Science.gov

Sample records for acrylic fresnel lens

  1. Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Scott, Steve; Lamb, David; Zimmerman, Joe E. (Technical Monitor)

    2001-01-01

    Fresnel lenses span the full range of sizes from lens a few micrometers in diameter to lens several meters in diameter. These lenses are utilized in various fields including optical communication, theatrical lighting, office equipment, video entertainment systems, solar concentrators, and scientific research instruments. These lenses function either as diffractive or refractive optical elements depending on the geometrical feature size of the lens. The basic functions of these lenses is described followed by an overview of fabrication methods. A summary of applications is then provided illustrating the rich variety of applications for which fresnel lenses may be designed to fulfill.

  2. Fresnel lens study

    SciTech Connect

    Not Available

    1986-05-01

    Thick film sol-gel technology was evaluated to determine the feasibility of utilizing sol-gels to produce embossable materials ultimately for the production of all-glass Fresnel optics. The feasibility study has utilized the relatively undeveloped branch of organically modified sol-gels. The results of this work shown that organically modified sol-gels posses properties which allow the formation of thick, patternable and adherent coatings. The study resulted in the fabrication of over 600 samples based on over 100 sol-gel formulations. Samples were evaluated for clarity, transmittance and other optical properties. Environmental tests were performed on selected groups. Although moderate success was obtained on producing a Fresnel lens layer bonded to glass, a fully densified lens was not achieved. The process and chemistries indicate that improvements based on these materials and techniques may lead to an acceptable all-glass Fresnel lens.

  3. Fresnel lens study

    NASA Astrophysics Data System (ADS)

    1986-05-01

    Thick film sol-gel technology was evaluated to determine the feasibility of utilizing sol-gels to produce embossable materials ultimately for the production of all-glass Fresnel optics. The feasibility study has utilized the relatively undeveloped branch of organically modified sol-gels. The results of this work show that organically modified sol-gels possess properties which allow the formation of thick, patternable and adherent coatings. The study resulted in the fabrication of over 600 samples based on over 100 sol-gel formulations. Samples were evaluated for clarity, transmittance and other optical properties. Environmental tests were performed on selected groups. Although moderate success was obtained on producing a Fresnel lens layer bonded to glass, a fully densified lens was not achieved. The process and chemistries indicate that improvements based on these materials and techniques may lead to an acceptable all-glass Fresnel lens.

  4. Reflections From a Fresnel Lens

    ERIC Educational Resources Information Center

    Keeports, David

    2005-01-01

    Reflection of light by a convex Fresnel lens gives rise to two distinct images. A highly convex inverted real reflective image forms on the object side of the lens, while an upright virtual reflective image forms on the opposite side of the lens. I describe here a set of laser experiments performed upon a Fresnel lens. These experiments provide…

  5. Dispersion-compensated Fresnel lens

    DOEpatents

    Johnson, K.C.

    1992-11-03

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.

  6. Dispersion-compensated fresnel lens

    DOEpatents

    Johnson, Kenneth C.

    1992-01-01

    A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.

  7. Fresnel lens light applicator

    SciTech Connect

    Castel, J.C.; Kerwin, R.G.

    1987-09-01

    A therapeutic laser radiation applicator is described which consists of: means for providing laser radiation in an elliptical transverse distribution; and means for converting the elliptical transverse distribution of the laser radiation into a circular distribution thereof comprising at least two axially spaced fresnel lenses, and means for mounting the fresnel lenses in preselected association with the laser radiation means for refracting a portion of a laser radiation to the circular distribution adapted to provide a therapeutic tissue irradiation pattern.

  8. Solar powered desalination system using Fresnel lens

    NASA Astrophysics Data System (ADS)

    Sales, M. T. B. F.

    2016-11-01

    The Philippines is surrounded by coastal areas and these areas can be a potential source for potable water. This study aims to design and construct a solar powered desalination system using Fresnel lens. The experimental study was conducted using polluted salt water for the sample and desalination was carried out using the designed system. The desalination system was composed of the solar concentrator, solar still and the condenser system. The Fresnel lens was made of acrylic plastic and was an effective solar concentrator. Solar stills made of dark colored glass bottles were effective in absorbing the solar energy. The condenser system made of polybutylene and polystyrene were effective in condensing the vapor at ambient temperature. The shortest time of vaporization of the salt water was at 293 sec and the optimum angle of position of the lens was 36.42°. The amount of condensate collected was directly proportional to the amount of salt water in the solar still. The highest mean efficiency of the designed set-up was 34.82%. The water produced by the solar powered desalination system using Fresnel lens passed the standards set by WHO (World Health Organization) for drinking water.

  9. Liquid crystal Fresnel lens display

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Qian; Abhishek Kumar, Srivastava; Alwin Tam, Ming-Wai; Zheng, Zhi-Gang; Shen, Dong; Vladimir, Chigrinov G.; Kwok, Hoi-Sing

    2016-09-01

    A novel see-through display with a liquid crystal lens array was proposed. A liquid crystal Fresnel lens display (LCFLD) with a holographic screen was demonstrated. The proposed display system has high efficiency, simple fabrication, and low manufacturing cost due to the absence of a polarizer and color filter. Project supported by Partner State Key Laboratory on Advanced Displays and Optoelectronics Technologies HKUST, China, the National Natural Science Foundation of China (Grant Nos. 61435008 and 61575063), and the Fundamental Research Funds for the Central Universities, China (Grant No. WM1514036).

  10. Automated Fresnel lens tester system

    SciTech Connect

    Phipps, G.S.

    1981-07-01

    An automated data collection system controlled by a desktop computer has been developed for testing Fresnel concentrators (lenses) intended for solar energy applications. The system maps the two-dimensional irradiance pattern (image) formed in a plane parallel to the lens, whereas the lens and detector assembly track the sun. A point detector silicon diode (0.5-mm-dia active area) measures the irradiance at each point of an operator-defined rectilinear grid of data positions. Comparison with a second detector measuring solar insolation levels results in solar concentration ratios over the image plane. Summation of image plane energies allows calculation of lens efficiencies for various solar cell sizes. Various graphical plots of concentration ratio data help to visualize energy distribution patterns.

  11. Fresnel Lens Scatter Plate for Data Reduction Holography.

    DTIC Science & Technology

    In the patent the holographic apparatus and method uses a Fresnel lens as a scatter plate in data reduction holography. A second embodiment uses a Fresnel lens in series with a fly’s eye lens array.

  12. Fresnel Lens Sidewall Design for Imaging Optics

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Goulet, A.; Hattori, K.; Konno, K.; Tanaka, A.; Bosmans, R.; Sawada, M.; Yazawa, H.

    2015-03-01

    We developed a ray tracing simulation tool for imaging systems including a Fresnel lens with a quasi-arbitrary sidewall structure. One issue with Fresnel lens is that noise in the image plane can appear from rays passing through or reflected at its sidewalls. One way to reduce it is to modify the orientation of the sidewalls so that rays will not reach the image plane. To find the best sidewall orientations, we developed a method where locally, a sidewall can freely be oriented. We could then derive the best modulation scheme for each Fresnel lens sidewall. In the case of a single imaging Fresnel lens, relative parasite noise intensity could mostly be prevented. To experimentally check our method, snapshot images were taken with single Fresnel lenses and a single spherical lens. No noticeable differences in image quality could be observed using a standard C-MOS camera. However, parasite noise could experimentally be detected with a Fresnel lens prototype when using a very! high-dynamic range C-MOS camera.

  13. Stretchable Binary Fresnel Lens for Focus Tuning

    NASA Astrophysics Data System (ADS)

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-05-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%.

  14. Stretchable Binary Fresnel Lens for Focus Tuning.

    PubMed

    Li, Xueming; Wei, Lei; Poelma, René H; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M; Zhang, Guo Qi

    2016-05-03

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%.

  15. Stretchable Binary Fresnel Lens for Focus Tuning

    PubMed Central

    Li, Xueming; Wei, Lei; Poelma, René H.; Vollebregt, Sten; Wei, Jia; Urbach, Hendrik Paul; Sarro, Pasqualina M.; Zhang, Guo Qi

    2016-01-01

    This paper presents a tuneable binary amplitude Fresnel lens produced by wafer-level microfabrication. The Fresnel lens is fabricated by encapsulating lithographically defined vertically aligned carbon nanotube (CNT) bundles inside a polydimethyl-siloxane (PDMS) layer. The composite lens material combines the excellent optical absorption properties of the CNT with the transparency and stretchability of the PDMS. By stretching the elastomeric composite in radial direction, the lens focal length is tuned. Good focusing response is demonstrated and a large focus change (≥24%) was achieved by stretching lenses up to 11.4%. PMID:27139747

  16. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  17. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  18. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  19. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Flexible diagnostic Fresnel lens. 886.1390 Section... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens. (a) Identification. A flexible diagnostic Fresnel lens is a device that is a very thin lens which...

  20. ZnS micro-Fresnel lens and its uses.

    PubMed

    Hosokawa, H; Yamashita, T

    1990-12-01

    A micro-Fresnel lens replication method by inorganic material deposition has been developed. A ZnS micro-Fresnel lens and a completely flat micro-Fresnel lens have been made by this method. The ZnS microFresnel lens stability characteristics are improved for temperature, humidity, and focusing. Furthermore, higher resolution in electron-beam lithography is made possible by lens thickness reduction. The completely flat micro-Fresnel lens is a new device and improves integration performance. This lens can be applied to stacked planar optics devices for use in the construction of 3-D optical circuits.

  1. Fresnel lens analysis for solar applications

    SciTech Connect

    Lorenzo, E.; Luque, A.

    1981-09-01

    In this paper we analyze an arbitrarily shaped lineal Fresnel lens acting either as sole concentration stage or as the first stage of a two-stage concentration system in which the second stage considers the first as a Lambertian source. We determine the gain and position of the lens for all possible configurations, and we demonstrate that a curved lens with a refractive-index approaching infinity and with a given profile turns out to be an ideal concentrator.

  2. Fresnel lens analysis for solar energy applications.

    PubMed

    Lorenzo, E; Luque, A

    1981-09-01

    In this paper we analyze an arbitrarily shaped lineal Fresnel lens acting either as sole concentration stage or as the first stage of a two-stage concentration system in which the second stage considers the first as a Lambertian source. We determine the gain and position of the lens for all possible configurations, and we demonstrate that a curved lens with a refractive-index approaching infinity and with a given profile turns out to be an ideal concentrator.

  3. Fresnel lens on new photosensitive material

    NASA Astrophysics Data System (ADS)

    Ortiz-Gutierrez, M.; Salgado-Verduzco, M. A.; Olivares-Perez, A.; Juarez-Perez, J. L.; Perez-Cortes, M.; Ibarra-Torres, J. C.; Castro-Ramos, J.

    2005-04-01

    In this work we describe a lithographic technique for fabrication of Fresnel lenses. This technique is achieved using a photo mask and Norland Optical Adhesive No. 65. The main characteristics of this lens are his low cost and its flexibility due to the material. Some experimental results are shown.

  4. A New Technique Producing Double-Sided Spherical Fresnel Lens Segments Assembled to Large Aperture Lenses

    NASA Astrophysics Data System (ADS)

    Ohmori, H.; Takahashi, Y.; Shimizu, H.; Uehara, Y.; Suzuki, T.; Ueno, Y.; Hillman, L. W.; Zuccaro, A.; EUSO Collaboration

    2003-07-01

    A new technique of molding of lens segments has been developed to produce a large, double-sided, curved Fresnel lenses for refractive telescopes. The molding process involves two steps of spherically curved plate formation and lens gro ove transfer onto the curved plate. These molding process have been carried out with two sides of the diamond-cut dies set in the hydraulic press machine at elevated temperatures to the lens material that is a transparent UV-acrylic of Mitsubishi. Ultra-precision dies were made of oxygen-free copp er, which were cut by diamond to ols to make Fresnel facets. A four-axis ultra-precision cutting machine has been developed first to manufacture ultra-precision mold dies. Double-sided, curved Fresnel lens segments will be used as circumference petals of lenses of 2500mm aperture surrounding a 1500mm diameter central lens.

  5. Linear Fresnel lens photovoltaic concentrator program

    SciTech Connect

    Kull, J.; Maraschin, R.; Rafinejad, D.; Spencer, R.; Sutton, G.

    1983-08-01

    This report describes Acurex Corporation's design of a linear Fresnel lens Photovoltaic Concentrator Panel. The panel consists of four concentrator modules in an integrated structure. Each module is 10 ft long and has a 39.85 in aperture. The solar cell's active width is 0.90 in. and the cell-lens edge spacing is 23.39 in. There are 58 cells per module. A prototype panel was built and tested. Test results showed a peak electrical efficiency of 10.5% at the operating conditions of 800 W/m/sup 2/ insolation and 90/sup 0/F coolant temperature. The prototype exhibits the manufacturing and assembly concepts developed.

  6. An analytical and experimental investigation of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Jensen, W. S.

    1977-01-01

    Line-focusing acrylic Fresnel lenses with application potential in the 200-370 C range are being analytically and experimentally investigated. The measured solar concentration characteristics of a 1.8 by 3.7 m lens and its utilization in a solar collection mode are summarized in this paper. A peak concentration ratio of 64 with 90% of the transmitted energy focused into a 5 cm width was achieved and demonstrated the feasibility of the Fresnel lens solar concentrator concept.

  7. Switchable Fresnel lens based on micropatterned alignment.

    PubMed

    Wang, Xiao-Qian; Srivastava, Abhishek K; Chigrinov, Vladimir G; Kwok, Hoi-Sing

    2013-06-01

    In this Letter we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with higher efficiency. The LCFZL, based on alternate twisted nematic (TN) and planar aligned (PA) regions, has been prepared by means of a two-step photo-alignment process. The FZL profile for both optical regimes, i.e., in TN and PA alignment domains, generates the same focal length (f). Thus, the proposed LCFZL manifests double light intensity at the focal point and therefore offers double the efficiency of existing FZLs. Moreover, because of lower driving voltage and fast response, these elements could find application in many modern devices.

  8. Color-corrected Fresnel lens for solar concentration

    SciTech Connect

    Kritchman, E.M.

    1980-01-01

    A new linear convex Fresnel lens with its groove side down is described. The design philosophy is similar to that of the highly concentrating two-focal Fresnel lens but includes a correction for chromatic aberration. A solar-concentration ratio as high as 80 is achieved. For wide-acceptance angles, the concentration nears the theoretical maximum.

  9. Demonstration of a PDMS based hybrid grating and Fresnel lens (G-Fresnel) device.

    PubMed

    Yang, Chuan; Shi, Kebin; Edwards, Perry; Liu, Zhiwen

    2010-11-08

    A hybrid device that we term G-Fresnel (i.e., grating and Fresnel) is demonstrated. It fuses the functions of a grating and a Fresnel lens into a single device. We have fabricated the G-Fresnel device by using polydimethylsiloxane (PDMS) based soft lithography. Three-dimensional surface profilometry has been performed to examine the device quality. We have also conducted optical characterizations to confirm its dual focusing and dispersing properties. The G-Fresnel can be useful for the development of miniature optical spectrometers as well as emerging optofluidic applications.

  10. 3D integral imaging using diffractive Fresnel lens arrays.

    PubMed

    Hain, Mathias; von Spiegel, Wolff; Schmiedchen, Marc; Tschudi, Theo; Javidi, Bahram

    2005-01-10

    We present experimental results with binary amplitude Fresnel lens arrays and binary phase Fresnel lens arrays used to implement integral imaging systems. Their optical performance is compared with high quality refractive microlens arrays and pinhole arrays in terms of image quality, color distortion and contrast. Additionally, we show the first experimental results of lens arrays with different focal lengths in integral imaging, and discuss their ability to simultaneously increase both the depth of focus and the field of view.

  11. Fresnel Lens Characterization for Potential Use in an Unpiloted Atmospheric Vehicle DIAL Receiver System

    NASA Technical Reports Server (NTRS)

    Fastig, Shlomo; Deoung, Russell J.

    1998-01-01

    Acrylic plastic Fresnel lenses are very light and can have large diameters. Such lenses could be used in lidar telescope receivers if the focal spot is not too large or distorted. This research effort characterizes the focal spot diameter produced by a Fresnel lens with a diameter of 30.5 cm (12 in.). It was found that the focal spot diameter varied from 1.2 mm at 750 nm to 1.6 mm at 910 nm. The focal spot was irregular and not easily described by a Gaussian profile.

  12. Design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems

    SciTech Connect

    Matalon, L. A.

    1982-08-01

    The design and development of a laminated glass-plastic Fresnel lens for point focus photovoltaic systems use is described. The objective of this development was to examine the feasibility of producing lenses with a cost effectiveness superior to that of lenses made by casting of acrylic. The procedure used in executing this development, the method used in cost effectiveness evaluation, results obtained and recommendations for further work are presented.

  13. Design and development of laminated Fresnel lens parquet for point-focus PV systems

    SciTech Connect

    Baum, B.; Holley, W.H.; Galica, J.P.; Thoma, L.A.

    1987-05-01

    Materials were identified and techniques developed to adhere acrylic Fresnel lenses to low-iron glass with a bond that has the potential to survive 20 years of outdoor weathering in a photovoltaic concentrator module. Candidate adhesive materials were screened and evaluated. Of all the adhesives evaluated, two types, silicone and ethylene vinyl acetate coploymer, were found to provide the best bond while possessing the optimum optical properties of lens alone.

  14. Signal-enhancement reflective pulse oximeter with Fresnel lens

    NASA Astrophysics Data System (ADS)

    Chung, Shuang-Chao; Sun, Ching-Cherng

    2016-09-01

    In this paper, a new reflective pulse oximeter is proposed and demonstrated with implanting a Fresnel lens, which enhances the reflected signal. An optical simulation model incorporated with human skin characteristics is presented to evaluate the capability of the Fresnel lens. In addition, the distance between the light emitting diode and the photodiode is optimized. Compared with the other reflective oximeters, the reflected signal light detected by the photodiode is enhanced to more than 140%.

  15. Ultralight inflatable fresnel lens solar concentrators

    NASA Astrophysics Data System (ADS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1998-01-01

    Since 1986, ENTECH and NASA Lewis have been developing refractive solar concentrators for space applications. These Fresnel lens concentrators can be configured as either point-focus dome lenses or line-focus cylindrical lenses. Small point-focus or line-focus lenses can be used to concentrate sunlight onto solar cells in space photovoltaic (PV) arrays. Large point-focus lenses can be used for high solar flux applications. In March 1997, a NASA Phase I SBIR program was initiated to develop ultralight inflatable lenses of both the line-focus and point-focus types. Special program emphasis is being placed on large point-focus lenses for various high-concentration applications, including solar dynamic (SD) power, alkali metal thermal energy conversion (AMTEC), thermophotovoltaics (TPV), and solar thermal propulsion (STP). Key outputs of the Phase I program include conceptual designs, optical performance predictions, micrometeoroid puncture analyses, manufacturing process identification, and functional prototype hardware. This paper summarizes the key results of the Phase I program, leading to the conclusion that inflatable dome lenses will provide excellent high-concentration optical performance, unequaled shape error tolerance, extremely low mass/aperture area ratio, proven manufacturability with space qualified materials, and small make-up gas requirements to maintain inflation on-orbit.

  16. 21 CFR 886.1390 - Flexible diagnostic Fresnel lens.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1390 Flexible diagnostic Fresnel lens... to the back of the spectacle lenses of patients with aphakia (absence of the lens of the eye). (b... from the current good manufacturing practice requirements of the quality system regulation in part...

  17. The linear Fresnel lens solar concentrator: Transverse tracking error effects

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of a line focusing, flat base Fresnel lens in the presence of small transverse tracking errors was analyzed. Solar transmittance of the lens and focal plane imaging characteristics were evaluated. Transmission losses by reflectance and material absorption were also studied.

  18. Evolutionary algorithm for optimization of nonimaging Fresnel lens geometry.

    PubMed

    Yamada, N; Nishikawa, T

    2010-06-21

    In this study, an evolutionary algorithm (EA), which consists of genetic and immune algorithms, is introduced to design the optical geometry of a nonimaging Fresnel lens; this lens generates the uniform flux concentration required for a photovoltaic cell. Herein, a design procedure that incorporates a ray-tracing technique in the EA is described, and the validity of the design is demonstrated. The results show that the EA automatically generated a unique geometry of the Fresnel lens; the use of this geometry resulted in better uniform flux concentration with high optical efficiency.

  19. Analysis on the alignment errors of segmented Fresnel lens

    NASA Astrophysics Data System (ADS)

    Zhou, Xudong; Wu, Shibin; Yang, Wei; Wang, Lihua

    2014-09-01

    Stitching Fresnel lens are designed for the application in the micro-focus X-ray, but splicing errors between sub-apertures will affect optical performance of the entire mirror. The offset error tolerance of different degrees of freedom between the sub-apertures are analyzed theoretically according to the wave-front aberration theory and with the Rayleigh criterion as evaluation criteria, and then validate the correctness of the theory using simulation software of ZEMAX. The results show that Z-axis piston error tolerance and translation error tolerance of XY axis increases with the increasing F-number of stitching Fresnel lens, and tilt error tolerance of XY axis decreases with increasing diameter. The results provide a theoretical basis and guidance for the design, detection and alignment of stitching Fresnel lens.

  20. Linear Fresnel lens with polar tracking.

    PubMed

    Kritchman, E M

    1981-04-01

    The performance of coma and color corrected linear Fresnel lenses for solar concentration is evaluated for use in polar tracking systems. Effective concentrations of up to 90 at 75% efficiency were obtained.

  1. Linear Fresnel lens with polar tracking

    SciTech Connect

    Kritchman, E.M.

    1981-04-01

    The performance of coma and color corrected linear Fresnel lenses for solar concentration is evaluated for use in polar tracking systems. Effective concentrations of up to 90 at 75% efficiency were obtained.

  2. Transmittance-optimized, point-focus Fresnel lens solar concentrator

    SciTech Connect

    Oneill, M.J.; Goldberg, V.R.; Muzzy, D.B.

    1982-07-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  3. Transmittance-optimized, point-focus Fresnel lens solar concentrator

    SciTech Connect

    Oneill, M.J.

    1984-03-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  4. Lightweight Inexpensive Ozone Lidar Telescope Using a Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    DeYoung, Russell J.; Notari, Anthony; Carrion, William; Pliutau, Denis

    2014-01-01

    An inexpensive lightweight ozone lidar telescope was designed, constructed and operated during an ozone lidar field campaign. This report summarizes the design parameters and performance of the plastic Fresnel lens telescope and shows the ozone lidar performance compared to Zemax calculations.

  5. Switchable Fresnel lens using polymer-stabilized liquid crystals.

    PubMed

    Fan, Yun-Hsing; Ren, Hongwen; Wu, Shin-Tson

    2003-11-17

    A switchable Fresnel zone plate lens is demonstrated using a polymer-stabilized liquid crystal. The fabrication process is relatively simple and the device can be operated below 10 volts with fast response time. Such a device works well for a linearly polarized light.

  6. Large-scale Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Allums, S. L.; Hastings, L. J.; Jensen, W. S.

    1977-01-01

    Sun tracking solar collector using lightweight inexpensive acrylic lenses to concentrate sun's energy yields efficiency range of 50 percent at average fluid temperature of 125 C to 26 percent at 300 C.

  7. Ion implanted Bragg{endash}Fresnel lens

    SciTech Connect

    Souvorov, A.; Snigirev, A.; Snigireva, I.; Aristova, E.

    1996-05-01

    We have investigated the feasibility of widening the bandpath of the Bragg{endash}Fresnel optical element through the use of ion implantation. The focusing properties of Bragg{endash}Fresnel lenses (BFLs) were studied as a function of the implantation dose and energy. An enhancement of the focus intensity of up to 15{percent} was found, which is less than expected. Due to the complicated scattering of the low energy ions inside the micrometer- and submicrometer-sized crystal features that make up the BFL relief, the implantation technology destroys the peripheral zones of the BFL more than it increases the intensity in the focus. Nevertheless we believe that high energy implantation can be successfully used to modify the BFL reflectivity, especially in the case of nearly backscattering reflection. {copyright} {ital 1996 American Institute of Physics.}

  8. Methane Detector With Plastic Fresnel Lens

    NASA Technical Reports Server (NTRS)

    Grant, W. B.

    1986-01-01

    Laser detector for natural gas leaks modified by substitution of molded plastic lens for spherical mirror. By measuring relative attenuation at two wavelengths, detector used to check for methane escaping from pipelines above or below ground and from landfill.

  9. Polarization controllable Fresnel lens using dye-doped liquid crystals.

    PubMed

    Lin, Tsung-Hsien; Huang, Yuhua; Fuh, Andy Y G; Wu, Shin-Tson

    2006-03-20

    A scattering-free, polarization controllable Fresnel zone plate lens is demonstrated using a photo-induced alignment of the dye-doped liquid crystal film. This photo-aligned liquid crystal zone plate provides orthogonal polarization states for odd and even zones. The different focus orders can be separated because of their different polarization states. The fabrication process is relatively simple and the operation voltage is less than 5 V(rms).

  10. Ultrasonic imaging using trapped energy mode Fresnel lens transducers

    NASA Technical Reports Server (NTRS)

    Das, P.; Talley, S.; Kraft, R.; Tiersten, H. F.; Mcdonald, J. F.

    1980-01-01

    Trapped-energy focusing transducers operating in the 2-5 MHz range have been fabricated by plating concentric rings of electrodes on a piezoelectric plate. The concentric ring structure acts as a Fresnel lens and can be used to obtain excellent lateral focusing of ultrasonic waves. The trapping is sufficiently strong to permit optimization of electrode spacings to suppress spurious virtual foci and ring sidelobes.

  11. Integrated Fresnel lens on thermally oxidized silicon substrate.

    PubMed

    Mottier, P; Valette, S

    1981-05-01

    Thin film Fresnel lenses have been achieved on SiO(2)/Si substrates covered with a waveguide layer of Si(3)N(4) grown by low pressure chemical vapor deposition (LPCVD). The phase shift between the different zones is induced by a SiO(2) top layer chemically etched. The use of this additional layer having a smaller refractive index than the waveguide results in a saturation of the lens characteristics vs the thickness of the SiO(2) layer; this feature associated with the good reproducibility of the LPCVD technology allows good control of the lens characteristics.

  12. Inclined-incidence quasi-Fresnel lens for prefocusing of synchrotron radiation x-ray beams

    SciTech Connect

    Kagoshima, Yasushi; Takano, Hidekazu; Takeda, Shingo

    2012-10-15

    An inclined-incidence quasi-Fresnel lens made of acrylic resin has been developed for prefocusing in synchrotron radiation x-ray beamlines. By inclining the lens, the grating aspect ratio is large enough for x-ray use. As it operates in transmission mode with negligible beam deflection and offset, little additional equipment is needed to introduce it into existing beamlines. It is fabricated by sheet-press forming, enabling inexpensive mass production. The prototype was able to focus a 730-{mu}m-wide beam to a width of 80 {mu}m with a photon flux density gain of 5.6 at an x-ray energy of 10 keV.

  13. Design and development of a laminated Fresnel lens for point focus pv systems

    SciTech Connect

    Hobbs, R.B. Jr.

    1981-01-01

    The design and fabrication of a laminated Fresnel lens for point focus photovoltaic concentrators systems is described. The lens consists of a glass superstrate to which a thin 6.7 inch square Fresnel lens is bonded. A key aim of the program was to investigate the technical feasibility of injection molding acceptable quality Fresnel lenses. Significant progress was made in demonstrating this feasibility and is reported.

  14. Sensitive voltage-dependent diffraction of a liquid crystal Fresnel lens.

    PubMed

    Hung, Wen-Chi; Chen, Yu-Jen; Lin, Chia-Huey; Jiang, I-Min; Hsu, Tzu-Fang

    2009-04-10

    This investigation proposes a Fresnel liquid crystal (LC) lens with high diffraction efficiency and a low driving voltage. A Fresnel zone electrode was fabricated on a glass plate. A Fresnel zone-distributed electric field in the LC cell was induced by a proper driving voltage, yielding a concentric structure of LCs as a Fresnel phase lens. A remarkable diffraction efficiency of ~39%, close to the theoretical limit of 40.5%, was detected when the LC lens was probed using a polarized incident beam with a wavelength of 632.8 nm. The diffraction efficiency of the Fresnel LC lens was demonstrated to depend sensitively on the applied voltage. The most suitable driving voltage of the Fresnel LC lens was as low as 0.9 V. This study may support progress in the electrical modulation of the optical properties of various optical systems.

  15. Verification of Fresnel lens in high concentration photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wei, An-Chi; Sze, Jyh-Rou; Chern, Jyh-Long

    2012-10-01

    An approach using micro lens arrays to confine the cone angle of light source in a solar simulator has been proposed to verify the Fresnel lens in a high concentration photovoltaic (HCPV) system. Compared with other three prior arts by the computer simulation, the proposed method had the characteristics of the better approximation to the direct normal insolation and the low cost. Also, to ensure the erection of the evaluation system, the tolerance of lens alignment has been analyzed. The results showed that to maintain at least the 50% of the maximum luminous flux incident on the solar cell, the transverse and longitudinal tolerances of ±1.4 mm and ±4 mm, respectively, were required.

  16. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    PubMed Central

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-01-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated. PMID:28252033

  17. Acoustophoretic separation of airborne millimeter-size particles by a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Cicek, Ahmet; Korozlu, Nurettin; Adem Kaya, Olgun; Ulug, Bulent

    2017-03-01

    We numerically demonstrate acoustophoretic separation of spherical solid particles in air by means of an acoustic Fresnel lens. Beside gravitational and drag forces, freely-falling millimeter-size particles experience large acoustic radiation forces around the focus of the lens, where interplay of forces lead to differentiation of particle trajectories with respect to either size or material properties. Due to the strong acoustic field at the focus, radiation force can divert particles with source intensities significantly smaller than those required for acoustic levitation in a standing field. When the lens is designed to have a focal length of 100 mm at 25 kHz, finite-element method simulations reveal a sharp focus with a full-width at half-maximum of 0.5 wavelenghts and a field enhancement of 18 dB. Through numerical calculation of forces and simulation of particle trajectories, we demonstrate size-based separation of acrylic particles at a source sound pressure level of 153 dB such that particles with diameters larger than 0.5 mm are admitted into the central hole, whereas smaller particles are rejected. Besides, efficient separation of particles with similar acoustic properties such as polyethylene, polystyrene and acrylic particles of the same size is also demonstrated.

  18. Low chromatic Fresnel lens for broadband attosecond XUV pulse applications.

    PubMed

    Pan, Huaihai; Späth, Christian; Guggenmos, Alexander; Chew, Soo Hoon; Schmidt, Jürgen; Zhao, Quan-Zhong; Kleineberg, Ulf

    2016-07-25

    Fresnel zone plates show a great potential in achieving high spatial resolution imaging or focusing for XUV and soft/hard X-ray radiation, however they are usually strictly monochromatic due to strong chromatic dispersion and thus do not support broad radiation spectra, preventing their application to attosecond XUV pulses. Here we report on the design and theoretical simulations based on the design of an achromatic hybrid optics combining both, a refractive and diffractive lens in one optical element. We are able to show by calculation that the chromatic dispersion along the optical axis can be greatly reduced compared to a standard Fresnel zone plate while preserving the temporal structure of the attosecond XUV pulses at focus.

  19. 9-fold Fresnel-Köhler concentrator with Fresnel lens of variable focal point.

    PubMed

    Mendes-Lopes, João; Benítez, Pablo; Zamora, Pablo; Miñano, Juan C

    2014-06-30

    Non-uniform irradiance patterns over Multi-Junction Cells gives rise to power losses, especially when considering spectral irradiance distributions over different junctions. Thermal effects on Silicone-on-Glass lenses affect spectral irradiance distributions. A new Photovoltaic Concentrator (CPV), formed by nine optical channels, each one with a Köhler configuration, has been designed to overcome these effects at high concentrations for a large acceptance angle. A Fresnel Lens with a Variable Focal Point is proposed to prevent optical crosstalk in multichannel systems. When integrated into the concentrator, improves the acceptance angle. These designs are designed to fulfill the expected requirements of four junction CPV systems.

  20. Domed Fresnel lens concentrator technology for space application

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; Oneill, Mark J.

    1989-01-01

    Over the past three years, NASA Lewis and Entech, Inc. have been investigating the use of high efficiency refractive photovoltaic concentrators for use in space. The design currently under investigation uses a square domed Fresnel lens to focus light on a GaAs concentrator cell. A prismatic cell cover, which directs light away from the front contacts and thus eliminates metalization losses, is applied to the top of the GaAs cell to further enhance array efficiency. The latest experimental results based on testing the GaAs cell/prism cover assembly at standard and operating conditions are presented.

  1. Manufacturing injection-moleded Fresnel lens parquets for point-focus concentrating photovoltaic systems

    SciTech Connect

    Peters, E.M.; Masso, J.D.

    1995-10-01

    This project involved the manufacturing of curved-faceted, injection-molded, four-element Fresnel lens parquets for concentrating photovoltaic arrays. Previous efforts showed that high-efficiency (greater than 82%) Fresnel concentrators could be injection molded. This report encompasses the mold design, molding, and physical testing of a four-lens parquet for a solar photovoltaic concentrator system.

  2. An analytical and experimental investigation of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Jensen, W. S.

    1977-01-01

    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range are being analytically and experimentally evaluated. Investigations previously conducted with a 56 cm wide lens have been extended by the present study to experimentation/analyses with a 1.8 by 3.7 m lens. A measured peak concentration ratio of 64 with 90 percent of the transmitted energy focused into a 5.0 cm width was achieved. A peak concentration of 61 and a 90 percent target width of 4.5 cm were analytically computed. The experimental and analytical lens transmittance was 81 percent and 86 percent, respectively. The lens also was interfaced with a receiver assembly and operated in the collection mode. The collection efficiency ranged from 42 percent at 100 C to 26 percent at 300 C.

  3. Conception of a cheap infrared camera using a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Grulois, Tatiana; Druart, Guillaume; Guérineau, Nicolas; Crastes, Arnaud; Sauer, Hervé; Chavel, Pierre

    2014-09-01

    Today huge efforts are made in the research and industrial areas to design compact and cheap uncooled infrared optical systems for low-cost imagery applications. Indeed, infrared cameras are currently too expensive to be widespread. If we manage to cut their cost, we expect to open new types of markets. In this paper, we will present the cheap broadband microimager we have designed. It operates in the long-wavelength infrared range and uses only one silicon lens at a minimal cost for the manufacturing process. Our concept is based on the use of a thin optics. Therefore inexpensive unconventional materials can be used because some absorption can be tolerated. Our imager uses a thin Fresnel lens. Up to now, Fresnel lenses have not been used for broadband imagery applications because of their disastrous chromatic properties. However, we show that working in a high diffraction order can significantly reduce chromatism. A prototype has been made and the performance of our camera will be discussed. Its characterization has been carried out in terms of modulation transfer function (MTF) and noise equivalent temperature difference (NETD). Finally, experimental images will be presented.

  4. Rectangular-apertured micro-Fresnel lens arrays fabricated by electron-beam lithography.

    PubMed

    Shiono, T; Setsune, K; Yamazaki, O; Wasa, K

    1987-02-01

    Rectangular-apertured micro-Fresnel lens arrays are proposed. These lens arrays have been fabricated by an electron-beam writing system specially developed for the fabrication of microoptical devices. It is experimentally demonstrated that the lens arrays showed uniform focusing characteristics, and that each lens exhibited a diffraction-limited focusing characteristic with efficiency of 74%.

  5. Electrically switchable holographic liquid crystal/polymer Fresnel lens using a Michelson interferometer.

    PubMed

    Jashnsaz, Hossein; Mohajerani, Ezeddin; Nemati, Hossein; Razavi, Seyed Hossein; Alidokht, Isa Ahmad

    2011-06-10

    A holographic technique for fabricating an electrically switchable liquid crystal/polymer composite Fresnel lens is reported. A Michelson interferometer is used to produce the required Fresnel pattern, by placing a convex lens into one path of the interferometer. Simplicity of the method and the possibility of fabricating different focal length lenses in a single arrangement are advantages of the method. The performance of the fabricated lens was demonstrated and its electro-optical properties were investigated for its primary focal length.

  6. Performance analysis of a third-generation linear fresnel lens passively cooled photovoltaic collector

    SciTech Connect

    Mc Danal, A.J.; O'Neill, M.J.; Waller, K.A.

    1983-06-01

    The results of a parametric investigation in which the linear Fresnel lens concept has been optimized specifically for photovoltaic applications are presented. The results of the study show that performance improvements of about 14% can be achieved for the new generation of linear Fresnel lens passively cooled photovoltaic collectors using currently available lens and cell technology. The new design is presented and compared with the current baseline collector design.

  7. Electrically switchable liquid crystal Fresnel lens using UV-modified alignment film.

    PubMed

    Jeng, Shie-Chang; Hwang, Shug-June; Horng, Jing-Shyang; Lin, Kuo-Ren

    2010-12-06

    A simple method to make a switchable liquid crystal (LC) Fresnel lens with high diffraction efficiency and a low driving voltage was proposed based on the photo-induced surface modification of the vertical alignment layer. UV illumination alters the pretilt angle of alignment layers, a Fresnel zone-distribution hybrid alignment in the homeotropic LC cell can be straightforwardly achieved through UV exposure, yielding a concentric structure of the Fresnel phase LC lens. A remarkable diffraction efficiency of ~31.4%, close to the measured diffraction efficiency of the used Fresnel-zone-plate mask of 32%, was detected using a linearly polarized incident beam.

  8. Performance characteristics of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.

    1979-01-01

    Line-focusing acrylic Fresnel lenses with application potential in the 200 to 370 C range were analytically and experimentally investigated. The measured solar concentration characteristics of a 1.8 by 3.7 m lens and its utilization in a solar collection mode are presented. A measured peak concentration ratio of 62 with 90 percent of the transmitted energy focused into a 5.0cm width was achieved. A peak concentration of 59 and a 90 percent target width of 4.3 cm were analytically computed. The experimental and analytical lens transmittance was 78 percent and 86 percent, respectively. The lens was also interfaced with a nonevacuated receiver assembly and operated in the collection mode. With a natural oxide absorber tube coating (alpha/epsilon = 0.79/0.10), the measured collection efficiency ranged from 43 percent to 200 C to 34 percent at 260 C. Efficiency improvements to the 40 to 50 percent range can be achieved with second generation lenses and higher performance absorptive coatings.

  9. Twenty Meter Space Telescope Based on Diffractive Fresnel Lens

    SciTech Connect

    Early, J; Hyde, R; Baron, R

    2003-06-26

    Diffractive lenses offer two potential advantages for very large aperture space telescopes; very loose surface-figure tolerances and physical implementation as thin, flat optical elements. In order to actually realize these advantages one must be able to build large diffractive lenses with adequate optical precision and also to compactly stow the lens for launch and then fully deploy it in space. We will discuss the recent fabrication and assembly demonstration of a 5m glass diffractive Fresnel lens at LLNL. Optical performance data from smaller full telescopes with diffractive lens and corrective optics show diffraction limited performance with broad bandwidths. A systems design for a 20m space telescope will be presented. The primary optic can be rolled to fit inside of the standard fairings of the Delta IV vehicle. This configuration has a simple deployment and requires no orbital assembly. A twenty meter visible telescope could have a significant impact in conventional astronomy with eight times the resolution of Hubble and over sixty times the light gathering capacity. If the light scattering is made acceptable, this telescope could also be used in the search for terrestrial planets.

  10. Metal slit array Fresnel lens for wavelength-scale optical coupling to nanophotonic waveguides.

    PubMed

    Jung, Young Jin; Park, Dongwon; Koo, Sukmo; Yu, Sunkyu; Park, Namkyoo

    2009-10-12

    We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 mum free-space Gaussian beam to the 0.36 mum Si waveguide within a working distance of a few mum.

  11. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision.

    PubMed

    Espandar, Ladan; Sikder, Shameema; Moshirfar, Majid

    2011-01-10

    Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD(™) lens is an aspheric, hydrophilic acrylic intraocular lens (IOL). The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed.

  12. Softec HD hydrophilic acrylic intraocular lens: biocompatibility and precision

    PubMed Central

    Espandar, Ladan; Sikder, Shameema; Moshirfar, Majid

    2011-01-01

    Intraocular lens development is driven by higher patient expectations for ideal visual outcomes. The recently US Food and Drug Administration-approved Softec HD™ lens is an aspheric, hydrophilic acrylic intraocular lens (IOL). The hydrophilic design of the lens is optimized to address dysphotopsia while maintaining biocompatibility, optical clarity, resistance to damage, and resistance to biocontamination. Aspheric lenses decrease postoperative spherical aberration. The addition of the Softec lens provides clinicians with another option for IOL placement; however, randomized comparative studies of this lens to others already on the market remain to be completed. PMID:21311658

  13. Solar-pumped 80 W laser irradiated by a Fresnel lens.

    PubMed

    Ohkubo, Tomomasa; Yabe, Takashi; Yoshida, Kunio; Uchida, Shigeaki; Funatsu, Takayuki; Bagheri, Behgol; Oishi, Takehiro; Daito, Kazuya; Ishioka, Manabu; Nakayama, Yuichirou; Yasunaga, Norihito; Kido, Kouichirou; Sato, Yuji; Baasandash, Choijil; Kato, Kiyoshi; Yanagitani, Takagimi; Okamoto, Yoshiaki

    2009-01-15

    A solar-pumped 100 W class laser that features high efficiency and low cost owing to the use of a Fresnel lens and a chromium codoped neodymium YAG ceramic laser medium was developed. A laser output of about 80 W was achieved with combination of a 4 m(2) Fresnel lens and a pumping cavity as a secondary power concentrator. This output corresponds to 4.3% of conversion efficiency from solar power into laser, and the maximum output from a unit area of Fresnel lens was 20 W/m(2), which is 2.8 times larger than previous results with mirror-type concentrator.

  14. A study for the special Fresnel lens for high efficiency solar concentrators

    NASA Astrophysics Data System (ADS)

    Lin, Jian-Shian; Huang, Wei-Chih; Hsu, Hsiu-Chen; Chang, Ming-Wen; Liu, Chung-Ping

    2005-08-01

    Design a Fresnel lens for a concentrator to collect more sunlight onto the solar cell due to the efficiency and cost. Since 1970, the non-imaging concentrator was used for solar energy; most of them were reflecting mirrors. The non-imaging optical system provides large aperture and forgiving imaging requirements. The Fresnel lens used in non-imaging optical system was usually called non-imaging Fresnel lens. In this research, the Fresnel lenses were refracting optical elements but diffracting ones. According to the method of Ralf Leutz and Akio Suzuki [2], using minimum deviation and minimum dispersion to design a non-imaging Fresnel lens, which obeys the edge ray principle. Use optical software TracePro to simulate the non-imaging Fresnel lens, and each pitch size was 0.3mm and 200mm focus distant. Discusses the losses of non-imaging Fresnel lens and find out the relation of efficiency and F-Number. The optical concentration ratio could reach 15X (2-D) and 230X (3-D).

  15. Re-evaluation of an improved efficiency polymeric web point-focus Fresnel lens

    SciTech Connect

    Stillwell, C.B.

    1988-08-01

    The optical efficiency of the lens developed by 3M and reported in Development and Evaluation of an Improved Efficiency Polymeric Web Point-Focus Fresnel Lens was measured by Sandia and reported to be 82%. Subsequent to publication of that report, additional lens tests at Sandia showed a lens efficiency of only 79%. This report presents the results of a study to determine why the lens efficiency is now lower than originally observed. 2 refs., 5 figs., 2 tabs.

