Science.gov

Sample records for acrylic resin blocks

  1. Nanoporous nonwoven fibril-like morphology by cooperative self-assembly of poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene and phenolic resin.

    PubMed

    Deng, Guodong; Qiang, Zhe; Lecorchick, Willis; Cavicchi, Kevin A; Vogt, Bryan D

    2014-03-11

    Cooperative self-assembly of block copolymers with (in)organic precursors effectively generates ordered nanoporous films, but the porosity is typically limited by the need for a continuous (in)organic phase. Here, a network of homogeneous fibrous nanostructures (≈20 nm diameter cylinders) having high porosity (≈ 60%) is fabricated by cooperative self-assembly of a phenolic resin oligomer (resol) with a novel, nonfrustrated, ABC amphiphilic triblock copolymer template, poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene (PEO-b-PEA-b-PS), via a thermally induced self-assembly process. Due to the high glass transition temperature (Tg) of the PS segments, the self-assembly behavior is kinetically hindered as a result of competing effects associated with the ordering of the self-assembled system and the cross-linking of resol that suppresses segmental mobility. The balance in these competing processes reproducibly yields a disordered fibril network with a uniform fibril diameter. This nonequilibrium morphology is dependent on the PEO-b-PEA-b-PS to resol ratio with an evolution from a relatively open fibrous structure to an apparent poorly ordered mixed lamellae-cylinder morphology. Pyrolysis of these former films at elevated temperatures yields a highly porous carbon film with the fibril morphology preserved through the carbonization process. These results illustrate a simple method to fabricate thin films and coatings with a well-defined fiber network that could be promising materials for energy and separation applications. PMID:24548298

  2. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  3. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  4. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  5. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  6. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  7. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  8. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  9. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  10. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  11. Acrylic resin injection method for blood vessel investigations.

    PubMed

    Suwa, Fumihiko; Uemura, Mamoru; Takemura, Akimichi; Toda, Isumi; Fang, Yi-Ru; Xu, Yuan Jin; Zhang, Zhi Yuan

    2013-01-01

    The injection of acrylic resin into vessels is an excellent method for macroscopically and microscopically observing their three-dimensional features. Conventional methods can be enhanced by removal of the polymerization inhibitor (hydroquinone) without requiring distillation, a consistent viscosity of polymerized resin, and a constant injection pressure and speed. As microvascular corrosion cast specimens are influenced by viscosity, pressure, and speed changes, injection into different specimens yields varying results. We devised a method to reduce those problems. Sodium hydroxide was used to remove hydroquinone from commercial methylmethacrylate. The solid polymer and the liquid monomer were mixed using a 1 : 9 ratio (low-viscosity acrylic resin, 9.07 ± 0.52 mPa•s) or a 3:7 ratio (high-viscosity resin, 1036.33 ± 144.02 mPa•s). To polymerize the acrylic resin for injection, a polymerization promoter (1.0% benzoyl peroxide) was mixed with a polymerization initiator (0.5%, N, N-dimethylaniline). The acrylic resins were injected using a precise syringe pump, with a 5-mL/min injection speed and 11.17 ± 1.60 mPa injection pressure (low-viscosity resin) and a 1-mL/min injection speed and 58.50 ± 5.75 mPa injection pressure (high-viscosity resin). Using the aforementioned conditions, scanning electron microscopy indicated that sufficient resin could be injected into the capillaries of the microvascular corrosion cast specimens. PMID:24107720

  12. [New acrylic resins with very low residual monomer].

    PubMed

    Ohe, Y; Kadoma, Y; Imai, Y

    1989-07-01

    New experimental acrylic resins were prepared by polymerization of MMA in the presence of vinylidene fluoride/hexafluoropropylene copolymer. The amount of residual monomer in the resins prepared by visible light curing, cold curing, and heat curing, at various polymer/monomer ratios, was measured and compared with the usual MMA/PMMA resin. In the visible light cured resins containing 60 or 70 wt% of the fluoropolymer, the amount of residual monomer was less than 0.1%. In the cold cured resins, the amount of residual monomer was very low: 0.2% and 0.7% for the resins containing 70 and 60 wt% of the polymer, respectively. These values were comparable to the usual heat cured MMA/PMMA resins. In the heat cured resins, the amount of residual monomer was the lowest; less than 0.1%, even in the resin consisting of 50 wt% polymer. Thus, we prepared new acrylic resins with much less residual monomer than the usual MMA/PMMA resins. PMID:2491165

  13. Influence of Surface Modifications of Acrylic Resin Teeth on Shear Bond Strength with Denture Base Resin-An Invitro Study

    PubMed Central

    Krishnan, Madhusudan; Krishnan, Chitra Shankar; Azhagarasan, N.S.; Sampathkumar, Jayakrishnakumar; Ramasubramanian, Hariharan

    2015-01-01

    Background Debonding of artificial teeth from the denture base is an important issue for edentulous patients rehabilitated with conventional or implant supported complete dentures. Aim The purpose of this study was to evaluate shear bond strength between denture base resin and acrylic resin denture teeth subjected to three different surface modifications on the ridge lap area as compared to unmodified denture teeth. Materials and Methods Forty acrylic resin central incisor denture teeth were selected and randomly divided into four test groups. The teeth in each group were subjected to one of the three different surface modifications, namely, chemical treatment, sandblasting and placement of retentive grooves on the ridge lap area respectively, prior to packing of the denture base resin. The group with unmodified teeth served as control. Forty acrylic resin test blocks thus obtained were tested for shear bond strength between acrylic resin teeth and denture base resin in Universal Testing Machine. Data obtained was statistically analysed using one-way ANOVA and Student- Newman- Keul’s test (p< 0.05). Results Analysis of shear bond strength revealed that retentive grooves on the ridge lap area showed highest bond strength values followed by sandblasting and both were statistically significant compared to the control and chemically treated groups. Unmodified surface of the resin teeth showed the least bond strength. Conclusion Within the limitations of this invitro study the placement of retentive grooves or sandblasting of the ridge lap area showed highly significant improvement in shear bond strength compared to the unmodified surface. Chemical treatment did not result in any significant improvement in the shear bond strength compared to the unmodified surface. PMID:26501005

  14. Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization.

    PubMed

    Jiang, Lijia; Xiong, Wei; Zhou, Yushen; Liu, Ying; Huang, Xi; Li, Dawei; Baldacchini, Tommaso; Jiang, Lan; Lu, Yongfeng

    2016-06-13

    Microfabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins. Specifically, microfabrication is carried out using higher writing velocities and it produces stronger polymeric microstructures. Furthermore, the amount of shrinkage typically observed in the production of three-dimensional microstructures is reduced also. By means of microspectrometry, we confirm that the thiol-acrylate mixture in TPP resins promote monomer conversion inducing a higher degree of cross-linked network formation. PMID:27410383

  15. Colour Stability of Heat and Cold Cure Acrylic Resins

    PubMed Central

    Ganesh, P R; Reddy, Madan Mohan; Ebenezar, A.V. Rajesh; Sivakumar, G

    2015-01-01

    Introduction: To evaluate the colour stability of heat and cold cure acrylic resins under simulated oral conditions with different colorants. Materials and Methods: Three different brands of heat cure acrylic resin and two rapid cure auto polymerizing acrylic resin of commercial products such as Trevelon Heat Cure (THC), DPI Heat cure (DHC), Pyrax Heat Cure (PHC), DPI Cold cure (DCC) and Acralyn-R-Cold cure (ACC) have been evaluated for discoloration and colour variation on subjecting it to three different, commonly employed food colorants such as Erythrosine, Tartarizine and Sunset yellow. In order to simulate the oral condition the food colorants were diluted with artificial saliva to the samples taken up for the study. These were further kept in an incubator at 37°C ± 1°C. The UV-visible spectrophotometer has been utilized to evaluate the study on the basis of CIE L* a* b* system. The prepared samples for standard evaluation have been grouped as control group, which has been tested with a white as standard, which is applicable for testing the colour variants. Results: The least colour changes was found to be with Sunset Yellow showing AE* value of 3.55 with heat cure acrylic resin branded as PHC material and the highest colour absorption with Tartarizine showing AE* value of 12.43 in rapid cure autopolymerzing acrylic resin material branded as ACC material. Conclusion: ACC which is a self cure acrylic resin shows a higher colour variation to the tartarizine food coloration. There were not much of discoloration values shown on the denture base resins as the food colorants are of organic azodyes. PMID:25738078

  16. Effects of denture teeth on the dimensional accuracy of acrylic resin denture bases.

    PubMed

    Baemmert, R J; Lang, B R; Barco, M T; Billy, E J

    1990-01-01

    The Michigan Computer-Graphics Coordinate Measurement System was used to determine the effects of artificial denture teeth on the accuracy of acrylic resin denture bases. Two poly(methyl methacrylate) acrylic resins and two processing techniques were tested. Groups processed with denture teeth reproduced more accurate points than groups processed without denture teeth. Groups processed with a conventional heat-polymerized acrylic resin reproduced more accurate points than groups polymerized with an injection pressing type of acrylic resin. PMID:2083021

  17. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  18. Bond strength between acrylic resin and maxillofacial silicone

    PubMed Central

    HADDAD, Marcela Filié; GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; CREPALDI, Nádia de Marchi; PESQUEIRA, Aldiéris Alves; BANNWART, Lisiane Cristina

    2012-01-01

    The development of implant dentistry improved the possibilities of rehabilitation with maxillofacial prosthesis. However, clinically it is difficult to bond the silicone to the attachment system. Objectives This study aimed to evaluate the effect of an adhesive system on the bond strength between acrylic resin and facial silicone. Material and Methods A total of 120 samples were fabricated with auto-polymerized acrylic resin and MDX 4-4210 facial silicone. Both materials were bonded through mechanical retentions and/or application of primers (DC 1205 primer and Sofreliner primer S) and adhesive (Silastic Medical Adhesive Type A) or not (control group). Samples were divided into 12 groups according to the method used to attach the silicone to the acrylic resin. All samples were subjected to a T-peel test in a universal testing machine. Failures were classified as adhesive, cohesive or mixed. The data were evaluated by the analysis of variance (ANOVA) and the Tukey's HSD test (α=.05). Results The highest bond strength values (5.95 N/mm; 3.07 N/mm; 4.75 N/mm) were recorded for the samples that received a Sofreliner primer application. These values were significantly higher when the samples had no scratches and did not receive the application of Silastic Medical Adhesive Type A. Conclusions The most common type of failure was adhesive. The use of Sofreliner primer increased the bond strength between the auto-polymerized acrylic resin and the Silastic MDX 4-4210 facial silicone. PMID:23329247

  19. Reinforcement of acrylic denture base resin by incorporation of various fibers.

    PubMed

    Chen, S Y; Liang, W M; Yen, P S

    2001-01-01

    This study was designed to evaluate improvements in the mechanical properties of acrylic resin following reinforcement with three types of fiber. Polyester fiber (PE), Kevlar fiber (KF), and glass fiber (GF) were cut into 2, 4, and 6 mm lengths and incorporated at concentrations of 1, 2, and 3% (w/w). The mixtures of resin and fiber were cured at 70 degrees C in a water bath for 13 h, then at 90 degrees C for 1 h, in 70 x 25 x 15 mm stone molds, which were enclosed by dental flasks. The cured resin blocks were cut to an appropriate size and tested for impact strength and bending strength following the methods of ASTM Specification No. 256 and ISO Specification No. 1567, respectively. Specimens used in the impact strength test were reused for the Knoop hardness test. The results showed that the impact strength tended to be enhanced with fiber length and concentration, particularly PE at 3% and 6 mm length, which was significantly stronger than other formulations. Bending strength did not change significantly with the various formulations when compared to a control without fiber. The assessment of Knoop hardness revealed a complex pattern for the various formulations. The Knoop hardness of 3%, 6 mm PE-reinforced resin was comparable to that of the other formulations except for the control without fiber, but for clinical usage this did not adversely affect the merit of acrylic denture base resin. It is concluded that, for improved strength the optimum formulation to reinforce acrylic resin is by incorporation of 3%, 6 mm length PE fibers. PMID:11241340

  20. Radiation curing of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Janowska, G.

    Polyester resin containing acrylic acid or its salts was cured with γ 60Co radiation. The course of curing was examined, the gel content and polymerization shrinkage were measured and also thermographic and IR absorption analyses were carried out. It was found that manganese, iron and copper acrylates inhibited the curing of resin while the remaining additives showed a slightly stimulating action. All the additives decreased the polymerization shrinkage by a factor of 2-3 and iron acrylate by as much as 8 times (up to 1%). They also increased the activation energy of the thermal decomposition of resin, and calcium, barium and copper acrylates increased the thermal stability of resin by 20 K. IR absorption spectra showed that acrylic acid and its salts reacted mainly with the monomeric component of the resin (styrene) whereas iron and copper acrylates first attacked the unsaturated bonds of the oligoester.

  1. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    PubMed Central

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed. PMID:26330974

  2. Flexural Strength of Cold and Heat Cure Acrylic Resins Reinforced with Different Materials

    PubMed Central

    Heidari, Bijan; Firouz, Farnaz; Izadi, Alireza; Ahmadvand, Shahbaz

    2015-01-01

    Objectives: Heat-polymerized acrylic resin has been the most commonly used denture base material for over 60 years. However, the mechanical strength of acrylic resin is not adequate for long-term clinical performance of dentures. Consequently, fracture is a common clinical occurrence, which often develops in the midline of the denture base. This study aimed to evaluate the efficacy of cold-cure and heat-cure acrylic resins, reinforced with glass fibers, polyethylene fibers, and metal wire for denture base repair. Materials and Methods: Ninety specimens were prepared and allocated to nine groups. Ten specimens were considered as controls, and 80 were divided into 8 experimental groups. In the experimental groups, the specimens were sectioned into two halves from the middle, and were then divided into two main groups: one group was repaired with heat cure acrylic resin, and the other with cold cure acrylic resin. Each group was divided into 4 subgroups: unreinforced, reinforced with glass fibers, polyethylene fibers, and metal wire. All specimens were subjected to a 3-point bending test, and the flexural strength was calculated. Results: The group repaired with heat cure acrylic resin and reinforced with glass fiber showed the highest flexural strength; however, the group repaired with cold cure acrylic resin and reinforced with polyethylene fibers had the lowest flexural strength. There was no significant difference between the groups repaired with heat cure and cold cure acrylic resins without reinforcement. Conclusion: Repairing denture base with heat cure acrylic resin, reinforced with glass fibers increases the flexural strength of denture base. PMID:26877726

  3. Attachment of Candida albicans to denture base acrylic resin processed by three different methods.

    PubMed

    Young, Beth; Jose, Anto; Cameron, Donald; McCord, Fraser; Murray, Colin; Bagg, Jeremy; Ramage, Gordon

    2009-01-01

    Denture stomatitis is a debilitating disease associated with the presence of adherent Candida albicans. This study compared the attachment capacity of C. albicans to three different acrylic resin materials (self-curing [SC], conventional pressure-packed [CPP], and injection-molded [IM]) to determine whether the physical properties of the materials influenced candidal attachment. No significant differences in attachment between the isolates were observed for each acrylic resin. However, a comparison of the mean of all isolates showed significantly less attachment to SC than to CPP (P < .05). These data indicate that choice of denture acrylic resin material may influence the capacity for developing denture stomatitis. PMID:20095199

  4. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    PubMed Central

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  5. An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Antimicrobial and Fracture Toughness Properties

    PubMed Central

    Rueggeberg, Frederick A.; Niu, Li-na; Mettenberg, Donald; Yiu, Cynthia K. Y.; Blizzard, John D.; Wu, Christine D.; Mao, Jing; Drisko, Connie L.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Global increase in patients seeking orthodontic treatment creates a demand for the use of acrylic resins in removable appliances and retainers. Orthodontic removable appliance wearers have a higher risk of oral infections that are caused by the formation of bacterial and fungal biofilms on the appliance surface. Here, we present the synthetic route for an antibacterial and antifungal organically-modified silicate (ORMOSIL) that has multiple methacryloloxy functionalities attached to a siloxane backbone (quaternary ammonium methacryloxy silicate, or QAMS). By dissolving the water-insoluble, rubbery ORMOSIL in methyl methacrylate, QAMS may be copolymerized with polymethyl methacrylate, and covalently incorporated in the pressure-processed acrylic resin. The latter demonstrated a predominantly contact-killing effect on Streptococcus mutans ATCC 36558 and Actinomyces naselundii ATCC 12104 biofilms, while inhibiting adhesion of Candida albicans ATCC 90028 on the acrylic surface. Apart from its favorable antimicrobial activities, QAMS-containing acrylic resins exhibited decreased water wettability and improved toughness, without adversely affecting the flexural strength and modulus, water sorption and solubility, when compared with QAMS-free acrylic resin. The covalently bound, antimicrobial orthodontic acrylic resin with improved toughness represents advancement over other experimental antimicrobial acrylic resin formulations, in its potential to simultaneously prevent oral infections during appliance wear, and improve the fracture resistance of those appliances. PMID:22870322

  6. A Comparison of Shear Bond Strength of Ceramic and Resin Denture Teeth on Different Acrylic Resin Bases

    PubMed Central

    Corsalini, Massimo; Venere, Daniela Di; Pettini, Francesco; Stefanachi, Gianluca; Catapano, Santo; Boccaccio, Antonio; Lamberti, Luciano; Pappalettere, Carmine; Carossa, Stefano

    2014-01-01

    The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the dif-ferently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indi-cated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermal-curing resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acryl-ic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting. PMID:25614770

  7. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine.

