not cause respiratory tract cancers. Corollary studies demonstrated the role of slow fiber dissolution rates and biopersistence in cancer induction. These results guided development of safer glass fiber products and have been used in Europe to regulate fibers and by IARC and NTP in classifying fibers. IARC concluded special purpose fibers and refractory ceramic fibers are "possibly carcinogenic to humans" and insulation glass wool, continuous glass filament, rock wool and slag wool are "not classifiable as to their carcinogenicity to human." The NTP's 12th report on carcinogens lists "Certain Glass Wool Fibers (Inhalable)" as "reasonably anticipated to be a human carcinogen." "Certain" in the descriptor refers to "biopersistent" glass fibers and excludes "less biopersistent" glass fibers. PMID:22266014

  20. Natural Fiber Composite Retting, Preform Manufacture and Molding (Project 18988/Agreement 16313)

    SciTech Connect

    Simmons, Kevin L.; Howe, Daniel T.; Laddha, Sachin; Fifield, Leonard S.

    2009-12-31

    Plant-based natural fibers can be used in place of glass in fiber reinforced automotive composites to reduce weight, cost and provide environmental benefits. Current automotive applications use natural fibers in injection molded thermoplastics for interior, non-structural applications. Compression molded natural fiber reinforced thermosets have the opportunity to extend natural fiber composite applications to structural and semi-structural parts and exterior parts realizing further vehicle weight savings. The development of low cost molding and fiber processing techniques for large volumes of natural fibers has helped in understanding the barriers of non-aqueous retting. The retting process has a significant effect on the fiber quality and its processing ability that is related to the natural fiber composite mechanical properties. PNNL has developed a compression molded fiber reinforced composite system of which is the basis for future preforming activities and fiber treatment. We are using this process to develop preforming techniques and to validate fiber treatment methods relative to OEM provided application specifications. It is anticipated for next fiscal year that demonstration of larger quantities of SMC materials and molding of larger, more complex components with a more complete testing regimen in coordination with Tier suppliers under OEM guidance.

  1. Cryogenic fiber optic temperature sensor and method of manufacturing the same

    NASA Technical Reports Server (NTRS)

    Kochergin, Vladimir (Inventor)

    2012-01-01

    This invention teaches the fiber optic sensors temperature sensors for cryogenic temperature range with improved sensitivity and resolution, and method of making said sensors. In more detail, the present invention is related to enhancement of temperature sensitivity of fiber optic temperature sensors at cryogenic temperatures by utilizing nanomaterials with a thermal expansion coefficient that is smaller than the thermal expansion coefficient of the optical fiber but larger in absolute value than the thermal expansion coefficient of the optical fiber at least over a range of temperatures.

  2. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  3. pH-sensing properties of cascaded long- and short-period fiber grating with poly acrylic acid/poly allylamine hydrochloride thin-film overlays

    NASA Astrophysics Data System (ADS)

    Yang, Ying

    2014-11-01

    Based on coupled-mode theory and transfer matrix method, the mode coupling mechanism and the reflection spectral properties of coated cascaded long- and short-period gratings (CLBG) are discussed. The effects of the thin-film parameters (film refractive index and film thickness) on the reflection spectra of the coated CLBG are simulated. By using electrostatic self-assembly method, poly acrylic acid (PAA) and poly allylamine hydrochloride (PAH) multilayer molecular pH-sensitive thin-films are assembled on the surface of the partial corroded CLBG. When the CLBG coated with PAA/PAH films are used to sense pH values, the resonant wavelengths of the CLBG have almost no shift, whereas the resonance peak reflectivities change with pH values. In addition, the sensitivities of the resonance peak reflectivities responding to pH values are improved by an order of magnitude.

  4. Design of a carbon fiber composite grid structure for the GLAST spacecraft using a novel manufacturing technique

    NASA Astrophysics Data System (ADS)

    Hicks, Michael Thomas

    The Gamma-Ray Large Area Space Telescope is an orbital observatory being planned as a joint DOE/NASA mission. The primary support of the instrument requires a grid structure which is very stiff, strong, light-weight, and thermally conductive. A carbon fiber composite grid design using a novel manufacture technique is proposed which meets or exceeds an aluminum design in all performance criteria and is economically competitive as well. Finite element analysis, confirmed by testing of a sample grid, is used to examine trade-offs for the materials and layups. Based on these analyses, recommendations are given for a viable design.

  5. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites.

    PubMed

    Boonruksa, Pongsit; Bello, Dhimiter; Zhang, Jinde; Isaacs, Jacqueline A; Mead, Joey L; Woskie, Susan R

    2016-01-01

    Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP. PMID:26447230

  6. Fiber

    MedlinePlus

    ... it can help with weight control. Fiber aids digestion and helps prevent constipation . It is sometimes used ... fiber attracts water and turns to gel during digestion. This slows digestion. Soluble fiber is found in ...

  7. Electronic manufacturing process improvement (EMPI) for automatic winding of quadrupole fiber optic gyro sensor coils

    NASA Astrophysics Data System (ADS)

    Safonov, Gregory S.

    1994-09-01

    The purpose of this EMPI program was to design an Automatic Coil Winding Station (ACWS) for winding Fiber Optic Gyro (FOG) sensor coils through the use of TQM, QFD, etc., followed by use of Taguchi an other statistical techniques to optimize the coil winding process. Four phases were involved: Process Definition, Critical Factor Identification, Variability Reduction, and SPC Implementation. Winding FOG coils is both difficult and fragile in that it is a quadrupole wind - as apposed to the conventional thread wind - compounded by the requirement for low tension precision, high-fiber packing density, and always risk of damage to the delicate fiber itself. The critical factor identification in the quadrupole winding process was reduced to fiber crossover - a significant detrimental influence on gyro performance - which, in turn, was closely identified with fiber gap control. The station was completed and deployed to the field where production coils are currently being wound. The ACWS not only lowered the required labor skill but succeeded in reducing the winding cycle time to 1 hour (from 24 hours) and touch labor time to 0.3 hours (from 24 hours) while improving the yield and performance through improved process control.

  8. A new US manufacturing capability of glass preforms for fiber optics in defense programs. Final project report

    SciTech Connect

    Nath, D.K.

    1992-06-01

    The present project is a part of the program to develop ``A New US Manufacturing Capability of Fiber Optics in Defense Programs.`` The scope of the program extends beyond the limit of defense needs, impacting profoundly on important national issues such as, health industry vis-a-vis medical and insurance infrastructure as well as a great segment of commercial-industrial complex. At present, the glass preform -- critical raw material to produce the optical fiber, is 100% imported from Germany and Japan. Objectively, to create a domestic source, a cooperative project participated by Los Alamos and Polymicro began in the summer of 1991 to develop the cladding part of the glass preform. The goal was achieved by developing 0{center_dot}2NA preform, that was fabricated by Modified Chemical Vapor Deposition (MCVD) of born and fluorine doped silica glass as cladding layer on a silica substrate tube and collapsing the tube on a solid silica rod as the core. The preform was finally drawn into 200 micron core optical fiber and delivered to Los Alamos National Laboratory.

  9. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  10. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  11. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  12. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  13. Mechanically induced long period fiber gratings on single mode tapered optical fiber for structure sensing applications

    NASA Astrophysics Data System (ADS)

    Pulido-Navarro, María. G.; Marrujo-García, Sigifredo; Álvarez-Chávez, José A.; Velázquez-González, Jesús S.; Martínez-Piñón, Fernando; Escamilla-Ambrosio, Ponciano J.

    2015-08-01

    The modal characteristics of tapered single mode optical fibers and its strain sensing characteristics by using mechanically induced long period fiber gratings are presented in this work. Both Long Period Fiber Gratings (LPFG) and fiber tapers are fiber devices that couple light from the core fiber into the fiber cladding modes. The mechanical LPFG is made up of two plates, one flat and the other grooved. For this experiment the grooved plate was done on an acrylic slab with the help of a computer numerical control machine. The manufacturing of the tapered fiber is accomplished by applying heat using an oxygen-propane flame burner and stretching the fiber, which protective coating has been removed. Then, a polymer-tube-package is added in order to make the sensor sufficiently stiff for the tests. The mechanical induced LPFG is accomplished by putting the tapered fiber in between the two plates, so the taper acquires the form of the grooved plate slots. Using a laser beam the transmission spectrum showed a large peak transmission attenuation of around -20 dB. The resultant attenuation peak wavelength in the transmission spectrum shifts with changes in tension showing a strain sensitivity of 2pm/μɛ. This reveals an improvement on the sensitivity for structure monitoring applications compared with the use of a standard optical fiber. In addition to the experimental work, the supporting theory and numerical simulation analysis are also included.

  14. A Comparative in Vitro Study of Power Output Deterioration over Time Between Ho:YAG Laser Fibers from Different Manufacturers as a Function of Deflection and Power Input

    PubMed Central

    Bourdoumis, Andreas; Christopoulos, Panagiotis; Raj, Nirmal; Fedder, Artemis; Buchholz, Noor

    2016-01-01

    Objectives To investigate the performance of laser fibers from 6 major manufacturers in vitro and to identify the effect of time and angulations (180° and 0°) on fiber power output. Materials and Methods Overall, 36 single-use fibers were used. Each was tested with an energy input of 0.8, 1.4 and 2.0 Joules. A power detector measured power output after 1, 5, 10 and 15 minutes for three 15-minute cycles of continuous use. For the first 2 cycles, the fiber was bent to 180° with the use of a pre fabricated mould. Analysis of the data was performed by ANOVA and Tukey's test when the results were significant amongst groups. Statistical significance was deemed p < 0.05. Results No fiber fracture occurred. There was no significant difference in output at 15 minutes of continuous use at 0° and 180°. The reduction in energy output at the 15th minute of continuous use at 180° was not significant for any fiber type or initial input. Only output differences between the fibers proved to be significant (p = 0.001). Conclusion Fiber fracture and decline in performance is not due to deflection and continuous use. Frictional forces that occur between the fiber tip and the stone fragments may be responsible. PMID:26989365

  15. Manufacture of magnetically active fiber-reinforced composites for use in power generation

    NASA Astrophysics Data System (ADS)

    Etches, Julie; Bond, Ian; Mellor, Phil

    2004-07-01

    A major issue yet to be resolved for embedding sensors, actuators and microelectromechanical systems (MEMS) in 'smart' structures is that of providing power. Work is ongoing in the field with examples of micro battery technology, use of solar power and micro fuel cells. The work presented here considers a technology to enable the development of integrated power generation and actuation. Magnetic fibre reinforced composite material has been developed which utilises hollow glass fibres filled with active magnetic material. The resulting material maintains structural integrity as well as providing a possible means of electrical power generation from a dynamically loaded structure. The hollow glass fibres were manufactured in-house using a bespoke fibre drawing facility. Hard magnetic powder materials were introduced into the hollow fibre cores to provide an active electromagnetic function. This paper will discuss the manufacture, characterization and optimisation of active magnetic fibre reinforced composite materials.

  16. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  17. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  18. Process for the manufacture of seamless metal-clad fiber-reinforced organic matrix composite structures

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1991-01-01

    A process for producing seamless metal-clad composite structures includes providing a hollow, metallic inner member and an outer sleeve to surround the inner member and define an inner space therebetween. A plurality of continuous reinforcing fibers is attached to the distal end of the outside diameter of the inner member, and the inner member is then introduced, distal end first, into one end of the outer sleeve. The inner member is then moved, distal end first, into the outer sleeve until the inner member is completely enveloped by the outer sleeve. A liquid matrix material is then injected into the space containing the reinforcing fibers between the inner member and the outer sleeve. Next a pressurized heat transfer medium is passed through the inner member to cure the liquid matrix material. Finally, the wall thickness of both the inner member and the outer sleeve are reduced to desired dimensions by chemical etching, which adjusts the thermal expansion coefficient of the metal-clad composite structure to a desired value.

  19. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process. PMID:22279908

  20. Flexural Strength of Cold and Heat Cure Acrylic Resins Reinforced with Different Materials

    PubMed Central

    Heidari, Bijan; Firouz, Farnaz; Izadi, Alireza; Ahmadvand, Shahbaz

    2015-01-01

    Objectives: Heat-polymerized acrylic resin has been the most commonly used denture base material for over 60 years. However, the mechanical strength of acrylic resin is not adequate for long-term clinical performance of dentures. Consequently, fracture is a common clinical occurrence, which often develops in the midline of the denture base. This study aimed to evaluate the efficacy of cold-cure and heat-cure acrylic resins, reinforced with glass fibers, polyethylene fibers, and metal wire for denture base repair. Materials and Methods: Ninety specimens were prepared and allocated to nine groups. Ten specimens were considered as controls, and 80 were divided into 8 experimental groups. In the experimental groups, the specimens were sectioned into two halves from the middle, and were then divided into two main groups: one group was repaired with heat cure acrylic resin, and the other with cold cure acrylic resin. Each group was divided into 4 subgroups: unreinforced, reinforced with glass fibers, polyethylene fibers, and metal wire. All specimens were subjected to a 3-point bending test, and the flexural strength was calculated. Results: The group repaired with heat cure acrylic resin and reinforced with glass fiber showed the highest flexural strength; however, the group repaired with cold cure acrylic resin and reinforced with polyethylene fibers had the lowest flexural strength. There was no significant difference between the groups repaired with heat cure and cold cure acrylic resins without reinforcement. Conclusion: Repairing denture base with heat cure acrylic resin, reinforced with glass fibers increases the flexural strength of denture base. PMID:26877726

  1. Gel polymer electrolytes based on nanofibrous polyacrylonitrile–acrylate for lithium batteries

    SciTech Connect

    Kim, Dul-Sun; Woo, Jang Chang; Youk, Ji Ho; Manuel, James; Ahn, Jou-Hyeon

    2014-10-15

    Graphical abstract: - Highlights: • Nanofibrous polyacrylonitrile–acrylate membranes were prepared by electrospinning. • Trimethylolpropane triacrylate was used as a crosslinking agent of fibers. • The GPE based on PAN–acrylate (1/0.5) showed good electrochemical properties. - Abstract: Nanofibrous membranes for gel polymer electrolytes (GPEs) were prepared by electrospinning a mixture of polyacrylonitrile (PAN) and trimethylolpropane triacrylate (TMPTA) at weight ratios of 1/0.5 and 1/1. TMPTA is used to achieve crosslinking of fibers thereby improving mechanical strength. The average fiber diameters increased with increasing TMPTA concentration and the mechanical strength was also improved due to the enhanced crosslinking of fibers. GPEs based on electrospun membranes were prepared by soaking them in a liquid electrolyte of 1 M LiPF{sub 6} in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1:1, v/v). The electrolyte uptake and ionic conductivity of GPEs based on PAN and PAN–acrylate (weight ratio; 1/1 and 1/0.5) were investigated. Ionic conductivity of GPEs based on PAN–acrylate was the highest for PAN/acrylate (1/0.5) due to the proper swelling of fibers and good affinity with liquid electrolyte. Both GPEs based on PAN and PAN–acrylate membranes show good oxidation stability, >5.0 V vs. Li/Li{sup +}. Cells with GPEs based on PAN–acrylate (1/0.5) showed remarkable cycle performance with high initial discharge capacity and low capacity fading.

  2. Puncture-Healing Thermoplastic Resin Carbon-Fiber-Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Gordon, Keith L. (Inventor); Siochi, Emilie J. (Inventor); Grimsley, Brian W. (Inventor); Cano, Roberto J. (Inventor); Czabaj, Michael W. (Inventor)

    2015-01-01

    A composite comprising a combination of a self-healing polymer matrix and a carbon fiber reinforcement is described. In one embodiment, the matrix is a polybutadiene graft copolymer matrix, such as polybutadiene graft copolymer comprising poly(butadiene)-graft-poly(methyl acrylate-co-acrylonitrile). A method of fabricating the composite is also described, comprising the steps of manufacturing a pre-impregnated unidirectional carbon fiber preform by wetting a plurality of carbon fibers with a solution, the solution comprising a self-healing polymer and a solvent, and curing the preform. A method of repairing a structure made from the composite of the invention is described. A novel prepreg material used to manufacture the composite of the invention is described.

  3. Production and application of chemical fibers with special properties for manufacturing composite materials and goods of different usage

    NASA Technical Reports Server (NTRS)

    Levit, R.

    1993-01-01

    The development of modern technologies demands the creation of new nonmetallic, fibrous materials with specific properties. The fibers and materials developed by NII 'Chimvolokno', St. Petersburg, can be divided into two groups. The first group includes heat-resistant fibers, fire-resistant fibers, thermotropic fibers, fibers for medical application, and textile structures. The second group contains refractory fibers, chemoresistant and antifriction fibers, fibers on the basis of polyvinyl alcohol, microfiltering films, and paperlike and nonwoven materials. In cooperation with NPO 'Chimvolokno' MYTITSHI, we developed and started producing heat-resistant high-strength fibers on the base of polyhetarearilin and aromatic polyimides (SVM and terlon); heat-resistant fibers on the base of polyemede (aramid); fire-retardant fibers (togilen); chemoresistant and antifriction fibers on the basis of homo and copolymers of polytetrafluoroethylene (polyfen and ftorin); and water soluble, acetylated, and high-modulus fibers from polyvinyl alcohol (vylen). Separate reports will deal with textile structures and thermotropic fibers, as well as with medical fibers. One of the groups of refractory fibers carbon fibers (CF) and the corresponding paperlike nonwoven materials are discussed in detail. Also, composite materials (CM) and their base, which is the subject of the author's research since 1968, is discussed.

  4. Sustainable Energy Solutions Task 4.1 Intelligent Manufacturing of Hybrid Carbon-Glass Fiber-Reinforced Composite Wind Turbine Blades

    SciTech Connect

    Janet M Twomey, PhD

    2010-04-30

    EXECUTIVE SUMARY In this subtask, the manufacturability of hybrid carbon-glass fiber-reinforced composite wind turbine blades using Vacuum-Assisted Resin Transfer Molding (VARTM) was investigated. The objective of this investigation was to study the VARTM process and its parameters to manufacture cost-effective wind turbine blades with no defects (mainly eliminate dry spots and reduce manufacturing time). A 2.5-dimensional model and a 3-dimensional model were developed to simulate mold filling and part curing under different conditions. These conditions included isothermal and non-isothermal filling, curing of the part during and after filling, and placement of injection gates at different locations. Results from this investigation reveal that the process can be simulated and also that manufacturing parameters can be optimized to eliminate dry spot formation and reduce the manufacturing time. Using computer-based models is a cost-effective way to simulate manufacturing of wind turbine blades. The approach taken herein allows the design of the wind blade manufacturing processes without physically running trial-and-error experiments that are expensive and time-consuming; especially for larger blades needed for more demanding environmental conditions. This will benefit the wind energy industry by reducing initial design and manufacturing costs which can later be passed down to consumers and consequently make the wind energy industry more competitive.

  5. Evaluating the impact of recycled fiber content on effluent recycling in newsprint manufacture.

    PubMed

    Negaresh, Ebrahim; Antony, Alice; Cox, Shane; Lucien, Frank P; Richardson, Desmond E; Leslie, Greg

    2013-09-01

    This paper investigates the effect of using recycled fiber (RCF) in newsprint production on the effluent quality and its treatability using membrane operations for internal and external recycling and reuse. Increased chemical usage in RCF for deinking had significant impact on the silica and sodium content of the effluent which in turn limits the membrane's operation. Increasing the RCF content from 0% to 50% is estimated to increase the silica content from 4 to 119mgL(-1) and sodium content from 135 to 500mgL(-1). A process model was developed to calculate the impact of these excess chemicals on the greenhouse gas (GHG) emission and brine disposal for an integrated membrane plant design producing 4MLday(-1) of recycled water. As the ratio of RCF increased from 0% to 50% in the mill process, the operating pressure increased for nanofiltration (NF) and reverse osmosis (RO). Additionally, organics presence in the feed increased the NF operating pressure above the simulated value and reduced the silica removal efficiency by 15%. Incorporation of lime coagulation pretreatment was found to be essential to operate RO at high recoveries with relatively GHG emissions. Without pretreatment, as RCF content increased from 0% to 50%, RO recovery decreased from 80% to 22% and the expended GHG increased from 0.9 to 3.5kgCO2m(-3). Although the excess sodium concentration limits the brine disposal for irrigation purposes, a partial blending of the treated wastewater with other process streams resulted in the reduction of sodium absorption ratio by 20%. PMID:23668963

  6. Fiber

    MedlinePlus

    ... broccoli, spinach, and artichokes legumes (split peas, soy, lentils, etc.) almonds Look for the fiber content of ... salsa, taco sauce, and cheese for dinner. Add lentils or whole-grain barley to your favorite soups. ...

  7. Fiber

    MedlinePlus

    ... short period of time can cause intestinal gas ( flatulence ), bloating , and abdominal cramps . This problem often goes ... 213. National Research Council. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and ...

  8. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  9. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  10. On the characterization and spinning of solvent extracted lignin towards the manufacture of low-cost carbon fiber

    SciTech Connect

    Baker, Darren A; Gallego, Nidia C; Baker, Frederick S

    2012-01-01

    ABSTRACT: A Kraft hardwood lignin (HWL) and an organic-purified hardwood lignin (HWL-OP) were evaluated as potential precursors for the production of lowcost carbon fibers. It was found that the unpurified HWL exhibited poor spinnability while the HWL-OP exhibited excellent spinnability characteristics. Fibers of various diameters were obtained from the HWL-OP. Thermostabilization studies showed that oxidative stabilization can only be used to convert HWL-OP-based fibers into carbon fibers if extremely low heating rates are applied. Carbonized lignin-based fibers had tensile strength of 0.51 GPa and tensile modulus of 28.6 GPa. VC

  11. Novel localized surface plasmon resonance based optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Muri, Harald Ian D. I.; Hjelme, Dag R.

    2016-03-01

    Over the last decade various optical fiber sensing schemes have been proposed based on local surface plasmon resonance (LSPR). LSPR are interacting with the evanescent field from light propagating in the fiber core or by interacting with the light at the fiber end face. Sensor designs utilizing the fiber end face is strongly preferred from a manufacturing point of view. However, the different techniques available to immobilize metallic nanostructures on the fiber end face for LSPR sensing is limited to essentially a monolayer, either by photolithographic structuring of metal film, thermal nucleation of metal film, or by random immobilization of nanoparticles (NP). In this paper, we report on a novel LSPR based optical fiber sensor architecture. The sensor is prepared by immobilizing gold NP's in a hydrogel droplet polymerized on the fiber end face. This design has several advantages over earlier designs. It dramatically increase the number of NP's available for sensing, it offers precise control over the NP density, and the NPs are position in a true 3D aqueous environment. The sensor design is also compatible with low cost manufacturing. The sensor design can measure volumetric changes in a stimuli-responsive hydrogel or measure binding to receptors on the NP surface. It can also be used as a two-parameter sensor by utilizing both effects. We present results from proof-of-concept experiments demonstrating a pH sensor based on LSPR sensing in a poly(acrylamide-co-acrylic acid) hydrogel embedding gold nanoparticles.

  12. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers

    DOE PAGESBeta

    Brown, Suree; Chatterjee, Sabornie; Li, Meijun; Yue, Yanfeng; Tsouris, Costas; Janke, Christopher J.; Saito, Tomonori; Dai, Sheng

    2015-12-10

    Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers wasmore » prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.« less

  13. Uranium Adsorbent Fibers Prepared by Atom-Transfer Radical Polymerization from Chlorinated Polypropylene and Polyethylene Trunk Fibers

    SciTech Connect

    Brown, Suree; Chatterjee, Sabornie; Li, Meijun; Yue, Yanfeng; Tsouris, Costas; Janke, Christopher J.; Saito, Tomonori; Dai, Sheng

    2015-12-10

    Seawater contains a large amount of uranium (~4.5 billion tons) which can serve as a limitless supply of an energy source. However, in order to make the recovery of uranium from seawater economically feasible, lower manufacturing and deployment costs are required, and thus, solid adsorbents must have high uranium uptake, reusability, and high selectivity toward uranium. In this study, atom-transfer radical polymerization (ATRP), without the radiation-induced graft polymerization (RIGP), was used for grafting acrylonitrile (AN) and tert-butyl acrylate (tBA) from a new class of trunk fibers, forming adsorbents in a readily deployable form. The new class of trunk fibers was prepared by the chlorination of PP round fiber, hollow-gear-shaped PP fiber, and hollow-gear-shaped PE fiber. During ATRP, degrees of grafting (d.g.) varied according to the structure of active chlorine sites on trunk fibers and ATRP conditions, and the d.g. as high as 2570% was obtained. Resulting adsorbent fibers were evaluated in U-spiked simulated seawater and the maximum adsorption capacity of 146.6 g U/kg, much higher than that of a standard adsorbent JAEA fiber (75.1 g/kg), was obtained. This new type of trunk fibers can be used for grafting a variety of uranium-interacting ligands, including designed ligands that are highly selective toward uranium.

  14. Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel

    NASA Astrophysics Data System (ADS)

    Jillings, Chris; DEAP Collaboration

    2013-08-01

    DEAP-3600 is a 3600kg single-phase liquid-argon dark matter detector under construction at SNOLAB with a sensitivity of 10-46cm2 for a 100 GeV WIMP. The argon is held an an acrylic vessel coated with wavelength-shifting 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). Acrylic was chosen because it is optically transparent at the shifted wavelength of 420 nm; an effective neutron shield; and physically strong. With perfect cleaning of the acrylic surface before data taking the irreducible background is that from bulk 210Pb activity that is near the surface. To achieve a background rate of 0.01 events in the 1000-kg fiducial volume per year of exposure, the allowed limit of Pb-210 in the bulk acrylic is 31 mBq/tonne (= 1.2 × 10-20g/g). We discuss how pure acrylic was procured and manufactured into a complete vessel paying particular attention to exposure to radon during all processes. In particular field work at the acrylic panel manufacturer, RPT Asia, and acrylic monomer supplier, Thai MMA Co. Ltd, in Thailand is described. The increased diffusion of radon during annealing the acrylic at 90C as well as techniques to mitigate against this are described.

  15. Control of contamination of radon-daughters in the DEAP-3600 acrylic vessel

    SciTech Connect

    Jillings, Chris; Collaboration: DEAP Collaboration; and others

    2013-08-08

    DEAP-3600 is a 3600kg single-phase liquid-argon dark matter detector under construction at SNOLAB with a sensitivity of 10{sup −46}cm{sup 2} for a 100 GeV WIMP. The argon is held an an acrylic vessel coated with wavelength-shifting 1,1,4,4-tetraphenyl-1,3-butadiene (TPB). Acrylic was chosen because it is optically transparent at the shifted wavelength of 420 nm; an effective neutron shield; and physically strong. With perfect cleaning of the acrylic surface before data taking the irreducible background is that from bulk {sup 210}Pb activity that is near the surface. To achieve a background rate of 0.01 events in the 1000-kg fiducial volume per year of exposure, the allowed limit of Pb-210 in the bulk acrylic is 31 mBq/tonne (= 1.2 × 10{sup −20}g/g). We discuss how pure acrylic was procured and manufactured into a complete vessel paying particular attention to exposure to radon during all processes. In particular field work at the acrylic panel manufacturer, RPT Asia, and acrylic monomer supplier, Thai MMA Co. Ltd, in Thailand is described. The increased diffusion of radon during annealing the acrylic at 90C as well as techniques to mitigate against this are described.