  16. Feasibility of Thin Fresnel Lens Use in Multi-kj, Short Pulse Laser Systems

    SciTech Connect

    Jovanovic, I; Dixit, S N; Wattellier, B; Hermann, M R; Barty, C P J

    2002-11-18

    Recently-developed, thin-Fresnel-lens technology offers the potential for transmissive focusing of high-peak-power, ultrashort-duration laser pulses. Calculations of the transverse and longitudinal spectral blurring effects of thin Fresnel lenses when used to focus ultrashort, high-energy laser pulses are presented.

  17. Fabrication of grating-Fresnel lens by using PDMS based soft lithography

    NASA Astrophysics Data System (ADS)

    Ni, Kai; Hu, Haifei; Li, Xinghui; Zhou, Qian; Wang, Xiaohao; Zhang, Jinchao

    2016-10-01

    Fabrication of a new type hybrid plane optics, Grating-Fresnel (G-Fresnel) lens for miniature spectrometer is presented in this research. A polydimethylsiloxane (PDMS) based soft lithography technology is employed. In this method, the grating surface and Fresnel surface of the G-Fresnel lens are formed simultaneously by sandwiching the PDMS layer between a reverse Fresnel mold and a grating. Surface anti-adhesive treatment method has been proposed to solve the innate adhesion of PDMS layers. A fabrication system is constructed and a G-Fresnel with grating line spacing of 1.11μm (900 lines/mm) and Fresnel lens with a diameter of 25.4 mm and a focal length of 25 mm was successfully fabricated. Three-dimensional surface profilometry has been performed to examine the device quality. Measured results show that replicas remain high fidelity to its primary master mold. A miniature spectrometer system was constructed to evaluate the performances of this fabricated G-Fresnel lens. Experimental results show that the spectrometer can provide about 2 nm resolutions at wavelengths of 450nm, 532 nm, and 650 nm, which verified the effectiveness of this fabrication method.

  18. Ultralightweight Fresnel Lens Solar Concentrators for Space Power

    NASA Technical Reports Server (NTRS)

    ONeill, M. J.; McDanal, A. J.

    2000-01-01

    The first phase of this project was completed in March 2000, and included the successful technology demonstration of a new ultralightweight photovoltaic concentrator array at the fully functional panel level. The new array is called the Stretched Lens Aurora (SLA) array, and uses deployable, flexible, thin-film silicone rubber Fresnel lenses to focus sunlight onto high efficiency multijunction solar cells, which are mounted to a composite radiator surface for waste heat dissipation. A prototype panel was delivered to NASA Marshall in March 2000, and comprised four side-by-side lenses focussing sunlight onto four side-by-side photovoltaic receivers. This prototype panel was tested by NASA Glenn prior to delivery to NASA Marshall. The best of the four lens/receiver modules achieved 27.4% efficiency at room temperature in the NASA Glenn solar simulator tests. This performance equates to 375 W/sq.m. areal power and 378 W/kg specific power at the fully functional panel level. We believe this to be the first space solar array of any kind to simulataneously meet the two long-standing NASA goals of 300 W/sq.m. and 300 W/kg at the functional panel level. Key results for the first phase of the program have been documented by ENTECH in a Draft Final Technical Report, which is presently being reviewed by NASA, and which should be published in the near future.

  19. A rapid two-photon fabrication of tube array using an annular Fresnel lens.

    PubMed

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Li, Guoqiang; Chu, Jiaru; Huang, Wenhao

    2014-02-24

    A rapid method of fabricating microscopic tubular structures via two-photon polymerization is presented. Novel Fresnel lens is designed and applied to modulate the light field into a uniform ring pattern with controllable diameters. Comparing with the conventional holographic processing method, Fresnel lens shows higher uniformity and better flexibility, while easier to generate. This versatile method provides a powerful solution to produce tube structure array within several seconds.

  20. Electrically controlled polarization-independent liquid-crystal Fresnel lens arrays.

    PubMed

    Patel, J S; Rastani, K

    1991-04-01

    We describe the properties and construction of a polarization-independent Fresnel lens array using nematic liquid crystals in which the diffraction efficiency of lenses can be electrically controlled. A novel structure is used such that the principal axis of the liquid crystals in two adjacent zones of each Fresnel lens are orthogonal. This makes the device polarization independent. We have characterized these lenses at different applied fields and input polarizations by diffracting an argon-ion beam into focus.

  1. Electrically controllable Fresnel lens in 90° twisted nematic liquid crystals.

    PubMed

    Kuo, Chie-Tong; Li, Chien-Yu; Lin, Shih-Hung; Yeh, Hui-Chen

    2015-10-05

    This study presents a theoretical analysis and experimental demonstration of an electrically controllable Fresnel lens in a 90° twisted nematic liquid crystal cell. The cell gap was chosen to satisfy the Gooch-Tarry conditions, and therefore, the polarization rotation effect was valid regardless of the incident polarization direction. The polarization sensitivity of the diffraction efficiency of the 90° twisted nematic Fresnel lens was dependent on the applied voltage regime. Theoretical calculations effectively explain the experimental results.

  2. Novel Scanning Lens Instrument for Evaluating Fresnel Lens Performance: Equipment Development and Initial Results (Presentation)

    SciTech Connect

    Herrero, R.; Miller, D. C.; Kurtz, S. R.; Anton, I.; Sala, G.

    2013-07-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  3. A novel scanning lens instrument for evaluating Fresnel lens performance: Equipment development and initial results

    NASA Astrophysics Data System (ADS)

    Herrero, Rebeca; Miller, David C.; Kurtz, Sarah R.; Antón, Ignacio; Sala, Gabriel

    2013-09-01

    A system dedicated to the optical transmittance characterization of Fresnel lenses has been developed at NREL, in collaboration with the UPM. The system quantifies the optical efficiency of the lens by generating a performance map. The shape of the focused spot may also be analyzed to understand change in the lens performance. The primary instrument components (lasers and CCD detector) have been characterized to confirm their capability for performing optical transmittance measurements. Measurements performed on SoG and PMMA lenses subject to a variety of indoor conditions (e.g., UV and damp heat) identified differences in the optical efficiency of the evaluated lenses, demonstrating the ability of the Scanning Lens Instrument (SLI) to distinguish between the aged lenses.

  4. High-efficiency Fresnel lens fabricated by axially symmetric photoalignment method.

    PubMed

    Huang, Yao-Han; Ko, Shih-Wei; Chu, Shu-Chun; Fuh, Andy Ying-Guey

    2012-11-10

    In this study, a Fresnel lens with radial and azimuthal liquid crystal (LC) alignments in the odd and even zones was fabricated using the photoalignment technique based on an azo dye doped in LC cells. The lens has approximately 35% focusing efficiency as determined using a linearly polarized probe beam. In addition, the lens converts the input linear polarization into axially symmetrical polarization at the focal plane. The fabricated Fresnel lens is polarization-independent and has electrically controllable focusing efficiency. Moreover, the far-field pattern of a probe beam through the device placed between the polarizers agrees with the pattern obtained from the simulation.

  5. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert, Jr.

    1999-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion and applying blackbody radiation equations the spot energy distribution can be determined. These equations are used to design a fresnel lens to produce maximum flux for a given spot size, lens diameter, and image distance. This approach results in significant increases in solar efficiency over traditional single wavelength designs.

  6. Design and development of a laminated Fresnel lens for point-focus PV systems. Phase II

    SciTech Connect

    Hodge, R.C.

    1982-12-01

    A laminated glass-plastic lens parquet using injection molded point focus Fresnel lenses is described. The second phase of a program aimed at investigating the cost effectiveness of a glass-plastic concentrator lens assembly is reported. The first phase dealt with the development of a first generation lens design, the selection of the preferred glass coverplate and glass-to-lens adhesive and initial injection molding lens molding trials. The second phase has dealt with the development of an improved lens design, a full size parquet lamination process, and a second group of injection molding lens molding trials.

  7. Laminated Fresnel lenses

    SciTech Connect

    Jebens, R.W.

    1980-04-01

    A fabrication method for making plastic-on-glass laminated Fresnel lenses is discussed. These Fresnel lenses are for application in an RCA solar photovoltaic concentrator array now in the prototype stage of development. This laminated Fresnel lens fabrication method consists of making a Dow Corning J RTV silastic rubber mold of a master lens array. This mold is used to vacuum cast only the lens facets onto a low-iron tempered-glass substrate with an epoxy resin such as Hysol 0S 1000, a bisphenol-A resin with a flexibilizer that is anhydride cured. Cast acrylic Fresnel lens arrays commercialy available have potential cleaning and abrasion problems, have very large thermal expansion, and have dimensional uncertainties in their manufacture. The laminated lens is dimensionally stable with low thermal expansion, has good cleaning characteristics, and is very inexpensive in materials cost. The measured transmission of such a lens on low-iron glass is 80.4% compared with 85.1% for a cast acrylic lens, and the optical quality is good enough for application in the 100X to 200X concentration range. An approach to making large lens arrays (3 by 6 ft) on a commercial scale is explored.

  8. Wavelength-independent integrated focus sensor using a reflection twin micro-Fresnel lens.

    PubMed

    Shiono, T; Setsune, K

    1989-12-01

    A compact focus sensor constructed with thin film components such as a reflection twin micro-Fresnel lens and a photodetector is proposed. This sensor has a folded optical path and is insensitive to wavelength shift. Theoretical analysis indicates that the optical performance of reflection Fresnel lenses can be improved in comparison with a conventional transmission micro-Fresnel lens. The reflection twin Fresnel lens was fabricated using electron-beam lithography and exhibited diffraction-limited focusing performance with high (71%) efficiency. It was demonstrated that the focus sensor had excellent spot displacement characteristics in agreement with theoretical results, and a focus error signal was detected. This focus sensor could be useful for the optical head of an optical disk system.

  9. 26. Photograph of original Fresnel lens a 1st order fixed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Photograph of original Fresnel lens a 1st order fixed white light. (Installed 1874 and first illuminated Feb. 1, 1875. This is the only known photograph of this lens - - removed in 1929.)ca. 1918. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  10. Design and modeling of a cost-effective achromatic Fresnel lens for concentrating photovoltaics.

    PubMed

    Vallerotto, Guido; Victoria, Marta; Askins, Stephen; Herrero, Rebeca; Domínguez, César; Antón, Ignacio; Sala, Gabriel

    2016-09-05

    This paper presents a novel Fresnel lens capable of significantly reducing chromatic aberration in solar applications. The optical performance of this achromatic lens has been analyzed through ray-tracing simulations, showing a concentration factor three times higher than that attained by a classic silicone on glass (SOG) Fresnel lens while maintaining the same acceptance angle. This should avoid the need for a secondary optical element, reducing the cost associated with its manufacturing and assembly and increasing the module reliability. The achromatic lens is made of inexpensive plastic and elastomer which allows a highly scalable and cost-competitive manufacturing process similar to the one currently used for the fabrication of SOG Fresnel lenses.

  11. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers

    PubMed Central

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-01-01

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation. PMID:27886050

  12. Design of Fresnel Lens-Type Multi-Trapping Acoustic Tweezers.

    PubMed

    Tu, You-Lin; Chen, Shih-Jui; Hwang, Yean-Ren

    2016-11-23

    In this paper, acoustic tweezers which use beam forming performed by a Fresnel zone plate are proposed. The performance has been demonstrated by finite element analysis, including the acoustic intensity, acoustic pressure, acoustic potential energy, gradient force, and particle distribution. The acoustic tweezers use an ultrasound beam produced by a lead zirconate titanate (PZT) transducer operating at 2.4 MHz and 100 Vpeak-to-peak in a water medium. The design of the Fresnel lens (zone plate) is based on air reflection, acoustic impedance matching, and the Fresnel half-wave band (FHWB) theory. This acoustic Fresnel lens can produce gradient force and acoustic potential wells that allow the capture and manipulation of single particles or clusters of particles. Simulation results strongly indicate a good trapping ability, for particles under 150 µm in diameter, in the minimum energy location. This can be useful for cell or microorganism manipulation.

  13. Optically controllable and focus-tunable Fresnel lens in azo-dye-doped liquid crystals using a Sagnac interferometer.

    PubMed

    Yeh, Hui-Chen; Kuo, Yi-Chieh; Lin, Shih-Hung; Lin, Jia-De; Mo, Ting-Shan; Huang, Shuan-Yu

    2011-04-15

    This study demonstrates a tunable Fresnel lens in an azo-dye-doped liquid crystal (ADDLC) film using an interference technique. One Fresnel-patterned green beam using a Sagnac interferometer irradiated the UV-illuminated ADDLC cell, yielding a concentric zone plate distribution with homeotropic and isotropic structures in bright and dark regions of the green interference pattern. The proposed Fresnel lens is polarization independent, focus tunable, and the focusing efficiency of the device can be optically controlled.

  14. Visual effect of a linear Fresnel lens illuminated with a directional backlight.

    PubMed

    Li, Kunyang; Fan, Hang; Wang, Jiahui; Xu, Yuman; Zhou, Jianying; Zhou, Yangui

    2016-06-01

    A linear Fresnel lens illuminated by a directional backlight is studied. The light distribution on the lens surface visualized by a retina is simulated with a Monte Carlo ray-tracing technique, and the visualized display uniformity on the lens surface is found to depend critically on the lens quality as well as on the viewing position away from the light propagation axis. The effect of the light source configuration as well as the deviation of the microstructures of the Fresnel lens from ideal structure are studied. The simulation is verified with an experimental study, and good agreement between numerical and experimental results is obtained. Design guidelines are presented for a backlight-illuminated system to achieve high-quality uniform flat-panel two-dimensional and autostereoscopic displays.

  15. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications

    NASA Astrophysics Data System (ADS)

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I.; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.69), which enables efficient light focusing even inside other media such as water or adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping and fiber probes.

  16. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications.

    PubMed

    Koshelev, Alexander; Calafiore, Giuseppe; Piña-Hernandez, Carlos; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano

    2016-08-01

    In this Letter, we present a Fresnel lens fabricated on the end of an optical fiber. The lens is fabricated using nanoimprint lithography of a functional high refractive index material, which is suitable for mass production. The main advantage of the presented Fresnel lens compared to a conventional fiber lens is its high refractive index (n=1.68), which enables efficient light focusing even inside other media, such as water or an adhesive. Measurement of the lens performance in an immersion liquid (n=1.51) shows a near diffraction limited focal spot of 810 nm in diameter at the 1/e2 intensity level for a wavelength of 660 nm. Applications of such fiber lenses include integrated optics, optical trapping, and fiber probes.

  17. Component and prototype panel testing of the mini-dome Fresnel lens photovoltaic concentrator array

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; Swartz, Clifford K.; O'Neill, Mark J.

    1990-01-01

    The mini-dome Fresnel lens concentrator array, a high-efficiency, lightweight space photovoltaic array concept, is described. The three critical elements of the array concept are the Fresnel lens concentrator, the prismatic cell power cover, and the photovoltaic cell. Prototype concentrator lenses have been fabricated and tested, with optical efficiencies reaching 90 percent. Work is progressing on the design and fabrication of the panel structure. The impact of recent advances in 30 percent-efficient multijunction photovoltaic cells on array performance is also discussed. Near-term performance goals of 300 w/sq m and 100 w/kg are now feasible.

  18. Experimental realization of the devil's vortex Fresnel lens with a programmable spatial light modulator

    PubMed Central

    Mitry, Mark; Doughty, Danielle C.; Chaloupka, Jan L.; Anderson, Matthew E.

    2015-01-01

    We present a unique method for experimentally generating multiple vortices by way of a devil's vortex lens combined with a Fresnel lens using a spatial light modulator. These lenses have the multifocal properties of fractal zone plates combined with the orbital angular momentum of a spiral phase plate and can be tailored to fit within a small space on an optical bench. Results are presented alongside numerical simulations, demonstrating the robust nature of both the experimental method and the predictive power of the Huygens–Fresnel wavelet theory. PMID:22722286

  19. Experimental realization of the devil's vortex Fresnel lens with a programmable spatial light modulator.

    PubMed

    Mitry, Mark; Doughty, Danielle C; Chaloupka, Jan L; Anderson, Matthew E

    2012-06-20

    We present a unique method for experimentally generating multiple vortices by way of a devil's vortex lens combined with a Fresnel lens using a spatial light modulator. These lenses have the multifocal properties of fractal zone plates combined with the orbital angular momentum of a spiral phase plate and can be tailored to fit within a small space on an optical bench. Results are presented alongside numerical simulations, demonstrating the robust nature of both the experimental method and the predictive power of the Huygens-Fresnel wavelet theory.

  20. A transmittance-optimized, point-focus Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.; Goldberg, V. R.; Muzzy, D. B.

    1982-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  1. A Transmittance-optimized, Point-focus Fresnel Lens Solar Concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, M. J.

    1984-01-01

    The development of a point-focus Fresnel lens solar concentrator for high-temperature solar thermal energy system applications is discussed. The concentrator utilizes a transmittance-optimized, short-focal-length, dome-shaped refractive Fresnel lens as the optical element. This concentrator combines both good optical performance and a large tolerance for manufacturing, deflection, and tracking errors. The conceptual design of an 11-meter diameter concentrator which should provide an overall collector efficiency of about 70% at an 815 C (1500 F) receiver operating temperature and a 1500X geometric concentration ratio (lens aperture area/receiver aperture area) was completed. Results of optical and thermal analyses of the collector, a discussion of manufacturing methods for making the large lens, and an update on the current status and future plans of the development program are included.

  2. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    SciTech Connect

    Komlenok, M S; Kononenko, T V; Kononenko, V V; Konov, V I; Volodkin, B O; Tukmakov, K N; Knyazev, B A; Choporova, Yu Yu; Soifer, V A; Pavel'ev, V S

    2015-10-31

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate. (laser technologies)

  3. Electrically switchable Fresnel lens using a polymer-separated composite film.

    PubMed

    Fan, Yun-Hsing; Ren, Hongwen; Wu, Shin-Tson

    2005-05-30

    A Fresnel lens with electrically-tunable diffraction efficiency while possessing high image quality is demonstrated using a phase-separated composite film (PSCOF). The light scattering-free PSCOF is obtained by anisotropic phase separation between liquid crystal and polymer. Such a lens can be operated below 12 volts and its switching time is reasonably fast (~10 ms). The maximum diffraction efficiency reaches ~35% for a linearly polarized light, which is close to the theoretical limit of 41%.

  4. Highly efficient and polarization-independent Fresnel lens based on dye-doped liquid crystal.

    PubMed

    Lin, Liang-Chen; Jau, Hung-Chang; Lin, Tsung-Hsien; Fuh, Andy Y

    2007-03-19

    We demonstrated a highly efficient, polarization-independent and electrically tunable Fresnel lens based on dye-doped liquid crystal using double-side photoalignment technique. The maximum diffraction efficiency reaches 37%, which approaches the theoretical limit ~41%. Such a lens functions as a half-wave plate, and this feature could be well preserved under the applied voltage. In addition, the device is simple to fabricate, and has fast switching responses between focusing and defocusing state.

  5. A high resolution, holographically corrected microscope with a Fresnel lens objective at large working distances.

    PubMed

    Andersen, G; Knize, R

    1998-06-22

    We present details of a microscope which incorporates an inexpensive, high numerical aperture Fresnel lens objective. The system aberrations are corrected by the use of an image hologram of the lens recorded using a point source of coherent illumination. This device gives high resolution, real time imaging while maintaining a large working distance. The same microscope can be used for micromachining and photolithography in situations where close proximity to the sample is impossible or undesirable.

  6. Fabrication of a multilevel THz Fresnel lens by femtosecond laser ablation

    NASA Astrophysics Data System (ADS)

    Komlenok, M. S.; Volodkin, B. O.; Knyazev, B. A.; Kononenko, T. V.; Kononenko, V. V.; Konov, V. I.; Soifer, V. A.; Pavel'ev, V. S.; Tukmakov, K. N.; Choporova, Yu Yu

    2015-10-01

    The possibility of fabricating a silicon diffractive fourlevel THz Fresnel lens by laser ablation is studied. For a microrelief to be formed on the sample surface, use is made of a femtosecond Yb : YAG laser with a high pulse repetition rate (f = 200 kHz). Characteristics of the diffractive optical element are investigated in the beam of a 141-mm free-electron laser. The measured diffraction efficiency of the lens is in good agreement with the theoretical estimate.

  7. Optical design of the Fresnel lens for LED-driven flashlight.

    PubMed

    Chen, Yi-Cheng; Nian, Shih-Chih; Huang, Ming-Shyan

    2016-02-01

    The Fresnel lens is composed of micrometer-sized v-groove structures that determine the maximum illuminance and brightness uniformity of LED-driven flashlights, which are used in high-quality photography. The fabrication quality of the microstructures and the accuracy of the geometrical curvature of the Fresnel lens affect the optical characteristics of the emitted light traveling through the lens, which in turn determines the maximum illuminance and brightness uniformity. This paper presents a systematic design procedure for fabricating the Fresnel lens and investigates the influence of geometrical design and fabrication process on optical performance. The optical analysis was performed using the commercial software TracePro. The results revealed that a small tip radius of the v-groove microstructure facilitates brightness uniformity. Furthermore, both the simulation and the experimental results revealed that Fresnel lenses fabricated through injection molding or injection compression molding have either errors of microstructure height more than 3%-6% or curvature errors higher than 6%, which would affect the optical performance, especially the brightness uniformity.

  8. Aerogel detector with a Fresnel lens focalization: a test of the concept

    SciTech Connect

    Sokolov, O.; Paic, G.; Alfaro, R.

    2008-07-02

    We present a threshold aerogel detector that uses only the unscattered light in the aerogel, focused on a photomultiplier using a Fresnel lens. The results with n = 1.03 and 3'' photomultiplier are presented. The possibility to use 1.5'' PMT is discussed.

  9. Rotationally invariant Fresnel lens-encoded circular harmonic binary phase-only filters.

    PubMed

    Davis, J A; York, L R; Cottrell, D M

    1991-05-10

    Binary phase-only circular harmonic filters show an angular dependence on the rotational orientation of the input object, which can be removed by encoding a Fresnel lens onto the filter. Theoretical and experimental results are presented using these filters written onto the magnetooptic spatial light modulator.

  10. Improved synthetic discriminant function performance using Fresnel lens-encoded binary phase-only filters.

    PubMed

    Davis, J A; Drayton, S H; Cottrell, D M; Davis, J E

    1990-06-10

    Synthetic discriminant functions (SDFs) made using Fresnel lens-encoded binary phase-only filters are shown to yield increased performance relative to SDFs constructed using conventional binary phase-only filters. We present both computer simulations and experimental results in which these SDFs are written onto the magnetooptic spatial light modulator.

  11. Polishing acrylic lens materials after sand impact

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Battenhausen, Peter; Kilian, Philipp; Sättler, Roland

    2013-09-01

    Commercial grade PMMA samples designed for CPV primary lens applications were subjected to sand impact in a wind tunnel. Defects caused by the impinging sand particles led to a decrease of direct transmittance and increase of haze. The observed changes increased with increasing mass and velocity of the sand deposited. Using a cotton buffing wheel it was possible to restore the PMMA surface almost back to its initial state and direct transmittance and haze back to their original values. Structural data from surface roughness measurements and SEM micrographs correlated well with the optical quantities.

  12. Refracting solar energy concentrator and thin flexible fresnel lens

    SciTech Connect

    Appeldorn, R.H.

    1989-07-18

    This patent describes a solar energy concentrator. It comprises: a target area; lens means including a sheet of thin flexible transparent polymeric film having a first surface and a second surface, and having a plurality of lenticular light refracting prisms forming the second surface for refracting incident solar radiation striking the lens means at an acute angle to the lens means; support means for supporting the lens means above the target area and the lens means being mounted upon the support means to open toward the target area whereby the lens means is folded at at least one line parallel to the lenticular light refracting prisms to define at least two sections, and the light refracting prisms being defined for focusing the incident solar radiation onto the target area. The efficiency of the concentrator is not materially affected by image deterioration at the target area due to bowing of the sections of the lens means during use.

  13. An analytical and experimental evaluation of the plano-cylindrical Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. L.; Cosby, R. M.

    1976-01-01

    Plastic Fresnel lenses for solar concentration are attractive because of potential for low-cost mass production. An analytical and experimental evaluation of line-focusing Fresnel lenses with application potential in the 200 to 370 C range is reported. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves-down lens. Experimentation was based primarily on a 56 cm-wide lens with f-number 1.0. A sun-tracking heliostat provided a non-moving solar source. Measured data indicated more spreading at the profile base than analytically predicted. The measured and computed transmittances were 85 and 87% respectively. Preliminary testing with a second lens (1.85 m) indicated that modified manufacturing techniques corrected the profile spreading problem.

  14. Wave-front analysis using Fresnel lens arrays.

    PubMed

    Spektor, B; Shamir, J

    1995-07-01

    A compact wave-front sensor is implemented by an array of two-beam common path inversion interferometers. Each element of the array consists of two Fresnel lenses in a confocal configuration. The wave-front data can be extracted from a superposition of the zero-order undiffracted wave and the twice-diffracted first-order wave. The result is a high-sensitivity, compact, and stable interferometric wave-front sensor.

  15. Planar Fresnel lens photoimprinted in a germanium-doped silica optical waveguide.

    PubMed

    Albert, J; Huttunen, J; Saarinen, J

    1995-05-15

    A gradient-thickness Fresnel lens was photoimprinted in the germanium-doped core layer of a single-mode planar waveguide on silica by exposure to ultraviolet light through a mask, which increases the refractive index in the lens region by approximately 5 x 10(-3). The lens is used to collimate the output of a standard single-mode optical fiber butt coupled to the waveguide at a wavelength of 1.3 microm. The method is applicable to the mass production of complex diffractive elements in a planar waveguide geometry.

  16. Electooptic Fresnel lens-scanner with an array of channel waveguides.

    PubMed

    Takizawa, K

    1983-08-15

    A new type of beam scanner is discussed based on a 1-D Fresnel zone plate consisting of titanium-diffused channel waveguides on LiNbO3. By electrooptically controlling the guided-wave phase, both beam scanning and 1-D focusing are achieved without a condensing lens. It was experimentally confirmed using the scanner with twenty-one Fresnel zones that the beam spot with a diameter of approximately 50 microm at half-power level of diffraction pattern is scanned over a distance of +/-70 microm in the focal plane with an applied voltage of +/-40 V at 633 nm.

  17. Reversible opacification of a hydrophilic acrylic intraocular lens.

    PubMed

    Park, Choul Yong; Chuck, Roy S

    2012-01-01

    A 56-year-old woman with diabetic retinopathy and chronic myelogenous leukemia had phacoemulsification cataract removal and hydrophilic acrylic intraocular lens (IOL) (Akreos MI-60) implantation in both eyes. One month after surgery, significant IOL opacity and severe cystoid macular edema were observed in both eyes. After bilateral intravitreal injection of bevacizumab (Avastin) to control macular edema, central clearing of the IOL opacity was observed in both eyes. Two months after the injection, the IOL opacity had almost disappeared from both eyes. To our knowledge, this is the first case of early postoperative bilateral IOL opacity in a hydrophilic acrylic IOL cleared after anti-vascular endothelial growth factor (VEGF) intravitreal injection. The role of anti-VEGF therapy in clearing IOL opacification requires further investigation.

  18. Development of a Fresnel lens concentrator for space application

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F.

    1987-01-01

    The selected conceptual design of the dome lens photovoltaic concentrator for space applications uses a 3.7 cm square aperture dome lens to focus onto a 0.4 cm active diameter gallium arsenide cell. The selected configuration will provide 91.5 percent lens optical efficiency and 21.4 percent cell efficiency at 100 suns irradiance and 100 C cell temperature, for an overall cell efficiency of 19.6 percent. The selected configuration will tolerate 1 degree tracking errors with negligible loss of performance. The selected panel weight is 2.5 kg/sq.m.

  19. Multi-imaging characteristics of electrically controlled on-axis holographic polymer-dispersed liquid-crystal Fresnel lens

    NASA Astrophysics Data System (ADS)

    Wei, Xiaopeng; Zheng, Jihong; Wang, Yanan; Gao, Zheng; Sun, Lijia; Lu, Yang; Zhuang, Songlin

    2015-03-01

    This paper reports on the investigation of the electrically controlled multifocus, multi-imaging characteristics of an on-axis holographic polymer-dispersed liquid-crystal (H-PDLC) Fresnel lens. The Fresnel lens is examined within a PDLC cell through the analysis of interference fringes generated by on-axis plane and spherical waves. Experiments are conducted to investigate the multifocus and multi-imaging phenomena of the H-PDLC Fresnel lens, and a corresponding geometrical optical analysis is also provided. It is then demonstrated that the H-PDLC Fresnel lens is a plane-surface diffractive optical device which modulates the phase of incident light through a periodic change of refractive index and forms multiple symmetrical images. Its diffraction properties, which can be controlled electrically, have further potential applications in this field.

  20. Fresnel lens solar concentrator design based on geometric optics and blackbody radiation equations

    SciTech Connect

    Watson, M.D.; Jayroe, R.R. Jr.

    1999-07-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables affect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations power, power distribution, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.

  1. Fresnel Lens Solar Concentrator Design Based on Geometric Optics and Blackbody Radiation Equations

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Jayroe, Robert

    1998-01-01

    Fresnel lenses have been used for years as solar concentrators in a variety of applications. Several variables effect the final design of these lenses including: lens diameter, image spot distance from the lens, and bandwidth focused in the image spot. Defining the image spot as the geometrical optics circle of least confusion, a set of design equations has been derived to define the groove angles for each groove on the lens. These equations allow the distribution of light by wavelength within the image spot to be calculated. Combining these equations with the blackbody radiation equations, energy distribution, power, and flux within the image spot can be calculated. In addition, equations have been derived to design a lens to produce maximum flux in a given spot size. Using these equations, a lens may be designed to optimize the spot energy concentration for given energy source.

  2. Mini-dome Fresnel lens photovoltaic concentrator development

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F., Jr.

    1991-01-01

    Since 1986 work on a new high-performance, light-weight space photovoltaic concentration array has been conducted. An update on the mini-dome lens concentrator array development program is provided. Recent prototype cell and lens test results indicate that near-term array performance goals of 300 w/sq m and 100 w/kg are feasible, and that a longer-term goal of 200 w/kg is reasonable.

  3. New concentrator multifocal Fresnel lens for improved uniformity: design and characterization

    NASA Astrophysics Data System (ADS)

    Vázquez-Moliní, Daniel; Fernández-Balbuena, Antonio Álvarez; Bernabeu, Eusebio; Muñoz de Luna Clemente, Javier; Domingo-Marique, Alfonso; García-Botella, Ángel

    2009-08-01

    The emergence of high efficiency photovoltaic cells is leading the industry into using solar concentrators in order to reduce costs by decreasing the number of cells used. In this paper Optics department of Universidad Complutense de Madrid has designed a multifocal Fresnel lens of PMMA and has studied the main parameters that have influence on its final function. This has been done by taking into account its manufacturing tolerances. The lens is square shaped with sides measuring 270 mm and it is composed of three different zones based on three different criteria: The central zone has been designed by using paraxial formulation, the intermediate one has been designed based on Fresnel classical formula while the marginal zone's purpose is to deflect the light by total internal reflection on prism faces. All three zones have different focal areas and different optical axis so the energy distribution will be more uniform whilst avoiding cell damage caused by hot spots. The design stage is feedback through simulations using a ray tracer software. In order to characterize the lens operation a measure of optical concentration was first taken on different lens areas using an integrating sphere. Finally, the lens performance in terms of concentration and in terms of uniformity at the focal spot was studied by processing the images taken with a CCD camera on a screen placed at the focal plane of the lens.

  4. A Linear Single-Crystal Bragg-Fresnel Lens With SiO2 Surface Structure

    SciTech Connect

    Kuznetsov, S.; Yunkin, V.; Drakopoulos, M.; Snigireva, I.; Snigirev, A.

    2004-05-12

    Bragg-Fresnel lens (BFL) as thin silicon dioxide strips grown on the surface of perfect silicon crystal was designed, manufactured and experimentally tested. In this case the BFL structure consists of a set of silicon dioxide rectangular shape etched zones arranged by the Fresnel zone law. The stress within coated and uncoated crystal regions is opposite in sign, whether tensile or compressive. The strain in the substrate crystal lattice directly underneath discontinuities in the deposited film give rise to phase difference between waves diffracted from coated and uncoated crystal regions. This phase difference is known to be dependent on the thickness and composition of film and substrate. The focusing properties of Si/SiO2 BFLs with 107 zones and 0.3 micrometer outermost zone width were experimentally studied as a function of the silicon oxide thickness in the range of 100 - 400 nanometers. It was shown that deformation Bragg-Fresnel lenses could effectively focus hard X-rays to a linear focal spot of about 2 microns. The efficiency of focusing was found to be about 16% at energy 10 keV. The developed lens design is a promising approach to extend the angular range of focusing by Bragg-Fresnel optical elements and to avoid some drawbacks of BFL properties related to aspect-ratio dependent etching.

  5. Design of a segmented nonimaging Fresnel lens optimized for non-tracking solar collection

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Martínez-Guerra, Edgar

    2016-09-01

    The success of solar systems, such as photovoltaic and sunlight illumination systems, is principally determined by the primary optical element used as collector. On this subject, the design of a segmented nonimaging Fresnel lens is presented; this collector is formed by the conjunction of different zones for solar collection, where every zone is made of a nonimaging Fresnel lens that collects a specific angular range of sunlight, according to the solar radiation of the northeast received in Mexico. Every collector section focus in a common area. The different zones are designed considering the apparent solar movement due to the daytime and the seasonal displacement over the year. The collector total performance is presented, including spatial and angular distribution. The collector presents an average performance over 80%, with an acceptance half-angle of 120°, and a collection area similar to that in a collector with 45° of acceptance half-angle.

  6. Single-exposure multiphoton fabrication of polygonized structures by an SLM-modulated Fresnel zone lens

    NASA Astrophysics Data System (ADS)

    Zhang, Chenchu; Hu, Yanlei; Li, Jiawen; Lao, Zhaoxin; Xu, Bing; Ni, Jincheng; Cai, Ze; Wu, Dong; Chu, Jiaru

    2016-03-01

    Recently, annular beams have been developed to rapidly fabricate microscope tubular structures via two-photon polymerization, but the distribution of the light field is limited to a ring pattern. Here a Fresnel lens is designed and applied to modulate the light field into a uniform quadrangle or hexagon shape with controllable diameters. By applying a spatial light modulator to load the phase information of the Fresnel lens, quadrangle and hexagon structures are achieved through single exposure of a femtosecond laser. A 3×6 array of structures is made within 9 s. Comparing with the conventional holographic processing, this method shows higher uniformity, high efficiency, better flexibility, and easy operation. The approach exhibited a promising prospect in rapidly fabricating structures such as tissue engineering scaffolds and variously shaped tubular arrays.

  7. Lens wavefront measurement technique with a reflective Fresnel-zone hologram

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohong; Gao, Bo; Xu, Kaiyuan; Li, Qiang; He, Yuhang; Liu, Ang; Chai, Liqun

    2014-12-01

    A new technique for precise wavefront measurement of lens with a hologram is presented. In diffraction, the Fresnel-zone plate hologram emulates the reflective properties of a spherical mirror for use during transmission null tests of an optic by use of a phase-shifting interferometer. Experiment shows that the Fresnel-zone hologram method result is quite similar with that of the traditional interferometry testing method, in which retroreflecting spherical surfaces are used as the reference. The benefit of this methodology is the higher degree of precision at lower cost of manufacturing the reflecting hologram, compared with retrospheres capable of delivering similar precision. This technique is widely applicable and is particularly useful for measuring long focus lens.

  8. Ti/Al multilayer zone plate and Bragg-Fresnel lens.

    PubMed

    Koike, M; Suzuki, I H; Komiya, S; Amemiya, Y

    1998-05-01

    By using a helicon plasma sputtering technique, a one-dimensional Ti/Al multilayer zone plate with an outermost layer width of 76 nm has been successfully fabricated. A Bragg-Fresnel lens has been made by combining this zone plate with a Ge(422) crystal. Comparison of the Ti/Al multilayer zone plate with the Ag/Al zone plate is discussed in terms of focusing efficiency.

  9. Liquid crystal Fresnel zone lens based on single-side-patterned photoalignment layer.

    PubMed

    Wang, X Q; Fan, F; Du, T; Tam, A M W; Ma, Y; Srivastava, A K; Chigrinov, V G; Kwok, H S

    2014-04-01

    In this article, we disclose a method to fabricate a liquid crystal (LC) Fresnel zone lens (FZL) with high efficiency. The LCFZL, based on patterned planar-aligned regions, has been prepared by means of a two-step photoalignment technique. The proposed binary-phase LCFZL manifests 39% diffraction efficiency at the focal point, which is close to the theoretical limit, 41%. Moreover, because of a lower driving voltage and faster response time, these elements could find application in many modern devices.

  10. Aspheric surface lens for LED collimating illumination with low Fresnel loss

    NASA Astrophysics Data System (ADS)

    Chen, Xindu; Lin, Jiaping; Liu, Zhanji; Wu, Peixuan; Wang, Han

    2016-12-01

    An aspheric surface lens is presented to realize collimating illumination with low Fresnel loss based on Fresnel equations and Snell's law. The smooth 2D contour of refractive optical surface is constructed from a set of cubic Bézier segments, whose control points are computed by deCasteljau algorithm. Simulation results show that the optical efficiency of 90.82% is achieved under a divergence angle of ±2.87° for an extended light-emitting diode (LED) source with chip size of 1 mm × 1 mm and the Fresnel loss is only 8.76%, whose optical efficiency has improved 14.3% than traditional collimating lens. By employing this proposed surface construction method, the largest divergence angle of collimating lens for point source is only 0.26° with 15 feature points on each refractive surface, while more than 2° for the traditional method. Therefore, the beams are well controlled with fewer feature data points. Tolerance analyses are also conducted in detail.

  11. Comparative study of two CPV optical concentrators, using a Fresnel lens as primary optical element

    NASA Astrophysics Data System (ADS)

    El Himer, S.; El-Yahyaoui, S.; Mechaqrane, A.; Ahaitouf, A.

    2017-03-01

    In this work, the performances of two optimized reflective secondary optics elements a CPC (Compound Parabolic Concentrator) and a Cone for use in a CPV concentrator system are studied using ray-tracing simulation for the same primary optical element: a Fresnel lens. These optical elements are compared in terms of concentration, acceptance angle, exit angle and output light distribution. Our results show that the power distribution at the end of the concentrator is more uniform in the case of the cone. The optical efficiency is higher when the secondary element is placed at a distance f + \\frac{\\text{R}}{{\\tan \\text{θ }}} with f the focal length; R the input radius of the secondary optical element and θ the acceptance angle of the secondary optical element. Also, we found that the length and the input radius of each optical element decrease when the Fresnel lens diameter increases but the input radius of the CPC stills the larger. Finally, our calculation show that the CPC is longer than the cone while the Fresnel lens diameter is less than 200 mm and beyond this value both the cone and the CPC mostly present the same length.

  12. Aspheric surface lens for LED collimating illumination with low Fresnel loss

    NASA Astrophysics Data System (ADS)

    Chen, Xindu; Lin, Jiaping; Liu, Zhanji; Wu, Peixuan; Wang, Han

    2017-02-01

    An aspheric surface lens is presented to realize collimating illumination with low Fresnel loss based on Fresnel equations and Snell's law. The smooth 2D contour of refractive optical surface is constructed from a set of cubic Bézier segments, whose control points are computed by deCasteljau algorithm. Simulation results show that the optical efficiency of 90.82% is achieved under a divergence angle of ±2.87° for an extended light-emitting diode (LED) source with chip size of 1 mm × 1 mm and the Fresnel loss is only 8.76%, whose optical efficiency has improved 14.3% than traditional collimating lens. By employing this proposed surface construction method, the largest divergence angle of collimating lens for point source is only 0.26° with 15 feature points on each refractive surface, while more than 2° for the traditional method. Therefore, the beams are well controlled with fewer feature data points. Tolerance analyses are also conducted in detail.

  13. The mini-dome Fresnel lens photovoltaic concentrator array - Current program status

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F.; O'Neill, Mark J.; Fraas, Lewis

    1991-01-01

    Over the last seven years, NASA Lewis, ENTECH, and Boeing have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The authors report the current status of the mini-dome Fresnel lens concentrator program, emphasizing the latest results on the fabrication and testing of a space-qualifiable version of the concentrator lens and panel structure. Calculations indicated that such an array can achieve 300 W/sq m at a specific power of 100 W/kg. The authors describe the current status of component and prototype panel testing and the preliminary development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment.

  14. Highly efficient broadband double-sided Fresnel lens for THz range.

    PubMed

    Sypek, Maciej; Makowski, Michał; Hérault, Emilie; Siemion, Agnieszka; Siemion, Andrzej; Suszek, Jarosław; Garet, Frédéric; Coutaz, Jean-Louis

    2012-06-15

    Modern passive THz setups require effective optical elements with a large numerical aperture. Here we propose a new type of the optical element for THz applications, which is a broadband double-sided Fresnel-like lens with an optimized thickness. The optimization is performed to obtain a very low attenuation, low material cost, and small weight in the element media. It also provides achromatic properties for the assumed wavelength range. The experimental evaluation of the proposed diffractive lens by means of time-domain spectroscopy is presented and discussed.

  15. Analytical/experimental study of the optical performance of a transmittance-optimized linear Fresnel lens solar concentrator

    SciTech Connect

    O'Neill, M.J.; Waller, R.A.

    1980-01-01

    A transmittance-optimized linear Fresnel lens solar concentrator has been developed. The optical performance of the lens has been analytically predicted, using the method of cone optics, to define the radiant flux profile in the focal plane. Also, the optical performance of the lens has been experimentally determined, using a focal plane radiant flux scanner, under actual solar illumination. A brief description of the lens, its predicted performance, and its measured performance is presented.

  16. Optimal design of an irregular Fresnel lens for multiple light sources using a three-layered Hierarchical Genetic Algorithm.

    PubMed

    Chen, Wen-Gong; Uang, Chii-Maw; Jou, Chen-Hai

    2007-08-06

    A two-layered Hierarchical Genetic Algorithm (HGA) was proposed in a previous paper to solve the design problem of a large scale Fresnel lens used in a multiple-source lighting system. The research objective of this paper is to extend the previous work by utilizing a three-layered HGA. The goal of the suggested approach is to decrease the reliance on deciding the number of groove segments for the designed Fresnel lenses, as well as to increase the variety of groove angles in a segment to improve the performance of the designed Fresnel lens. The proposed algorithm will be applied on a simulated reading light system, and the simulation results demonstrate that the proposed approach not only makes the design of a large scale Fresnel lens more feasible but also works better than the previous one in both illuminance and uniformity for a simulated reading light system.

  17. Shallow Fresnel lens fabrication using grayscale lithography made by high energy beam sensitive mask (HEBS) technology and reactive ion etching

    NASA Astrophysics Data System (ADS)

    Nachmias, Tali; Ohayon, Avi; Meltzer, Shefer E.; Kabla, Meni; Louzon, Elie; Levy, Uriel

    2009-02-01

    We describe the fabrication and the characterization of high efficiency Fresnel lenses by the use of gray scale lithography (GSL), followed by reactive ion etching (RIE) or deep reactive ion etching (DRIE) to transfer the pattern from the gray scale resist into the silicon substrate. Three versions of Fresnel lenses were fabricated, with height of 600nm, 1800nm and 5500nm. The desired lens height in silicon is determined from photoresist height and the selectivity of the etching process. A low selectivity DRIE process was developed in order to fabricated 1800nm and 5500nm Fresnel lenses. The 600nm Fresnel lens was fabricated using an RIE process because it requires a relatively slow etch rate and low selectivity, both could not be obtained by DRIE. According to the photoresist thickness developed in the gray scale lithography, an RIE process with a selectivity of 0.55 was required. We implement the DOE (design of experiment) method for finding the process parameters which gives the desirable selectivity and its tolerance which is crucial for determining the range of the Fresnel lens height. It was found that according to the selectivity tolerance, the Fresnel lens stands within +/-10% tolerance of its height. Finally, we demonstrated the imaging of an object using the 600 nm lens.