    PubMed

    Harrison, A

    1978-04-01

    Wear tests of various combinations of acrylic resin and porcelain were made using a machine which was designed to test materials under conditions similar to those of masticatory function by simulating the loads, sliding distances, and contact times encountered in the human masticatory cycle. The results showed that the amount of wear of the two materials worn in combination depended on the nature of the surrounding medium and on the surface roughness of the opposing material. Acrylic resin showed good wear resistance provided no third party abrasive or opposing hard, rough surface was present. When a mild abrasive was incorporated in the system, the acrylic resin vs acrylic resin combination wore almost seven times more than porcelain vs porcelain. Clinical experience would suggest that this is a reasonably sound order of wear. PMID:213546

  8. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  9. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymer units derived from methyl acrylate. (b) The finished food-contact article, when extracted with the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  10. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    PubMed

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. PMID:27404623

  11. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    PubMed Central

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  12. In Vitro Antifungal Evaluation of Seven Different Disinfectants on Acrylic Resins

    PubMed Central

    Yildirim-Bicer, A. Z.; Peker, I.; Akca, G.; Celik, I.

    2014-01-01

    Objective. The aim of this study was to evaluate alternative methods for the disinfection of denture-based materials. Material and Methods. Two different denture-based materials were included in the study. Before microbial test, the surface roughness of the acrylic resins was evaluated. Then, the specimens were divided into 8 experimental groups (n = 10), according to microorganism considered and disinfection methods used. The specimens were contaminated in vitro by standardized suspensions of Candida albicans ATCC#90028 and Candida albicans oral isolate. The following test agents were tested: sodium hypochlorite (NaOCl 1%), microwave (MW) energy, ultraviolet (UV) light, mouthwash containing propolis (MCP), Corega Tabs, 50% and 100% white vinegar. After the disinfection procedure, the number of remaining microbial cells was evaluated in CFU/mL. Kruskal-Wallis, ANOVA, and Dunn's test were used for multiple comparisons. Mann Whitney U test was used to compare the surface roughness. Results. Statistically significant difference (P < 0.05) was found between autopolymerised and heat-cured acrylic resins. The autopolymerised acrylic resin surfaces were rougher than surfaces of heat-cured acrylic resin. The most effective disinfection method was 100% white vinegar for tested microorganisms and both acrylic resins. Conclusion. This study showed that white vinegar 100% was the most effective method for tested microorganisms. This agent is cost-effective and easy to access and thus may be appropriate for household use. PMID:24995305

  13. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  14. The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin.

    PubMed

    Charasseangpaisarn, Taksid; Wiwatwarrapan, Chairat

    2015-12-01

    Monomer remaining in denture base acrylic can be a major problem because it may cause adverse effects on oral tissue and on the properties of the material. The purpose of this study was to compare the effect of various ultrasonic cleaner frequencies on the amount of residual monomer in acrylic resin after curing. Forty-two specimens each of Meliodent heat-polymerized acrylic resin (M) and Unifast Trad Ivory auto-polymerized acrylic resin (U) were prepared according to their manufacturer's instructions and randomly divided into seven groups: Negative control (NC); Positive control (PC); and five ultrasonic treatment groups: 28 kHz (F1), 40 kHz (F2), 60 kHz (F3) (M=10 min, U=5 min), and 28 kHz followed by 60 kHz (F4: M=5 min per frequency, U=2.5 min per frequency, and F5: M=10 min followed by 5 min per frequency, U=5 min followed by 2.5 min per frequency). Residual monomer was determined by HPLC following ISO 20795-1. The data were analyzed by One-way ANOVA and Tukey HSD. There was significantly less residual monomer in the auto-polymerized acrylic resin in all ultrasonic treatment groups and the PC group than that of the NC group (p<0.05). However, the amount of residual monomer in group F3 was significantly higher than that of the F1, F4, and PC groups (p<0.05). In contrast, ultrasonic treatment did not reduce the amount of residual monomer in heat-polymerized acrylic resin (p>0.05). The amount of residual monomer in heat-polymerized acrylic resin was significantly lower than that of auto-polymerized acrylic resin. In conclusion, ultrasonic treatment at low frequencies is recommended to reduce the residual monomer in auto-polymerized acrylic resin and this method is more practical in a clinical situation than previously recommended methods because of reduced chairside time. PMID:26190059

  15. Assessment of the flexural strength of two heat-curing acrylic resins for artificial eyes.

    PubMed

    Fernandes, Aline Ursula Rocha; Portugal, Aline; Veloso, Letícia Rocha; Goiato, Marcelo Coelho; Santos, Daniela Micheline dos

    2009-01-01

    Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 +/- 11.90 MPa) and lowest means (71.07 +/- 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes. PMID:19893960

  16. Effect of microwave treatments on dimensional accuracy of maxillary acrylic resin denture base.

    PubMed

    Pavan, Sabrina; Arioli Filho, João Neudenir; Dos Santos, Paulo Henrique; Mollo, Francisco de Assis

    2005-01-01

    Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts. PMID:16475605

  17. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  18. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  19. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    PubMed

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective. PMID:364448

  20. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  1. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  2. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  3. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  4. The bond between acrylic resin denture teeth and the denture base: recommendations for best practice.

    PubMed

    Radford, D R; Juszczyk, A S; Clark, R K F

    2014-02-01

    Failure of the bond between denture teeth and base acrylic resin has been shown to be a cause of denture failure leading to inconvenience and costly repair. The optimal combination of acrylic resin denture tooth, denture base material, laboratory protocol and processing method has not yet been established. Extensive research enables the following recommendations for best practice to be made. Adopt practices that maximise the strength of the bond: select appropriate denture teeth; select base acrylic resin from the same manufacturer as the denture teeth; remove the glaze from ridgelaps of the denture teeth; apply monomer to the ridgelaps of the denture teeth before packing the base acrylic resin dough; use the manufacturers' recommended liquid/powder ratio; follow the manufacturers' recommended curing cycle; allow the flask to cool slowly and rest before deflasking. Adopt practices that avoid factors detrimental to bond strength: remove all traces of wax from the ridge laps of the denture teeth; remove all traces of mould seal from the ridgelaps of the denture teeth. It is evident that a number of factors are involved which may assist or prevent formation of an adequate bond, suggesting that attention to detail by the dental technician may be the most critical factor. PMID:24557385

  5. Prosthodontic self-treatment with acrylic resin super glue: a case report.

    PubMed

    Winkler, Sheldon; Wood, Robert; Facchiano, Anne M; Boberick, Kenneth G; Patel, Amita R

    2006-01-01

    A case history is presented of a patient who fabricated 3 prostheses from autopolymerizing acrylic resin intended for fingernail augmentation and then cemented them into her mouth with super glue. Patients must be warned not to attempt self-treatment for esthetics with self-fabricated prostheses because severe adverse and irreversible hard and soft tissue reactions may occur. PMID:16836177

  6. Do flexible acrylic resin lingual flanges improve retention of mandibular complete dentures?

    PubMed Central

    Ahmed Elmorsy, Ayman Elmorsy; Ahmed Ibraheem, Eman Mostafa; Ela, Alaa Aboul; Fahmy, Ahmed; Nassani, Mohammad Zakaria

    2015-01-01

    Objectives: The aim of this study was to compare the retention of conventional mandibular complete dentures with that of mandibular complete dentures having lingual flanges constructed with flexible acrylic resin “Versacryl.” Materials and Methods: The study sample comprised 10 completely edentulous patients. Each patient received one maxillary complete denture and two mandibular complete dentures. One mandibular denture was made of conventional heat-cured acrylic resin and the other had its lingual flanges made of flexible acrylic resin Versacryl. Digital force-meter was used to measure retention of mandibular dentures at delivery and at 2 weeks and 45 days following denture insertion. Results: The statistical analysis showed that at baseline and follow-up appointments, retention of mandibular complete dentures with flexible lingual flanges was significantly greater than retention of conventional mandibular dentures (P < 0.05). In both types of mandibular dentures, retention of dentures increased significantly over the follow-up period (P < 0.05). Conclusions: The use of flexible acrylic resin lingual flanges in the construction of mandibular complete dentures improved denture retention. PMID:26539387

  7. Effect of Nanoclay on Thermal Conductivity and Flexural Strength of Polymethyl Methacrylate Acrylic Resin

    PubMed Central

    Ghaffari, Tahereh; Barzegar, Ali; Hamedi Rad, Fahimeh; Moslehifard, Elnaz

    2016-01-01

    Statement of the Problem The mechanical and thermal properties of polymethyl methacrylate (PMMA) acrylic resin should be improved to counterweigh its structural deficiencies. Purpose The aim of this study was to compare the flexural strength and thermal conductivity of conventional acrylic resin and acrylic resin loaded with nanoclay. Materials and Method The methacrylate monomer containing the 0.5, 1 and 2 wt% of nanoclay was placed in an ultrasonic probe and mixed with the PMMA powder. Scanning electron microscopy was used to verify homogeneous distribution of particles. Twenty-four 20×20×200-mm cubic samples were prepared for flexural strength test; 18 samples containing nanoclay and 6 samples for the control group. Another 24 cylindrical samples of 38×25 mm were prepared for thermal conductivity test. One-way ANOVA was used for statistical analysis, followed by multiple-comparison test (Scheffé’s test). Statistical significance was set at p< 0.05. Results Increasing the concentration of nanoclay incorporated into the acrylic resin samples increased thermal conductivity but decreased flexural strength (p< 0.05). Conclusion Based on the results of this study, adding nanoclay particles to PMMA improved its thermal conductivity, while it had a negative effect on the flexural strength. PMID:27284557

  8. [MORPHOLOGICAL FEATURES OF RAT MUCOUS MEMBRANE OF THE TONGUE EARLY AFFECTED BY ACRYLIC RESIN MONOMER].

    PubMed

    Davydenko, V; Nidzelskiy, M; Starchenko, I; Davydenko, A; Kuznetsov, V

    2016-03-01

    Base materials, made on the basis of various derivatives of acrylic and methacrylic acids, have been widely used in prosthetic dentistry. Free monomer, affecting the tissues of prosthetic bed and the whole body, is always found in dentures. Therefore, study of the effect of acrylic resins' monomer on mucous membrane of the tongue is crucial. Rat tongue is very similar to human tongue, and this fact has become the basis for selecting these animals to be involved into the experiment. The paper presents the findings related to the effect of "Ftoraks" base acrylic resin monomer on the state of rat mucous membrane of the tongue and its regeneration. The microscopy has found that the greatest changes in the mucous membrane of the tongue occur on day 3 and 7 day after applying the monomer and are of erosive and inflammatory nature. Regeneration of tongue epithelium slows down. PMID:27119844

  9. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  10. The effect of flexible acrylic resin on masticatory muscle activity in implant-supported mandibular overdentures: a controlled clinical trial

    PubMed Central

    Ibraheem, Eman Mostafa Ahmed; Nassani, Mohammad Zakaria

    2016-01-01

    Background It is not yet clear from the current literature to what extent masticatory muscle activity is affected by the use of flexible acrylic resin in the construction of implant-supported mandibular overdentures. Objective To compare masticatory muscle activity between patients who were provided with implant-supported mandibular overdentures constructed from flexible acrylic resin and those who were provided with implant-supported mandibular overdentures constructed from heat-cured conventional acrylic resin. Methods In this clinical trial, 12 completely edentulous patients were selected and randomly allocated into two equal treatment groups. Each patient in Group 1 received two implants to support a mandibular overdenture made of conventional acrylic resin. In Group 2, the patients received two implants to support mandibular overdentures constructed from “Versacryl” flexible acrylic resin. The maxillary edentulous arch for patients in both groups was restored by conventional complete dentures. For all patients, masseter and temporalis muscle activity was evaluated using surface electromyography (sEMG). Results The results showed a significant decrease in masticatory muscle activity among patients with implant-supported mandibular overdentures constructed from flexible acrylic resin. Conclusion The use of “Versacryl” flexible acrylic resin in the construction of implant-supported mandibular overdentures resulted in decreased masticatory muscle activity. PMID:26955445

  11. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial

    PubMed Central

    Liu, Si-ying; Tonggu, Lige; Niu, Li-na; Gong, Shi-qiang; Fan, Bing; Wang, Liguo; Zhao, Ji-hong; Huang, Cui; Pashley, David H.; Tay, Franklin R.

    2016-01-01

    Quaternary ammonium methacryloxy silicate (QAMS)-containing acrylic resin demonstrated contact-killing antimicrobial ability in vitro after three months of water storage. The objective of the present double-blind randomised clinical trial was to determine the in vivo antimicrobial efficacy of QAMS-containing orthodontic acrylic by using custom-made removable retainers that were worn intraorally by 32 human subjects to create 48-hour multi-species plaque biofilms, using a split-mouth study design. Two control QAMS-free acrylic disks were inserted into the wells on one side of an orthodontic retainer, and two experimental QAMS-containing acrylic disks were inserted into the wells on the other side of the same retainer. After 48 hours, the disks were retrieved and examined for microbial vitality using confocal laser scanning microscopy. No harm to the oral mucosa or systemic health occurred. In the absence of carry-across effect and allocation bias (disks inserted in the left or right side of retainer), significant difference was identified between the percentage kill in the biovolume of QAMS-free control disks (3.73 ± 2.11%) and QAMS-containing experimental disks (33.94 ± 23.88%) retrieved from the subjects (P ≤ 0.001). The results validated that the QAMS-containing acrylic exhibits favourable antimicrobial activity against plaque biofilms in vivo. The QAMS-containing acrylic may also be used for fabricating removable acrylic dentures. PMID:26903314

  12. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  13. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  14. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  15. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material

    PubMed Central

    Mahross, Hamada Zaki; Baroudi, Kusai

    2015-01-01

    Objective: The objective was to investigate the effect of silver nanoparticles (AgNPs) incorporation on viscoelastic properties of acrylic resin denture base material. Materials and Methods: A total of 20 specimens (60 × 10 × 2 mm) of heat cured acrylic resin were constructed and divided into four groups (five for each), according to the concentration of AgNPs (1%, 2%, and 5% vol.) which incorporated into the liquid of acrylic resin material and one group without additives (control group). The dynamic viscoelastic test for the test specimens was performed using the computerized material testing system. The resulting deflection curves were analyzed by material testing software NEXYGEN MT. Results: The 5% nanoparticles of silver (NAg) had significantly highest mean storage modulus E’ and loss tangent Tan δ values followed by 2% NAg (P < 0.05). For 1% nanosilver incorporation (group B), there were no statistically significant differences in storage modulus E’, lost modulus E” or loss tangent Tan δ with other groups (P > 0.05). Conclusion: The AgNPs incorporation within the acrylic denture base material can improve its viscoelastic properties. PMID:26038651

  16. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  17. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; SOUZA, Josiene Firmino; MORENO, Amália; PESQUEIRA, Aldiéris Alves

    2010-01-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important eissue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. Objective This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Material and methods Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. Results All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Conclusions Both polishing methods presented no significant difference between the values of color derivatives of resins. PMID:21308298

  18. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance.

    PubMed

    Vallittu, P K; Lassila, V P; Lappalainen, R

    1994-06-01

    This study tested the effect on the fracture resistance of acrylic resin test specimens when different amounts of fibers were incorporated in the resin matrix. The fibers used included glass, carbon, and aramid fibers, with 30 test specimens of each concentration of fibers. Transverse sections of the specimens were studied by scanning electron microscope to establish how the fibers behave in the polymerization process. The results indicated that an increase in the amount of fibers enhanced the fracture resistance of the test specimens (p < 0.001). The SEM micrographs of transverse sections of test polymerized specimens revealed void spaces of different sizes inside the fiber roving. PMID:8040825

  19. Flexural strength of acrylic resin denture bases processed by two different methods.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of the conventional method (P=0.006). This difference was statistically significant (P=0.006). Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the molding technique. PMID:25346833

  20. Flexural Strength of Acrylic Resin Denture Bases Processed by Two Different Methods

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of the conventional method (P=0.006). This difference was statistically significant (P=0.006). Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the molding technique. PMID:25346833

  1. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  2. The bond strength of elastomer tray adhesives to thermoplastic and acrylic resin tray materials.