  16. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  17. Development of manufacturing process for large-diameter composite monofilaments by pyrolysis of resin-impregnated carbon-fiber bundles

    NASA Technical Reports Server (NTRS)

    Bradshaw, W. G.; Pinoli, P. C.; Vidoz, A. E.

    1972-01-01

    Large diameter, carbon-carbon composite, monofilaments were produced from the pyrolysis of organic precursor resins reinforced with high-strenght carbon fibers. The mechanical properties were measured before and after pyrolysis and the results were correlated with the properties of the constituents. The composite resulting from the combination of Thornel 75 and GW-173 resin precursor produced the highest tensile strength. The importance of matching strain-to-failure of fibers and matrix to obtain all the potential reinforcement of fibers is discussed. Methods are described to reduce, within the carbonaceous matrix, pyrolysis flaws which tend to reduce the composite strength. Preliminary studies are described which demonstrated the feasibility of fiber-matrix copyrolysis to alleviate matrix cracking and provide an improved matrix-fiber interfacial bonding.

  18. Testing of gloves for permeability to UV-curable acrylate coatings

    SciTech Connect

    Huggins, R.; Levy, N.; Pruitt, P.M.

    1987-07-01

    The handling of UV-curable acrylate formulations used in the coating of optical fiber requires protective measures to prevent contact dermatitis and/or allergic dermatitis. To characterize the permeability of various glove materials to a UV-curable acrylate coating, a study was undertaken using a modification of a standard ASTM permeability test, which demonstrated that nitrile rubber gloves provided the best protection of those glove materials tested.

  19. Optical fibers with dual coatings for high-temperature applications

    NASA Astrophysics Data System (ADS)

    Stolov, Andrei A.; Simoff, Debra A.; Lindholm, Eric A.; Ciardiello, Catherine R.

    2010-10-01

    We describe a new optical fiber coating, comprising layers of UV-curable silicone and high-temperature acrylate, with and without hermetic carbon. Optical and mechanical properties of graded index 50/125 μm multimode fibers drawn with the new coating are examined. The new coatings display superior thermal stability in comparison with conventional dual acrylate coatings.

  20. Ultra-miniature all-glass Fabry-Pérot pressure sensor manufactured at the tip of a multimode optical fiber

    NASA Astrophysics Data System (ADS)

    Pinet, Éric; Cibula, Edvard; Đonlagić, Denis

    2007-09-01

    The design and fabrication of an ultra-miniature all-glass pressure sensor with a diameter of 125 μm are presented. The sensor consists of a thin flexible silica membrane fused on a capillary tube section, which is assembled at the tip of a standard multimode fiber, thus forming a Fabry-Pérot air cavity whose length depends on applied pressure. Controlled polishing steps including on-line tuning of the diaphragm thickness during the manufacturing process achieve good repeatability and high sensitivity of the pressure sensor. The prototypes obtained with the described manufacturing method could easily have a sensitivity of ~2 nm/kPa (~0.3 nm/mmHg) with a record, so far, of ~5 nm/kPa (~0.7 nm/mmHg). The relatively simple fabrication technique using common and inexpensive equipments and materials combined with the fact that such sensitive sensors with multimode fiber could be interrogated with low-cost commercial interrogators (such as those using white-light interferometry) make this option very attractive for many applications involving pressure measurement. The sensor significant size reduction is valuable especially for the medical field, for applications such as minimally invasive patient health monitoring and diagnostics or small animals testing. Disposable sensors with ultra-miniature size will certainly open the way for new medical diagnostics and therapies.

  1. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    NASA Astrophysics Data System (ADS)

    Sameoto, D.; Menon, C.

    2010-11-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance.

  2. Low attenuation optical fiber of deuterated polymer

    SciTech Connect

    Beasley, J.K.; Beckerbauer, R.; Schleinitz, H.M.; Wilson, F.C.

    1985-04-16

    Light-transmitting optical fiber having a core of a (deuterated acrylate) polymer selected from the group consisting of a deuterated methacrylate homopolymer, a deuterated methacrylate copolymer and a deuterated methacrylate/acrylate copolymer which exhibits remarkably high transmission of light in the visible and at certain wavelengths in the near-infrared region of the spectrum.

  3. Mechanical properties of fiber reinforced lightweight concrete composites

    SciTech Connect

    Perez-Pena, M. ); Mobasher, B. )

    1994-01-01

    Hybrid composites with variable strength/toughness properties can be manufactured using combinations of brittle or ductile mesh in addition to brittle and ductile matrix reinforcements. The bending and tensile properties of thin sheet fiber cement composites made from these mixtures were investigated. Composites consisted of a woven mesh of either polyvinyl chloride (PVC) coated E-glass or polypropylene (PP) fibers for the surface reinforcement. In addition, chopped polypropylene, acrylic, nylon, and alkali-resistant (AR) glass fibers were used for the core reinforcement. It is shown that by controlling fiber contents, types, and combinations, design objectives such as strength, stiffness and toughness, can be achieved. Superior post-cracking behavior was measured for composites reinforced both with glass mesh and PP mesh. Load carrying capacity of PP mesh composites can be increased with the use of 1% or higher chopped PP fibers. Glass mesh composites with short AR glass fibers as matrix reinforcement indicate an increased matrix cracking strength and modulus of rupture. Combinations of PP mesh/short AR glass did not show a substantial improvement in the matrix ultimate strength. An increased nylon fiber surface area resulted in improved post peak response.

  4. Application of high performance computing to automotive design and manufacturing: Composite materials modeling task technical manual for constitutive models for glass fiber-polymer matrix composites

    SciTech Connect

    Simunovic, S; Zacharia, T

    1997-11-01

    This report provides a theoretical background for three constitutive models for a continuous strand mat (CSM) glass fiber-thermoset polymer matrix composite. The models were developed during fiscal years 1994 through 1997 as a part of the Cooperative Research and Development Agreement, "Application of High-Performance Computing to Automotive Design and Manufacturing." The full derivation of constitutive relations in the framework of the continuum program DYNA3D and have been used for the simulation and impact analysis of CSM composite tubes. The analysis of simulation and experimental results show that the model based on strain tensor split yields the most accurate results of the three implemented models. The parameters used in the models and their derivation from the physical tests are documented.

  5. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  6. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  7. Research Summary of an Additive Manufacturing Technology for the Fabrication of 3D Composites with Tailored Internal Structure

    NASA Astrophysics Data System (ADS)

    Holmes, Larry R.; Riddick, Jaret C.

    2014-01-01

    A novel additive manufacturing technology is used to create micro-composites, which can be tailored for specific end-use applications. The Field-Aided Laminar Composite (FALCom) process uses specifically focused electric fields to align nano- to micro-sized particles into chain-like structures, which are referred to as pseudo-fibers. These pseudo-fibers are then immediately frozen into place by incident ultraviolet radiation on the photopolymer matrix. The pseudo-fibers are arranged by design, and they are used to create three-dimensional composite structures. Multiple filler materials have been evaluated for use in the FALCom system; however, this report describes aluminum micro-particles that are aligned and oriented in an acrylic photopolymer matrix. A description of the technology and a review of experimental processing are shown, and conclusions, as well as, future work are discussed.

  8. Three-dimensional architecture of lithium-anodes made from graphite fibers coated with thin-films of silicon oxycarbide: Design, performance and manufacturability

    NASA Astrophysics Data System (ADS)

    Saleh, Ibrahim; Raj, Rishi

    2016-04-01

    Silicon oxycarbide (SiCO) is an amorphous molecular network of Sisbnd Csbnd O tetrahedra anchored to graphene-like carbon. The graphene forms a three dimensional cellular network with a domain size of ∼5 nm. Therefore nanometer thick films of SiCO grown on graphite may be expected to have unusual behavior. We grow these films on a bed of commercially available graphite fibers that serve the dual function of a current collector. The electrochemical behavior of the composite is measured as a function of the thickness of the SiCO films. Thick films approach the typical behavior of bulk SiCO (which has three times the capacity of graphite, but suffers from poor first cycle efficiency). However, films, approximately 100 nm thick, show high first cycle efficiency as well as high capacity. The composite performs better than the prediction from the rule-of-mixtures, which further substantiates the unusual behavior of the thin-film architecture. The Raman spectra of these thin films also differ from bulk SiCO. The development of thin graphite fibers, with a high surface to volume ratio that have the same capacity as the current graphite-powder technology, coupled with manufacturing of these thin-films by a liquid-polymer precursor based process, can propel these results toward commercialization.

  9. Hermetically coated specialty optical fibers

    NASA Astrophysics Data System (ADS)

    Semjonov, Sergey L.; Bogatyrev, Vladimir A.; Malinin, Alexei A.

    2010-10-01

    Manufacturing processes for different types of hermetically coated fibers are described. Optical and mechanical properties of metal and carbon coated fibers are compared. Prospects of application of both types of hermetically coated fibers in special applications are discussed.

  10. Transparent acrylic enamel slide holograms

    NASA Astrophysics Data System (ADS)

    Ponce-Lee, E. L.; Olivares Pérez, A.; Ruiz-Limón, B.; Hernández-Garay, M. P.; Toxqui-López, S.

    2006-02-01

    We present holograms generated in a computer to an acrylic enamel slide (Comex (R)), getting phase holograms. The information in the mask is transferred to the material by temperature gradients generated by rubbing. The refraction index is transformed at each material point by the temperature changes, thus the film is recorded and developed by itself. this material can be used for soft lithography.

  11. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  12. Enhancing Textile Fiber Identification with Detergent Fluorescence.

    PubMed

    Mujumdar, Nirvani; Heider, Emily C; Campiglia, Andres D

    2015-12-01

    Discovering common origins of trace evidential textile fibers can be a challenging task when fiber structure or dye composition does not provide exclusive identifying information. Introduction of new chemical species after mass production and distribution of a textile may be exploited to trace its history and identify the origin of its fibers. In this article, fluorescence microscopy is used to examine the alteration in the fluorescence spectral fingerprint of single fibers resulting from exposure to commonly used detergents that contain fluorescent whitening agents. Dyed acrylic, cotton, and nylon fibers were laundered and the spectral contribution of the detergent on single fibers was quantified and shown to reach a maximum after five sequential washes; some detergents showed statistically meaningful differences to fiber spectra after only a single wash. Principal component cluster analysis was used to determine that the spectra of laundered fibers are distinct from the spectra of dyed, unwashed cotton or nylon, but not acrylic, fibers. PMID:26647148

  13. Completion of evaluation of manufacturing processes for B/Al composites containing 0.2mm diameter boron fibers

    NASA Technical Reports Server (NTRS)

    Moore, T. J.; Moorhead, P. E.

    1980-01-01

    Four fabricators produced a total of 54 B/1100 Al, B/6061 Al, and B/2024 Al panels for evaluation. The 8 ply unidirectional, 45 to 50 volume percent, panels were made using 0.20 mm diameter boron fibers which were obtained from a single supplier. Hot press consolidation was carried out in vacuum except for one set of dry woven tape panels which were hot pressed in air. A single testing contractor conducted nondestructive inspection, metallography, fractography and mechanical property tests. The mechanical property tests included 21 and 260 C tensile tests and 21 C shear tests. Panel quality, as measured by nondestructive evaluation, was generally good as were the 21 C tensile properties. The panels hot pressed in air delaminated in the shear tests. Shear strength values were lower in these panels. But tensile strengths were not affected by the delaminations because of the relation between the tensile loading direction and the delaminations. Composite tensile strength was found to be proportional to the volume percent boron and the aluminum matrix rather than to the tape used or fabrication technique. Suitability of these composites for 260 C service was confirmed by tensile tests.

  14. Carbon-fiber technology

    NASA Technical Reports Server (NTRS)

    Hansen, C. F.; Parker, J. A.

    1980-01-01

    The state of the art of PAN based carbon fiber manufacture and the science of fiber behavior is surveyed. A review is given of the stabilization by oxidation and the subsequent carbonization of fibers, of the apparent structure of fibers deduced from scanning electron microscopy, from X-ray scattering, and from similarities with soft carbons, and of the known relations between fiber properties and heat treatment temperature. A simplified model is invoked to explain the electrical properties of fibers and recent quantum chemical calculations on atomic clusters are used to elucidate some aspects of fiber conductivity. Some effects of intercalation and oxidative modification of finished fibers are summarized.

  15. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  16. Acrylic microspheres-based optosensor for visual detection of nitrite.

    PubMed

    Noor, Nur Syarmim Mohamed; Tan, Ling Ling; Heng, Lee Yook; Chong, Kwok Feng; Tajuddin, Saiful Nizam

    2016-09-15

    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6 μm up to 1.8 μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100 ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples. PMID:27080889

  17. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  18. Radiopurity measurement of acrylic for the DEAP-3600 dark matter experiment

    NASA Astrophysics Data System (ADS)

    Nantais, Corina Michelle

    2014-05-01

    The liquid argon target of the DEAP-3600 dark matter detector is contained by an extremely radiopure acrylic vessel. Alpha decays from the inner surface of the acrylic vessel are a source of background. If a fraction of the alpha energy is observed, or if the recoiling nucleus from the alpha decay is observed, the event will not be separated from a dark matter candidate event. In addition to the low level of inherent contamination from uranium and thorium, the Pb-210 from Rn-222 diffusion during manufacturing must be measured. The limit for the DEAP-3600 acrylic vessel is 1.1 x 10-20 g/g Pb-210. By vaporizing a large quantity of acrylic and counting the concentrated residue with an ultralow background HPGe well detector and a low background alpha spectrometer, the bulk acrylic was found to have an upper limit of 10 -19 g/g Pb-210. The design, installation, commissioning, operation, and analysis for various aspects of the acrylic assay are described.

  19. Radiation-induced grafting of acrylic acid onto polypropylene film and its biodegradability

    NASA Astrophysics Data System (ADS)

    Mandal, Dev K.; Bhunia, Haripada; Bajpai, Pramod K.; Chaudhari, C. V.; Dubey, K. A.; Varshney, L.

    2016-06-01

    Polypropylene based commodity polyolefins are widely used in packaging, manufacturing, electrical, pharmaceutical and other applications. The aim of the present work is to study the effect of grafting of acrylic acid on the biodegradability of acrylic acid grafted polypropylene. The effect of different conditions showed that grafting percentage increased with increase in monomer concentration, radiation dose and inhibitor concentration but decreased with increase in radiation dose rate. The maximum grafting of 159.4% could be achieved at optimum conditions. The structure of grafted polypropylene films at different degree of grafting was characterized by EDS, FTIR, TGA, DSC, SEM and XRD. EDS studies showed that the increase in acrylic acid grafting percentage increased the hydrophilicity of the grafted films. FTIR studies indicated the presence of acrylic acid on the surface of polypropylene film. TGA studies revealed that thermal stability decreased with increase in grafting percentage. DSC studies showed that melting temperature and crystallinity of the grafted polypropylene films lower than polypropylene film. SEM studies indicated that increase in acrylic acid grafting percentage increased the wrinkles in the grafted films. The maximum biodegradability could be achieved to 6.85% for 90.5% grafting. This suggested that microorganisms present in the compost could biodegrade acrylic acid grafted polypropylene.

  20. Fireblocking Fibers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    PBI was originally developed for space suits. In 1980, the need for an alternative to asbestos and stricter government anti-pollution standards led to commercialization of the fire blocking fiber. PBI is used for auto racing driver suits and aircraft seat covers. The fiber does not burn in air, is durable and easily maintained. It has been specified by a number of airliners and is manufactured by Hoechst-Celanese Corporation.

  1. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  2. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  3. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  4. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    PubMed

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. PMID:27404623

  5. Q-switched Tm-doped fiber lasers using dynamic microbends in oval-coating fibers

    NASA Astrophysics Data System (ADS)

    Araki, S.; Kimpara, K.; Tomiki, M.; Sakata, H.

    2013-06-01

    We present Q-switched pulse generation in a thulium-doped fiber laser by inducing a piezoelectric-driven microbend into an oval-coating fiber. The oval-coating fiber is made of a single-mode fiber in which an acrylic coating is flattened by thermal pressing. A pulse peak power of 1.45 W is obtained with a pump power of 139 mW.

  6. The bond between acrylic resin denture teeth and the denture base: recommendations for best practice.

    PubMed

    Radford, D R; Juszczyk, A S; Clark, R K F

    2014-02-01

    Failure of the bond between denture teeth and base acrylic resin has been shown to be a cause of denture failure leading to inconvenience and costly repair. The optimal combination of acrylic resin denture tooth, denture base material, laboratory protocol and processing method has not yet been established. Extensive research enables the following recommendations for best practice to be made. Adopt practices that maximise the strength of the bond: select appropriate denture teeth; select base acrylic resin from the same manufacturer as the denture teeth; remove the glaze from ridgelaps of the denture teeth; apply monomer to the ridgelaps of the denture teeth before packing the base acrylic resin dough; use the manufacturers' recommended liquid/powder ratio; follow the manufacturers' recommended curing cycle; allow the flask to cool slowly and rest before deflasking. Adopt practices that avoid factors detrimental to bond strength: remove all traces of wax from the ridge laps of the denture teeth; remove all traces of mould seal from the ridgelaps of the denture teeth. It is evident that a number of factors are involved which may assist or prevent formation of an adequate bond, suggesting that attention to detail by the dental technician may be the most critical factor. PMID:24557385

  7. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  8. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  9. The Fiber Optic Connection.

    ERIC Educational Resources Information Center

    Reese, Susan

    2003-01-01

    Describes the fiber optics programs at the Career and Technical Center in Berlin, Pennsylvania and the Charles S. Monroe Technology Center in Loudoun County, Virginia. Discusses the involvement of the Fiber Optic Association with education, research and development, manufacturing, sales, distribution, installation, and maintenance of fiber optic…

  10. Comparison of recoated fiber Bragg grating sensors under tension on a steel coupon

    NASA Astrophysics Data System (ADS)

    Rivera, E.; Thomson, D. J.; Mufti, A. A.

    2005-05-01

    One of the key elements in a structural health monitoring system is the sensing element and data acquisition system. One type of fiber optic sensor used to measure strain is the fiber Bragg grating. Bragg gratings are fabricated using different methods. One method involves placing a mask pattern over the optical fiber and projecting UV light through it to change the refractive index of the core. However, before the grating is written into the core of the fibre, the outer fibre coatings must be stripped away either mechanically or chemically. Fibre Bragg gratings are then recoated after the grating has been written to maintain the strength and flexibility of the fibre by protecting the exposed glass from damage. Acrylate and polyimide are two types of recoat material typically used on fibre Bragg grating sensors. This work is a controlled comparison of polyimide and acrylate recoated fibres for Bragg grating strain sensors. The comparison was carried out using a tension test coupon with recoated FBG and electrical strain gauges bonded to its surface. The tension test specimen was made of cold rolled steel and was designed according to ASTM A30-97a standard. The dimensions were chosen such that three fibre optic sensors and a strain gauge can be attached on each side. The load was applied in 40 μɛ steps until the strain reached approximately 200 ´ɛ. The load was then incrementally decreased back to zero. FBG sensors from 2 manufacturers were compared. For the first manufacturer the Acrylate coated sensors required a gauge factor is 0.75 in order for electrical and FBG strain readings to agree. For Polyimide coated sensors, the appropriate gauge factor was very close to the theoretically predicted value of 0.8. Using these gauge factors, the error between the first manufacturers sensor readings and the strain gauges was well within +/-5´ɛ. On the other hand, the second manufacturers sensors did not perform nearly as well. Their readings were substantially lower

  11. The electrospinning of the copolymer of styrene and butyl acrylate for its application as oil absorbent.

    PubMed

    Xu, Naiku; Cao, Jipeng; Lu, Yuyao

    2016-01-01

    Electrospun polystyrene materials have been employed as oil absorbents, but they have visible drawbacks such as poor strength at low temperature and unreliable integrity because of brittleness and insufficient cohesive force among fibers. Butyl acrylate can polymerize into flexible chains, and its polymer can be used as elastomer and adhesive material. Thereby it is possible to obtain the material that has better performance in comparison with electrospun polystyrene material through the electrospinning of the copolymer of styrene and butyl acrylate. In this work, a polymer was synthesized through suspension polymerization by using styrene and butyl acrylate as comonomers. The synthesis of the copolymer of styrene and butyl acrylate was verified through dissolution and hydrolysis experimental data; as well through nuclear magnetic resonance spectrometry. The viscous flow activation energy of the solution consisting of copolymer and N, N-dimethylformamide was determined via viscosity method and then adopted to establish the entanglement characteristics of butyl acrylate's chain segments. Finally, in order to electrospin the copolymer solution into fibrous membrane, the effects of monomer feed ratio and spinning parameters were investigated. The prepared fibrous membrane was found to have a potential use as oil absorbent. PMID:27610302

  12. Fiber optic hardware for transport aircraft

    NASA Astrophysics Data System (ADS)

    White, John A.

    1994-10-01

    Aircraft manufacturers are developing fiber optic technology to exploit the benefits in system performance and manufacturing cost reduction. The fiber optic systems have high bandwidths and exceptional Electromagnetic Interference immunity that exceeds all new aircraft design requirements. Additionally, aircraft manufacturers have shown production readiness of fiber optic systems and design feasibility.

  13. Fiber Optic Sensors for Cure/Health Monitoring of Composite Materials

    NASA Technical Reports Server (NTRS)

    Wood, K. H.; Brown, T. L.; Wu, M. C.; Gause, C. B.

    2004-01-01

    The objective of the current program is to develop techniques for using optical fibers to monitor the cure of composite materials in real time during manufacture and to monitor the in-service structural health of composite structures. Single and multimode optical fibers containing Bragg gratings have been used to perform Near Infrared (NIR) spectroscopy on high refractive index resins and show promise as embedded sensors. In order for chemical spectroscopy to be possible, intimate contact must be achieved between the fiber core and the composite resin. This contact is often achieved by stripping the cladding off of a portion of the fiber, thus making it brittle and easily broken in the composite processing environment. To avoid weakening the fiber to this extent, high refractive index fibers have been fabricated that use a low refractive index acrylate coating which serves as the cladding. This is ideal, as the coating is easily solvent stripped and intimate contact with the glass core can be achieved. Real time resin and composite chemical spectra have been obtained, with possible multifunctional capability using Bragg gratings to assess physical properties such as strain, modulus and other parameters of interest.

  14. Characterization of Glass Fiber Separator Material for Lithium Batteries

    NASA Technical Reports Server (NTRS)

    Subbarao, S.; Frank, H.

    1984-01-01

    Characterization studies were carried out on a glass fiber paper that is currently employed as a separator material for some LiSOCl2 primary cells. The material is of the non-woven type made from microfilaments of E-type glass and contains an ethyl acrylate binder. Results from extraction studies and tensile testing revealed that the binder content and tensile strength of the paper were significantly less than values specified by the manufacturer. Scanning electron micrographs revealed the presence of clusters of impurities many of which were high in iron content. Results of emission spectroscopy revealed high overall levels of iron and leaching, followed by atomic absorption measurements, revealed that essentially all of this iron is soluble in SOCl2.

  15. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  16. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  17. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  18. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  19. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  20. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  1. Occupational respiratory disease caused by acrylates.

    PubMed

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L

    1993-05-01

    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates. PMID:8334539

  2. Possible utilization of acrylic paint and copper phthalocyanine pigment sludge for vermiculture.

    PubMed

    Majumdar, Deepanjan; Buch, Vaidehi; Macwan, Praisy; Patel, Jignesh

    2010-05-01

    Sludge generated from water treatment plants in two different paint and pigment manufacturing industries, one manufacturing CPC Green (copper phthalocyanine green) and the other acrylic (pure and styrene) washable distempers, synthetic enamels, fillers and putties, were used for culturing earthworms (Eisenia foetida Savigny). The possibility of getting a quality vermicompost was also explored. The sludges were used pure and mixed with month-old cow dung at 1:1, 1:2, 1:3, 2:1 and 3:1 ratios (sludge:cow dung). In pure sludges and in the 3:1 ratio, earthworms did not survive. Earthworms had very low survival in CPC Green sludge and its mixtures while acrylic paint sludge was very efficient in supporting worm growth and worm castings were generated quickly. Both sludges were alkaline, non-saline, but had appreciable Ca, Al, Pb, Zn, and Mn. CPC Green had high Cu (12,900 mg kg(-1)) and acrylic paint sludge had high total Cr (155 mg kg(-1)). High Ca and Al in both came from water treatment chemicals (lime and alum), while CPC Green itself is a copper-based pigment. The sludges were suitable for land application with regard to their metal contents, except for Cu in CPC Green. CPC Green did not support proper growth of plants (green gram, Vigna radiata (L). R. Wilcz.), while acrylic paint sludge supported growth in pure form and mixtures with soil. PMID:20124313

  3. Assessment of the flexural strength of two heat-curing acrylic resins for artificial eyes.

    PubMed

    Fernandes, Aline Ursula Rocha; Portugal, Aline; Veloso, Letícia Rocha; Goiato, Marcelo Coelho; Santos, Daniela Micheline dos

    2009-01-01

    Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 +/- 11.90 MPa) and lowest means (71.07 +/- 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes. PMID:19893960

  4. UV curing of nanoparticle reinforced acrylates

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Flyunt, R.; Czihal, K.; Ernst, H.; Naumov, S.; Buchmeiser, M. R.

    2007-12-01

    To improve the surface hardness of radiation cured acrylate coatings, both silica nanoparticles and alumina particles with a few microns in size have been embedded into acrylate formulations. Regular mixing of nanoparticles into acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification of nanoparticles using trialkoxysilanes, which provide an interface between the two dissimilar materials. Nanoparticles modified by methacryloxypropyltrimethoxysilane (MEMO) and vinyltrimethoxysilane (VTMO), both having polymerisation-active groups, may be crosslinked with the acrylate resin. UV curing of the nanocomposites revealed an unexpected lower reactivity of the vinyl groups of VTMO modified silica compared to MEMO grafted on silica. For VTMO modification, DFT calculations showed a decrease of Mulliken atomic charge for the olefinic carbons pointing to a lower reactivity. For UV cured nano/microhybrid composites, a significant improvement of abrasion resistance was obtained.

  5. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  6. The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin.