  18. The linear Fresnel lens - Solar optical analysis of tracking error effects

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    Real sun-tracking solar concentrators imperfectly follow the solar disk, operationally sustaining both transverse and axial misalignments. This paper describes an analysis of the solar concentration performance of a line-focusing flat-base Fresnel lens in the presence of small transverse tracking errors. Simple optics and ray-tracing techniques are used to evaluate the lens solar transmittance and focal-plane imaging characteristics. Computer-generated example data for an f/1.0 lens indicate that less than a 1% transmittance degradation occurs for transverse errors up to 2.5 deg. In this range, solar-image profiles shift laterally in the focal plane, the peak concentration ratio drops, and profile asymmetry increases with tracking error. With profile shift as the primary factor, the ninety-percent target-intercept width increases rapidly for small misalignments, e.g., almost threefold for a 1-deg error. The analytical model and computational results provide a design base for tracking and absorber systems for the linear-Fresnel-lens solar concentrator.

  19. The design and development of a high concentration and high efficiency photovoltaic concentrator utilizing a curved Fresnel lens

    SciTech Connect

    Moffat, A.L.; Scharlack, R.S.

    1982-09-01

    The design and development of an innovative photovoltaic concentrator which utilizes a low cost molded Fresnel lens is described. The lens design and fabrication are discussed, as well as the design of the collector module and tracking structure. A description of instrumentation developed to aid in the testing of lenses and solar cells is presented, and includes the test results.

  20. A Simple Design Approach of a Fresnel Lens for Creating Uniform Light-Emitting Diode Light Distribution Patterns

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Tang; Keiser, Gerd; Huang, Yen-Ru; Lee, San-Liang

    2014-09-01

    Devising an efficient method for distributing high-radiance light-emitting diode emissions onto target surfaces is a continuing challenge. Most current design methods are mathematically complex and require intricate optimizations. In this article, a simple and highly accurate geometric optics analysis is described for creating a free-form total internal reflection collimator lens and a Fresnel exit lens, which can be fabricated easily for producing a specific intensity distribution. A powerful application is the ability to create various high-efficiency and uniform illumination patterns from a standard widely used MR16 light bulb by simply attaching a Fresnel exit lens onto the face of the bulb.

  1. All-optical switchable holographic Fresnel lens based on azo-dye-doped polymer-dispersed liquid crystals.

    PubMed

    Jashnsaz, Hossein; Nataj, Nahid Hosain; Mohajerani, Ezeddin; Khabbazi, Amir

    2011-08-01

    Fabrication of an all-optical switchable holographic liquid crystal (LC) Fresnel lens based on azo-dye-doped polymer-dispersed LCs is reported using a Michelson interferometer. It is found that, upon circularly polarized photoirradiation, the diffraction efficiency of the fabricated Fresnel lens was increased significantly in a reversible manner. We believe this is due to the anisotropy induced by reorientation of the LC molecules coupled with azo-dye molecule orientation due to trans-cis-trans photoisomerization, which modulates the refractive index of the LC-rich regions. We also studied the effect of azo dye on the polarization dependency of the fabricated lens.

  2. Design and development of a high-concentration and high-efficiency photovoltaic concentrator using a curved Fresnel lens

    SciTech Connect

    Scharlack, R.S.; Moffat, A.

    1983-08-01

    Thermo Electron has designed a high concentration photovoltaic module that uses a domed, point-focus Fresnel lens. Their design, design optimization process, and results from lens and receiver tests are described in this report. A complete module has not been fabricated and probably will not be fabricated in the future; however, Thermo Electron's optical design, analysis, and testing of both secondary optical units and domed Fresnel lenses have made a significant contribution to our project. Tooling errors prevented the lens from reaching its potential efficiency by the end of the contract, and resolution of these tooling problems is currently being attempted with a follow-on contract, No. 68-9463.

  3. Roll-to-roll embossing of optical linear Fresnel lens polymer film for solar concentration.

    PubMed

    Zhang, XinQuan; Liu, Kui; Shan, Xuechuan; Liu, Yuchan

    2014-12-15

    Roll-to-roll manufacturing has been proven to be a high-throughput and low-cost technology for continuous fabrication of functional optical polymer films. In this paper, we have firstly studied a complete manufacturing cycle of linear Fresnel lens polymer film for solar concentration in the aspects of ultra-precision diamond machining of metal roller mold, roll-to-roll embossing, and measurement on film profile and functionality. A metal roller mold patterned with linear Fresnel lenses is obtained using single point diamond turning technique. The roller mold is installed onto a self-developed roll-to-roll UV embossing system to realize continuous manufacturing of linear Fresnel lens film. Profile measurement of the machined roller mold and the embossed polymer film, which is conducted using a stylus profilometer, shows good agreement between measured facet angles with designed ones. Functionality test is conducted on a solar simulation system with a reference solar cell, and results show that strong light concentration is realized.

  4. Solar Sail - Fresnel Zone Plate Lens for a Large Space Based Telescope

    SciTech Connect

    Early, J T

    2002-02-13

    A Fresnel zone plate lens made with solar sail material could be used as the primary optic for a very large aperture telescope on deep space probes propelled by solar sails. The large aperture telescope capability could enable significant science on fly-by missions to the asteroids, Pluto, Kuiper belt or the tort cloud and could also enable meaningful interstellar fly-by missions for laser propelled sails. This type of lens may also have some potential for laser communications and as a solar concentrator. The techniques for fabrication of meter size and larger Fresnel phase plate optics are under development at LLNL, and we are extending this technology to amplitude zone plates made from sail materials. Corrector optics to greatly extend the bandwidth of these Fresnel optics will be demonstrated in the future. This novel telescope concept will require new understanding of the fabrication, deployment and control of gossamer space structures. It will also require new materials technology for fabricating these optics and understanding their long term stability in a space environment.

  5. An analytical and experimental evaluation of a Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Hastings, L. J.; Allums, S. A.; Cosby, R. M.

    1976-01-01

    An analytical and experimental evaluation of line focusing Fresnel lenses with application potential in the 200 to 370 C range was studied. Analytical techniques were formulated to assess the solar transmission and imaging properties of a grooves down lens. Experimentation was based on a 56 cm wide, f/1.0 lens. A Sun tracking heliostat provided a nonmoving solar source. Measured data indicated more spreading at the profile base than analytically predicted, resulting in a peak concentration 18 percent lower than the computed peak of 57. The measured and computed transmittances were 85 and 87 percent, respectively. Preliminary testing with a subsequent lens indicated that modified manufacturing techniques corrected the profile spreading problem and should enable improved analytical experimental correlation.

  6. Anti-soiling coating based on silica for Fresnel lens of concentrator photovoltaics

    NASA Astrophysics Data System (ADS)

    Hirohata, Takuya; Ota, Yasuyuki; Nishioka, Kensuke

    2015-08-01

    A simple anti-soiling layer was coated on the surface of poly(methyl methacrylate), which is the primary material of Fresnel lenses for concentrator photovoltaics. The main material of the anti-soiling layer was silica and the layer contained abundant hydroxyl groups that adsorbed water on the surface. After 9 months of exposure, the transmittance of the sample without the coating was 83.9%. On the other hand, the transmittance of the sample with the coating was 90.7%. The relationship between the electrostatic potential and the adhesion of sand on a Fresnel lens was evaluated. The electrostatic potential and mass of the adherent sand were decreased by the anti-soiling coating.

  7. The design, testing and fabrication of an extruded, linear focus Fresnel lens

    SciTech Connect

    Kaminar, N.; Curchod, D. )

    1990-08-01

    The objective of this program is to design and fabricate an extruded, curved, linear-focus Fresnel lens for use in a photovoltaic module operating at 10X concentration. The extrusion process is the least expensive lens manufacturing process, producing a lens at approximately 10$/m{sup 2}. A goal to achieve 70% optical transmission was set. When used in a module, the housing sides are planned to be co-molded with the lens. This provides the least expensive module design available today. A 7-inch wide lens has been designed, and tooling has been fabricated. Several trial extrusions have been made, with the best to date giving a 73% transmission. A post forming tool was designed and fabricated that improves the molded tooth profile to within 0.001 inch of the design. The achievement of over 70% transmission has shown that a photovoltaic system with an installed AC buss-bar electricity cost of under $0.06/kWh can be produced. Solar Engineering Applications Corporation (SEA) is working on a second-generation extruded lens with the goal to achieve 80% transmission and incorporation into a module. 2 refs., 15 figs.

  8. Demonstration of 12 nm resolution Fresnel zone plate lens based soft x-ray microscopy

    SciTech Connect

    Chao, W.; Kim, J.; Rekawa, S.; Fischer, P.; Anderson, E. H.

    2009-06-05

    To extend soft x-ray microscopy to a resolution of order 10 nm or better, we developed a new nanofabrication process for Fresnel zone plate lenses. The new process, based on the double patterning technique, has enabled us to fabricate high quality gold zone plates with 12 nm outer zones. Testing of the zone plate with the full-field transmission x-ray microscope, XM-1, in Berkeley, showed that the lens clearly resolved 12 nm lines and spaces. This result represents a significant step towards 10 nm resolution and beyond.

  9. Fresnel lens-encoded binary phase-only filters for optical pattern recognition.

    PubMed

    Davis, J A; Cottrell, D M; Davis, J E; Lilly, R A

    1989-07-01

    We describe a technique for reducing false signals from optical correlators using binary phase-only filters (BPOF's). Since the impulse-response function of the BPOF contains both the target object and the inverted version of it, the output consists of the correlation of the input object with both of these objects. In our research a Fresnel phase plate lens is encoded onto the BPOF. As a result the correlation with the desired target is on a converging beam, and the correlation with the undesired inverted image of the target is on a diverging beam. Experimental results show that these filters reject inverted input objects.

  10. Wavelength-scale imaging of trapped ions using a phase Fresnel lens.

    PubMed

    Jechow, A; Streed, E W; Norton, B G; Petrasiunas, M J; Kielpinski, D

    2011-04-15

    A microfabricated phase Fresnel lens was used to image ytterbium ions trapped in a radio frequency Paul trap. The ions were laser cooled close to the Doppler limit on the 369.5 nm transition, reducing the ion motion so that each ion formed a near point source. By detecting the ion fluorescence on the same transition, near-diffraction-limited imaging with spot sizes of below 440 nm (FWHM) was achieved. To our knowledge, this is the first demonstration of wavelength-scale imaging of trapped ions and the highest imaging resolution ever achieved with atoms in free space.

  11. Acoustic excitation of the circular Bragg{endash}Fresnel lens in backscattering geometry

    SciTech Connect

    Souvorov, A.; Snigireva, I.; Snigirev, A.; Aristova, E.; Hartman, Y.

    1997-02-01

    An increment of the x-ray flux in crystal Bragg{endash}Fresnel lens (BFL) focus in backscattering geometry obtained by means of acoustic excitation of the BFL crystal substrate has been investigated. The dependence of the x ray{close_quote}s total reflected power versus ultrasound parameters has been studied in a low frequency range (10{endash}50 MHz). The proposed technique allows an increase in the flux in a BFL focus by a factor of 2 which almost achieves the kinematic limit. {copyright} {ital 1997 American Institute of Physics.}

  12. Hierarchical-genetic-algorithm-based design of a large scale Fresnel lens for a reading light system with multiple LED sources.

    PubMed

    Chen, Wen-Gong; Uang, Chii-Maw

    2006-10-20

    A conventional Fresnel lens is suitable to be used in the reading light system due to its features of directing and collecting light rays, as well as its properties of being essentially flat, plastic, lightweight, and cost efficient. However, it is not suitable for a reading light system with multiple light sources. To a reading light system with multiple light sources, a Fresnel lens with suitably designed groove angles can be used to improve the performance of that system in both illuminance and uniformity. Nevertheless, suitable groove angles are rather difficult to find if a Fresnel lens consists of a lot of groove angles and each angle covers a wide range of degrees. We develop a hierarchical genetic algorithm (HGA) to search for a set of optimal groove angles to design a Fresnel lens for a reading light system with multiple light sources from an enormous searching space. In addition, the groove angles of the Fresnel lens are directly derived from a conventional Fresnel lens database. The design goal is to maximize the illuminance and simultaneously maintain the uniformity of light rays incident to a specified reading surface. As a result, we can demonstrate that a HGA really works better than a genetic algorithm and the optimally designed Fresnel lens, indeed, offers a better light-guiding performance than a conventional Fresnel lens for a multiple-LED reading light system.

  13. Solar photocatalytic degradation of reactive blue 4 using a Fresnel lens.

    PubMed

    Durán, A; Monteagudo, J M

    2007-02-01

    The heterogeneous photocatalytic degradation of reactive blue 4 dye (RB4) solutions under Fenton reagent and TiO(2) assisted by concentrated solar light irradiation using a Fresnel lens has been studied. Multivariate experimental design was applied to study the kinetic process. The efficiency of photocatalytic degradation was determined from the analysis of color and total organic carbon (TOC) removal. Factorial experimental design allowed to determine the influence of four parameters (pH and initial concentrations of TiO(2), Fe(II) and H(2)O(2)) on the value of the decoloration kinetic rate constant. Experimental data were fitted using neural networks (NNs). The mathematical model reproduces experimental data within 86% of confidence and allows the simulation of the process for any value of parameters in the experimental range studied. Also, a measure of the saliency of the input variables was made based upon the connection weights of the neural networks, allowing the analysis of the relative relevance of each variable with respect to the others. Results showed that acidic pHs (pH=3.6) are preferred for the complete dye decoloration. The optimum catalyst concentration is 1.2g TiO(2)/l. The use of a low cost catalyst and its activation using a Fresnel lens to concentrate solar energy significantly accelerates the degradation process when compared with direct solar radiation alone and can offer an economical and practical alternative for the destruction of environmental organic compounds.

  14. [System design of open-path natural gas leakage detection based on Fresnel lens].

    PubMed

    Xia, Hui; Liu, Wen-Qing; Zhang, Yu-Jun; Kan, Rui-Feng; Cui, Yi-Ben; Wang, Min; He, Ying; Cui, Xiao-Juan; Ruan, Jun; Geng, Hui

    2009-03-01

    Based on the technology of tunable diode laser absorption spectroscopy (TDLAS) in conjunction with second harmonic wave detection, a long open-path TDLAS system using a 1.65 microm InGaAsP distributed feedback laser was developed, which is used for detecting pipeline leakage. In this system, a high cost performance Fresnel lens is used as the receiving optical system, which receives the laser-beam reflected by a solid corner cube reflector, and focuses the receiving laser-beam to the InGaAs detector. At the same time, the influences of the concentration to the fluctuation of light intensity were taken into account in the process of measurement, and were eliminated by the method of normalized light intensity. As a result, the measurement error caused by the fluctuation of light intensity was made less than 1%. The experiment of natural gas leakage detection was simulated, and the detection sensitivity is 0.1 x 10(-6) (ratio by volume) with a total path of 320 m. According to the receiving light efficiency of the optical system and the detectable minimum light intensity of the detector, the detectable maximal optical path of the system was counted to be 2 000 m. The results of experiment show that it is a feasible design to use the Fresnel lens as the receiving optical system and can satisfy the demand of the leakage detection of natural gas.

  15. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Mcdanal, A. J.; Spears, Don H.

    1989-01-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  16. A new method to decide the practical feature of Fresnel lens from the result of ultra-high refractive index method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shibuya, Masato; Hiramatsu, Takashi; Araki, Keisuke; Nakadate, Suezou; Fujii, Junki

    2016-10-01

    We propose a new method to decide the brazed feature of Fresnel lens from the result of high refractive index method. Traditionally the feature has been designed to satisfy the phase-difference function for a point object by having brazed surface relieves only on one side of the lens. Therefore the exit ray of the practical feature is different from that of high-index method even for this point object. Thus the aberration is changed. To solve this problem, we propose Fresnel lens having brazed feature on both sides. Studying the spherical Fresnel lens which collects sun light, we theoretically show how to decide the shape. Also by practical lens designing, we demonstrate the validity of our theory. The proposed method is useful to decide the brazed feature of Fresnel lens from the result of high refractive index method, especially for small view angle lenses.

  17. Simulation model of a new solar laser system of Fresnel lens according to real observed solar radiation data in

    NASA Astrophysics Data System (ADS)

    Abdel-Hadi, Yasser A.; Ghitas, A.; Abulwfa, A.; Sabry, M.

    2015-12-01

    A new simulation model of a new solar pumped laser system was tested to be run in Helwan in Egypt (latitude φ = 29°52‧N, longitude λ = 31°21‧E and elevation = 141 m) as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. Two cases of this model are tested; the first one is the model consisting of a Fresnel lens and a two-dimensional Compound Parabolic Concentrator (CPC), while the other is the model consisting of a Fresnel lens and a three-dimensional Compound Parabolic Concentrator (CPC). The model is fed by real actual solar radiation data taken in Helwan Solar Radiation Station at NRIAG in the various seasons in order to know the laser power got from such a system in those conditions. For the system of Fresnel lens and 2D-CPC, an average laser output power of 1.27 W in Winter, 2 W in Spring, 5 W in Summer and 4.68 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 3.24 W. For the system of Fresnel lens and 3D-CPC, an average laser output power of 3.28 W in Winter, 3.55 W in Spring, 7.56 W in Summer and 7.13 W in Autumn respectively can be obtained. Accordingly, the annual average output power for this system is 5.38 W.

  18. Path-dependent human identification using a pyroelectric infrared sensor and fresnel lens arrays.

    PubMed

    Fang, Jian-Shuen; Hao, Qi; Brady, David J; Shankar, Mohan; Guenther, Bob D; Pitsianis, Nikos P; Hsu, Ken Y

    2006-01-23

    This paper presents a design and development of a low power consumption, and low cost, human identification system using a pyroelectric infrared (PIR) sensor whose visibility is modulated by a Fresnel lens array. The optimal element number of the lens array for the identification system was investigated and the experimental results suggest that the lens array with more elements can yield a better performance in terms of identification and false alarm rates. The other parameters of the system configuration such as the height of sensor location and sensor-to-object distance were also studied to improve spectral distinctions among sensory data of human objects. The identification process consists of two parts: training and testing. For the data training, we employed a principal components regression (PCR) method to cluster data with respect to different registered objects at different speed levels. The feature data of different objects walking along the same path in training yet at random speeds are then tested against the pre-trained clusters to decide whether the target is registered, and which member of the registered group it is.

  19. Evaluation of a heliostat tracker for linear Fresnel lens photovoltaic concentrators

    NASA Astrophysics Data System (ADS)

    1986-12-01

    This report presents the results of an evaluation of a heliostat tracking structure used as a two-axis tracking platform for ENTECH's linear focus Fresnel lens photovoltaic collectors. The study included the installation and operation of a heliostat tracker populated with 30 modules (1 operational and 29 non-operational) on a 32-ft x 32-ft platform. Details of the array installation, collector mounting, and array tracking accuracy are provided. Test results demonstrate that the heliostat tracker meets the performance requirements imposed by the collector. The evaluation includes a comparison of the heliostat tracker approach with the current tracker approach (a roll/tilt array). Results of the comparison do not identify a clearly superior option.

  20. Simulation model of a new solar pumped laser system of Fresnel lens in Helwan of Egypt

    NASA Astrophysics Data System (ADS)

    Abdel-Hadi, Yasser A.

    2012-12-01

    A simulation model of a new solar pumped laser system is tested to be run in Helwan in Egypt as an example of an industrial polluted area. The system is based on concentrating the solar radiation using a Fresnel lens on a laser head fixed on a mount tracking the sun during the day and powered by a DC battery. The model is fed by real solar radiation data in the various seasons in order to know the laser power got from such a system in those conditions. The results showed that the output laser power obtained from this system can be up to 6.2 W in spring, 6.8 W in summer, 2.2 W in autumn and 0.4 W in winter.

  1. Free-form optics for Fresnel-lens-based photovoltaic concentrators.

    PubMed

    Miñano, Juan C; Benítez, Pablo; Zamora, Pablo; Buljan, Marina; Mohedano, Rubén; Santamaría, Asunción

    2013-05-06

    The Concentrated Photovoltaics (CPV) promise relies upon the use of high-efficiency triple-junction solar cells (with proven efficiencies of over 44%) and upon high-performance optics that allow for high concentration concurrent with relaxed manufacturing tolerances (all key elements for low-cost mass production). Additionally, uniform illumination is highly desirable for efficiency and reliability reasons. All of these features have to be achieved with inexpensive optics containing only a few (in general no more than 2) optical elements. In this paper we show that the degrees of freedom using free-forms allow the introduction of multiple functionalities required for CPV with just 2 optical elements, one of which is a Fresnel lens.

  2. Micro-patterned photo-aligned ferroelectric liquid crystal Fresnel zone lens.

    PubMed

    Srivastava, A K; Wang, X; Gong, S Q; Shen, D; Lu, Y Q; Chigrinov, V G; Kwok, H S

    2015-04-15

    In this Letter, we disclose a fast switchable Fresnel zone lens (FZL) by confining the ferroelectric liquid crystals (FLCs) in multiple microscopically defined photo-aligned alignment domains. The photo-alignment (PA) offers good control on the anchoring energy (W) by mean of irradiation doses (ID) and thus excellent alignment for FLCs. Two operational modes of the FLCFZL, i.e., FOCUS/OFF and FOCUS/DEFOCUS, were demonstrated. The proposed diffracting element provides fast response time, high diffraction efficiency (η), with saturated electro-optical (EO) operations up to high frequency (≈2  kHz). Thus, the proposed FLCFZLs with simple fabrication open several opportunities to improve the quality of existing devices and to find new applications.

  3. Development of dendritic web continuous ribbon silicon cells for use in a linear Fresnel lens photovoltaic concentrator

    SciTech Connect

    O'Neill, M.J.; McDanal, A.J.

    1986-04-01

    The primary objective of this program was to design, develop, and test low-cost, continuous ribbon silicon cells suitable for use in ENTECH's linear Fresnel lens photovoltaic concenrator module. The cells were made by Westinghouse using a dendritic web continuous ribbon process. This program represented the first attempt to adapt dendritic web cell fabrication technology to concentrator applications. ENTECH generated an optimized cell design, which included variable metallization matched to the radiant flux profile of the linear Fresnel lens concentrator. Westinghouse fabricated cells in several sequential production runs. The cells were tested by ENTECH under actual lens illumination to determine their performance parameters. The best cells made under this program achieved peak cell efficiencies of about 14%, compared to about 16% for production cells made by Applied Solar Energy Corporation, using float-zone-refined single-crystal silicon. With additional development, significant performance improvements should be achievable in future dendritic web concentrator cells.

  4. Development of a second-generation linear Fresnel lens photovoltaic and thermal (PVT) concentrator array, including fabrication and installation of a 200 square meter collector field

    SciTech Connect

    O'Neill, M.J.

    1985-02-01

    This report summarizes work performed in two areas: development of a second-generation linear Fresnel lens photovoltaic concentrator array, and development and fabrication of a 22 kilowatt photovoltaic and thermal concentrator array. Under these programs, ENTECH, Inc. developed a new second-generation linear Fresnel lens PVT concentrator system, and deployed a 200 square meter collector field of the new design at Sandia-Albuquerque. The new system combines excellent performance and low mass-production cost.

  5. Both improvements of the light extraction efficiency and scattered angle of GaN-LED using sub-micron Fresnel lens array

    NASA Astrophysics Data System (ADS)

    Gu, Xinyu; Chen, Linsen; Shen, Su; Wan, Wenqiang

    2015-11-01

    With the demanding requirements for light source, light emitting diodes (LED) attracts more and more attention because of its inherent advantages such as low power consumption, high reliability and longevity. However, there are two disadvantages for LED, one is the low light extraction efficiency resulting from the total internal reflection, and the other is the relative large scattered angle. In order to improve the light extraction efficiency and collimate the out-coupling light, a sub-micron Fresnel lens array is introduced and investigated in this paper. The focal length of the proposed Fresnel lens is 3μm and the minimum width of the outmost ring is about 150nm. To calculate and analyze the light extraction efficiency and the scattered angle of LED with such Fresnel lens array structure, we optimize the parameters of the Fresnel lens, such as the depth of the Fresnel lens array structure and the thickness of the p-type gallium nitride layer by using the finite difference time domain method (FDTD). By comparing the discussed patterned GaN-based LED with that traditional flat LEDs, it can be found that significant enhancement factor of the light extraction efficiency, which is improved by 3.5 times, can be obtained and the scattered angle at half maximum can be decreased 50° from 60° with this novel Fresnel lens structure. It will be expected that the proposed sub-micron structure can find wide applications in LEDs industry.

  6. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Diffraction of terahertz waves after passing through a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Shi, Yu-Lei; Zhou, Qing-Li; Zhang, Cun-Lin

    2009-12-01

    The spatiotemporal and spectral characteristics of ultrawide-band terahertz pulses after passing through a Fresnel lens are studied by using the scalar diffraction theory. The simulation shows that the transmitted terahertz waveforms compress with increasing propagation distance, and the multi-frequency focusing phenomenon at different focal points is observed. Additionally, the distribution of terahertz fields in a plane perpendicular to the axis is also discussed, and it is found that the diffraction not only induces focusing on-axis but also inhibits focusing at off-axis positions. Therefore, the Fresnel lens may be a useful alternative approach to being a terahertz filter. Moreover, the terahertz pulses travelling as a basic mode of a Gaussian beam are discussed in detail.

  7. Phase Fresnel lens recorded in photo-thermo-refractive glass by selective exposure to infrared ultrashort laser pulses.

    PubMed

    Siiman, Leo A; Lumeau, Julien; Glebov, Leonid B

    2009-01-01

    A new two-step approach for fabricating phase optical elements in photo-thermo-refractive glass by exposure to IR ultrashort laser pulses followed by thermal development is shown. A binary phase Fresnel lens was designed to focus light at 632.8 nm to a focal length of 400 cm. Conditions of ultrashort pulse irradiation and thermal development were chosen to achieve pi phase shift between zone boundaries. The focusing efficiency of the element was measured to be close to 50%.

  8. High brightness three-dimensional light field display based on the aspheric substrate Fresnel-lens-array with eccentric pupils

    NASA Astrophysics Data System (ADS)

    Gao, Xin; Sang, Xinzhu; Yu, Xunbo; Cao, Xuemei; Chen, Zhidong; Yan, Binbin; Yuan, Jinhui; Wang, Kuiru; Yu, Chongxiu; Dou, Wenhua; Xiao, Liquan

    2016-02-01

    The brightness and viewing field of the reproductive three-dimensional (3D) image are crucial factors to realize a comfortable 3D perception for the light field display based on the liquid crystal device (LCD). To improve the illuminance of 3D image with sub-image-units with small aperture angles and enlarge the viewing field, the illuminance of the Fresnel-lens combining with the sub-images on LCD is analyzed and designed. Theoretical and experimental results show that the Fresnel-lens-array with eccentric pupil(FAEP) can address above problems. A 3D light field display based on LCD with FAEP and directional diffuser screen are used to reconstruct the target 3D field. 25 parallax sub-images are projected to the directional diffuser screen to verify the improvement of illuminance and viewing field. To reduce eccentric aberration introduced by eccentric pupil, a novel structure of Fresnel-lens-array is presented to reduce the aberration. The illuminance and viewing field are well promoted at the same time. 3D image with the high quality can be achieved.

  9. Development and evaluation of an improved efficiency polymeric web point-focus Fresnel lens

    SciTech Connect

    Cobb, S. Jr.

    1987-04-01

    The feasibility of producing parquets of point-focus Fresnel lenses with a 2/sup 0/ draft angle on the riser in a continuous polymeric web is described. The parquet produced consisted of 14 square lenses, each 8.16 in. on a side, in a 2 by 7 format. The primary aim was to show that an increased efficiency was possible over that reported in SAND83-7023 by decreasing the draft angle. A secondary aim was also to produce a web of sufficient thickness to be used without lamination to a thick superstrate. The results demonstrated that increased efficiency was realized for both the thin and thick caliper material, with performance nearly equal to a direct-cut control lens. The results also show that a bowing or sagging problem exists in the laminated lenses. They also show that the thicker, non-laminated lenses may not be stiff enough to lie flat and may buckle, causing these lenses to be potentially unacceptable.

  10. Testing of a prototype Fresnel-lens concentrator for thermal applications

    SciTech Connect

    Lewandowski, A.

    1983-02-01

    A prototype Fresnel-lens concentrator, manufactured by E-Systems, Dallas, Texas, was tested for thermal performance at SERI's Mid-Temperature Collector Research Facility (MTCRF). This work was funded by the DOE in an effort to support development of a testing standard for concentrators. The data obtained from this testing were presented and utilized by a subcommittee of the American Society for Testing and Materials (ASTM) in the development process for the standard. Several tests were conducted on the concentrator using draft versions of the standard as guidance. Additional tests allowed but not required by the standard were conducted to determine the effect of the direct solar irradiance level on collector performance. It is the results of these additional tests that are of primary interest. The data show that non-linear heat losses cause collector efficiency to be a function of both ..delta..t/I/sub DN/ and I/sub DN/ and that the efficiency when fluid temperature is near ambient is also a function of I/sub DN/. This latter result is a characteristic unique to this collector, whereas the former holds for any collector with non-linear with heat loss.

  11. The Optical Design of a System using a Fresnel Lens that Gathers Light for a Solar Concentrator and that Feeds into Solar Alignment Optics

    NASA Technical Reports Server (NTRS)

    Wilkerson, Gary W.; Huegele, Vinson

    1998-01-01

    The Marshall Space Flight Center (MSFC) has been developing a space deployable, lightweight membrane concentrator to focus solar energy into a solar furnace while remaining aligned to the sun. For an inner surface, this furnace has a cylindrical heat exchanger cavity coaligned to the optical axis; the furnace warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places! The result can be summarized as a composite Fresnel lens for solar concentration and alignment.

  12. Optical design of a system using a Fresnel lens that gathers light for a solar concentrator and that feeds into solar alignment optics

    NASA Astrophysics Data System (ADS)

    Wilkerson, Gary W.; Huegele, Vinson B.

    1998-09-01

    Marshall Space Flight Center has been developing a space deployable, lightweight membrane concentrator to focus energy from the sun into a solar engine while remaining aligned to the sun. For an inner surface, this engine has a cylindrical heat exchanger cavity coaligned to the optical axis; the engine warms gas to propel the spacecraft. The membrane concentrator is a 1727 mm (68.00 in.) diameter, F/1.7 Fresnel lens. This large membrane is made from polyimide and is 0.076 mm (0.0030 in.) thick; it has the Fresnel grooves cast into it. The solar concentrator system has a super fast paraboloid reflector near the lens focus and immediately adjacent to the cylindrical exchanger cavity. The paraboloid collects the wide bandwidth and some of the solar energy scattered by the Fresnel lens. Finally, the paraboloid feeds the light into the cylinder. The Fresnel lens also possesses a narrow annular zone that focuses a reference beam toward four detectors that keep the optical system aligned to the sun; thus, occurs a refracting lens that focuses two places summarized as a composite Fresnel lens for solar concentration and alignment.

  13. Experimental measurements of a prototype high-concentration Fresnel lens and sun-tracking method for photovoltaic panel's efficiency enhancement

    NASA Astrophysics Data System (ADS)

    Rajaee, Meraj; Ghorashi, Seyed Mohamad Bagher

    2015-08-01

    Concentrator photovoltaic modules are a promising technology for highly efficient solar energy conversion. This system presents several advantages due to additional degrees of freedom that has been provided by the spectral separation such as cost and mass reduction, increase in the incident solar flux on PV cells and performances. This paper has proposed a unique photovoltaic solar cell system that consists of semi-Fresnel lens convergent structure and a novel two axis sun tracking module to enhance the efficiency of solar cell by using less cell area and energy losses. The grooves of this lens are calculated according to the refraction and convergent angles of the light easy for perpendicular incidence angle. The update time interval during tracking causes misalignment of the lens' optical axis versus the sunrays. Then an inventive sun-tracking method is introduced to adjust the module so that the incident rays are always perpendicular to the module's surface. As a result, all rays will be refracted with the predetermined angles. This way the focus area is reduced and smaller cells can be used. We also mentioned different module connections in order to provide compensation method during losses, for networks and power systems. Experimental results show that using semi-Fresnel lens, along with the sun-tracking method increases the efficiency of PV panel.

  14. Fabrication of Fresnel micro lens array in borosilicate glass by F2-laser ablation for glass interposer application

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning; Fricke-Begemann, Thomas; Ihlemann, Jürgen

    2014-03-01

    The future need for more bandwidth forces the development of optical transmission solutions for rack-to-rack, boardto- board and chip-to-chip interconnects. The goals are significant reduction of power consumption, highest density and potential for bandwidth scalability to overcome the limitations of the systems today with mostly copper based interconnects. For system integration the enabling of thin glass as a substrate material for electro-optical components with integrated micro-optics for efficient light coupling to integrated optical waveguides or fibers is becoming important. Our glass based packaging approach merges micro-system packaging and glass integrated optics. This kind of packaging consists of a thin glass substrate with integrated micro lenses providing a platform for photonic component assembly and optical fiber or waveguide interconnection. Thin glass is commercially available in panel and wafer size and characterizes excellent optical and high frequency properties. That makes it perfect for microsystem packaging. A suitable micro lens approach has to be comparable with different commercial glasses and withstand post-processing like soldering. A benefit of using laser ablated Fresnel lenses is the planar integration capability in the substrate for highest integration density. In the paper we introduce our glass based packaging concept and the Fresnel lens design for different scenarios like chip-to-fiber, chip-to-optical-printed-circuit-board coupling. Based on the design the Fresnel lenses were fabricated by using a 157 nm fluorine laser ablation system.

  15. Design and analysis of a curved cylindrical Fresnel lens that produces high irradiance uniformity on the solar cell.

    PubMed

    González, Juan C

    2009-04-10

    A new type of convex Fresnel lens for linear photovoltaic concentration systems is presented. The lens designed with this method reaches 100% of geometrical optical efficiency, and the ratio (Aperture area)/(Receptor area) is up to 75% of the theoretical limit. The main goal of the design is high uniformity of the radiation on the cell surface for each input angle inside the acceptance. The ratio between the maximum and the minimum irradiance on points of the solar cell is less than 2. The lens has been designed with the simultaneous multiple surfaces (SMS) method of nonimaging optics, and ray tracing techniques have been used to characterize its performance for linear symmetry systems.

  16. Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination.

    PubMed

    Kim, Byungwook; Choi, Minseok; Kim, Hokwan; Lim, Jiseok; Kang, Shinill

    2009-09-28

    A Fresnel lens is an optical component that can be used to create systems more compact, cost-effective, and lightweight than those using conventional continuous surface optics. However, Fresnel lenses can usually cause a loss of flux efficiency and non-uniform distribution of illuminance due to secondary refraction by surface discontinuities, especially along the groove facet. We therefore proposed to modify a groove angle in the Fresnel lens and analyzed interrelation between the groove angle and multiple optical performances, such as flux efficiency and the uniformity of illuminance and color. The groove angle was optimized to maximize the uniformity and efficiency in the target viewing angle considering various weights of merit functions. Specifically, in our study, when the uniformity of illuminance had a little more weight than the flux efficiency (ratio of 0.6:0.4), final optimum groove angles of 24.7 degrees , 29.4 degrees , and 31.3 degrees were obtained at target viewing angles of 20 degrees , 30 degrees , and 40 degrees , respectively. We also fabricated a modified Fresnel lens with a groove angle of 29.4 degrees using UV-imprinting. The real optical performance of the fabricated Fresnel lens was then compared to that of a spherical lens.

  17. Development of a holographic beamsplitter for use with a conventional Fresnel lens

    SciTech Connect

    Not Available

    1987-02-01

    The object of this program was to develop a holographic beamsplitter module designed to be used with Si/1.72 eV AlGaAs cell pairs to achieve enhanced solar efficiencies. The hologram plate, when laminated to a Fresnel lens, was intended to focus <1.72 eV radiation onto the Si cell and >1.72 eV radiation onto the AlGaAs cell. The baseline concept for the holographic beamsplitter consisted of two singly exposed volume phase holograms laminated together. Analysis revealed that an ideal beamsplitter would yield 21.1% solar efficiency for series-connected cells. However, it was discovered that the optimum holographic beamsplitter theoretically yielded only 15.6% efficiency for series-connected cells, compared to 16.6% efficiency for a single Si cell. The limited performance was primarily due to the unavoidable rolloff of hologram response with wavelength inherent in singly exposed holograms. Independently connecting the cells and optimizing the AlGaAs band gap were not expected to yield significant improvement in solar efficiency. These results were corroborated by a 1985 West German study, which suggested that flattening the hologram response spectrum by double exposure might yield substantial improvements in solar efficiency. Results of a theoretical study to determine the performance using double-exposed beamsplitters were inconclusive. In any case, their added complexity would result in reduced yield and added production costs. In conclusion, the current holographic technology is not capable of providing a beamsplitter that will significantly improve the solar collection efficiency in Si/AlGaAs systems.

  18. Design of a solar collector system formed by a Fresnel lens and a CEC coupled to plastic fibers

    NASA Astrophysics Data System (ADS)

    Viera-González, Perla M.; Sánchez-Guerrero, Guillermo E.; Ceballos-Herrera, Daniel E.; Selvas-Aguilar, Romeo

    2015-08-01

    Among the main challenges for systems based in solar concentrators and plastic optical fibers (POF) the accuracy needed for the solar tracking is founded. One approach to overcome these requirements is increasing acceptance angle of the components, usually by secondary optical elements (SOE), however this technique is effective for photovoltaic applications but it has not been analyzed for systems coupled to POFs for indoor illumination. On this subject, it is presented a numerical analysis of a solar collector assembled by a Fresnel lens as primary optical element (POE) combined with a compound elliptical concentrator (CEC) coupled to POF in order to compare its performance under incidence angle direction and also to show a trade-off analysis for two different Fresnel lens shapes, imaging and nonimaging, used in the collector system. The description of the Fresnel lenses and its designs are included, in addition to the focal areas with space and angular distribution profiles considering the optimal alignment with the source and maximum permissible incident angle for each case. For both systems the coupling between the optical components is analyzed and the total performance is calculated, having as result its comparison for indoor illumination. In both cases, the systems have better performance increasing the final output power, but the angular tolerance only was improved for the system with nonimaging concentrator that had an efficiency over 80% with acceptance angles 𝜃𝑖 ≤ 2° and, the system integrated by the imaging lens, presented an efficiency ratio over 75% for acceptance angles 𝜃𝑖 ≤ 0.7°.

  19. Development of a low-cost extrusion-embossing process for a linear Fresnel lens photovoltaic concentration

    SciTech Connect

    Not Available

    1984-09-01

    Results of efforts to fabricate linear Fresnel lens using a low-cost extrusion-embossing process indicated that the extrusion-embossing process will be difficult to adapt to the manufacture of efficient lenses. Lenses produced in pilot runs acheived only 72% optical efficiency at 25X geometric concentration ratio, compared to 87% for lenses made by casting or Lensfilm processes. A highly accurate, yet simple, outdoor focal plane flux profile test apparatus was developed that can be used to qualify new lenses and to check the quality of production lenses.

  20. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    PubMed

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  1. A phase-image watermarking scheme in gyrator domain using devil's vortex Fresnel lens as a phase mask

    NASA Astrophysics Data System (ADS)

    Yadav, A. K.; Vashisth, Sunanda; Singh, Hukum; Singh, Kehar

    2015-06-01

    We propose a watermarking scheme for phase images, based on the use of devil's vortex Fresnel lens (DVFL) as a phase mask. The DVFL provides much-desired parameter-rich phase masks which contribute to the enhanced security of the scheme in addition to overcoming the problem of axis alignment in the optical setup. The scheme uses gyrator transform (GT) in the input and the frequency domains to encrypt the input phase image before combining it with a host image. The scheme is validated for its efficacy, and analyzed for its sensitivity to various encryption parameters. Finally, it is examined for its robustness against occlusion and noise attacks.

  2. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens

    SciTech Connect

    Saifee, T.; Konnerth, A. III )

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  3. Experimental measurements of a prototype high concentration Fresnel lens CPV module for the harvesting of diffuse solar radiation.

    PubMed

    Yamada, Noboru; Okamoto, Kazuya

    2014-01-13

    A prototype concentrator photovoltaic (CPV) module with high solar concentration, an added low-cost solar cell, and an adjoining multi-junction solar cell is fabricated and experimentally demonstrated. In the present CPV module, the low cost solar cell captures diffuse solar radiation penetrating the concentrator lens and the multi-junction cell captures concentrated direct solar radiation. On-sun test results show that the electricity generated by a Fresnel lens-based CPV module with an additional crystalline silicon solar cell is greater than that for a conventional CPV module by a factor of 1.44 when the mean ratio of diffuse normal irradiation to global normal irradiation at the module aperture is 0.4. Several fundamental optical characteristics are presented for the present module.

  4. Surface modification of fluorosilicone acrylate RGP contact lens via low-temperature argon plasma

    NASA Astrophysics Data System (ADS)

    Yin, Shiheng; Wang, Yingjun; Ren, Li; Zhao, Lianna; Kuang, Tongchun; Chen, Hao; Qu, Jia

    2008-11-01

    A fluorosilicone acrylate rigid gas permeable (RGP) contact lens was modified via argon plasma to improve surface hydrophilicity and resistance to protein deposition. The influence of plasma treatment on surface chemical structure, hydrophilicity and morphology of RGP lens was investigated by X-ray photoelectron spectrometer (XPS), contact angle measurements and scanning electron microscope (SEM), respectively. The contact angle results showed that the hydrophilicity of the contact lens was improved after plasma treatment. XPS results indicated that the incorporation of oxygen-containing groups on surface and the transformation of silicone into hydrophilic silicate after plasma treatment are the main reasons for the surface hydrophilicity improvement. SEM results showed that argon plasma with higher power could lead to surface etching.

  5. Assembly and testing of a 1.8 by 3.7 meter Fresnel lens solar concentrator

    NASA Technical Reports Server (NTRS)

    Robertson, J. E.

    1977-01-01

    A project was initiated to establish a technical data base on line focusing acrylic Fresnel lenses for use in a solar collector system that could generate temperatures in the range of 200 C to 370 C. The effort was originally directed toward electric power generation in the 100 to 10,000 kWe range using a distributed collector approach. However, as the program progressed, it centered on the development of a concentrator/collector subsystem concept that could meet the general requirement of thermal delivery within the 200 C to 370 C range. The expanded list of possible applications includes commercial heating/cooling and industrial process heat as well as electric power generation.