    PubMed

    Hogans, W R; Agar, J R

    1992-04-01

    This study evaluated the bond strength of selected impression materials (Permlastic, Express, and Hydrosil) to a thermoplastic custom tray material as a function of drying time of the adhesive after application to a tray material. In addition, bond strengths of a polysulfide impression material to an acrylic resin tray material and to a thermoplastic tray material made directly against wax were evaluated. Bond strengths were obtained directly from values of applied load at failure and important conclusions were drawn. PMID:1507140

  3. Impact and Flexural Strength, and Fracture Morphology of Acrylic Resins With Impact Modifiers

    PubMed Central

    Faot, Fernanda; Panza, Leonardo H V; Garcia, Renata C M Rodrigues; Cury, Altair Antoninha Del Bel

    2009-01-01

    Objectives: This study evaluated the impact and flexural strength and analyzed the fracture behavior of acrylic resins. Methods: Eighteen rectangular specimens were fabricated of Lucitone 550, QC 20 (both unreinforced acrylic resins), Impact 1500 (extra strength impact), Impact 2000 (high impact) according to the manufacturers’ instructions. The impact strength was evaluated in notched specimens (50x6x4mm) and flexural strength in unotched (64x10x3.3mm), using three-point bending test, as well as, stress at yield, Young modulus and displacement at yield. Fragments from mechanical tests were observed by SEM. Data from impact strength, stress at yield and displacement at yield were analyzed by 1-way ANOVA and Tukey test (α=0.05). Young modulus values were analyzed by One-way ANOVA and Dunnett T3 multiple comparisons test (α=0.05). Results: Mean values of impact strength and stress at yield values were higher (P<.005) for Impact 2000 while Young modulus was higher (P<.05) for Lucitone 550; Impact 1500 and Impact 2000 showed significant values (P<.05) in the displacement at yield. Impact fractures of the all acrylic resins were brittle. Bending fractures of Lucitone 550 and Impact 2000 were brittle, QC 20 fractures were ductile and Impact 1500 showed brittle (75%) and ductile (25%) fractures. Conclusion: Within the limitations of this study, the Impact 2000 showed improved mechanical properties with high capacity of stress absorption and energy dissipation before the fracture. PMID:19657461

  4. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  5. Synthesis and molecular characterization of acrylate liquid crystalline resin monomers (ALCRM).

    PubMed

    He, X P; Cai, W; Guo, L; Zhou, L Z; Nie, M H

    2015-01-01

    A novel biocompatible resin monomer 4—3—(acryloyloxy)—2—hydroxypropoxy) phenyl 4—(3—(acryloyloxy)—2—hydroxypropoxy) benzoate, as an oral restorative — acrylate liquid crystalline resin monomer (ALCRM) was synthesized. The intermediate product and the final product were characterized by differential scanning calorimetry (DSC), polarized optical microscope (POM), and nuclear magnetic resonance (NMR). A resin matrix which has a potential application in dental composites was prepared by photopolymerizing ALCRM and triethylene glycol dimethacrylate (TEGDMA) as a primary and diluted monomer with a photosensitizer of camphorquinone (CQ) and 2—(Dimethylamino)ethyl methacrylate (DMAEMA) mixture. The molar ratio of ALCRM and TEGDMA was 7:3. The properties such as the curing depth, curing time, and the volumetric shrinkage of the resin matrix were investigated and compared with a traditional composite resin matrix Bis—GMA. After photocuring polymerization, the conversion degree of the resin matrix is 68.06%, higher than Bis—GMA/TEGDMA; the curing time is 4.08±0.20min, the curing depth is 2.10±0.17mm, and the volumetric shrinkage is 3.62%±0.26%. All the properties exhibit a better performance of the prepared resin matrix than Bis—GMA. PMID:26475389

  6. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  7. Water Sorption and Flexural Strength of Thermoplastic and Conventional Heat-Polymerized Acrylic Resins

    PubMed Central

    Hemmati, Mohammad Ali; Vafaee, Fariborz

    2015-01-01

    Objectives: The aim of this study was to assess and compare the water sorption and flexural strength of thermoplastic and conventional acrylic resins. Materials and Methods: Water sorption and flexural strength were compared between a thermoplastic modified polymethyl methacrylate (PMMA) denture base resin (group A) and a heat-polymerized PMMA acrylic resin (group B) as the control group (n=10). A three-point bending test was carried out for flexural strength testing. For water sorption test, 10 disc-shaped samples were prepared. After desiccating, the samples were weighed and immersed in distilled water for seven days. Then, they were weighed again, and desiccated for the second and third times. Differences between the mean values in the two groups were analyzed using Student’s t-test. Results: The mean value of water sorption was 14.74±1.36 μg/mm3 in group A, and 19.11±0.90 μg/mm3 in group B; this difference was statistically significant (P< 0.001). The mean value of flexural strength was 88.21±8.63 MPa in group A and 77.77±9.49 MPa in group B. A significant difference was observed between the two groups (P= 0.019). Conclusion: Flexural strength of group A was significantly higher than that of group B, and its water sorption was significantly lower. Thus, thermoplastic resins can be a suitable alternative to conventional PMMA acrylic resins as denture base materials. PMID:26877737

  8. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  9. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin.

    PubMed

    Gong, Shi-Qiang; Epasinghe, D Jeevanie; Zhou, Bin; Niu, Li-Na; Kimmerling, Kirk A; Rueggeberg, Frederick A; Yiu, Cynthia K Y; Mao, Jing; Pashley, David H; Tay, Franklin R

    2013-06-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol-gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly(methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  10. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin

    PubMed Central

    Gong, Shi-qiang; Epasinghe, D. Jeevanie; Zhou, Bin; Niu, Li-na; Kimmerling, Kirk A.; Rueggeberg, Frederick A.; Yiu, Cynthia K.Y.; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol–gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly (methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3 month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4 wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  11. Antifungal Effect of Zataria multiflora Essence on Experimentally Contaminated Acryl Resin Plates With Candida albicans

    PubMed Central

    Jafari, Abbas Ali; Falah Tafti, Abbas; Hoseiny, Seyed Mehdi; Kazemi, Abdolhossein

    2015-01-01

    Background: Adherence and colonization of Candida species particularly C. albicans on denture surfaces, forms a microbial biofilm, which may result denture stomatitis in complete denture users. Objectives: The purpose of the present study was to evaluate the antifungal effect Zataria multiflora essence in removing of Candida albicans biofilms on experimentally contaminated resin acryl plates. Materials and Methods: In the present experimental study, 160 resin acrylic plates (10 × 10 × 1 mm) were contaminated by immersion in 1 × 103 C. albicans suspension for 24 hours to prepare experimental Candida biofilms. The total number of Candida cells, which adhered to 20 randomly selected acryl resin plates was determined as the Candia load before cleaning. The remaining 140 plates were divided to seven groups of 20 and immersed in five concentrations of Zataria multiflora essence from 50 to 3.125 mg/mL as test, 100000 IU nystatin as the positive and sterile physiologic serum as the negative control. The remaining Candida cells on each acryl plate were also enumerated and data were analyzed using the SPSS 16 software with Kruskal-Wallis and Wilcoxon tests. Results: Zataria essence at concentrations of 50 and 25 mg/mL removed 100% of attached Candida cells similar to nystatine (MFC), while weaker Zataria essence solutions cleaned 88%, 60.5% and 44.7% of attached Candida cells. Kruskal-wallis test showed a statistically significant difference between all test groups (P = 0.0001). In this study 12.5 mg/mL concentration of Zataria multiflora was considered as the minimum inhibitory concentration (MIC90). Conclusions: Zataria essence, at concentrations of 50 and 25 mg/mL, effectively removed Candida cells that had adhered to the denture surface, similar to the level of removal observed for 100000 IU nystatin. PMID:25763273

  12. Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid)

    SciTech Connect

    Li, Zicheng; Ono, Robert J.; Wu, Zong-Quan; Bielawski, Christopher W.

    2011-01-01

    A modular and convenient synthesis of ethynyl end functionalized poly(3-hexylthiophene) in high purity is reported; this material facilitated access to poly(3-hexylthiophene)-block-poly(acrylic acid) which self-assembled into hierarchical structures.

  13. Effect of Polymerization Cycles on Gloss, Roughness, Hardness and Impact Strength of Acrylic Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Folli, Bianca L; Nogueira, Moises C F; Correr, Americo Bortolazzo; Mesquita, Marcelo F

    2016-04-01

    The aim of this study was to evaluate the conventional and boiled polymerization cycles on gloss, roughness, hardness and impact strength of acrylic resins. Samples were made for each Classico and QC-20 materials (n=10) in dental stone molds obtained from rectangular metallic matrices embedded in metallic flasks. The powder-liquid ratio and manipulation of the acrylic resins' were accomplished according to manufacturers' instructions and the resins were conventionally packed in metallic flasks. After polymerization by (1) conventional: 74 °C for 9 h (Classico) and (2) boiled: 20 min (QC-20) cycles, the samples were deflasked after cooling at room temperature and conventionally finished and polished. The properties were evaluated after storage in water at 37 °C for 24 h. Gloss was verified with Multi Gloss 268 meter (Konica Minolta), surface roughness was measured with Surfcorder SE 1700 rugosimeter (Kosaka), Knoop hardness number was obtained with HMV-200 microdurometer, and impact strength was measured in an Otto Wolpert-Werke device by Charpy system (40 kpcm). Data were subjected to Student's t-test (at α=0.05). The results were: Gloss: 67.7 and 62.2 for Classico and QC-20 resins, respectively; Surface roughness: 0.874 and 1.469 Ra-µm for Classico and QC-20, respectively; Knoop hardness: 27.4 and 26.9 for Classico and QC-20, respectively; and Impact strength: 37.6 and 33.6 kgf/cm2 for Classico and QC-20, respectively. No statistically significant difference (p>0.05)were found between the resins for the evaluated properties. In conclusion, conventional and boiled polymerization cycles had similar effects on gloss, roughness, hardness and impact strength of both Classico and QC-20 resins. PMID:27058380

  14. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists.

    PubMed

    Ghazal, Muhamad; Hedderich, Jürgen; Kern, Matthias

    2008-12-01

    The aim of this study was to evaluate the wear of denture teeth and their antagonists produced by two-body and three-body wear tests. Three types of denture teeth, namely feldspathic ceramic (FC), nano-filled composite resin (NCR), and experimental acrylic resin teeth (AR), were tested. For each type two groups of eight upper premolars each were prepared. The first group was tested against cusps from the same material and the second group was tested against human enamel cusps. Each group was loaded with a total of 200,000 chewing cycles (two-body wear 100,000 cycles and three-body wear 100,000 cycles). Wear was analyzed by measuring the maximum depth and volume loss of the denture teeth using a laser scanner and by measuring the vertical loss of the antagonists using an optical macroscope. Statistically, there was no significant difference between the following combinations: FC-FC and NCR-NCR regarding the vertical and volume loss; and FC-enamel and NCR-enamel regarding the total vertical substance loss. The combinations AR-AR and AR-enamel showed higher wear values than the other combinations. For complete dentures, composite resin and ceramic teeth showed similar vertical and volume loss, whereas composite resin teeth seemed to be more suitable for partial dentures opposing natural teeth in terms of wear of teeth and antagonists. PMID:19049531

  15. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    PubMed

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA. PMID:27132475

  16. Calibration of particle position on digital holography using transparent resin block with dispersed particles

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Yoshino, T.; Harada, D.; Murata, S.

    2009-11-01

    This paper describes the use of a Calibration Block (CB) for evaluating the accuracy of digital holography in particle position measurement. CB made of acrylic has three layers and the gap between the layers is filled with transparent resin. The refractive index of the resin and the layers is almost the same (1.49). Fin Block (FB), which is not filled with resin, is introduced in order to evaluate effects of the resin. The fringe edges of several holographic patterns are observed by using three kinds of CB and FB. Each layer is coated with spherical particles (diameter: 16.36 ± 0.42 μ m). The influence of multiple scattering on the detected depth of the particles is evaluated by changing the number density of particles. Three kinds of CB and FB are prepared (averaged particle density in the holographic pattern; 83.2, 166.5 and 249.7). The fringe edges of the holographic patterns generated in CB and FB are observed, respectively. It is found that the fringe edges of CB are clearer than FB. Also, Multiple scattering acts as a source of background noise with high spatial frequency, which has almost the same frequency as that of the particle diffraction on the fringe patterns, and reduces the effective signal-to-noise ratio of the holographic pattern. CB can be used to evaluate the influence of multiple scattering on the detected particle depth.

  17. The Influence of Polymerization Type and Reinforcement Method on Flexural Strength of Acrylic Resin

    PubMed Central

    Fonseca, Rodrigo Borges; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; Naves, Lucas Zago; Hoeppner, Márcio Grama

    2015-01-01

    The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N = 10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25 × 2 × 2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a = 5%) showing significant interaction (P = 0.008), for SC: Uni (241.71 ± 67.77)a, Uni-Short (221.05 ± 71.97)a, Ind (215.21 ± 46.59)ab, SW (190.51 ± 31.49)abc, Short (156.31 ± 28.76)bcd, Tpl (132.51 ± 20.21)cd, Control SC (101.47 ± 19.79)d and for HC: Ind (268.93 ± 105.65)a, Uni (215.14 ± 67.60)ab, Short (198.44 ± 95.27)abc, Uni-Short (189.56 ± 92.27)abc, Tpl (161.32 ± 62.51)cd, SW (106.69 ± 28.70)cd, and Control HC (93.39 ± 39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics. PMID:25879079

  18. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin

    PubMed Central

    Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-01-01

    Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917

  19. IN VITRO ANTIFUNGAL ACTION OF DIFFERENT SUBSTANCES OVER MICROWAVED-CURED ACRYLIC RESINS

    PubMed Central

    Montagner, Henrique; Montagner, Francisco; Braun, Katia Olmedo; Peres, Paulo Edelvar Correa; Gomes, Brenda Paula Figueiredo de Almeida

    2009-01-01

    Objective: The presence of Candida albicans on the surfaces of denture-base acrylic resins is strongly related to the development of oral stomatitis. This study evaluated the antifungal action of different agents over microwave-cured acrylic resin without polishing specimens previously contaminated with Candida albicans. Material and Methods: Sixty specimens were immersed in BHI broth previously inoculated with the yeast and stored for 3 h at 37°C. They were divided into 5 experimental groups (n=10): G1: 2% chlorhexidine solution (10 min); G2: 0.5% sodium hypochlorite (10 min); G3: modified sodium hypochlorite (10 min); G4: effervescent agent (5 min); G5: hydrogen peroxide 10v (30 min). The specimens of the control group 1 (C1) were not disinfected. Ten additional specimens of the control group 2 (C2) were not infected with the yeast, aiming to check the asepsis during the experiment. The disinfection agents were neutralized and the acrylic resin specimens were immersed in BHI Broth for 24 h. Culture media turbidity was evaluated spectrophotometrically according to the transmittance degree, i.e. the higher the transmittance the stronger the antimicrobial action. Statistical analysis was performed (Kruskal-Wallis Test, p<0.05). Results: The results, represented by the medians, were: G1 = 40; G2 = 100; G3 = 100; G4 = 90; G5 = 100; C1 = 40; C2 = 100. Conclusions: This in vitro study suggested that sodium hypochlorite-based substances and hydrogen peroxide are more efficient disinfectants against C. albicans than 2% chlorhexidine solution and the effervescent agent. PMID:19936521

  20. Effects of Sonication Conditions on Ultrasonic Dispersion of Inorganic Particles in Acrylic Resin

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Yasui, Kyuichi; Towata, Atsuya; Kato, Kazumi

    2011-07-01

    The effects of sonication conditions on the ultrasonic dispersion of titanium dioxide particles in acrylic resin are investigated. Pulsing operation at appropriate on-off duty cycles enables us to attain a particle size smaller than that at a continuous wave (CW) at the same net time of sonication between operations. It is useful that frequency-sweep operation attains almost the same particle size as that at CW, which can provide a constant dispersion of particles even if the resonant frequency used to effectively drive an ultrasonic transducer changes with liquid conditions, such as the temperature and acoustic impedance of a liquid.

  1. Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization

    PubMed Central

    ARIOLI FILHO, João Neudenir; BUTIGNON, Luís Eduardo; PEREIRA, Rodrigo de Paula; LUCAS, Matheus Guilherme; MOLLO JUNIOR, Francisco de Assis

    2011-01-01

    Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). Conclusion All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength. PMID:21625742

  2. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling.