    PubMed

    Charasseangpaisarn, Taksid; Wiwatwarrapan, Chairat

    2015-12-01

    Monomer remaining in denture base acrylic can be a major problem because it may cause adverse effects on oral tissue and on the properties of the material. The purpose of this study was to compare the effect of various ultrasonic cleaner frequencies on the amount of residual monomer in acrylic resin after curing. Forty-two specimens each of Meliodent heat-polymerized acrylic resin (M) and Unifast Trad Ivory auto-polymerized acrylic resin (U) were prepared according to their manufacturer's instructions and randomly divided into seven groups: Negative control (NC); Positive control (PC); and five ultrasonic treatment groups: 28 kHz (F1), 40 kHz (F2), 60 kHz (F3) (M=10 min, U=5 min), and 28 kHz followed by 60 kHz (F4: M=5 min per frequency, U=2.5 min per frequency, and F5: M=10 min followed by 5 min per frequency, U=5 min followed by 2.5 min per frequency). Residual monomer was determined by HPLC following ISO 20795-1. The data were analyzed by One-way ANOVA and Tukey HSD. There was significantly less residual monomer in the auto-polymerized acrylic resin in all ultrasonic treatment groups and the PC group than that of the NC group (p<0.05). However, the amount of residual monomer in group F3 was significantly higher than that of the F1, F4, and PC groups (p<0.05). In contrast, ultrasonic treatment did not reduce the amount of residual monomer in heat-polymerized acrylic resin (p>0.05). The amount of residual monomer in heat-polymerized acrylic resin was significantly lower than that of auto-polymerized acrylic resin. In conclusion, ultrasonic treatment at low frequencies is recommended to reduce the residual monomer in auto-polymerized acrylic resin and this method is more practical in a clinical situation than previously recommended methods because of reduced chairside time. PMID:26190059

  7. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    PubMed Central

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  8. Manufacturing Success

    ERIC Educational Resources Information Center

    Reese, Susan

    2007-01-01

    According to the National Association of Manufacturers (NAM), "manufacturing is the engine that drives American prosperity". When NAM and its research and education arm, The Manufacturing Institute, released the handbook, "The Facts About Modern Manufacturing," in October 2006, NAM President John Engler noted, that manufacturing output in America…

  9. Properties study of cotton stalk fiber/gypsum composite

    SciTech Connect

    Li Guozhong; Yu Yanzhen; Zhao Zhongjian; Li Jianquan; Li Changchun

    2003-01-01

    This manuscript addresses treating cotton stalk fiber surface with styrene acrylic emulsion, which improves the interfacial combined state of cotton stalk fiber/gypsum composite effectively and improves its mechanical properties notably. Mixes less slag, ordinary Portland cement, etc., to modify gypsum base. The electron microscope was utilized to analyze and research on the effect on composite properties of the abovementioned mixtures.

  10. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH THREE PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    Permeation tests were conducted with trimethylolpropane triacrylate TMPTA), 1,6-hexanediol diacrylate (HDDA), and two mixtures of 1,6-hexanediol diacrylate with 2-ethylhexyl acrylate (EHA) to better understand the permeation behavior of multifunctional acrylate compounds. he test...

  11. Miniature Spinning Enzyme-Retted Flax Fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be blended with other short staple fibers, such as cotton (Gossypium barbadense L. or Gossypium hirsutum L.), processed into a yarn and then manufactured into a fabric. Manufacturing yarns with natural flax fibers has traditional...

  12. Miniature spinning enzyme-retted flax fibers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fibers from flax (Linum usitatissimum L.) are stiff and strong and can be blended with other short staple fibers, such as cotton (Gossypium barbadense L. or Gossypium hirsutum L.), processed into a yarn and then manufactured into a fabric. Manufacturing yarns with natural flax fibers has traditional...

  13. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  14. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  15. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare a scan from 10.5 microns...

  16. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  17. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  18. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  19. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  20. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  1. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  2. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  3. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  4. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  5. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  7. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  8. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  9. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  10. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  12. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  13. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  14. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  15. 40 CFR 721.10528 - Modified fluorinated acrylates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified fluorinated acrylates... Specific Chemical Substances § 721.10528 Modified fluorinated acrylates (generic). (a) Chemical substances... modified fluorinated acrylates (PMNs P-12-30, P-12-31, and P-12-32) are subject to reporting under...

  16. 40 CFR 721.10528 - Modified fluorinated acrylates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified fluorinated acrylates... Specific Chemical Substances § 721.10528 Modified fluorinated acrylates (generic). (a) Chemical substances... modified fluorinated acrylates (PMNs P-12-30, P-12-31, and P-12-32) are subject to reporting under...

  17. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  18. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  19. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  20. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. Link to an amendment published at 79 FR 34637, June 18, 2014... nickel acrylate complex (PMN P-85-1034) is subject to reporting under this section for the...

  1. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  2. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  3. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  4. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  5. Fiber-optic measurement standards

    NASA Astrophysics Data System (ADS)

    Pollitt, Stuart

    1991-09-01

    Measurement needs, some very novel, arise at all stages of the development, manufacture, commercial exploitation and use of optical fibers. Measurement standards for fiber parameters enable users and manufacturers to verify the accuracy of their results and, hence, have confidence in their measurements. The facilities developed at the National Physical Laboratory to provide measurement standards for the physical and transmission properties of optical fibers are described and the sources of error are discussed.

  6. The Influence of Polymerization Type and Reinforcement Method on Flexural Strength of Acrylic Resin

    PubMed Central

    Fonseca, Rodrigo Borges; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; Naves, Lucas Zago; Hoeppner, Márcio Grama

    2015-01-01

    The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N = 10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25 × 2 × 2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a = 5%) showing significant interaction (P = 0.008), for SC: Uni (241.71 ± 67.77)a, Uni-Short (221.05 ± 71.97)a, Ind (215.21 ± 46.59)ab, SW (190.51 ± 31.49)abc, Short (156.31 ± 28.76)bcd, Tpl (132.51 ± 20.21)cd, Control SC (101.47 ± 19.79)d and for HC: Ind (268.93 ± 105.65)a, Uni (215.14 ± 67.60)ab, Short (198.44 ± 95.27)abc, Uni-Short (189.56 ± 92.27)abc, Tpl (161.32 ± 62.51)cd, SW (106.69 ± 28.70)cd, and Control HC (93.39 ± 39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics. PMID:25879079

  7. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-08-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  8. The measurement of sucrose concentration by two-tapered all-fiber Mach-Zehnder interferometer employing different coupling structures and manufacture processes

    NASA Astrophysics Data System (ADS)

    Zhu, Yu-Sheng; Wang, Hsin-Wen; Hsu, Yi-Cheng

    2016-07-01

    The sucrose concentration measurement and characteristics of light coupling taper structure on sensitivity with various fabrication processes of taper structure for all-fiber Mach-Zehnder interferometer (AFMZI) are presented. Using fusion splicer with electrical discharge, the standard single-mode fiber is employed to be fabricated as conical coupling/decoupling taper structure. The basic two fabrication processes are designed as single fusion-stretching (SFS), multiple fusions without stretching (MF). The third advanced process is composed of SFS and multiple fusions without stretching processes, and called multiple fusions with single stretching (MFSS). Various types of coupling/decoupling taper structures were fabricated based on the three kinds of fabrication processes. The effects of geometry shape including taper waist, taper angle, and sensing length on sensing sensitivity of AFMZIs are estimated. The modifications of fiber core and cladding induced by thermal effect affect the refractive index distributions and shapes of taper structure. The effects of refractive index changes of fiber core and cladding on sensing sensitivity are also discussed. The AFMZI was tested by measuring aqueous sucrose solution of refractive index unit (RIU) from 1.333 to 1.420 RIU. The optical spectrums are measured by a spectrometer. The spectrum dip shifts and sensing sensitivity was measured and calculated, respectively. As shown in results, sensing sensitivities of AFMZIs of taper structure fabricated by MFSS and multiple fusions without stretching processing are generally higher than SFS. The reasons could be aimed on materials modification through thermal effect on blurring fiber core-cladding interface and proper taper angle of taper structure. The more homogeneous refractive index distribution on fiber core-cladding interface, the more detecting light power decoupled through core-cladding interface to interact with exterior environment and enhance the sensing sensitivity

  9. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether acrylate. 721.405 Section 721.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...) The significant new uses are: (i) Release to water. Requirements as specified in § 721.90 (a)(1),...

  10. Worn down nails after acrylic nail removal.

    PubMed

    Wu, Timothy P; Morrison, Brian W; Tosti, Antonella

    2015-01-01

    Worn-down nail syndrome is a nail disorder characterized by thinning of the distal nail plate caused by repetitive chemical or mechanical trauma. We present a previously undescribed source of worn-down nail syndrome caused by trauma from nail filing after acrylic nail removal. PMID:25612131

  11. Acrylic Tanks for Stunning Chemical Demonstrations

    ERIC Educational Resources Information Center

    Mirholm, Alexander; Ellervik, Ulf

    2009-01-01

    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)

  12. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  13. UV-curable acrylated coating from epoxidized palm oil

    NASA Astrophysics Data System (ADS)

    Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

    2014-09-01

    The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

  14. Strain distribution and sensitivity in fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Dadpay, C.; Sivakumar, N. R.; Mrad, N.

    2008-06-01

    Optical Fiber Bragg Gratings (FBG) sensors have seen significant development in recent years. Such sensor technology developed initially for the civil infrastructure is currently attracting the aerospace industry due to the potential versatility of this technology and its measurement capability. The structural health monitoring and the diagnostics and prognostics health management communities are excited about such development and ready to embrace such capability. Sensors reliability and accuracy, however, continue to be two parameters critical to the eventual implementation of the technology in high value targets. Such parameters can be improved by different manufacturing techniques as well as optimum grating's coating selection. This paper presents an evaluation of the mechanical behavior of the FBG strain sensors. A simulated analysis, using finite element modeling, revealed the impact of coating material selection, coating thickness selection, and bonding effect on the strain transfer loss. Results illustrate that metallic fiber coatings are more suitable for improved strain transfer than their polymeric counterparts and acrylic coatings are least effective with adhesive layer as small as possible.

  15. Electrohydrodynamic Printing and Manufacturing

    NASA Technical Reports Server (NTRS)

    Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor); Poon, Hak Fei (Inventor); Korkut, Sibel (Inventor); Chen, Chuan-hua (Inventor)

    2014-01-01

    An stable electrohydrodynamic filament is obtained by causing a straight electrohydrodynamic filament formed from a liquid to emerge from a Taylor cone, the filament having a diameter of from 10 nm to 100.mu.m. Such filaments are useful in electrohydrodynamic printing and manufacturing techniques and their application in liquid drop/particle and fiber production, colloidal deployment and assembly, and composite materials processing.

  16. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

    PubMed Central

    ArRejaie, Aws S.; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  17. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base.

    PubMed

    Gad, Mohammed; ArRejaie, Aws S; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  18. Bioinspired bioadhesive polymers: dopa-modified poly(acrylic acid) derivatives.

    PubMed

    Laulicht, Bryan; Mancini, Alexis; Geman, Nathanael; Cho, Daniel; Estrellas, Kenneth; Furtado, Stacia; Hopson, Russell; Tripathi, Anubhav; Mathiowitz, Edith

    2012-11-01

    The one-step synthesis and characterization of novel bioinspired bioadhesive polymers that contain Dopa, implicated in the extremely adhesive byssal fibers of certain gastropods, is reported. The novel polymers consist of combinations of either of two polyanhydride backbones and one of three amino acids, phenylalanine, tyrosine, or Dopa, grafted as side chains. Dopa-grafted hydrophobic backbone polymers exhibit as much as 2.5 × the fracture strength and 2.8 × the tensile work of bioadhesion of a commercially available poly(acrylic acid) derivative as tested on live, excised, rat intestinal tissue. PMID:23008096

  19. 'Weightless' acrylic painting by Jack Kroehnke

    NASA Technical Reports Server (NTRS)

    1987-01-01

    'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.

  20. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Hsieh, You-Lo

    2009-10-01

    Nanocomposite fibrous membranes have been fabricated by electrospinning cellulose nanocrystal (CNC)-loaded poly(acrylic acid) (PAA) ethanol mixtures. Incorporating CNC in PAA significantly reduced fiber diameters and improved fiber uniformity. The average diameters of the as-spun nanocomposite fibers were significantly reduced from 349 nm to 162 nm, 141 nm, 90 nm and 69 nm at 5%, 10%, 15% and 20% CNC loading (by weight of a constant 4% PAA solution), respectively. CNC was well dispersed in the fibers as isolated rods oriented along the fiber axis and as spheres in the PAA matrix. The Young modulus and stress of the PAA/CNC nanocomposite fibers were significantly improved with increasing CNC loadings by up to 35-fold and 16-fold, respectively. Heat-induced esterification between the CNC surface hydroxyls and PAA carboxyl groups produced covalent crosslinks at the CNC-PAA interfaces, rendering the nanocomposite fibrous membranes insoluble in water, more thermally stable and far more superior in tensile strength. With 20% CNC, the crosslinked nanocomposite fibrous membrane exhibited a very impressive 77-fold increase in modulus and 58-fold increase in stress.

  1. Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization.

    PubMed

    Jiang, Lijia; Xiong, Wei; Zhou, Yushen; Liu, Ying; Huang, Xi; Li, Dawei; Baldacchini, Tommaso; Jiang, Lan; Lu, Yongfeng

    2016-06-13

    Microfabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins. Specifically, microfabrication is carried out using higher writing velocities and it produces stronger polymeric microstructures. Furthermore, the amount of shrinkage typically observed in the production of three-dimensional microstructures is reduced also. By means of microspectrometry, we confirm that the thiol-acrylate mixture in TPP resins promote monomer conversion inducing a higher degree of cross-linked network formation. PMID:27410383

  2. UV-curable polyurethane acrylate coatings with different acrylate monomers as reactive diluents

    SciTech Connect

    Nabeth, B.; Gerard, J.F.; Pascault, J.P.

    1995-12-01

    Two series of UV-curable polyurethane acrylate (PUA) based on polycaprolactone (PCL), tetraxylylene diisocyanate (TMXDI), and hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA) were studied. These ones were considered with different acrylates as reactive diluents. The effect of the chemical nature and functionality of the reactive diluents on the thermal and dynamic mechanical properties (DMS) was investigated. From a thermodynamic point of view, the PUA seem to display a one phase structure by DMS. Nevertheless, the statistic heterogeneities due to the use of three monomers or more can explain the Tg values and the mechanical relaxations of the PUA. The Tg-onset of the PUA is slightly influenced by the nature of the reactive diluents but is dependent on the Tg of the oligomer confirming the description of the structure using a clusters model. The same conclusions could be done from the dynamic mechanical spectra of the PUA sandwiched and UV-cured between two glass plates.

  3. Manufacturing technologies

    NASA Astrophysics Data System (ADS)

    The Manufacturing Technologies Center is at the core of Sandia National Laboratories' advanced manufacturing effort which spans the entire product realization process. The center's capabilities in product and process development are summarized in the following disciplines: (1) mechanical - rapid prototyping, manufacturing engineering, machining and computer-aided manufacturing, measurement and calibration, and mechanical and electronic manufacturing liaison; (2) electronics - advanced packaging for microelectronics, printed circuits, and electronic fabrication; and (3) materials - ceramics, glass, thin films, vacuum technology, brazing, polymers, adhesives, composite materials, and process analysis.

  4. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  5. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  6. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... Glyceryl monostearate Methyl cellulose Mineral oil Paraffin wax Potassium hydroxide Potassium...

  7. Severe Onychodystrophy due to Allergic Contact Dermatitis from Acrylic Nails

    PubMed Central

    Mattos Simoes Mendonca, Marcela; LaSenna, Charlotte; Tosti, Antonella

    2015-01-01

    Acrylic nails, including sculptured nails and the new ultraviolet-curable gel polish lacquers, have been associated with allergic contact dermatitis (ACD). We report 2 cases of ACD to acrylic nails with severe onychodystrophy and psoriasiform changes including onycholysis and subungual hyperkeratosis. In both cases, the patients did not realize the association between the use of acrylate-based manicures and nail changes. One patient had been previously misdiagnosed and treated unsuccessfully for nail psoriasis. The informed clinician should elicit a history of acrylic manicure in patients with these nail changes, especially in cases of suspected nail psoriasis refractory to treatment. Patch testing is a useful tool in confirming diagnosis. PMID:27170940

  8. Comparison of Impact Strength and Fracture Morphology of Different Heat Cure Denture Acrylic Resins: An In vitro Study

    PubMed Central

    Praveen, B; Babaji, Harsha V; Prasanna, B G; Rajalbandi, Santosh Kumar; Shreeharsha, T V; Prashant, G M

    2014-01-01

    Background: The fracture of acrylic resin denture is rather common occurrence and causes inconvenience to the patients. This study was carried out to evaluate and compare the impact strength and fracture morphology of four different heat cure acrylic materials. Materials and Methods: Acrylic resin specimens were prepared using preformed metal die of dimension 65 × 10 × 3 mm. The specimens were finished, polished and subjected to impact strength evaluation using impact testing machine. The loads at which the specimens fracture are recorded and subjected to statistical analysis. Fracture surface analysis was done. Macroscopic analysis was performed by visual inspection of the fractured surfaces using a stereoscopic microscope. About 5 mm sections of all the fragments were subjected to scanning electron microscopy for microscopic analysis to verify fracture morphology. Results: Mean values of the impact strength were compared by statistical methods. The impact strength data were subjected to variance homogeneity tests. Fracture surface analysis data was analyzed by statistical methods. The mean impact strength of Lucitone 199 was higher than Acrylyn-H, DPI Heat cure & Trevalon. Conclusion: Within the limitations of this study, it was concluded that the impact strength of the acrylic resins is affected by the reinforcement of fibers. Increased intermediate fractures increased impact strength. Brittle fractures morphology showed fewer undercuts and clearer surface. Intermediate fractures morphology showed more undercuts than clear surfaces. PMID:25395786

  9. Admixtures and fibers for shotcrete in Japan

    SciTech Connect

    Tazawa, Yujiro

    1995-12-31

    In recent years in Japan the following additives are increasingly being used for Shotcreting in tunnels: Accelerator for shotcreting based on calcium aluminate; dust control agent; and fiber. While dry mix shotcrete was predominantly used in Japan, accelerator of shotcrete based on inorganic salts contributed a great deal to the performance of shotcrete. However this type of accelerator is not so effective to wet mix which has been taking the place of dry mix in recent years. For wet mix shotcrete, accelerator for shotcrete based on Amorphous calcium aluminate is found to be quite effective in gaining sufficient early strength without aggravating long term strength. Practical performance in various cases is reported. A dust control agent for shotcreting is often used to improve working conditions in tunnels. This agent is reported to reduce a great deal of the dust generated in shotcreting operations. A variety of dust control agents are now available, of which constituents are cellulose epoxy , acrylic epoxy, polyvinyl alcohol etc. Use of fibers in shotcrete is also becoming popular in Japan to increase strength and toughness of the concrete. Not only steel fibers but also glass fibers are widely used. Recently more variety of materials such as PVA fiber acrylic and aramid fibers have been tested and some of them are being put into practical use, giving similar properties to shotcrete with steel fibers.

  10. Manufacturing technologies for high-throughput imaging x-ray telescopes: XMM carbon fiber reinforced plastic (CFRP) technology compared to other x-ray systems

    NASA Astrophysics Data System (ADS)

    Boerret, Rainer; Glatzel, Holger; Schmidt, Michael

    1994-09-01

    High throughput and/or high resolution imaging telescopes for x-ray energies up to 8 keV are part of several space based astronomic missions to study small and faint cosmic x-ray objects. High throughput telescopes are applied for spectroscopy missions, high resolution telescopes to detect and analyze small X-ray sources. Depending on the goal and the constraints of the mission some of the various parameters such as resolution, throughput, number of nested shells or weight etc. are optimized. The production technology has to match to the mission goals and constraints to obtain an optimum balance between scientific performance, production time and costs. The entire production process of XMM mirror shells at Carl Zeiss and Medialario (Italy) respectively will be presented in this paper. This technology will be compared with the ones of other x-ray telescopes such as EINSTEIN, EXOSAT, ROSAT, JET-X, AND AXAF; and EUV telescopes such as CDS and EUVE regarding potentials and limitations of the manufacturing processes and optical performances.

  11. Cable manufacture

    NASA Technical Reports Server (NTRS)

    Gamble, P.

    1972-01-01

    A survey is presented of flat electrical cable manufacturing, with particular reference to patented processes. The economics of manufacture based on an analysis of material and operating costs is considered for the various methods. Attention is given to the competitive advantages of the several processes and their resulting products. The historical area of flat cable manufacture is presented to give a frame of reference for the survey.

  12. BN Bonded BN fiber article from boric oxide fiber

    DOEpatents

    Hamilton, Robert S.

    1978-12-19

    A boron nitride bonded boron nitride fiber article and the method for its manufacture which comprises forming a shaped article with a composition comprising boron oxide fibers and boric acid, heating the composition in an anhydrous gas to a temperature above the melting point of the boric acid and nitriding the resulting article in ammonia gas.

  13. Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line.

    PubMed

    da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho; Bonatto, Liliane da Rocha; de Medeiros, Rodrigo Antonio; Santos, Daniela Micheline Dos; Rangel, Elidiane Cipriano; Oliveira, Sandra Helena Penha de

    2016-10-01

    The aim of this study was to evaluate the influence of pigment incorporation on the cytotoxicity of ocular prosthesis N1 color acrylic resin. Nine samples were manufactured by heat-polymerization in water bath and divided into 3 groups: acrylic resin without pigment incorporation (group R), acrylic resin with pigment incorporation (group RP), and acrylic pigment (group P). Eluates formed after 72h of sample immersion in medium were incubated with conjunctival cell line (Chang conjunctival cells) for 72h. The negative control group consisted in medium without samples (group C). The cytotoxic effect from the eluates was evaluated using MTT assay (cell proliferation), ELISA assay (quantification of IL1β, IL6, TNF α and CCL3/MIP1α) and RT-PCR assay (mRNA expression of COL IV, TGF β and MMP9). Data were submitted to ANOVA with Bonferroni post-tests (p<0.05). All groups were considered non-cytotoxic based on cell proliferation. However, resin with pigment incorporation showed significant IL6 quantity increase. Resin without pigment incorporation exhibited higher mRNA expression of COL IV, MMP9 and TGF β, however it was also observed for the negative control group. The materials exhibited divergent biological behavior. Despite the pigment incorporation that resulted in an increase of IL6, no cytotoxicity was observed based on cell proliferation. PMID:27521695

  14. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  15. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  16. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  17. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  18. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  19. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  20. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  1. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated acrylic copolymer (generic name). 721.484 Section 721.484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical...

  2. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer (generic name). 721.336 Section 721.336 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a)...

  3. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  4. 40 CFR 721.330 - Aromatic acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.330 Aromatic acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aromatic acrylate (PMN P-01-420)...

  5. 40 CFR 721.330 - Aromatic acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.330 Aromatic acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aromatic acrylate (PMN P-01-420)...

  6. Manufacturing technologies

    SciTech Connect

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  7. Manufacturing Technology.

    ERIC Educational Resources Information Center

    Barnes, James L.

    This curriculum guide is designed to assist junior high school industrial arts teachers in planning new courses and revising existing courses in manufacturing technology. Addressed in the individual units of the guide are the following topics: introduction to manufacturing, materials processing, personnel management, production management,…

  8. Dimensional stability of natural fibers

    NASA Astrophysics Data System (ADS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-04-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  9. Dimensional stability of natural fibers

    SciTech Connect

    Driscoll, Mark S.

    2013-04-19

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  10. Hybrid resist systems based on α-substituted acrylate copolymers

    NASA Astrophysics Data System (ADS)

    Ito, Hiroshi; Sundberg, Linda K.; Bozano, Luisa; Lofano, Elizabeth M.; Yamanaka, Kazuhiro; Terui, Yoshiharu; Fujiwara, Masaki

    2009-03-01

    Classical electron-beam resists such as poly(methyl methacrylate) (PMMA) and Nippon Zeon's ZEP function as high resolution and low roughness positive resists on the basis of radiation induced main chain scission to reduce the molecular weight while chemical amplification resists utilized in device manufacturing function on the basis of acidcatalyzed deprotection to change the polarity. In an attempt to increase the resolution and reduce the line roughness of chemical amplification resists, we prepared copolymers that undergo radiation induced main chain scission and acidcatalyzed deprotection. In another word, we wanted to increase the sensitivity of the PMMA resist by incorporating the acid-catalyzed deprotection mechanism in polymers that undergo main chain scission, maintaining the high resolution and low roughness of PMMA. To synthesize such hybrid resist polymers, we selected α-substituted acrylates and α- substituted styrenes. The former included methyl methacrylate (MMA), t-butyl methacrylate (TBMA), methyl α- fluoroacrylate (MFA), t-butyl α-fluoroacrylate (TBFA), and t-butyl α-trifluoromethylacrylate (TBTFMA) and the latter α-methylstyrene (αMEST), α-methyleneindane (αMEIN), and α-methylenetetralin (αMETL). The α-substituted tbutyl acrylic esters were copolymerized with the methyl esters and also with α-substituted styrenic monomers using 2, 2'-azobis(isobutyronitrile) (AIBN). Hybrid resists were formulated by adding a photochemical acid generator and a base quencher to the copolymers and developers were selected by studying the dissolution behavior of unexposed and 254 nm exposed resist films using a quartz crystal microbalance (QCM). In addition to the difference in the imaging mechanism, PMMA and ZEP differ from the chemical amplification resists in developers; organic solvent vs. aqueous base. We were interested in looking also into the influence of the developer on the lithographic performance. Contrast curves were generated by exposing

  11. Fiber optic hardware for transport aircraft

    NASA Astrophysics Data System (ADS)

    White, John A.

    Fiber Optic Technology is being developed for aircraft and offers benefits in system performance and manufacturing cost reduction. Thr fiber optic systems have high bandwidths that exceeds all of the new aircraft design requirements and exceptional electromagnetic interference (EMI) immunity. Additionally, fiber optic systems have been installed in production aircraft proving design feasiblity.

  12. Quantum Dots Microstructured Optical Fiber for X-Ray Detection

    NASA Technical Reports Server (NTRS)

    DeHaven, Stan; Williams, Phillip; Burke, Eric

    2015-01-01

    Microstructured optical fibers containing quantum dots scintillation material comprised of zinc sulfide nanocrystals doped with magnesium sulfide are presented. These quantum dots are applied inside the microstructured optical fibers using capillary action. The x-ray photon counts of these fibers are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The results of the fiber light output and associated effects of an acrylate coating and the quantum dot application technique are discussed.

  13. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  14. The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials.

    PubMed

    Saygili, Gülbin; Sahmali, Sevil M; Demirel, Figen

    2003-01-01

    The fracture resistance of provisional restorations is an important concern for the restorative dentist. The fracture resistance of a material is directly related to its transverse strength. Six specimens of similar dimensions were prepared from three resins (PMMA, PEMA and BIS acryl-composite). The resins were reinforced with glass and aramid fibers. The samples were tested immediately after the material set, following seven days of wet storage using three-point compression loading. The results were analyzed with an analysis of variance (ANOVA). Fracture resistance of the specimens was statistically different (p < 0.001) among the materials. Specimens reinforced with glass fibers showed higher transverse strength (149.82 MPa). The fiber reinforcement of resin materials increased the strength values (20-50%). Within the limitations of this study, the transverse strengths of PMMA, PEMA and BIS acryl-resin composites were improved after reinforcement with glass and aramid fibers. PMID:12540123

  15. Manufacturing technology

    SciTech Connect

    Blaedel, K.L.

    1997-02-01

    The specific goals of the Manufacturing Technology thrust area are to develop an understanding of fundamental fabrication processes, to construct general purpose process models that will have wide applicability, to document our findings and models in journals, to transfer technology to LLNL programs, industry, and colleagues, and to develop continuing relationships with industrial and academic communities to advance our collective understanding of fabrication processes. Advances in four projects are described here, namely Design of a Precision Saw for Manufacturing, Deposition of Boron Nitride Films via PVD, Manufacturing and Coating by Kinetic Energy Metallization, and Magnet Design and Application.