  6. Large Space Telescopes Using Fresnel Lens for Power Beaming, Astronomy and Sail Missions

    SciTech Connect

    Early, J T

    2002-10-15

    The concept of using Fresnel optics as part of power beaming, astronomy or sail systems has been suggested by several authors. The primary issues for large Fresnel optics are the difficulties in fabricating these structures and deploying them in space and for astronomy missions the extremely narrow frequency range of these optics. In proposals where the telescope is used to transmit narrow frequency laser power, the narrow bandwidth has not been an issue. In applications where the optic is to be used as part of a telescope, only around 10{sup -5} to limited frequency response of a Fresnel optic is addressed by the use of a corrective optic that will broaden the frequency response of the telescope by three or four orders of magnitude. This broadening will dramatically increase the optical power capabilities of the system and will allow some spectroscopy studies over a limited range. Both the fabrication of Fresnel optics as large as five meters and the use of corrector optics for telescopes have been demonstrated at LLNL. For solar and laser sail missions the use of Fresnel amplitude zone plates made of very thin sail material is also discussed.

  7. Conceptual design study of a 5 kilowatt solar dynamic Brayton power system using a dome Fresnel lens solar concentrator. Final report

    SciTech Connect

    Oneill, M.J.; McDanal, A.J.; Spears, D.H.

    1989-12-01

    The primary project objective was to generate a conceptual design for a nominal 5 kW solar dynamic space power system, which uses a unique, patented, transmittance-optimized, dome-shaped, point-focus Fresnel lens as the optical concentrator. Compared to reflective concentrators, the dome lens allows 200 times larger slope errors for the same image displacement. Additionally, the dome lens allows the energy receiver, the power conversion unit (PCU), and the heat rejection radiator to be independently optimized in configuration and orientation, since none of these elements causes any aperture blockage. Based on optical and thermal trade studies, a 6.6 m diameter lens with a focal length of 7.2 m was selected. This lens should provide 87 percent net optical efficienty at 800X geometric concentration ratio. The large lens is comprised of 24 gores, which compactly stow together during launch, and automatically deploy on orbit. The total mass of the microglass lens panels, the graphite/epoxy support structure, and miscellaneous hardware is about 1.2 kg per square meter of aperture. The key problem for the dome lens approach relates to the selection of a space-durable lens material. For the first time, all-glass Fresnel lens samples were successfully made by a sol-gel casting process.

  8. Low threshold and high efficiency solar-pumped laser with Fresnel lens and a grooved Nd:YAG rod

    NASA Astrophysics Data System (ADS)

    Guan, Zhe; Zhao, Changming; Yang, Suhui; Wang, Yu; Ke, Jieyao; Gao, Fengbin; Zhang, Haiyang

    2016-11-01

    Sunlight is considered as a new efficient source for direct optical-pumped solid state lasers. High-efficiency solar pumped lasers with low threshold power would be more promising than semiconductor lasers with large solar panel in space laser communication. Here we report a significant advance in solar-pumped laser threshold by pumping Nd:YAG rod with a grooved sidewall. Two-solar pumped laser setups are devised. In both cases, a Fresnel lens is used as the primary sunlight concentrator. Gold-plated conical cavity with a liquid light-guide lens is used as the secondary concentrator to further increase the solar energy concentration. In the first setup, solar pumping a 6mm diameter Nd:YAG rod, maximum laser power of 31.0W/m2 cw at 1064nm is produced, which is higher than the reported record, and the slope efficiency is 4.98% with the threshold power on the surface of Fresnel lens is 200 W. In the second setup, a 5 mm diameter laser rod output power is 29.8W/m2 with a slope efficiency of 4.3%. The threshold power of 102W is obtained, which is 49% lower than the former. Meanwhile, the theoretical calculating of the threshold power and slope efficiency of the solar-pumped laser has been established based on the rate-equation of a four-level system. The results of the finite element analysis by simulation software are verified in experiment. The optimization of the conical cavity by TraceProsoftware and the optimization of the laser resonator by LASCADare useful for the design of a miniaturization solar- pumped laser.

  9. The mini-dome Fresnel lens photovoltaic concentrator array - Current status of component and prototype panel testing

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Swartz, C. K.; O'Neill, M. J.; Mcdanal, A. J.; Fraas, L. M.

    1990-01-01

    NASA Lewis and ENTECH have been developing a high-efficiency, lightweight space photovoltaic concentrator array. The emphasis of the program has shifted to fabrication and testing of the minidome Fresnel lens and other array components. Protototype lenses have been tested for optical efficiency, with results around 90 percent, and tracking error performance. The results of these tests have been very consistent with the predicted analytical performance. Work has also progressed in the fabrication of the array support structure. Recent advances in 30 percent efficient stacked cell technology will have a significant effect on the array performance. It is concluded that near-term array performance goals of 300 W/sq m and 100 W/kg are feasible.

  10. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    SciTech Connect

    Michel, Céline Habraken, Serge; Loicq, Jérôme; Thibert, Tanguy

    2015-09-28

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  11. Optical study of a spectrum splitting solar concentrator based on a combination of a diffraction grating and a Fresnel lens

    NASA Astrophysics Data System (ADS)

    Michel, Céline; Loicq, Jérôme; Thibert, Tanguy; Habraken, Serge

    2015-09-01

    This paper presents recent improvements of our new solar concentrator design for space application. The concentrator is based on a combination of a diffraction grating (blazed or lamellar) coupled with a Fresnel lens. Thanks to this diffractive/refractive combination, this optical element splits spatially and spectrally the light and focus approximately respectively visible light and IR light onto electrically independent specific cells. It avoid the use of MJs cells and then also their limitations like current matching and lattice matching conditions, leading theoretically to a more tolerant system. The concept is reminded, with recent optimizations, ideal and more realistic results, and the description of an experimental realization highlighting the feasibility of the concept and the closeness of theoretical and experimental results.

  12. CPV module with Fresnel lens primary optics and homogenizing secondary optics

    NASA Astrophysics Data System (ADS)

    Wiesenfarth, Maike; Dörsam, Tobias; Eltermann, Fabian; Hornung, Thorsten; Siefer, Gerald; Steiner, Marc; van Riesen, Sascha; Neubauer, Martin; Boos, Alexander; Wanka, Sven; Gombert, Andreas; Bett, Andreas W.

    2015-09-01

    In this work CPV modules based on Fresnel lenses and using refractive secondary optical elements (SOEs) are investigated. Pure silicone as well as glass SOEs glued on top of the solar cells are explored in prototype modules. They are differently manufactured in respect to how the secondary optics was assembled. For example, units with secondary silicone optics directly casted to solar cells are manufactured. For a design of glued glass optics and Fresnel lenses, the optical design is analyzed experimentally. Moreover, the long term stability has been intensively tested by accelerated aging tests and outdoor experiments. Here, the focus was on the used silicone material and the adhesion of the silicone to the glass interface.

  13. All-optical Fresnel lens in coherent media: controlling image with image.

    PubMed

    Zhao, L; Duan, Wenhui; Yelin, S F

    2011-01-17

    We theoretically explore an all-optical method for generating tunable diffractive Fresnel lenses in coherent media based on electromagnetically induced transparency. In this method, intensity-modulated images in coupling light fields can pattern the coherent media to induce the desired modulo-2π quadratic phase profiles for the lenses to diffract probe light fields. We characterize the focusing and imaging properties of the induced lenses. In particular, we show that the images in coupling fields can flexibly control the images in probe fields by diffraction, where large focal length tunability from 1 m to infinity and high output (∼ 88% diffraction efficiency) can be achieved. Additionally, we also find that the induced Fresnel lenses can be rapidly modulated with megahertz refresh rates using image-bearing square pulse trains in coupling fields. Our proposed lenses may find a wide range of applications for multimode all-optical signal processing in both the classical and quantum regimes.

  14. Fresnel lens to concentrate solar energy for the photocatalytic decoloration and mineralization of orange II in aqueous solution.

    PubMed

    Monteagudo, J M; Durán, A

    2006-11-01

    The decoloration and mineralization of the azo dye orange II under conditions of artificial ultraviolet light and solar energy concentrated by a Fresnel lens in the presence of hydrogen peroxide and TiO(2)-P25 was studied. A comparative study to demonstrate the viability of this solar installation was done to establish if the concentration reached in the focus of the Fresnel lens was enough to improve the photocatalytic degradation reaction. The degradation efficiency was higher when the photolysis was carried out under concentrated solar energy irradiation as compared to UV light source in the presence of an electron acceptor such us H(2)O(2) and the catalyst TiO(2). The effect of hydrogen peroxide, pH and catalyst concentration was also determined. The increase of H(2)O(2) concentration until a critical value (14.7 mM) increased both the solar and artificial UV oxidation reaction rate by generating hydroxyl radicals and inhibiting the (e(-)/h(+)) pair recombination, but the excess of hydrogen peroxide decreases the oxidation rate acting as a radical or hole scavenger and reacting with TiO(2) to form peroxo-compounds, contributing to the inhibition of the reaction. The use of the response surface methodology allowed to fit the optimal values of the parameters pH and catalyst concentration leading to the total solar degradation of orange II. The optimal pH range was 4.5-5.5 close to the zero point charge of TiO(2) depending on surface charge of catalyst and dye ionization state. Dosage of catalyst higher than 1.1 gl(-1) decreases the degradation efficiency due to a decrease of light penetration.

  15. RGD Surface Functionalization of the Hydrophilic Acrylic Intraocular Lens Material to Control Posterior Capsular Opacification

    PubMed Central

    Huang, Yi-Shiang; Bertrand, Virginie; Bozukova, Dimitriya; Pagnoulle, Christophe; Labrugère, Christine; De Pauw, Edwin; De Pauw-Gillet, Marie-Claire; Durrieu, Marie-Christine

    2014-01-01

    Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient's age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development. PMID:25501012

  16. Optimal design of inverted truncated pyramid with Fresnel lens for concentrated photovoltaic Units

    NASA Astrophysics Data System (ADS)

    El-Yahyaoui, S.; El Himer, S.; Mechaqrane, A.; Ahaitouf, A.

    2017-03-01

    The aim of the presented work was to determine the optimum parameters of inverter truncated rectangular pyramid with Fresnel lenses. The use of secondary optical element (SOE) in a concentrated photovoltaic system can be effective in redirecting the sun light into the solar cell, increasing the concentration as well as improving the energy uniformity on the solar cell Ray tracing technique was used to simulate the optical characteristics of the CPV unit with various design parameters of the component. Finally, a typical concentrator was designed by using three possible materials, the Fused Silica, the BK7 and the PMMA.

  17. Realization of a time-domain Fresnel lens with coherent control.

    PubMed

    Degert, Jérôme; Wohlleben, Wendel; Chatel, Béatrice; Motzkus, Marcus; Girard, Bertrand

    2002-11-11

    Perturbative chirped pulse excitation leads to oscillations of the excited state amplitude. These coherent transients are governed by interferences between resonant and off-resonant contributions. Control mechanisms in both frequency and time domain are used to modify these dynamics. First, by applying a phase step in the spectrum, we manipulate the phase of the oscillations. By direct analogy with Fresnel zone lenses, we then conceive highly phase-amplitude modulated pulse shapes that slice destructive interferences out of the excitation time structure and enhance the final population.

  18. Optical study of diffraction grating/Fresnel lens combinations applied to a spectral-splitting solar concentrator for space applications.

    PubMed

    Michel, Céline; Loicq, Jérôme; Thibert, Tanguy; Habraken, Serge

    2015-08-01

    This paper presents a new design of a planar solar concentrator with spectral splitting of light for space applications. This concentrator spectrally splits the incident light into mainly two parts. Each part is then focused onto specific spatially separated photovoltaic cells allowing for independent control of respective cells' output power. These advantages of both spectral splitting and light focusing are combined here because of a specific diffraction grating superimposed on a Fresnel lens. The theoretical principle of the optical design is presented with optimization of each element and improvement steps including optimization of grating period evolution along the lens and testing of two kinds of gratings (a blazed and a lamellar one). First numerical results are presented highlighting the possibility to design a concentrator at about 10× or more for each cell with an output power larger than that of a classical concentrator focusing on a GaAs single junction cell and less than 10% of losses for tracking errors up to ±0.8°. Some experimental results are also presented.

  19. Evidence of octacalcium phosphate and Type-B carbonated apatites deposited on the surface of explanted acrylic hydrogel intraocular lens.

    PubMed

    Lin, Shan-Yang; Chen, Ko-Hua; Li, May-Jane; Cheng, Wen-Ting; Wang, Shun-Li

    2004-08-15

    Fourier-transform infrared (FTIR) microspectroscopy combining with attenuated total reflection (ATR) microsampling technique and micro-Raman spectrophotometer were used to detect the deposited materials on the surface of acrylic hydrogel intraocular lens (IOL) with or without ocular implantation. Surface morphology and the interface of this IOL were further examined by a confocal laser scanning microscope. The brand-new IOL exhibited a very smooth, transparent and featureless surface, but the explanted IOL had an irregular cerebriform-like opaque appearance. Both FTIR/ATR and Raman microspectroscopic analyses showed the deposits on the surface of acrylic hydrogel IOL after ocular implantation to consist of octacalcium phosphate (OCP) and Type B carbonated apatites, leading to the opalescence of acrylic hydrogel IOL. Both vibrational microspectroscopic examinations also confirmed the mineralization still in progress on the surface of acrylic hydrogel IOL after ocular implantation for 2 years.

  20. Single-lens Fourier-transform-based optical color image encryption using dual two-dimensional chaotic maps and the Fresnel transform.

    PubMed

    Su, Yonggang; Tang, Chen; Li, Biyuan; Chen, Xia; Xu, Wenjun; Cai, Yuanxue

    2017-01-20

    We propose an optical color image encryption system based on the single-lens Fourier transform, the Fresnel transform, and the chaotic random phase masks (CRPMs). The proposed encryption system contains only one optical lens, which makes it more efficient and concise to implement. The introduction of the Fresnel transform makes the first phase mask of the proposed system also act as the main secret key when the input image is a non-negative amplitude-only map. The two CRPMs generated by dual two-dimensional chaotic maps can provide more security to the proposed system. In the proposed system, the key management is more convenient and the transmission volume is reduced greatly. In addition, the secret keys can be updated conveniently in each encryption process to invalidate the chosen plaintext attack and the known plaintext attack. Numerical simulation results have demonstrated the feasibility and security of the proposed encryption system.

  1. Design a programmable Fresnel lens and arrange LED sources to optimize the illuminance and uniformity of a medium or large LED-based lighting system with varied shapes

    NASA Astrophysics Data System (ADS)

    Chen, Wen-Gong

    2009-08-01

    To design the layout of LED light sources(called as LEDs) in a medium or large LED-based lighting system to optimize the system's performance in illuminance, uniformity and heat dissipation by developing a Genetic Algorithm, the searching space formed by x,y, z coordinates and rotation angles of an LED light source will be rather huge as to paralyze the evolution program. Hence, we propose the idea of representative LED sources (called as representatives), which are parts of LEDs. In this paper, we will develop some a Genetic Algorithm to search for suitable representatives to make the evolutional design of a programmable Fresnel lens for the mentioned lighting system feasible. Based on the designed programmable Fresnel lens, develop another Genetic Algorithm to arrange the layout of LEDs, including locations and orientations of LEDs, to let the lighting system's performance be further enhanced.

  2. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  3. Fresnel phase retrieval method using an annular lens array on an SLM

    NASA Astrophysics Data System (ADS)

    Loriot, V.; Mendoza-Yero, O.; Pérez-Vizcaíno, J.; Mínguez-Vega, G.; de Nalda, R.; Bañares, L.; Lancis, J.

    2014-10-01

    Wavefront aberrations play a major role when focusing an ultrashort laser pulse to a high-quality focal spot. Here, we report a novel method to measure and correct wavefront aberrations of a 30-fs pulsed laser beam. The method only requires a programmable liquid-crystal spatial light modulator and a camera. Wavefront retrieval is based on pupil segmentation with an annular lens array, which allows us to determine the local phase that minimizes focusing errors due to wavefront aberrations. Our method provides accurate results even when implemented with low dynamic range cameras and polychromatic beams. Finally, the retrieved phase is added to a diffractive lens codified onto the spatial light modulator to experimentally demonstrate near-diffraction-limited femtosecond beam focusing without refractive components.

  4. Solar TiO2-assisted photocatalytic degradation of IGCC power station effluents using a Fresnel lens.

    PubMed

    Monteagudo, J M; Durán, A; Guerra, J; García-Peña, F; Coca, P

    2008-03-01

    The heterogeneous TiO2 assisted photocatalytic degradation of wastewater from a thermoelectric power station under concentrated solar light irradiation using a Fresnel lens has been studied. The efficiency of photocatalytic degradation was determined from the analysis of cyanide and formate removal. Firstly, the influence of the initial concentration of H2O2 and TiO2 on the degradation kinetics of cyanides and formates was studied based on a factorial experimental design. Experimental kinetic constants were fitted using neural networks. Results showed that the photocatalytic process was effective for cyanides destruction (mainly following a molecular mechanism), whereas most of formates (degraded mainly via a radical path) remained unaffected. Finally, to improve formates degradation, the effect of lowering pH on their degradation rate was evaluated after complete cyanide destruction. The photooxidation efficiency of formates reaches a maximum at pH around 5-6. Above pH 6, formate anion is subjected to electrostatic repulsion with the negative surface of TiO2. At pH<4.5, formate adsorption and photon absorption are reduced due to some catalyst agglomeration.

  5. Devil's vortex Fresnel lens phase masks on an asymmetric cryptosystem based on phase-truncation in gyrator wavelet transform domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-06-01

    An asymmetric scheme has been proposed for optical double images encryption in the gyrator wavelet transform (GWT) domain. Grayscale and binary images are encrypted separately using double random phase encoding (DRPE) in the GWT domain. Phase masks based on devil's vortex Fresnel Lens (DVFLs) and random phase masks (RPMs) are jointly used in spatial as well as in the Fourier plane. The images to be encrypted are first gyrator transformed and then single-level discrete wavelet transformed (DWT) to decompose LL , HL , LH and HH matrices of approximation, horizontal, vertical and diagonal coefficients. The resulting coefficients from the DWT are multiplied by other RPMs and the results are applied to inverse discrete wavelet transform (IDWT) for obtaining the encrypted images. The images are recovered from their corresponding encrypted images by using the correct parameters of the GWT, DVFL and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The mother wavelet family, DVFL and gyrator transform orders associated with the GWT are extra keys that cause difficulty to an attacker. Thus, the scheme is more secure as compared to conventional techniques. The efficacy of the proposed scheme is verified by computing mean-squared-error (MSE) between recovered and the original images. The sensitivity of the proposed scheme is verified with encryption parameters and noise attacks.

  6. Solar concentrator modules with silicone-onglass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  7. Solar concentrator modules with silicone-on-glass Fresnel lens panels and multijunction cells.

    PubMed

    Rumyantsev, Valery D

    2010-04-26

    High-efficiency multijunction (MJ) solar cells, being very expensive to manufacture, should only be used in combination with solar concentrators in terrestrial applications. An essential cost reduction of electric power produced by photovoltaic (PV) installations with MJ cells, may be expected by the creation of highly-effective, but inexpensive, elements for optical concentration and sun tracking. This article is an overview of the corresponding approach under development at the Ioffe Physical Technical Institute. The approach to R&D of the solar PV modules is based on the concepts of sunlight concentration by small-aperture area Fresnel lenses and "all-glass" module design. The small-aperture area lenses are arranged as a panel with silicone-on-glass structure where the glass plate serves as the front surface of a module. In turn, high-efficiency InGaP/(In)GaAs/Ge cells are arranged on a rear module panel mounted on a glass plate which functions as a heat sink and integrated protective cover for the cells. The developed PV modules and sun trackers are characterized by simple design, and are regarded as the prototypes for further commercialization.

  8. Spectrally-resolved measurement of concentrated light distributions for Fresnel lens concentrators.

    PubMed

    Besson, P; White, P McVey; Dominguez, C; Voarino, P; Garcia-Linares, P; Lemiti, M; Schriemer, H; Hinzer, K; Baudrit, M

    2016-01-25

    A test method that measures spectrally resolved irradiance distribution for a concentrator photovoltaic (CPV) optical system is presented. In conjunction with electrical I-V curves, it is a means to visualize and characterize the effects of chromatic aberration and nonuniform flux profiles under controllable testing conditions. The indoor characterization test bench, METHOD (Measurement of Electrical, Thermal and Optical Devices), decouples the temperatures of the primary optical element (POE) and the cell allowing their respective effects on optical and electrical performance to be analysed. In varying the temperature of the POE, the effects on electrical efficiency, focal distance, spectral sensitivity, acceptance angle and multi-junction current matching profiles can be quantified. This work presents the calibration procedures to accurately image the spectral irradiance distribution of a CPV system and a study of system behavior over lens temperature.

  9. Hydrophilic Acrylic Intraocular Lens Opacification after Descemet Stripping Automated Endothelial Keratoplasty

    PubMed Central

    Norouzpour, Amir; Zarei-Ghanavati, Siamak

    2016-01-01

    Purpose: To report hydrophilic acylic intraocular lens (IOL) opacification after Descemet Stripping Automated Endothelial Keratoplasty (DSAEK) in an eye with multiple prior intraocular surgeries and iatrogenic aniridia. Case Report: A 34-year-old woman with history of penetrating keratoplasty (PKP) for advanced keratoconus and subsequent Urrets-Zavalia Syndrome (UZS) underwent phacoemulsification and hydrophilic acrylic IOL implantation for her cataract. In order to control post-PKP glaucoma, multiple glaucoma surgeries including two glaucoma drainage implants were performed. As the original corneal graft failed, the patient subsequently underwent re-PKP. Four years later, she underwent DSAEK for treatment of the second graft failure. Ten months after DSAEK, a double semi-circular pattern of IOL opacification was observed on the anterior surface of the IOL. The patient did not report any complaints and we decided not to exchange the IOL. Conclusion: In an eye with UZS and iatrogenic aniridia, IOL opacification may result from direct contact between the IOL surface and exogenous air. Aniridia can be a risk factor for development of IOL opacification after DSAEK. Further studies are required to confirm this hypothesis. PMID:27413506

  10. Ultrasound biomicroscopic analysis of iris-fixed acrylic intraocular lens in the absence of capsule support.

    PubMed

    Avitabile, Teresio; Bonfiglio, Vincenza; Castiglione, Francesco; Gagliano, Caterina; Reibaldi, Michele; Pulvirenti, Manuela; Reibaldi, Alfredo

    2012-12-01

    The aim of the study was to investigate postoperative complications and to determine with ultrasound biomicroscopy (UBM) the position of a foldable acrylic intraocular lens (IOL) implanted with a surgical technique of iris suturing in eyes without capsule support. Six eyes with iris-sutured IOLs were examined postoperatively with UBM. The examination included the position of haptics and their relationship to the surrounding structures. Other parameters studied were central anterior chamber depth, IOL iris contact and pigment dispersion. The position of all 12 haptics was determined. All haptics were in touch with the iris. Pigment dispersion was seen in two cases. The anterior chamber depth of the sutured eyes was normal. There was neither cystoid macular edema nor chronic uveitis postoperatively. In conclusion, in most cases surgical placement of iris-fixed lenses is a blind procedure and UBM could be an appropriate method to determine the position of IOL haptics postoperatively and to demonstrate that this surgical technique is reproducible, safe, and effective with the limitation of the difficulty of iris suturing IOL.

  11. [Lens platform].

    PubMed

    Łukaszewska-Smyk, Agnieszka; Kałuzny, Józef

    2010-01-01

    The lens platform defines lens structure and lens material. Evolution of lens comprises change in their shape, angulation of haptens and transition of three-piece lens into one-piece lens. The lens fall into two categories: rigid (PMMA) and soft (siliconic, acrylic, colameric). The main lens maaterials are polymers (hydrophilic and hydrophobic). The lens platform has an effect on biocompatibility, bioadhesion, stability of lens in capsule, degree of PCO evolution and sensitiveness to laser damages.

  12. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Technical Reports Server (NTRS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    1991-01-01

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  13. Low-cost manufacturing of the point focus concentrating module and its key component, the Fresnel lens. Final subcontract report, 31 January 1991--6 May 1991

    SciTech Connect

    Saifee, T.; Konnerth, A. III

    1991-11-01

    Solar Kinetics, Inc. (SKI) has been developing point-focus concentrating PV modules since 1986. SKI is currently in position to manufacture between 200 to 600 kilowatts annually of the current design by a combination of manual and semi-automated methods. This report reviews the current status of module manufacture and specifies the required approach to achieve a high-volume manufacturing capability and low cost. The approach taken will include process development concurrent with module design for automated manufacturing. The current effort reviews the major manufacturing costs and identifies components and processes whose improvements would produce the greatest effect on manufacturability and cost reduction. The Fresnel lens is one such key component. Investigating specific alternative manufacturing methods and sources has substantially reduced the lens costs and has exceeded the DOE cost-reduction goals. 15 refs.

  14. Reduction of material mass of optical component in cryogenic camera by using high-order Fresnel lens on a thin germanium substrate.

    PubMed

    Grulois, Tatiana; Druart, Guillaume; Sauer, Hervé; Chambon, Mathieu; Guérineau, Nicolas; Magli, Serge; Lasfargues, Gillles; Chavel, Pierre

    2015-07-10

    We designed a compact infrared cryogenic camera using only one lens mounted inside the detector area. In the field of cooled infrared imaging systems, the maximal detector area is determined by the dewar. It is generally a sealed and cooled environment dedicated to the infrared quantum detector. By integrating an optical function inside it, we improve the compactness of the camera as well as its performances. The originality of our approach is to use a thin integrated optics which is a high quality Fresnel lens on a thin germanium substrate. The aim is to reduce the additional mass of the optical part integrated inside the dewar to obtain almost the same cool down time as a conventional dewar with no imaging function. A prototype has been made and its characterization has been carried out.

  15. A high-performance photovoltaic concentrator array - The mini-dome Fresnel lens concentrator with 30 percent efficient GaAs/GaSb tandem cells

    NASA Astrophysics Data System (ADS)

    Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.

    A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.

  16. Calcification of a hydrophilic acrylic intraocular lens after Descemet-stripping endothelial keratoplasty: case report and laboratory analyses.

    PubMed

    Fellman, Melissa A; Werner, Liliana; Liu, Erica T; Stallings, Shannon; Floyd, Anne M; van der Meulen, Ivanka J E; Lapid-Gortzak, Ruth; Nieuwendaal, Carla P

    2013-05-01

    We describe the case of an 83-year-old woman who had uneventful phacoemulsification with implantation of a tripod hydrophilic acrylic intraocular lens (IOL). Because of postoperative corneal decompensation, 2 Descemet-stripping endothelial keratoplasty (DSEK) procedures were performed within 2 years. After the second procedure, the graft was not well attached, requiring an intracameral injection of air on day 3. Approximately 9 months later, opacification was observed on the anterior surface of the IOL, with a significant decrease in visual acuity. The IOL was explanted within the capsular bag. Laboratory analyses revealed granular deposits densely distributed in a round pattern within the margins of the capsulorhexis. Granules were located at the anterior surface/subsurface of the IOL and stained positive for calcium (alizarin red and von Kossa method). Scheimpflug photography revealed high levels of light scattering from the opacified area. Surgeons should be aware of possible localized calcification following DSEK procedures in pseudophakic patients with hydrophilic acrylic IOLs.

  17. Deployable wireless Fresnel lens

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  18. Modification of hydrophobic acrylic intraocular lens with poly(ethylene glycol) by atmospheric pressure glow discharge: A facile approach

    NASA Astrophysics Data System (ADS)

    Lin, Lin; Wang, Yao; Huang, Xiao-Dan; Xu, Zhi-Kang; Yao, Ke

    2010-10-01

    To improve the anterior surface biocompatibility of hydrophobic acrylic intraocular lens (IOL) in a convenient and continuous way, poly(ethylene glycol)s (PEGs) were immobilized by atmospheric pressure glow discharge (APGD) treatment using argon as the discharge gas. The hydrophilicity and chemical changes on the IOL surface were characterized by static water contact angle and X-ray photoelectron spectroscopy to confirm the covalent binding of PEG. The morphology of the IOL surface was observed under field emission scanning electron microscopy and atomic force microscopy. The surface biocompatibility was evaluated by adhesion experiments with platelets, macrophages, and lens epithelial cells (LECs) in vitro. The results revealed that the anterior surface of the PEG-grafted IOL displayed significantly and permanently improved hydrophilicity. Cell repellency was observed, especially in the PEG-modified IOL group, which resisted the attachment of platelets, macrophages and LECs. Moreover, the spread and growth of cells were suppressed, which may be attributed to the steric stabilization force and chain mobility effect of the modified PEG. All of these results indicated that hydrophobic acrylic IOLs can be hydrophilic modified by PEG through APGD treatment in a convenient and continuous manner which will provide advantages for further industrial applications.

  19. Design and development of a linear Fresnel lens air-cooled photovoltaic module and a stand-alone photovoltaic collector array

    SciTech Connect

    Not Available

    1985-01-01

    A summary description of the design development of a linear Fresnel lens air-cooled photovoltaic collector and a stand-alone photovoltaic collector array is presented. Module performance is characterized by 12.9% electrical efficiency under operational conditions (800 w/m/sup 2/, 20/sup 0/C ambient temperature) and 14.2% electrical efficiency at 28/sup 0/C cell reference temperature. The stand-alone photovoltaic collector array design utilizes eight air-cooled photovoltaic modules and produces a peak output of 2680 watts at 20/sup 0/C ambient temperature and 1000 w/m/sup 2/ direct normal insolation. This corresponds to an overall array electrical efficiency of 12%. A prototype subscale array was fabricated and performance tested and verified the stand-alone array concept.

  20. Characterizing the hard x-ray diffraction properties of a GaAs linear Bragg-Fresnel lens

    SciTech Connect

    Li, Youli; Wong, Gerard C. L.; Case, Ryan; Safinya, Cyrus R.; Caine, Ernie; Hu, Evelyn; Fernandez, Partricia

    2000-07-17

    We investigated the diffractive focusing properties of (111) GaAs linear Bragg-Fresnel lenses (BFLs) developed for hard x-ray microscopy and microdiffraction of complex materials in confined geometries. We demonstrated that the use of GaAs yields significant processing advantages due to the reduced zone depth. Focal plane diffraction patterns of linear BFLs measured at the advanced photon source using 8-40 keV x rays were compared to a simple model based on Kirchhoff-Fresnel diffraction theory. Good agreement was obtained between experimental data and model calculations using only zones within an effective aperture defined by the transverse coherence of the source. (c) 2000 American Institute of Physics.

  1. Comparison of Visian toric collamer lens and toric acrylic intraocular lens implantation for the treatment of myopia with astigmatism

    PubMed Central

    Ammar, Hatem; Anbar, Mohamed; Abdellah, Marwa M

    2017-01-01

    Purpose To compare the efficacy and outcome of phakic toric implantable collamer lens (TICL) and refractive clear lens extraction with AcrySof Toric intraocular lens (TIOL) implantation for the treatment of myopic astigmatism. Patients and methods This study assessed eyes with myopic astigmatism >−1 D and ≤−4 D with a spherical equivalent >10 D or <10 D if the patients were unsuitable for corneal refractive surgery. These eyes were divided into group A, in which Visian Toric ICL™ Phakic TICL was implanted, and group B, which involved clear lens extraction with implantation of an AcrySof IQ toric SN60T3-9™ IOL. The outcome and complications were evaluated. Results This study enrolled 63 eyes of 38 patients with a follow-up period of at least 6 months. The mean postoperative spherical equivalent was −0.19±0.31 D in group A and −0.21±0.28 D in group B (P=0.69). The mean postoperative cylinder value was −0.46±0.53 D in group A and −0.32±0.41 D in group B (P=0.35). Postoperative cylinder was <1 D in 76.47% and 79.31% of eyes in groups A and B, respectively. The mean endothelial cell count was reduced by 4.32% in group A and by 5.32% in group B (P=0.003). The mean postoperative intraocular pressure increased insignificantly in group A (P=0.22) and reduced significantly in group B (P=0.004). The complication rate was 11.76% in group A and 6.90% in group B. Conclusion Both procedures showed predictable results and good visual results. However, the loss of accommodation and risk of retinal complications in the TIOL group suggest that the use of TICL for myopic astigmatism is a better choice in younger patients. PMID:28096654

  2. Diffraction Limited Performance of Infra Red Fresnel Lenses.

    DTIC Science & Technology

    The effect of diffraction on Fresnel lens performance has been calculated. It is shown that the bandwidth of a coherent lens is very narrow. For low...monochromatic (laser) applications, on the other hand, the Fresnel lens may offer significant cost advantages over the conventional alternatives.

  3. Optical design of two-axes parabolic trough collector and two-section Fresnel lens for line-to-spot solar concentration.

    PubMed

    Ramírez, Carlos; León, Noel; García, Héctor; Aguayo, Humberto

    2015-06-01

    Solar tracking concentrators are optical systems that collect the solar energy flux either in a line or spot using reflective or refractive surfaces. The main problem with these surfaces is their manufacturing complexity, especially at large scales. In this paper, a line-to-spot solar tracking concentrator is proposed. Its configuration allows for a low-cost solar concentrator system. It consists of a parabolic trough collector (PTC) and a two-section PMMA Fresnel lens (FL), both mounted on a two-axis solar tracker. The function of the PTC is to reflect the incoming solar radiation toward a line. Then, the FL, which is placed near the focus, transforms this line into a spot by refraction. It was found that the system can achieve a concentration ratio of 100x and concentrate an average solar irradiance of 518.857W/m2 with an average transmittance of 0.855, taking into account the effect of the chromatic aberration.

  4. Key results of the mini-dome Fresnel lens concentrator array development program under recently completed NASA and SDIO SBIR projects

    NASA Technical Reports Server (NTRS)

    Oneill, Mark J.; Piszczor, Michael F.; Fraas, Lewis M.

    1991-01-01

    Since 1986, ENTECH and the NASA Lewis Research Center have been developing a new photovoltaic concentrator system for space power applications. The unique refractive system uses small, dome shaped Fresnel lenses to focus sunlight onto high efficiency photovoltaic concentrator cells which use prismatic cell covers to further increase their performance. Highlights of the five-year development include near Air Mass Zero (AM0) Lear Jet flight testing of mini-dome lenses (90 pct. net optical efficiency achieved); tests verifying sun-pointing error tolerance with negligible power loss; simulator testing of prism-covered GaAs concentrator cells (24 pct. AM0 efficiency); testing of prism-covered Boeing GaAs/GaSb tandem cells (31 pct. AM0 efficiency); and fabrication and outdoor testing of a 36-lens/cell element panel. These test results have confirmed previous analytical predictions which indicate substantial performance improvements for this technology over current array systems. Based on program results to date, it appears than an array power density of 300 watts/sq m and a specific power of 100 watts/kg can be achieved in the near term. All components of the array appear to be readily manufacturable from space-durable materials at reasonable cost. A concise review is presented of the key results leading to the current array, and further development plans for the future are briefly discussed.

  5. Safety and effectiveness of a glistening-free single-piece hydrophobic acrylic intraocular lens (enVista)

    PubMed Central

    Packer, Mark; Fry, Luther; Lavery, Kevin T; Lehmann, Robert; McDonald, James; Nichamin, Louis; Bearie, Brian; Hayashida, Jon; Altmann, Griffith E; Khodai, Omid

    2013-01-01

    Purpose To evaluate the safety and effectiveness of a single-piece hydrophobic acrylic intraocular lens (IOL; enVista model MX60; Bausch & Lomb, Rochester, NY, USA) when used to correct aphakia following cataract extraction in adults. Methods This was a prospective case series (NCT01230060) conducted in private practices in the US. Eligible subjects were adult patients with age-related cataract amenable to treatment with standard phacoemulsification/extracapsular cataract extraction. With follow-up of 6 months, primary safety and effectiveness end points included the rates of US Food and Drug Administration (FDA)-defined cumulative and persistent adverse events and the percentage of subjects who achieved best-corrected visual acuity (BCVA) of 20/40 or better at final visit. To evaluate rotational stability, subjects were randomized (1:1:1:1) to have the lens implanted in one of four axis positions in 45° increments. Results A total of 122 subjects were enrolled. The rate of cumulative and persistent adverse events did not significantly exceed historical controls, as per FDA draft guidance. At the final postoperative visit, all subjects (100%) achieved a BCVA of 20/40 compared with the FDA historical control of 96.7%. Rotation of the IOL between the two final follow-up visits was ≤5° for 100% of eyes, and refractive stability was demonstrated. A low evaluation of posterior capsule opacification score was demonstrated, and no glistenings of any grade were reported for any subject at any visit. Conclusion This study demonstrated the safety and effectiveness of the MX60 IOL. Favorable clinical outcomes included preserved BCVA, excellent rotational and refractive stability, no glistenings, and a low evaluation of posterior capsule opacification score. PMID:24109169

  6. Improvement of Uveal and Capsular Biocompatibility of Hydrophobic Acrylic Intraocular Lens by Surface Grafting with 2-Methacryloyloxyethyl Phosphorylcholine-Methacrylic Acid Copolymer

    PubMed Central

    Tan, Xuhua; Zhan, Jiezhao; Zhu, Yi; Cao, Ji; Wang, Lin; Liu, Sa; Wang, Yingjun; Liu, Zhenzhen; Qin, Yingyan; Wu, Mingxing; Liu, Yizhi; Ren, Li

    2017-01-01

    Biocompatibility of intraocular lens (IOL) is critical to vision reconstruction after cataract surgery. Foldable hydrophobic acrylic IOL is vulnerable to the adhesion of extracellular matrix proteins and cells, leading to increased incidence of postoperative inflammation and capsule opacification. To increase IOL biocompatibility, we synthesized a hydrophilic copolymer P(MPC-MAA) and grafted the copolymer onto the surface of IOL through air plasma treatment. X-ray photoelectron spectroscopy, atomic force microscopy and static water contact angle were used to characterize chemical changes, topography and hydrophilicity of the IOL surface, respectively. Quartz crystal microbalance with dissipation (QCM-D) showed that P(MPC-MAA) modified IOLs were resistant to protein adsorption. Moreover, P(MPC-MAA) modification inhibited adhesion and proliferation of lens epithelial cells (LECs) in vitro. To analyze uveal and capsular biocompatibility in vivo, we implanted the P(MPC-MAA) modified IOLs into rabbits after phacoemulsification. P(MPC-MAA) modification significantly reduced postoperative inflammation and anterior capsule opacification (ACO), and did not affect posterior capsule opacification (PCO). Collectively, our study suggests that surface modification by P(MPC-MAA) can significantly improve uveal and capsular biocompatibility of hydrophobic acrylic IOL, which could potentially benefit patients with blood-aqueous barrier damage. PMID:28084469

  7. Fresnel Interferometric Imager: ground-based prototype.

    PubMed

    Serre, Denis; Deba, Paul; Koechlin, Laurent

    2009-05-20

    The Fresnel Interferometric Imager is a space-based astronomical telescope project yielding milli-arcsecond angular resolution and high contrast images with loose manufacturing constraints. This optical concept involves diffractive focusing and formation flying: a first "primary optics" space module holds a large binary Fresnel array, and a second "focal module" holds optical elements and focal instruments that allow for chromatic dispersion correction. We have designed a reduced-size Fresnel Interferometric Imager prototype and made optical tests in our laboratory in order to validate the concept for future space missions. The primary module of this prototype consists of a square, 8 cm side, 23 m focal length Fresnel array. The focal module is composed of a diaphragmed small telescope used as "field lens," a small cophased diverging Fresnel zone lens that cancels the dispersion, and a detector. An additional module collimates the artificial targets of various shapes, sizes, and dynamic ranges to be imaged. We describe the experimental setup, different designs of the primary Fresnel array, and the cophased Fresnel zone lens that achieves rigorous chromatic correction. We give quantitative measurements of the diffraction limited performances and dynamic range on double sources. The tests have been performed in the visible domain, lambda = 400-700 nm. In addition, we present computer simulations of the prototype optics based on Fresnel propagation that corroborate the optical tests. This numerical tool has been used to simulate the large aperture Fresnel arrays that could be sent to space with diameters of 3 to 30 m, foreseen to operate from Lyman alpha (121 nm) to mid IR (25 microm).

  8. Design principles for Fresnel lenses in telecentric applications

    NASA Astrophysics Data System (ADS)

    McCall, Brian; Claytor, Nelson

    2016-09-01

    Fresnel lenses have been found by some optical systems designers to be useful in combination with a main lens to provide quality telecentric images. Aspheric Fresnel lenses are an ideal choice for this application because they achieve a high degree of telecentricity across the entire field of view and introduce very little distortion. In a telecentric system consisting of an aspheric Fresnel lens and an off the shelf non-telecentric main lens, the design parameters are few. Aberration theory, constraints on the visibility of the grooves, and physical constraints can effectively be used to quickly determine if a solution exists for a given application and identify the solution space if it does.

  9. Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals.

    PubMed

    Lin, Chi-Huang; Wang, Yu-Yin; Hsieh, Cheng-Wei

    2011-02-15

    A polarization-independent and high-diffraction-efficiency Fresnel lens is developed based on blue phase liquid crystals (BPLCs). The optically isotropic characteristic of BPLCs is used to produce a polarization-independent Fresnel lens. The small optical phase shift of BPLCs that is induced by the Kerr effect is sufficient for the BPLC Fresnel lens to have high theoretical and experimental diffraction efficiencies of 41% and ∼34%, respectively. An electrically erasable memory effect in the focusing diffraction at an electric field E>4.44 V/μm is observed. The electro-optical properties of the BPLC Fresnel lens are analyzed and discussed.

  10. Opacification of a hydrophilic acrylic intraocular lens with a hydrophobic surface after air injection in Descemet-stripping automated endothelial keratoplasty in a patient with Fuchs dystrophy.

    PubMed

    Mojzis, Peter; Studeny, Pavel; Werner, Liliana; Piñero, David P

    2016-03-01

    A 71-year-old woman with Fuchs endothelial dystrophy in the right eye had uneventful phacoemulsification cataract surgery with implantation of a single-piece intraocular lens (IOL) (CT47S) in January 2012. Because of corneal problems and vision loss, uneventful Descemet-stripping automated endothelial keratoplasty (DSAEK) was performed in May 2013. Four months later, a new corneal lamella (repeat DSAEK) was implanted with reinjection of an air bubble into the anterior chamber. Six months after the initial DSAEK, the patient complained of blurred vision. On examination, the cornea was transparent but the IOL presented opacification in the central area. The opacified IOL was explanted and analyzed by light microscopy, which showed the presence of thin granular deposits distributed in an overall round pattern that stained positive for calcium. The opacification of hydrophilic acrylic IOLs is a complication that can occur after uneventful endothelial keratoplasty, especially when rebubbling is necessary.

  11. Comparison of posterior capsule opacification at 360-degree square edge hydrophilic and sharp edge hydrophobic acrylic intraocular lens in diabetic patients

    PubMed Central

    Bai, Ling; Zhang, Jin; Chen, Ling; Ma, Ting; Liang, Hou-Cheng

    2015-01-01

    AIM To compare posterior capsule opacification (PCO) degree and visual functions after phacoemulsification in eyes implanted with 360-degree square edge hydrophilic acrylic intraocular lens (IOL) (570C C-flex, Rayner) and sharp edge hydrophobic acrylic IOL (Sensar AR40e, AMO) in diabetic patients. METHODS Sixty diabetic patients underwent uneventful phacoemulsification and randomly implanted one of the two IOLs. The PCO value was measured by retroillumination photographs and Evaluation of Posterior Capsule Opacification (EPCO) 2000 image-analysis software at 1, 6, 12, and 24mo after surgery. Visual acuity, and contrast sensitivity in photopic and mesopic conditions were also examined at each follow up time point. The incidence of eye that required Nd:YAG laser posterior capsulotomy were also compared. RESULTS There was not any statistically significant difference in PCO scores between Rayner C-flex 570C group and Sensar AR40e group at each follow up time point. Visual acuity, Nd:YAG capsulotomy incidence and contrast sensitivity also had no significant difference during the 24mo follow-up. CONCLUSION For diabetic patients, Rayner 570C C-flex and Sensar AR40e IOLs are same effective for prevent PCO. The 360-degree square edge design maybe is a good alternative technique to improve PCO prevention. PMID:26309870

  12. Collection and concentration of solar energy using Fresnel type lenses

    NASA Technical Reports Server (NTRS)

    Wilson, R. F.