    PubMed

    Saavedra, Guilherme; Valandro, Luiz Felipe; Leite, Fabiola Pessoa Pereira; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco A; Kimpara, Estevão T

    2007-01-01

    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-microm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength. PMID:17455445

  3. Allergic effects of the residual monomer used in denture base acrylic resins

    PubMed Central

    Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim

    2015-01-01

    Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705

  4. A technique to splint and verify the accuracy of implant impression copings with light-polymerizing acrylic resin.

    PubMed

    Rutkunas, Vygandas; Ignatovic, Jevgenija

    2014-03-01

    Transferring the implant position from the mouth to the definitive cast is one of the most critical steps in implant prosthodontics. To achieve a passive fit of the prosthesis, an accurate implant impression is crucial because discrepancies can induce both biologic and technical complications. Analysis of available research data suggests that a direct (pick-up) impression technique with splinted copings is the technique of choice, particularly for multiple implants. However, the traditional method of splinting the copings with autopolymerizing acrylic resin is a technique-sensitive and time- consuming procedure. This report describes a straightforward method of splinting impression copings with light-polymerizing acrylic resin, with minimal amount of autopolymerizing acrylic resin. The method also can be used to verify splinting accuracy. PMID:24445030

  5. COLOR STABILITY OF DENTURE TEETH AND ACRYLIC BASE RESIN SUBJECTED DAILY TO VARIOUS CONSUMER CLEANSERS

    PubMed Central

    Moon, Audrey; Powers, John M.; Kiat-amnuay, Sudarat

    2014-01-01

    Objective This study evaluated color stability of acrylic denture teeth and base resins after 48 weeks of commercial denture cleanser simulation. Materials and Methods Two brands of denture teeth (Trubyte Portrait IPN, TP; SR Vivodent DCL, SR) in shades A1, B1, and C1 and three acrylic base resins (Lucitone, LU; Paragon, PA; Valplast, VA) prepared to manufacturer’s specifications, were exposed 10 hours daily to four cleansers (Clorox Bleach, CB; Polident 3-minute, PO3; Efferdent, EF; and Kleenite, KL) and distilled water (DW) control, approximating consumer overnight use. Color measurements used the CIE L*a*b* color space (0, 4, 12, 24, 36, and 48 weeks.) Color differences (ΔE*) at 48-weeks were subjected to 4-way analysis-of-variance (ANOVA). Mean values were compared with Fisher’s PLSD intervals (0.05 significance level). Results Mean color differences (ΔE*) demonstrated color changes in each material. ANOVA indicated color changes in teeth were significantly affected by both cleansers and teeth brand (p<0.05), but not shade. Color changes in base resins were significantly affected by cleansers (p<0.05), but not brand alone. Overall, KL produced the least color change while CB and PO3 produced the most for all materials. Conclusions After 48 weeks of daily simulation, TP teeth were more color-stable than SR in all cleansers except EF (p<0.0001). Base resin VA was less color-stable than LU and PA. Cleanser KL resulted in the lowest color changes. Clinical Significance All tested materials yield clinically acceptable color changes (ΔE*<3.5); all cleansing methods tested can be recommended, though Kleenite demonstrated the least change after 48-weeks. PMID:24980803

  6. Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line.

    PubMed

    da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho; Bonatto, Liliane da Rocha; de Medeiros, Rodrigo Antonio; Santos, Daniela Micheline Dos; Rangel, Elidiane Cipriano; Oliveira, Sandra Helena Penha de

    2016-10-01

    The aim of this study was to evaluate the influence of pigment incorporation on the cytotoxicity of ocular prosthesis N1 color acrylic resin. Nine samples were manufactured by heat-polymerization in water bath and divided into 3 groups: acrylic resin without pigment incorporation (group R), acrylic resin with pigment incorporation (group RP), and acrylic pigment (group P). Eluates formed after 72h of sample immersion in medium were incubated with conjunctival cell line (Chang conjunctival cells) for 72h. The negative control group consisted in medium without samples (group C). The cytotoxic effect from the eluates was evaluated using MTT assay (cell proliferation), ELISA assay (quantification of IL1β, IL6, TNF α and CCL3/MIP1α) and RT-PCR assay (mRNA expression of COL IV, TGF β and MMP9). Data were submitted to ANOVA with Bonferroni post-tests (p<0.05). All groups were considered non-cytotoxic based on cell proliferation. However, resin with pigment incorporation showed significant IL6 quantity increase. Resin without pigment incorporation exhibited higher mRNA expression of COL IV, MMP9 and TGF β, however it was also observed for the negative control group. The materials exhibited divergent biological behavior. Despite the pigment incorporation that resulted in an increase of IL6, no cytotoxicity was observed based on cell proliferation. PMID:27521695

  7. Comparative evaluation of different mechanical modifications of denture teeth on bond strength between high-impact acrylic resin and denture teeth: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Chintalapudi, Siddesh Kumar; Sachdeva, Harleen; Dhall, Rupinder Singh; Sharma, Neeraj; Prabhu, Allama

    2016-01-01

    Aim and Objective: Acrylic teeth separates from the denture base and remains a major worry in day-to-day routine dental procedure. The present study was conducted to comparatively evaluate different mechanical modifications of acrylic teeth on bond strength between Lucitone 199 heat cure resin and cross-linked teeth. Materials and Methods: The test specimens, central incisors (21) were demarcated into four groups. Group 1 was the control group, whereas Group 2, Group 3, and Group 4 were experimental groups modified with round groove, vertical groove, and T-shaped groove, respectively. The preparation of masterpiece was done by aligning the long axis of the central incisor teeth at 45° to the base of a wax block (8 mm × 10 mm × 30 mm), with ridge lap surface contacting the base. These test specimen (21) was prepared by Lucitone 199 heat cure resin. Evaluation of bond strength of all the specimens was done using universal tester (materials testing machine). Shapiro–Wilk Test, one-way analysis of variance (ANOVA), and Bonferroni test were done to do statistical investigation. Results: Group 1 specimens prepared by Lucitone 199 heat cure resin showed the lowest bond strength and Group 4 specimens prepared with T-shaped groove packed with Lucitone 199 exhibited the highest bond strength. Conclusion: The bond strength between Lucitone 199 heat cure resin and cross-linked teeth was increased when mechanical modifications was done on denture teeth. The specimens prepared with T-shaped groove packed with Lucitone 199 heat cure resin showed the highest bond strength followed by Group 3, Group 2, and lastly Group 1 prepared by Lucitone 199 heat cure resin. PMID:27114957

  8. Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

    PubMed Central

    Külünk, Şafak; Külünk, Tolga; Saraç, Duygu; Baba, Seniha

    2014-01-01

    PURPOSE The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (α=.05). RESULTS Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling. PMID:25177470

  9. Studies on acrylated epoxydised triglyceride resin-co-butyl methacrylate towards the development of biodegradable pressure sensitive adhesives.

    PubMed

    David, S Begila; Sathiyalekshmi, K; Gnana Raj, G Allen

    2009-12-01

    The potential chemical utility of Soya bean oil for the preparation of novel biodegradable polymeric pressure sensitive adhesive has been investigated. Epoxy resin was prepared through in situ epoxidation of Soya bean oil under controlled reaction conditions. Acrylated epoxidised triglyceride resin (AET resin) and copolymer of AET resin with butyl methacrylate were prepared and evaluated. Higher the concentration of butyl methacrylate higher is the degree of copolymerization of AET resin with butyl methacrylate. An optimum concentration of AET resin with butyl methacrylate (100 : 0.40) yields favourable shear holding time and peel strength to qualify as pressure sensitive adhesive. The candidate PSA formulation is biodegradable with antimicrobial activity against gram positive S. aureus ATCC 25923. PMID:18584126

  10. Using Latex Balls and Acrylic Resin Plates to Investigate the Stacking Arrangement and Packing Efficiency of Metal Crystals

    ERIC Educational Resources Information Center

    Ohashi, Atsushi

    2015-01-01

    A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…

  11. Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hexamethyldisilazane.

    PubMed

    Osete-Cortina, Laura; Doménech-Carbó, María Teresa

    2006-09-15

    A procedure based on the technique of the pyrolysis-GC/MS has been applied, in this work, in order to determine the composition of synthetic acrylic resins employed in artworks. The method is based on the on line derivatization of these resins using hexamethyldisilazane (HMDS). Results obtained have been compared with those others from direct pyrolysis and in situ thermally assisted hydrolysis and methylation with tetramethylammonium hydroxide (TMAH). Sensitivity using HMDS as derivatising reagent is found similar to that from direct pyrolysis and methylation with TMAH. Better resolution of the most representative peaks has been also obtained. Additionally, this method reduces the formation of free acrylic acid molecules during the pyrolysis process and, in consequence, more simplified and well-resolved chromatograms are obtained. Finally, the reported procedure has been successfully used for characterizing several acrylic-based varnishes and binding media currently used in Fine Arts and real pictorial samples from graffiti performed on a Middle Ages bridge. PMID:16797558

  12. Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin

    USGS Publications Warehouse

    Thurman, E.M.

    1978-01-01

    The capacity factors of 20 aromatic, allphatic, and allcycllc organic solutes with carboxyl, hydroxyl, amine, and methyl functional groups were determined on Amberlite XAD-8, a porous acrylic resin. The logarithm of the capacity factor, k???, correlated inversely with the logarithm of the aqueous molar solubility with significance of less than 0.001. The log k???-log solubility relationship may be used to predict the capacity of any organic solute for XAD-8 using only the solubility of the solute. The prediction is useful as a guide for determining the proper ratio of sample to column size In the preconcentration of organic solutes from water. The inverse relationship of solubility and capacity is due to the unfavorable entropy of solution of organic solutes which affects both solubility and sorption.

  13. Comparison of Impact Strength and Fracture Morphology of Different Heat Cure Denture Acrylic Resins: An In vitro Study

    PubMed Central

    Praveen, B; Babaji, Harsha V; Prasanna, B G; Rajalbandi, Santosh Kumar; Shreeharsha, T V; Prashant, G M

    2014-01-01

    Background: The fracture of acrylic resin denture is rather common occurrence and causes inconvenience to the patients. This study was carried out to evaluate and compare the impact strength and fracture morphology of four different heat cure acrylic materials. Materials and Methods: Acrylic resin specimens were prepared using preformed metal die of dimension 65 × 10 × 3 mm. The specimens were finished, polished and subjected to impact strength evaluation using impact testing machine. The loads at which the specimens fracture are recorded and subjected to statistical analysis. Fracture surface analysis was done. Macroscopic analysis was performed by visual inspection of the fractured surfaces using a stereoscopic microscope. About 5 mm sections of all the fragments were subjected to scanning electron microscopy for microscopic analysis to verify fracture morphology. Results: Mean values of the impact strength were compared by statistical methods. The impact strength data were subjected to variance homogeneity tests. Fracture surface analysis data was analyzed by statistical methods. The mean impact strength of Lucitone 199 was higher than Acrylyn-H, DPI Heat cure & Trevalon. Conclusion: Within the limitations of this study, it was concluded that the impact strength of the acrylic resins is affected by the reinforcement of fibers. Increased intermediate fractures increased impact strength. Brittle fractures morphology showed fewer undercuts and clearer surface. Intermediate fractures morphology showed more undercuts than clear surfaces. PMID:25395786

  14. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis.

    PubMed

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  15. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    PubMed Central

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  16. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy. PMID:26961330

  17. Effect of toothbrushes and denture brushes on heat-polymerized acrylic resins.

    PubMed

    de Freitas Pontes, Karina Matthes; de Holanda, Janaína Câncio; Fonteles, Cristiane Sa Roriz; Pontes, Cassio de Barros; Lovato da Silva, Cláudia Helena; Paranhos, Helena de Freitas Oliveira

    2016-01-01

    It is important to choose an appropriate brush for denture cleaning to prevent damage to the surface properties of prosthetic devices. The purpose of this study was to evaluate the abrasiveness of toothbrushes and denture brushes on boiled and microwave-processed acrylic resins. Specimens of 4 resin brands were prepared (n = 30). Five brands of brushes (n = 6) were used in a toothbrushing machine, first for 17,800 strokes and then for an additional 35,600 strokes (total of 53,400), at a load of 200 g. An analytical balance and a profilometer were used to assess the weight and surface roughness, respectively, before and after 17,800 and 53,400 strokes. Analysis of variance and Tukey tests were used for data analysis (α = 0.05). Weight loss increased with time, while surface roughness remained the same. There were no statistically significant differences among toothbrushes and denture brushes in the resulting weight loss (17,800 strokes, 1.83 mg; 53,400 strokes, 3.78 mg) or surface roughness (17,800 or 53,400 strokes, 0.14 µm). The weight loss values after 53,400 brush strokes indicated that Clássico (2.28 mg) and VIPI Wave (2.75 mg) presented significantly greater abrasion resistance than Lucitone 550 (3.36 mg) and Onda-Cryl (2.85 mg) (P < 0.05). The type of brush and the polymerization method did not influence resin wear after brushing. PMID:26742168

  18. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry.

    PubMed

    Harrison, A; Huggett, R; Handley, R W

    1979-01-01

    This investigation studies the relationship of hardness, elastic modulus and scratch width as dependent variables to the abrasion resistance of twenty-three dental acrylic resins. The multiple correlation R, when all three variables are used as predictors, is 0.727. Because of the significant intercorrelations between the variables themselves a stepwise multiple regression analysis showed hardness as a redundant variable. Abrasive wear can be estimated from the following equation Abrasive wear = 806.1 - 0.1498 modulus + 0.681 scratch width (R = 0.725; standard deviation of estimate +/- 50.8) The deletion of scratch width does not appreciably reduce the standard deviation of the estimate: Abrasive wear = 1063.4 - 0.2055 modulus (r = 0.683; standard deviation of estimate +/- 50.3) The method of curing the specimens conformed to the respective manufacturers' instructions. Abrasion and scratch tests were performed using methods developed by the authors and previously described in the literature, whereas the hardness and elastic modulus results were devised from standard test procedures. Further research is currently in progress to improve the predictive power of abrasion resistance with additional new variables. PMID:429382

  19. Synthesis of polymer nanocomposites by UV-curing of silver nano particles-acrylic resins

    NASA Astrophysics Data System (ADS)

    Balan, L.; Schneider, R.; Soppera, O.; Lougnot, D. J.

    2007-09-01

    We present here a simple method to synthesize organic-dispersible colloids and a scenario for the ultra-fast fabrication of silver/polymer nanocomposite by light-induced crosslinking polymerization. The objective of this work was to apply UV-curing technology for the fabrication of nanocomposite materials containing silver nanoparticles dispersed in a polymer binder. This new route allows processing operations to be simplified and the properties of the final product to be improved. A special attention has been paid to the synthesis and dispersion of metal nanoparticles in various monomers and oligomers and to the photopolymerization kinetics. The silver nanoparticles were generated by reduction of AgNO 3 with t-BuONa activated sodium hydride. Ag(0) particles present a narrow size distribution with an average diameter of 6.5 nm. Transmission electron microscopy (TEM) analysis has shown that Ag(0) nanoparticles are well dispersed in the acrylic resin. The curing process was followed quantitatively by FTIR spectroscopy through the decrease upon UV exposure of the IR bands characteristic of the functional groups. The silver nanoparticles have no detrimental effect on the photopolymerization kinetics. The incorporation of metal nanoparticles was found to greatly reduce the gloss of UV-cured coatings. Moreover, the outstanding optical and viscoelastic properties of these UV-cured nanocomposites opens up interesting perspectives in various fields of applications (optics, nanoelectronic, biology...).

  20. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins

    PubMed Central

    Ghaffari, Tahereh; Hamedi-rad, Fahimeh

    2015-01-01

    Background and aims. Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Silver nano-particles (AgNps) have been added to PMMA because of their antimicrobial properties, but their effect on the mechanical properties of PMMA is unknown. The aim of this study was to investigate the effects of AgNps on the tensile strength of PMMA. Materials and methods. For this study, 12 specimens were prepared and divided into two groups. Group 1 included PMMA without AgNps and group 2 included PMMA mixed with 5 wt% of AgNps. Tensile strength of the specimens was measured by Zwick Z100 apparatus. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. This study showed that the mean tensile strength of PMMA in group 2 was significantly lower than that in group 1. Therefore, the tensile strength decreased significantly after incorporation of silver nano-particles. Conclusion. Within the limitations of this study, tensile strength of acrylic resin specimens was influenced by silver nano-particles. PMID:25973153

  1. Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects

    PubMed Central

    Uzunoglu, Emel; Dolapci, Istar; Dogan, Arife

    2014-01-01

    PURPOSE This study evaluated the adhesion to acrylic resin specimens and biofilm formation capability of Candida albicans strains isolated from HIV positive subjects' oral rinse solutions. MATERIALS AND METHODS The material tested was a heat-cured acrylic resin (Acron Duo). Using the adhesion and crystal violet assays, 14 oral Candida albicans isolated from HIV-positive subjects and 2 references Candida strains (C. albicans ATCC 90028 and C. albicans ATCC 90128) were compared for their biofilm production and adhesion properties to acrylic surfaces in vitro. RESULTS There were no significant differences in adhesion (P=.52) and biofilm formation assays (P=.42) by statistical analysis with Mann-Whitney test. CONCLUSION Denture stomatitis and increased prevalence of candidal carriage in HIV infected patients is unlikely to be related to the biofilm formation and adhesion abilities of C. albicans to acrylic resin materials. PMID:24605203

  2. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis

    PubMed Central

    Andreotti, Agda Marobo; Goiato, Marcelo Coelho; Moreno, Amália; Nobrega, Adhara Smith; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline

    2014-01-01

    The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO2), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level). Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. PMID:25525359

  3. MASS LOSS OF FOUR COMMERCIALLY AVAILABLE HEAT-POLYMERIZED ACRYLIC RESINS AFTER TOOTHBRUSHING WITH THREE DIFFERENT DENTIFRICES

    PubMed Central

    Freitas-Pontes, Karina M.; Silva-Lovato, Cláudia H.; Paranhos, Helena F. O.