  16. The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

    PubMed Central

    Parkhedkar, Rambhau D.; Mowade, Tushar Krishnarao

    2012-01-01

    PURPOSE The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins. PMID:22439093

  17. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  18. MEGARA optical manufacturing process

    NASA Astrophysics Data System (ADS)

    Carrasco, E.; Páez, G.; Granados, F.; Percino, E.; Castillo-Domínguez, E.; Avilés, J. L.; García-Vargas, M. L.; Gil de Paz, A.; Gallego, J.; Iglesias-Páramo, J.; Cedazo, R.

    2014-07-01

    MEGARA is the future visible integral-field and multi-object spectrograph for the GTC 10.4-m telescope located in La Palma. INAOE is a member of the MEGARA Consortium and it is in charge of the Optics Manufacturing work package. MEGARA passed the Optics Detailed Design Review in May 2013, and the blanks of the main optics have been already ordered and their manufacturing is in progress. Except for the optical fibers and microlenses, the complete MEGARA optical system will be manufactured in Mexico, shared between the workshops of INAOE and CIO. This includes a field lens, a 5-lenses collimator, a 7-lenses camera and a complete set of volume phase holographic gratings with 36 flat windows and 24 prisms, being all these elements very large and complex. Additionally, the optical tests and the complete assembly of the camera and collimator subsystems will be carried out in Mexico. Here we describe the current status of the optics manufacturing process.

  19. Smart Manufacturing.

    PubMed

    Davis, Jim; Edgar, Thomas; Graybill, Robert; Korambath, Prakashan; Schott, Brian; Swink, Denise; Wang, Jianwu; Wetzel, Jim

    2015-01-01

    Historic manufacturing enterprises based on vertically optimized companies, practices, market share, and competitiveness are giving way to enterprises that are responsive across an entire value chain to demand dynamic markets and customized product value adds; increased expectations for environmental sustainability, reduced energy usage, and zero incidents; and faster technology and product adoption. Agile innovation and manufacturing combined with radically increased productivity become engines for competitiveness and reinvestment, not simply for decreased cost. A focus on agility, productivity, energy, and environmental sustainability produces opportunities that are far beyond reducing market volatility. Agility directly impacts innovation, time-to-market, and faster, broader exploration of the trade space. These changes, the forces driving them, and new network-based information technologies offering unprecedented insights and analysis are motivating the advent of smart manufacturing and new information technology infrastructure for manufacturing. PMID:25898070

  20. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis.

    PubMed

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  1. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    PubMed Central

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  2. Hydrophilic surface modification of acrylate-based biomaterials.

    PubMed

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  3. Electrochemical characterization of aminated acrylic conducting polymer

    NASA Astrophysics Data System (ADS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  4. Electrochemical characterization of aminated acrylic conducting polymer

    SciTech Connect

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  5. Stability of carbon fiber surface chemistry under temperature and its influence on interfacial adhesion with polymer matrices

    SciTech Connect

    Vautard, Frederic; Grappe, Hippolyte A; Ozcan, Soydan

    2013-01-01

    The thermal stability of the surface chemistry of a surface treated carbon fiber was investigated by X-ray Photoelectron Spectroscopy. Within a range of temperatures from room temperature to 400 C, the only surface functionalities that decomposed were carboxylic acids and dangling nitrogen containing functionalities like amines, amides or nitriles. Significant amounts of water were desorbed as well. This study enabled the testing of the coherence our the fitting of the C(1s), O(1s) and N(1s) peaks. Particularly, when considering the fitting of in the O(1s) peak, carboxylic acids were shown to be included in a single component peak centered at a binding energy of 532.1 eV. The reaction of the carbon fiber surface and an acrylate resin at high temperature, because of the decomposition of carboxylic acids, was highlighted by Differential Scanning Calorimetry. The thermal history of the composite material during its manufacture appeared to be a major influence on the nature of the interactions generated at the fiber-matrix interface and the resulting mechanical properties.

  6. Thermal stability of grafted fibers. [Gamma radiation

    SciTech Connect

    Sundardi, F.; Kadariah; Marlianti, I.

    1983-10-01

    Presented the experimental results on the study of thermal stability of grafted fibers, i.e., polypropylene-, polyester-, and rayon-grafted fibers. These fibers were obtained by radiation grafting processes using hydrophylic monomers such as 1-vinyl 2-pyrolidone, acrylic acid, N-methylol acrylamide, and acrylonitrile. The thermal stability of the fibers was studied using a Shimadzu Thermal Analyzer DT-30. The thermal stability of the fibers, which can be indicated by the value of the activation energy for thermal degradation, was not improved by radiation grafting. The degree of improvement depends on the thermal stability of the monomers used for grafting. The thermal stability of a polypropylene fiber, either a grafted or an ungrafted one, was found to be inferior compared to the polyester of a rayon fiber, which may be due to the lack of C=O and C=C bonds in the polypropylene molecules. The thermal stability of a fiber grafted with acrylonitrile monomer was found to be better than that of an ungrafted one. However, no improvement was detected in the fibers grafted with 1-vinyl 2-pyrrolidone monomer, which may be due to the lower thermal stability of poly(1-vinyl-2-pyrrolidone), compared to the polypropylene or polyester fibers. 17 figures, 3 tables.

  7. Poly(amide-graft-acrylate) interfacial compounds

    NASA Astrophysics Data System (ADS)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  8. Methods for the synthesis of deuterated acrylate salts

    SciTech Connect

    Yang, Jun; Bonnesen, Peter V.; Hong, Kunlun

    2014-09-09

    A method for synthesizing a deuterated acrylate of the Formula (1), the method comprising: (i) deuterating a propiolate compound of Formula (2) to a methyne-deuterated propiolate compound of Formula (3) in the presence of a base and D.sub.2O: and (ii) reductively deuterating the methyne-deuterated propiolate compound of Formula (3) in a reaction solvent in the presence of deuterium gas and a palladium-containing catalyst to afford the deuterated acrylate of the Formula (1). The resulting deuterated acrylate compounds, derivatives thereof, and polymers derived therefrom are also described.

  9. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  10. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  11. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble fiber or insoluble fiber. Both types have important health benefits. Good sources of dietary fiber include Whole grains Nuts ...

  12. Study of fiber optics standardization, reliability, and applications

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The use of fiber optics in space applications is investigated. Manufacturers and users detailed the problems they were having with the use or manufacture of fiber optic components. The general consensus of all the companies/agencies interviewed is that fiber optics is a maturing technology and will definitely have a place in future NASA system designs. The use of fiber optics was found to have two main advantages - weight savings and increased bandwidth.

  13. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  14. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .../acrylic copolymers shall not be used as polymer modifiers in vinyl chloride homo- or copolymers. (e... (other than articles composed of vinyl chloride homo- or copolymers) intended for use in contact with...

  16. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  17. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  18. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  19. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics. PMID:24661889

  20. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  1. [Reaction of 1,8-naphthyridine azides with ethyl acrylate].

    PubMed

    Livi, O; Ferrarini, P L; Bertini, D; Tonetti, I

    1975-12-01

    The reaction of 1,8-naphthyridine azides with ethyl acrylate leads to the formation of 2-pyrazolines instead of 1,2,3-triazolines. Some of the compounds obtained have undergone pharmacological and microbiological (antibacterial) testing. PMID:1204828

  2. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  3. Temperature sensing on tapered single mode fiber using mechanically induced long period fiber gratings

    NASA Astrophysics Data System (ADS)

    Marrujo-García, Sigifredo; Velázquez-González, Jesús Salvador; Pulido-Navarro, María. Guadalupe; González-Ocaña, Ernesto; Mújica-Ascencio, Saúl; Martínez-Piñón, Fernando

    2015-09-01

    The modeling of a temperature optical fiber sensor is proposed and experimentally demonstrated in this work. The suggested structure to obtain the sensing temperature characteristics is by the use of a mechanically induced Long Period Fiber Grating (LPFG) on a tapered single mode optical fiber. A biconical fiber optic taper is made by applying heat using an oxygen-propane flame burner while stretching the single mode fiber (SMF) whose coating has been removed. The resulting geometry of the device is important to analyze the coupling between the core mode to the cladding modes, and this will determine whether the optical taper is adiabatic or non-adiabatic. On the other hand, the mechanical LPFG is made up of two plates, one grooved and other flat, the grooved plate was done on an acrylic slab with the help of a computerized numerical control machine (CNC). In addition to the experimental work, the supporting theory is also included.

  4. Acrylic-based Y-branch POF coupler for "do-it-yourself" next generation optical devices

    NASA Astrophysics Data System (ADS)

    Ehsan, Abang Annuar; Shaari, Sahbudin; Abd Rahman, Mohd Kamil

    2010-10-01

    Optical devices are components which require sophisticated equipment and technically skilled manpower for device fabrication and assembling and most of the production costs are on the device assembly. However, the next generation optical components may not be devices assembled at the production line but it will be based on the concept of 'do-it yourself' optical devices. We proposed a simple low-cost acrylic-based Y-branch POF coupler which can be assembled easily by the end users themselves. The device is composed of three sections: an input POF waveguide, an intermediate adjustable hollow waveguide taper region and output POF waveguides. Low cost acrylic-based material has been used for the device material. A desktop high speed CNC engraver is utilized to produce the mold inserts used for the optical device. In addition to the engraved device structure, 4 holes are drilled at each corner to allow a top plate to be screwed on top and enclosed the device structure. Included with this POF coupler assembly kit will be the mold insert, top acrylic block, input and output POF fibers (cleaved and stripped with different stripping lengths) and connecting screws. The short POF fibers are inserted into the engraved slots at the input and output ports until the fibers are positioned just before or butt-coupled to each other. The assembling is completed when the top plate is positioned and the connecting screws are secured. The POF coupler has an average insertion loss of 5.8 +/- 0.1 dB, excess loss of 2.8 dB and a good coupling ratio of 1:1.

  5. Microgravity Manufacturing

    NASA Technical Reports Server (NTRS)

    Cooper, Ken; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    Manufacturing capability in outer space remains one of the critical milestones to surpass to allow humans to conduct long-duration manned space exploration. The high cost-to-orbit for leaving the Earth's gravitational field continues to be the limiting factor in carrying sufficient hardware to maintain extended life support in microgravity or on other planets. Additive manufacturing techniques, or 'chipless' fabrication, like RP are being considered as the most promising technologies for achieving in situ or remote processing of hardware components, as well as for the repair of existing hardware. At least three RP technologies are currently being explored for use in microgravity and extraterrestrial fabrication.

  6. Modeling the Manufacturing of Industrial Heterofilaments

    NASA Astrophysics Data System (ADS)

    Naboulsi, Samir Kassas

    1995-01-01

    The materials processing of man-made fibers dates back to the end of the 19th century. Examples of fiber applications include textiles, reinforcing fibers, and recently optic fibers. In this dissertation, the manufacturing of heterofilaments (multi-component, composite fibers) is modeled. Many studies model the manufacture of single -component filaments, but no modeling of the melt spinning of multi-component filaments has been published. The modeling is approached with the following objectives: to describe the mechanics of the heterofilament liquid jet problem; to introduce a model that will capture the important mechanical behavior of the heterofilament liquid jet; to examine the steady state behavior predicted by the model in several important processing regimes; to deduce how the mechanical properties of the core and the sheath components are combined in the heterofilament manufacturing process to produce the mechanical properties of the final composite fiber; and to illustrate how the model can be used to optimize a heterofilament manufacturing process. Three interfacial models are introduced for the core/sheath boundary: the bonded model, the viscous model, and the stick-slip model. The Newtonian time dependent problems for the bonded, viscous, and stick-slip interfacial models are formulated and the fully-populated regime, viscosity regimes, inertia regimes, surface tension regimes, gravity regimes, incompressibility regimes, and ambiance regimes are investigated.

  7. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  8. Stabilizing effects of estertins mercaptide (methyl acrylate) for PVC degradation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Liu, T. M.; Li, J. L.; Wang, C. R.; Li, C.; Wang, Z. Q.

    2016-07-01

    The thermal and UV light (ultraviolet light) stability of PVC films with estertins mercaptide (methyl acrylate), methyltins mercaptide and the compound consisted of estertins mercaptide (methyl acrylate) and hydrotalcite (2:2.5) were investigated by ageing in a circulation oven at 190 °C and irradiating with 72W UV light for 96h, respectively, and then the yellowness and transmission rate were tested by Color Quest XE. Hydrotalcite was proved to have good synergies with estertins mercaptide (methyl acrylate) on improving the thermal stability and UV light stability. The retarding effects of the heat stabilizers to PVC degradation were tested by TGA from 50°C to 600°C. The results show that temperature of HCl evolution from PVC film was improved obviously by compounding with estertins mercaptide(methyl acrylate) and hydrotalcite and estertins mercaptide(methyl acrylate) was found to have a better long term stability. Sn4+ consistence of water and seawater in which films before and after UV light irradiation were soaked for 60 days was analyzed by ICP; the results indicate that the Sn4+ consistence from the films with estertins mercaptide(methyl acrylate) as thermal stabilizer was lower than that from the film with methyltins mercaptide. The crosslink moderately by UV irradiation for PVC films can hold back the dissolution of organotin heat stabilizers from PVC products into water and seawater.

  9. Advances in acrylic-alkyd hybrid synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  10. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  11. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  12. Automated fiber pigtailing machine

    DOEpatents

    Strand, Oliver T.; Lowry, Mark E.

    1999-01-01

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectonic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems.

  13. Automated fiber pigtailing machine

    DOEpatents

    Strand, O.T.; Lowry, M.E.

    1999-01-05

    The Automated Fiber Pigtailing Machine (AFPM) aligns and attaches optical fibers to optoelectronic (OE) devices such as laser diodes, photodiodes, and waveguide devices without operator intervention. The so-called pigtailing process is completed with sub-micron accuracies in less than 3 minutes. The AFPM operates unattended for one hour, is modular in design and is compatible with a mass production manufacturing environment. This machine can be used to build components which are used in military aircraft navigation systems, computer systems, communications systems and in the construction of diagnostics and experimental systems. 26 figs.

  14. Olfactory function in chemical workers exposed to acrylate and methacrylate vapors

    SciTech Connect

    Schwartz, B.S.; Doty, R.L.; Frye, R. ); Monroe, C.; Barker, S. )

    1989-05-01

    An investigation of the olfactory function of 731 workers at a chemical facility which manufactures acrylates and methacrylates was undertaken using a standardized quantitative test. In a cross-section analysis of the data, no associations of chemical exposure with olfactory test scores were observed. A nested case-control study designed to evaluate the cumulative effects of exposure on olfactory function, however, revealed elevated crude exposure odds ratios of 2.0 (1.1, 3.8) for all workers and 6.0 (1.7, 21.5) for workers who never smoked cigarettes. Logistic regression analysis, adjusting for multiple confounders, revealed exposure odds ratios of 2.8 (1.1, 7.0) and 13.5 (2.1, 87.6) in these same groups, respectively, and a dose-response relationship between olfactory dysfunction and cumulative exposure scores - semi-quantitative indices of lifetime exposure to the acrylates. The data also revealed decreasing exposure odds ratios with increasing duration since last exposure to these chemicals, suggesting that the effects may be reversible.

  15. Olfactory function in chemical workers exposed to acrylate and methacrylate vapors.

    PubMed Central

    Schwartz, B S; Doty, R L; Monroe, C; Frye, R; Barker, S

    1989-01-01

    An investigation of the olfactory function of 731 workers at a chemical facility which manufacturers acrylates and methacrylates was undertaken using a standardized quantitative test. In a cross-sectional analysis of the data, no associations of chemical exposure with olfactory test scores were observed. A nested case-control study designed to evaluate the cumulative effects of exposure on olfactory function, however, revealed elevated crude exposure odds ratios (95% confidence interval) of 2.0 (1.1, 3.8) for all workers and 6.0 (1.7, 21.5) for workers who never smoked cigarettes. Logistic regression analysis, adjusting for multiple confounders, revealed exposure odds ratios of 2.8 (1.1, 7.0) and 13.5 (2.1, 87.6) in these same groups, respectively, and a dose-response relationship between olfactory dysfunction and cumulative exposure scores--semi-quantitative indices of lifetime exposure to the acrylates. The data also revealed decreasing exposure odds ratios with increasing duration since last exposure to these chemicals, suggesting that the effects may be reversible. PMID:2784947

  16. High Methane Storage Working Capacity in Metal-Organic Frameworks with Acrylate Links.

    PubMed

    Jiang, Juncong; Furukawa, Hiroyasu; Zhang, Yue-Biao; Yaghi, Omar M

    2016-08-17

    High methane storage capacity in porous materials is important for the design and manufacture of vehicles powered by natural gas. Here, we report the synthesis, crystal structures and methane adsorption properties of five new zinc metal-organic frameworks (MOFs), MOF-905, MOF-905-Me2, MOF-905-Naph, MOF-905-NO2, and MOF-950. All these MOFs consist of the Zn4O(-CO2)6 secondary building units (SBUs) and benzene-1,3,5-tri-β-acrylate, BTAC. The permanent porosity of all five materials was confirmed, and their methane adsorption measured up to 80 bar to reveal that MOF-905 is among the best performing methane storage materials with a volumetric working capacity (desorption at 5 bar) of 203 cm(3) cm(-3) at 80 bar and 298 K, a value rivaling that of HKUST-1 (200 cm(3) cm(-3)), the benchmark compound for methane storage in MOFs. This study expands the scope of MOF materials with ultrahigh working capacity to include linkers having the common acrylate connectivity. PMID:27442620

  17. 76 FR 1599 - Foreign-Trade Zone 203-Moses Lake, Washington; Application for Manufacturing Authority, SGL...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-11

    ... Authority, SGL Automotive Carbon Fibers, LLC, (Carbon Fiber Manufacturing), Moses Lake, WA An application... Carbon Fibers, LLC (SGL Automotive), located in Moses Lake, Washington. The application was submitted... of carbon fiber, all of which will be exported for the exclusive use of BMW Group in its new...

  18. Measurement comparison of cotton fiber micronaire and its components by portable near Infrared Spectroscopy (NIR) Instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...

  19. Comparison of cotton fiber micronaire and its components by portable near infrared spectroscopy instruments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronaire is a key cotton fiber classing and quality assessment property, and changes in fiber micronaire can impact downstream fiber processing and dye consistency in the textile manufacturing industry. Micronaire is a function of two fiber components—fiber maturity and fineness. Historically, m...

  20. Apparel Manufacture

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Marshall Space Flight Center teamed with the University of Alabama in Huntsville (UAH) in 1989 on a program involving development of advanced simulation software. Concurrently, the State of Alabama chartered UAH to conduct a technology advancement program in support of the state's apparel manufacturers. In 1992, under contract to Marshall, UAH developed an apparel-specific software package that allows manufacturers to design and analyze modules without making an actual investment -- it functions on ordinary PC equipment. By 1995, Marshall had responded to requests for the package from more than 400 companies in 36 states; some of which reported savings up to $2 million. The National Garment Company of Missouri, for example, uses the system to design and balance a modular line before committing to expensive hardware; for setting up sewing lines; and for determining the composition of a new team.

  1. Manufacturing technology

    SciTech Connect

    Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

    1993-08-01

    This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

  2. Green Manufacturing

    SciTech Connect

    Patten, John

    2013-12-31

    Green Manufacturing Initiative (GMI): The initiative provides a conduit between the university and industry to facilitate cooperative research programs of mutual interest to support green (sustainable) goals and efforts. In addition to the operational savings that greener practices can bring, emerging market demands and governmental regulations are making the move to sustainable manufacturing a necessity for success. The funding supports collaborative activities among universities such as the University of Michigan, Michigan State University and Purdue University and among 40 companies to enhance economic and workforce development and provide the potential of technology transfer. WMU participants in the GMI activities included 20 faculty, over 25 students and many staff from across the College of Engineering and Applied Sciences; the College of Arts and Sciences' departments of Chemistry, Physics, Biology and Geology; the College of Business; the Environmental Research Institute; and the Environmental Studies Program. Many outside organizations also contribute to the GMI's success, including Southwest Michigan First; The Right Place of Grand Rapids, MI; Michigan Department of Environmental Quality; the Michigan Department of Energy, Labor and Economic Growth; and the Michigan Manufacturers Technical Center.

  3. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    PubMed

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers. PMID:6499426

  4. Fiber biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton fiber cells arising from seed epidermis is the most important agricultural textile commodity in the world. To produce fully mature fibers, approximately two months of fiber developmental process are required. The timing of four distinctive fiber development stages consisting of initiation, ...

  5. Chrysotile asbestos exposure in the manufacturing of thermal insulating boards.

    PubMed

    Bhagia, L J; Vyas, J B; Shaikh, M I; Dodia, S L

    2010-08-01

    Exposure to asbestos fibers has been extensively studied in milling, mining of asbestos fibers, and in industries manufacturing asbestos-cement sheets, pipes, etc. However, very few studies have been reported in asbestos textiles, brake lining workers, and insulation products. In the present investigation, chrysotile exposure monitoring was carried out in a small thermal insulating boards manufacturing facility. Twenty-eight samples were analyzed from various locations like feeding of raw materials, weighing, pressing, machine grinding, and hand finishing of final products. Twenty-five percent of the samples were found to be above ACGIH TLV of 0.1 fibers per milliliter. However, mean fiber concentrations were found to be lower than 0.1 fibers per milliliter, except for the process of feeding of raw materials where the mean fiber concentration was 0.1087+/-0.0631 fibers per milliliter. PMID:19626449

  6. Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B,; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1998-01-01

    The photoinitiated bulk polymerization process, which has been used recently in the manufacture of solid optical diffraction filters, is examined to understand the dynamics of both the crystalline colloidal arrays (CCA) and the host monomer species. Our analysis indicates that volume shrinkage of the monomer, changes in the dielectric properties of the monomer, and inhomogeneities of polymerization reaction rate across the dispersion during the polymerization process, are the major contributors for observed lattice compression and lattice disorder of the CCA of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the radiation source on Bragg diffraction of CCA indicated the presence of convective stirring in the thin fluid system during the photopolymerization that deleteriously affects the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested.

  7. POLYMERIC ACRYLATE-BASED HYBRID FILMS CONTAINING LEAD AND IRON PATTERNED BY UV PHOTO-POLYMERIZATION

    PubMed Central

    Han, Huilan; Bissell, John; Yaghmaie, Frank; Davis, Cristina E.

    2009-01-01

    The development and processing of hybrid inorganic-organic thin film materials plays a critical role in advancing interdisciplinary sciences and device manufacturing. Here we present a novel approach to synthesize and deposit acrylate-containing organic/inorganic hybrid films. The material is based on a chemical solution and includes specifically desired metal dopants that are fully-integrated into the backbone of the polymer structure. The film can be deposited by simple spin coating, and we confer photosensitive properties to the material making it directly patterned by traditional UV photolithography techniques. Film thickness, chemical characterization and wet/dry etching capability of the film are also investigated. We believe this innovative material has the potential to be used in a broad range of applications for electronic, photonic, biology and other interdisciplinary fields. PMID:19795818

  8. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    SciTech Connect

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-05-15

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  9. Carbon nanotubes and carbon onions for modification of styrene-acrylate copolymer based nanocomposites

    NASA Astrophysics Data System (ADS)

    Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana; Bitenieks, Juris; Kuzhir, Polina; Maksimenko, Sergey; Kuznetsov, Vladimir; Moseenkov, Sergey

    2014-05-01

    Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC. Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.

  10. Fiber coupler end face wavefront surface metrology

    NASA Astrophysics Data System (ADS)

    Compertore, David C.; Ignatovich, Filipp V.; Marcus, Michael A.

    2015-09-01

    Despite significant technological advances in the field of fiber optic communications, one area remains surprisingly `low-tech': fiber termination. In many instances it involves manual labor and subjective visual inspection. At the same time, high quality fiber connections are one of the most critical parameters in constructing an efficient communication link. The shape and finish of the fiber end faces determines the efficiency of a connection comprised of coupled fiber end faces. The importance of fiber end face quality becomes even more critical for fiber connection arrays and for in the field applications. In this article we propose and demonstrate a quantitative inspection method for the fiber connectors using reflected wavefront technology. The manufactured and polished fiber tip is illuminated by a collimated light from a microscope objective. The reflected light is collected by the objective and is directed to a Shack-Hartmann wavefront sensor. A set of lenses is used to create the image of the fiber tip on the surface of the sensor. The wavefront is analyzed by the sensor, and the measured parameters are used to obtain surface properties of the fiber tip, and estimate connection loss. For example, defocus components in the reflected light indicate the presence of bow in the fiber end face. This inspection method provides a contact-free approach for quantitative inspection of fiber end faces and for estimating the connection loss, and can potentially be integrated into a feedback system for automated inspection and polishing of fiber tips and fiber tip arrays.

  11. Small Business Innovations (Fiber Optics)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Foster-Miller, Inc. Waltham, MA developed the In-Situ Fiber Optic Polymer Reaction Monitor which could lead to higher yields and lower costs in complex composite manufacturing. The monitor, developed under a Small Business Innovation Research (SBIR) contract with Langley Research Center, uses an infrared, fiber optic sensor to track the molecular vibrational characteristics of a composite part while it is being cured. It is the first analytical system capable of directly measuring the chemistry of advanced composite materials.

  12. Using a Fiber Loop and Fiber Bragg Grating as a Fiber Optic Sensor to Simultaneously Measure Temperature and Displacement

    PubMed Central

    Chang, Yao-Tang; Yen, Chih-Ta; Wu, Yue-Shiun; Cheng, Hsu-Chih

    2013-01-01

    This study integrated a fiber loop manufactured by using commercial fiber (SMF-28, Corning) and a fiber Bragg grating (FBG) to form a fiber optic sensor that could simultaneously measure displacement and temperature. The fiber loop was placed in a thermoelectric cooling module with FBG affixed to the module, and, consequently, the center wavelength displacement of FBG was limited by only the effects of temperature change. Displacement and temperature were determined by measuring changes in the transmission of optical power and shifts in Bragg wavelength. This study provides a simple and economical method to measure displacement and temperature simultaneously. PMID:23681094

  13. Optical Properties of Acrylate-Based Negative-Type Photoresist and Its Application to Optical Waveguide Fabrication

    NASA Astrophysics Data System (ADS)

    Gustafik, Pavol; Sugihara, Okihiro; Okamoto, Naomichi

    2004-04-01

    In this article, we present some of the optical properties of a polymeric acrylate-based photoresist material called PNME, by its principal components, which are pentaerythritol triacrylate, n-methyldiethanolamine, and eosin. The refractive index and absorption spectra were measured. Because of the low absorption of PNME in the datacom and telecom regions, PNME was studied with respect to its suitability for the fabrication of a channel waveguide and/or an optical fiber. A multimode optical waveguide was fabricated using a cold UV stamping fabrication method, and propagation losses at 1.3 μm were measured. An optical fiber core was fabricated using a light-induced self-writing fabrication method. In our study, it was found that optical waveguides made from PNME have low propagation losses due to smooth sidewalls and the low absorption of PNME. An optical waveguide with a corrugated core was also fabricated.