    1975-01-01

    The efficiency of collecting solar energy using a Fresnel type lens was measured for two different collectors. A flow collector utilizes the temperature difference and heat capacity in water measurements to determine the amount of absorbed energy retained from sun rays passing through the Fresnel lens. A static collector is a hollow copper box filled with vegetable heating oil for absorption of focused solar radiation.

  13. Millimeter wave imaging at up to 40 frames per second using an optoelectronic photo-injected Fresnel zone plate lens antenna

    NASA Astrophysics Data System (ADS)

    Robertson, Duncan A.; Gallacher, Thomas F.; Søndenâ, Rune; Macfarlane, David G.

    2016-05-01

    Optoelectronic methods are promising for rapid and highly reconfigurable beam steering across the microwave to the terahertz range. In particular, the photo-injected Fresnel zone plate antenna (piFZPA) offers high speed, wide angle, precise beam steering with good beam quality, to enable video rate millimeter wave imagery with no moving parts. We present a piFZPA demonstrator based on a commercial digital light projector (DLP) and high power laser which achieves steering rates up to 17,500 beams per second at 94 and 188 GHz. We also demonstrate radar imaging at 94 GHz at frame rates of 40 Hz (2D PPI) and 7 Hz (3D volumetric).

  14. Fabrication, installation, and two-year evaluation of a 245 square meter linear Fresnel lens photovoltaic and thermal (PVT) concentrator system at Dallas/Ft. Worth (DFW) Airport, Texas. Final technical report, Phase II and Phase III

    SciTech Connect

    O'Neill, M.J.; Muzzy, D.B.

    1985-02-01

    This final technical report summarizes the results of the fabrication, installation, and two-year evaluation of the first linear Fresnel lens photovoltaic and thermal (PVT) concentrator system ever deployed. The system is located on the Central Utility Plant at DFW Airport, Texas. The roof-mounted collector field provides 245 square meters of sun-tracking collector aperture area. The nominal 25 kilowatt peak electrical output of the system is used for plant lighting, while the nominal 120 kilowatt peak thermal output is used to preheat domestic water for the nearby AMFAC hotel. The system has performed efficiently and reliably over the full two-year operational period. Long-term system conversion efficiencies have been 7.7% sunlight-to-electricity, 39.1% sunlight-to-heat, 46.8% sunlight-to-total energy output. Each of these efficiency levels is thought to be the highest ever achieved by a commercial-scale photovoltaic system. System durability has also been excellent, with no detectable degradation in performance over the full operational period. In summary, this successful application experiment has verified the potential of the linear Frenel lens PVT system to reliably and efficiently deliver electricity and heat in commercial-scale applications.

  15. Electrically switchable Fresnel lenses in polymer-stabilized ferroelectric liquid crystals

    NASA Astrophysics Data System (ADS)

    Yeh, Hui-Chen; Ke, Ming-Wei; Liu, Yu-Mei

    2017-01-01

    In this study, we demonstrate the fabrication of an electrically switchable Fresnel lens based on surface-stabilized ferroelectric liquid crystals (SSFLCs) with polymer networks. The Fresnel lens was fabricated by injecting a monomer-doped ferroelectric liquid crystal into an extremely thin cell and exposing the cell to ultraviolet light through a Fresnel-zone-plate mask. The fabricated Fresnel lens consisted of the SSFLC and polymer-stabilized SSFLC structures. The focusing effect can be switched on by applying an appropriate voltage, and the characteristics of FLCs enable a rapid response on the order of milliseconds.

  16. Names in Physics: Fresnel

    ERIC Educational Resources Information Center

    Cooper, M. L.

    1970-01-01

    This short biography of Fresnel traces his early education, his work as an engineer and his theories and discoveries in optics. The importance of Fresnel's ideas on diffraction, interference and double refraction are discussed. Bibliography. (LC)

  17. The Len-Tenna"Physical Optics and Beam Former Design as Converging Disciplines

    DTIC Science & Technology

    2005-05-01

    discuss Fresnel lenses , subspace, and near field beam formers. 1. INTRODUCTION Beam-forming as applied in radar and comm.- unications...for white light. To this end in section 2 we will discuss Fresnel lenses , and show that they are a mixture of coherent and incoherent beam forming...2 FRESNEL LENSES AS BEAMFORMERS The Fresnel lens was invented in 1822, by the French physicist Joseph Fresnel [3]. Fresnel made the fundamental

  18. Compatibility of Fresnel lenses and photovoltaic cells in concentrator modules

    SciTech Connect

    Stillwell, C.B.; Shafer, B.D.

    1981-01-01

    Test data are used to compare, for point focus photovoltaic concentrator modules, the relationship between Fresnel lens and module efficiency. The data shows that lenses designed for maximum optical efficiency may not produce the maximum module efficiency. Lenses designed with consideration for the photon flux distribution on the solar cell may improve module efficiency possibly at some loss in lens optical performance.

  19. Solar concentration by curved-base Fresnel lenses

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1977-01-01

    The solar concentration performance of idealized curved base line focusing Fresnel lenses is analyzed. A simple optical model was introduced to study the effects of base curvature and lens f-number. Thin lens ray tracing and the laws of reflection and refraction are used to develop expression for lens transmittance and image plane intensity profiles. The intensity distribution over the solar spectrum, lens dispersion effects, and absorption by the lens material are included in the analysis. Model capabilities include assessment of lens performance in the presence of small transverse tracking errors and the sensitivity of solar image characteristics to focusing.

  20. Deployable Fresnel Rings

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F.; Fink, Patrick W.; Chu, Andrew W.; Lin, Gregory Y.

    2014-01-01

    Deployable Fresnel rings (DFRs) significantly enhance the realizable gain of an antenna. This innovation is intended to be used in combination with another antenna element, as the DFR itself acts as a focusing or microwave lens element for a primary antenna. This method is completely passive, and is also completely wireless in that it requires neither a cable, nor a connector from the antenna port of the primary antenna to the DFR. The technology improves upon the previous NASA technology called a Tri-Sector Deployable Array Antenna in at least three critical aspects. In contrast to the previous technology, this innovation requires no connector, cable, or other physical interface to the primary communication radio or sensor device. The achievable improvement in terms of antenna gain is significantly higher than has been achieved with the previous technology. Also, where previous embodiments of the Tri-Sector antenna have been constructed with combinations of conventional (e.g., printed circuit board) and conductive fabric materials, this innovation is realized using only conductive and non-conductive fabric (i.e., "e-textile") materials, with the possible exception of a spring-like deployment ring. Conceptually, a DFR operates by canceling the out-of-phase radiation at a plane by insertion of a conducting ring or rings of a specific size and distance from the source antenna, defined by Fresnel zones. Design of DFRs follow similar procedures to those outlined for conventional Fresnel zone rings. Gain enhancement using a single ring is verified experimentally and through computational simulation. The experimental test setup involves a microstrip patch antenna that is directly behind a single-ring DFR and is radiating towards a second microstrip patch antenna. The first patch antenna and DFR are shown. At 2.42 GHz, the DFR improves the transmit antenna gain by 8.6 dB, as shown in Figure 2, relative to the wireless link without the DFR. A figure illustrates the

  1. Fresnel Lenses for Wide-Aperture Optical Receivers

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid

    2004-01-01

    Wide-aperture receivers for freespace optical communication systems would utilize Fresnel lenses instead of conventional telescope lenses, according to a proposal. Fresnel lenses weigh and cost much less than conventional lenses having equal aperture widths. Plastic Fresnel lenses are commercially available in diameters up to 5 m large enough to satisfy requirements for aperture widths of the order of meters for collecting sufficient light in typical long-distance free-space optical communication systems. Fresnel lenses are not yet suitable for high-quality diffraction-limited imaging, especially in polychromatic light. However, optical communication systems utilize monochromatic light, and there is no requirement for high-quality imaging; instead, the basic requirement for an optical receiver is to collect the incoming monochromatic light over a wide aperture and concentrate the light onto a photodetector. Because of lens aberrations and diffraction, the light passing through any lens is focused to a blur circle rather than to a point. Calculations for some representative cases of wide-aperture non-diffraction-limited Fresnel lenses have shown that it should be possible to attain blur-circle diameters of less than 2 mm. Preferably, the blur-circle diameter should match the width of the photodetector. For most high-bandwidth communication applications, the required photodetector diameters would be about 1 mm. In a less-preferable case in which the blur circle was wider than a single photodetector, it would be possible to occupy the blur circle with an array of photodetectors. As an alternative to using a single large Fresnel lens, one could use an array of somewhat smaller lenses to synthesize the equivalent aperture area. Such a configuration might be preferable in a case in which a single Fresnel lens of the requisite large size would be impractical to manufacture, and the blur circle could not be made small enough. For example one could construct a square array

  2. Solar Photovoltaic Array With Mini-Dome Fresnel Lenses

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    1994-01-01

    Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.

  3. Aberrations in Fresnel Lenses and Mirrors

    NASA Technical Reports Server (NTRS)

    Gregory, Don

    1999-01-01

    The NASA/MSFC Shooting Star program revealed a number of technical problems that must be solved before solar thermal propulsion can become a reality. The fundamental problem of interest here is the collection of solar energy. This is the first step in the propulsion process and indeed the most important. Everything else depends on the efficiency and focusing ability of the collection lens or mirror. An initial model of Fresnel lens behavior using a wave optics approach has been completed and the results were encouraging enough to warrant an experimental investigation. This experimental investigation confirmed some of the effects predicted and produced invaluable photographic evidence of coherence based diffraction and aberration.

  4. Light: Isometric Casing with Lens, South Elevation, North Elevation, Top ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Light: Isometric Casing with Lens, South Elevation, North Elevation, Top Plan, Base Plan; Fresnel Lens: Isometric, Elevation, Plan - Fort Washington, Fort Washington Light, Northeast side of Potomac River at Fort Washington Park, Fort Washington, Prince George's County, MD

  5. Micron-Accurate Laser Fresnel-Diffraction Ranging System

    NASA Technical Reports Server (NTRS)

    Lehner, David; Campbell, Jonathan; Smith, Kelly; Sanders, Alvin; Allison, Stephen; Smaley, Larry

    2008-01-01

    Two versions of an optoelectronic system undergoing development are depicted. The system is expected to be capable of measuring a distance between 2 and 10 m with an error of no more than 1 micrometer. The system would be designed to exploit Fresnel diffraction of a laser beam. In particular, it would be designed to take advantage of the fact that a Fresnel diffraction pattern is ultrasensitive to distance. The two versions would differ in the following respects: In version 1, the focus of the telescope would be in the Fresnel region, and the telescope would have a small depth of focus. As a consequence, the Fresnel pattern would be imaged directly onto the photodetector array; in version 2, a multielement lens module would displace the Fresnel region from the vicinity of the pinhole to the vicinity of the optical receiver. As the distance to be measured varied, the location of the receiver relative to the displaced Fresnel-diffraction region would vary, thereby causing the Fresnel diffraction pattern on the focal plane to vary. The multielement lens module would also correct for aberrations. The processing of the digitized Fresnel diffraction pattern in the computer might be accelerated by using only parts of the pattern or even only one small part - the central pixel. As the distance from the pinhole increased, the central pixel would rapidly cycle between maximum and minimum light intensity. This in itself would not be sufficient to uniquely determine the distance. However, by varying the size of the pinhole or the wavelength of the laser, one could obtain a second cycle of variation of intensity that, in conjunction with the first cycle, could enable a unique determination of distance. Alternatively, for a single wavelength and a single pinhole size, it should suffice to consider the data from only two different key pixels in the Fresnel pattern.

  6. Design and development of injection molded Fresnel lenses for point-focus photovoltaic systems

    SciTech Connect

    Grendol, C.L.

    1987-05-01

    A summary of work performed on a method of injection molding an 80% efficient point-focus Fresnel lens is presented. A current optical design for compression molded lenses yields a 68.5% efficiency when translated directly to injection molding. An optical design optimized for injection molding, with a mold and process developed for high efficiency Fresnel lenses, yields an 82% efficiency.

  7. Optimising efficiency in diamond turned Fresnel mould masters

    NASA Astrophysics Data System (ADS)

    Allsop, John L.; Mateboer, Arjen; Shore, Paul

    2011-05-01

    Radial and Linear Fresnel Lenses are finding application as light concentrators for Concentrated Photovoltaic and Concentrated Solar Thermal power applications. The efficiency of these diffractive lenses directly affects the yield of such systems. Peaks and valleys of the optical facets of the Fresnel lens must be sharp in order to prevent diffusion and transmission loss due to rounding. For diamond turned mould masters, optical facet tip sharpness is affected by machining accuracy, tool-path and tool wear/mileage. Strategies to optimise optical facet tip sharpness are presented which enable production of large lenses with minimal degradation of optical quality. Radial Fresnel produced with diameters over 500mm and Linear Fresnel over 1m long are discussed with data on structure fidelity and tool wear.

  8. Fresnel lenses based on dye-doped liquid crystals

    NASA Astrophysics Data System (ADS)

    Lin, Liang-Chen; Cheng, Ko-Ting; Liu, Cheng-Kai; Ting, Chi-Lun; Jau, Hung-Chang; Lin, Tsung-Hsien; Fuh, Andy Y.

    2008-02-01

    We demonstrated transmissive- and reflective-type Fresnel lenses based on dye-doped liquid crystal using photoalignment technique. The former is a polarization-independent and electrically tunable. The maximum diffraction efficiency reaches 37%, which approaches the theoretical limit ~ 41 %. Such a lens functions as a half-wave plate, and this feature could be well preserved under the applied voltage. The reflective-type Fresnel lens is based on dye-doped cholesteric liquid crystals (DDCLC). The formed lens persists without any external disturbance, and its focusing efficiency, analyzed using circularly polarized light, is ~ 23.7 %, which almost equals the measured diffraction efficiency of the used Fresnel-zone-plate mask (~ 25.6 %). The lens is thermally erasable, and rewritable. Notably, both of the transmissive- and reflective-type Fresnel lenses are switchable between focusing and defocusing states, upon application of a voltage. In addition, these devices are simple to fabricate, and have fast switching responses between focusing and defocusing state.

  9. Multilayer Anti-Reflective Coating Development for PMMA Fresnel Lenses

    DTIC Science & Technology

    2010-06-07

    been sputter deposited on UV transparent polymethylmethacrylate (UVT-PMMA) windows. The amorphous coatings are deposited using reactive sputtering in a...SUBJECT TERMS Anti-reflective coatings, Fresnel lens, polymethylmethacrylate , PMMA 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...high quality dielectric materials deposited on a variety of substrates including polymethylmethacrylate (PMMA)  Highly amorphous films achieved

  10. The distance temperature map as method to analyze the optical properties of Fresnel lenses and their interaction with multi-junction solar cells

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Kiefel, Peter; Nitz, Peter

    2015-09-01

    The optical efficiency of Fresnel lens based solar concentrators varies with the temperature of the Fresnel lens. The dependency of any quantity of interest (e.g. optical efficiency) on Fresnel lens temperature can be visualized by 2d color plots that simultaneously show it as a function of the distance between solar cell and Fresnel lens and as a function of Fresnel lens temperature. This visualization, which is called DTmap, strongly facilitates the analysis of the thermal behavior of a Fresnel lens and the optimization of module height. Based on DTmaps we reveal and discuss serveral details of the thermal behavior of silicone on glass (SOG) Fresnel lenses. In addition, the DTmap is shown for the efficiency of a system consisting of a Fresnel lens and a lattice matched three-junction and a four-junction solar cell. The results demonstrate that the interaction of the concentrator optics and the solar cell is not trivial and may also be studied using DTmaps.

  11. Lensless zoomable holographic projection using scaled Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Makowski, Michal; Kakue, Takashi; Oikawa, Minoru; Okada, Naohisa; Endo, Yutaka; Hirayama, Ryuji; Ito, Tomoyoshi

    2013-10-21

    Projectors require a zoom function. This function is generally realized using a zoom lens module composed of many lenses and mechanical parts; however, using a zoom lens module increases the system size and cost, and requires manual operation of the module. Holographic projection is an attractive technique because it inherently requires no lenses, reconstructs images with high contrast and reconstructs color images with one spatial light modulator. In this paper, we demonstrate a lensless zoomable holographic projection. Without using a zoom lens module, this holographic projection realizes the zoom function using a numerical method, called scaled Fresnel diffraction which can calculate diffraction at different sampling rates on a projected image and hologram.

  12. Harmonic imaging with fresnel beamforming in the presence of phase aberration.

    PubMed

    Nguyen, Man Minh; Shin, Junseob; Yen, Jesse

    2014-10-01

    Fresnel beamforming is a beamforming method with a delay profile similar in shape to a physical Fresnel lens. The advantage of Fresnel beamforming is the reduced channel count, which consists of four to eight transmit and two analog-to-digital receive channels. Fresnel beamforming was found to perform comparably to conventional delay-and-sum beamforming. However, the performance of Fresnel beamforming is highly dependent on focal errors. These focal errors result in high side-lobe levels and further reduce the performance of Fresnel beamforming in the presence of phase aberration. With the advantages of lower side-lobe levels and suppression of aberration effects, harmonic imaging offers an effective solution to the limitations of Fresnel beamforming. We describe the implementation of tissue harmonic imaging and pulse inversion harmonic imaging in Fresnel beamforming, followed by dual apodization with cross-correlation, to improve image quality. Compared with conventional delay-and-sum beamforming, experimental results indicated contrast-to-noise ratio improvements of 10%, 49% and 264% for Fresnel beamforming using tissue harmonic imaging in the cases of no aberrator, 5-mm pork aberrator and 12-mm pork aberrator, respectively. These improvements were 22%, 57% and 352% for Fresnel beamforming using pulse inversion harmonic imaging. Moreover, dual apodization with cross-correlation was found to further improve the contrast-to-noise ratios in all cases. Harmonic imaging was also found to narrow the lateral beamwidth and shorten the axial pulse length by at least 25% and 21%, respectively, for Fresnel beamforming at different aberration levels. These results suggest the effectiveness of harmonic imaging in improving image quality for Fresnel beamforming, especially in the presence of phase aberration. Even though this combination of Fresnel beamforming and harmonic imaging does not outperform delay-and-sum beamforming combined with harmonic imaging, it provides the

  13. Antireflective coatings on Fresnel lenses by spin-coating of solid silica nanoparticles.

    PubMed

    Zhou, Gang; He, Junhui

    2013-08-01

    Antireflective (AR) coatings were fabricated from solid silica nanoparticles (SNPs) of ca. 16 nm in size on Fresnel lenses via one-step spin coating without any high temperature treatment. Transmission electron microscopy was used to observe the morphology and structure of the SNPs. Transmission spectra were recorded on a UV-vis-NIR spectrophotometer. The results indicated that Fresnel lenses covered with the SNPs coatings were much more transparent than the uncoated Fresnel lens. The maximum transmittance of the coated Fresnel lenses reached as high as 99.8%, whereas that of the uncoated Fresnel lens is only 94.3%. Surface wettability was studied by a contact angle/interface system, and the results indicated that the coatings on Fresnel lenses were more hydrophilic than the uncoated Fresnel lens. The surface morphologies and structures of the coatings were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The mechanical robustness of the coatings was examined by pencil scratch tests and attenuated total reflection infrared spectroscopy (ATR-IR).

  14. Optical loss due to diffraction by concentrator Fresnel lenses

    SciTech Connect

    Hornung, Thorsten Nitz, Peter

    2014-09-26

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as a primary optical element. They focus sunlight on small solar cells or on the entrance apertures of secondary optical elements. A Fresnel lens consists of several prism rings and diffraction by these prism rings is unavoidable. Some of the light that would reach a designated target area according to geometric optics will miss it due to diffraction. This diffraction loss may be of relevant magnitude for CPV applications. The results of published analytical calculations are evaluated, discussed, and compared to computer simulations and measurements.

  15. The Fresnel Integrals Revisited

    ERIC Educational Resources Information Center

    Chen, Hongwei

    2009-01-01

    This note presents another elementary method to evaluate the Fresnel integrals. It is interesting to see that this technique is also strong enough to capture a number of pairs of parameter integrals. The main ingredients of the method are the consideration of some related derivatives and linear differential equations.

  16. Synthesis and Characterization of Co-polymers Based on Methyl Methacrylate and 2-Hexyl Acrylate Containing Naphthopyrans for a Light-Sensitive Contact Lens.

    PubMed

    Nabais, Cláudia R J O D; Heron, B Mark; de Sousa, Hermínio C; Gil, Maria H; Sobral, Abílio J F N

    2011-01-01

    Three different naphthopyrans were incorporated in co-polymers of methyl methacrylate (MMA) and 2-ethylhexyl acrylate (EHA), with and without cross-linking with ethyleneglycol dimethacrylate (EGDMA), by a free radical polymerization method. The obtained materials were characterised in terms of some of their chemical and physical properties that could be important for the final functional properties of the envisaged application. Despite other important functional properties that should be evaluated in the near future, the system based in the physical entrapment of 3,3-bis(4-methoxyphenyl)-3H-naphtho [2,1-b]pyran presented a good potential for its application as novel light-sensitive contact lenses.

  17. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators

    SciTech Connect

    Lorenzo, E.; Luque, A.

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens.

  18. Comparison of Fresnel lenses and parabolic mirrors as solar energy concentrators.

    PubMed

    Lorenzo, E; Luque, A

    1982-05-15

    This paper compares the gain that can be achieved with a one- or two-stage concentrator, when the first stage is a Fresnel lens or a parabolic mirror, as a function of the luminosity of the concentrator. The results show that the achievable gain using a parabolic mirror is greater than that obtained using a flat or roof lens but is lower than that obtained using a curved lens.

  19. PMMA lens with high efficiency and reliability

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Ichiro; Abe, Koji; Fujita, Katsuhiro

    2013-09-01

    Polymethyl Methacrylate (PMMA) Fresnel lenses are increasingly being used in concentrated photovoltaic (CPV) systems installed outdoors and, accordingly, emphasis is being placed on the durability of such lenses with regard to light transmittance when subject to ultraviolet (UV) light and dust exposure. Accelerated testing methods for evaluating durability under UV exposure were established, allowing development of a lens material with improved UV resistance. Simultaneously, through a proprietary molding method, a Fresnel lens that boasts favorable light concentration efficiency with little deformation even after prolonged outdoor use was developed. Moreover, the lens incorporates a new hard-coat finish that possesses sand durability and UV resistance comparable to that of tempered glass.

  20. Fresnel diffraction by spherical obstacles

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.

    1989-01-01

    Lommel functions were used to solve the Fresnel-Kirchhoff diffraction integral for the case of a spherical obstacle. Comparisons were made between Fresnel diffraction theory and Mie scattering theory. Fresnel theory is then compared to experimental data. Experiment and theory typically deviated from one another by less than 10 percent. A unique experimental setup using mercury spheres suspended in a viscous fluid significantly reduced optical noise. The major source of error was due to the Gaussian-shaped laser beam.

  1. A new generation of multilayer Bragg-Fresnel lenses

    SciTech Connect

    Erko, A.; Firsov, A.; Yakshin, A.; Chevallier, P.; Dhez, P.

    1995-12-31

    A new type of Bragg-Fresnel multilayer lens (BFML) have been fabricated at IMT RAS and tested at LURE. The idea to combine different diffraction orders of a zone plate in one focal spot introduced by Simpson and Michette has been realized in a BFML with extended aperture. Matching of the two diffraction orders, the first and third, into one focal plane increases the output flux by a factor of two and the spatial resolution in the same order of magnitude.

  2. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  3. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  4. Ptychographic Fresnel coherent diffractive imaging

    SciTech Connect

    Vine, D. J.; Williams, G. J.; Nugent, K. A.; Abbey, B.; Pfeifer, M. A.; Clark, J. N.; Peele, A. G.; Jonge, M. D. de; McNulty, I.

    2009-12-15

    This paper reports improved reconstruction of complex wave fields from extended objects. The combination of ptychography with Fresnel diffractive imaging results in better reconstructions with fewer iterations required to convergence than either method considered separately. The method is applied to retrieve the projected thickness of a gold microstructure and comparative results using ptychography and Fresnel diffractive imaging are presented.

  5. Large aperture Fresnel telescopes/011

    SciTech Connect

    Hyde, R.A., LLNL

    1998-07-16

    At Livermore we`ve spent the last two years examining an alternative approach towards very large aperture (VLA) telescopes, one based upon transmissive Fresnel lenses rather than on mirrors. Fresnel lenses are attractive for VLA telescopes because they are launchable (lightweight, packagable, and deployable) and because they virtually eliminate the traditional, very tight, surface shape requirements faced by reflecting telescopes. Their (potentially severe) optical drawback, a very narrow spectral bandwidth, can be eliminated by use of a second (much smaller) chromatically-correcting Fresnel element. This enables Fresnel VLA telescopes to provide either single band ({Delta}{lambda}/{lambda} {approximately} 0.1), multiple band, or continuous spectral coverage. Building and fielding such large Fresnel lenses will present a significant challenge, but one which appears, with effort, to be solvable.

  6. Micro-optic lens for data storage

    NASA Technical Reports Server (NTRS)

    Milster, T. D.; Trusty, R. M.; Wang, M. S.; Froehlich, F. F.; Erwin, J. Kevin

    1991-01-01

    A new type of microlens for data storage applications that has improved off-axis performance is described. The lens consists of a micro Fresnel pattern on a curved substrate. The radius of the substrate is equal to the focal length of the lens. If the pattern and substrate are thin, the combination satisfies the Abbe sine condition. Therefore, the lens is free of coma. We analyze a 0.5 numerical aperture, 0.50 mm focal length lens in detail. A 0.16 numerical aperture lens was fabricated holographically, and results are presented.

  7. Optimization design of hybrid Fresnel-based concentrator for generating uniformity irradiance with the broad solar spectrum

    NASA Astrophysics Data System (ADS)

    Zhuang, Zhenfeng; Yu, Feihong

    2014-08-01

    This paper presents a novel hybrid Fresnel-based concentrator with improved uniformity irradiance distribution on the solar cell without using secondary optical element (SOE) in the concentrator photovoltaic (CPV) system to overcome the Fresnel loss and to increase the solar cell conversion efficiency. The designed hybrid Fresnel-based concentrator is composed of two parts, the inner part and the outer part. The inner part is the conventional Fresnel lens, while the outer part is double total internal reflection (DTIR) lens. According to the simple geometrical relation, the profile of the proposed hybrid Fresnel-based concentrator is calculated as an initial design profile. To obtain good irradiance uniformity on the solar cell, optimal prism displacements are optimized by using a simplex algorithm for collimated incident sunlight based on different prism focus on different position principles. In addition, a Monte-Carlo ray-tracing simulation approach is utilized to verify the optical performance for the hybrid Fresnel-based concentrator. Results indicate that the hybrid Fresnel-based concentrator designed using this method can achieve spatial non-uniformity less than 16.2%, f-number less than 0.59 (focal length to entry aperture diameter ratio), geometrical concentrator ratio 1759.8×, and acceptance angle ±0.23°. Compared to the conventional Fresnel-based lens and the traditional hybrid Fresnel-based lens, the optimized concentrator yields a significant improvement in irradiance uniformity on the solar cell with a wide solar spectrum range. It also has good tolerance to the incident sunlight.

  8. Performance improvement of Fresnel beamforming using dual apodization with cross-correlation.

    PubMed

    Nguyen, Man M; Yen, Jesse T

    2013-03-01

    Fresnel beamforming is a beamforming method that has a delay profile with a shape similar to a physical Fresnel lens. With 4 to 8 transmit channels, 2 receive channels, and a network of single-pole/single-throw switches, Fresnel beamforming can reduce the size, cost, and complexity of a beamformer. The performance of Fresnel beamforming is highly dependent on focal errors resulting from phase wraparound and quantization of its delay profile. Previously, we demonstrated that the performance of Fresnel beamforming relative to delayand- sum (DAS) beamforming is comparable for linear arrays at f-number = 2 and 50% bandwidth. However, focal errors for Fresnel beamforming are larger because of larger path length differences between elements, as in the case of curvilinear arrays compared with linear arrays. In this paper, we present the concept and performance evaluation of Fresnel beamforming combined with a novel clutter suppression method called dual apodization with cross-correlation (DAX) for curvilinear arrays. The contrast-to-noise ratios (CNRs) of Fresnel beamforming followed by DAX are highest at f-number = 3. At f-number = 3, the experimental results show that using DAX, the CNR for Fresnel beamforming improves from 3.7 to 10.6, compared with a CNR of 5.2 for DAS beamforming. Spatial resolution is shown to be unaffected by DAX. At f-number = 3, the lateral beamwidth and axial pulse length for Fresnel beamforming with DAX are 1.44 and 1.00 mm larger than those for DAS beamforming (about 14% and 21% larger), respectively. These experimental results are in good agreement with simulation results.

  9. Performance Improvement of Fresnel Beamforming Using Dual Apodization With Cross-Correlation

    PubMed Central

    Nguyen, Man M.; Yen, Jesse T.

    2013-01-01

    Fresnel beamforming is a beamforming method that has a delay profile with a shape similar to a physical Fresnel lens. With 4 to 8 transmit channels, 2 receive channels, and a network of single-pole/single-throw switches, Fresnel beamforming can reduce the size, cost, and complexity of a beam-former. The performance of Fresnel beamforming is highly dependent on focal errors resulting from phase wraparound and quantization of its delay profile. Previously, we demonstrated that the performance of Fresnel beamforming relative to delay-and-sum (DAS) beamforming is comparable for linear arrays at f-number = 2 and 50% bandwidth. However, focal errors for Fresnel beamforming are larger because of larger path length differences between elements, as in the case of curvilinear arrays compared with linear arrays. In this paper, we present the concept and performance evaluation of Fresnel beamforming combined with a novel clutter suppression method called dual apodization with cross-correlation (DAX) for curvilinear arrays. The contrast-to-noise ratios (CNRs) of Fresnel beamforming followed by DAX are highest at f-number = 3. At f-number = 3, the experimental results show that using DAX, the CNR for Fresnel beamforming improves from 3.7 to 10.6, compared with a CNR of 5.2 for DAS beamforming. Spatial resolution is shown to be unaffected by DAX. At f-number = 3, the lateral beamwidth and axial pulse length for Fresnel beamforming with DAX are 1.44 and 1.00 mm larger than those for DAS beamforming (about 14% and 21% larger), respectively. These experimental results are in good agreement with simulation results. PMID:23475913

  10. A CPV System with Static Linear Fresnel Lenses in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, Piet; Zahn, Helmut; Swinkels, Gert-Jan

    2010-10-01

    A new CPV system with a static linear Fresnel lens, silicon PV module suitable for concentrated radiation and an innovative tracking system is integrated in a greenhouse covering. The basic idea of this horticultural application is to develop a greenhouse for pot plants (typical shadow plants) which don't like high direct radiation. Removing all direct radiation will block up to 77% of the solar energy, which will reduce the necessary cooling capacity. The solar energy focused on the Thermal Photovoltaic (PV/T) module generates electric and thermal energy. The PV/T module is tracked in the focal line and requires cooling due to the high heat load of the concentrated radiation (concentration factor of 50 times). All parts are integrated in a greenhouse with a size of about 36 m2. The electrical and thermal yield is determined for Dutch climate circumstances. Some measurements were performed with a PMMA linear Fresnel lens between double glass. Further improvement of the performance of the CPV-system is possible by using a PDMS lens directly laminated on glass and using AR-coated glass. This lens is developed with ZEMAX and the results of the Ray-tracing simulations are presented with the lens structure oriented in an upwards and downwards position. The best performance of the static linear Fresnel lens is achieved with upwards orientation of the lens structures. In practice this is only possible with the Fresnel lens placed between a double glass structure, which will keep the lens clean and free of water.

  11. A broadband zone plate lens from transformation optics.

    PubMed

    Yang, Rui; Tang, Wenxuan; Hao, Yang

    2011-06-20

    A zone plate lens utilizing a refractive instead of diffractive approach is presented for broadband operation. By utilizing transformation optics, we compress the conventional hyperbolic lens into a flat one with a few zone plates made of all-dielectric materials. Such a transformed lens maintains the broadband performance of the original lens, thus providing a superior alternative to the diffractive Fresnel element which is inherently narrow band.

  12. Sharp-focusing Bragg-Fresnel zone plate with Laue diffraction geometry.

    PubMed

    Haroutunyan, Levon; Hovhannisyan, Gayane

    2006-07-01

    The impact of decreased zone height on the focal properties of hard X-ray Bragg-Fresnel zone plates has been studied by numerical simulation. Decreased zone height allows for smaller zone widths and, although the efficiency of the lens is decreased, the signal-to-background ratio in the focal plane of the lens remains at a comparatively high level. This is distinct from an analogous case of ordinary phase zone plates.

  13. Design methodology accounting for fabrication errors in manufactured modified Fresnel lenses for controlled LED illumination.

    PubMed

    Shim, Jongmyeong; Kim, Joongeok; Lee, Jinhyung; Park, Changsu; Cho, Eikhyun; Kang, Shinill

    2015-07-27

    The increasing demand for lightweight, miniaturized electronic devices has prompted the development of small, high-performance optical components for light-emitting diode (LED) illumination. As such, the Fresnel lens is widely used in applications due to its compact configuration. However, the vertical groove angle between the optical axis and the groove inner facets in a conventional Fresnel lens creates an inherent Fresnel loss, which degrades optical performance. Modified Fresnel lenses (MFLs) have been proposed in which the groove angles along the optical paths are carefully controlled; however, in practice, the optical performance of MFLs is inferior to the theoretical performance due to fabrication errors, as conventional design methods do not account for fabrication errors as part of the design process. In this study, the Fresnel loss and the loss area due to microscopic fabrication errors in the MFL were theoretically derived to determine optical performance. Based on this analysis, a design method for the MFL accounting for the fabrication errors was proposed. MFLs were fabricated using an ultraviolet imprinting process and an injection molding process, two representative processes with differing fabrication errors. The MFL fabrication error associated with each process was examined analytically and experimentally to investigate our methodology.

  14. Arbitrary shape surface Fresnel diffraction.

    PubMed

    Shimobaba, Tomoyoshi; Masuda, Nobuyuki; Ito, Tomoyoshi

    2012-04-09

    Fresnel diffraction calculation on an arbitrary shape surface is proposed. This method is capable of calculating Fresnel diffraction from a source surface with an arbitrary shape to a planar destination surface. Although such calculation can be readily calculated by the direct integral of a diffraction calculation, the calculation cost is proportional to O(N²) in one dimensional or O(N⁴) in two dimensional cases, where N is the number of sampling points. However, the calculation cost of the proposed method is O(N log N) in one dimensional or O(N² log N) in two dimensional cases using non-uniform fast Fourier transform.

  15. Fresnel reflection from a cavity with net roundtrip gain

    SciTech Connect

    Mansuripur, Tobias S.; Mansuripur, Masud

    2014-03-24

    A planewave incident on an active etalon with net roundtrip gain may be expected to diverge in field amplitude, yet applying the Fresnel formalism to Maxwell's equations admits a convergent solution. We describe this solution mathematically and provide additional insight by demonstrating the response of such a cavity to an incident beam of light. Cavities with net roundtrip gain have often been overlooked in the literature, and a clear understanding of their behavior yields insight to negative refraction in nonmagnetic media, a duality between loss and gain, amplified total internal reflection, and the negative-index lens.

  16. Fresnel Diffraction for CTR Microbunching

    SciTech Connect

    Tikhoplav, R.; Knyazik, A.; Rosenzweig, J. B.; Andonian, G.

    2009-01-22

    Laser beams of high intensities are routinely used for IFEL experiments. Such beams can potentially destroy microbunching diagnostic tools such as coherent transition radiation foils due to their low damage thresholds. Near-field Fresnel diffraction scheme for termination of CO{sub 2} laser beam has been experimentally studied and is presented in this paper. Novel THz camera was utilized for such study.

  17. Microfabrication of SU-8 Fresnel lenses for THz imaging

    NASA Astrophysics Data System (ADS)

    Hajji, M.; Pan, Y.; Hammler, J.; Zeze, D.; Balocco, C.; Gallant, A. J.

    2016-02-01

    Free space focusing of terahertz light is normally achieved through the use of bulky parabolic mirrors. Alternatively, for focusing onto a substrate or sample, polished high resistivity silicon lenses are commonly used. This paper presents the design, fabrication and testing of an alternative approach, based on Fresnel microlenses which have been optimised for use in the terahertz region. The microlenses are fabricated using layers of SU-8 photoresist and conventional UV photolithography. The lens design approach presented here provides a low cost, mass production ready alternative to silicon lenses. Fresnel lenses can have a large numerical aperture and a short focal length and are well suited for use in terahertz imaging systems. The focal point of the demonstrated Fresnel microlens has been calculated to be approximately 5 mm at 1 THz using a commercial FDTD solver, Lumerical. Characterization of the microlenses by VNA (Vector Network Analyzer) operating in the frequency range of 750 GHz to 1.1 THz is presented and discussed. The measured focal length using the VNA approach corresponds well to the values calculated using the FDTD solver and demonstrates effective focusing from highly compact lenses.

  18. Bi-functional Fresnel zone plate from transformation optics

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Wang, Zhaoxu; Su, He; Yang, Yinan; Lei, Zhenya

    2015-07-01

    Instead of reshaping the standard parabolic reflector or the hyperbolic lens to propose their planar counterparts, here we choose to flatten the primary spherical wave front based on the quasi-conformal transformation optics. Ray traces, travelling from the source to the transformed planar surface, can thus be maintained of the equal electrical path length in terms of the transformation-optics Fresnel zone plate. Due to the symmetrical feature of our transformation setup, the proposed device would readily possess dual functionalities in the light focusing and collimation that can either be applied to a reflector when incorporated with a plane mirror or directly employed as a standalone lens according to the principle of the image theory.

  19. Design of a variable-line-spacing grating pattern for spectrometers based on a grating Fresnel device.

    PubMed

    Li, Xinghui; Zhang, Jinchao; Zhou, Qian; Ni, Kai; Pang, Jinchao; Tian, Rui

    2016-04-01

    In this Letter, we propose a variable-line-spacing (VLS) grating pattern for a hybrid diffractive device termed a grating Fresnel (G-Fresnel) lens, which is used in spectrometers to improve spectral resolution over a wide spectral range. The VLS grating pattern disperses light of specific wavelengths with a different angle and position such that the aberration caused by the Fresnel surface can be compensated for. In this manner, high resolution can be achieved over a relatively wide spectral range. The VLS grating pattern is designed based on the least wave-change principle and simulated by ZEMAX. Results reveal that the VLS G-Fresnel device allows a subnanometer resolution over a spectral range of 200 nm.

  20. Optical Design and Manufacturing of Fresnel Lenses for The First Korean High Concentration Solar PV System

    NASA Astrophysics Data System (ADS)

    Ryu, Kwangsun; Shin, Goo-Hwan; Cha, Wonho; Kang, Seongwon; Kim, Youngsik; Kang, Gi-Hwan

    2011-12-01

    In this study, we designed and optimized flat Fresnel lens and the light pipe to develop 500X concentrated solar PV system. In the process, we compare the transmission efficiencies according to groove types. We performed rigorous ray tracing simulation of the flat Fresnel lenses. The computer aided simulation showed the `grooves in' case has the better efficiency than that of `grooves out' case. Based on the ray-trace results, we designed and manufactured sample Fresnel lenses. The optical performance were measured and compared with ray-trace results. Finally, the optical efficiency was measured to be above 75%. All the design and manufacturing were performed based on that InGaP/InGaAs/Ge triple junction solar cell is used to convert the photon energy to electrical power. Field test will be made and analyzed in the near future.

  1. Fresnel zone antenna for dual-band detection at millimeter and infrared wavelengths.

    PubMed

    Alda, Javier; González, Francisco Javier

    2009-03-15

    In this work the concept of a Fresnel zone antenna for dual-band detection in the IR and millimeter wave region is presented. The design is based on a Fresnel zone plate lens in the IR that is transformed to serve as a millimeter-wave antenna. Two different designs are presented, a circular-zone design that gives a high diffractive efficiency in the IR and a square-zone design that gives a higher response in the millimeter band but a lower focusing efficiency in the IR. Both designs have an operation bandwidth with the same low frequency limit of 400 GHz (750 microm), which can be tailored by changing the number of Fresnel zones, and a high frequency limit of 4.5 THz (65 microm) for the circular-zone design and 5 THz (59 microm) for the square-zone design.

  2. Static Linear Fresnel Lenses as LCPV System in a Greenhouse

    NASA Astrophysics Data System (ADS)

    Sonneveld, P. J.; Swinkels, G. L. A. M.; van Tuijl, B. A. J.; Janssen, H. J. J.; de Zwart, H. F.

    2011-12-01

    A low concentrating PV system with water cooling (LCPVT system) will result in electrical and thermal energy output from the solar energy excess entering a building or greenhouse. All the direct radiation could be converted, which corresponds to 75% of the incoming solar energy. This will significantly reduce the demand of cooling of the building. For an optimal performance it is beneficial to construct asymmetric roof elements with a steep inclination at the north side (the exact angle of course depends on the latitude of the building site). The Fresnel lens structure is oriented in upwards direction. In the current design, two of them are placed between an AR-coated double glass structure to prevent pollution and condensation on the lenses. Compared with a previous system, the number of lenses is reduced from 3 to 2 lenses, which reduces the costs of the system by limiting the number of receivers. By the upward facing of the lens structure, the focus quality is preserved over a much broader range of angles of incidence compared to a lens with downward facing structures. Each PMMA lens with a size of 1.20 m×1.60 m is composed of 12 `tiles' for easy production. The focal distance of the lens is 1,875 m and the concentration factor 50x. In most cases the focus line is thinner than 3 cm and the transmission is above 80%. The performance of these lenses with respect of the shape of the focal area and the position of the focal line has been analyzed with ray tracing techniques. From this analyses it was concluded that tracking of the receiver module is possible with two motors. One motor controls the distance between lens and receiver and one motor controls the translocation of the receivers parallel to the lens. The second conclusion was that the positions of the focal line are within the bounds of the greenhouse construction for almost the whole year. Only in winter, the focal line will be unreachable from time to time. A 480 m2 greenhouse with the LCPVT system

  3. Design and imaging performance of achromatic diffractive-refractive x-ray and gamma-ray Fresnel lenses.

    PubMed

    Skinner, Gerald K

    2004-09-01

    Achromatic combinations of a diffractive phase Fresnel lens and a refractive correcting element have been proposed for x-ray and gamma-ray astronomy and for microlithography, but considerations of absorption often dictate that the refractive component be given a stepped profile, resulting in a double Fresnel lens. The imaging performance of corrected Fresnel lenses, with and without stepping, is investigated, and the trade-off between resolution and useful bandwidth in different circumstances is discussed. Provided that the focal ratio is large, correction lenses made from low atomic number materials can be used with x rays in the range of approximately 10-100 keV without stepping. The use of stepping extends the possibility of correction to higher-aperture systems, to energies as low as a few kilo electron volts, and to gamma rays of mega electron volt energy.

  4. Fresnel lenses for ultrasonic inspection

    NASA Technical Reports Server (NTRS)

    Kammerer, C. C.