    2009-01-01

    The association between a toothbrush and a dentifrice is the most used denture cleaning method. The purpose of this study was to evaluate the abrasiveness of specific and non-specific denture cleaning dentifrices on different heat-polymerized acrylic resins. Sixteen specimens (90x30x3mm) of each acrylic resin (QC-20, Lucitone 550, Clássico, Vipi-Cril) were prepared and randomly assigned to 4 groups: 1: control (distilled water), 2: Colgate, 3: Bonyplus and 4: Dentu-Creme. The specimens were subjected to simulated toothbrushing in an automatic brushing machine using 35,600 brush strokes for each specimen. Brushing abrasion run at a 200-g load with the specimens immersed in 2:1 dentifrice/water slurry. Specimens were reconditioned to constant mass and the mass loss (mg) was evaluated. Data were analyzed by 2-way ANOVA and Tukey's test (α=0.05). Analysis of dentifrices' abrasive particles was made by scanning electron microscopy. Colgate produced the greatest mass reduction (42.44 mg, p<0.05), followed by Dentu-Creme (33.60 mg). Bonyplus was the less abrasive (19.91 mg), similar to the control group (19.69 mg) (p>0.05). The mass loss values indicated that QC-20 (33.13 mg) and Lucitone 550 (33.05 mg) resins were less (p<0.05) resistant to abrasion than Clássico (26.04 mg) and Vipi-Cril (23.43 mg). In conclusion, Colgate produced the greatest abrasion. Specific dentifrices for dentures tend to cause less damage to acrylic resins.

  4. Effect of the Simulated Disinfection by Microwave Energy on the Impact Strength of the Tooth/Acrylic Resin Adhesion

    PubMed Central

    Consani, Rafael L.X.; Mesquita, Marcelo F.; Zampieri, Marinaldo H.; Mendes, Wilson B.; Consani, Simonides

    2008-01-01

    The objective of this study was to determine the effect of simulated microwave disinfection on the tooth/acrylic resin impact strength. Acrylic molar teeth with a wax stick attached to the ridge lap were included in brass flasks. Specimens were made with Classico thermopolymerized acrylic resin, according to the groups: 1 and 5 - tooth with no treatment (control); 2 and 6 – tooth bur abrasion; 3 and 7 – tooth bur retention; and 4 and 8 – tooth monomer etch. Eighty specimens (n=10) were polymerized in bath cycle at 74ºC for 9 hours and deflasked after flask cooling. Specimen from groups 2, 4, 6 and 8 was submitted to simulated microwave disinfection in a microwave oven at 650W for 3 minutes. Impact strength test was performed with an Otto Wolpert-Werke machine (Charpy system) with an impact load of 40 kpcm. Fracture load value was transformed into impact strength as a function of the bond area (kfg/cm2). Collected data were submitted to ANOVA and Tukey’s test (α=.05) and results indicate that the simulated microwave disinfection decreased the impact strength in all treatments. PMID:19088877

  5. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  6. SYNTHESIS AND CHARACTERIZATION OF SUBSTITUTED POLY(STYRENE)-b-POLY(ACRYLIC ACID) BLOCK COPOLYMER MICELLES

    SciTech Connect

    Pickel, Deanna L; Pickel, Joseph M; Devenyi, Jozsef; Britt, Phillip F

    2009-01-01

    Block copolymer micelle synthesis and characterization has been extensively studied. In particular, most studies have focused on the properties of the hydrophilic corona due to the micelle corona structure s impact on the biodistribution and biocompatibility. Unfortunately, less attention has been given to the effect of the core block on the micelle stability, morphology, and the rate of diffusion of small molecules from the core. This investigation is focused on the synthesis of block copolymers composed of meta-substituted styrenes and acrylic acid by Atom Transfer Radical Polymerization. Micelles with cores composed of substituted styrenes having Tgs ranging from -30 to 100 oC have been prepared and the size and shape of these micelles were characterized by Static and Dynamic Light Scattering and TEM. In addition, the critical micelle concentration and rate of diffusion of small molecules from the core were determined by fluorimetry using pyrene as the probe.

  7. Homo- and co-polymerization of polysytrene-block-poly(acrylic acid)-coated metal nanoparticles.

    PubMed

    Wang, Hong; Song, Xiaohui; Liu, Cuicui; He, Jiating; Chong, Wen Han; Chen, Hongyu

    2014-08-26

    Amphiphilic block copolymers such as polystyrene-block-poly(acrylic acid) (PSPAA) give micelles that are known to undergo sphere-to-cylinder shape transformation. Exploiting this polymer property, core-shell nanoparticles coated in PSPAA can be "polymerized" into long chains following the chain-growth polymerization mode. This method is now extended to include a variety of different nanoparticles. A case study on the assembly process was carried out to understand the influence of the PAA block length, the surface ligand, and the size and morphology of the monomer nanoparticles. Shortening the PAA block promotes the reorganization of the amphiphilic copolymer in the micelles, which is essential for assembling large Au nanoparticles. Small Au nanoparticles can be directly "copolymerized" with empty PSPAA micelles into chains. The reaction time, acid quantity, and the [Au nanoparticles]/[PSPAA micelles] concentration ratio played important roles in controlling the sphere-cylinder-vesicle conversion of the PSPAA micelles, giving rise to different kinds of random "copolymers". With this knowledge, a general method is then developed to synthesize homo, random, and block "copolymers", where the basic units include small Au nanoparticles (d = 16 nm), large Au nanoparticles (d = 32 nm), Au nanorods, Te nanowires, and carbon nanotubes. Given the lack of means for assembling nanoparticles, advancing synthetic capabilities is of crucial importance. Our work provides convenient routes for combining nanoparticles into long-chain structures, facilitating rational design of complex nanostructures in the future. PMID:25000121

  8. The use of acrylic resin oral prosthesis in radiation therapy of oral cavity and paranasal sinus cancer

    SciTech Connect

    Cheng, V.S.T.; Oral, K.; Aramamy, M.A.

    1982-07-01

    In radiation therapy of cancer of the oral cavity and the paranasal sinuses, the extent to which the tissues of the oral cavity are included in the radiation treatment portals will determine the severity of the oral discomfort during treatment. This will affect the nutritional status of the patients, and may eventually affect the total dose of radiation which the patients can receive for treatment of their cancers. In cooperation with the Maxillofacial Prosthetic Department, an acrylic resin oral prosthesis was developed. This prosthesis is easy to use and can be made for each individual patient within 24 hours. It allows for maximum sparing of the normal tissues in the oral cavity and can be modified for shielding of backscattered electrons from heavy metals in the teeth. We have also found that acrylic resin extensions can be built onto the posterior edge of post-maxillectomy obturators; this extension can be used as a carrier for radioactive sources to deliver radiation to deep seated tumor modules in the paranasal sinuses.

  9. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties. PMID:26438986

  10. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria

    PubMed Central

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    Aim: To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Materials and Methods: Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Statistical Analysis: Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Results: Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2–99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. Conclusions: PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic

  11. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties

    PubMed Central

    Aydogan Ayaz, Elif; Durkan, Rukiye

    2013-01-01

    The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n=10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (−5), 10% (−10), 15% (−15) and 20% (−20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal–Wallis test (α=0.05) to determine significant differences between the groups. The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 °C⋅min−1 from 35 °C to 600 °C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P<0.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P<0.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P<0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P<0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm. PMID:24030556

  12. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Dua, Amit; Dua, Mahima; Sehgal, Varun; Setya, Gaurav; Dhall, Rupinder Singh

    2016-01-01

    Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI. PMID:27195221

  13. Thermodynamics of coil-hyperbranched poly(styrene-b-acrylated epoxidized soybean oil) block copolymers

    NASA Astrophysics Data System (ADS)

    Lin, Fang-Yi; Hohmann, Austin; Hernández, Nacú; Cochran, Eric

    Here we present the phase behavior of a new type of coil-hyperbranched diblock copolymer: poly(styrene- b-acrylated epoxidized soybean oil), or PS-PAESO. PS-PAESO is an example of a biorenewable thermoplastic elastomer (bio-TPE). To date, we have shown that bio-TPEs can be economical commercial substitutes for their petrochemically derived analogues--such as poly(styrene- b-butadiene- b-styrene) (SBS)--in a range of applications including pressure sensitive adhesives and bitumen modification. From a polymer physics perspective, PS-PAESO is an interesting material in that it couples a linear coil-like block with a highly branched block. Thus in contrast to the past five decades of studies on linear AB diblock copolymers, coil-hyperbranched block copolymers are relatively unknown to the community and can be expected to deviate substantially from the standard ``universal'' phase behavior in the AB systems. To explore these new materials, we have constructed a library of PS-PAESO materials spanning a range of molecular weight and composition values. The phase transition behavior and the morphology information will be interpreted by isochronal temperature scanning in dynamic shear rheology, small angle X-ray scattering and the corresponding transmission electron microscopy.

  14. The Effect on the Flexural Strength, Flexural Modulus and Compressive Strength of Fibre Reinforced Acrylic with That of Plain Unfilled Acrylic Resin – An in Vitro Study

    PubMed Central

    Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-01-01

    Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696

  15. Morphological alteration of microwave disinfected acrylic resins used for dental prostheses

    NASA Astrophysics Data System (ADS)

    Popescu, M. C.; Bita, B. I.; Avram, A. M.; Tucureanu, V.; Schiopu, P.

    2015-02-01

    In this paper we aim to perform a cross section morphological characterization of an acrylic polymer used for dental prostheses subjected to microwave disinfection. The method was largely investigated and the microbiological effectiveness is well established, but there are some issues regarding the in-depth alteration of the material. In our research, the surface roughness is insignificant and the samples were not polished or refined by any means. Two groups of 7 acrylic discs (20 mm diameter, 2 mm thickness) were prepared from a heat-cured powder. Half of the samples embedded a stainless steel reinforcement, in order to observe the changes at the interfaces between the polymer and metallic wire. After the gradual wet microwave treatment, the specimens - including the controls - were frozen in liquid nitrogen and broken into pieces. Fragments were selected for gold metallization to ensure a good contrast for SEM imaging. We examined the samples in cross section employing a high resolution SEM. We have observed the alterations occurred at the surface of the acrylic sample and at the interface with the metallic wire along with the increase of the power and exposure time. The bond configuration of acrylate samples was analysed by FTIR spectrometry.

  16. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  17. INFLUENCE OF A COBALT-CHROMIUM METAL FRAMEWORK ON SURFACE ROUGHNESS AND KNOOP HARDNESS OF VISIBLE LIGHT-POLYMERIZED ACRYLIC RESINS

    PubMed Central

    de Souza, Joane Augusto; Garcia, Renata Cunha Matheus Rodrigues; Moura, Juliana Silva; Cury, Altair Antoninha Del Bel

    2006-01-01

    Although visible light-polymerized acrylic resins have been used in removable partial dentures, it is not clear whether the presence of a metal framework could interfere with their polymerization, by possibly reflecting the light and affecting important properties, such as roughness and hardness, which would consequently increase biofilm accumulation. The aim of this study was to compare the roughness and Knoop hardness of a visible light-polymerized acrylic resin and to compare these values to those of water-bath- and microwave-polymerized resins, in the presence of a metal framework. Thirty-six specimens measuring 30.0 × 4.0 ± 0.5 mm of a microwave- (Onda Cryl), a visible light- (Triad) and a water-bath- polymerized (Clássico) (control) acrylic resins containing a cobalt-chromium metal bar were prepared. After processing, specimens were ground with 360 to 1000-grit abrasive papers in a polishing machine, followed by polishing with cloths and 1μm diamond particle suspension. Roughness was evaluated using a profilometer (Surfcorder SE 1700) and Knoop hardness (Kg/mm2) was assayed using a microhardness tester (Shimadzu HMV 2000) at distances of 50, 100, 200, 400 and 800 μm from the metal bar. Roughness and Knoop hardness means were submitted to two-way ANOVA and compared by Tukey and Kruskal Wallis tests at a 5% significance level Statistically significant differences were found (p<0.05) for roughness and Knoop hardness, with light-polymerized resin presenting the highest values (Ra = 0.11 μm and hardness between 20.2 and 21.4 Kg/mm2). Knoop values at different distances from the metal bar did not differ statistically (p>0.05). Within the limitations of this in vitro study, it was concluded that the presence of metal did not influence roughness and hardness values of any of the tested acrylic resins. PMID:19089075

  18. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

    PubMed Central

    2014-01-01

    PURPOSE This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required. PMID:25006385

  19. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  20. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods

    PubMed Central

    Ozdemir, Ali Kemal; Turgut, Mehmet; Boztug, Ali; Sumer, Zeynep

    2015-01-01

    PURPOSE The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure. PMID:25932307

  1. Resin-composite blocks for dental CAD/CAM applications.

    PubMed

    Ruse, N D; Sadoun, M J

    2014-12-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. PMID:25344335

  2. Resin-composite Blocks for Dental CAD/CAM Applications

    PubMed Central

    Ruse, N.D.; Sadoun, M.J.

    2014-01-01

    Advances in digital impression technology and manufacturing processes have led to a dramatic paradigm shift in dentistry and to the widespread use of computer-aided design/computer-aided manufacturing (CAD/CAM) in the fabrication of indirect dental restorations. Research and development in materials suitable for CAD/CAM applications are currently the most active field in dental materials. Two classes of materials are used in the production of CAD/CAM restorations: glass-ceramics/ceramics and resin composites. While glass-ceramics/ceramics have overall superior mechanical and esthetic properties, resin-composite materials may offer significant advantages related to their machinability and intra-oral reparability. This review summarizes recent developments in resin-composite materials for CAD/CAM applications, focusing on both commercial and experimental materials. PMID:25344335

  3. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  4. Toothbrushing alters the surface roughness and gloss of composite resin CAD/CAM blocks.

    PubMed

    Kamonkhantikul, Krid; Arksornnukit, Mansuang; Lauvahutanon, Sasipin; Takahashi, Hidekazu

    2016-01-01

    This study investigated the surface roughness and gloss of composite resin CAD/CAM blocks after toothbrushing. Five composite resin blocks (Block HC, Cerasmart, Gradia Block, KZR-CAD Hybrid Resin Block, and Lava Ultimate), one hybrid ceramic (Vita Enamic), one feldspar ceramic (Vitablocs Mark II), one PMMA block (Telio CAD), and one conventional composite resin (Filtek Z350 XT) were evaluated. Surface roughness (Ra) and gloss were determined for each group of materials (n=6) after silicon carbide paper (P4000) grinding, 10k, 20k, and 40k toothbrushing cycles. One-way repeated measures ANOVA indicated significant differences in the Ra and gloss of each material except for the Ra of GRA. After 40k toothbrushing cycles, the Ra of BLO and TEL showed significant increases, while CER, KZR, ULT, and Z350 showed significant decreases. GRA, ENA, and VIT maintained their Ra. All of the materials tested, except CER, demonstrated significant decreases in gloss after 40k toothbrushing cycles. PMID:27041012

  5. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler.

    PubMed

    Nakornchai, Natha; Arksornnukit, Mansuang; Kamonkhantikul, Krid; Takahashi, Hidekazu

    2016-01-01

    This study aimed to evaluate the effect of an acidic-adjusted pH of solvent in silanization on the amount of fluoride released and mechanical properties of heat-cured acrylic resin containing a silanized fluoride-releasing filler. The experimental groups were divided into 4 groups; non-silanized, acidic-adjusted pH, non-adjusted pH, and no filler as control. For fluoride measurement, each specimen was placed in deionized water which was changed every day for 7 days, every week for 7 weeks and measured. The flexural strength and flexural modulus were evaluated after aging for 48 h, 1, and 2 months. Two-way ANOVA indicated significant differences among groups, storage times, and its interaction in fluoride measurement and flexural modulus. For flexural strength, there was significant difference only among groups. Acidic-adjusted pH of solvent in silanization enhanced the amount of fluoride released from acrylic resin, while non-adjusted pH of solvent exhibited better flexural strength of acrylic resin. PMID:27252000

  6. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.