  14. Manufacturing technology

    SciTech Connect

    Blaedel, K L

    1998-01-01

    The mission of the Manufacturing Technology thrust area at Lawrence Livermore National Laboratory (LLNL) has been to have an adequate base of manufacturing technology, not necessarily resident at LLNL, to conduct their future business. The specific goals were (1) to develop an understanding of fundamental fabrication processes; (2) to construct general purpose process models that have wide applicability; (3) to document their findings and models in journals; (4) to transfer technology to LLNL programs, industry, and colleagues; and (5) to develop continuing relationships with the industrial and academic communities to advance their collective understanding of fabrication processes. In support of this mission, two projects were reported here, each of which explores a way to bring higher precision to the manufacturing challenges that we face over the next few years. The first, ''A Spatial-Frequency-Domain Approach to Designing a Precision Machine Tools,'' is an overall view of how they design machine tools and instruments to make or measure workpieces that are specified in terms of the spatial frequency content of the residual errors of the workpiece surface. This represents an improvement of an ''error budget,'' a design tool that saw significant development in the early 1980's, and has been in active use since then. The second project, ''Micro-Drilling of ICF Capsules,'' is an attempt to define the current state in commercial industry for drilling small holes, particularly laser-drilling. The report concludes that 1-{micro}m diameter holes cannot currently be drilled to high aspect ratios, and then defines the engineering challenges that will have to be overcome to machine holes small enough for NIF capsules.

  15. Fracture toughness of steel-fiber-reinforced bone cement.

    PubMed

    Kotha, S P; Li, C; Schmid, S R; Mason, J J

    2004-09-01

    Fractures in the bone-cement mantle (polymethyl methacrylate) have been linked to the failure of cemented total joint prostheses. The heat generated by the curing bone cement has also been implicated in the necrosis of surrounding bone tissue, leading to loosening of the implants. The addition of reinforcements may improve the fracture properties of bone cement and decrease the peak temperatures during curing. This study investigates the changes in the fracture properties and the temperatures generated in the ASTM F451 tests by the addition of 316L stainless steel fibers to bone cement. The influence of filler volume fraction (5-15% by volume) and aspect ratios (19, 46, 57) on the fracture toughness of the acrylic bone cement was assessed. Increasing the volume fraction of the steel fibers resulted in significant increases in the fracture toughness of the steel-fiber-reinforced composite. Fracture-toughness increases of up to 2.63 times the control values were obtained with the use of steel-fiber reinforcements. No clear trend in the fracture toughness was discerned for increasing aspect ratios of the reinforcements. There is a decrease in the peak temperatures reached during the curing of the steel-fiber-reinforced bone cement, though the decrease is too small to be clinically relevant. Large increases in the fatigue life of acrylic bone cement were also obtained by the addition of steel fibers. These results indicate that the use of steel fibers may enhance the durability of cemented joint prostheses. PMID:15293326

  16. Computer-aided fiber analysis for crime scene forensics

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Mario; Arndt, Christian; Makrushin, Andrey; Dittmann, Jana

    2012-03-01

    The forensic analysis of fibers is currently completely manual and therefore time consuming. The automation of analysis steps can significantly support forensic experts and reduce the time, required for the investigation. Moreover, a subjective expert belief is extended by objective machine estimation. This work proposes the pattern recognition pipeline containing the digital acquisition of a fiber media, the pre-processing for fiber segmentation, and the extraction of the distinctive characteristics of fibers. Currently, basic geometrical features like width, height, area of optically dominant fibers are investigated. In order to support the automatic classification of fibers, supervised machine learning algorithms are evaluated. The experimental setup includes a car seat and two pieces clothing of a different fabric. As preliminary work, acrylic as synthetic and sheep wool as natural fiber are chosen to be classified. While sitting on the seat, a test person leaves textile fibers. The test aims at automatic distinguishing of clothes through the fiber traces gained from the seat with the help of adhesive tape. The digitalization of fiber samples is provided by a contactless chromatic white light sensor. First test results showed, that two optically very different fibers can be properly assigned to their corresponding fiber type. The best classifier achieves an accuracy of 75 percent correctly classified samples for our suggested features.

  17. Spectral attenuation length of scintillating fibers

    NASA Astrophysics Data System (ADS)

    Drexlin, Guido; Eberhard, Veit; Hunkel, Dirk; Zeitnitz, B.

    1995-02-01

    A double spectrometer allows the precise measurement of the spectral attenuation length of scintillating fibers. Exciting the fibers with a N 2-laser at different points and measuring the wavelength dependent light intensity on both ends of the fiber simultaneously, enables a measurement of the attenuation length which is practically independent of systematic uncertainties. The experimental setup can additionally be used for the measurement of the relative light output. Six types of scintillating fibers from four manufactures (Bicron, Kuraray, Pol.Hi.Tech, and Plastifo) were tested. For different fibers the wavelength dependent attenuation lengths were measured from 0.3 m up to 20 m with an accuracy as good as 1%.

  18. Great prospects for fiber optics sensors

    NASA Technical Reports Server (NTRS)

    Hansen, T. E.

    1983-01-01

    Fiber optic sensors provide noise immunity and galvanic insulation at the measurement point. Interest in such sensors is increasing for these reasons. In the United States sales are expected to increase from 12 million dollars in 1981 to 180 million in 1991. Interferometric sensors based on single modus fibers deliver extremely high sensitivity, while sensors based on multi-modus fibers are more easily manufactured. The fiber optic sensors which are available today are based on point measurements. Development of fiber optic sensors in Norway is being carried out at the Central institute and has resulted in the development of medical manometers which are now undergoing clinical testing.

  19. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol. PMID:23544644

  20. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    PubMed

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  1. Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli.

    PubMed

    Tong, Wenhua; Xu, Ying; Xian, Mo; Niu, Wei; Guo, Jiantao; Liu, Huizhou; Zhao, Guang

    2016-06-01

    Acrylic acid is an important industrial feedstock. In this study, a de novo acrylate biosynthetic pathway from inexpensive carbon source glycerol was constructed in Escherichia coli. The acrylic acid was produced from glycerol via 3-hydroxypropionaldehyde, 3-hydroxypropionyl-CoA, and acrylyl-CoA. The acrylate production was improved by screening and site-directed mutagenesis of key enzyme enoyl-CoA hydratase and chromosomal integration of some exogenous genes. Finally, our recombinant strain produced 37.7 mg/L acrylic acid under shaking flask conditions. Although the acrylate production is low, our study shows feasibility of engineering an acrylate biosynthetic pathway from inexpensive carbon source. Furthermore, the reasons for limited acrylate production and further strain optimization that should be performed in the future were also discussed. PMID:26782744

  2. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  3. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  4. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  5. 78 FR 16247 - Approval for Export-Only Manufacturing Authority, Foreign-Trade Zone 203, SGL Automotive Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... public comment has been given in the Federal Register (76 FR 1599, 1/11/2011) and the application has... Automotive Carbon Fibers, LLC, (Carbon Fiber Manufacturing), Moses Lake, Washington Pursuant to its authority... requested export-only manufacturing authority on behalf of SGL Automotive Carbon Fibers, LLC, within FTZ...

  6. Technology and the use of acrylics for provisional dentine protection.

    PubMed

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue. PMID:24566021

  7. Colour Stability of Heat and Cold Cure Acrylic Resins

    PubMed Central

    Ganesh, P R; Reddy, Madan Mohan; Ebenezar, A.V. Rajesh; Sivakumar, G

    2015-01-01

    Introduction: To evaluate the colour stability of heat and cold cure acrylic resins under simulated oral conditions with different colorants. Materials and Methods: Three different brands of heat cure acrylic resin and two rapid cure auto polymerizing acrylic resin of commercial products such as Trevelon Heat Cure (THC), DPI Heat cure (DHC), Pyrax Heat Cure (PHC), DPI Cold cure (DCC) and Acralyn-R-Cold cure (ACC) have been evaluated for discoloration and colour variation on subjecting it to three different, commonly employed food colorants such as Erythrosine, Tartarizine and Sunset yellow. In order to simulate the oral condition the food colorants were diluted with artificial saliva to the samples taken up for the study. These were further kept in an incubator at 37°C ± 1°C. The UV-visible spectrophotometer has been utilized to evaluate the study on the basis of CIE L* a* b* system. The prepared samples for standard evaluation have been grouped as control group, which has been tested with a white as standard, which is applicable for testing the colour variants. Results: The least colour changes was found to be with Sunset Yellow showing AE* value of 3.55 with heat cure acrylic resin branded as PHC material and the highest colour absorption with Tartarizine showing AE* value of 12.43 in rapid cure autopolymerzing acrylic resin material branded as ACC material. Conclusion: ACC which is a self cure acrylic resin shows a higher colour variation to the tartarizine food coloration. There were not much of discoloration values shown on the denture base resins as the food colorants are of organic azodyes. PMID:25738078

  8. Method of manufacturing fibrous hemostatic bandages

    DOEpatents

    Larsen, Gustavo; Spretz, Ruben; Velarde-Ortiz, Raffet

    2012-09-04

    A method of manufacturing a sturdy and pliable fibrous hemostatic dressing by making fibers that maximally expose surface area per unit weight of active ingredients as a means for aiding in the clot forming process and as a means of minimizing waste of active ingredients. The method uses a rotating object to spin off a liquid biocompatible fiber precursor, which is added at its center. Fibers formed then deposit on a collector located at a distance from the rotating object creating a fiber layer on the collector. An electrical potential difference is maintained between the rotating disk and the collector. Then, a liquid procoagulation species is introduced at the center of the rotating disk such that it spins off the rotating disk and coats the fibers.

  9. Effects of denture teeth on the dimensional accuracy of acrylic resin denture bases.

    PubMed

    Baemmert, R J; Lang, B R; Barco, M T; Billy, E J

    1990-01-01

    The Michigan Computer-Graphics Coordinate Measurement System was used to determine the effects of artificial denture teeth on the accuracy of acrylic resin denture bases. Two poly(methyl methacrylate) acrylic resins and two processing techniques were tested. Groups processed with denture teeth reproduced more accurate points than groups processed without denture teeth. Groups processed with a conventional heat-polymerized acrylic resin reproduced more accurate points than groups polymerized with an injection pressing type of acrylic resin. PMID:2083021

  10. High power performance limits of fiber components

    NASA Astrophysics Data System (ADS)

    Holehouse, Nigel; Magné, Julien; Auger, Mathieu

    2015-03-01

    High power combiners are essential for practical fiber lasers, recent developments in pump technology has increased the available brightness and power of pumps significantly, enabling multi kW lasers and pushing combiner designs to new limits. I will present the challenges, measurements and some solutions to these issues. Traditional calculations for combiners underestimate the issues associated with the `tails' of the pump NA distribution, losses in fully filled combiners increase rapidly as pump NA blooms, and subsequent heating effects dominate the combiner's power handling. Acrylate coated pump fibers are reaching their limits and devices and measurements on double clad pump combiners with losses <0.05dB, will be presented enabling multi kW operation, The use of triple clad fibers in the gain section will discussed as a solution for multi kW applications. Results on ultra-low background loss FBG's will be presented, along with developed measurement techniques.

  11. Fiber optic combiner and duplicator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The investigation of the possible development of two optical devices, one to take two images as inputs and to present their arithmetic sum as a single output, the other to take one image as input and present two identical images as outputs is described. Significant engineering time was invested in establishing precision fiber optics drawing capabilities, real time monitoring of the fiber size and exact measuring of fiber optics ribbons. Various assembly procedures and tooling designs were investigated and prototype models were built and evaluated that established technical assurance that the device was feasible and could be fabricated. Although the interleaver specification in its entirety was not achieved, the techniques developed in the course of the program improved the quality of images transmitted by fiber optic arrays by at least an order of magnitude. These techniques are already being applied to the manufacture of precise fiber optic components.

  12. Turbine Manufacture

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The machinery pictured is a set of Turbodyne steam turbines which power a sugar mill at Bell Glade, Florida. A NASA-developed computer program called NASTRAN aided development of these and other turbines manufactured by Turbodyne Corporation's Steam Turbine Division, Wellsville, New York. An acronym for NASA Structural Analysis Program, NASTRAN is a predictive tool which advises development teams how a structural design will perform under service use conditions. Turbodyne uses NASTRAN to analyze the dynamic behavior of steam turbine components, achieving substantial savings in development costs. One of the most widely used spinoffs, NASTRAN is made available to private industry through NASA's Computer Software Management Information Center (COSMIC) at the University of Georgia.

  13. ACUTE TOXICITY AND BEHAVIORAL EFFECTS OF ACRYLATES AND METHACRYLATES TO JUVENILE FATHEAD MINNOWS (JOURNAL VERSION)

    EPA Science Inventory

    Acrylate and methacrylate esters are reactive monomers that are used primarily in the synthesis of acrylic plastics and polymers. Ninety-six hour flow-through acute toxicity tests were conducted with fathead minnows (Pimephales promelas) using 6 acrylates and 6 methacrylates. Nin...

  14. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  15. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  16. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  17. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  18. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  19. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  20. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  1. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  2. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  3. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  4. 40 CFR 721.10101 - Copolymer of alkyl acrylate and ethyleneglycol dimethacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymer of alkyl acrylate and... Significant New Uses for Specific Chemical Substances § 721.10101 Copolymer of alkyl acrylate and...) The chemical substance identified generically as copolymer of alkyl acrylate and...

  5. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS Reg. No. 34364-83-5) identified in paragraph (a) of this section may be.../methyl acrylate/methyl methacrylate polymers consist of basic polymers produced by the...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS Reg. No. 34364-83-5) identified in paragraph (a) of this section may be.../methyl acrylate/methyl methacrylate polymers consist of basic polymers produced by the...

  7. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  8. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  9. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  10. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  11. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  12. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  13. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  14. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  15. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  16. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  17. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  18. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  19. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  20. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). Link to an amendment published at 79 FR 34636... substances identified generically as salt of an acrylate copolymer (PMNs P-00-0333 and P-00-0334) are...

  1. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  2. 40 CFR 721.338 - Salt of an acrylate copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylate copolymer (generic... Substances § 721.338 Salt of an acrylate copolymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as salt of an acrylate...

  3. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  4. 40 CFR 721.10223 - Styrenyl surface treated manganese ferrite with acrylic ester polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ferrite with acrylic ester polymer (generic). 721.10223 Section 721.10223 Protection of Environment... manganese ferrite with acrylic ester polymer (generic). (a) Chemical substance and significant new uses... manganese ferrite with acrylic ester polymer (PMN P-09-582) is subject to reporting under this section...

  5. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  6. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  7. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  8. Mechanical Properties of Heat-treated Carbon Fibers

    NASA Technical Reports Server (NTRS)

    Effinger, Michael R.; Patel, Bhavesh; Koenig, John; Cuneo, Jaques; Neveux, Michael G.; Demos, Chrystoph G.

    2004-01-01

    Carbon fibers are selected for ceramic matrix composites (CMC) are based on their as-fabricated properties or on "that is what we have always done" technical culture while citing cost and availability when there are others with similar cost and availability. However, the information is not available for proper selection of carbon fibers since heat-treated properties are not known for the fibers on the market currently. Heat-treating changes the fiber's properties. Therefore, an effort was undertaken to establish fiber properties on 19 different types of fibers from six different manufactures for both PAN and pitch fibers. Heat-treating has been done at three different temperatures.

  9. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    PubMed Central

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  10. Experimental characterization of PZT fibers using IDE electrodes

    NASA Astrophysics Data System (ADS)

    Wyckoff, Nicholas; Ben Atitallah, Hassene; Ounaies, Zoubeida

    2016-04-01

    Lead zirconate titanate (PZT) fibers are mainly used in active fiber composites (AFC) where they are embedded in a polymer matrix. Interdigitated electrodes (IDE) along the direction of the fibers are used to achieve planar actuation, hereby exploiting the d33 coefficient of PZT. When embedded in the AFC, the PZT fibers are subjected to mechanical loading as well as non-uniform electric field as a result of the IDEs. Therefore, it is important to characterize the electrical and electromechanical behavior of these fibers ex-situ using the IDE electrodes to assess the impact of nonuniform electric field on the properties of the fibers. For that reason, this work aims at quantifying the impact of IDE electrodes on the electrical and electromechanical behavior of PZT fibers, which is necessary for their successful implementation in devices like AFC. The tested fibers were purchased from Advanced Cerametrics and they have an average diameter of 250 micrometers. The IDE electrodes were screen printed on an acrylic substrate. The PZT fibers were subjected to frequency sweeps at low voltages to determine permittivity for parallel and interdigitated electrodes. The piezoelectric e33 constant is determined from electromechanical testing of PZT fibers in parallel electrodes to compare the electromechanical behavior for PZT in bulk and fiber form. The dielectric constant and e33 were found to be lower for the IDE and parallel electrodes compared to bulk but comparable to results published in literature.

  11. Dietary Fiber

    MedlinePlus

    Fiber is a substance in plants. Dietary fiber is the kind you eat. It's a type of carbohydrate. You may also see it listed on a food label as soluble ... types have important health benefits. Good sources of dietary fiber include Whole grains Nuts and seeds Fruit and ...

  12. Fiber Metal Laminates Made by the VARTM Process

    NASA Technical Reports Server (NTRS)

    Jensen, Brian J.; Cano, Roberto J.; Hales, Stephen J.; Alexa, Joel A.; Weiser, Erik S.; Loos, Alfred; Johnson, W.S.

    2009-01-01

    Fiber metal laminates (FMLs) are multi-component materials utilizing metals, fibers and matrix resins. Tailoring their properties is readily achievable by varying one or more of these components. Established FMLs like GLARE utilize aluminum foils, glass fibers and epoxy matrices and are manufactured using an autoclave. Two new processes for manufacturing FMLs using vacuum assisted resin transfer molding (VARTM) have been developed at the NASA Langley Research Center (LaRC). A description of these processes and the resulting FMLs are presented.

  13. Effects of sterilization on optical and mechanical reliability of specialty optical fibers and terminations

    NASA Astrophysics Data System (ADS)

    Stolov, Andrei A.; Warych, Edward T.; Smith, William P.; Fournier, Paula L.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve

    2014-02-01

    Optical fibers and terminations were subjected to different sterilization techniques, including multiple autoclaving and treatments with peracetic acid, E-beam and UV radiation. Effects of different sterilization techniques on key optical and mechanical properties of the fibers and the terminations were revealed. The primary attention was given to behavior of the coatings on the fibers and adhesives used in the terminations in harsh sterilization environments. The optical fibers with following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.

  14. Advanced Technology Composite Fuselage - Manufacturing

    NASA Technical Reports Server (NTRS)

    Wilden, K. S.; Harris, C. G.; Flynn, B. W.; Gessel, M. G.; Scholz, D. B.; Stawski, S.; Winston, V.

    1997-01-01

    The goal of Boeing's Advanced Technology Composite Aircraft Structures (ATCAS) program is to develop the technology required for cost-and weight-efficient use of composite materials in transport fuselage structure. Carbon fiber reinforced epoxy was chosen for fuselage skins and stiffening elements, and for passenger and cargo floor structures. The automated fiber placement (AFP) process was selected for fabrication of stringer-stiffened and sandwich skin panels. Circumferential and window frames were braided and resin transfer molded (RTM'd). Pultrusion was selected for fabrication of floor beams and constant-section stiffening elements. Drape forming was chosen for stringers and other stiffening elements cocured to skin structures. Significant process development efforts included AFP, braiding, RTM, autoclave cure, and core blanket fabrication for both sandwich and stiffened-skin structure. Outer-mold-line and inner-mold-line tooling was developed for sandwich structures and stiffened-skin structure. The effect of design details, process control and tool design on repeatable, dimensionally stable, structure for low cost barrel assembly was assessed. Subcomponent panels representative of crown, keel, and side quadrant panels were fabricated to assess scale-up effects and manufacturing anomalies for full-scale structures. Manufacturing database including time studies, part quality, and manufacturing plans were generated to support the development of designs and analytical models to access cost, structural performance, and dimensional tolerance.

  15. Emerging Materials Technologies That Matter to Manufacturers

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    2015-01-01

    A brief overview of emerging materials technologies. Exploring the weight reduction benefit of replacing Carbon Fiber with Carbon Nanotube (CNT) in Polymer Composites. Review of the benign purification method developed for CNT sheets. The future of manufacturing will include the integration of computational material design and big data analytics, along with Nanomaterials as building blocks.

  16. Mechanical reliability of double clad fibers in typical fiber laser deployment conditions

    NASA Astrophysics Data System (ADS)

    Walorny, Michael; Abramczyk, Jaroslaw; Jacobson, Nick; Tankala, Kanishka

    2016-03-01

    With the rapid acceptance of fiber lasers and amplifiers for various materials processing and defense applications the long term optical and mechanical reliability of the fiber laser, and therefore the components that make up the laser, is of significant interest to the industrial and defense communities. The double clad fiber used in a fiber laser is a key component whose lifetime in typical deployment conditions needs to be understood. The optical reliability of double clad fiber has recently been studied and a predictive model of fiber lifetime has been published. In contrast, a rigorous model for the mechanical reliability of the fiber and an analysis of the variables affecting the lifetime of the fiber in typical deployment conditions has not been studied. This paper uses the COST-218 model which is widely used for analyzing the mechanical lifetime of fiber used in the telecom industry. The factors affecting lifetime are analyzed to make the reader aware of the design choices a laser manufacturer can make, and the information they must seek from fiber suppliers, to ensure excellent lifetime for double clad fiber and consequently for the fiber laser. It is shown that the fiber's stress corrosion susceptibility, its proof strength, the coil diameter and the length of fiber coiled to achieve good beam quality all have important implications on fiber lifetime.

  17. Degradation of a Sodium Acrylate Oligomer by an Arthrobacter sp

    PubMed Central

    Hayashi, Takaya; Mukouyama, Masaharu; Sakano, Kouichi; Tani, Yoshiki

    1993-01-01

    Arthrobacter sp. strain NO-18 was first isolated from soil as a bacterium which could degrade the sodium acrylate oligomer and utilize it as the sole source of carbon. When 0.2% (wt/wt) oligomer was added to the culture medium, the acrylate oligomer was found to be degraded by 70 to 80% in 2 weeks, using gel permeation chromatography. To determine the maximum molecular weight for biodegradation, the degradation test was done with the hexamer, heptamer, and octamer, which were separated from the oligomer mixture by fractional gel permeation chromatography. The hexamer and heptamer were consumed to the extents of 58 and 36%, respectively, in 2 weeks, but the octamer was not degraded. Oligomers with three different terminal groups were synthesized to examine the effect of the different terminal groups on biodegradation, but few differences were found. Arthrobacter sp. NO-18 assimilated acrylic acid, propionic acid, glutaric acid, 2-methylglutaric acid, and 1,3,5-pentanetricarboxylic acid. Degradation of the acrylic unit structure by this strain is discussed. PMID:8517751

  18. JKR studies of adhesion with model acrylic elastomers

    SciTech Connect

    Shull, K.R.; Ahn, D.

    1996-12-31

    Acrylic elastomers are widely used in coating applications because of their inherent thermal stability, oil resistance and adhesive properties. These same features make acrylic elastomers attractive for fundamental studies of polymer adhesion. This endeavor has been simplified recently by the development of techniques for producing monodisperse acrylic homopolymers and block copolymers from anionically synthesized parent polyacrylates, thus allowing precise microstructural control of adhering surfaces. In terms of the adhesion measurement itself, an adhesion test based upon the theory of Johnson, Kendall and Roberts (JKR), henceforth referred to as the JKR technique, is well suited for probing the molecular origins of adhesion in elastomeric systems. This technique is quite practical, and minimizes the sample volume to reduce bulk viscoelastic losses. Further, the JKR technique permits testing at very low crack velocities, where interfacial effects are unobscured by bulk effects. In this paper, the authors report the results of JKR adhesion tests between poly(n-butyl acrylate) (PNBA) elastomers and poly(methyl methacrylate) (PMMA). The latter is employed as a control substrate because its inertness and low surface energy (relative to metallic or silicon based surfaces) are conducive to the creation of reproducible solid surfaces.

  19. 40 CFR 721.10519 - Perfluoroalkyl acrylate copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Perfluoroalkyl acrylate copolymer (generic). 721.10519 Section 721.10519 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  20. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for the... processors of this substance as specified in § 721.125 (a), (b), (c), (d), (f), (g), (h), and (i). (2... substance may cause internal organ effects (kidney and blood). The requirements of this section do not...

  1. Humidity-responsive starch-poly (methyl acrylate) films.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blown films prepared from starch-poly(methyl acrylate) graft copolymers plasticized with urea and water display shrinkage at relative humidities greater than 50%. Shrinkage at relative humidities below approximately 75% is strongly correlated with the urea/starch weight ratio, which controls the eq...

  2. Acrylic resin injection method for blood vessel investigations.

    PubMed

    Suwa, Fumihiko; Uemura, Mamoru; Takemura, Akimichi; Toda, Isumi; Fang, Yi-Ru; Xu, Yuan Jin; Zhang, Zhi Yuan

    2013-01-01

    The injection of acrylic resin into vessels is an excellent method for macroscopically and microscopically observing their three-dimensional features. Conventional methods can be enhanced by removal of the polymerization inhibitor (hydroquinone) without requiring distillation, a consistent viscosity of polymerized resin, and a constant injection pressure and speed. As microvascular corrosion cast specimens are influenced by viscosity, pressure, and speed changes, injection into different specimens yields varying results. We devised a method to reduce those problems. Sodium hydroxide was used to remove hydroquinone from commercial methylmethacrylate. The solid polymer and the liquid monomer were mixed using a 1 : 9 ratio (low-viscosity acrylic resin, 9.07 ± 0.52 mPa•s) or a 3:7 ratio (high-viscosity resin, 1036.33 ± 144.02 mPa•s). To polymerize the acrylic resin for injection, a polymerization promoter (1.0% benzoyl peroxide) was mixed with a polymerization initiator (0.5%, N, N-dimethylaniline). The acrylic resins were injected using a precise syringe pump, with a 5-mL/min injection speed and 11.17 ± 1.60 mPa injection pressure (low-viscosity resin) and a 1-mL/min injection speed and 58.50 ± 5.75 mPa injection pressure (high-viscosity resin). Using the aforementioned conditions, scanning electron microscopy indicated that sufficient resin could be injected into the capillaries of the microvascular corrosion cast specimens. PMID:24107720

  3. 40 CFR 721.330 - Aromatic acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aromatic acrylate (generic). 721.330 Section 721.330 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES... section. (2) The significant new uses are: (i) Release to water. Requirements as specified §...

  4. Synthesis of novel polyfluorinated acrylic monomers and oligomers

    SciTech Connect

    Antonucci, J.M.; Stansbury, J.W.

    1993-12-31

    An unhindered tertiary amine catalyzed reaction of monofunctional and difunctional hydrocarbon acrylates with paraformaldehyde under neat conditions yields unique difunctional acrylic monomers and oligomers, respectively. These multifunctional vinyl products have a predominantly 1,6-diene structure which favors cyclopolymerization. This reaction has been extended to the synthesis of similar polyfluorinated aliphatic monomers arrangements are determined by the nature of their fluoroester groups, e.g.-CF{sub 2}CH{sub 2}O{sub 2}C- favors a 1,4-diene rather than a 1,6-diene structure. In the present study the scope of this novel formaldehyde/acrylate insertion condensation reaction was further extended to include the synthesis of polyfluorinated aryl difunctional monomers and oligomers, e.g. from 2,3,4,5,6-pentafluorobenzyl acrylate and hexafluorobisphenol A diacrylate. The former did not require DMSO and yielded 1,6-, 1,8- and 1,10-dienes whereas the latter required DMSO and yielded oligomers mainly with 1,4-diene linkages.