    1980-01-01

    Ultrasonic Fresnel lenses are effective focusing elements with potential applications in ultrasonic "contact" testing for defects in materials. Ultrasonic beams focused on concave lenses are used successfully with immersion transducers, for which test object is immersed in water bath. However, for large objects, objects that are already installed, objects on production lines, and objects that can be damaged by water, contact testing is more practical than immersion.

  5. Temperature Dependent Measurement And Simulation Of Fresnel Lenses For Concentrating Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-10-01

    Concentrating photovoltaics (CPV) require large areas of optical components that concentrate incident sunlight effectively onto a solar cell. Fresnel lenses are often used as primary optical component providing this concentration. When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. We performed high accuracy measurements of the temperature and wavelength dependent refractive indices of relevant lens materials to obtain additional input data for computer simulations. A close match between computer simulations and measurements of the irradiance in the focal plane could be achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulations themselves allow us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  6. Fresnel drag effect in fiber optic gyroscope

    NASA Technical Reports Server (NTRS)

    Vali, V.; Berg, M. F.; Shorthill, R. W.

    1978-01-01

    Consideration is given to the development of a low-noise fiber-optic ring interferometer gyroscope. A technique for measuring the Fresnel drag coefficient of optical fibers is described, and the accuracy of the technique is considered. An experiment is performed which allows verification of the Einstein velocity addition theorem to the first nonlinear term. An experimental setup for measuring Fresnel drag is described: it consists of a Sagnac interferometer and a Fresnel drag measurement configuration.

  7. Shifted Fresnel diffraction for computational holography.

    PubMed

    Muffoletto, Richard P; Tyler, John M; Tohline, Joel E

    2007-04-30

    Fourier-based approaches to calculate the Fresnel diffraction of light provide one of the most efficient algorithms for holographic computations because this permits the use of the fast Fourier transform (FFT). This research overcomes the limitations on sampling imposed by Fourier-based algorithms by the development of a fast shifted Fresnel transform. This fast shifted Fresnel transform is used to develop a tiling approach to hologram construction and reconstruction, which computes the Fresnel propagation of light between parallel planes having different resolutions.

  8. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates.

  9. Fresnel formulas as Lorentz transformations

    PubMed

    Monzon; Sanchez-Soto

    2000-08-01

    From a matrix formulation of the boundary conditions we obtain the fundamental invariant for an interface and a remarkably simple factorization of the interface matrix, which enables us to express the Fresnel coefficients in a new and compact form. This factorization allows us to recast the action of an interface between transparent media as a hyperbolic rotation. By exploiting the local isomorphism between SL(2, C) and the (3 + 1)-dimensional restricted Lorentz group SO(3, 1), we construct the equivalent Lorentz transformation that describes any interface.

  10. Advanced lab on Fresnel equations

    NASA Astrophysics Data System (ADS)

    Petrova-Mayor, Anna; Gimbal, Scott

    2015-11-01

    This experimental and theoretical exercise is designed to promote students' understanding of polarization and thin-film coatings for the practical case of a scanning protected-metal coated mirror. We present results obtained with a laboratory scanner and a polarimeter and propose an affordable and student-friendly experimental arrangement for the undergraduate laboratory. This experiment will allow students to apply basic knowledge of the polarization of light and thin-film coatings, develop hands-on skills with the use of phase retarders, apply the Fresnel equations for metallic coating with complex index of refraction, and compute the polarization state of the reflected light.

  11. Demonstration of a Fresnel axicon

    SciTech Connect

    Gourley, Kevin; Golub, Ilya; Chebbi, Brahim

    2011-01-20

    We design and manufacture a Fresnel axicon (fraxicon) that generates a quasi-diffraction-free/Bessel beam with a large depth of field. The novel optical element is characterized with both coherent and incoherent light, and its behavior is compared with that of a classical axicon. While the fraxicon exhibits a strong interference pattern in the on-axis intensity distribution, it can be smoothed out when using broadband light, partial spatial coherence light, or by period randomization. As inexpensive, compact/lightweight, and low-absorption elements, fraxicons may find applications in imaging, illumination, and situations where low absorption and dispersion are important.

  12. Temperature and wavelength dependent measurement and simulation of Fresnel lenses for concentrating photovoltaics

    NASA Astrophysics Data System (ADS)

    Hornung, Thorsten; Bachmaier, Andreas; Nitz, Peter; Gombert, Andreas

    2010-05-01

    Fresnel lenses are often used as primary optical components in concentrating photovoltaics (CPV). When applied in the field, varying conditions during operation lead to variations in lens temperature which has a strong impact on the optical efficiency of the lenses. A setup for indoor characterization with the ability to heat lens plates allows for the assessment of the quality of Fresnel lenses by means of their irradiance profiles in the focal plane. To analyze the measured temperature dependency we simulate thermal deformations of the lens geometry with finite element method (FEM) tools and use the resulting lens geometry as an input to ray tracing simulations. A close match between computer simulations and measurements of the irradiance profile in the focal plane is achieved, validating our simulation approach. This allows us to judge and optimize the temperature dependence of new lens designs before building and testing prototypes. The simulation enables us to analyze and understand all superimposed effects in detail. The developed tools in combination with detailed solar resource data and knowledge of the CPV system will be the basis for future assessment of overall performance and further optimization of optics for CPV applications.

  13. Integration of Defocus by Dual Power Fresnel Lenses Inhibits Myopia in the Mammalian Eye

    PubMed Central

    McFadden, Sally A.; Tse, Dennis Y.; Bowrey, Hannah E.; Leotta, Amelia J.; Lam, Carly S.; Wildsoet, Christine F.; To, Chi-Ho

    2014-01-01

    Purpose. Eye growth compensates in opposite directions to single vision (SV) negative and positive lenses. We evaluated the response of the guinea pig eye to Fresnel-type lenses incorporating two different powers. Methods. A total of 114 guinea pigs (10 groups with 9–14 in each) wore a lens over one eye and interocular differences in refractive error and ocular dimensions were measured in each of three experiments. First, the effects of three Fresnel designs with various diopter (D) combinations (−5D/0D; +5D/0D or −5D/+5D dual power) were compared to three SV lenses (−5D, +5D, or 0D). Second, the ratio of −5D and +5D power in a Fresnel lens was varied (50:50 compared with 60:40). Third, myopia was induced by 4 days of exposure to a SV −5D lens, which was then exchanged for a Fresnel lens (−5D/+5D) or one of two SV lenses (+5D or −5D) and ocular parameters tracked for a further 3 weeks. Results. Dual power lenses induced an intermediate response between that to the two constituent powers (lenses +5D, +5D/0D, 0D, −5D/+5D, −5D/0D and −5D induced +2.1 D, +0.7 D, +0.1 D, −0.3 D, −1.6 D and −5.1 D in mean intraocular differences in refractive error, respectively), and changing the ratio of powers induced responses equal to their weighted average. In already myopic animals, continued treatment with SV negative lenses increased their myopia (from −3.3 D to −4.2 D), while switching to SV positive lenses or −5D/+5D Fresnel lenses reduced their myopia (by 2.9 D and 2.3 D, respectively). Conclusions. The mammalian eye integrates competing defocus to guide its refractive development and eye growth. Fresnel lenses, incorporating positive or plano power with negative power, can slow ocular growth, suggesting that such designs may control myopia progression in humans. PMID:24398103

  14. Wedged multilayer Laue Lens.

    SciTech Connect

    Conley, R.; Liu, C.; Qian, J.; Kewish, C. M.; Macrander, A. T.; Yan, H.; Kang, H. C.; Maser, J.; Stephenson, G. B.

    2008-05-01

    A multilayer Laue lens (MLL) is an x-ray focusing optic fabricated from a multilayer structure consisting of thousands of layers of two different materials produced by thin-film deposition. The sequence of layer thicknesses is controlled to satisfy the Fresnel zone plate law and the multilayer is sectioned to form the optic. An improved MLL geometry can be created by growing each layer with an in-plane thickness gradient to form a wedge, so that every interface makes the correct angle with the incident beam for symmetric Bragg diffraction. The ultimate hard x-ray focusing performance of a wedged MLL has been predicted to be significantly better than that of a nonwedged MLL, giving subnanometer resolution with high efficiency. Here, we describe a method to deposit the multilayer structure needed for an ideal wedged MLL and report our initial deposition results to produce these structures.

  15. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  16. Light diffraction by concentrator Fresnel lenses.

    PubMed

    Hornung, Thorsten; Nitz, Peter

    2014-05-05

    Fresnel lenses are widely used in concentrating photovoltaic (CPV) systems as primary optical elements focusing sunlight onto small solar cells or onto entrance apertures of secondary optical elements attached to the solar cells. Calculations using the Young-Maggi-Rubinowicz theory of diffraction yield analytical expressions for the amount of light spilling outside these target areas due to diffraction at the edges of the concentrator Fresnel lenses. Explicit equations are given for the diffraction loss due to planar Fresnel lenses with small prisms and due to arbitrarily shaped Fresnel lenses. Furthermore, the cases of illumination by monochromatic, polychromatic, totally spatially coherent and partially spatially coherent light (e.g. from the solar disc) are treated, resulting in analytical formulae. Examples using realistic values show losses due to diffraction of up to several percent.

  17. Multidimensional imaging using compressive Fresnel holography.

    PubMed

    Horisaki, Ryoichi; Tanida, Jun; Stern, Adrian; Javidi, Bahram

    2012-06-01

    We propose a generalized framework for single-shot acquisition of multidimensional objects using compressive Fresnel holography. A multidimensional object with spatial, spectral, and polarimetric information is propagated with the Fresnel diffraction, and the propagated signal of each channel is observed by an image sensor with randomly arranged optical elements for filtering. The object data are reconstructed using a compressive sensing algorithm. This scheme is verified with numerical experiments. The proposed framework can be applied to imageries for spectrum, polarization, and so on.

  18. Optimization of modified volume Fresnel zone plates.

    PubMed

    Srisungsitthisunti, Pornsak; Ersoy, Okan K; Xu, Xianfan

    2009-10-01

    Modified volume Fresnel zone plates (MVFZPs) fabricated with laser direct writing were optimized for higher diffraction efficiencies. The Fresnel radii in each layer of a volume zone plate were iteratively adjusted by a simulation-based direct search optimization. The results show that optimization is effective but depends strongly on the starting diffraction efficiencies determined by the MVFZP parameters. The simulations indicate that the optimized MVFZP can achieve 93% diffraction efficiency.

  19. Fabry lens.

    NASA Technical Reports Server (NTRS)

    Michlovic, J.

    1972-01-01

    Discussion of the properties, operation, and applications of the Fabry lens. As used in stellar photometry, a Fabry lens is nothing more than a simple converging lens inserted into the optical train of a photometer to construct an image of the objective on the photomultiplier cathode. The thereby derived advantages are reviewed, and some techniques designed to maximize these advantages are outlined.

  20. Fresnel diffraction at an opaque strip expressed by means of asymptotic representations of Fresnel integrals.

    PubMed

    Šmíd, Petr; Horváth, Pavel

    2012-06-01

    The paper presents an asymptotic expression of relative intensity distribution in a Fresnel diffraction pattern at an opaque straight strip illuminated with a spherical wave. The asymptotic expression is used in an analysis showing an area of validity where the asymptotic expression reduces to an asymptotic expression of relative intensity distribution in a Fresnel diffraction at a half plane. The area of validity is defined through width of the geometrical shadow in a Fresnel diffraction pattern at an opaque straight strip and distance of a point under study to the center of the Fresnel diffraction pattern. Within this area, relative intensity in the Fresnel diffraction pattern at an opaque straight strip shows sinusoidal behavior, which can be used in easy location of maxima or minima of the relative intensity. The result of the analysis is supported by experiments realized in the area of validity and outside it.

  1. High-aperture diffractive lens for holographic printer

    NASA Astrophysics Data System (ADS)

    Zherdev, A. Y.; Odinokov, S. B.; Lushnikov, D. S.; Shishova, M. V.; Gurylev, O. A.; Kaytukov, C. B.

    2016-10-01

    The optical scheme of holographic printer for obtaining of holographic stereograms with an increasing field of view is proposed. Conventional holographic printers allow obtaining holographic stereograms with the field of view up to 90°. Proposed scheme allows increasing field of view up to 120°. The optical scheme is based on a diffuser and a diffraction optical element, the high-aperture diffractive lens. The experience of using the composite holographic lens and the amplitude diffractive lens based on a binary Fresnel zone plate as a high-aperture diffractive lens is described. Samples of high-aperture diffractive lens with f-number f/0.3 are obtained and investigated. Samples of holographic stereograms are obtained using samples of high-aperture diffractive lens.

  2. Thin Fresnel zone plate lenses for focusing underwater sound

    NASA Astrophysics Data System (ADS)

    Calvo, David C.; Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-01

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  3. Thin Fresnel zone plate lenses for focusing underwater sound

    SciTech Connect

    Calvo, David C. Thangawng, Abel L.; Nicholas, Michael; Layman, Christopher N.

    2015-07-06

    A Fresnel zone plate (FZP) lens of the Soret type creates a focus by constructive interference of waves diffracted through open annular zones in an opaque screen. For underwater sound below MHz frequencies, a large FZP that blocks sound using high-impedance, dense materials would have practical disadvantages. We experimentally and numerically investigate an alternative approach of creating a FZP with thin (0.4λ) acoustically opaque zones made of soft silicone rubber foam attached to a thin (0.1λ) transparent rubber substrate. An ultra-thin (0.0068λ) FZP that achieves higher gain is also proposed and simulated which uses low-volume fraction, bubble-like resonant air ring cavities to construct opaque zones. Laboratory measurements at 200 kHz indicate that the rubber foam can be accurately modeled as a lossy fluid with an acoustic impedance approximately 1/10 that of water. Measured focal gains up to 20 dB agree with theoretical predictions for normal and oblique incidence. The measured focal radius of 0.68λ (peak-to-null) agrees with the Rayleigh diffraction limit prediction of 0.61 λ/NA (NA = 0.88) for a low-aberration lens.

  4. Huygens-Fresnel wavefront tracing

    NASA Astrophysics Data System (ADS)

    Volpe, F. A.; Létourneau, P.-D.; Zhao, A.

    2017-03-01

    We present initial results from a novel numerical method describing wave propagation in slowly non-uniform media. Following Huygens-Fresnel's principle, we model the wavefront as an array of point sources that emit wavelets, which interfere. We then identify a set of new points where the electric field has equal phase. In fact, without losing generality, we find zeros of the electric field, by means of the bisection method. This obviously corresponds to a specific phase-advance, but is easily generalized, e.g. by phase-shifting all sources. The points found form the new wavefront, then the process is reiterated. One of the advantages of the method is that it includes diffraction. Two examples provided are diffraction around an obstacle and the finite waist of a focused Gaussian beam. Refraction is also successfully modeled, both in slowly-varying media as well as in the presence of discontinuities. The calculations were performed in two dimensions, but can be easily extended to three dimensions. We also discuss the extension to anisotropic, birefringent, absorbing media.

  5. Coculture with intraocular lens material-activated macrophages induces an inflammatory phenotype in lens epithelial cells.

    PubMed

    Pintwala, Robert; Postnikoff, Cameron; Molladavoodi, Sara; Gorbet, Maud

    2015-03-01

    Cataracts are the leading cause of blindness worldwide, requiring surgical implantation of an intraocular lens. Despite evidence of leukocyte ingress into the postoperative lens, few studies have investigated the leukocyte response to intraocular lens materials. A novel coculture model was developed to examine macrophage activation by hydrophilic acrylic (poly(2-hydroxyethyl methacrylate)) and hydrophobic acrylic (polymethylmethacrylate) commercial intraocular lens. The human monocytic cell line THP-1 was differentiated into macrophages and cocultured with human lens epithelial cell line (HLE-B3) with or without an intraocular lens for one, two, four, or six days. Using flow cytometry and confocal microscopy, expression of the macrophage activation marker CD54 (intercellular adhesion molecule-1) and production of reactive oxygen species via the fluorogenic probe 2',7'-dichlorodihydrofluorescein diacetate were examined in macrophages. α-Smooth muscle actin, a transdifferentiation marker, was characterized in lens epithelial cells. The poly(2-hydroxyethyl methacrylate) intraocular lens prevented adhesion but induced significant macrophage activation (p < 0.03) versus control (no intraocular lens), while the polymethylmethacrylate intraocular lens enabled adhesion and multinucleated fusion, but induced no significant activation. Coculture with either intraocular lens increased reactive oxygen species production in macrophages after one day (p < 0.03) and increased expression of α-smooth muscle actin in HLE B-3 after six days, although only poly(2-hydroxyethyl methacrylate) induced a significant difference versus control (p < 0.01). Our results imply that-contrary to prior uveal biocompatibility understanding-macrophage adherence is not necessary for a strong inflammatory response to an intraocular lens, with hydrophilic surfaces inducing higher activation than hydrophobic surfaces. These findings provide a new method of inquiry into uveal

  6. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  7. Characterization and correction of spherical aberration due to glass substrate in the design and fabrication of Fresnel zone lenses.

    PubMed

    Vijayakumar, A; Bhattacharya, S

    2013-08-20

    As with a conventional lens, a Fresnel zone lens (FZL) can be used to image objects at infinity or nearby. In the latter case, the FZL converts a diverging spherical wavefront into a converging spherical wavefront. The glass substrate on which the FZL is fabricated introduces spherical aberration resulting in a shift of the image plane and blurring of the image. Two novel schemes for correction of this spherical aberration are proposed and studied in this paper. To demonstrate them, FZLs are designed with and without aberration correction. They are fabricated using electron beam direct writing. The devices are evaluated and the accuracy of the proposed aberration correction schemes is validated.

  8. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  9. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  10. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings...

  11. Polarization Compensation of Fresnel Aberrations in Telescopes

    NASA Technical Reports Server (NTRS)

    Clark, Natalie; Breckenridge, James B.

    2011-01-01

    Large aperture space telescopes are built with low F# s to accommodate the mechanical constraints of launch vehicles and to reduce resonance frequencies of the on-orbit system. Inherent with these low F# s is Fresnel polarization which affects image quality. We present the design and modeling of a nano-structure consisting of birefringent layers to control polarization and increase contrast. Analysis shows a device that functions across a 400nm bandwidth tunable from 300nm to 1200nm. This Fresnel compensator device has a cross leakage of less than 0.001 retardance.

  12. Irradiance tailoring with two-sided Fresnel-type freeform optics

    NASA Astrophysics Data System (ADS)

    Bruneton, Adrien; Bäuerle, Axel; Traub, Martin; Wester, Rolf; Loosen, Peter

    2012-10-01

    Based on the Monge-Kantorovich theory of optimal mass transport, the computation of a ray mapping between source and target irradiances is used to design two-sided freeform lenses fulfilling the constraints of an automotive application: compactness and sharp bright-dark cutoff. A generic segmentation technic resulting in Fresnel-type optics is presented and the whole procedure is illustrated with the design of a fog light lens. Finally Monte Carlo simulation of the virtual model and measurements of a polycarbonate prototype are presented.

  13. Space Photovoltaic Concentrator Using Robust Fresnel Lenses, 4-Junction Cells, Graphene Radiators, and Articulating Receivers

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark; McDanal, A. J.; Brandhorst, Henry; Spence, Brian; Iqbal, Shawn; Sharps, Paul; McPheeters, Clay; Steinfeldt, Jeff; Piszczor, Michael; Myers, Matt

    2016-01-01

    At the 42nd PVSC, our team presented recent advances in our space photovoltaic concentrator technology. These advances include more robust Fresnel lenses for optical concentration, more thermally conductive graphene radiators for waste heat rejection, improved color-mixing lens technology to minimize chromatic aberration losses with 4-junction solar cells, and an articulating photovoltaic receiver enabling single-axis sun-tracking, while maintaining a sharp focal line despite large beta angles of incidence. In the past year, under a NASA Phase II SBIR program, our team has made much additional progress in the development of this new space photovoltaic concentrator technology, as described in this paper.

  14. Recent developments in Fresnel zone plate antennas at microwave/millimeter wave

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    1998-10-01

    The Fresnel zone plate antenna is an example of an optical analogy that has been transferred to microwave/millimeter wavelength use. The latter case has seen extensive research and application, and in the past dozen years more than seventy relevant papers have been published on a worldwide basis. These studies have dealt with either lens or reflector designs, and have quantified many parameters, such as gain, antenna patterns, efficiency, bandwidth, and structural options. The most recent designs have dealt with high efficiency or dual band configurations. This report will summarize the many advances of the past few years, and will provide some parametric design tradeoffs.

  15. SCARLET: Design of the Fresnel concentrator array for New Millennium Deep Space 1

    SciTech Connect

    Murphy, D.M.; Eskenazi, M.I.

    1997-12-31

    The primary power for the JPL New Millennium Deep Space 1 spacecraft is a 2.6 kW concentrator solar array. This paper surveys the design and analysis employed to combine line-focus Fresnel lenses and multijunction (GaInP{sub 2}/GaAs/Ge) solar cells in the second-generation SCARLET (Solar Concentrator Array with Refractive Linear Element Technology) system. The array structure and mechanisms are reviewed. Discussion is focused on the lens and receiver, from the optimizations of optical efficiency and thermal management, to the design issues of environmental extremes, reliability, producibility, and control of pointing error.

  16. Objective lens

    NASA Technical Reports Server (NTRS)

    Olczak, Eugene G. (Inventor)

    2011-01-01

    An objective lens and a method for using same. The objective lens has a first end, a second end, and a plurality of optical elements. The optical elements are positioned between the first end and the second end and are at least substantially symmetric about a plane centered between the first end and the second end.

  17. The effect of rigid gas permeable lens cleaners on lens parameter stability.

    PubMed

    Carrell, B A; Bennett, E S; Henry, V A; Grohe, R M

    1992-03-01

    The introduction of fluoro-silicone/acrylate rigid lens materials has provided wearers with benefits that include, among others, enhanced surface wettability. However, several reports have associated these lens materials with lens power, base curve radius and center thickness changes over time, especially with long-term use of an abrasive cleaner. The purpose of this study was to evaluate the effect of abrasive and non-abrasive cleaners on these specific lens parameters. Twenty-four fluoro-silicone/acrylate lenses, 12 low minus and 12 high minus in power, were cleaned a total of 200 times each. Each lens was cleaned with one of-three different cleaners (1 non-abrasive and 2 abrasive) using one of two cleaning methods; palm of the hand or between the fingers (digital). Lens power was changed on 14/24 lenses (58.3 percent); the primary changes occurred with use of one of the abrasive cleaners. In addition, a slight reduction in center thickness was observed after abrasive cleaner use. Warpage occurred at a much higher rate with the digital cleaning method and with the use of an abrasive cleaner. It was concluded that practitioners should routinely reverify rigid lens power, center thickness and base curve radius; patients should be educated to carefully handle their lenses, notably cleaning them in the palm of the hand.

  18. Acrylic mechanical bond tests

    SciTech Connect

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  19. A Simple Experiment on Fresnel Diffraction

    ERIC Educational Resources Information Center

    Haskell, Richard E.

    1970-01-01

    Describes an experiment in which the Fresnel diffraction pattern of a single slit can be displayed directly on an oscilloscope. The experiment requires a minimum amount of equipment and space. Results of the experiment are presented and compared with theoretical calculations carried out by a digital computer. (LC)

  20. Fresnel diffraction plates are simple and inexpensive

    NASA Technical Reports Server (NTRS)

    Hoover, R. B.

    1967-01-01

    Fresnel plate demonstrates diffraction phenomena simply and inexpensively. A large number of identical diffracting apertures are made in random orientation on photographic film. When a small source of light is viewed through the plate, the diffraction pattern typical of the diffracting aperture is readily seen.

  1. Side-pumping Nd:YAG solar laser by six Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Tomás, G.; Liang, D.; Almeida, J.

    2013-11-01

    To obtain a good compromise between collection efficiency and brightness figure of merit of solar-pumped lasers, a new side-pumping scheme is proposed. Firstly the solar radiations are collected and concentrated by six 700 mm diameter Fresnel lenses. The concentrated solar radiations are subsequently reflected by six plane folding mirrors with 95% reflectivity, into a common focal spot. This allows the concentration of 1740 W solar power with about 6.4 W/mm2 peak solar flux. A secondary concentrator is composed of six aspheric fused silica lenses, positioned around a 40 mm radius fused silica sphere, compressing all the concentrated solar radiation from the six Fresnel lenses into an 8 mm diameter by 9 mm length Nd:YAG single-crystal rod. By positioning the spherical concentrator slightly above the aspherical lenses, a more uniform absorption profile is achieved. Mechanical support with a water cooling system ensures an efficient cooling to the laser medium. Optimal laser parameters are found through ZEMAX™ and LASCAD™ numerical analysis software. Only 16% of the solar power is absorbed by Nd:YAG medium. Solar laser power of 42.6 W is numerically calculated, reaching a collection efficiency of 18.5 W/m2. For a 400 mm plane-concave resonance cavity with -5m radius of curvature, M2 x = M2 y = 22 beam quality factors are numerically predicted. A near uniform pump absorption profile can be achieved by increasing the number of Fresnel lens and folding mirrors.

  2. Phase singularity in the diffracted field from Fresnel's double mirror

    NASA Astrophysics Data System (ADS)

    Aalipour, Rasoul; Taghi Tavassoly, M.

    2013-05-01

    It is shown that when a coherent beam of light illuminates a Fresnel's double mirror, Fresnel diffraction becomes appreciable. The subject fundamentally differs from interference. We calculate the diffracted field by applying Fresnel-Kirchhoff integral. We modified the common Fresnel's double mirror by imposing an initial height between the mirrors, as the height is chosen small enough so that the application of Fresnel's double mirror is maintained. We show by simulation and experiment that a phase singularity causes from the initial height and modifies the diffracted field from the Fresnel's double mirror. One can adjust the location of the line singularity by changing the angle between the mirrors. Also, the anomalous behavior of a polychromatic beam diffracted from the modified Fresnel's double mirror at the neighborhood of the line singularity, is investigated by simulation.

  3. Adjustable hybrid diffractive/refractive achromatic lens

    PubMed Central

    Valley, Pouria; Savidis, Nickolaos; Schwiegerling, Jim; Dodge, Mohammad Reza; Peyman, Gholam; Peyghambarian, N.

    2011-01-01

    We demonstrate a variable focal length achromatic lens that consists of a flat liquid crystal diffractive lens and a pressure-controlled fluidic refractive lens. The diffractive lens is composed of a flat binary Fresnel zone structure and a thin liquid crystal layer, producing high efficiency and millisecond switching times while applying a low ac voltage input. The focusing power of the diffractive lens is adjusted by electrically modifying the sub-zones and re-establishing phase wrapping points. The refractive lens includes a fluid chamber with a flat glass surface and an opposing elastic polydimethylsiloxane (PDMS) membrane surface. Inserting fluid volume through a pump system into the clear aperture region alters the membrane curvature and adjusts the refractive lens’ focal position. Primary chromatic aberration is remarkably reduced through the coupling of the fluidic and diffractive lenses at selected focal lengths. Potential applications include miniature color imaging systems, medical and ophthalmic devices, or any design that utilizes variable focal length achromats. PMID:21503055

  4. Liquid lens using acoustic radiation force.

    PubMed

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  5. Solar concentration properties of flat fresnel lenses with large F-numbers

    NASA Technical Reports Server (NTRS)

    Cosby, R. M.

    1978-01-01

    The solar concentration performances of flat, line-focusing sun-tracking Fresnel lenses with selected f-numbers between 0.9 and 2.0 were analyzed. Lens transmittance was found to have a weak dependence on f-number, with a 2% increase occuring as the f-number is increased from 0.9 to 2.0. The geometric concentration ratio for perfectly tracking lenses peaked for an f-number near 1.35. Intensity profiles were more uniform over the image extent for large f-number lenses when compared to the f/0.9 lens results. Substantial decreases in geometri concentration ratios were observed for transverse tracking errors equal to or below 1 degree for all f-number lenses. With respect to tracking errors, the solar performance is optimum for f-numbers between 1.25 and 1.5.

  6. Compound lens

    DOEpatents

    Brixner, B.B.; Klein, M.M.; Winkler, M.A.

    1980-05-21

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  7. Compound lens

    DOEpatents

    Brixner, Berlyn B.; Klein, Morris M.; Winkler, Max A.

    1982-01-01

    The disclosure relates to at least one calcium fluoride optical element used in combination with at least two ordinary crown glass lens elements to greatly reduce secondary spectrum in optical systems.

  8. Development of a 160X crossed lens photovoltaic concentrator. Final report

    SciTech Connect

    McDanal, A.J.

    1986-03-01

    A new concentrator concept, the crossed lens solar photovoltaic concentrator, is described. The innovative concentrator cross-couples simple plano-cylindrical lenses with a linear Fresnel lens to achieve a geometric concentration ratio of 160X. The linear Fresnel lens provides lateral focussing of the incident sunlight while the plano-cylindrical lenses provide longitudinal focussing. The combined lateral/longitudinal focussing results in a series of focal spots on the photovoltaic receiver rather than a continuous focal line. An initial prototype module was fabricated and performance tested. The demonstrated peak electrical efficiency is 15.1% at 28/sup 0/C cell temperature. Incorporation of recently developed design improvements (a proprietary prismaic cell cover and a lens anti-reflection coating) indicates that a 20% module efficiency is achievable.

  9. Far-field characteristics of the square grooved-dielectric lens antenna for the terahertz band.

    PubMed

    Pan, Wu; Zeng, Wei

    2016-09-10

    In order to improve the gain and directionality of a terahertz antenna, a square grooved-dielectric lens antenna based on a Fresnel zone plate is proposed. First, a diagonal horn, which is adopted as the primary feed antenna, is designed. Then, the far-field characteristics of the lens antenna are studied by using Fresnel-Kirchhoff diffraction theory and the paraxial approximation. The effects of the full-wave period, the focus diameter ratio, the subregion, and the dielectric substrate thickness on radiation characteristics are studied. The experimental results show that the proposed lens antenna has axisymmetric radiation patterns. The gain is over 26.1 dB, and the 3 dB main lobe beam width is lower than 5.6° across the operation band. The proposed lens antenna is qualified for applications in terahertz wireless communication systems.

  10. Barlow Lens

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    An additional lens that increases the effective focal length and magnification of a telescope. It is a negative diverging lens (either concave on both sides or, more usually, `plano-concave'—flat on one side and concave on the other) that is placed in the converging cone of light a short distance in front of the focal plane of the objective or primary mirror. By decreasing the angle at which the ...

  11. Cryptosystem for Securing Image Encryption Using Structured Phase Masks in Fresnel Wavelet Transform Domain

    NASA Astrophysics Data System (ADS)

    Singh, Hukum

    2016-12-01

    A cryptosystem for securing image encryption is considered by using double random phase encoding in Fresnel wavelet transform (FWT) domain. Random phase masks (RPMs) and structured phase masks (SPMs) based on devil's vortex toroidal lens (DVTL) are used in spatial as well as in Fourier planes. The images to be encrypted are first Fresnel transformed and then single-level discrete wavelet transform (DWT) is apply to decompose LL,HL, LH and HH matrices. The resulting matrices from the DWT are multiplied by additional RPMs and the resultants are subjected to inverse DWT for the encrypted images. The scheme is more secure because of many parameters used in the construction of SPM. The original images are recovered by using the correct parameters of FWT and SPM. Phase mask SPM based on DVTL increases security that enlarges the key space for encryption and decryption. The proposed encryption scheme is a lens-less optical system and its digital implementation has been performed using MATLAB 7.6.0 (R2008a). The computed value of mean-squared-error between the retrieved and the input images shows the efficacy of scheme. The sensitivity to encryption parameters, robustness against occlusion, entropy and multiplicative Gaussian noise attacks have been analysed.

  12. Long-working-distance synthetic aperture Fresnel off-axis digital holography.

    PubMed

    Feng, Pan; Wen, Xiao; Lu, Rong

    2009-03-30

    An aperture synthesis approach of digital holography for microscopy imaging at long working distance is proposed. Firstly, for an oblique object, a series of Fresnel off-axis holograms are recorded with different tilted plane wave illuminations without using lens for pre-magnification. Then the complex amplitudes are reconstructed and magnified from these holograms by the double-step Fresnel reconstruction method respectively. Finally, the synthesized image of the resolution enhanced and the speckle suppressed is obtained by incoherent superposition of these reconstructed complex amplitudes. The important advantage of the proposed approach is that the working distance of the system isn't constrained and the reconstructed image doesn't subject to lens aberrations. The experimental results with a die and an USAF-1951 resolution test target are shown and demonstrated that the resolution of both intensity and phase image can be effectively enhanced with simple set-up and procedure. The proposed approach can improve the capabilities of digital holography in three-dimensional in-situ microscopy at long working distance.

  13. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  14. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  15. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  16. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylic and modified acrylic plastics, semirigid... Components of Single and Repeated Use Food Contact Surfaces § 177.1010 Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used...

  17. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  18. Fresnel phasing of segmented mirror telescopes.

    PubMed

    Chanan, Gary; Troy, Mitchell; Surdej, Isabelle; Gutt, Gary; Roberts, Lewis C

    2011-11-20

    Shack-Hartmann (S-H) phasing of segmented telescopes is based upon a physical optics generalization of the geometrical optics Shack-Hartmann test, in which each S-H lenslet straddles an intersegment edge. For the extremely large segmented telescopes currently in the design stages, one is led naturally to very large pupil demagnifications for the S-H phasing cameras. This in turn implies rather small Fresnel numbers F for the lenslets; the nominal design for the Thirty Meter Telescope calls for F=0.6. For such small Fresnel numbers, it may be possible to eliminate the lenslets entirely, replacing them with a simple mask containing a sparse array of clear subapertures and thereby also eliminating a number of manufacturing problems and experimental complications associated with lenslets. We present laboratory results that demonstrate the validity of this approach.

  19. Numerical calculation of the Fresnel transform.

    PubMed

    Kelly, Damien P

    2014-04-01

    In this paper, we address the problem of calculating Fresnel diffraction integrals using a finite number of uniformly spaced samples. General and simple sampling rules of thumb are derived that allow the user to calculate the distribution for any propagation distance. It is shown how these rules can be extended to fast-Fourier-transform-based algorithms to increase calculation efficiency. A comparison with other theoretical approaches is made.

  20. Compressive Fresnel digital holography using Fresnelet based sparse representation

    NASA Astrophysics Data System (ADS)

    Ramachandran, Prakash; Alex, Zachariah C.; Nelleri, Anith

    2015-04-01

    Compressive sensing (CS) in digital holography requires only very less number of pixel level detections in hologram plane for accurate image reconstruction and this is achieved by exploiting the sparsity of the object wave. When the input object fields are non-sparse in spatial domain, CS demands a suitable sparsification method like wavelet decomposition. The Fresnelet, a suitable wavelet basis for processing Fresnel digital holograms is an efficient sparsifier for the complex Fresnel field obtained by the Fresnel transform of the object field and minimizes the mutual coherence between sensing and sparsifying matrices involved in CS. The paper demonstrates the merits of Fresnelet based sparsification in compressive digital Fresnel holography over conventional method of sparsifying the input object field. The phase shifting digital Fresnel holography (PSDH) is used to retrieve the complex Fresnel field for the chosen problem. The results are presented from a numerical experiment to show the proof of the concept.

  1. SUB 1-Millimeter Size Fresnel Micro Spectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Koch, Laura; Song, Kyo D.; Park, Sangloon; King, Glen; Choi, Sang

    2010-01-01

    An ultra-small micro spectrometer with less than 1mm diameter was constructed using Fresnel diffraction. The fabricated spectrometer has a diameter of 750 nmicrometers and a focal length of 2.4 mm at 533nm wavelength. The micro spectrometer was built with a simple negative zone plate that has an opaque center with an ecliptic shadow to remove the zero-order direct beam to the aperture slit. Unlike conventional approaches, the detailed optical calculation indicates that the ideal spectral resolution and resolving power do not depend on the miniaturized size but only on the total number of rings. We calculated 2D and 3D photon distribution around the aperture slit and confirmed that improved micro-spectrometers below 1mm size can be built with Fresnel diffraction. The comparison between mathematical simulation and measured data demonstrates the theoretical resolution, measured performance, misalignment effect, and improvement for the sub-1mm Fresnel micro-spectrometer. We suggest the utilization of an array of micro spectrometers for tunable multi-spectral imaging in the ultra violet range.

  2. Nonlinear Fresnel diffraction of weak shock waves.

    PubMed

    Coulouvrat, François; Marchiano, Régis

    2003-10-01

    Fresnel diffraction at a straight edge is revisited for nonlinear acoustics. Considering the penumbra region as a diffraction boundary layer governed by the KZ equation and its associated jump relations for shocks, similarity laws are established for the diffraction of a step shock, an "N" wave, or a periodic sawtooth wave. Compared to the linear case described by the well-known Fresnel functions, it is shown that weak shock waves penetrate more deeply into the shadow zone than linear waves. The thickness of the penumbra increases as a power of the propagation distance, power 1 for a step shock, or 3/4 for an N wave, as opposed to power 1/2 for a periodic sawtooth wave or a linear wave. This is explained considering the frequency spectrum of the waveform and its nonlinear evolution along the propagation, and is confirmed by direct numerical simulations of the KZ equation. New formulas for the Rayleigh/Fresnel distance in the case of nonlinear diffraction of weak shock waves by a large, finite aperture are deduced from the present study.

  3. Determination of chromatic aberration in the human eye by means of Fresnel propagation theory

    NASA Astrophysics Data System (ADS)

    Mas, David; Perez, Jorge; Illueca, Carlos; Espinosa, Julian; Hernandez, Consuelo; Vazquez, Carmen; Miret, Juan J.

    2005-09-01

    In this communication, the authors have determined the longitudinal chromatic aberrations in real eyes. The method that has been used combines real data of corneal morphology, central thickness of crystalline lens and biometric measures of axial length together with numerical calculation of the propagation process. The curvature of the crystalline lens has been adjusted to different curvature models and refractive index distributions. The wavelength dependence of all ocular media has been modelled through the Cauchy formula. Propagation through anterior and posterior chambers has been accomplished through numerical calculation of diffraction integral instead of classical ray-tracing approach. This imposes serous restrictions on the number of samples that are needed for a full propagation process. If we are only interested in amplitude calculations the method consists of evaluating propagation from cornea to crystalline lens with a spectrum propagation method. Propagation from the lens to the best image plane is accomplished by a direct calculation of Fresnel integral. With this model, we have obtained the refraction chromatic difference in diopters for several eyes. Results are compared with real measures of the chromatic aberration, showing a good agreement with numerical calculations. The capabilities of the technique have been demonstrated by applying the method to the study of the chromatic aberration of a keratoconus.

  4. Hard x-ray holographic microscopy using refractive prism and Fresnel zone plate objective

    SciTech Connect

    Suzuki, Yoshio; Takeuchi, Akihisa

    2005-09-15

    An optics for hard x-ray holographic microscopy has been developed and preliminary experiments have been done at SPring-8 undulator beamline 20XU. The optical system consists of an x-ray objective lens (Fresnel zone plate) and a wave front-division-type interferometer with prism optics. The illuminating x-ray beam is coherent with parallel radiation, and the spatially coherent area is much larger than the aperture of the objective lens. The refractive prism is placed behind the back focal plane of the objective lens in order to configure the wavefront-dividing interferometer. Half of the illuminating radiation is used for illuminating an object, and the other half is used for forming a reference wave. The magnified image of the object is generated at an image plane, and the reference wave is superimposed on the magnified image of the object. The recorded interferogram includes both amplitude and phase information of the object. The spatial resolution is determined by the numerical aperture of the objective lens. Therefore, in principle, this method enables holographic imaging at nanometer scale to be carried out in the hard x-ray region.

  5. Stretched Lens Array Photovoltaic Concentrator Technology Developed

    NASA Technical Reports Server (NTRS)

    Piszczor, Michael F., Jr.; O'Neill, Mark J.

    2004-01-01

    Solar arrays have been and continue to be the mainstay in providing power to nearly all commercial and government spacecraft. Light from the Sun is directly converted into electrical energy using solar cells. One way to reduce the cost of future space power systems is by minimizing the size and number of expensive solar cells by focusing the sunlight onto smaller cells using concentrator optics. The stretched lens array (SLA) is a unique concept that uses arched Fresnel lens concentrators to focus sunlight onto a line of high-efficiency solar cells located directly beneath. The SLA concept is based on the Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) design that was used on NASA's New Millennium Deep Space 1 mission. The highly successful asteroid/comet rendezvous mission (1998 to 2001) demonstrated the performance and long-term durability of the SCARLET/SLA solar array design and set the foundation for further improvements to optimize its performance.

  6. Plane-polar Fresnel and far-field computations using the Fresnel-Wilcox and Jacobi-Bessel expansions. [for large aperture antennas

    NASA Technical Reports Server (NTRS)

    Rahmat-Samii, Y.; Galindo-Israel, V.

    1981-01-01

    It is pointed out that the computation of the Fresnel fields for large aperture antennas is significant for many applications. The present investigation is concerned with an approach for the effective utilization of the coefficients of the Jacobi-Bessel series for the far-field to obtain an analytically continuous representation of the antenna field which is valid from the Fresnel region into the far field. Attention is given to exact formulations and closed form solutions, Fresnel and Fresnel small angle approximations, aspects of field expansion, the accuracy of the Fresnel and Fresnel small angle approximations, and the Jacobi-Bessel expansion applied to the Fresnel small angle approximation.

  7. Lens Biodiversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Lens genus includes the cultivated L. culinaris, and wild subspecies orientalis - the progenitor, tomentosus, and odemensis, are in the primary genepool, while L. ervoides, L. nigricans and L. lamottei are in the secondary – tertiary gene pool. The Middle East is the primary centre of diversity ...

  8. Design of tracking and detecting lens system by diffractive optical method

    NASA Astrophysics Data System (ADS)

    Yang, Jiang; Qi, Bo; Ren, Ge; Zhou, Jianwei

    2016-10-01

    Many target-tracking applications require an optical system to acquire the target for tracking and identification. This paper describes a new detecting optical system that can provide automatic flying object detecting, tracking and measuring in visible band. The main feature of the detecting lens system is the combination of diffractive optics with traditional lens design by a technique was invented by Schupmann. Diffractive lens has great potential for developing the larger aperture and lightweight lens. First, the optical system scheme was described. Then the Schupmann achromatic principle with diffractive lens and corrective optics is introduced. According to the technical features and requirements of the optical imaging system for detecting and tracking, we designed a lens system with flat surface Fresnel lens and cancels the optical system chromatic aberration by another flat surface Fresnel lens with effective focal length of 1980mm, an F-Number of F/9.9 and a field of view of 2ωω = 14.2', spatial resolution of 46 lp/mm and a working wavelength range of 0.6 0.85um. At last, the system is compact and easy to fabricate and assembly, the diffuse spot size and MTF function and other analysis provide good performance.

  9. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    SciTech Connect

    S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David; Mourad, Idir

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.

  10. Linear Fresnel Spectrometer Chip with Gradient Line Grating

    NASA Technical Reports Server (NTRS)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor)

    2015-01-01

    A spectrometer that includes a grating that disperses light via Fresnel diffraction according to wavelength onto a sensing area that coincides with an optical axis plane of the grating. The sensing area detects the dispersed light and measures the light intensity associated with each wavelength of the light. Because the spectrometer utilizes Fresnel diffraction, it can be miniaturized and packaged as an integrated circuit.