    PubMed

    Borisova, O V; Billon, L; Richter, R P; Reimhult, E; Borisov, O V

    2015-07-14

    We report on the synthesis of novel pH- and electro-responsive polyelectrolyte brushes from a gold substrate by direct one-step nitroxide-mediated polymerization of acrylic acid (AA) or copolymerization of AA and styrene (S). In the latter case, amphiphilic brushes of block-gradient copolymers PAA-b-(PAA-grad-PS) comprising one PAA block and one block with the gradient sequence of AA and S were obtained. The block-gradient copolymers are initiated from the surface by the start of the PAA block. The brushes were characterized by XPS and ellipsometry. (1)H NMR confirmed the gradient sequence of the PAA-grad-PS copolymer block. The pH- and electro-responsive properties of the brushes were studied by quartz crystal microbalance with dissipation monitoring (QCM-D) in combination with electrochemistry. This method provides evidence of swelling of the PAA brushes proportional to the contour length of the chains at elevated pH, whereas the response functions of the block-gradient copolymers are more complex and point to intermolecular aggregation in the brush at low pH. Monitoring of the changes in resonance frequency and dissipation of the QCM-D also demonstrates that application of negative voltage to the substrate leads to swelling of the brush; application of a positive voltage provokes only a transient collapse of the brush in proportion to the applied voltage. PMID:26070329

  7. Comparison of the dimensional stability of two waxes and two acrylic resin processing techniques in the production of complete dentures.

    PubMed

    Sykora, O; Sutow, E J

    1990-05-01

    Two base plate waxes and two denture processing techniques were independently compared for dimensional stability. Occlusion rims were constructed from extra hard and medium soft base plate waxes and teeth were set. Acrylic resin bases were processed by a trial packing technique, and a continuous injection system. Tooth movement was measured in the horizontal and vertical planes to assess wax and denture base dimensional changes at various steps in the process, and after 1, 3, and 8 weeks of denture base immersion in water at room temperature. Posterior palatal border adaptation, incisal pin opening and loss of centric occlusion contacts, were also measured. Results showed there were no significant differences between the two waxes as determined by tooth movement in the horizontal and vertical planes. In comparison to the trial packing technique, the continuous injection system showed significantly smaller changes for incisal pin opening and loss of centric occlusion, and better adaptation of the posterior palatal border to the cast. Measurement of tooth movement in the horizontal and vertical planes showed no significant differences between the two processing techniques for times prior to immersion in water, whereas after 8 weeks immersion the continuous injection technique showed smaller dimensional changes, relative to the original dimensions at the time of investing. PMID:2189970

  8. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    PubMed Central

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-01-01

    Background: Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Results: Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins. PMID:23946739

  9. Mucoadhesive acrylated block copolymers micelles for the delivery of hydrophobic drugs.

    PubMed

    Eshel-Green, Tal; Bianco-Peled, Havazelet

    2016-03-01

    Blockpolymer micelles having acrylated end groups were fabricated for the development of mucoadhesive drug loaded vehicle. The critical micelle concentration (CMC) of Pluronic(®) F127 modified with acrylate end groups (F127DA) was found to be similar to that of the unmodified Pluronic(®) F127 (F127). Small angle X-ray scattering verified existence of micelles with an inner core of 4.9±0.2 and 5.5±0.3 for F127 and F127DA respectively. Indomethacin, a hydrophobic drug, was incorporated into the micelles using the thin-film hydration method. In vitro drug release assay demonstrated that the micelles sustained the release of the drug in comparison with free drug in solution. Several methods were used for mucoadhesion evaluation. Viscosity profiling was performed by shear rate sweep experiment of hydrated commercial mucin, F127 or F127DA, and combination of both mucin and a copolymer. Elevated viscosity was achieved for acrylated micelles with mucin compared to mixtures of non-acrylated micelles with mucin. The mucoadhesivity of the acrylated micelles was further characterized using nuclear magnetic resonance (NMR); data affirmed the Michael type addition reaction occurred between acrylates on the micelles corona and thiols present in the mucin. SAXS scattering data further showed a modification in the scattering of F127DA micelles with the addition of pig gastric mucin. Cryo-transmission electron microscopy (cryo-TEM) and dynamic light scattering (DLS) data detected increase in the aggregates size while using acrylated micelles enhance mucoadhesion. Thus acrylated F127DA micelles were found to be mucoadhesive, and a suitable and preferred candidate for micellar drug delivery to mucosal surfaces. PMID:26700232

  10. Surface properties of multilayered, acrylic resin artificial teeth after immersion in staining beverages

    PubMed Central

    NEPPELENBROEK, Karin Hermana; KUROISHI, Eduardo; HOTTA, Juliana; MARQUES, Vinicius Rizzo; MOFFA, Eduardo Buozi; SOARES, Simone; URBAN, Vanessa Migliorini

    2015-01-01

    Objective To evaluate the effect of staining beverages (coffee, orange juice, and red wine) on the Vickers hardness and surface roughness of the base (BL) and enamel (EL) layers of improved artificial teeth (Vivodent and Trilux). Material and Methods Specimens (n=8) were stored in distilled water at 37°C for 24 h and then submitted to the tests. Afterwards, specimens were immersed in one of the staining solutions or distilled water (control) at 37°C, and the tests were also performed after 15 and 30 days of immersion. Data were analyzed using 3-way ANOVA and Tukey’s test (α=0.05). Results Vivodent teeth exhibited a continuous decrease (p<0.0005) in hardness of both layers for up to 30 days of immersion in all solutions. For Trilux teeth, similar results were found for the EL (p<0.004), and the BL showed a decrease in hardness after 15 days of immersion (p<0.01). At the end of 30 days, this reduction was not observed for coffee and water (p>0.15), but red wine and orange juice continuously reduced hardness values (p<0.0004). Red wine caused the most significant hardness changes, followed by orange juice, coffee, and water (p<0.006). No significant differences in roughness were observed for both layers of the teeth during the immersion period, despite the beverage (p>0.06). Conclusions Hardness of the two brands of acrylic teeth was reduced by all staining beverages, mainly for red wine. Roughness of both layers of the teeth was not affected by long-term immersion in the beverages. PMID:26398509

  11. New Poly(dimethylsiloxane)/Poly(perfluorooctylethyl acrylate) Block Copolymers: Structure and Order Across Multiple Length Scales in Thin Films

    SciTech Connect

    E Martinelli; G Galli; S Krishnan; M Paik; C Ober; D Fischer

    2011-12-31

    Three sets of a new class of low surface tension block copolymers were synthesized consisting of a poly(dimethylsiloxane) (PDMS) block and a poly(perfluorooctylethyl acrylate) (AF8) block. The polymers were prepared using a bromo-terminated PDMS macroinitiator, to which was attached an AF8 block grown using atom transfer radical polymerization (ATRP) in such a designed way that the molecular weight and composition of the two polymer blocks were regularly varied. The interplay of both the phase separated microstructure and the mesomorphic character of the fluorinated domains with their effect on surface structure was evaluated using a suite of analytical tools. Surfaces of spin-coated and thermally annealed films were assessed using a combination of X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) studies. Both atomic force microscopy (AFM) measurements and grazing incidence small angle X-ray scattering (GISAXS) studies were carried out to evaluate the microstructure of the thin films. Even in block copolymers in which the PDMS block was the majority component, a significant presence of the lower surface energy AF8 block was detected at the film surface. Moreover, the perfluorooctyl helices of the AF8 repeat units were highly oriented at the surface in an ordered, tilted smectic structure, which was compared with those of the bulk powder samples using wide-angle X-ray powder diffraction (WAXD) studies.

  12. Effects of Laboratory Disinfecting Agents on Dimensional Stability of Three Commercially Available Heat-Cured Denture Acrylic Resins in India: An In-Vitro Study

    PubMed Central

    Jujare, Ravikanth Haridas; Varghese, Rana Kalappattil; Singh, Vishwa Deepak; Gaurav, Amit

    2016-01-01

    Introduction Dental professionals are exposed to a wide variety of microorganisms which calls for use of effective infection control procedures in the dental office and laboratories that can prevent cross-contamination that could extend to dentists, dental office staff, dental technicians as well as patients. This concern has led to a renewed interest in denture sterilization and disinfection. Heat polymerized dentures exhibit dimensional change during disinfection procedure. Aim The purpose of this study was to determine the influence of different types of widely used laboratory disinfecting agents on the dimensional stability of heat-cured denture acrylic resins and to compare the dimensional stability of three commercially available heat-cured denture acrylic resins in India. Materials and Methods Twelve specimens of uniform dimension each of three different brands namely Stellon, Trevalon and Acralyn-H were prepared using circular metal disc. Chemical disinfectants namely 2% alkaline glutaraldehyde, 1% povidone-iodine, 0.5% sodium hypochlorite and water as control group were used. Diameter of each specimen was measured before immersion and after immersion with time interval of 1 hour and 12 hours. The data was evaluated statistically using one way analysis of variance. Results All the specimens in three disinfectants and in water exhibited very small amount of linear expansion. Among three disinfectants, specimens in 2% alkaline glutaraldehyde exhibited least(0.005mm) and water showed highest (0.009mm) amount of dimensional change. Among resins, Trevalon showed least (0.067mm) and Acralyn-H exhibited highest (0.110mm) amount of dimensional change. Conclusion Although, all the specimens of three different brands of heat-cured denture acrylic resins exhibited increase in linear dimensional change in all the disinfectants and water, they were found to be statistically insignificant. PMID:27134996

  13. Characterization of cross-linking structures in UV-cured acrylic ester resin by MALDI-MS combined with supercritical methanolysis.

    PubMed

    Matsubara, Hideki; Hata, Shun-Ichiro; Kondo, Yosuke; Ishida, Yasuyuki; Takigawa, Hiroshi; Ohtani, Hajime

    2006-11-01

    The cross-linking structure of the ultra violet (UV)-cured resin prepared from dipentaerithritol hexacrylate (DPHA) was characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with supercritical methanolysis. The MALDI-mass spectrum of the decomposition products obtained by supercritical methanolysis contained a series of peaks of sodium-cationized methyl acrylate (MA) oligomers up to around m/z = 4000 formed through selective cleavage and methylation occurred at ester linkages in UV-cured DPHA. Furthermore, in order to observe widely distributed sequence lengths in the cross-linking junctions, the decomposed products of the cured resin were then fractionated using size exclusion chromatography followed by the MALDI-MS measurements of the individual fractions. The MALDI-mass spectra of the lower molar mass fractions mainly consisted of a series of peaks of MA oligomers around m/z values of several thousands, whereas those of higher molecular weight showed a broad peak up to m/z ca. 180000. The observed distributions of the supercritical methanolysis products suggested that the network junctions in the given UV-cured resin were composed of up to around 2000 acrylate units. PMID:17099270

  14. Rheology and interfacial properties of aqueous solutions of the diblock polyelectrolyte poly(styrene-block-acrylic acid)

    NASA Astrophysics Data System (ADS)

    Kimerling, Abigail

    In aqueous solutions diblock polyelectrolytes with amphiphilic character form aggregate structures, which affect physical properties such as viscosity, elasticity, surface tension, and film hydrophilicity. Potential applications for diblock polyelectrolyte solutions include coatings, inks, oil recovery agents, personal care products, and biomaterials. By varying the diblock polyelectrolyte and solution properties, the solutions can be tuned to meet the needs of particular applications. The research objective was to identify the influences of block length, pH, and ionic strength on the rheological and interfacial properties of poly(styrene- b-acrylic acid) (PS-PAA) solutions. Six polymers with varied PS and PAA block lengths were examined, all at 1.0 wt% in aqueous solutions. The hydrophobicity of the PS block causes the formation of spherical micelles in aqueous solutions. Increasing the solution pH ionizes the PAA block, which leads to an increase in micelle corona thickness due to repulsions between chains. Major trends observed in the rheological and interfacial properties can be understood in terms of expected changes in the micelle size and interfacial self-assembly with pH, ionic strength, and block length. Addition of NaOH was found to increase the solution pH and initially led to increases in solution viscosity, elasticity, surface tension, and film hydrophilicity. This effect was attributed to creation of larger micelles and greater inter-micellar repulsions as the PAA chain became more fully charged. However, when the concentration of NaOH exceeded a critical value, the solution viscosity, elasticity, and film hydrophilicity decreased. It is believed this was due to charge shielding by excess sodium ions, leading to shrinkage of the micelle corona and smaller micelles. Increasing the PS-PAA solution ionic strength by adding NaCl also provided charge shielding, as observed by decreases in solution viscosity and elasticity. Increasing the length of either

  15. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks. PMID:26830822

  16. Safety and Tolerability of Essential Oil from Cinnamomum zeylanicum Blume Leaves with Action on Oral Candidosis and Its Effect on the Physical Properties of the Acrylic Resin.

    PubMed

    Oliveira, Julyana de Araújo; da Silva, Ingrid Carla Guedes; Trindade, Leonardo Antunes; Lima, Edeltrudes Oliveira; Carlo, Hugo Lemes; Cavalcanti, Alessandro Leite; de Castro, Ricardo Dias

    2014-01-01

    The anti-Candida activity of essential oil from Cinnamomum zeylanicum Blume, as well as its effect on the roughness and hardness of the acrylic resin used in dental prostheses, was assessed. The safety and tolerability of the test product were assessed through a phase I clinical trial involving users of removable dentures. Minimum inhibitory concentration (MIC) and minimum fungicidal concentrations (MFC) were determined against twelve Candida strains. Acrylic resin specimens were exposed to artificial saliva (GI), C. zeylanicum (GII), and nystatin (GIII) for 15 days. Data were submitted to ANOVA and Tukey posttest (α = 5%). For the phase I clinical trial, 15 healthy patients used solution of C. zeylanicum at MIC (15 days, 3 times a day) and were submitted to clinical and mycological examinations. C. zeylanicum showed anti-Candida activity, with MIC = 625.0 µg/mL being equivalent to MFC. Nystatin caused greater increase in roughness and decreased the hardness of the material (P < 0.0001), with no significant differences between GI and GII. As regards the clinical trial, no adverse clinical signs were observed after intervention. The substance tested had a satisfactory level of safety and tolerability, supporting new advances involving the clinical use of essential oil from C. zeylanicum. PMID:25574178

  17. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin.

    PubMed

    Vechiato-Filho, Aljomar José; da Silva Vieira Marques, Isabella; dos Santos, Daniela Micheline; Matos, Adaias Oliveira; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Barão, Valentim Adelino Ricardo

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n=24): Po (no surface treatment), SB (sandblasting), Po+NTP and SB+NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P<.001). SEM-EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB+NTP group showed the highest bond strength values (6.76±0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P<.05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. PMID:26706504

  18. Safety and Tolerability of Essential Oil from Cinnamomum zeylanicum Blume Leaves with Action on Oral Candidosis and Its Effect on the Physical Properties of the Acrylic Resin

    PubMed Central

    Oliveira, Julyana de Araújo; da Silva, Ingrid Carla Guedes; Trindade, Leonardo Antunes; Lima, Edeltrudes Oliveira; Carlo, Hugo Lemes; Cavalcanti, Alessandro Leite; de Castro, Ricardo Dias

    2014-01-01

    The anti-Candida activity of essential oil from Cinnamomum zeylanicum Blume, as well as its effect on the roughness and hardness of the acrylic resin used in dental prostheses, was assessed. The safety and tolerability of the test product were assessed through a phase I clinical trial involving users of removable dentures. Minimum inhibitory concentration (MIC) and minimum fungicidal concentrations (MFC) were determined against twelve Candida strains. Acrylic resin specimens were exposed to artificial saliva (GI), C. zeylanicum (GII), and nystatin (GIII) for 15 days. Data were submitted to ANOVA and Tukey posttest (α = 5%). For the phase I clinical trial, 15 healthy patients used solution of C. zeylanicum at MIC (15 days, 3 times a day) and were submitted to clinical and mycological examinations. C. zeylanicum showed anti-Candida activity, with MIC = 625.0 µg/mL being equivalent to MFC. Nystatin caused greater increase in roughness and decreased the hardness of the material (P < 0.0001), with no significant differences between GI and GII. As regards the clinical trial, no adverse clinical signs were observed after intervention. The substance tested had a satisfactory level of safety and tolerability, supporting new advances involving the clinical use of essential oil from C. zeylanicum. PMID:25574178

  19. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties.