  5. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  6. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  7. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  8. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as...

  9. Bond strength between acrylic resin and maxillofacial silicone

    PubMed Central

    HADDAD, Marcela Filié; GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; CREPALDI, Nádia de Marchi; PESQUEIRA, Aldiéris Alves; BANNWART, Lisiane Cristina

    2012-01-01

    The development of implant dentistry improved the possibilities of rehabilitation with maxillofacial prosthesis. However, clinically it is difficult to bond the silicone to the attachment system. Objectives This study aimed to evaluate the effect of an adhesive system on the bond strength between acrylic resin and facial silicone. Material and Methods A total of 120 samples were fabricated with auto-polymerized acrylic resin and MDX 4-4210 facial silicone. Both materials were bonded through mechanical retentions and/or application of primers (DC 1205 primer and Sofreliner primer S) and adhesive (Silastic Medical Adhesive Type A) or not (control group). Samples were divided into 12 groups according to the method used to attach the silicone to the acrylic resin. All samples were subjected to a T-peel test in a universal testing machine. Failures were classified as adhesive, cohesive or mixed. The data were evaluated by the analysis of variance (ANOVA) and the Tukey's HSD test (α=.05). Results The highest bond strength values (5.95 N/mm; 3.07 N/mm; 4.75 N/mm) were recorded for the samples that received a Sofreliner primer application. These values were significantly higher when the samples had no scratches and did not receive the application of Silastic Medical Adhesive Type A. Conclusions The most common type of failure was adhesive. The use of Sofreliner primer increased the bond strength between the auto-polymerized acrylic resin and the Silastic MDX 4-4210 facial silicone. PMID:23329247

  10. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate ester copolymer coating. 175.210 Section 175.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: ADHESIVES AND COMPONENTS...

  11. Effects of sterilization methods on key properties of specialty optical fibers used in medical devices

    NASA Astrophysics Data System (ADS)

    Stolov, Andrei A.; Slyman, Brian E.; Burgess, David T.; Hokansson, Adam S.; Li, Jie; Allen, R. Steve

    2013-03-01

    Optical fibers with different types of polymer coatings were exposed to three sterilization conditions: multiple autoclaving, treatment with ethylene oxide and treatment with gamma rays. Effects of different sterilization techniques on key optical and mechanical properties of the fibers are reported. The primary attention is given to behavior of the coatings in harsh sterilization environments. The following four coating/buffer types were investigated: (i) dual acrylate, (ii) polyimide, (iii) silicone/PEEK and (iv) fluoroacrylate hard cladding/ETFE.

  12. The Economics of Big Area Addtiive Manufacturing

    SciTech Connect

    Post, Brian; Lloyd, Peter D; Lindahl, John; Lind, Randall F; Love, Lonnie J; Kunc, Vlastimil

    2016-01-01

    Case studies on the economics of Additive Manufacturing (AM) suggest that processing time is the dominant cost in manufacturing. Most additive processes have similar performance metrics: small part sizes, low production rates and expensive feedstocks. Big Area Additive Manufacturing is based on transitioning polymer extrusion technology from a wire to a pellet feedstock. Utilizing pellets significantly increases deposition speed and lowers material cost by utilizing low cost injection molding feedstock. The use of carbon fiber reinforced polymers eliminates the need for a heated chamber, significantly reducing machine power requirements and size constraints. We hypothesize that the increase in productivity coupled with decrease in feedstock and energy costs will enable AM to become more competitive with conventional manufacturing processes for many applications. As a test case, we compare the cost of using traditional fused deposition modeling (FDM) with BAAM for additively manufacturing composite tooling.

  13. A method for measuring dermal exposure to multifunctional acrylates.

    PubMed

    Surakka, J; Johnsson, S; Rosén, G; Lindh, T; Fischer, T

    1999-12-01

    UV-curable acrylates are used increasingly for coating wood surfaces in the furniture industry. One of the active components, tripropylene glycol diacrylate (TPGDA), is known to be both an allergen and irritant to the skin. Methods to measure dermal exposure to skin irritants and allergens, such as acrylates, are insufficient for exposure assessment and there is none for this compound. The aim of this investigation was to develop a skin and surface sampling method, based on tape stripping, and a gas chromatographic method for quantitative analysis for assessing occupational skin exposure to multifunctional acrylates. Twelve adhesives were tested for their efficiency to remove TPGDA and UV-coating from a glass surface, the skin of guinea pigs and human volunteers employing the tape-stripping method in order to find the best performing tape. Variables that affect removal efficiency such as the applied dose and its retention time on the skin, tape adhesion time on the skin, and the number of strippings required to detect the contaminant from the skin were studied. Fixomull tape performed the best during sampling and analysis and had the most consistent removal efficiencies for the studied substances. The average removal efficiency with a single stripping at the 2 microliters TPGDA exposed skin sites was 85% (RSD = 14.1), and for UV-resin exposed sites 63% (RSD = 20.2). The results indicated that this method can be used for measuring dermal exposure to multifunctional acrylates efficiently, accurately, and economically. This method provides a sensitive and powerful tool for the assessment of dermal exposure to multifunctional acrylates both from the skin and from other contaminated surfaces in occupational field settings. PMID:11529185

  14. Manufacturing developments in insulation application

    NASA Technical Reports Server (NTRS)

    Yates, I. C., Jr.

    1971-01-01

    Manufacturing development studies have been conducted to provide information on the fabrication and handling characteristics of a number of candidate multilayer insulation systems. The application of these complex, lightweight insulation systems to large-scale, flight-type cryogenic tankage and other structures has of necessity required the development of new methods, processes, and tooling concepts. Results of some of the studies that have contributed to the advancement of cryogenic technology are presented. The insulation systems that are of primary importance for future application are those using the sliced foam spacers, the net type spacers, the glass fiber paper spacers, and the Superfloc system which consists of tufts of dacron fibers flocked on the surface of the radiation shields.

  15. Cloud manufacturing: a new manufacturing paradigm

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Luo, Yongliang; Tao, Fei; Li, Bo Hu; Ren, Lei; Zhang, Xuesong; Guo, Hua; Cheng, Ying; Hu, Anrui; Liu, Yongkui

    2014-03-01

    Combining with the emerged technologies such as cloud computing, the Internet of things, service-oriented technologies and high performance computing, a new manufacturing paradigm - cloud manufacturing (CMfg) - for solving the bottlenecks in the informatisation development and manufacturing applications is introduced. The concept of CMfg, including its architecture, typical characteristics and the key technologies for implementing a CMfg service platform, is discussed. Three core components for constructing a CMfg system, i.e. CMfg resources, manufacturing cloud service and manufacturing cloud are studied, and the constructing method for manufacturing cloud is investigated. Finally, a prototype of CMfg and the existing related works conducted by the authors' group on CMfg are briefly presented.

  16. V1.6 Development of Advanced Manufacturing Technologies for Low Cost Hydrogen Storage Vessels

    SciTech Connect

    Leavitt, Mark; Lam, Patrick; Nelson, Karl M.; johnson, Brice A.; Johnson, Kenneth I.; Alvine, Kyle J.; Ruiz, Antonio; Adams, Jesse

    2012-10-01

    The goal of this project is to develop an innovative manufacturing process for Type IV high-pressure hydrogen storage vessels, with the intent to significantly lower manufacturing costs. Part of the development is to integrate the features of high precision AFP and commercial FW. Evaluation of an alternative fiber to replace a portion of the baseline fiber will help to reduce costs further.

  17. Oil palm empty fruit bunch (OPEFB) fiber reinforced PVC/ENR blend-electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Ratnam, Chantara Thevy; Raju, Gunasunderi; Yunus, Wan Md Zin Wan

    2007-12-01

    The effect of irradiation on the tensile properties of oil palm empty fruit bunch (OPEFB) fiber reinforced poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blends were studied. The composites were prepared by mixing the fiber and the PVC/ENR blend using HAAKE Rheomixer at 150 °C. The composites were then irradiated by using a 3.0 MeV electron beam machine at doses ranging from 0 to 100 kGy in air and room temperature. The tensile strength, Young's modulus, elongation at break and gel fraction of the composites were measured. Comparative studies were also made by using poly(methyl acrylate) grafted OPEFB fiber in the similar blend system. An increase in tensile strength, Young's modulus and gel fraction, with a concurrent reduction in the elongation at break (Eb) of the PVC/ENR/OPEFB composites were observed upon electron beam irradiation. Studies revealed that grafting of the OPEFB fiber with methyl acrylate did not cause appreciable effect to the tensile properties and gel fraction of the composites upon irradiation. The morphology of fractured surfaces of the composites, examined by a scanning electron microscope showed an improvement in the adhesion between the fiber and the matrix was achieved upon grafting of the fiber with methyl acrylate.

  18. Morphological, spectral and chromatography analysis and forensic comparison of PET fibers.

    PubMed

    Farah, Shady; Tsach, Tsadok; Bentolila, Alfonso; Domb, Abraham J

    2014-06-01

    Poly(ethylene terephthalate) (PET) fiber analysis and comparison by spectral and polymer molecular weight determination was investigated. Plain fibers of PET, a common textile fiber and plastic material was chosen for this study. The fibers were analyzed for morphological (SEM and AFM), spectral (IR and NMR), thermal (DSC) and molecular weight (MS and GPC) differences. Molecular analysis of PET fibers by Gel Permeation Chromatography (GPC) allowed the comparison of fibers that could not be otherwise distinguished with high confidence. Plain PET fibers were dissolved in hexafluoroisopropanol (HFIP) and analyzed by GPC using hexafluoroisopropanol:chloroform 2:98 v/v as eluent. 14 PET fiber samples, collected from various commercial producers, were analyzed for polymer molecular weight by GPC. Distinct differences in the molecular weight of the different fiber samples were found which may have potential use in forensic fiber comparison. PET fibers with average molecular weights between about 20,000 and 70,000 g mol(-1) were determined using fiber concentrations in HFIP as low as 1 μg mL(-1). This GPC analytical method can be applied for exclusively distinguish between PET fibers using 1 μg of fiber. This method can be extended to forensic comparison of other synthetic fibers such as polyamides and acrylics. PMID:24725864

  19. Effect of Polymerization Cycles on Gloss, Roughness, Hardness and Impact Strength of Acrylic Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Folli, Bianca L; Nogueira, Moises C F; Correr, Americo Bortolazzo; Mesquita, Marcelo F

    2016-04-01

    The aim of this study was to evaluate the conventional and boiled polymerization cycles on gloss, roughness, hardness and impact strength of acrylic resins. Samples were made for each Classico and QC-20 materials (n=10) in dental stone molds obtained from rectangular metallic matrices embedded in metallic flasks. The powder-liquid ratio and manipulation of the acrylic resins' were accomplished according to manufacturers' instructions and the resins were conventionally packed in metallic flasks. After polymerization by (1) conventional: 74 °C for 9 h (Classico) and (2) boiled: 20 min (QC-20) cycles, the samples were deflasked after cooling at room temperature and conventionally finished and polished. The properties were evaluated after storage in water at 37 °C for 24 h. Gloss was verified with Multi Gloss 268 meter (Konica Minolta), surface roughness was measured with Surfcorder SE 1700 rugosimeter (Kosaka), Knoop hardness number was obtained with HMV-200 microdurometer, and impact strength was measured in an Otto Wolpert-Werke device by Charpy system (40 kpcm). Data were subjected to Student's t-test (at α=0.05). The results were: Gloss: 67.7 and 62.2 for Classico and QC-20 resins, respectively; Surface roughness: 0.874 and 1.469 Ra-µm for Classico and QC-20, respectively; Knoop hardness: 27.4 and 26.9 for Classico and QC-20, respectively; and Impact strength: 37.6 and 33.6 kgf/cm2 for Classico and QC-20, respectively. No statistically significant difference (p>0.05)were found between the resins for the evaluated properties. In conclusion, conventional and boiled polymerization cycles had similar effects on gloss, roughness, hardness and impact strength of both Classico and QC-20 resins. PMID:27058380

  20. Embedded sensors in layered manufacturing

    NASA Astrophysics Data System (ADS)

    Li, Xiaochun

    Layered Manufacturing can be applied to build ``smart'' parts with sensors, integrated circuits, and actuators placed within the component. Embedded sensors can be used to gain data for validating or improving designs during the prototype stage or to obtain information on the performance and structural integrity of components in service. Techniques for embedding fiber optic sensors in metals, polymers, and ceramics have been investigated. Embedding optical fibers into metals is especially challenging because engineering alloys tend to exhibit high melting temperatures. In the present research an embedding sequence was developed capable of embedding fiber sensors into parts made of metal alloys with high melting temperatures. Fiber Bragg Grating (FBG) sensors were selected as the most promising sensor candidate. The embedded FBG sensors were characterized for temperature and strain measurements. The embedded FBG sensors in nickel and stainless steel provided high sensitivity, good accuracy, and high temperature capacity for temperature measurements. Temperature sensitivity approximately 100% higher than that of bare FBGs was demonstrated. For strain measurements, the sensors embedded in metal and polyurethane yielded high sensitivity, accuracy, and linearity. The sensitivity of the embedded FBGs was in good agreement with that of bare FBGs. Moreover, a decoupling technique for embedded FBG sensors was developed to separate temperature and strain effects. The embedded FBG sensors were used to monitor the accumulation of residual stresses during the laser- assisted Layered Manufacturing, to measure the strain field in layered materials, to measure pressure, and to monitor temperature and strain simultaneously. New techniques have been developed for temperature and strain measurements of rotating components with FBG sensors embedded or attached to the surface. Tunable laser diodes were incorporated into the sensing system for monitoring the Bragg grating wavelength

  1. Composites in manufacturing - Case studies

    SciTech Connect

    Strong, A.B. )

    1991-01-01

    The papers presented in this volume focus on 19 cases of applied technology in composites design and manufacturing, all of them dealing with specific products. Topics covered include design using composite in aerospace, innovative materials and processing, tooling, fasteners and adhesives, finishing, repair, specialty applications of composites, and applications in the automotive industry. Papers are presented on the filament winding of isogrid fuselage structures; design and use of aramid fiber in aircraft structures; resin transfer molding of a complex composite aircraft structure; and field repair of an advanced helicopter vertical fin structure.

  2. Fiber sensing with photorefractive fiber

    NASA Astrophysics Data System (ADS)

    Yu, Francis T. S.; Guo, Ruyan; Wang, Bo; Liu, Yuexin

    2002-11-01

    Optical fibers have been widely used for transmitting temporal signal. However, the transmission of spatial signal has not been fully exploited. Although multimode fiber has a large space-bandwidth product, transmitting spatial signals by using a fiber is rather difficult. When a laser beam is lached into a multimode fiber, the exit light field produces a complicated speckle pattern caused by the modal phasing of the fiber. It is difficult to recover the transmitted informati from the speckle field. However, the fiber speckle field can be used to fiber sensing with a hologrpahic method. In other words, if a hologram is made with the speckle fiber field, the information of the fiber status can be recovered. Thus by reading the hologram by the same speckle field, the reference beam can be reconstructed, which represents the detection of the speckle field. In other words, instead of exploiting the temporal content, the spatial content from a multimode fiber can be exploited for sensing. Our analyses and experimentations have shown that the fiber specklegram sensor (FSS) is highly senstiive to perturbation, and it is less vulnerable to the environment factors. Applications of the FSS to temperature, transversal displacement, and dynamic sensing are also included.

  3. Advanced Manufacturing Technologies

    NASA Technical Reports Server (NTRS)

    Fikes, John

    2016-01-01

    Advanced Manufacturing Technologies (AMT) is developing and maturing innovative and advanced manufacturing technologies that will enable more capable and lower-cost spacecraft, launch vehicles and infrastructure to enable exploration missions. The technologies will utilize cutting edge materials and emerging capabilities including metallic processes, additive manufacturing, composites, and digital manufacturing. The AMT project supports the National Manufacturing Initiative involving collaboration with other government agencies.

  4. Carbon Fiber Biocompatibility for Implants

    PubMed Central

    Petersen, Richard

    2016-01-01

    Carbon fibers have multiple potential advantages in developing high-strength biomaterials with a density close to bone for better stress transfer and electrical properties that enhance tissue formation. As a breakthrough example in biomaterials, a 1.5 mm diameter bisphenol-epoxy/carbon-fiber-reinforced composite rod was compared for two weeks in a rat tibia model with a similar 1.5 mm diameter titanium-6-4 alloy screw manufactured to retain bone implants. Results showed that carbon-fiber-reinforced composite stimulated osseointegration inside the tibia bone marrow measured as percent bone area (PBA) to a great extent when compared to the titanium-6-4 alloy at statistically significant levels. PBA increased significantly with the carbon-fiber composite over the titanium-6-4 alloy for distances from the implant surfaces of 0.1 mm at 77.7% vs. 19.3% (p < 10−8) and 0.8 mm at 41.6% vs. 19.5% (p < 10−4), respectively. The review focuses on carbon fiber properties that increased PBA for enhanced implant osseointegration. Carbon fibers acting as polymer coated electrically conducting micro-biocircuits appear to provide a biocompatible semi-antioxidant property to remove damaging electron free radicals from the surrounding implant surface. Further, carbon fibers by removing excess electrons produced from the cellular mitochondrial electron transport chain during periods of hypoxia perhaps stimulate bone cell recruitment by free-radical chemotactic influences. In addition, well-studied bioorganic cell actin carbon fiber growth would appear to interface in close contact with the carbon-fiber-reinforced composite implant. Resulting subsequent actin carbon fiber/implant carbon fiber contacts then could help in discharging the electron biological overloads through electrochemical gradients to lower negative charges and lower concentration. PMID:26966555

  5. An overview of long fiber reinforced thermoplastics

    SciTech Connect

    Bockstedt, R.J.; Skarlupka, R.J.

    1995-12-01

    Long fiber reinforced thermoplastics (LFRTP) are a class of injection molding materials that extend the physical property envelope of thermoplastics polymers. These materials are manufactured by pulling continuous fiber tows through a thermoplastic polymer melt in a specialized processing die. The strands are subsequently cooled and chopped into pellets of equal length. LFRTP materials are available in virtually every common thermoplastic resin with glass, aramid, stainless steel, or carbon fiber reinforcement at levels up to 60% by weight. Unlike short fiber reinforced thermoplastics manufactured by conventional screw compounding processes, LFRTP exhibit simultaneous improvements in both flexural modulus and impact resistance. Improvements in load transfer, creep resistance at elevated temperatures, and dimensional stability can also be attributed to the long fiber network formed in the molded part. This unique combination of properties makes LFRTP the material of choice for replacement of metal structural assemblies in many automotive, industrial, consumer and recreational applications.

  6. 40 CFR 414.20 - Applicability; description of the rayon fibers subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rayon fibers subcategory. 414.20 Section 414.20 Protection of Environment ENVIRONMENTAL PROTECTION... Rayon Fibers § 414.20 Applicability; description of the rayon fibers subcategory. The provisions of this subpart are applicable to process wastewater discharges resulting from the manufacture of rayon fiber...

  7. Application of a photonic crystal fiber LPG for vibration monitoring

    NASA Astrophysics Data System (ADS)

    Nascimento, I. M.; Chesini, G.; Sousa, Marco; Osório, Jonas H.; Baptista, J. M.; Cordeiro, Cristiano M. B.; Jorge, Pedro A. S.

    2013-05-01

    A fiber optic sensor based on a long-period grating (LPG) inscribed in a photonic crystal fiber is investigated for vibration sensing for structural monitoring applications. In this paper, preliminary results are shown demonstrating the sensor ability to detect vibration induced in a test structure. The sensor frequency response when attached to a loudspeaker-acrylic plate stimulation system (tested in the range from 40 Hz to 2.5 kHz) is analyzed using an intensity based scheme with a tunable laser. An alternative interrogation scheme, where the vibration signal is retrieved from a spectral scan, is also demonstrated and analyzed showing promising characteristics for structural health monitoring.

  8. Wavelength Shifters and Interactions of EDTA with Acrylic & LAB

    NASA Astrophysics Data System (ADS)

    Mohan, Yuvraj; SNO+ Collaboration

    2014-09-01

    The SNO + experiment, an upgrade to the Sudbury Neutrino Observatory, will use linear alkyl-benzene (LAB) liquid scintillator to probe new physics, including 0 νββ decay. Event detection efficiency is heavily affected by radioactive backgrounds, two sources being Rn-222 and Po-210 daughters, some of which has become embedded in the SNO + acrylic vessel after years underground. The leading candidate for polonium leaching is Ethylenediaminetetraacetic acid (EDTA). Before deployment on-site, EDTA's effects on the mechanical integrity of acrylic must be determined. It also must not be soluble in LAB or must be removed before scintillator fill of the vessel, as its presence would result in reduced light yield due to scattering. It was found that EDTA had negligible effects on the Young's Modulus of acrylic. EDTA is also slightly soluble in LAB, but can be completely removed by rinsing with water. Additionally, the study of the light yield and alpha/beta timing profiles of two wavelength shifters - bisMSB and perylene - is critical to determining which should be added to the 0 νββ isotope (tellurium) LAB cocktail. Small-scale results hint that perylene might be better, but this is being confirmed with larger-scale tests. The SNO + experiment, an upgrade to the Sudbury Neutrino Observatory, will use linear alkyl-benzene (LAB) liquid scintillator to probe new physics, including 0 νββ decay. Event detection efficiency is heavily affected by radioactive backgrounds, two sources being Rn-222 and Po-210 daughters, some of which has become embedded in the SNO + acrylic vessel after years underground. The leading candidate for polonium leaching is Ethylenediaminetetraacetic acid (EDTA). Before deployment on-site, EDTA's effects on the mechanical integrity of acrylic must be determined. It also must not be soluble in LAB or must be removed before scintillator fill of the vessel, as its presence would result in reduced light yield due to scattering. It was found that EDTA

  9. Process modifications for improved carbon fiber composites: Alleviation of the electrical hazards problem

    NASA Technical Reports Server (NTRS)

    Ramohalli, K.

    1980-01-01

    Attempts to alleviate carbon-fiber-composite electrical hazards during airplane crash fires through fiber gasification are described. Thermogravimetric and differential scanning calorimetric experiments found several catalysts that caused fibers to combust when composites were exposed to test fires. Composites were tested in the 'Burn-Bang' apparatus and in high voltage electrical detection grid apparatus. In a standard three minute burn test modified composites released no fibers, while state-of-the-art composites released several hundred fiber fragments. Expected service life with and without catalytic modification was studied and electron microscopy and X-ray microanalysis furnished physical appearance and chemical composition data. An acrylic acid polymer fiber coating was developed that wet the carbon fiber surface uniformly with the catalyst, providing a marked contrast with the uneven coats obtained by solution-dipping.

  10. Multiscale characterization of chemical–mechanical interactions between polymer fibers and cementitious matrix

    SciTech Connect

    Hernández-Cruz, Daniel; Hargis, Craig W.; Bae, Sungchul; Itty, Pierre A.; Meral, Cagla; Dominowski, Jolee; Radler, Michael J.; Kilcoyne, David A.; Monteiro, Paulo J. M.

    2014-04-01

    Together with a series of mechanical tests, the interactions and potential bonding between polymeric fibers and cementitious materials were studied using scanning transmission X-ray microscopy (STXM) and microtomography (lCT). Experimental results showed that these techniques have great potential to characterize the polymer fiber-hydrated cement-paste matrix interface, as well as differentiating the chemistry of the two components of a bi-polymer (hybrid) fiber the polypropylene core and the ethylene acrylic acid copolymer sheath. Similarly, chemical interactions between the hybrid fiber and the cement hydration products were observed, indicating the chemical bonding between the sheath and the hardened cement paste matrix. Microtomography allowed visualization of the performance of the samples, and the distribution and orientation of the two types of fiber in mortar. Beam flexure tests confirmed improved tensile strength of mixes containing hybrid fibers, and expansion bar tests showed similar reductions in expansion for the polypropylene and hybrid fiber mortar bars.

  11. Quantitative risk assessment of durable glass fibers.

    PubMed

    Fayerweather, William E; Eastes, Walter; Cereghini, Francesco; Hadley, John G

    2002-06-01

    This article presents a quantitative risk assessment for the theoretical lifetime cancer risk from the manufacture and use of relatively durable synthetic glass fibers. More specifically, we estimate levels of exposure to respirable fibers or fiberlike structures of E-glass and C-glass that, assuming a working lifetime exposure, pose a theoretical lifetime cancer risk of not more than 1 per 100,000. For comparability with other risk assessments we define these levels as nonsignificant exposures. Nonsignificant exposure levels are estimated from (a) the Institute of Occupational Medicine (IOM) chronic rat inhalation bioassay of durable E-glass microfibers, and (b) the Research Consulting Company (RCC) chronic inhalation bioassay of durable refractory ceramic fibers (RCF). Best estimates of nonsignificant E-glass exposure exceed 0.05-0.13 fibers (or shards) per cubic centimeter (cm3) when calculated from the multistage nonthreshold model. Best estimates of nonsignificant C-glass exposure exceed 0.27-0.6 fibers/cm3. Estimates of nonsignificant exposure increase markedly for E- and C-glass when non-linear models are applied and rapidly exceed 1 fiber/cm3. Controlling durable fiber exposures to an 8-h time-weighted average of 0.05 fibers/cm3 will assure that the additional theoretical lifetime risk from working lifetime exposures to these durable fibers or shards is kept below the 1 per 100,000 level. Measured airborne exposures to respirable, durable glass fibers (or shards) in glass fiber manufacturing and fabrication operations were compared with the nonsignificant exposure estimates described. Sampling results for B-sized respirable E-glass fibers at facilities that manufacture or fabricate small-diameter continuous-filament products, from those that manufacture respirable E-glass shards from PERG (process to efficiently recycle glass), from milled fiber operations, and from respirable C-glass shards from Flakeglass operations indicate very low median exposures of 0

  12. Desktop Manufacturing Technologies.

    ERIC Educational Resources Information Center

    Snyder, Mark

    1991-01-01

    Desktop manufacturing is the use of data from a computer-assisted design system to construct actual models of an object. Emerging processes are stereolithography, laser sintering, ballistic particle manufacturing, laminated object manufacturing, and photochemical machining. (SK)

  13. Scintillating optical fibers for fine-grained hodoscopes

    SciTech Connect

    Borenstein, S.R.; Strand, R.C.

    1981-01-01

    Fast detectors with fine spatial resolution will be needed to exploit high event rates at ISABELLE. Scintillating optical fibers for fine grained hodoscopes have been developed by the authors. A commercial manufacturer of optical fibers has drawn and clad PVT scintillator. Detection efficiencies greater than 99% have been achieved for a 1 mm fiber with a PMT over lengths up to 60 cm. Small diameter PMT's and avalanche photodiodes have been tested with the fibers. Further improvements are sought for the fiber and for the APD's sensitivity and coupling efficiency with the fiber.