  11. A New Way to Evaluate the Probability and Fresnel Integrals

    ERIC Educational Resources Information Center

    Khalili, Parviz

    2007-01-01

    In this article, we show how "Laplace Transform" may be used to evaluate variety of nontrivial improper integrals, including "Probability" and "Fresnel" integrals. The algorithm we have developed here to evaluate "Probability, Fresnel" and other similar integrals seems to be new. This method transforms the evaluation of certain improper integrals…

  12. Parametrization of Fresnel returns in middle-atmosphere radar experiments

    NASA Technical Reports Server (NTRS)

    Rastogi, P. K.

    1983-01-01

    Weak reflections from sharp discontinuities in radio refractivity are usually invoked to explain the results of radio propagation experiments. The characteristics of refractivity structures required to produce Fresnel returns are examined and experimental evidence for Fresnel returns in middle-atmosphere radar experiments is reviewed. The consequences of these returns on estimating the turbulence and wind parameters are outlined.

  13. Solar Tracking Error Analysis of Fresnel Reflector

    PubMed Central

    Zheng, Jiantao; Yan, Junjie; Pei, Jie; Liu, Guanjie

    2014-01-01

    Depending on the rotational structure of Fresnel reflector, the rotation angle of the mirror was deduced under the eccentric condition. By analyzing the influence of the sun tracking rotation angle error caused by main factors, the change rule and extent of the influence were revealed. It is concluded that the tracking errors caused by the difference between the rotation axis and true north meridian, at noon, were maximum under certain conditions and reduced at morning and afternoon gradually. The tracking error caused by other deviations such as rotating eccentric, latitude, and solar altitude was positive at morning, negative at afternoon, and zero at a certain moment of noon. PMID:24895664

  14. Nanometer displacement measurement using Fresnel diffraction.

    PubMed

    Khorshad, Ali Akbar; Hassani, Khosrow; Tavassoly, Mohammad Taghi

    2012-07-20

    We introduce a relatively simple and efficient optical technique to measure nanoscale displacement based on visibility variations of the Fresnel diffraction fringes from a two-dimensional phase step. In this paper we use our technique to measure electromechanical expansions by a thin piezoelectric ceramic and also thermal changes in the diameter of a tungsten wire. Early results provide convincing evidence that sensitivity up to a few nanometers can be achieved, and our technique has the potential to be used as a nanodisplacement probe.

  15. Fluidic adaptive lens of transformable lens type

    NASA Astrophysics Data System (ADS)

    Zhang, De-Ying; Justis, Nicole; Lo, Yu-Hwa

    2004-05-01

    Fluidic adaptive lenses with a transformable lens type were demonstrated. By adjusting the fluidic pressure, not only can the lens properties, such as the focal distance and numerical aperture, be tuned dynamically but also different lens types, such as planoconvex, planoconcave, biconvex, biconcave, positive meniscus, and negative meniscus lenses, can be formed. The shortest focal length for a 20 mm aperture adaptive lens is 14.3 mm when the device is transformed into a positive lens, and -6.3 mm when transformed into a negative lens. The maximum resolution of the fluidic lens is better than 40 line pairs/mm.

  16. Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

    2012-01-01

    A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

  17. Numerical analysis for finite Fresnel transform

    NASA Astrophysics Data System (ADS)

    Aoyagi, Tomohiro; Ohtsubo, Kouichi; Aoyagi, Nobuo

    2016-10-01

    The Fresnel transform is a bounded, linear, additive, and unitary operator in Hilbert space and is applied to many applications. In this study, a sampling theorem for a Fresnel transform pair in polar coordinate systems is derived. According to the sampling theorem, any function in the complex plane can be expressed by taking the products of the values of a function and sampling function systems. Sampling function systems are constituted by Bessel functions and their zeros. By computer simulations, we consider the application of the sampling theorem to the problem of approximating a function to demonstrate its validity. Our approximating function is a circularly symmetric function which is defined in the complex plane. Counting the number of sampling points requires the calculation of the zeros of Bessel functions, which are calculated by an approximation formula and numerical tables. Therefore, our sampling points are nonuniform. The number of sampling points, the normalized mean square error between the original function and its approximation function and phases are calculated and the relationship between them is revealed.

  18. Modified Fresnel Laws for Optical Microcavities

    NASA Astrophysics Data System (ADS)

    Gagnon, D.; Painchaud-April, G.; Poirier, J.; Dubé, L. J.

    2010-03-01

    The scattering of waves at a planar interface between two dielectric media is governed by Fresnel laws. The associated Fresnel coefficients exhibit a discontinuity at the critical angle of incidence, χc, resulting in total internal reflection for χ>=χc. However modern microresonators are often so small that corrections to the planar approximation become necessary. For instance, a plane wave incident on a curved interface can escape the optically denser medium even for angles larger than χc. In the spirit of Snyder and Love [1], we have derived smooth reflection and transmission coefficients. Interface curvature is accounted for by only modifying the wavefunction describing propagation in the less optically dense medium. The theory is applied to dielectric cavities and our results compared to those of an independent calculation obtained from a sequential-reflection model [2]. The advantages and limitations of our alternative approach will be discussed at the conference.[4pt] [1] A. W. Snyder and J. D. Love, IEEE Trans. Microwave Theory Tech., 23, 134--141, 1975.[0pt] [2] M. Hentschel and H. Schomerus, Phys. Rev. E., 65, 045603(R), 2002.

  19. Focal length measurement based on Fresnel diffraction from a phase plate.

    PubMed

    Dashtdar, Masoomeh; Mohammad-Ali Hosseini-Saber, S

    2016-09-10

    A method based on the Fresnel diffraction of light from the phase step is introduced for measuring effective focal length (EFL) and back focal length (BFL) of optical imaging systems. It is shown that, as a transparent plane-parallel plate is illuminated at a boundary region by a monochromatic beam of light, Fresnel diffraction occurs because of the abrupt change in phase imposed by the finite change in refractive index at the plate boundary. Variation of the incident angle in a convergent (or divergent) beam of light causes the periodic intensity along the central fringe of the diffraction pattern. The measurement of the extrema position of the intensity distribution accurately provides the EFL and BFL. The technique is easy to apply and can measure a wide range of both positive and negative focal lengths. The measuring setup can be very compact with low mechanical and optical noises. As examples of this technique, the EFLs of five different lenses are experimentally obtained. The results are quite consistent with the values indicated by the lens manufacturer.

  20. Image encryption using polarized light encoding and amplitude and phase truncation in the Fresnel domain.

    PubMed

    Rajput, Sudheesh K; Nishchal, Naveen K

    2013-06-20

    In this paper, an image encryption scheme based on polarized light encoding and a phase-truncation approach in the Fresnel transform domain is proposed. The phase-truncated data obtained by an asymmetric cryptosystem is encrypted and decrypted by using the concept of the Stokes-Mueller formalism. Image encryption based on polarization of light using Stokes-Mueller formalism has the main advantage over Jones vector formalism that it manipulates only intensity information, which is measurable. Thus any intensity information can be encrypted and decrypted using this scheme. The proposed method offers several advantages: (1) a lens-free setup, (2) flexibility in the encryption key design, (3) use of asymmetric keys, and (4) immunity against special attack. We present numerical simulation results for gray-scale and color images in support of the proposed security scheme. The performance measurement parameters relative error and correlation coefficient have been calculated to check the effectiveness of the scheme.

  1. Terahertz epsilon-near-zero graded-index lens.

    PubMed

    Torres, Víctor; Pacheco-Peña, Víctor; Rodríguez-Ulibarri, Pablo; Navarro-Cía, Miguel; Beruete, Miguel; Sorolla, Mario; Engheta, Nader

    2013-04-08

    An epsilon-near-zero graded-index converging lens with planar faces is proposed and analyzed. Each perfectly-electric conducting (PEC) waveguide comprising the lens operates slightly above its cut-off frequency and has the same length but different cross-sectional dimensions. This allows controlling individually the propagation constant and the normalized characteristic impedance of each waveguide for the desired phase front at the lens output while Fresnel reflection losses are minimized. A complete theoretical analysis based on the waveguide theory and Fermat's principle is provided. This is complemented with numerical simulation results of two-dimensional and three-dimensional lenses, made of PEC and aluminum, respectively, and working in the terahertz regime, which show good agreement with the analytical work.

  2. Collection Mode Lens System

    DOEpatents

    Fletcher, Daniel A.; Kino, Gordon S.

    2002-11-05

    A lens system including a collection lens and a microlens spaced from the collection lens adjacent the region to be observed. The diameter of the observablel region depends substantially on the radius of the microlens.

  3. Intraocular lens employed for cataract surgery

    NASA Astrophysics Data System (ADS)

    Roszkowska, A. M.; Torrisi, L.

    2014-04-01

    The aim of this paper is to illustrate the techniques of cataract surgery with implantation of intraocular lenses and some physical properties of the used materials. The new technology, coupled with extensive experience and the studied cases, permits to increase the standardization and accuracy of the engravings, by reducing the use and handling of surgical instruments inside the eye. At present it is possible to replace the cataract with crystalline lenses based on biopolymers such as PMMA, silicone, acrylic hydrophilic and hydrophobic acrylic. These materials are increasingly able to replace the natural lens and to ensure the fully functional of the eye. The role of femtosecond lasers in cataract surgery, to assist or replace several aspects of the manual cataract surgery, are discussed.

  4. Description of optical aberrations in dynamic Fresnel dish concentrators

    SciTech Connect

    Borton, D.N.; Borton, C.J.

    1995-10-01

    Tracking solar dish concentrators have the highest efficiencies of solar devices. Traditional paraboloidal dish systems have the best optics, but are limited in size by mechanical constraints. Fresnel dishes can be made larger and are cheaper than paraboloidal dishes, but have optical imperfections. This paper describes a mathematical model of a dynamic Fresnel dish concentrator, and examines its optics. Optical aberrations of any design can be described for any day of the year. In general, the aberrations are small and the benefits of a Fresnel design outweigh the loss in optical performance. The model can be used to design concentrators for any application including distributed dish electric power generating systems.

  5. Multi-tower line focus Fresnel array project

    SciTech Connect

    Mills, D.R.; Morrison, G.; Pye, J.; Le Lievre, P.

    2006-02-15

    As an alternative to conventional tracking solar thermal trough systems, one may use line focus Fresnel reflector systems. In a conventional Fresnel reflector design, each field of reflectors is directed to a single tower. However efficient systems of very high ground utilisation can be setup if a field of reflectors uses multiple receivers on different towers. This paper describes a line focus system, called the compact linear fresnel reflector system and a project to produce an initial 95 MWth solar array. The array will be used as a retrofit preheater for a coal fired generating plant.

  6. Dynamical theory of stratified Fresnel linear zone plates

    SciTech Connect

    Sammar, A.; Andre, J.M.

    1993-11-01

    A dynamical theory is given for calculating the performances of stratified Fresnel linear zone plates (SFLZP`s). The Born expansion extended to the Fresnel diffraction is used to prove a fundamental theorem giving the diffraction efficiency and the diffraction pattern of transmission or reflection SFLZP`s. The method is valuable as long as the wavelength is smaller than the characteristic parameter of the zone plate. It allows us to evaluate the performances of reflection multilayer SFLZPs, i.e., the so-called Bragg-Fresnel optics recently developed for x-ray optics. 17 refs., 8 figs.

  7. Fresnel diffraction mirror for an atomic wave.

    PubMed

    Oberst, Hilmar; Kouznetsov, Dimitrii; Shimizu, Kazuko; Fujita, Jun-Ichi; Shimizu, Fujio

    2005-01-14

    We have experimentally demonstrated a material-independent mirror for atomic waves that uses the Fresnel diffraction at an array of parallel ridges. He* (2 (3)S(1)) and Ne* (1s(3)) atomic waves were reflected coherently on a silicon plate with a microfabricated grating structure, consisting of narrow wall-like ridges. We measured the reflectivity at grazing incidence as a function of the incident velocity and angle. Our data show that the reflectivity on this type of mirror depends only on the distance between the ridges, the wavelength, and the incident angle, but is insensitive to the material of the grating structure. The reflectivity is observed to increase by 2 orders of magnitude, compared to that of a flat polished silicon surface, where the reflection is caused by the attractive surface potential. For He* atoms, the measured reflectivity exceeds 10% for normal incident velocities below about 25 cm/s.

  8. Bragg-Fresnel optics: New field of applications

    SciTech Connect

    Snigirev, A.

    1997-02-01

    Bragg-Fresnel Optics shows excellent compatibility with the third generation synchrotron radiation sources such as ESRF and is capable of obtaining monochromatic submicron focal spots with 10{sup 8}-10{sup 9} photons/sec in an energy bandwidth of 10{sup -4}-10{sup -6} and in a photon energy range between 2-100 keV. New types of Bragg-Fresnel lenses like modified, ion implanted, bent and acoustically modulated were tested. Microprobe techniques like microdiffraction and microfluorescence based on Bragg-Fresnel optics were realised at the ESRF beamlines. Excellent parameters of the X-ray beam at the ESRF in terms of low emittance and quite small angular source size allow for Bragg-Fresnel optics to occupy new fields of applications such as high resolution diffraction, holography, interferometry and phase contrast imaging.

  9. Fresnel Concentrators for Space Solar Power and Solar Thermal Propulsion

    NASA Technical Reports Server (NTRS)

    Bradford, Rodney; Parks, Robert W.; Craig, Harry B. (Technical Monitor)

    2001-01-01

    Large deployable Fresnel concentrators are applicable to solar thermal propulsion and multiple space solar power generation concepts. These concentrators can be used with thermophotovoltaic, solar thermionic, and solar dynamic conversion systems. Thin polyimide Fresnel lenses and reflectors can provide tailored flux distribution and concentration ratios matched to receiver requirements. Thin, preformed polyimide film structure components assembled into support structures for Fresnel concentrators provide the capability to produce large inflation-deployed concentrator assemblies. The polyimide film is resistant to the space environment and allows large lightweight assemblies to be fabricated that can be compactly stowed for launch. This work addressed design and fabrication of lightweight polyimide film Fresnel concentrators, alternate materials evaluation, and data management functions for space solar power concepts, architectures, and supporting technology development.

  10. Converging or Diverging Lens?

    ERIC Educational Resources Information Center

    Branca, Mario

    2013-01-01

    Why does a lens magnify? Why does it shrink objects? Why does this happen? The activities that we propose here are useful in helping us to understand how lenses work, and they show that the same lens can have different magnification capabilities. A converging lens can also act as a diverging lens. (Contains 4 figures.)

  11. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  12. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  13. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  14. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  15. 63 FR 41279 - Acrylic Sheet From Japan

    Federal Register 2010, 2011, 2012, 2013, 2014

    1998-08-03

    ... COMMISSION Acrylic Sheet From Japan AGENCY: United States International Trade Commission. ACTION: Institution of a five-year review concerning the antidumping duty order on acrylic sheet from Japan. SUMMARY: The... order on acrylic sheet from Japan would be likely to lead to continuation or recurrence of...

  16. Contact lens in keratoconus

    PubMed Central

    Rathi, Varsha M; Mandathara, Preeji S; Dumpati, Srikanth

    2013-01-01

    Contact lenses are required for the visual improvement in patients with keratoconus. Various contact lens options, such as rigid gas permeable (RGP) lenses, soft and soft toric lenses, piggy back contact lenses (PBCL), hybrid lenses and scleral lenses are availble. This article discusses about selection of a lens depending on the type of keratoconus and the fitting philosophies of various contact lenses including the starting trial lens. A Medline search was carried out for articles in the English language with the keywords keratoconus and various contact lenses such as Rose k lens, RGP lens, hybrid lens, scleral lens and PBCL. PMID:23925325

  17. The Lens Capsule

    PubMed Central

    Danysh, Brian P.; Duncan, Melinda K.

    2009-01-01

    The lens capsule is a modified basement membrane that completely surrounds the ocular lens. It is known that this extracellular matrix is important for both the structure and biomechanics of the lens in addition to providing informational cues to maintain lens cell phenotype. This review covers the development and structure of the lens capsule, lens diseases associated with mutations in extracellular matrix genes and the role of the capsule in lens function including those proposed for visual accommodation, selective permeability to infectious agents, and cell signaling. PMID:18773892

  18. 78 FR 55644 - Styrene, Copolymers with Acrylic Acid and/or Methacrylic Acid; Tolerance Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-11

    ... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate; and its sodium... methacrylate, hydroxypropyl acrylate, hydroxyethyl methacrylate, and/or hydroxyethyl acrylate, and its...

  19. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  20. Optical modeling of Fresnel zoneplate microscopes.

    PubMed

    Naulleau, Patrick P; Mochi, Iacopo; Goldberg, Kenneth A

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  1. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick P.; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-07-10

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes routinely used in the synchrotron community.

  2. Variable Phase for Fresnel Zone Plates

    NASA Astrophysics Data System (ADS)

    Webb, George W.

    2004-03-01

    It is not widely known that there is a free parameter in the usual design of zone plates. An earlier work treated the radius of the central Fresnel zone as the free parameter and investigated the effects of its variation numerically [1]. It is possible instead to treat the choice of reference phase in the design of a zone plate as the free parameter [2]. The standard zone plate construction assumes a specific choice for this phase which, however, can be chosen to have any value between 0^o and 360^o. Here we present analysis and measurements on zone plates for 39 GHz radiation with reference phase varied from 0^o to 360^o. When the reference phase is varied, measurements show that the phase of the focused beam is varied in a nearly linear fashion through 360^o with only small changes in beam amplitude. It is concluded that reference phase is an inherent and useful property of zone plates. 1) I.V. Minin and O.V. Minin, Sov. J. Quantum Electron. derline 20, 198 (1990). I thank I.V. Minin for calling this work to my attention. 2) G.W. Webb, Proc. 2003 Antenna Applications Symposium, Allerton Park, Monticello, IL, September 15-17, 2003 and arXiv:physics/0303002 28 Feb 2003.

  3. Optical modeling of Fresnel zoneplate microscopes

    SciTech Connect

    Naulleau, Patrick; Mochi, Iacopo; Goldberg, Kenneth A.

    2011-04-06

    Defect free masks remain one of the most significant challenges facing the commercialization of extreme ultraviolet (EUV) lithography. Progress on this front requires high-performance wavelength-specific metrology of EUV masks, including high-resolution and aerial-image microscopy performed near the 13.5 nm wavelength. Arguably the most cost-effective and rapid path to proliferating this capability is through the development of Fresnel zoneplate-based microscopes. Given the relative obscurity of such systems, however, modeling tools are not necessarily optimized to deal with them and their imaging properties are poorly understood. Here we present a modeling methodology to analyze zoneplate microscopes based on commercially available optical modeling software and use the technique to investigate the imaging performance of an off-axis EUV microscope design. The modeling predicts that superior performance can be achieved by tilting the zoneplate, making it perpendicular to the chief ray at the center of the field, while designing the zoneplate to explicitly work in that tilted plane. Although the examples presented here are in the realm of EUV mask inspection, the methods described and analysis results are broadly applicable to zoneplate microscopes in general, including full-field soft-x-ray microscopes rou tinely used in the synchrotron community.

  4. Focusing and directional beaming effects of airborne sound through a planar lens with zigzag slits

    SciTech Connect

    Tang, Kun; Qiu, Chunyin Lu, Jiuyang; Ke, Manzhu; Liu, Zhengyou

    2015-01-14

    Based on the Huygens-Fresnel principle, we design a planar lens to efficiently realize the interconversion between the point-like sound source and Gaussian beam in ambient air. The lens is constructed by a planar plate perforated elaborately with a nonuniform array of zigzag slits, where the slit exits act as subwavelength-sized secondary sources carrying desired sound responses. The experiments operated at audible regime agree well with the theoretical predictions. This compact device could be useful in daily life applications, such as for medical and detection purposes.

  5. New TIR lens applications for light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Parkyn, William A.; Pelka, David G.

    1997-10-01

    We present two new applications for light emitting diodes of the Total Internal Reflection (TIR) lens, a non-imaging optical device presented at previous SPIE conferences on nonimaging optics. The first is a flat circularly symmetric lens that efficiently forms a highly collimated beam from the light output of Hewlett-Packard's Super Flux LEDs. The second is a linear TIR lens with die-on-board LEDs of several wavelengths positioned along its focal line. HP's Super-Flux LED package has an output half angle of 55 degree(s). Only the TIR lens can accept such a wide range for beamforming, and do it with high efficiency. We have designed and prototyped 1' models with half-power half angles of only 1.5 degree(s), utilizing a hyperbolic central section in place of the usual Fresnel lens. There are numerous applications for arrays of these lenses, since they emit more lumens per electrical watt than filtered incandescent lamps with parabolic mirrors. Moreover, they are more compact than conventional lamps, and LED lifetimes are much longer. The TIR lens in its linear form has been applied successfully to fluorescent downlighting products with much narrower transverse illumination angles than previously available with trough mirrors. More recently, light emitting diodes (LEDs) have been placed on the focal line of a linear lens. In this paper, we describe the optical properties and biomedical applications of the linear TIR lens when the LEDs have several different emission wavelengths. This single device can uniformly illuminate an extended target with several wavelengths either simultaneously, sequentially, or in complex programmed combinations. It can replace the complex systems of dichroic mirrors used with conventional white-light sources.

  6. Parameter and environmental influences on rigid contact lens wettability.

    PubMed

    Huff, J W; Egan, D J; Katich, M J

    1988-09-01

    The present investigation was designed to determine the effect of lens parameters and lens environment on measurements of contact angle. The sessile drop contact angle of saline on four rigid [polymethyl methacrylate (PMMA) and silicone/acrylate] contact lens materials was examined with a Ramé-Hart goniometer to determine how front surface radius, drop size, time after drop placement, humidity, and desiccation affect measurements of lens wettability in vitro. Contact angles of Silafocon A and PMMA were relatively uninfluenced by front surface radii between 7.7 and 8.85 and 7.3 to 8.8 mm, respectively. Contact angles of Pasifocon C and modified PMMA were slightly but significantly influenced by front surface radii between 6.4 and 7.5 mm. For drop volumes from 2 to 20 microliter, all materials yielded contact angles, which were unaffected by drop size. The contact angle of lenses stored in the hydrated or dehydrated state was not affected by chamber humidity between 31 and 76%. In the ranges tested, drop size, humidity, and hydration had no significant effect on the contact angle within 1 to 6 min after drop placement. In addition, surface scratches had no effect on lens wettability. The results suggest that goniometry on contact lens surfaces, for the most part, is uninfluenced by lens parameters and environmental conditions.

  7. PMMA-based ophthalmic contact lens for vision correction of strabismus

    NASA Astrophysics Data System (ADS)

    Asgharzadeh Shishavan, Amir; Nordin, Leland; Tjossem, Paul; Abramoff, Michael D.; Toor, Fatima

    2016-09-01

    In this work we present the design of a novel ophthalmic prismatic contact lens to correct for strabismus. Strabismus, colloquially called "crossed-eyes" or "wall eyes," is a condition in which the eyes are not properly aligned with each other. To our knowledge there are no contact lenses that allow for strabismus correction. To address this, we have designed a poly methyl methacrylate (PMMA) based prismatic correction contact lens. Therefore, we modeled a Fresnel lens with the appropriate optical properties and a human eye in COMSOL Multiphysics Ray Optics module. Our first design was created by mapping Fresnel lenses onto the curved surface of the eye, the focus of light on retina was suboptimal. Next we determined two more potential solutions and improved the light focus on the retina but there were still some issues. A small fraction of light ( 5%) diverged and could not be focused. Due to dispersive characteristic of PMMA, chromatic aberration was present. We will use our ray optics solution and convert into a metasurface nanophotonic lens that has the identical behavior and mitigates the issues related with prismatic lens.

  8. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  9. End-side-pumped Nd:YAG solar laser with four Fresnel lenses

    NASA Astrophysics Data System (ADS)

    Galinhas, B.; Liang, D.

    2013-11-01

    Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing and space power applications. An efficient Fresnel lens solar laser pumping approach is proposed here. The incoming solar power is firstly collected and concentrated by four 800 mm x 800 mm square Fresnel lenses and redirected by four plane mirrors to a central focal spot of 12 mm FWHM diameter, attaining 443 W concentrated solar power. Secondly for further concentration, both a set of four aspherical lenses and a fused silica sphere are positioned in the focal zone. Both side-pumping and end-pumping are achieved simultaneously for a 7 mm diameter by 12 mm length Nd:YAG single-crystal rod mounted within the sphere. Since there is no strong pump radiation absorption within the central core zone of the rod, thermal lensing effect is also minimized with the proposed scheme. A 600 mm length plane-plane resonant cavity is used to extract 1064 nm laser emission efficiently. Optimum pumping parameters and solar laser output powers are found through ZEMAX non-sequential ray-tracing and LASCAD laser cavity analysis. By taking into account 16 % of spectrum overlap between the 1.0 % Nd:YAG absorption spectrum and the solar spectrum, 183 W absorbed solar power is assumed in ZEMAX numerical analysis. Considering a round trip loss of 1.32 % for the resonant cavity, 45.2 W laser power is numerically attained through LASCAD software, corresponding to 17.7 W/m2 collection efficiency. The proposed pumping scheme presents an excellent compromise between the laser output power and its beam quality.

  10. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  11. Dispersion corrections of the copper K edge measured by Fresnel diffraction.

    PubMed

    Lee, Wah-Keat; Cloetens, Peter; Schlenker, Michel

    2004-01-01

    Dispersion corrections to the atomic scattering factors for the copper K edge have been measured by a new technique, Fresnel diffraction. Fresnel diffraction fringes were measured at several sample-detector distances as a function of energy across the copper K-absorption edge. The dispersion corrections were obtained from optimizing a least-squares fit of Fresnel fringe simulations to the measured data.

  12. Contact Lens Care

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women Contact Lens Care Share Tweet Linkedin Pin it More ... 1088, www.fda.gov/medwatch Learn More about Contact Lens Care Other Tips on Contact Lenses Decorative ...

  13. Fresnel prisms and their effects on visual acuity and binocularity.

    PubMed Central

    Véronneau-Troutman, S

    1978-01-01

    1. The visual acuity with the Fresnel membrane prism is significantly less than that with the conventional prism of the same power for all prism powers from 12 delta through 30 delata at distance and from 15 delta through 30 delta at near. 2. The difference in the visual acuity between base up and base down, and between base in and base out, is not significantly different for either the Fresnel membrane prism or for the conventional prism. 3. For both Fresnel membrane prism and the conventional prism, the visual acuity when looking straight ahead. 4. Using Fresnel membrane prisms of the same power from different lots, the visual acuity varied significantly. The 30 delta prism caused the widest range in visual acuity. 5. When normal subjects are fitted with the higher powers of the Fresnel membrane prism, fusion and stereopsis are disrupted to such an extent that the use of this device to restore or to improve binocular vision in cases with large-angle deviations is seriously questioned. 6. Moreover, the disruption of fusion and stereopsis is abrupt and severe and does not parallel the decrease in visual acuity. The severely reduced ability to maintain fusion may be related to the optical aberrations, which, in turn, may be due to the molding process and the polyvinyl chloride molding material. 7. Through the flexibility of the membrane prism is a definite advantage, because of its proclivity to reduce visual acuity and increase aberrations its prescription for adults often must be limited to only one eye. 8. For the same reasons in the young child with binocular vision problems, the membrane prism presently available should be prescribed over both eyes only in powers less than 20 delta. When the membrane prism is to be used as a partial occluder (over one eye only), any power can be used. 9. The new Fresnel "hard" prism reduces visual acuity minimally and rarely disrupts binocularity, thus increasing the potential for prismotherapy to establish binocularity. This

  14. Bifocal Optical-Vortex Lens with Sorting of the Generated Nonseparable Spin-Orbital Angular-Momentum States

    NASA Astrophysics Data System (ADS)

    Tam, Alwin M. W.; Fan, Fan; Du, Tao; Hu, Wei; Zhang, Wanlong; Zhao, Chenxiang; Wang, Xiaoqian; Ching, Kwong-Lung; Li, Guijun; Luo, Hailu; Chigrinov, Vladimir G.; Wen, Shuangchun; Kwok, Hoi-Sing

    2017-03-01

    In this article, we devise and demonstrate experimentally a polarization-dependent diffractive bifocal vortex lens operating via the Pancharatnam-Berry phase. The interaction between the incident beam and the bifocal vortex lens establishes nonseparable spin and orbital angular-momentum photon states. The components of the nonseparable state associated with different couplings of spin and orbital angular momentum can be sorted by the bifocality of the lens. A theoretical model of the device is developed using Fresnel's diffraction. The device is simply, efficiently, and economically realized from the optical setup using the underlying physics of Pancharatnam-Berry-phase polarization holography. The measured transmittance and diffraction efficiency of the fabricated device is high—up to 90% and 91%, respectively. Various applications of the polarization bifocal vortex lens in the field of orbital angular-momentum lasing and optical manipulation are discussed. Thus, the bifocal vortex lens can have significant impact on classical and quantum optics, as well as theoretical physics.

  15. High-resolution quasi-monochromatic X-ray imaging using a Fresnel phase zone plate and a multilayer mirror.

    PubMed

    Do, A; Troussel, Ph; Baton, S D; Dervieux, V; Gontier, D; Lecherbourg, L; Loupias, B; Obst, L; Pérez, F; Renaudin, P; Reverdin, Ch; Rubbelynck, C; Stemmler, Ph; Soullié, G

    2017-01-01

    High-resolution, high-sensitivity X-ray imaging is a real challenge in laser plasma diagnostic to attain reliable data in high-energy density plasma experiments. In this context, ultra-high-intensity lasers generate hot and dense plasma but only in a small volume. An experiment has been performed at the LULI2000 laser facility to diagnose such plasma conditions from thermal spectroscopic data. To image the emission zone plasma's Al Heβ, a Fresnel-lens-based X-ray imager has been developed. It features a 846 μm-diameter Fresnel Phase Zone Plate (FPZP) and a Pd/B4C multilayer mirror (thickness d = 5.1 nm). This association can be used between 1500 eV and 2100 eV. The FPZP's efficiency was measured on a synchrotron facility (SOLEIL) and its spatial resolution in a laser facility (EQUINOX). The mirror reflectivity was measured on the synchrotron facility BESSY II. With experimental conditions, the system resolution reaches 3.8 ± 0.6 μm with an adequate efficiency in the 1800 eV-1900 eV energy range with a solid angle of 9 × 10(-6) sr. Consequently, a FPZP is an excellent optics setup for high-resolution quasi-monochromatic X-ray imaging and provides a good collection angle. Bragg-Fresnel lenses, based on the principle of FPZP and mirrors, are currently designed for an X-ray imager at the Laser MégaJoule facility.

  16. Aberration design of zoom lens systems using thick lens modules.

    PubMed

    Zhang, Jinkai; Chen, Xiaobo; Xi, Juntong; Wu, Zhuoqi

    2014-12-20

    A systematic approach for the aberration design of a zoom lens system using a thick lens module is presented. Each component is treated as a thick lens module at the beginning of the design. A thick lens module refers to a thick lens component with a real lens structure, like lens materials, lens curvatures, lens thicknesses, and lens interval distances. All nine third-order aberrations of a thick lens component are considered during the design. The relationship of component aberrations in different zoom positions can be approximated from the aberration shift. After minimizing the aberrations of the zoom lens system, the nine third-order aberrations of every lens component can be determined. Then the thick lens structure of every lens component can be determined after optimization according to their first-order properties and third-order aberration targets. After a third optimization for minimum practical third-order aberrations of a zoom lens system, the aberration design using the thick lens module is complete, which provides a practical zoom lens system with thick lens structures. A double-sided telecentric zoom lens system is designed using the thick lens module in this paper, which shows that this method is practical for zoom lens design.

  17. Comparative analysis on viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave.

    PubMed

    Chae, Byung Gyu

    2014-05-20

    We carry out a comparative analysis on a viewing angle change in Fresnel and Fourier holographic images reconstructed by a tilted plane wave. A tilted plane wave illuminating an on-axis hologram generates a diffractive wave carrying the holographic image in a paraxial region of a new diffraction axis. The reconstructed image in the Fresnel hologram is deformed along the new viewing direction, which is well described as Affine transformation. In the Fourier holographic image, the replica of the image is formed without its deformation when the hologram is placed in the front focal plane of the lens, whereas in the case of a hologram that is located at a distance different from a focal length, image deformation arises. This property is investigated through numerical simulation based on a wide-angle diffraction phenomenon. We also perform a similar interpretation for high-order diffraction images appearing in the sampled Fourier hologram and discuss a method for enlarging the viewing angle of the holographic image.

  18. Certification and verification for Northrup model NSC-01-0732 fresnel lens concentrating solar collector

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Structural analysis and certification of the collector system is presented. System verification against the interim performance criteria is presented and indicated by matrices. The verification discussion, analysis, and test results are also given.

  19. Development and fabrication of photovoltaic concentrator modules for a point-focus Fresnel lens array

    SciTech Connect

    Broadbent, S.; Sanders, J.A.

    1985-06-01

    Design of the second generation photovoltaic concentrator module originally developed by Martin Marietta under Contract 46-3018 was improved. Module efficiency was improved from 14.4% to 15.5% and numerous detailed design enhancements were incorporated to facilitate fabrication and improve cost effectiveness. Sixty modules were manufactured to populate the second generation structure already installed at the Sandia National Laboratories test site in Albuquerque, NM, plus 10 spares and test units. To further improve the life capability and facilitate installation of the design, additional design development was authorized for (1) cell interconnect research to provide greater stress relief at the cell-interconncet and substrate-interconnect interfaces; and (2) incorporation of a reflective secondary to relieve tracking accuracy and initial alignment accuracy requirements.

  20. Solar powered lamp having a cover containing a fresnel lens structure

    SciTech Connect

    Mitchell, K.; Sitzema, R.L. Jr.

    1993-07-20

    A solar powered lamp is described, comprising: a photovoltaic cell for receiving sunlight and generating electrical energy; an electrical storage device coupled to the photovoltaic cell, the photovoltaic cell transferring the electrical energy to the electrical storage device to illuminate a light source; and a cover having an optical axis, the cover disposed over and adjacent the photovoltaic cell, the cover having a smooth and continuous outer surface for receiving sunlight at an incident angle wherein a peripheral portion of the outer surface has a first plurality of exterior prismatic means configured to redirect the incoming radiation incident thereon onto a photodetector of the solar powered lamp and an inner surface which has a second plurality of interior prismatic means for bending incoming sunlight so that it forms an angle with the optical axis which is smaller than the incident angle.

  1. Algorithms for Fresnel Diffraction at Rectangular and Circular Apertures

    PubMed Central

    Mielenz, Klaus D.

    1998-01-01

    This paper summarizes the theory of Fresnel diffraction by plane rectangular and circular apertures with a view toward numerical computations. Approximations found in the earlier literature, and now obsolete, have been eliminated and replaced by algorithms suitable for use on a personal computer. PMID:28009380

  2. Fresnel Diffraction Using a He-Ne Gas Laser

    ERIC Educational Resources Information Center

    Moen, Allen L.; Vander Meulen, David L.

    1970-01-01

    Describes an advanced laboratory experiment of Fresnel diffraction which uses a He-Ne gas laser as the source and a wire as the opaque diffracting strip. A photograph of the diffraction pattern is compared with the intensity diagram predicted by the Cornu spiral method. Agreement is clear and impressive, although minor differences are detectable.…

  3. Fresnel-based beamforming for low-cost portable ultrasound.

    PubMed

    Nguyen, Man Minh; Mung, Jay; Yen, Jesse T

    2011-01-01

    In this paper, we propose a modified electronic Fresnel-based beamforming method for low-cost portable ultrasound systems. This method uses a unique combination of analog and digital beamforming methods. Two versions of Fresnel beamforming are presented in this paper: 4-phase (4 different time delays or phase shifts) and 8-phase (8 different time delays or phase shifts). The advantage of this method is that a system with 4 to 8 transmit channels and 2 receive channels with a network of switches can be used to focus an array with 64 to 128 elements. The simulation and experimental results show that Fresnel beamforming image quality is comparable to traditional delay-and-sum (DAS) beamforming in terms of spatial resolution and contrast-to-noise ratio (CNR) under certain system parameters. With an f-number of 2 and 50% signal bandwidth, the experimental lateral beamwidths are 0.54, 0.67, and 0.66 mm and the axial pulse lengths are 0.50, 0.51, and 0.50 mm for DAS, 8-phase, and 4-phase Fresnel beamforming, respectively. The experimental CNRs are 4.66, 4.42, and 3.98, respectively. These experimental results are in good agreement with simulation results.

  4. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... provides the optical effect of a prism. The device is intended to be applied to spectacle lenses to give...

  5. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886.1655 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... provides the optical effect of a prism. The device is intended to be applied to spectacle lenses to give...

  6. Micro-Fresnel-Zone-Plate Array on Flexible Substrate for Large Field-of-View and Focus Scanning

    PubMed Central

    Moghimi, Mohammad J.; Fernandes, Jayer; Kanhere, Aditi; Jiang, Hongrui

    2015-01-01

    Field of view and accommodative focus are two fundamental attributes of many imaging systems, ranging from human eyes to microscopes. Here, we present arrays of Fresnel zone plates fabricated on a flexible substrate, which allows for the adjustment of both the field of view and optical focus. Such zone plates function as compact and lightweight microlenses and are fabricated using silicon nanowires. Inspired by compound eyes in nature, these microlenses are designed to point along various angles in order to capture images, offering an exceptionally wide field of view. Moreover, by flexing the substrate, the lens position can be adjusted, thus achieving axial focus scanning. An array of microlenses on a flexible substrate was incorporated into an optical system to demonstrate high resolution imaging of objects located at different axial and angular positions. These silicon based microlenses could be integrated with electronics and have a wide range of potential applications, from medical imaging to surveillance. PMID:26515117

  7. Gain and far-field patterns for phase-correcting Fresnel zone plate antennas at millimeter-wave and terahertz frequencies

    NASA Astrophysics Data System (ADS)

    Wiltse, James C.

    2007-04-01

    The Fresnel zone plate lens antenna, which provides advantages compared to a normal paraboloidal or spherical lens, has been extensively investigated in the millimeter-wave and terahertz regions. The advantages include reduced weight, volume, and attenuation and simplicity of design. The principal disadvantage is that the zone plate sometimes provides reduced gain compared to a true lens. Particularly at high millimeter-wave or terahertz frequencies the low loss of the zone plate more than compensates for the reduced directivity. This paper investigates the gains and far-field patterns for a number of cases and gives both the analysis and numerical results for the examples. These cases have dealt with large-angle designs, where the focal length (F) and diameter (D) are comparable (F/D = 0.3 to 2.5), unlike the typical optical examples. The antenna patterns are found to have beamwidths and first sidelobes that are similar to what one would obtain with a standard lens, given the same aperture illumination. Appropriate feed designs are also described. For best aperture efficiency the illumination taper is about 10 dB, and this gives first sidelobe levels of about -24dB for a circular aperture. Far-out average sidelobes are not as low as for a true lens, and this is where the gain is affected.

  8. Method for measuring the refractive index distribution of a GRIN lens with heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Hsieh, H. C.; Chen, Y. L.; Wu, W. T.; Su, D. C.

    2009-06-01

    Based on the Fresnel's equations and the heterodyne interferometry, an alternative method for measuring the refractive index distribution of a GRIN lens is presented. A light coming from the heterodyne light source passes through a quarterwave plate and is incident on the tested GRIN lens. The reflected light passes through an analyzer and an imaging lens; finally it enters a CMOS camera. The interference signals produced by the components of the s- and the p-polarizations are recorded and they are sent to a personal computer to be analyzed. In order to measure the absolute phases of the interference signals accurately, a special condition is chosen. Then, the interference signals become a group of periodic sinusoidal segments, and each segment has an initial phase ψ with the information of the refractive index. Consequently, the estimated data of ψ are substituted into the special equations derived from Fresnel's equations, and the refractive index distribution of the GRIN lens can be obtained. Because of its common-path optical configuration, this method has both merits of the common-path interferometry and the heterodyne interferometry. In addition, the phase can be measured without reference signals.

  9. Fresnel and Fraunhofer diffraction of a Gaussian laser beam by fork-shaped gratings.

    PubMed

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2008-11-01

    Expressions describing the vortex beams that are generated by the process of Fresnel diffraction of a Gaussian beam incident out of waist on fork-shaped gratings of arbitrary integer charge p, and vortex spots in the case of Fraunhofer diffraction by these gratings, are deduced. The common general transmission function of the gratings is defined and specialized for the cases of amplitude holograms, binary amplitude gratings, and their phase versions. Optical vortex beams, or carriers of phase singularity with charges mp and -mp, are the higher negative and positive diffraction-order beams. The radial part of their wave amplitudes is described by the product of the mpth-order Gauss-doughnut function and a Kummer function, or by the first-order Gauss-doughnut function and the difference of two modified Bessel functions whose orders do not match the singularity charge value. The wave amplitude and the intensity distributions are discussed for the near and far fields in the focal plane of a convergent lens, as well as the specialization of the results when the grating charge p=0; i.e., the grating turns from forked into rectilinear. The analytical expressions for the vortex radii are also discussed.

  10. Enhancement of viewing angle with homogenized brightness for autostereoscopic display with lens-based directional backlight

    NASA Astrophysics Data System (ADS)

    Mukai, T.; Kakeya, H.

    2015-03-01

    We have been developing an autostereoscopic display with directional backlight using Fresnel lens array. The system was originally composed of a dot matrix light source and a convex lens array and a LCD panel. We have previously proposed the methods to achieve uniform brightness and to expand the viewing zone free from crosstalk. The way to achieve uniform brightness is to add a vertical diffuser between the convex lens array and the LCD panel. The way to expand the viewing zone free from the crosstalk is to attach a large aperture convex lens onto the surface of the convex lens array. However, there still is a drawback that the viewing angle with homogenized brightness is narrow due to the darker peripheral part of the display region than the central part. In this paper two methods to enhance the viewing angle with homogenized brightness are proposed. The first one is to place two mirror boards on the upper end and the lower end between the convex lens array and the LCD panel horizontally. The second one is to place the large aperture convex lens just behind the LCD panel. By the first method, it is expected to reflect the directional light vertically and to make the upper and the lower part of the display region brighter, which enhances the viewing angle vertically. By the second method, it is expected that the directional light from the light source can be utilized more efficiently, which enhances the viewing angle horizontally and vertically.

  11. Freeform lens design for LED illumination with high uniformity and efficiency

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Chung; Lin, Hoang Yan

    2011-10-01

    In this paper we design a freeform lens according to the LED light distribution curve so that the light rays emitted from a LED through the lens can achieve high uniformity and efficiency on the prescribed target plane. Because the model is of rotational symmetry, we consider just a 2-D lens shape and then sweep to get the 3-D result. Here a procedure based on the Snell's law and edge-ray principle for designing the freeform lens is proposed. First of all, we analyze the LED intensity distribution and subdivide it into parts. Then we calculate the zones on the target plane where the subdivided light rays should be distributed to. Finally we use an approximate analytic method to construct the freeform lens. After constructing the freeform lens, we simulate for the optical model by using the ray-tracing software LightTools®. The simulation results show that the Cree XLamp XR-E LED light source through the freeform lens can achieve up to 94.8% uniformity and 89.1% efficiency including Fresnel losses for a 1 m distance away and 1 m radius of circular illumination plane.