    PubMed

    Panyayong, W; Oshida, Y; Andres, C J; Barco, T M; Brown, D T; Hovijitra, S

    2002-01-01

    Acrylic resins have been used in many different applications in dentistry, especially in the fabrication of provisional fixed partial dentures. Ideally, a provisional crown and bridge material should be easy to handle and should protect teeth against physical, chemical, and thermal injuries. Some of the problems associated with this use are related to the material's poor mechanical properties. It has been demonstrated that acrylic resin can be strengthened through the addition of structural component of different size distributed in the acrylic matrix, thus forming a composite structure. The purpose of this study was to investigate the addition effects of mixtures of titania (titanium dioxide, TiO(2)) powder and zirconia (zirconium dioxide, ZrO(2)) powder being incorporated with pre-polymerized beads mixed in monomer liquid, on some mechanical and physical properties of PMMA resin. The pre-polymerized powder poly(methyl methacrylate) resin was admixed with titania and zirconia powder. A mixing ratio was controlled by volume % of 0, 1.0, 2.0, and 3.0 (samples with 0 v/o served as control groups). For using mixture of titania and zirconia, total amount of the mixture was controlled by volume % of 1.0, 2.0, and 3.0, in which titania and zirconia were mixed at the ratio 1 :1, 1 :2 and 2 :1. Prior to mechanical tests, all rectangular-shaped samples (25 mm x 2 mm x 5 mm) were stored in 37 degrees C distilled water for 7 days after polishing all six sides of samples. Samples were then subjected to the three-point bending flexion test to evaluate the bending strength as well as the modulus of elasticity. Weight gain and exothermic reaction survey were investigated as well. All data were collected and analyzed with one-way analysis of variance (ANOVA) and Sidak method (p=0.05). It was found that the addition of particles generally decreased the water absorbed by the composite system. Only 1 percent by volume concentration of 1 :1 ratio and 2 percent by volume concentration

  20. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations

    PubMed Central

    Ghaffari, Tahereh; Hamedirad, Fahimeh; Ezzati, Baharak

    2014-01-01

    Background and aims. Polymethyl methacrylate, PMMA, is widely used in prosthodontics for fabrication of removable prostheses. This study was undertaken to investigate the effect of adding silver nanoparticles (AgNPs) to PMMA at 2% and 0.2% concentrations on compressive and tensile strengths of PMMA. Materials and methods. The silver nanoparticles were mixed with heat-cured acrylic resin in an amalgamator in two groups at 0.2 and 2 wt% of AgNPs. Eighteen 2×20×200-mm samples were prepared for tensile strength test, 12 samples containing silver nanoparticle and 6 samples for the control group. Another 18 cylindrical 25×38-mm samples were prepared for compressive strength test. Scanning electron microscopy was used to verify homogeneous distribution of particles. The powder was manually mixed with a resin monomer and then the mixture was properly blended. Before curing, the paste was packed into steel molds. After curing, the specimens were removed from the molds. One-way ANOVA was used for statistical analysis, followed by multiple comparison test (Scheffé’s test). Results. This study showed that the mean compressive strength of PMMA reinforced with AgNPs was significantly higher than that of the unmodified PMMA (P<0.05). It was not statistically different between the two groups reinforced with AgNPs. The tensile strength was not significantly different between the 0.2% group and unmodified PMMA and it de-creased significantly after incorporation of 2% AgNPs (P<0.05). Conclusion. Based on the results and the desirable effect of nanoparticles of silver on improvement of compressive strength of PMMA, use of this material with proper concentration in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25587381

  1. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  2. Argon Ion Laser Polymerized Acrylic Resin: A Comparative Analysis of Mechanical Properties of Laser Cured, Light Cured and Heat Cured Denture Base Resins

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with

  3. PREPARATION OF BLOCK COPOLYMERS OF POLY(STYRENE) AND POLY(T-BUTYL ACRYLATE) OF VARIOUS MOLECULAR WEIGHTS AND ARCHITECTURES BY ATOM TRANSFER RADICAL POLYMERIZATION. (R826735)

    EPA Science Inventory

    Block copolymers of polystyrene and poly(t-butyl acrylate) were prepared using atom transfer radical polymerization techniques. These polymers were synthesized with a CuBr/N,N,N,NBonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 1: Effects of sandblasting and silanization.

    PubMed

    Higashi, Mami; Matsumoto, Mariko; Kawaguchi, Asuka; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of sandblasting and silanization on resin cement bond strengths to CAD/CAM resin blocks. Twenty four blocks (KATANA AVENCIA BLOCK) were divided into two resin cement groups (PANAVIA V5 [PV5] and PANAVIA SA CEMENT HANDMIX [PSA]), and further divided into four subgroups representing different surface treatment methods: no treatment (Ctl), silanization (Si), sandblasting (Sb), and Sb+Si. After resin application, microtensile bond strengths (μTBSs) were measured immediately, 1, 3 and 6 months after water storage. In addition, surfaces resulting from each of the treatment methods were analyzed by scanning electron microscopy (SEM). Three-way analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=370), 'resin cement' (p<0.001, F=103, PSA

  4. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    PubMed Central

    BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen

    2011-01-01

    Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the

  5. Effect of different palatal vault shapes on the dimensional stability of glass fiber-reinforced heat-polymerized acrylic resin denture base material

    PubMed Central

    Dalkiz, Mehmet; Arslan, Demet; Tuncdemir, Ali Riza; Bilgin, M.Selim; Aykul, Halil

    2012-01-01

    Objective: The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base material. Methods: Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A–B, A–C, A–D and B–C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recorded. Results: No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>.05). Significant difference of linear dimension were found in all experimental groups (P<.01) between measurements made 24 h after polymerization of specimens and 30 days after water storage. Conclusion: Palatal vault shape and fiber impregnation into the acrylic resin bases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces. PMID:22229010

  6. Dimensional stability of complete denture permanent acrylic resin denture bases; A comparison of dimensions before and after a second curing cycle.

    PubMed

    Fenlon, Michael Robert; Juszczyk, Andrzej Stanislaw; Rodriguez, Jose Mauricio; Curtis, Richard Victor

    2010-03-01

    The purpose of this study was to measure deformation of mandibular complete denture permanent bases after secondary curing. A cast of a flat mandibular edentulous ridge was duplicated ten times. A wax base was laid on the original cast, two wax sprues were attached and an overcast was made. The overcast was used to produce wax bases similar in outline and thickness on the duplicate casts. These were invested and following manufacturer's instructions ten similar acrylic resin bases were produced. The fitting surface of each denture base was scanned on a contacting scanner with an axis resolution of 1 microm and accurate to 25 microm. Denture teeth were waxed up on the base on the original master cast, an overcast was made to produce wax ups and tooth positions that were similar in outline and thickness to the original. These were processed, removed from the flasks and excess acrylic resin was removed. The denture bases were rescanned in an identical fashion to the first scanning procedure. Using commercially developed metrology software calibrated colour maps were generated for each denture base that illustrates measurements of differences between pairs of surfaces. Histograms showing distributions of distances between points were constructed. 50% of the points were separated by a mean 50 microm or less and that 90% of the points were separated by 160 microm or less. The maximum separation was of 380 microm. Complete denture permanent bases were not found to distort significantly as a result of being subjected to a second heat curing cycle as part of final processing of dentures. PMID:20397501

  7. Directed self-assembly of poly(styrene)-block-poly(acrylic acid) copolymers for sub-20nm pitch patterning

    NASA Astrophysics Data System (ADS)

    Cheng, Jing; Lawson, Richard A.; Yeh, Wei-Ming; Jarnagin, Nathan D.; Peters, Andrew; Tolbert, Laren M.; Henderson, Clifford L.

    2012-03-01

    Directed self-assembly (DSA) of block copolymers is a promising technology for extending the patterning capability of current lithographic exposure tools. For example, production of sub-40 nm pitch features using 193nm exposure technologies is conceivably possible using DSA methods without relying on time consuming, challenging, and expensive multiple patterning schemes. Significant recent work has focused on demonstration of the ability to produce large areas of regular grating structures with low numbers of defects using self-assembly of poly(styrene)-b-poly(methyl methacrylate) copolymers (PS-b-PMMA). While these recent results are promising and have shown the ability to print pitches approaching 20 nm using DSA, the ability to advance to even smaller pitches will be dependent upon the ability to develop new block copolymers with higher χ values and the associated alignment and block removal processes required to achieve successful DSA with these new materials. This paper reports on work focused on identifying higher χ block copolymers and their associated DSA processes for sub-20 nm pitch patterning. In this work, DSA using polystyrene-b-polyacid materials has been explored. Specifically, it is shown that poly(styrene)-b-poly(acrylic acid) copolymers (PS-b-PAA) is one promising material for achieving substantially smaller pitch patterns than those possible with PS-b-PMMA while still utilizing simple hydrocarbon polymers. In fact, it is anticipated that much of the learning that has been done with the PS-b-PMMA system, such as development of highly selective plasma etch block removal procedures, can be directly leveraged or transferred to the PS-b-PAA system. Acetone vapor annealing of PS-b-PAA (Mw=16,000 g/mol with 50:50 mole ratio of PS:PAA) and its self-assembly into a lamellar morphology is demonstrated to generate a pattern pitch size (L0) of 21 nm. The χ value for PS-b-PAA was estimated from fingerprint pattern pitch data to be approximately 0.18 which

  8. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze.

    PubMed

    Santos, Daniela Micheline Dos; Nagay, Bruna Egumi; da Silva, Emily Vivianne Freitas; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Goiato, Marcelo Coelho

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008h). Data were submitted to the ANOVA and Tukey Test (p<0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. PMID:27612795

  9. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  10. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.

    PubMed

    Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou

    2014-05-15

    A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater. PMID:24681592

  11. Advances in acrylic-alkyd hybrid synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  12. Poly(acrylic acid)-block-poly(vinyl alcohol) anchored maghemite nanoparticles designed for multi-stimuli triggered drug release

    NASA Astrophysics Data System (ADS)

    Liu, Ji; Detrembleur, Christophe; Debuigne, Antoine; de Pauw-Gillet, Marie-Claire; Mornet, Stéphane; Vander Elst, Luce; Laurent, Sophie; Labrugère, Christine; Duguet, Etienne; Jérôme, Christine

    2013-11-01

    Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene blue (MB), a cationic model drug. The triggered release of MB was studied under various stimuli such as pH, ionic strength and temperature. Local heating generated under alternating magnetic field (AMF) application was studied, and remotely AMF-triggered release was also confirmed, while a mild heating-up of the release medium was observed. Furthermore, their potential application as magnetic resonance imaging (MRI) contrast agents was explored via relaxivity measurements and acquisition of T2-weighted images. Preliminary studies on the cytotoxicity against mouse fibroblast-like L929 cell line and also their cellular uptake within human melanoma MEL-5 cell line were carried out. In conclusion, this kind of stimuli-responsive nanoparticles appears to be promising carriers for delivering drugs to some tumour sites or into cellular compartments with an acidic environment.Original core/corona nanoparticles composed of a maghemite core and a stimuli-responsive polymer coating made of poly(acrylic acid)-block-poly(vinyl alcohol) macromolecules were fabricated for drug delivery system (DDS) application. This kind of DDS aims to combine the advantage of stimuli-responsive polymer coating, in order to regulate the drug release behaviours under different conditions and furthermore, improve the biocompatibility and in vivo circulation half-time of the maghemite nanoparticles. Drug loading capacity was evaluated with methylene

  13. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  14. Advanced analytical methods for the structure elucidation of polystyrene-b-poly(n-butyl acrylate) block copolymers prepared by reverse iodine transfer polymerisation.

    PubMed

    Wright, Trevor Gavin; Pfukwa, Helen; Pasch, Harald

    2015-09-10

    Reverse iodine transfer polymerisation (RITP) is a living radical polymerisation technique that has shown to be feasible in synthesising segmented styrene-acrylate copolymers. Polymers synthesised via RITP are typically only described regarding their bulk properties using nuclear magnetic resonance spectroscopy and size exclusion chromatography. To fully understand the complex composition of the polymerisation products and the RITP reaction mechanism, however, it is necessary to use a combination of advanced analytical methods. In the present RITP procedure, polystyrene was synthesised first and then used as a macroinitiator to synthesise polystyrene-block-poly(n-butyl acrylate) (PS-b-PBA) block copolymers. For the first time, these PS-b-PBA block copolymers were analysed by a combination of SEC, in situ(1)H NMR and HPLC. (1)H NMR was used to determine the copolymer composition and the end group functionality of the samples, while SEC and HPLC were used to confirm the formation of block copolymers. Detailed information on the living character of the RITP process was obtained. PMID:26388490

  15. Prosthetic rehabilitation with collapsible hybrid acrylic resin and permanent silicone soft liner complete denture of a patient with scleroderma-induced microstomia.

    PubMed

    Singh, Kunwarjeet; Gupta, Nidhi; Gupta, Ridhimaa; Abrahm, Dex

    2014-07-01

    Scleroderma is an autoimmune multisystem rheumatic condition characterized by fibrosis of connective tissues of the body, resulting in hardening and impairment of the function of different organs. Deposition of collagen fibers in peri-oral tissues causes loss of elasticity and increased tissue stiffness, resulting in restricted mouth opening. A maximal oral opening smaller than the size of a complete denture can make prosthetic treatment challenging. Patients with microstomia who must wear removable dental prostheses (RDPs) often face the difficulty of being unable to insert or remove a conventional RDP. A sectional-collapsible denture is indicated for the prosthetic management of these patients, but reduced manual dexterity often makes intraoral manipulation of the prosthesis difficult. A single collapsible complete denture is a better choice for functional rehabilitation of these patients. This clinical report describes in detail the prosthodontic management of a maxillary edentulous patient with restricted mouth opening induced by scleroderma with a single collapsible removable complete denture fabricated with heat-polymerized silicone soft liner and heat-cured acrylic resin. The preliminary and secondary impressions were made with moldable aluminum trays by using putty and light-body poly(vinyl siloxane) elastomeric impression material. The collapsed denture can be easily inserted and removed by the patient and also provides adequate function in the mouth. PMID:24417310

  16. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    PubMed Central

    ALCÂNTARA, Cristiane S.; de MACÊDO, Allana F.C.; GURGEL, Bruno C.V.; JORGE, Janaina H.; NEPPELENBROEK, Karin H.; URBAN, Vanessa M.

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. Results No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents. PMID:23329241

  17. Effect of Food Simulating Agents on the Hardness and Bond Strength of a Silicone Soft Liner to a Denture Base Acrylic Resin

    PubMed Central

    Khaledi, A.A.R.; Bahrani, M.; Shirzadi, S.

    2015-01-01

    Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water

  18. Effect of Gradient Sequencing on Copolymer Order-Disorder Transitions: Phase Behavior of Styrene/n-Butyl Acrylate Block and Gradient Copolymers

    SciTech Connect

    Mok, Michelle M; Ellison, Christopher J; Torkelson, John M

    2012-11-14

    We investigate the effect of gradient sequence distribution in copolymers on order-disorder transitions, using rheometry and small-angle X-ray scattering to compare the phase behavior of styrene/n-butyl acrylate (S/nBA) block and gradient copolymers. Relative to block sequencing, gradient sequencing increases the molecular weight necessary to induce phase segregation by over 3-fold, directly consistent with previous predictions from theory. Results also suggest the existence of both upper and lower order-disorder transitions in a higher molecular weight S/nBA gradient copolymer, made accessible by the shift in order-disorder temperatures from gradient sequencing. The combination of transitions is speculated to be inaccessible in S/nBA block copolymer systems due to their overlap at even modest molecular weights and also their location on the phase diagram relative to the polystyrene glass transition temperature. Finally, we discuss the potential impacts of polydispersity and chain-to-chain monomer sequence variation on gradient copolymer phase segregation.

  19. A comparison of the ability of K-files and Hedstrom files to shape simulated root canals in resin blocks.

    PubMed

    Alodeh, M H; Dummer, P M

    1989-09-01

    A total of 50 simulated root canals in clear resin blocks with various degrees and positions of curvature were prepared by either K-files or Hedstrom files. Each file type was used to prepare 25 canals employing an in/out circumferential filing motion. The efficacy of the files was assessed by instrumentation time, deformation and fracture of instruments, and loss of working distance. The shape of the prepared canals was assessed by direct observation and from composite photographic prints produced by superimposing negatives of the canals obtained before and after preparation. Overall, canal shaping with Hedstrom files was quicker and more effective. Both file types prepared straight canals in an appropriate manner but the majority of prepared curved canals were hourglass in shape. In general, K-files created zips which were wider and thus more pronounced than those produced by Hedstrom files. Wide 'danger zones' were also regularly created. The location of the aberrations depended largely on the original shape of the canal and in particular on the position of the beginning of the canal curve. Under the conditions of this study, the manipulation of K-files and Hedstrom files in a simple in/out circumferential filing motion proved an unsatisfactory method of shaping simulated curved root canals in resin blocks. PMID:2637229

  1. Physicochemical properties of pH-controlled polyion complex (PIC) micelles of poly(acrylic acid)-based double hydrophilic block copolymers and various polyamines.

    PubMed

    Warnant, J; Marcotte, N; Reboul, J; Layrac, G; Aqil, A; Jerôme, C; Lerner, D A; Gérardin, C

    2012-05-01

    The physicochemical properties of polyion complex (PIC) micelles were investigated in order to characterize the cores constituted of electrostatic complexes of two oppositely charged polyelectrolytes. The pH-sensitive micelles were obtained with double hydrophilic block copolymers containing a poly(acrylic acid) block linked to a modified poly(ethylene oxide) block and various polyamines (polylysine, linear and branched polyethyleneimine, polyvinylpyridine, and polyallylamine). The pH range of micellization in which both components are ionized was determined for each polyamine. The resulting PIC micelles were characterized using dynamic light scattering and small-angle X-ray scattering experiments (SAXS). The PIC micelles presented a core-corona nanostructure with variable polymer density contrasts between the core and the corona, as revealed by the analysis of the SAXS curves. It was shown that PIC micelle cores constituted by polyacrylate chains and polyamines were more or less dense depending on the nature of the polyamine. It was also determined that the density of the cores of the PIC micelles depended strongly on the nature of the polyamine. These homogeneous cores were surrounded by a large hairy corona of hydrated polyethylene oxide block chains. Auramine O (AO) was successfully entrapped in the PIC micelles, and its fluorescence properties were used to get more insight on the core properties. Fluorescence data confirmed that the cores of such micelles are quite compact and that their microviscosity depended on the nature of the polyamine. The results obtained on these core-shell micelles allow contemplating a wide range of applications in which the AO probe would be replaced by various cationic drugs or other similarly charged species to form drug nanocarriers or new functional nanodevices. PMID:22453608

  2. Volume shrinkage and rheological studies of epoxidised and unepoxidised poly(styrene-block-butadiene-block-styrene) triblock copolymer modified epoxy resin-diamino diphenyl methane nanostructured blend systems.