  14. Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber

    NASA Astrophysics Data System (ADS)

    Gunawan, Fergyanto E.; Homma, Hiroomi; Brodjonegoro, Satryo S.; Hudin, Afzer Bin Baseri; Zainuddin, Aryanti Binti

    In tropical countries such as Indonesia and Malaysia, the empty fruit bunches are wastes of the oil palm industry. The wastes are abundantly available and has reached a level that severely threats the environment. Therefore, it is a great need to find useful applications of those waste materials; but firstly, the mechanical properties of the EFB fiber should be quantified. In this work, a small tensile test machine is manufactured, and the tensile test is performed on the EFB fibers. The results show that the strength of the EFB fiber is strongly affected by the fiber diameter; however, the fiber strength is relatively low in comparison to other natural fibers.

  15. Fiber-reinforced glass

    SciTech Connect

    Beier, W.; Markman, S.

    1997-12-01

    Fiber-reinforced glass composites are glass or glass ceramic matrices reinforced with long fibers of carbon or silicon carbide. These composites are lighter than steel but just as strong as many steel grades, and can resist higher temperatures. They also have outstanding resistance to impact, thermal shock, and wear, and can be formulated to control thermal and electrical conductivity. With proper tooling, operations such as drilling, grinding, and turning can be completed in half the time required for non-reinforced glass. Currently, fiber-reinforced glass components are primarily used for handling hot glass or molten aluminum during manufacturing operations. But FRG is also under test as an engineering material in a variety of markets, including the aerospace, automotive, and semiconductor industries. Toward this end, research is being carried out to increase the size of components that can be delivered on a production basis, to develop economical methods of achieving complex near-net shapes, and to reduce the cycle time for production of specific shapes. This article focuses on the properties and applications of fiber-reinforced glass composites.

  16. Optical Fiber Protection

    NASA Technical Reports Server (NTRS)

    1999-01-01

    F&S Inc. developed and commercialized fiber optic and microelectromechanical systems- (MEMS) based instrumentation for harsh environments encountered in the aerospace industry. The NASA SBIR programs have provided F&S the funds and the technology to develop ruggedized coatings and coating techniques that are applied during the optical fiber draw process. The F&S optical fiber fabrication facility and developed coating methods enable F&S to manufacture specialty optical fiber with custom designed refractive index profiles and protective or active coatings. F&S has demonstrated sputtered coatings using metals and ceramics and combinations of each, and has also developed techniques to apply thin coatings of specialized polyimides formulated at NASA Langley Research Center. With these capabilities, F&S has produced cost-effective, reliable instrumentation and sensors capable of withstanding temperatures up to 800? C and continues building commercial sales with corporate partners and private funding. More recently, F&S has adapted the same sensing platforms to provide the rapid detection and identification of chemical and biological agents

  17. X-ray photoelectron spectroscopic studies of carbon fiber surfaces. 22. Comparison between surface treatment of untreated and previously surface-treated fibers

    SciTech Connect

    Wang, Y.Q.; Viswanathan, H.; Audi, A.A.; Sherwood, P.M.A.

    2000-04-01

    IM7 PAN-based carbon fibers, with a proprietary surface treatment applied by the manufacturer, were analyzed by X-ray photoelectron spectroscopy (XPS). The surface treatment applied by the manufacturer was removed by heating in a vacuum. The fibers detreated in this manner were then subjected to electrochemical treatment. The electrochemical behavior of the as-received fibers and detreated fibers were measured and analyzed. When the same electrochemical treatment was applied to the as-received fibers with their commercial surface treatment intact, a different surface chemistry was observed for the detreated fibers. This study shows that the surface chemistry of treated fibers depends closely on the initial surface chemistry of the fibers and its detreatment. This work shows the importance of using untreated or detreated fibers as precursors for applying reproducible surface treatment so that one can understand and control the surface chemistry of fibers and their interfacial interaction in composites.

  18. Application of manufactured products

    NASA Astrophysics Data System (ADS)

    Sastri, Sankar; Duke, Michael B.

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  19. Application of manufactured products

    NASA Technical Reports Server (NTRS)

    Sastri, Sankar; Duke, Michael B.

    1992-01-01

    A wide range of products can be manufactured from the following materials: (1) lunar regolith or basalt; (2) regolith or rock beneficiated to concentrate plagioclase or other minerals; (3) iron, extracted from lunar soil or rocks by various means; (4) naturally occurring or easily obtained materials that have cementitious properties; and (5) byproducts of the above materials. Among the products that can be produced from these materials are the following: beams; plates and sheets; transparent plates (windows); bricks and blocks; pipes and tubes; low-density materials (foams); fiber, wire, and cables; foils and reflective coatings; hermetic seals (coatings); and formed objects. In addition to oxygen, which can be obtained by several processes, either from unbeneficiated regolith or by reduction of concentrated ilmenite, these materials make the simplest requirements of the lunar resource extraction system. A thorough analysis of the impact of these simplest products on the economics of space operations is not possible at this point. Research is necessary both to define optimum techniques and adapt them to space and to determine the probable market for the products so that the priority of various processes can be assessed. Discussions of the following products are presented: aerobraking heat shields; pressurized habitats; lunar photovoltaic farms; and agricultural systems.

  20. Surface modification of nanoparticles for radiation curable acrylate clear coatings

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Gläsel, H.-J.; Hartmann, E.; Bilz, E.; Mehnert, R.

    2003-08-01

    To obtain transparent, scratch and abrasion resistant coatings a high content of nanosized silica and alumina filler was embedded in radiation-curable acrylate formulations by acid catalyzed silylation using trialkoxysilanes. 29SiMAS NMR and MALDI-TOF mass spectrometry were employed to elucidate the structure of the surface-grafted methacryloxypropyl-, vinyl- and n-propyl-trimethoxysilane. In accordance with NMR findings, MALDI-TOF MS showed highly condensed oligomeric siloxanes of more than 20 monomeric silane units. A ladder-like structure of bound polysiloxanes is proposed rather than a simplified picture of tridentate silane bonding. Hence, silane coupling agents do not only modify the chemical nature of the filler surface but also strongly effect the rheological properties of the acrylate nanodispersions.

  1. Chronic pulmonary dysfunction following acute inhalation of butyl acrylate.

    PubMed

    Bhardwaj, Ravindra; Ducatman, Alan; Finkel, Mitchell S; Petsonk, Edward; Hunt, Janet; Beto, Robert J

    2012-01-01

    Butyl Acrylate (BA) (2-propionic acid; CH2 = CHCOOC4H9) is a colorless liquid commonly used in impregnation agents and adhesives. Dermal contact with BA has previously been reported to cause moderate skin irritation with skin sensitizing potential in humans. Health effects of inhalation of BA have not been previously reported. Accordingly, we document the health conditions of a bystander, first responder and landfill worker exposed to butyl acrylate (BA) released to the atmosphere following a collision and roadside spill in October 1998. Retrospective data were collected via chart review and analyzed for exposure, symptoms, physical findings and radiological, laboratory and spirometry results over a ten-year period. All three patients had similar respiratory symptoms including a dramatic hacking cough and dyspnea. Findings included abnormal pulmonary function tests and breath sounds. These data underscore the potential hazards of BA inhalational exposure and the need to wear additional protective equipment. PMID:23472539

  2. A New Process for Acrylic Acid Synthesis by Fermentative Process

    NASA Astrophysics Data System (ADS)

    Lunelli, B. H.; Duarte, E. R.; de Toledo, E. C. Vasco; Wolf Maciel, M. R.; Maciel Filho, R.

    With the synthesis of chemical products through biotechnological processes, it is possible to discover and to explore innumerable routes that can be used to obtain products of high addes value. Each route may have particular advantages in obtaining a desired product, compared with others, especially in terms of yield, productivity, easiness to separate the product, economy, and environmental impact. The purpose of this work is the development of a deterministic model for the biochemical synthesis of acrylic acid in order to explore an alternative process. The model is built-up with the tubular reactor equations together with the kinetic representation based on the structured model. The proposed process makes possible to obtain acrylic acid continuously from the sugar cane fermentation.

  3. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  4. Hydrogen bonding on the surface of poly(2-methoxyethyl acrylate).

    PubMed

    Li, Guifeng; Ye, Shen; Morita, Shigeaki; Nishida, Takuma; Osawa, Masatoshi

    2004-10-01

    Hydrogen bonding on the interface and in the bulk of a poly(2-methoxyethyl acrylate) (PMEA) thin film has been investigated by sum frequency generation, infrared reflection absorption, and Raman scattering measurements in different kinds of solutions containing hydrogen-bonding donators. These results indicate that the majority of the carbonyl groups on the PMEA surface are hydrogen-bonded with water or ethanol molecules, while the PMEA bulk is still dominated by the free carbonyl group. PMID:15453716

  5. Superselective Embolization in Posttraumatic Priapism with Glubran 2 Acrylic Glue

    SciTech Connect

    Gandini, Roberto; Spinelli, Alessio; Konda, Daniel Reale, Carlo Andrea; Fabiano, Sebastiano; Pipitone, Vincenzo; Simonetti, Giovanni

    2004-09-15

    Two patients with posttraumatic priapism underwent transcatheter embolization using microcoils, resulting in temporary penile detumescence and an apparent resolution of the artero-venous fistula. In both cases, priapism recurred 24 hours after the procedure and was successfully treated through selective transcatheter embolization of the nidus using acrylic glue (Glubran 2). The patients showed complete recovery of sexual activity within 30 days from the procedure and persistent exclusion of the artero-venous fistula after a 12-month follow-up.

  6. Permeation of multifunctional acrylates through selected protective glove materials.

    PubMed

    Renard, E P; Goydan, R; Stolki, T

    1992-02-01

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research and Development. Several recent PMN submissions relate to multifunctional acrylates and essentially no permeation data are available for this class of compounds. To better understand permeation behavior, tests were conducted with trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and two mixtures of HDDA with 2-ethylhexyl acrylate (EHA). Because of the low vapor pressure and low water solubility of these compounds, the tests were conducted by using ASTM Method F739-85 with a silicone rubber sheeting material as the collection medium. Tests were performed at 20 degrees C with butyl, natural, and nitrile rubber glove materials. None of the acrylate compounds nor mixtures was found to permeate the butyl or nitrile rubber under the test conditions. Permeation through the natural rubber was observed in tests with pure HDDA, a 50% HDDA/50% EHA mixture, and a 25% HDDA/75% EHA mixture. TMPTA permeation through the natural rubber was also detected, but only in one of the triplicate tests after the 360-480 min sampling interval. For pure HDDA, the breakthrough detection time was 30-60 min and the steady-state permeation rate was 0.92 micrograms/cm2-min. For the HDDA/EHA mixtures, permeation of both mixture components was detected during the same sampling interval in each test. The breakthrough detection time was 30-60 min for the 50/50 mixture and from 15-30 to 30-60 min for the 25/75 mixture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1543127

  7. Fiber optic photoplethysmograph

    NASA Astrophysics Data System (ADS)

    Bokun, Leszek J.; Domanski, Andrzej W.

    1991-07-01

    Using a very well known characteristic of infrared radiation absorbance by human skin versus the length of radiation wave and by application of the newest achievements of radiation detecting techniques and very fast computing techniques - the authors have designed and manufactured the complete computer system for noninvasive diagnosis of blood vessels in legs. As the basic unit in this system, fiber-optic photoplethysmograph was applied. The measurement method used here was very well described by V. Blazek and some other scientists. This article presents photoplethysmograph and all features of the computer system.

  8. High performance fibers. Final report

    SciTech Connect

    Economy, J.

    1994-01-01

    A two and a half year ONR/ARPA funded program to develop a low cost process for manufacture of a high strength/high modulus sigma/E boron nitride (BN) fiber was initiated on 7/1/90 and ended on 12/31/92. The preparation of high sigma/E BN fibers had been demonstrated in the late 1960's by the PI using a batch nitriding of B2O3 fiber with NH3 followed by stress graphitization at approx. 2000 deg C. Such fibers displayed values comparable to PAN based carbon fibers but the mechanicals were variable most likely because of redeposition of volatiles at 2000 deg C. In addition, the cost of the fibers was very high due to the need for many hours of nitriding necessary to convert the B2O3 fibers. The use of batch nitriding negated two possible cost advantages of this concept, namely, the ease of drawing very fine, multi-filament yarn of B2O3 and more importantly the very low cost of the starting materials.

  9. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  10. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  11. Radiation curing of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Janowska, G.

    Polyester resin containing acrylic acid or its salts was cured with γ 60Co radiation. The course of curing was examined, the gel content and polymerization shrinkage were measured and also thermographic and IR absorption analyses were carried out. It was found that manganese, iron and copper acrylates inhibited the curing of resin while the remaining additives showed a slightly stimulating action. All the additives decreased the polymerization shrinkage by a factor of 2-3 and iron acrylate by as much as 8 times (up to 1%). They also increased the activation energy of the thermal decomposition of resin, and calcium, barium and copper acrylates increased the thermal stability of resin by 20 K. IR absorption spectra showed that acrylic acid and its salts reacted mainly with the monomeric component of the resin (styrene) whereas iron and copper acrylates first attacked the unsaturated bonds of the oligoester.

  12. Epoxy-acrylic core-shell particles by seeded emulsion polymerization.

    PubMed

    Chen, Liang; Hong, Liang; Lin, Jui-Ching; Meyers, Greg; Harris, Joseph; Radler, Michael

    2016-07-01

    We developed a novel method for synthesizing epoxy-acrylic hybrid latexes. We first prepared an aqueous dispersion of high molecular weight solid epoxy prepolymers using a mechanical dispersion process at elevated temperatures, and we subsequently used the epoxy dispersion as a seed in the emulsion polymerization of acrylic monomers comprising methyl methacrylate (MMA) and methacrylic acid (MAA). Advanced analytical techniques, such as scanning transmission X-ray microscopy (STXM) and peak force tapping atomic force microscopy (PFT-AFM), have elucidated a unique core-shell morphology of the epoxy-acrylic hybrid particles. Moreover, the formation of the core-shell morphology in the seeded emulsion polymerization process is primarily attributed to kinetic trapping of the acrylic phase at the exterior of the epoxy particles. By this new method, we are able to design the epoxy and acrylic polymers in two separate steps, and we can potentially synthesize epoxy-acrylic hybrid latexes with a broad range of compositions. PMID:27078740

  13. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  14. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  15. Manufacture and analysis of multilayer woven preforms

    SciTech Connect

    Bannister, M.K.; Herszberg, I.; Coman, F.; Raper, H.; Curiskis, J.

    1994-12-31

    Multilayer woven preforms were manufactured from high-tenacity, continuous multifilament polyester yarn and HTA carbon yarn. Orthogonal fiber architectures were constructed with a variety of binder thread configurations and yarn densities. The effect of the binder thread arrangement upon the as-woven preform architecture was examined. The preforms were then consolidated using liquid moulding techniques and the effect of the consolidation pressure upon the fiber architecture was investigated. Modeling of the preform architecture in its as-woven state is progressing and preliminary results are presented in this paper.

  16. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties. PMID:26438986

  17. N-carboxyethyl chitosan fibers prepared as potential use in tissue engineering.

    PubMed

    Yang, Shuoshuo; Dong, Qi; Yang, Hongjun; Liu, Xin; Gu, Shaojin; Zhou, Yingshan; Xu, Weilin

    2016-01-01

    To improve the hydrophilicity of chitosan fiber, N-carboxyethyl chitosan fiber was prepared through Michael addition between chitosan fiber with acrylic acid. The structure was studied by (1)H NMR. The degree of N-substitution, measured via (1)H NMR, was easily varied from 0.10 to 0.51 by varying the molar ratio of acrylic acid to chitosan. Series of properties of N-carboxyethyl chitosan fiber including mechanical property, crystallinity, thermal property and in vitro degradation were investigated by Instron machine, X-ray diffraction and differential scanning calorimetry and thermogravimetric analysis, respectively. The results showed that, introducing the carboxyethyl group into the backbone chain of chitosan fiber destroyed the intra/intermolecular hydrogen bonding, leading to loss of the intra/intermolecular hydrogen bonding and improvement of hydrophilicity. Indirect cytotoxicity assessment of carboxyethyl chitosan fibers was investigated using a L929 cell line. And the obtained results clearly suggested that N-carboxyethyl chitosan fiber was nontoxic to L929 cells. The N-carboxyethyl chitosan fibers are potential as tissue engineering scaffolds. PMID:26522245

  18. Exploring Manufacturing Technology.

    ERIC Educational Resources Information Center

    Iley, John; And Others

    These teacher's materials for an eight-unit course were developed to help students develop technological literacy, career exploration, and problem-solving skills relative to the manufacturing industries. The eight units include an overview of manufacturing, manufacturing enterprises and systems, manufacturing materials and selection, manufacturing…

  19. Comparison between an Acrylic Splint Herbst and an Acrylic Splint Miniscrew-Herbst for Mandibular Incisors Proclination Control

    PubMed Central

    Manni, Antonio; Pasini, Marco; Nuzzo, Claudio; Grassi, Felice Roberto

    2014-01-01

    Aim. The aim of this study is to compare dental and skeletal effects produced by an acrylic splint Herbst with and without skeletal anchorage for correction of dental class II malocclusion. Methods. The test group was formed by 14 patients that were treated with an acrylic splint miniscrew-Herbst; miniscrews were placed between mandibular second premolars and first molars; controls also consisted of 14 subjects that were treated with an acrylic splint Herbst and no miniscrews. Cephalometric measurements before and after Herbst treatment were compared. The value of α for significance was set at 0.05. Results. All subjects from both groups were successfully treated to a bilateral Class I relationship; mean treatment time was 8,1 months in the test group and 7.8 in the controls. Several variables did not have a statistical significant difference between the two groups. Some of the variables, instead, presented a significant difference such as incisor flaring, mandibular bone base position, and skeletal discrepancy. Conclusions. This study showed that the Herbst appliance associated to miniscrews allowed a better control of the incisor flaring with a greater mandibular skeletal effect. PMID:24963293

  20. Fiber-reinforced syntactic foams

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Jen

    Long fibers are generally preferred for reinforcing foams for performance reasons. However, uniform dispersion is difficult to achieve because they must be mixed with liquid resin prior to foam expansion. New approaches aiming to overcome such problem have been developed at USC's Composites Center. Fiber-reinforced syntactic foams with long fibers (over 6 mm in length) manufactured at USC's Composites Center have achieved promising mechanical properties and demonstrated lower density relative to conventional composite foams. Fiber-reinforced syntactic foams were synthesized from thermosetting polymeric microspheres (amino and phenolic microspheres), as well as thermoplastic PVC heat expandable microspheres (HEMs). Carbon and/or aramid fibers were used to reinforce the syntactic foams. Basic mechanical properties, including shear, tensile, and compression, were measured in syntactic foams and fiber-reinforced syntactic foams. Microstructure and crack propagation behavior were investigated by scanning electron microscope and light microscopy. Failure mechanisms and reinforcing mechanisms of fiber-reinforced syntactic foams were also analyzed. As expected, additions of fiber reinforcements to foams enhanced both tensile and shear properties. However, only limited enhancement in compression properties was observed, and fiber reinforcement was of limited benefit in this regard. Therefore, a hybrid foam design was explored and evaluated in an attempt to enhance compression properties. HEMs were blended with glass microspheres to produce hybrid foams, and hybrid foams were subsequently reinforced with continuous aramid fibers to produce fiber-reinforced hybrid foams. Mechanical properties of these foams were evaluated. Findings indicated that the production of hybrid foams was an effective way to enhance the compressive properties of syntactic foams, while the addition of fiber reinforcements enhanced the shear and tensile performance of syntactic foams. Another approach

  1. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  2. Two Fiber Optical Fiber Thermometry

    NASA Technical Reports Server (NTRS)

    Jones, Mathew R.; Farmer, Jeffery T.; Breeding, Shawn P.

    2000-01-01

    An optical fiber thermometer consists of an optical fiber whose sensing tip is given a metallic coating. The sensing tip of the fiber is essentially an isothermal cavity, so the emission from this cavity will be approximately equal to the emission from a blackbody. Temperature readings are obtained by measuring the spectral radiative heat flux at the end of the fiber at two wavelengths. The ratio of these measurements and Planck's Law are used to infer the temperature at the sensing tip. Optical fiber thermometers have high accuracy, excellent long-term stability and are immune to electromagnetic interference. In addition, they can be operated for extended periods without requiring re-calibration. For these reasons. it is desirable to use optical fiber thermometers in environments such as the International Space Station. However, it has recently been shown that temperature readings are corrupted by emission from the fiber when extended portions of the probe are exposed to elevated temperatures. This paper will describe several ways in which the reading from a second fiber can be used to correct the corrupted temperature measurements. The accuracy and sensitivity to measurement uncertainty will be presented for each method.

  3. Antimicrobial activity of poly(vinyl alcohol)-poly(acrylic acid) electrospun nanofibers.

    PubMed

    Santiago-Morales, Javier; Amariei, Georgiana; Letón, Pedro; Rosal, Roberto

    2016-10-01

    Electrospun nanofibers were prepared from blends of poly(acrylic acid) (PAA) and poly(vinyl alcohol) (PVA). The fibers were stabilized by heat curing at 140°C via anhydride and ketone formation and crosslinking esterification. The antimicrobial effect was assessed using strains of Escherichia coli and Staphylococcus aureus by tracking their capacity to form colonies and their metabolic impairment upon contact with PAA/PVA membranes. Membranes containing >35wt.% PAA displayed significant antibacterial activity, which was particularly high for the gram-positive S. aureus. All membranes were negatively charged, with surface ζ-potential in the (-34.5)-(-45.6)mV range, but the electrostatic interaction with the negatively charged cells was not the reason for the antimicrobial effect. Neither pH reduction nor the passing of non-crosslinked polymers to the solution affected microbial growth. The antibacterial activity was attributed to the chelation of the divalent cations stabilizing the outer cell membrane. The effect on gram-positive bacteria was attributed to the destabilization of the peptidoglycan layer. The sequestration of divalent cations was demonstrated with experiments in which calcium and a chelating agent were added to the cultures in contact with membranes. The damage to bacterial cells was tracked by measuring their surface charge and the evolution of intracellular calcium during the early stages after contact with PAA/PVA membranes. PMID:27318959

  4. Darcy Permeability of Hollow Fiber Bundles Used in Blood Oxygenation Devices

    PubMed Central

    Pacella, Heather E.; Eash, Heidi J.; Federspiel, William J.

    2011-01-01

    Many industrial and biomedical devices (e.g. blood oxygenators and artificial lungs) use bundles of hollow fiber membranes for separation processes. Analyses of flow and mass transport within the shell-side of the fiber bundles most often model the bundle for simplicity as a packed bed or porous media, using a Darcy permeability coefficient estimated from the Blake-Kozeny equation to account for viscous drag from the fibers. In this study, we developed a simple method for measuring the Darcy permeability of hollow fiber membrane bundles and evaluated how well the Blake-Kozeny (BK) equation predicted the Darcy permeability for these bundles. Fiber bundles were fabricated from commercially available Celgard® ×30-240 fiber fabric (300 μm outer diameter fibers @ 35 and 54 fibers/inch) and from a fiber fabric with 193 μm fibers (61 fibers/inch). The fiber bundles were mounted to the bottom of an acrylic tube and Darcy permeability was determined by measuring the elapsed time for a column of glycerol solution to flow through a fiber bundle. The ratio of the measured Darcy permeability to that predicted from the BK equation varied from 1.09 to 0.56. A comprehensive literature review suggested a modified BK equation with the “constant” correlated to porosity. This modification improved the predictions of the BK equation, with the ratio of measured to predicted permeability varying from 1.13 to 0.84. PMID:22927706

  5. Preparation and characterization of chelating fibers based on natural wool for removal of Hg(II), Cu(II) and Co(II) metal ions from aqueous solutions.

    PubMed

    Monier, M; Nawar, N; Abdel-Latif, D A

    2010-12-15

    The graft copolymerization of acrylonitrile (AN) onto natural wool fibers initiated by KMnO(4) and oxalic acid combined redox initiator system in limited aqueous medium was carried out in heterogeneous media. Moreover, modification of the grafted wool fibers was done by changing the nitrile group (-CN) into cyano-acetic acid α-amino-acrylic-hydrazide through the reaction with hydrazine hydrate followed by ethylcyanoacetate which eventually produce wool-grafted-poly(cyano-acetic acid α-amino-acrylic-hydrazide) (wool-g-PCAH) chelating fibers. The application of the modified fibers for metal ion uptake was studied using Hg(2+), Cu(2+) and Co(2+). The modified chelating fibers were characterized using FTIR spectroscopy, SEM and X-ray diffraction. PMID:20810212

  6. Optical Fibers

    NASA Astrophysics Data System (ADS)

    Ghatak, Ajoy; Thyagarajan, K.

    With the development of extremely low-loss optical fibers and their application to communication systems, a revolution has taken fiber glass place during the last 40 years. In 2001, using glass fibers as the transmission medium and lightwaves as carrier wave waves, information was transmitted at a rate more than 1 Tbit/s (which is roughly equivalent to transmission of about 15 million simultaneous telephone conversations) through one hair thin optical fiber. Experimental demonstration of transmission at the rate of 14 Tbit/s over a 160 km long single fiber was demonstrated in 2006, which is equivalent to sending 140 digital high definition movies in 1 s. Very recently record transmission of more than 100 Tbit/s over 165 km single mode fiber has been reported. These can be considered as extremely important technological achievements. In this chapter we will discuss the propagation characteristics of optical fibers with special applications to optical communication systems and also present some of the noncommunication applications such as sensing.

  7. Strength distribution of reinforcing fibers in a Nicalon fiber/chemically vapor infiltrated silicon carbide matrix composite

    NASA Technical Reports Server (NTRS)

    Eckel, Andrew J.; Bradt, Richard C.

    1989-01-01

    The strength distribution of fibers within a two-dimensional laminate ceramic/ceramic composite consisting of an eight harness satin weave of Nicalon continuous fiber within a chemically vapor infiltrated SiC matrix was determined from analysis of the fracture mirrors of the fibers. Comparison of the fiber strengths and the Weibull moduli with those for Nicalon fibers prior to incorporation into composites suggests that possible fiber damage may occur either during the weaving or during another stage of the composite manufacture. Observations also indicate that it is the higher-strength fibers which experience the greatest extent of fiber pullout and thus make a larger contribution to the overall composite toughness than do the weaker fibers.

  8. Assessment of fiber optic pressure sensors

    SciTech Connect

    Hashemian, H.M.; Black, C.L.; Farmer, J.P.

    1995-04-01

    This report presents the results of a six-month Phase 1 study to establish the state-of-the-art in fiber optic pressure sensing and describes the design and principle of operation of various fiber optic pressure sensors. This study involved a literature review, contact with experts in the field, an industrial survey, a site visit to a fiber optic sensor manufacturer, and laboratory testing of a fiber optic pressure sensor. The laboratory work involved both static and dynamic performance tests. In addition, current requirements for environmental and seismic qualification of sensors for nuclear power plants were reviewed to determine the extent of the qualification tests that fiber optic pressure sensors may have to meet before they can be used in nuclear power plants. This project has concluded that fiber optic pressure sensors are still in the research and development stage and only a few manufacturers exist in the US and abroad which supply suitable fiber optic pressure sensors for industrial applications. Presently, fiber optic pressure sensors are mostly used in special applications for which conventional sensors are not able to meet the requirements.