  12. Fast-response variable focusing micromirror array lens

    NASA Astrophysics Data System (ADS)

    Boyd, James G., IV; Cho, Gyoungil

    2003-07-01

    A reflective type Fresnel lens using an array of micromirrors is designed and fabricated using the MUMPs® surface micromachining process. The focal length of the lens can be rapidly changed by controlling both the rotation and translation of electrostatically actuated micromirrors. The rotation converges rays and the translation adjusts the optical path length difference of the rays to be integer multiples of the wavelength. The suspension spring, pedestal and electrodes are located under the mirror to maximize the optical efficiency. Relations are provided for the fill-factor and the numerical aperture as functions of the lens diameter, the mirror size, and the tolerances specified by the MUMPs® design rules. The fabricated lens is 1.8mm in diameter, and each micromirror is approximately 100mm x 100mm. The lens fill-factor is 83.7%, the numerical aperture is 0.018 for a wavelength of 632.8nm, and the resolution is approximately 22mm, whereas the resolution of a perfect aberration-free lens is 21.4μm for a NA of 0.018. The focal length ranges from 11.3mm to infinity. The simulated Strehl ratio, which is the ratio of the point spread function maximum intensity to the theoretical diffraction-limited PSF maximum intensity, is 31.2%. A mechanical analysis was performed using the finite element code IDEAS. The combined maximum rotation and translation produces a maximum stress of 301MPa, below the yield strength of polysilicon, 1.21 to 1.65GPa. Potential applications include adaptive microscope lenses for scanning particle imaging velocimetry and a visually aided micro-assembly.

  13. In-line FINCH super resolution digital holographic fluorescence microscopy using a high efficiency transmission liquid crystal GRIN lens

    PubMed Central

    Brooker, Gary; Siegel, Nisan; Rosen, Joseph; Hashimoto, Nobuyuki; Kurihara, Makoto; Tanabe, Ayano

    2014-01-01

    We report a new optical arrangement that creates high efficiency, high quality Fresnel Incoherent Correlation Holography (FINCH) holograms using polarization sensitive transmission liquid crystal gradient index (TLCGRIN) diffractive lenses. In contrast, current universal practice in the field employs reflective spatial light modulators (SLM) to separate sample and reference beams. Polarization sensitive TLCGRIN lenses enable a straight optical path, have >90% transmission efficiency, are not pixelated and are free of many limitations of reflective SLM devices. For each sample point, two spherical beams created by a glass lens in combination with a polarization sensitive TLCGRIN lens interfere, create a hologram and resultant super resolution image. PMID:24322233

  14. Demonstration of an intermediate-scale lens-to-channel waveguide solar concentrator

    NASA Astrophysics Data System (ADS)

    Huang, R.; Liu, Y.; Madsen, C. K.

    2015-09-01

    Solar concentrating photovoltaic systems have the potential to reduce total cost and achieve higher efficiency by replacing a large solar cell surface with cheaper optical devices, in which a large area of light can be efficiently collected and concentrated to a small optical device and guided to an array of co-located photovoltaic cells with high optical efficiency. We present an experimental demonstration for a lens-to-channel waveguide solar concentrator using a commercially-available Fresnel lens array. In this work, a 60 mm by 60 mm lens to channel waveguide system is used for demonstration. A separate, aluminum-coated 45° coupler is fabricated and attached to the waveguide to improve the coupling efficiency and to avoid any inherent decoupling loss. The fabrication details and component performance of the prototype device are discussed.

  15. "METHOD": A tool for mechanical, electrical, thermal, and optical characterization of single lens module design

    NASA Astrophysics Data System (ADS)

    Besson, Pierre; Dominguez, Cesar; Voarino, Philippe; Garcia-Linares, Pablo; Weick, Clement; Lemiti, Mustapha; Baudrit, Mathieu

    2015-09-01

    The optical characterization and electrical performance evaluation are essential in the design and optimization of a concentrator photovoltaic system. The geometry, materials, and size of concentrator optics are diverse and different environmental conditions impact their performance. CEA has developed a new concentrator photovoltaic system characterization bench, METHOD, which enables multi-physics optimization studies. The lens and cell temperatures are controlled independently with the METHOD to study their isolated effects on the electrical and optical performance of the system. These influences can be studied in terms of their effect on optical efficiency, focal distance, spectral sensitivity, electrical efficiency, or cell current matching. Furthermore, the irradiance map of a concentrator optic can be mapped to study its variations versus the focal length or the lens temperature. The present work shows this application to analyze the performance of a Fresnel lens linking temperature to optical and electrical performance.

  16. Gaussian laser beam transformation into an optical vortex beam by helical lens

    NASA Astrophysics Data System (ADS)

    Janicijevic, Ljiljana; Topuzoski, Suzana

    2016-01-01

    In this article, we investigate the Fresnel diffraction characteristics of the hybrid optical element which is a combination of a spiral phase plate (SPP) with topological charge p and a thin lens with focal length f, named the helical lens (HL). As incident a Gaussian laser beam is treated, having its waist a distance ζ from the HL plane and its axis passing through the centre of the HL. It is shown that the SPP introduces a phase singularity of pth order to the incident beam, while the lens transforms the beam characteristic parameters. The output light beam is analyzed in detail: its characteristic parameters and focusing properties, amplitude and intensity distributions and the vortex rings profiles, and radii, at any z distance behind the HL plane, as well as in the near and far field.

  17. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  18. Static corrections in mountainous areas using Fresnel-wavepath tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Jianzhong; Shi, Tai-kun; Zhao, Yasheng; Zhou, Hua-wei

    2014-12-01

    We propose a 3-D Fresnel-wavepath tomography based on simultaneous iterative reconstruction technique (SIRT) with adaptive relaxation factors, in order to obtain effective near-surface velocity models for static corrections. We derived a formula to calculate the optimal relaxation factor for tomographic inversion to increase the convergence rate and thus the efficiency of the Fresnel-wavepath tomography. A forward method based on bilinear traveltime interpolation and the wavefront group marching is applied to achieve fast and accurate computation of the wavefront traveltimes in 3-D heterogeneous models. The new method is able to achieve near-surface velocity models effective in estimating long-period static corrections, and the remaining traveltime residuals after the tomographic inversion are used to estimate the short-period static corrections via a surface-consistent decomposition. The new method is tested using 3-D synthetic data and 3-D field dataset acquired in a complex mountainous area in southwestern China.

  19. Compressive optical image watermarking using joint Fresnel transform correlator architecture

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhong, Ting; Dai, Xiaofang; Yang, Chanxia; Li, Rong; Tang, Zhilie

    2017-02-01

    A new optical image watermarking technique based on compressive sensing using joint Fresnel transform correlator architecture has been presented. A secret scene or image is first embedded into a host image to perform optical image watermarking by use of joint Fresnel transform correlator architecture. Then, the watermarked image is compressed to much smaller signal data using single-pixel compressive holographic imaging in optical domain. At the received terminal, the watermarked image is reconstructed well via compressive sensing theory and a specified holographic reconstruction algorithm. The preliminary numerical simulations show that it is effective and suitable for optical image security transmission in the coming absolutely optical network for the reason of the completely optical implementation and largely decreased holograms data volume.

  20. Diffraction theory for azimuthally structured Fresnel zone plate.

    PubMed

    Vierke, Thordis; Jahns, Jürgen

    2014-02-01

    A conventional Fresnel zone plate (FZP) consists of concentric rings with an alternating binary transmission of zero and one. In an azimuthally structured Fresnel zone plate (aFZP), the light transmission of the transparent zones is modulated in the azimuthal direction, too. The resulting structure is of interest for extreme ultraviolet and x-ray imaging, in particular, because of its improved mechanical stability as compared to the simple ring structure of an FZP. Here, we present an analysis of the optical performance of the aFZP based on scalar diffraction theory and show numerical results for the light distribution in the focal plane. These will be complemented by calculations of the optical transfer function.

  1. Array illumination of a Fresnel-Dammann zone plate.

    PubMed

    Ma, Yayao; Ye, Chaochao; Ke, Jie; Zhang, Junyong; Zhu, Jianqiang; Ling, Zunqing

    2016-09-10

    The traditional Dammann grating is a phase-only modulation, and its theoretical foundation is based on far-field diffraction. Here we extend the traditional Fresnel zone plate (FZP) into a Fresnel-Dammann zone plate (FDZP), which is, in essence, considered as a FZP with Dammann modulation. Different from the Dammann grating, a single FDZP can generate array illumination from the near field to the far field by means of amplitude-only modulation in the absence of phase modulation. We then give some array illuminations operated in a water window to validate the feasibility and validity. This kind of wave-front modulation technology can be applied to array focusing and imaging from the x-ray to the EUV region.

  2. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic...) Identity. For the purpose of this section, n-alkylglutarimide/acrylic copolymers are copolymers obtained...

  3. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylate ester copolymer coating. 175.210 Section... Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as... prepared food, subject to the provisions of this section: (a) The acrylate ester copolymer is a...

  4. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  5. Monolithic F-16 Uniform Thickness Stretched Acrylic Canopy Transparency Program

    DTIC Science & Technology

    1984-01-01

    Thermoforming Finite Strain Analysis Finite Element Modeling Mooney Formulation Tensile Testing Acrylic Material Properties F-16 Transparency Thinning Uniform...OF ACRYLIC TENSILE SPECIMEN ...... 8 MARC ANALYSIS OF ACRYLIC HEMISPHERE ............ 12 IV ACRYLIC MATERIAL PROPERTIES AT THERMOFORMING TEMPERATURES...properties (necessary for finite element stress analysis work) were generated at temperatures in the range of thermoforming . A finite element code

  6. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  7. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  8. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  12. Low-frequency Fresnel mirrors for fluorescence detectors

    NASA Astrophysics Data System (ADS)

    Diaz-Anzures, J.; Cordero-Davila, A.; Gonzalez-Garcia, J.; Martinez-Bravo, O.; Robledo-Sanchez, C.; Khrenov, B. A.; Garipov, G. K.

    2004-07-01

    In this work we present several designs of a Fresnel mirror with small number of rings (low frequency) to be used in fluorescence detectors aimed for study of ultra high energy cosmic rays. Being segmented the Fresnel mirror has an advantage of simple development from a compact package to a "plane" large area mirror-concentrator. This advantage is important for detectors in space and detectors at remote mountain sites. In this work, we investigated four possible ways of generating a focusing surface. In the first (main) design, the mirror consists of sections belonging to several parabolic surfaces. In this case the best focusing of a source on optical axis is achieved--the Fresnel mirror operates as parabolic mirror. This design is the best for a space "telescope", observing a source from large distances. Close to this design are mirror options with sections of a common parabolic surface and with sections of several spherical surfaces. The simplest for construction is the mirror with sections of a common spherical surface. In this design, focusing of a source on optical axis is much poorer than in previous options, but the mirror may be used in the experiments needed a wide field of view (FOV) with rough angular resolution. An advantage of this design is simplicity of the mirror construction which is shown in the mirror prototype construction and its testing. Results of the focal spot measurements are presented. This simple design of the Fresnel mirror is planned for use in the Pico de Orizaba mountain hybrid array where the wide field of view is important.

  13. Application of white light Fresnel diffractometry to film thickness measurement.

    PubMed

    Hassani, Khosrow; Ashrafganjoie, Mehdi; Tavassoly, Mohammad Taghi

    2016-03-01

    In this work we present the theoretical background and experimental procedure to measure the thickness of thin films by analyzing Fresnel diffraction patterns obtained from polychromatic illumination of phase-step samples. As examples of this technique, we measured the thicknesses of thin aluminum layers on glass substrates using three different broad-spectrum light sources. The results are in excellent agreement with independent interferometric measurements within less than 5% relative uncertainties.

  14. Fresnel diffractive imaging: Experimental study of coherence and curvature

    SciTech Connect

    Whitehead, L. W.; Williams, G. J.; Quiney, H. M.; Nugent, K. A.; Peele, A. G.; Paterson, D.; Jonge, M. D. de; McNulty, I.

    2008-03-01

    A Fresnel coherent diffractive imaging experiment is performed using a pinhole as a test object. The experimental parameters of the beam curvature and coherence length of the illuminating radiation are varied to investigate their effects on the reconstruction process. It is found that a sufficient amount of curvature across the sample strongly ameliorates the effects of low coherence, even when the sample size exceeds the coherence length.

  15. Nanoscale Fresnel coherent diffraction imaging tomography using ptychography.

    PubMed

    Peterson, I; Abbey, B; Putkunz, C T; Vine, D J; van Riessen, G A; Cadenazzi, G A; Balaur, E; Ryan, R; Quiney, H M; McNulty, I; Peele, A G; Nugent, K A

    2012-10-22

    We demonstrate Fresnel Coherent Diffractive Imaging (FCDI) tomography in the X-ray regime. The method uses an incident X-ray illumination with known curvature in combination with ptychography to overcome existing problems in diffraction imaging. The resulting tomographic reconstruction represents a 3D map of the specimen's complex refractive index at nano-scale resolution. We use this technique to image a lithographically fabricated glass capillary, in which features down to 70nm are clearly resolved.

  16. Control Program and Optical Improvements of Fresnel Microspectrometer

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon; King, Glen; Choi, Sang; Elliott, James

    2011-01-01

    A microspectrometer has a circular geometry, and is designed with the Fresnel diffraction equation. This enables a dramatic miniaturization of the optical parts of a spectrometer over 100 times by volume. Therefore, it enables the construction of spectrometer arrays such as 100X100 microspectrometers for tunable multispectral or hyper-spectral imaging. It can be used for a massive, simultaneous spectral scan from multiple optical sources such as 10,000 optical fibers.

  17. Poly(meth)acrylate-based coatings.

    PubMed

    Nollenberger, Kathrin; Albers, Jessica

    2013-12-05

    Poly(meth)acrylate coatings for pharmaceutical applications were introduced in 1955 with the launch of EUDRAGIT(®) L and EUDRAGIT(®) S, two types of anionic polymers. Since then, by introducing various monomers into their polymer chains and thus altering their properties, diverse forms with specific characteristics have become available. Today, poly(meth)acrylates function in different parts of the gastrointestinal tract and/or release the drug in a time-controlled manner. This article reviews the properties of various poly(meth)acrylates and discusses formulation issues as well as application possibilities.

  18. Specular highlights of plastic surfaces and the Fresnel coefficient

    NASA Astrophysics Data System (ADS)

    Angelopoulou, Elli; Poger, Sofya

    2004-10-01

    One of the biggest clues in specularity detection algorithms is the color of the specular highlights. There is a prevalent assumption that the color of specularities for materials like plastics and ceramics can be approximated by the color of the incident light. We show that such an assumption is not generally appropriate because of the effects of the Fresnel reflectance coefficient and its dependence on wavelength. Our theoretical analysis establishes that the sensitivity of the Fresnel term to the wavelength variations of the refractive index can be at least as large as 15%. Our experiments demonstrate that, even with traditional RGB color cameras, the recorded color of specular highlights is distinct from the color of the incident light. Furthermore, by computing the spectral gradients (i.e. the partial derivatives of the image with respect to wavelength) at specular regions we can isolate the Fresnel term up to an additive illumination constant. Our theory is supported by experiments performed on multispectral images of different colored plastic tiles. The refractive indices of the opaque plastics were measured using a specialized spectroscopic ellipsometer. The computed spectral gradients of the tile specularities exhibited a less than 2.5% deviation from the predicted theoretical values.

  19. New radiopaque acrylic bone cement. II. Acrylic bone cement with bromine-containing monomer.

    PubMed

    Rusu, M C; Ichim, I C; Popa, M; Rusu, M

    2008-07-01

    Bromine-containing methacrylate, 2-(2-bromopropionyloxy) ethyl methacrylate (BPEM), had been used in the formulation of acrylic radiopaque cements. The effect of this monomer incorporated into the liquid phase of acrylic bone cement, on the curing parameters, thermal properties, water absorption, density, compression tests and radiopacity was studied. A decrease of maximum temperature and an increase of the setting time were observed with the addition of the bromine-containing monomer in the radiolucent cement composition. Adding BPEM in radiolucent acrylic bone cements composition results in the decrease of glass transition temperature and increase of its thermal stability. Acrylic bone cements modified with bromine-containing comonomer are characterized by polymerization shrinkage lower than the radiolucent cement. Addition of bromine-containing comonomer in radiolucent acrylic bone cement composition determines the increase of compressive strength. Acrylic bone cements modified with bromine-containing comonomer proved to be radiopaque.

  20. The oblique electron lens.

    NASA Technical Reports Server (NTRS)

    Johnson, C. B.; Hallam, K. L.

    1973-01-01

    An oblique electron lens is described that is especially applicable to image converters and camera tubes employing flat opaque photocathodes. The use of optical lenses, corrector plates, and/or mirrors (often employed in other electron lenses designed for use with opaque photocathodes) are eliminated. The oblique electron lens is well suited to ultraviolet and vacuum ultraviolet image converters, and to image converters employing opaque negative electron affinity photocathodes. It is also possible to use this oblique electron lens for electronography. Measurements on an experimental tube show that a limiting resolution of 50 line pairs/mm is possible, but the intrinsic lens quality is believed to approach that of a conventional electromagnetic lens having uniform and colinear electric and magnetic fields.

  1. EVALUATION OF AN ACRYLATE TERPOLYMER, POLYURETHANE COMPOSITE.

    DTIC Science & Technology

    Composite films consisting of a flexible acrylate terpolymer substrate and an outer layer of poly (ester-urethane) elastomer were prepared and evaluated for use in cosmetic glove applications. (Author)

  2. Chemical Stress Cracking of Acrylic Fibers.

    DTIC Science & Technology

    1982-05-01

    nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and7 chain scission...cyclization of nitrile groups (similar to the "prefatory reaction" in pyrolysis of acrylic fibers), followed immediately by N- chlorination and chain scission...present experiments were conducted at the boil, slightly greater than 100 C. The decomposition products-- chlorine , chlorate, plus oxygen originating

  3. Contact lens hygiene compliance and lens case contamination: A review.

    PubMed

    Wu, Yvonne Tzu-Ying; Willcox, Mark; Zhu, Hua; Stapleton, Fiona

    2015-10-01

    A contaminated contact lens case can act as a reservoir for microorganisms that could potentially compromise contact lens wear and lead to sight threatening adverse events. The rate, level and profile of microbial contamination in lens cases, compliance and other risk factors associated with lens case contamination, and the challenges currently faced in this field are discussed. The rate of lens case contamination is commonly over 50%. Coagulase-negative Staphylococcus, Bacillus spp., Pseudomonas aeruginosa and Serratia marcescens are frequently recovered from lens cases. In addition, we provide suggestions regarding how to clean contact lens cases and improve lens wearers' compliance as well as future lens case design for reducing lens case contamination. This review highlights the challenges in reducing the level of microbial contamination which require an industry wide approach.

  4. Two-dimensional refractive index distribution measurement of a GRIN lens

    NASA Astrophysics Data System (ADS)

    Hsieh, H. C.; Chen, Y. L.; Wu, W. T.; Chang, W. Y.; Su, D. C.

    2010-08-01

    Based on the Fresnel's equations and the phase-shifting method, an alternative method for measuring the refractive index distribution of a GRIN lens is presented. A linearly/circularly polarized light in order enters a modified Twyman-Green interferometer, in which an electro-optical modulator is used as a phase shifter. In the interferometer, the light beam is divided by a beam-splitter into two beams, a reference beam and a test beam. After they are reflected by a plane mirror and the tested GRIN lens, respectively, they are combined together and pass through an analyzer. The analyzer extracts the same polarized components to interfere each other, and the full-field interference signals produced by the components of the s- and the p-polarizations can be obtained. The full-field interference signals are taken by a CMOS camera. The phase differences can be obtained by using the four-step phase-shifting interferometric method. Substituting these two groups of data into special equations derived from Fresnel equations, and the two-dimensional refractive index distribution of the GRIN lens can be calculated. Its validity is demonstrated and has some merits such as simple optical configuration, easy operation and high resolution.

  5. The lens circulation.

    PubMed

    Mathias, Richard T; Kistler, Joerg; Donaldson, Paul

    2007-03-01

    The lens is the largest organ in the body that lacks a vasculature. The reason is simple: blood vessels scatter and absorb light while the physiological role of the lens is to be transparent so it can assist the cornea in focusing light on the retina. We hypothesize this lack of blood supply has led the lens to evolve an internal circulation of ions that is coupled to fluid movement, thus creating an internal micro-circulatory system, which makes up for the lack of vasculature. This review covers the membrane transport systems that are believed to generate and direct this internal circulatory system.

  6. Intraocular lens fabrication

    DOEpatents

    Salazar, Mike A.; Foreman, Larry R.

    1997-01-01

    This invention describes a method for fabricating an intraocular lens made rom clear Teflon.TM., Mylar.TM., or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube.

  7. Intraocular lens fabrication

    DOEpatents

    Salazar, M.A.; Foreman, L.R.

    1997-07-08

    This invention describes a method for fabricating an intraocular lens made from clear Teflon{trademark}, Mylar{trademark}, or other thermoplastic material having a thickness of about 0.025 millimeters. These plastic materials are thermoformable and biocompatable with the human eye. The two shaped lenses are bonded together with a variety of procedures which may include thermosetting and solvent based adhesives, laser and impulse welding, and ultrasonic bonding. The fill tube, which is used to inject a refractive filling material is formed with the lens so as not to damage the lens shape. A hypodermic tube may be included inside the fill tube. 13 figs.

  8. Telescopic vision contact lens

    NASA Astrophysics Data System (ADS)

    Tremblay, Eric J.; Beer, R. Dirk; Arianpour, Ashkan; Ford, Joseph E.

    2011-03-01

    We present the concept, optical design, and first proof of principle experimental results for a telescopic contact lens intended to become a visual aid for age-related macular degeneration (AMD), providing magnification to the user without surgery or external head-mounted optics. Our contact lens optical system can provide a combination of telescopic and non-magnified vision through two independent optical paths through the contact lens. The magnified optical path incorporates a telescopic arrangement of positive and negative annular concentric reflectors to achieve 2.8x - 3x magnification on the eye, while light passing through a central clear aperture provides unmagnified vision.

  9. Unitary lens semiconductor device

    DOEpatents

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  10. Unitary lens semiconductor device

    DOEpatents

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  11. Intraocular lens exchange-removing the optic intact

    PubMed Central

    Lee, Matthew Hao; Webster, Diane Lesley

    2016-01-01

    Current practice for intraocular lens (IOL) exchange is to cut the optic of the posterior chamber intraocular lens (PCIOL) prior to removing it. Great care must be taken during this maneuver to avoid a posterior capsular tear. Removing the haptics from the fibrosed capsule can also be hazardous, as it may result in zonular stress and dehiscence. A technique is described for performing foldable (one-piece acrylic) IOL removal without cutting the optic. Careful visco-dissection of the haptics with a low viscosity ophthalmic viscosurgical device (OVD) in the fibrosed peripheral capsular tunnel avoids zonular or capsular stress. Internal wound enlargement permits foldable IOL removal in one piece, whilst preserving a self-sealing sutureless corneal wound. This technique may enhance the safety and efficacy of foldable IOL exchange. PMID:27366699

  12. Bonded multilayer Laue Lens for focusing hard x-rays.

    SciTech Connect

    Liu, C.; Conley, R.; Qian, J.; Kewish, C.M.; Macrander, A.T.; Maser, J.; Kang, H.C.; Yan, H.; Stephenson, G.B.; Advanced Photonics Research Institute; Gwangju Institute of Science and Technology

    2007-11-11

    We have fabricated partial Multilayer Laue Lens (MLL) linear zone plate structures with thousands of alternating WSi{sub 2} and Si layers and various outermost zone widths according to the Fresnel zone plate formula. Using partial MLL structures, we were able to focus hard X-rays to line foci with a width of 30 nm and below. Here, we describe challenges and approaches used to bond these multilayers to achieve line and point focusing. Bonding was done by coating two multilayers with AuSn and heating in a vacuum oven at 280-300 C. X-ray reflectivity measurements confirmed that there was no change in the multilayers after heating to 350 C. A bonded MLL was polished to a 5-25 {micro}m wedge without cracking. SEM image analyses found well-positioned multilayers after bonding. These results demonstrate the feasibility of a bonded full MLL for focusing hard X-rays.

  13. Dynamic compensation of chromatic aberration in a programmable diffractive lens.

    PubMed

    Millán, María S; Otón, Joaquín; Pérez-Cabré, Elisabet

    2006-10-02

    A proposal to dynamically compensate chromatic aberration of a programmable phase Fresnel lens displayed on a liquid crystal device and working under broadband illumination is presented. It is based on time multiplexing a set of lenses, designed with a common focal length for different wavelengths, and a tunable spectral filter that makes each sublens work almost monochromatically. Both the tunable filter and the sublens displayed by the spatial light modulator are synchronized. The whole set of sublenses are displayed within the integration time of the sensor. As a result the central order focalization has a unique location at the focal plane and it is common for all selected wavelengths. Transversal chromatic aberration of the polychromatic point spread function is reduced by properly adjusting the pupil size of each sublens. Longitudinal chromatic aberration is compensated by making depth of focus curves coincident for the selected wavelengths. Experimental results are in very good agreement with theory.

  14. Contact Lens Risks

    MedlinePlus

    ... Health and Consumer Devices Consumer Products Contact Lenses Contact Lens Risks Share Tweet Linkedin Pin it More ... redness blurred vision swelling pain Serious Hazards of Contact Lenses Symptoms of eye irritation can indicate a ...

  15. Clinical investigation of the Paraperm EW rigid gas-permeable contact lens.

    PubMed

    Henry, V A; Bennett, E S; Forrest, J F

    1987-05-01

    Paraperm EW is a high oxygen flux silicone/acrylate rigid lens material currently under clinical investigation for extended wear. The purpose of this paper is to report the clinical findings after 12 months of a 2-year investigation of 18 patients fitted with this material. Fifteen were successfully wearing Paraperm EW lenses at 1 year. The only significant clinical finding was keratometric flattening at the 1-month visit. It was concluded that the Paraperm EW lens was durable, comfortable, and provided excellent visual acuity during the course of this investigation without inducing any of the ocular complications sometimes associated with extended wear of hydrogel lenses.

  16. Interferometric Lens Testing

    DTIC Science & Technology

    1976-09-01

    present tests was inspected with a Twyman -Green interferometer and found to give wavefront deviations (peak to valley) no greater than about Ü.10 X...The retro-reflecting plane mirror w&s tested on a Twyman -Green interferometer and found to give wavefront deviations (peak to valley) no greater...Interferogram scanning, lens aberrations, lens testing, optical transfer function, wavefront shearing interferometer . 10. ABSTRACT (Conllnum on

  17. Tunable Polymer Lens

    DTIC Science & Technology

    2008-08-04

    Sylgard® 184). Poly ( methyl methacrylate ) (PMMA) was provided by Atofina Chemicals, Inc. (Plexiglas V920). The SEBS copolymer and PMMA resins...convex poly ( methyl methacrylate ) (PMMA) lens, R=25.8 mm, with a tunable elastomeric lens membrane, R=38.6 mm. The PMMA is rigid; the variable focal...using a combination of deformable and rigid polymeric materials. An elastomeric styrene- ethylene /butylene-styrene (SEBS) block copolymer was

  18. Lens auto-centering

    NASA Astrophysics Data System (ADS)

    Lamontagne, Frédéric; Desnoyers, Nichola; Doucet, Michel; Côté, Patrice; Gauvin, Jonny; Anctil, Geneviève; Tremblay, Mathieu

    2015-09-01

    In a typical optical system, optical elements usually need to be precisely positioned and aligned to perform the correct optical function. This positioning and alignment involves securing the optical element in a holder or mount. Proper centering of an optical element with respect to the holder is a delicate operation that generally requires tight manufacturing tolerances or active alignment, resulting in costly optical assemblies. To optimize optical performance and minimize manufacturing cost, there is a need for a lens mounting method that could relax manufacturing tolerance, reduce assembly time and provide high centering accuracy. This paper presents a patent pending lens mounting method developed at INO that can be compared to the drop-in technique for its simplicity while providing the level of accuracy close to that achievable with techniques using a centering machine (usually < 5 μm). This innovative auto-centering method is based on the use of geometrical relationship between the lens diameter, the lens radius of curvature and the thread angle of the retaining ring. The autocentering principle and centering test results performed on real optical assemblies are presented. In addition to the low assembly time, high centering accuracy, and environmental robustness, the INO auto-centering method has the advantage of relaxing lens and barrel bore diameter tolerances as well as lens wedge tolerances. The use of this novel lens mounting method significantly reduces manufacturing and assembly costs for high performance optical systems. Large volume productions would especially benefit from this advancement in precision lens mounting, potentially providing a drastic cost reduction.

  19. Fresnel lenses. (Latest citations from the US Patent Bibliographic file with exemplary claims). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations of selected patents concerning the design and implementation of Fresnel lenses. Citations focus on manufacturing methods and designs for specific applications. Fresnel lenses used in overhead projectors, solar concentrators, and infrared motion detectors are also described. (Contains a minimum of 71 citations and includes a subject term index and title list.)

  20. Spatial-spectral (space-wavenumber) correspondence relationship and Fresnel zone spectra.

    PubMed

    Han, Pin; Hsieh, Tsung-Han; Liu, Yi-Ling

    2017-03-01

    A correspondence relationship between space and wavenumber for fully spatially coherent uniform monochromatic and polychromatic light in near- and far-field diffraction is fully illustrated, and it is used to study a phenomenon called the Fresnel zone spectra, which is verified experimentally. The spectra can be filtered or manipulated by moving the detection position relative to Fresnel zone plate along the optical axis.

  1. Calculation of Fresnel diffraction from 1D phase step by discrete Fourier transform

    NASA Astrophysics Data System (ADS)

    Aalipour, Rasoul

    2017-01-01

    When a part of an optical wave-front experiences a sharp change in its phase, Fresnel diffraction becomes appreciable. Sharp change in phase occurs as a wave-front strikes with a phase step. The intensity distributions of diffraction patterns of the phase step is formulated by applying Fresnel-Kirchhoff integral. For while the incident light on the step is coherent, the Fresnel-Kirchhoff integral can be solved by using familiar Fresnel integrals. But, when the incident light is partially coherent, one can not express the diffraction integral as the Fresnel integrals and the problem is summarized in solving some unusual integrals. In this report, we propose Fourier transform method for solving the Fresnel-Kirchhoff integral. In this regard we use discrete Fourier transform method and calculate Fresnel diffraction from the 1D phase step by FFT-based algorithms. This method does not have any restriction on the coherence and profile shape of the incident light. We show that the method have appropriate solutions for coherent and partially coherent lights. For the case of the coherent light illumination of the step, the obtained results are in good agreement with the calculated results by using the Fresnel integrals in reported literatures.

  2. Terahertz Artificial Dielectric Lens

    NASA Astrophysics Data System (ADS)

    Mendis, Rajind; Nagai, Masaya; Wang, Yiqiu; Karl, Nicholas; Mittleman, Daniel M.

    2016-03-01

    We have designed, fabricated, and experimentally characterized a lens for the THz regime based on artificial dielectrics. These are man-made media that mimic properties of naturally occurring dielectric media, or even manifest properties that cannot generally occur in nature. For example, the well-known dielectric property, the refractive index, which usually has a value greater than unity, can have a value less than unity in an artificial dielectric. For our lens, the artificial-dielectric medium is made up of a parallel stack of 100 μm thick metal plates that form an array of parallel-plate waveguides. The convergent lens has a plano-concave geometry, in contrast to conventional dielectric lenses. Our results demonstrate that this lens is capable of focusing a 2 cm diameter beam to a spot size of 4 mm, at the design frequency of 0.17 THz. The results further demonstrate that the overall power transmission of the lens can be better than certain conventional dielectric lenses commonly used in the THz regime. Intriguingly, we also observe that under certain conditions, the lens boundary demarcated by the discontinuous plate edges actually resembles a smooth continuous surface. These results highlight the importance of this artificial-dielectric technology for the development of future THz-wave devices.

  3. Multiple mode x-ray ptychography using a lens and a fixed diffuser optic

    NASA Astrophysics Data System (ADS)

    Li, Peng; Batey, Darren J.; Edo, Tega B.; Parsons, Aaron D.; Rau, Christoph; Rodenburg, John M.

    2016-05-01

    We employ a novel combination of a Fresnel lens and a diffuser for x-ray ptychography. The setup uses increased flux by enlarging the width of the coherence-defining slits upstream of the experimental station. In the reconstruction algorithm, modal decomposition is used to account for the resulting partial coherence in the beam. We show that if the object has sparse feactures and large areas of flat contrast, the diffuser facilitates a better reconstruction and the extra diversity in the data also allows cleaner separation of the constituent modes in the illumination. The setup also allows a quick, real-time measure of the beam coherence.

  4. Fresnel-Gaussian shape invariant for optical ray tracing.

    PubMed

    Cywiak, Moisés; Morales, A; Flores, J Mauricio; Servín, Manuel

    2009-06-22

    We propose a technique for ray tracing, based in the propagation of a Gaussian shape invariant under the Fresnel diffraction integral. The technique uses two driving independent terms to direct the ray and is based on the fact that at any arbitrary distance, the center of the propagated Gaussian beam corresponds to the geometrical projection of the center of the incident beam. We present computer simulations as examples of the use of the technique consisting in the calculation of rays through lenses and optical media where the index of refraction varies as a function of position.

  5. Full-field vibrometry with digital Fresnel holography

    SciTech Connect

    Leval, Julien; Picart, Pascal; Boileau, Jean Pierre; Pascal, Jean Claude

    2005-09-20

    A setup that permits full-field vibration amplitude and phase retrieval with digital Fresnel holography is presented. Full reconstruction of the vibration is achieved with a three-step stroboscopic holographic recording, and an extraction algorithm is proposed. The finite temporal width of the illuminating light is considered in an investigation of the distortion of the measured amplitude and phase. In particular, a theoretical analysis is proposed and compared with numerical simulations that show good agreement. Experimental results are presented for a loudspeaker under sinusoidal excitation; the mean quadratic velocity extracted from amplitude evaluation under two different measuring conditions is presented. Comparison with time averaging validates the full-field vibrometer.

  6. Chromatic aberration effect on solar energy systems using Fresnel lenses

    SciTech Connect

    Lorenzo, E.

    1981-11-01

    In concentration systems using Fresnel lenses the effect of the chromatic aberration can become important. In this paper we propose a method to take this effect into account for designing purposes. Also we define a parameter that allows one to estimate the degradation of the thermodynamic quality of the concentrator due to this effect. This parameter follows a hyperbolic law, with the acceptance angle showing that it is important to consider chromatic aberration when modeling concentrators with a high concentration factor. However, this complexity is unnecessary for moderate or low concentration factors.

  7. Lensless phase contrast microscopy based on multiwavelength Fresnel diffraction.

    PubMed

    Noom, Daniel W E; Eikema, Kjeld S E; Witte, Stefan

    2014-01-15

    We demonstrate a compact, wide-field, quantitative phase contrast microscope that does not require lenses for image formation. High-resolution images are retrieved from Fresnel diffraction patterns recorded at multiple wavelengths, combined with a robust iterative phase retrieval algorithm. Quantitative phase contrast images of living cultured neurons are obtained with a transverse resolution of <2 μm. Our system is well suited for high-resolution live cell imaging and provides a compact, cost-effective alternative to full-sized phase-contrast microscopes.

  8. Fresnel diffraction and fractal patterns from polygonal apertures.

    PubMed

    Huang, J G; Christian, J M; McDonald, G S

    2006-11-01

    Two compact analytical descriptions of Fresnel diffraction patterns from polygonal apertures under uniform illumination are detailed. In particular, a simple expression for the diffracted field from constituent edges is derived. These results have fundamental importance as well as specific applications, and they promise new physical insights into diffraction-related phenomena. The usefulness of the formulations is illuminated in the context of a virtual source theory that accounts for two transverse dimensions. This application permits calculation of fractal unstable-resonator modes of arbitrary order and unprecedented accuracy.

  9. On the Asymptotics of Bessel Functions in the Fresnel Regime

    DTIC Science & Technology

    2014-07-10

    between the solutions u, v of (1) and the corresponding phase function is given by the formula α′(z) = W u2(z) + v2(z) , (8) with W the (constant...We introduce a version of the asymptotic expansions for Bessel functions Jν(z), Yν(z) that is valid whenever |z| > ν (which is deep in the Fresnel... function , and uses classical formulas to obtain an asymptotic expansion for this function ; this in turn leads to both an analytical tool and a nu

  10. Holography at the U.S. Army Research Laboratory: Development of Hologram Transform Equations using the Fresnel Approximation

    DTIC Science & Technology

    2012-09-01

    assumptions change the Helmholtz-Kirchhoff equation to the Kirchhoff diffraction integral. Finally, the Fresnel and Fraunhofer approximations, which deal...23) This result is called the Fresnel approximation to the Kirchhoff diffraction integral. A final...Holography at the U.S. Army Research Laboratory: Development of Hologram Transform Equations using the Fresnel Approximation by Karl K

  11. Design and fabrication of linear Fresnel zone plates used for microspectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Ruicong; Liu, Yuanyuan; Yang, Fuhua

    2016-10-01

    Fresnel zone plate is a classic optical element that however can be used as the core spectral component of micro-spectrometer, which optical path volume can be decreased to 1mm3. After passing through the Fresnel zone plate, monochromatic lights of different wavelengths will expand to spectrum because of their different focal length. We designed eight kinds of linear half zone plates to get different focal lengths and spectral performance. In the process of fabrication, we used the electron beam lithography and inductively coupled plasma (ICP) etching to produce the Fresnel zone plates. Finally, performances of Fresnel zone plates were examined by beam-split experiments. After comparison, the simulation conclusion in reference that the number of bands of Fresnel zone plates will affect the final appearance of the spectrum was verified.

  12. Results and Comparison from the SAM Linear Fresnel Technology Performance Model: Preprint

    SciTech Connect

    Wagner, M. J.

    2012-04-01

    This paper presents the new Linear Fresnel technology performance model in NREL's System Advisor Model. The model predicts the financial and technical performance of direct-steam-generation Linear Fresnel power plants, and can be used to analyze a range of system configurations. This paper presents a brief discussion of the model formulation and motivation, and provides extensive discussion of the model performance and financial results. The Linear Fresnel technology is also compared to other concentrating solar power technologies in both qualitative and quantitative measures. The Linear Fresnel model - developed in conjunction with the Electric Power Research Institute - provides users with the ability to model a variety of solar field layouts, fossil backup configurations, thermal receiver designs, and steam generation conditions. This flexibility aims to encompass current market solutions for the DSG Linear Fresnel technology, which is seeing increasing exposure in fossil plant augmentation and stand-alone power generation applications.

  13. TU-E-201-03: Eye Lens Dosimetry in Radiotherapy Using Contact Lens-Shaped Applicator

    SciTech Connect

    Park, J.

    2015-06-15

    . These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the

  14. TU-E-201-01: Methods for Eye Lens Dosimetry and Studies On Lens Opacities with Interventionists

    SciTech Connect

    Rehani, M.

    2015-06-15

    . These actions should be considered when they are consistent with the clinical task and patient anatomy. Learning Objectives: To become familiar with method of eye dose estimation for patient in specific situation of brain perfusion CT To become familiar with level of eye lens radiation doses in patients undergoing brain perfusion MDCT To understand methods for reducing eye lens dose to patient Jong Min Park, Department of Radiation Oncology, Seoul National University Hospital, Seoul, Korea Eye lens dosimetry in radiotherapy using contact lens-shaped applicator Dose calculation accuracy of commercial treatment planning systems is relatively low at shallow depths. Therefore, in-vivo measurements are often performed in the clinic to verify delivered doses to eye lens which are located at shallow depth. Current in-vivo dosimetry for eye lens during radiotherapy is generally performed with small in-vivo dosimeters on the surface of patient eyelid. Since this procedure potentially contains considerable uncertainty, a contact lens-shaped applicator made of acrylic (lens applicator) was developed for in-vivo measurements of eye lens dose during radiotherapy to reduce uncertainty. The lens applicator allows the insertion of commercially available metal oxide semiconductor field effect transistor (MOSFET) dosimeters. Computed tomography (CT) images of an anthropomorphic phantom with and without the lens applicator were acquired. A total of 20 VMAT plans were delivered to an anthropomorphic phantom and the doses with the lens applicator and the doses at the surface of the eyelid were measured using both micro and standard MOSFET dosimeters. The differences in measured dose at the surface of the eyelid from the calculated lens dose were acquired. The differences between the measured and the calculated doses at the lens applicator, as well as the differences between the measured and the calculated doses at the surface of the eyelid were acquired. The statistical significance of the

  15. Performance comparison of Fresnel-based concentrator arrays

    NASA Astrophysics Data System (ADS)

    Mohedano, Rubén; Cvetkovic, Aleksandra; Benítez, Pablo; Zamora, Pablo; Miñano, Juan C.; Chaves, Julio; Hernandez, Maikel; Buljan, Marina; Vilaplana, Juan

    2010-08-01

    At module level (one single solar cell), the Fresnel-Köhler (FK) concentrator comprises a perfect irradiance uniformity along with quite high concentration-acceptance angle product. At the same time, it maintains the efficiency/simplicity of other Fresnel-based concentrators. In this work we will show the FK concentrator has loose manufacturing tolerances as well. All these facts, along with the pill-box shape of its transmission curve, permit an enhanced performance of this device, compared to its competitors, at array level, because the system is more insensitive to manufacturing errors, and current mismatch is less likely to occur. Or the same performance can be achieved at a lower cost, exhausting the tolerance budget by using inexpensive fabrication techniques. Depending on the concentrator, the actual power delivered by an array might drop significantly with respect to the sum of the power delivered by single modules. Under certain circumstances, the FK can reach a 1-10% electrical efficiency increase with regards to other concentrators sharing the same technology.

  16. Fresnel diffraction of fractal grating and self-imaging effect.

    PubMed

    Wang, Junhong; Zhang, Wei; Cui, Yuwei; Teng, Shuyun

    2014-04-01

    Based on the self-similarity property of fractal, two types of fractal gratings are produced according to the production and addition operations of multiple periodic gratings. Fresnel diffractions of fractal grating are analyzed theoretically, and the general mathematic expressions of the diffraction intensity distributions of fractal grating are deduced. The gray-scale patterns of the 2D diffraction distributions of fractal grating are provided through numerical calculations. The diffraction patterns take on the periodicity along the longitude and transverse directions. The 1D diffraction distribution at some certain distances shows the same structure as the fractal grating. This indicates that the self-image of fractal grating is really formed in the Fresnel diffraction region. The experimental measurement of the diffraction intensity distribution of fractal grating with different fractal dimensions and different fractal levels is performed, and the self-images of fractal grating are obtained successfully in experiments. The conclusions of this paper are helpful for the development of the application of fractal grating.

  17. Optical refractometry based on Fresnel diffraction from a phase wedge.

    PubMed

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  18. 50. (no plate) Lens, lens pedestal, mercury float, drawing # ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    50. (no plate) Lens, lens pedestal, mercury float, drawing # 3101, sheet 1 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  19. 51. (no plate) Lens, lens pedestal, mercury float, shade holder ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. (no plate) Lens, lens pedestal, mercury float, shade holder installation, drawing # 3101, sheet 2 of 2. Approved April 6, 1928. - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  20. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  1. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  2. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false n-Alkylglutarimide/acrylic copolymers. 177.1060... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1060 n-Alkylglutarimide/acrylic copolymers. n-Alkylglutarimide/acrylic copolymers identified in this section may be safely used as...

  3. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  4. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  5. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  6. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  7. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  9. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  10. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  11. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  12. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  13. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  14. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  15. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  16. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  17. 40 CFR 721.329 - Halogenated benzyl ester acrylate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halogenated benzyl ester acrylate... Specific Chemical Substances § 721.329 Halogenated benzyl ester acrylate (generic). (a) Chemical substance... halogenated benzyl ester acrylate (PMN P-90-1527) is subject to reporting under this section for...

  18. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  19. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  20. 40 CFR 721.10477 - Acrylate ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate ester (generic). 721.10477... Substances § 721.10477 Acrylate ester (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as acrylate ester (PMN P-04-290) is subject...