  9. Manufacturing implications of fibre optic systems

    NASA Astrophysics Data System (ADS)

    Roy, S. D.; Gardiner, P. T.

    1982-08-01

    It is pointed out that fiber optic data transmission offers powerful advantages over conventional copper based links. These advantages are related to increased bandwidth, smaller diameter, lower weight, elimination of crosstalk, and complete immunity to electromagnetic interference. A major difficulty concerning the introduction of fiber optic systems has been related to the lack of properly developed manufacturing and repair techniques to produce systems which have an adequate performance compatible with operation in the airborne environment. An experimental manufacturing program was, therefore, initiated to assess the performance of operation, tooling systems, and airborne system performance. On the basis of the results of the investigations, it is concluded that a complete set of components exist, albeit in the prototype state to enable a range of applications. The system performance obtainable is adequate for many interconnection applications.

  10. Electrospinning polyelectrolyte complexes: pH-responsive fibers.

    PubMed

    Boas, Mor; Gradys, Arkadiusz; Vasilyev, Gleb; Burman, Michael; Zussman, Eyal

    2015-03-01

    Fibers were electrospun from a solution comprised of oppositely charged polyelectrolytes, in efforts to achieve highly confined macromolecular packaging. A stoichiometric ratio of poly(allylamine hydrochloride) and poly(acrylic acid) solution was mixed in an ethanol-water co-solvent. Differential scanning calorimetry (DSC) analysis of electrospun fibers demonstrated no indication of glass transition, Tg. Infrared spectroscopy (FTIR) analysis of the fibers as a function of temperature, demonstrated an amidation process at lower temperature compared to cast film. Polarized FTIR indicated a preference of the functional groups to be perpendicular to the fiber axis. These results imply formation of mixed phase fibers with enhanced conditions for intermolecular interactions, due to the highly aligned and confined assembly of the macromolecules. The tunable intermolecular interactions between the functional groups of the polyelectrolytes, impact pH-driven, reversible swelling-deswelling of the fibers. The degree of ionization of PAA at pH 5.5 and pH 1.8 varied from 85% to 18%, correspondingly, causing transformation of ionic interactions to hydrogen bonding between the functional groups. The chemical change led to a massive water diffusion of 500% by weight and to a marked increase of 400% in fiber diameter, at a rate of 0.50 μm s(-1). These results allow for manipulation and tailoring of key fiber properties for tissue engineering, membranes, and artificial muscle applications. PMID:25601204

  11. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  12. A polarisation maintaining fiber optimized for high temperature gyroscopes

    NASA Astrophysics Data System (ADS)

    Tutu, F.; Hill, Mark; Cooper, Laurence; Gillooly, A.

    2015-05-01

    Fiber optic gyroscopes (FOGs) are being used within increasingly severe environments, requiring operational temperatures in excess of the standard operating range for FOGs. Applications requiring these higher temperatures include: directional drilling of wells in oil and gas fields, space applications and military FOG applications. This paper will describe the relative merits of two high temperature acrylate coatings for an optical fiber designed for a FOG in such operating environments. Results for two high temperature acrylates are presented, tested in a 200m length of loose wound fiber, coiled and supported at 75mm diameter, in line with TIA/EIA-455-192 (FOTP-192). It can be seen that both coating types give very good polarization extinction ratio (PER) performance at high temperature up to 180oC, with better performance shown by one coating type on the low temperature side, since it does not harden to the same extent below 0oC. The long term thermal exposure effects will be discussed and experimental results presented which include testing the PER performance over temperature both before and after an extended period of high temperature endurance. This will demonstrate the relative merits of different styles of coatings. From the PER performance, the h-parameter of the fiber can be calculated and hence the preferred coating type selected and recommended for the customer operating environment.

  13. Static Fatigue of Optical Fibers in Bending

    NASA Astrophysics Data System (ADS)

    Roberts, D.; Cuellar, E.; Middleman, L.; Zucker, J.

    1987-02-01

    While delayed fracture, or static fatigue, of optical fibers is well known, it is not well understood, and the prediction of the time to failure under a given set of conditions can be problematic. Unlike short term fracture, which is quite well understood and quantified in terms of the theory of linear elastic fracture mechanics, the long term strength remains empirical. The goal of this study is to determine the design criteria for optical fibers subjected to long term applied mechanical loads. One difficulty in making lifetime predictions, as pointed out by Matthewson (Reference 1) and others, is that predictions made from data taken in tension and in bending do not agree. Another difficulty is the statistical nature of the fracture of glass. In making lifetime predictions it becomes important therefore that one (a) have ample data for statistical analysis and (b) have data for the loading configuration of interest. This is the purpose of our work. Since there is less data available in bending, and since several applications (such as wiring in aircraft and missiles) require bending, the data are taken in that configuration. The most significant finding in our work so far is the very large difference in static fatigue behavior between buffer coatings. Chandan and Kalish (Reference 2) and others have reported static fatigue curves, log (time to failure) versus log (applied stress), which are not linear, but rather bimodal. Our study confirms this result, but so far only for acrylate coated fibers. Silicone coated fibers show unimodal behavior. That is, the log (time to failure) versus log (applied stress) curve is linear, at least on the time scale studied so far. Data for acrylate coated fibers at 80°C in water are linear only for time scales of about one day, where a pronounced "knee" is observed. Data for silicone coated fibers under the same conditions are linear up to at least 6 months. Longer time scale tests and tests on fibers with other buffer materials

  14. Blade Manufacturing Improvement: Remote Blade Manufacturing Demonstration

    SciTech Connect

    ASHWILL, THOMAS D.

    2003-05-01

    The objective of this program was to investigate manufacturing improvements for wind turbine blades. The program included a series of test activities to evaluate the strength, deflection, performance, and loading characteristics of the prototype blades. The original contract was extended in order to continue development of several key blade technologies identified in the project. The objective of the remote build task was to demonstrate the concept of manufacturing wind turbine blades at a temporary manufacturing facility in a rural environment. TPI Composites successfully completed a remote manufacturing demonstration in which four blades were fabricated. The remote demonstration used a manufacturing approach which relied upon material ''kits'' that were organized in the factory and shipped to the site. Manufacturing blades at the wind plant site presents serious logistics difficulties and does not appear to be the best approach. A better method appears to be regional manufacturing facilities, which will eliminate most of the transportation cost, without incurring the logistical problems associated with fabrication directly onsite. With this approach the remote facilities would use commonly available industrial infrastructure such as enclosed workbays, overhead cranes, and paved staging areas. Additional fatigue testing of the M20 root stud design was completed with good results. This design provides adhesive bond strength under fatigue loading that exceeds that of the fastener. A new thru-stud bonding concept was developed for the M30 stud design. This approach offers several manufacturing advantages; however, the test results were inconclusive.

  15. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry.

    PubMed

    Harrison, A; Huggett, R; Handley, R W

    1979-01-01

    This investigation studies the relationship of hardness, elastic modulus and scratch width as dependent variables to the abrasion resistance of twenty-three dental acrylic resins. The multiple correlation R, when all three variables are used as predictors, is 0.727. Because of the significant intercorrelations between the variables themselves a stepwise multiple regression analysis showed hardness as a redundant variable. Abrasive wear can be estimated from the following equation Abrasive wear = 806.1 - 0.1498 modulus + 0.681 scratch width (R = 0.725; standard deviation of estimate +/- 50.8) The deletion of scratch width does not appreciably reduce the standard deviation of the estimate: Abrasive wear = 1063.4 - 0.2055 modulus (r = 0.683; standard deviation of estimate +/- 50.3) The method of curing the specimens conformed to the respective manufacturers' instructions. Abrasion and scratch tests were performed using methods developed by the authors and previously described in the literature, whereas the hardness and elastic modulus results were devised from standard test procedures. Further research is currently in progress to improve the predictive power of abrasion resistance with additional new variables. PMID:429382

  16. Fluoride glass fibers: applications and prospects

    NASA Astrophysics Data System (ADS)

    Poulain, Marcel

    1998-09-01

    Fluoride glass fibers have been intensively developed for the last 20 years. A major effort was devoted to the fabrication of low loss fibers for repeaterless long haul telecommunications. This step which ended in the late eighties provided the basic technology for the manufacturing of multimode and single mode fibers with minimum losses below 10 dB/km. Such fibers area now used for various passive applications requiring the handling of IR signal. In this respect, fluoride fibers are complementary to silica fibers when wavelength exceeds 2 micrometers . Some practical set ups are operating for IR imaging, remote spectroscopy and thermometry. Special fibers such as polarization maintaining fibers have been developed for interferometric astronomy, which could also apply to sensors. UV transmission has still to be developed. Laser power delivery is another field of application for these fibers. YAG:Er laser at 2.9 micrometers attracts a growing interest for medical applications, ophthalmology and dentistry, while prospects for CO laser are positive. Active fibers are based on rare earth doped single mode fibers. They lead to the definition of numerous new laser lines and emphasized the potential of up conversion for the generation of visible light using IR pumping laser diodes. High power output has been achieved in the blue and the red light, which open prospects for compact and all solid state fiber lasers for a wide range of applications, from displays to medical uses. Optical amplification makes another field of R and D centered on telecommunication needs. Pr3+ doped fluoride fibers have been used for the 1.3 micrometers band, and Er based fluoride fiber amplifiers exhibit wider and flatter gain than those made from silica. Optical amplification may be implemented at other wavelengths for more general purposes.

  17. Mass whitening of synthetic fibers and plastics.

    PubMed

    Wieber, A

    1975-01-01

    The evaluation of new and improved techniques has led to the development of mass whitening methods for use with synthetic fibers and plastics. The processes are complex but well defined, and call for the use of sophisticated fluorescent whitening agents (FWAs) to meet the requirements of the fiber or plastics manufacturer, the textile finisher, and the end user. The performances of some leading commercial whiteners are compared and their interactions with dyes, fillers and stabilizers are discussed. PMID:1064550

  18. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    SciTech Connect

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-22

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey’s equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29{sup th} International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  19. Numerical prediction of fiber orientation in injection-molded short-fiber/thermoplastic composite parts with experimental validation

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Morioka, Mizuki; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2015-05-01

    Numerical prediction of the fiber orientation in the short-glass fiber (GF) reinforced polyamide 6 (PA6) composites with the fiber weight concentration of 30%, 50%, and 70% manufactured by the injection molding process is presented. And the fiber orientation was also directly observed and measured through X-ray computed tomography. During the injection molding process of the short-fiber/thermoplastic composite, the fiber orientation is produced by the flow states and the fiber-fiber interaction. Folgar and Tucker equation is the well known for modeling the fiber orientation in a concentrated suspension. They included into Jeffrey's equation a diffusive type of term by introducing a phenomenological coefficient to account for the fiber-fiber interaction. Our developed model for the fiber-fiber interaction was proposed by modifying the rotary diffusion term of the Folgar-Tucker equation. This model was presented in a conference paper of the 29th International Conference of the Polymer Processing Society published by AIP conference proceeding. For modeling fiber interaction, the fiber dynamic simulation was introduced in order to obtain a global fiber interaction coefficient, which is sum function of the fiber concentration, aspect ratio, and angular velocity. The fiber orientation is predicted by using the proposed fiber interaction model incorporated into a computer aided engineering simulation package C-Mold. An experimental program has been carried out in which the fiber orientation distribution has been measured in 100 x 100 x 2 mm injection-molded plate and 100 x 80 x 2 mm injection-molded weld by analyzed with a high resolution 3D X-ray computed tomography system XVA-160α, and calculated by X-ray computed tomography imaging. The numerical prediction shows a good agreement with experimental validation. And the complex fiber orientation in the injection-molded weld was investigated.

  20. METHOD FOR MEASURING CARBON FIBER EMISSIONS FROM STATIONARY SOURCES

    EPA Science Inventory

    Carbon fibers are highly conductive, lightweight and of small dimensions. When released as emissions from production, manufacturing, processing and disposal sources they may become airborne and disperse over wide areas. If they settle onto electronic or electrical components they...

  1. Acrylic fragmentation in total hip replacements and its biological consequences.

    PubMed

    Jasty, M; Jiranek, W; Harris, W H

    1992-12-01

    Loosening of total joint prostheses is in part related to the fragmentation of the acrylic cement mantle surrounding the prosthesis and the biologic consequences to the particulate acrylic. Fractographic studies of femoral cement mantles retrieved at revision surgery and autopsy showed frequent fractures in varying stages of development in the cement and wear at the fracture surfaces. Defects in the cement mantle, thin mantles, sharp corners on the prosthesis, separation at the cement mantle interface, and pores in the cement were frequently associated with cement fractures. The progressive fractures and wear led to the liberation of particulate acrylic debris into the surrounding tissues. The tissues at the bone-cement interface removed at revision surgery showed that a macrophage, giant-cell foreign-body granulomatous reaction occurs in response to the particulate, but not bulk cement. This tissue can produce a variety of chemical mediators of inflammation and bone resorption, and can resorb bone in organ cultures. A granulomatous tissue reaction with a very similar appearance can be produced in experimental animals using particulate-form polymethylmethacrylate (PMMA), but not the bulk form of PMMA. The tissue reaction is not mediated by the classic cell or humeral immune mechanisms. Subcutaneous injection of particulate PMMA powder into fully immunocompetent C3Hf/SED mice as well as three strains of mice with progressive immunologic deficiencies (nude/nude, SCID, and triple deficient Nu-bg-XID/SED mice) led to a foreign-body reaction in all strains at five weeks as shown by histologic and immunohistochemical examination despite the differences in immune deficiency. This, along with the scarcity of lymphocytes in the human tissues, suggests that the biologic reactions to fragmented cement can be produced and sustained by nonimmune phagocytosis and activation by macrophages and giant cells without significant contribution by the immune system. PMID:1446427

  2. Anomerization of Acrylated Glucose During Traveling Wave Ion Mobility Spectrometry

    NASA Astrophysics Data System (ADS)

    Chendo, Christophe; Moreira, Guillaume; Tintaru, Aura; Posocco, Paola; Laurini, Erik; Lefay, Catherine; Gigmes, Didier; Viel, Stéphane; Pricl, Sabrina; Charles, Laurence

    2015-09-01

    Anomerization of simple sugars in the liquid phase is known as an acid- and base-catalyzed process, which highly depends on solvent polarity. This reaction is reported here to occur in the gas phase, during traveling wave ion mobility spectrometry (TWIMS) experiments aimed at separating α- and β-anomers of penta-acrylated glucose generated as ammonium adducts in electrospray ionization. This compound was available in two samples prepared from glucose dissolved in solvents of different polarity, namely tetrahydrofuran (THF) and N,N-dimethylacetamide (DMAC), and analyzed by electrospray tandem mass spectrometry (ESI-MS/MS) as well as traveling wave ion mobility (ESI-TWIMS-MS). In MS/MS, an anchimerically-assisted process was found to be unique to the electrosprayed α-anomer, and was only observed for the THF sample. In ESI-TWIMS-MS, a signal was measured at the drift time expected for the α-anomer for both the THF and DMAC samples, in apparent contradiction to the MS/MS results, which indicated that the α-anomer was not present in the DMAC sample. However, MS/MS experiments performed after TWIMS separation revealed that ammonium adducts of the α-anomer produced from each sample, although exhibiting the same collision cross section, were clearly different. Indeed, while the α-anomer actually present in the THF sample was electrosprayed with the ammonium adducted at the C2 acrylate, its homologue only observed when the DMAC sample was subjected to TWIMS hold the adducted ammonium at the C1 acrylate. These findings were explained by a β/α inter-conversion upon injection in the TWIMS cell, as supported by theoretical calculation and dynamic molecular modeling.

  3. Carbon fibers from SRC pitch

    DOEpatents

    Greskovich, Eugene J.; Givens, Edwin N.

    1981-01-01

    This invention relates to an improved method of manufacturing carbon fibers from a coal derived pitch. The improvement resides in the use of a solvent refined coal which has been hydrotreated and subjected to solvent extraction whereby the hetero atom content in the resulting product is less than 4.0% by weight and the softening point is between about 100.degree.-250.degree. F.

  4. Multicomponent glass fiber optic integrated structures

    NASA Astrophysics Data System (ADS)

    Pysz, Dariusz; Kujawa, Ireneusz; Szarniak, Przemyslaw; Franczyk, Marcin; Stepien, Ryszard; Buczynski, Ryszard

    2005-09-01

    A range of integrated fiber optic structures - lightguides, image guides, multicapillary arrays, microstructured (photonic) fibers - manufactured in the Institute of Electronic Materials Technology (ITME) is described. All these structures are made of multicomponent glasses (a part of them melted in ITME). They can be manufactured in similar multistep process that involves drawing glass or lightguide rods and tubes preparing glass performs, stacking a bundle with rods and (or) tubes, drawing multifiber or multicapillary performs. Structure formation, technological process, characterization and applications of different integrated structures are presented.

  5. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    PubMed Central

    Espandar, Ladan; Sikder, Shameema; Moshirfar, Majid

    2011-01-01

    Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL). The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed. PMID:21311658

  6. A Critical Review Of Fiber Optic Connectors

    NASA Astrophysics Data System (ADS)

    Drake, M. D.

    1985-02-01

    Connector and fiber manufacturers have succeeded, to a remarkable degree, in solving their common problem of transferring optical energy from one optical waveguide to another in a reasonably efficient manner. Fiber optic cables and connectors have been on the market for over 10 years during which time the loss in connecting two fibers has gone from greater than 5 dB to less than 1 dB. Concurrently, fiber manufacturers have reduced their core/ cladding diameter variations from +6 microns to 2 microns in 50/125 micron core/clad diameter fibers. Improvements in core/clad concentricity, ovality, and numerical aperture variations have also been made. For a time, a finger pointing exercise went on between connector and fiber manufacturers as to who was responsible for the greatest part of con-nector losses (the separation of losses into intrinsic and extrinsic parts). Both parties had to work together to improve their own product as well as the interface, resulting in better products for the users.

  7. Overview of advanced components for fiber optic systems

    NASA Technical Reports Server (NTRS)

    Depaula, Ramon P.; Stowe, David W.

    1986-01-01

    The basic operating principles and potential performance of several state-of-the-art fiber-optic devices are illustrated with diagrams and briefly characterized. Technologies examined include high-birefringence polarization-maintaining fibers and directional couplers, single-mode fiber polarizers and cut-off polarizers, optical-fiber modulators with radially poled piezoactive polymer (PVF2) jackets, and piezoelectric-squeezer polarization modulators. The need for improved manufacturing techniques to make such fiber-optic devices cost-competitive with their thin-film integrated-optics analogs is indicated.

  8. Energy Use in Manufacturing

    EIA Publications

    2006-01-01

    This report addresses both manufacturing energy consumption and characteristics of the manufacturing economy related to energy consumption. In addition, special sections on fuel switching capacity and energy-management activities between 1998 and 2002 are also featured in this report.

  9. Feed Formulation and Manufacture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides information on feed formulation and manufacture. To formulate and manufacture high quality fish feeds, including tilapia feeds, one should have knowledge of nutrient requirements, nutrient composition, digestibility, and availability of feed ingredients; impacts of manufacturin...

  10. Lactate and Acrylate Metabolism by Megasphaera elsdenii under Batch and Steady-State Conditions

    PubMed Central

    Prabhu, Rupal; Altman, Elliot

    2012-01-01

    The growth of Megasphaera elsdenii on lactate with acrylate and acrylate analogues was studied under batch and steady-state conditions. Under batch conditions, lactate was converted to acetate and propionate, and acrylate was converted into propionate. Acrylate analogues 2-methyl propenoate and 3-butenoate containing a terminal double bond were similarly converted into their respective saturated acids (isobutyrate and butyrate), while crotonate and lactate analogues 3-hydroxybutyrate and (R)-2-hydroxybutyrate were not metabolized. Under carbon-limited steady-state conditions, lactate was converted to acetate and butyrate with no propionate formed. As the acrylate concentration in the feed was increased, butyrate and hydrogen formation decreased and propionate was increasingly generated, while the calculated ATP yield was unchanged. M. elsdenii metabolism differs substantially under batch and steady-state conditions. The results support the conclusion that propionate is not formed during lactate-limited steady-state growth because of the absence of this substrate to drive the formation of lactyl coenzyme A (CoA) via propionyl-CoA transferase. Acrylate and acrylate analogues are reduced under both batch and steady-state growth conditions after first being converted to thioesters via propionyl-CoA transferase. Our findings demonstrate the central role that CoA transferase activity plays in the utilization of acids by M. elsdenii and allows us to propose a modified acrylate pathway for M. elsdenii. PMID:23023753

  11. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  12. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymer units derived from methyl acrylate. (b) The finished food-contact article, when extracted with the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  13. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-01-01

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated. PMID:26248072

  14. 40 CFR 721.10389 - Styrene, copolymer with acrylic acid, salt with alkoxylated alkenylamine (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Styrene, copolymer with acrylic acid... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10389 Styrene, copolymer with acrylic... subject to reporting. (1) The chemical substance identified generically as styrene, copolymer with...

  15. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .../methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS... methacrylate polymers consist of basic polymers produced by the copolymerization of vinylidene chloride/methyl acrylate/methyl methacrylate such that the basic polymers or the finished food-contact articles meet...

  16. Production of superconductor/carbon bicomponent fibers

    NASA Technical Reports Server (NTRS)

    Wise, S. A.; Fain, C. C.; Leigh, H. D.

    1991-01-01

    Certain materials are unable to be drawn or spun into fiber form due to their improper melting characteristics or brittleness. However, fibrous samples of such materials are often necessary for the fabrication of intricate shapes and composites. In response to this problem, a unique process, referred to as the piggyback process, was developed to prepare fibrous samples of a variety of nonspinnable ceramics. In this technique, specially produced C shaped carbon fibers serve as micromolds to hold the desired materials prior to sintering. Depending on the sintering atmosphere used, bicomponent or single component fibers result. While much has been shown worldwide concerning the YBa2Cu3O(7-x) superconductor, fabrication into unique forms has proven quite difficult. However, a variety of intricate shapes are necessary for rapid commercialization of the superconducting materials. The potential for producing fibrous samples of the YBa2Cu3O(7-x) compound by the piggyback process is being studied. Various organic and acrylic materials were studied to determine suspending ability, reactivity with the YBa2Cu3O(7-x) compound during long term storage, and burn out characteristics. While many questions were answered with respect to the interfacial reactions between YBa2Cu3O(7-x) and carbon, much work is still necessary to improve the quality of the sintered material if the fibers produced are to be incorporated into useful composite or cables.

  17. Improving the dimensional stability of natural fibers with the fiber polymer penetrant and electron beam method

    NASA Astrophysics Data System (ADS)

    Woods, Sean R.

    Cellulose-based material absorbs or releases moisture in relation to atmospheric conditions. This research looks to minimize dimensional change with the use of low molecular weight (LMW) monomers polymerized by electron beam (EB) ionizing radiation. Sisal, jute, coir, and hemp natural fibers with average natural swelling of 26.55%, 29.46%, 9.06%, and 32.69%, respectively, and glass fiber as control were used for analysis. Three LMW bulk monomers, hydroxyethyl acrylate (HEA), hydroxyethyl methacrylate (HEMA), and polyethylene glycol diacrylate (EGDA), as well as an encapsulating agent, isodecyl acrylate, and cross-linker, ethoxylated trimethylolpropane triacrylate, were evaluated for resin formulation. In total, 1015 specimens were measured for swelling. Moisture uptake characteristics of the specimens were analyzed. A new method of measuring specimen dimensional changes by a light microscope and image analysis software was used. Results indicate dimensional stability improvement of 39.34% - 91.46% for hemp with HEA and cross-linker, and sisal with HEMA and cross-linker respectively.

  18. The acute aquatic toxicity of a series of acrylate and methacrylate esters

    SciTech Connect

    Staples, C.A.; McLaughlin, J.E.; Hamilton, J.D.

    1994-12-31

    Acute aquatic toxicity data for several acrylate and methacrylate esters were reviewed. Acrylates included acrylic acid, ethyl-, and butyl-acrylate. Methacrylates included methacrylic acid, methyl-, and butyl-methacrylate. Tests were 48 hr or 96 hr standard flow through (invertebrates and fish) assays (measured exposure concentrations). These data are currently used in a risk assessment of acrylate/methacrylate environmental safety. Algal growth (Selanastrum capricomutum) 96 hr EC{sub 50}s were 0.17 mg/L (NOEC < 0.13 mg/L) for acrylic acid, 11.0 mg/L (NOEC < 6.5 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC < 3.8 mg/L) for butyl acrylate. Invertebrate (Daphnia magna) 48 hr LC{sub 50}s were 95.0 mg/L (NOEC 23.0 mg/L) for acrylic acid, 7.9 mg/L (NOEC 3.4 mg/L) for ethyl acrylate, and 8.2 mg/L (NOEC 2.4 mg/L) for butyl acrylate. Rainbow trout (Oncorhynchus mykiss) 96 hr LC{sub 50}s were 27.0 mg/L (NOEC 6.3 mg/L) for acrylic acid, 4.6 mg/L (NOEC 0.78 mg/L) for ethyl acrylate, and 5.2 mg/L (NOEC 3.8 mg/L) for butyl acrylate. Algae 96 hr EC{sub 50}s were 0.59 mg/L (NOEC 0.38 mg/L) for methacrylic acid, 170.0 mg/L (NOEC 100.0 mg/L) for methyl methacrylate, and 130.0 mg/L for butyl methacrylate. Daphnia magna 48 hr LC{sub 50}s were > 130.0 mg/L (NOEC 130.0 mg/L) for methacrylic acid, 69.0 mg/L (NOEC 48.0 mg/L) for methyl methacrylate, and 32.0 mg/L (NOEC 23.0 mg/L) for butyl methacrylate. Trout 96 hr LC{sub 50}s were 85.0 mg/L (NOEC 12.0 mg/L) for methacrylic acid and > 79.0 mg/L (NOEC 40.0 mg/L) for methyl methacrylate. The fathead minnow (Pimephales promelas) 96 hr LC{sub 50} was 11.0 mg/L for butyl methacrylate.

  19. Workforce Development for Manufacturing

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2007-01-01

    In a recent skills gap report, the National Association of Manufacturers (NAM) noted some disturbing trends in the gap between the demand for highly skilled manufacturing workers and the potential supply. The NAM report notes that smaller manufacturers rank finding qualified workers ahead of energy costs, taxes and government regulations on the…

  20. Plasma polymerization of acrylic acid onto polystyrene by cyclonic plasma at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Chang, Yi-Jan; Lin, Chin-Ho; Huang, Chun

    2016-01-01

    The cyclonic atmospheric-pressure plasma is developed for chamberless deposition of poly(acrylic acid) film from argon/acrylic acid mixtures. The photoemission plasma species in atmospheric-pressure plasma polymerization was identified by optical emission spectroscopy (OES). The OES diagnosis data and deposition results indicated that in glow discharge, the CH and C2 species resulted from low-energy electron-impact dissociation that creates deposition species, but the strong CO emission lines are related to nondeposition species. The acrylic acid flow rate is seen as the key factor affecting the film growth. The film surface analysis results indicate that a smooth, continuous, and uniform surface of poly(acrylic acid) films can be formed at a relatively low plasma power input. This study reveals the potential of chamberless film growth at atmospheric pressure for large-area deposition of poly(acrylic acid) films.