    PubMed

    George, Sajeev Martin; Puglia, Debora; Kenny, Josè M; Parameswaranpillai, Jyotishkumar; Vijayan P, Poornima; Pionteck, Jűrgen; Thomas, Sabu

    2015-05-21

    reaction induced phase separation and (2) the plasticisation effect of the epoxidised block copolymer in the epoxy resin. PMID:25902727

  3. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitro study

    PubMed Central

    Kalra, Sandeep; Kharsan, Vishwas; Kalra, Nidhi Mangtani

    2015-01-01

    Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS) of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr) alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness) were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA) and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa) when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa). Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy. PMID:26321840

  4. Technology and the use of acrylics for provisional dentine protection.

    PubMed

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue. PMID:24566021

  5. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  6. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  7. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    PubMed Central

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  8. Application of pH-responsive poly(2-dimethyl-aminoethylmethacrylate)-block-poly(acrylic acid) coatings for the open-tubular capillary electrochromatographic analysis of acidic and basic compounds.

    PubMed

    Sepehrifar, Roshanak; Boysen, Reinhard I; Danylec, Basil; Yang, Yuanzhong; Saito, Kei; Hearn, Milton T W

    2016-04-21

    A new type of stimuli-responsive polymeric (SRP) coating has been prepared for use in open tubular capillary electrochromatography (OT-CEC), by grafting poly(2-dimethylaminoethylmethacrylate)-block-poly(acrylic acid) (PDMAEMA-b-PAA) as a Y-shaped block copolymer with two dissimilar chain compositions onto the inner walls of aminopropyl-modified silica capillaries. The grafting process introduced weakly charged functional groups from the PAA and PDMAEMA, enabling the generation of electroendosmotic flow with magnitude and direction adjustable by changing the pH of the running buffer electrolyte. This stimuli-responsive PDMAEMA-b-PAA block copolymer was found to provide excellent resolution of various acidic and basic compounds, leading to efficient analyte separation. When operated in the OT-CEC mode, separation selectivities could be readily manipulated via differential contributions from chromatographic and electrophoretic mechanisms, simply by changing the pH or the ionic strength of the running buffer electrolyte. PMID:27026608

  9. An in vitro study into the effect of a limited range of denture cleaners on surface roughness and removal of Candida albicans from conventional heat-cured acrylic resin denture base material.

    PubMed

    Harrison, Z; Johnson, A; Douglas, C W I

    2004-05-01

    This study evaluated the abrasiveness of four denture cleaners on the surface of denture base material and assessed their ability to remove Candida albicans. Acrylic resin discs 20 mm diameter and 2 mm thick were identically produced and polished. Four cleaners were evaluated: conventional toothpaste; toothpaste with stain remover; denture cleaning paste and an immersion type cleaner, and water were used as control. These were used at dilutions of 1:1, 1:2 and 1:3 with water. An electric toothbrush was used, and the discs cleaned to simulate 1 years' cleaning. The surface roughness of the discs were then measured, before and after cleaning, using a stylus profilometer, then inoculated with 1.2 x 10(6)C. albicans cells. The effectiveness of the denture cleaners to remove C. albicans cells was assessed following a single cleaning event. The immersion cleaner was significantly less abrasive than paste cleaners (P < 0.05). There were no significant differences between any dilutions for any cleaner used (P > 0.05). Immersion and paste cleaners removed almost all recoverable C. albicans from the discs, as cleaning with water alone was less effective (P < 0.05). An immersion type cleaner was found to be the most suitable cleaner because of its low abrasivity and effective removal of organic debris. PMID:15140172

  10. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  11. UV curing of nanoparticle reinforced acrylates

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Flyunt, R.; Czihal, K.; Ernst, H.; Naumov, S.; Buchmeiser, M. R.

    2007-12-01

    To improve the surface hardness of radiation cured acrylate coatings, both silica nanoparticles and alumina particles with a few microns in size have been embedded into acrylate formulations. Regular mixing of nanoparticles into acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification of nanoparticles using trialkoxysilanes, which provide an interface between the two dissimilar materials. Nanoparticles modified by methacryloxypropyltrimethoxysilane (MEMO) and vinyltrimethoxysilane (VTMO), both having polymerisation-active groups, may be crosslinked with the acrylate resin. UV curing of the nanocomposites revealed an unexpected lower reactivity of the vinyl groups of VTMO modified silica compared to MEMO grafted on silica. For VTMO modification, DFT calculations showed a decrease of Mulliken atomic charge for the olefinic carbons pointing to a lower reactivity. For UV cured nano/microhybrid composites, a significant improvement of abrasion resistance was obtained.

  12. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  13. Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 1. Using ATRP to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene

    NASA Astrophysics Data System (ADS)

    Beers, Kathryn L.; Woodworth, Brian; Matyjaszewski, Krzysztof

    2001-04-01

    A simple method of preparing well-defined (co)polymers has been developed for application in an advanced undergraduate laboratory. The method utilizes atom transfer radical polymerization (ATRP), a controlled/living radical polymerization, to prepare difunctional poly(n-butyl acrylate) with bromine end groups, which is chain-extended with styrene to yield an ABA triblock copolymer. Simultaneously, a statistical copolymer of the two monomers is prepared for comparison. The two copolymers are isolated and compositions and molecular weights are determined using 1H NMR and SEC, respectively. Optional additions to the experiment include performing a kinetic analysis of the homopolymerization using GC and SEC, and possibly comparing the results to those expected for conventional radical polymerization. Material differences in the copolymers can be observed qualitatively or measured using thermal or mechanical analysis. The lab is designed in such a way that several parts of the whole can be used to emphasize different areas of polymer science. A more synthetic course such as the organic synthesis lab can opt to investigate only the kinetic and composition analyses, whereas an engineering or materials science course may pursue more rigorous analysis of the materials' properties. Results included here are intended for application in an organic synthesis laboratory course.

  14. Unusually Stable Hysteresis in the pH-Response of Poly(Acrylic Acid) Brushes Confined within Nanoporous Block Polymer Thin Films.

    PubMed

    Weidman, Jacob L; Mulvenna, Ryan A; Boudouris, Bryan W; Phillip, William A

    2016-06-01

    Stimuli-responsive soft materials are a highly studied field due to their wide-ranging applications; however, only a small group of these materials display hysteretic responses to stimuli. Moreover, previous reports of this behavior have typically shown it to be short-lived. In this work, poly(acrylic acid) (PAA) chains at extremely high grafting densities and confined in nanoscale pores displayed a unique long-lived hysteretic behavior caused by their ability to form a metastable hydrogen bond network. Hydraulic permeability measurements demonstrated that the conformation of the PAA chains exhibited a hysteretic dependence on pH, where different effective pore diameters arose in a pH range of 3 to 8, as determined by the pH of the previous environment. Further studies using Fourier transform infrared (FTIR) spectroscopy demonstrated that the fraction of ionized PAA moieties depended on the thin film history; this was corroborated by metal adsorption capacity, which demonstrated the same pH dependence. This hysteresis was shown to be persistent, enduring for days, in a manner unlike most other systems. The hypothesis that hydrogen bonding among PAA units contributed to the hysteretic behavior was supported by experiments with a urea solution, which disrupted the metastable hydrogen bonded state of PAA toward its ionized state. The ability of PAA to hydrogen bond within these confined pores results in a stable and tunable hysteresis not previously observed in homopolymer materials. An enhanced understanding of the polymer chemistry and physics governing this hysteresis gives insight into the design and manipulation of next-generation sensors and gating materials in nanoscale applications. PMID:27172428

  15. The cutting of ultrathin sections with the thickness less than 20 nm from biological specimens embedded in resin blocks.

    PubMed

    Nebesářová, Jana; Hozák, Pavel; Frank, Luděk; Štěpan, Petr; Vancová, Marie

    2016-06-01

    Low voltage electron microscopes working in transmission mode, like LVEM5 (Delong Instruments, Czech Republic) working at accelerating voltage 5 kV or scanning electron microscope working in transmission mode with accelerating voltage below 1 kV, require ultrathin sections with the thickness below 20 nm. Decreasing of the primary electron energy leads to enhancement of image contrast, which is especially useful in the case of biological samples composed of elements with low atomic numbers. As a result treatments with heavy metals, like post-fixation with osmium tetroxide or ultrathin section staining, can by omitted. The disadvantage is reduced penetration ability of incident electrons influencing the usable thickness of the specimen resulting in the need of ultrathin sections of under 20 nm thickness. In this study we want to answer basic questions concerning the cutting of extremely ultrathin sections: Is it possible routinely and reproducibly to cut extremely thin sections of biological specimens embedded in commonly used resins with contemporary ultramicrotome techniques and under what conditions? Microsc. Res. Tech. 79:512-517, 2016. © 2016 Wiley Periodicals, Inc. PMID:27030160

  16. Microtensile bond strength of resin-resin interfaces after 24-hour and 2-month soaking.

    PubMed

    Leavitt, Curry; Boberick, Kenneth G; Winkler, Sheldon

    2007-01-01

    Evaluate the bond strengths of denture base-repair materials to minimize recurrent failure rate. Use microtensile bond strength (muTBS) testing to evaluate the interfacial bonding strength of 6 commercial denture repair materials after 24-hour and 12-month soaking. Blocks of poly(methyl metacrylate) (PMMA) and Triad were fabricated, fractured, and repaired. Twenty bars (1 x 1 x 30 mm) per group were sectioned from each block parallel to the long axis and approximately 90 degrees to the resin-resin repair interface and stored before muTBS testing in a servo-hydraulic tensile-testing machine. Intact PMMA and Triad bars that had been soaked for 24 hours and 12 months were tested for reference. The 24-hour repair strengths for PMMA ranged from 52% to 84% of original strength. Soaking for 12 months resulted in a 20% decrease in strength for the PMMA control. The 12-month repair strengths for PMMA ranged from 43% to 74% of the 12-month soaked material strength. Triad repair tested 35% of original strength after soaking for 24 hours. Permabond (cyanoacrylate) to PMMA tested 47% of original strength after 24 hours of soaking and 26% of the 12-month soaked material strength. Permabond to Triad tested 30% of original strength after 24 hours of soaking. Permabond and Triad showed a 100% adhesive mode of failure. All other materials tested exhibited either an adhesive mode of failure at the denture base-repair-material interface or a complex cohesive failure within the repair-material interface. The muTBS approach can be used to analyze the resin-resin interface of repaired acrylics. The relatively small standard deviations make the muTBS approach attractive. In this study, muTBS was used to evaluate the repair strength of 6 denture repair materials enabling clinicians to make clinical judgments regarding the strongest repair bond available. PMID:17987865

  17. Controlled/Living Radical Polymerization in the Undergraduate Laboratories. 2. Using ATRP in Limited Amounts of Air to Prepare Block and Statistical Copolymers of n-Butyl Acrylate and Styrene

    NASA Astrophysics Data System (ADS)

    Matyjaszewski, Krzysztof; Beers, Kathryn L.; Woodworth, Brian; Metzner, Zachary

    2001-04-01

    Developments in controlled radical polymerization have facilitated the use of living polymer chemistry in the undergraduate laboratories. In the first paper of this series, a procedure for the use of atom transfer radical polymerization (ATRP) to prepare block and statistical copolymers was described and the use of kinetic analysis to differentiate between living and conventional processes was demonstrated. In this paper, the experiment is extended to polymerizations run in limited amounts of air so that the use of inert gases is unnecessary. The Cu(I) catalyst can be lost owing to oxidation or termination reactions; however, a scavenger, Cu(0), is added to react with oxidized catalyst to regenerate the Cu(I) complex. A difunctional macroinitiator of poly(n-butyl acrylate) is prepared and chain-extended with polystyrene. A statistical copolymer using the same monomer pair is also prepared. These copolymers are isolated and characterized along with the homopolymeric macroinitiator using 1H NMR and SEC. Kinetic analysis is also carried out using GC and SEC. The significant difference in these two approaches, in addition to slight variations in the reaction conditions, is apparent in the chain extension to yield the ABA triblock copolymer.

  18. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  19. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  20. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  1. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glass-ceramic: effect of storage media, duration, and subsequent polishing.

    PubMed

    Stawarczyk, Bogna; Sener, Beatrice; Trottmann, Albert; Roos, Malgorzata; Ozcan, Mutlu; Hämmerle, Christoph H F

    2012-01-01

    This study determined the discoloration of five CAD/CAM resins, four manually polymerized resins, and glass-ceramic as control group. Specimens were divided into three groups (N=300, n=30) to be stored in coffee, black tea and red wine (n=10). The discoloration was measured using a spectrophotometer after 1, 7, 29, 90, 180 days storage. All tested groups showed color change (ΔE) at all time points. The manually polymerized resin composites GD (Gradia) and CM (CronMix K), and the CAD/CAM resin composite HC (Blanc High-class) showed significantly higher ΔE compared to all other groups in all tested media. The discoloration was extrinsic and decreased after polishing for the majority of the tested materials. Except CAD/CAM resin HC (Blanc High-class), all CAD/CAM resins showed similar color stability compared to the control group. PMID:22673470

  2. Surface integrity of provisional resin materials

    NASA Astrophysics Data System (ADS)

    Abouelatta, O. B.; El-Bediwi, A.; Sakrana, A.; Jiang, X. Q.; Blunt, L.

    2006-03-01

    Provisional resin materials are widely used in prosthetic dentistry and play an important role in the success of restorative treatment. Therefore, these materials must meet the requirements of preserving surface integrity during the treatment process. This study was done to evaluate surface roughness and microhardness of two provisional resin materials after 37 °C water storage. Two rectangular samples 21 mm × 11 mm × 3 mm, one bis-acrylic (bis-acrylic-Protemp II) and one polyethyl methacrylate (Trim®-PEMA) were fabricated as examples of provisional materials (n = 5 per material). The specimens were stored in 37 °C deionized distilled water for 24 h, 1, 2 and 3 weeks. The control specimens were not stored in water. The surface roughness of the tested materials (n = 10) was measured using a profilometer. Microhardness tests were conducted using a Vickers microscope mounted indenter system (n = 10). At 24 h, the surface roughness was recorded with bis-acrylic-Protemp II as higher than methacrylate materials. No significant differences of microhardness between Trim®-PEMA and bis-acrylic-Protemp II were recognized at 1, 2 and 3 weeks. The microhardness values increased with the increase of surface roughness and vice versa in both Trim®-PEMA and bis-acrylic-Protemp II. Both surface roughness and microhardness are affected by water storage. Bis-acrylic-Protemp II revealed better results in hardness than methacrylate resins, whereas Trim®-PEMA has a better surface roughness.

  3. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  4. Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material.

    PubMed

    Vallittu, P K

    1993-09-01

    This study was aimed at clarifying the effects of two different silane compounds on the adhesion between the different fibres and acrylic resin. The fibres used as reinforcement in the acrylic resin test specimens were glass, carbon and aramid fibres and the silane treated and untreated versions of each type of the fibres were tested. The fracture resistance of the test specimens were assessed and the fibres were studied by a scanning electron microscope (SEM) to establish the adhesion between the fibres and acrylic resin. The results showed that silanization of glass and aramid fibres enhances the adhesion between the fibres and acrylic resin. The findings were confirmed by the SEM photographs taken. The use of a scanning electron microscope proved to be useful for the investigation of the adhesive properties of the materials used. PMID:10412475

  5. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  6. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  7. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  8. Evaluation of Bond Strength of Acrylic Teeth to Denture Base using Different Polymerization Techniques: A Comparative Study

    PubMed Central

    Yadav, Naveen S; Somkuwar, Surabhi; Mishra, Sunil Kumar; Hazari, Puja; Chitumalla, Rajkiran; Pandey, Shilpi K

    2015-01-01

    Background: Acrylic teeth have long been used in the treatment of a complete denture. One of the primary advantages of acrylic teeth is their ability to adhesively bond to the denture base resins. Although the bonding seems satisfactory, however, bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The purpose of this study was to evaluate the bond strength of acrylic teeth to denture base using different polymerizing techniques. Materials and Methods: Acrylic resin teeth were bonded to heat cure acrylic resin and were polymerized by conventional water bath and microwave energy. The samples are then retrieved from the flask; trimmed and polished. The samples were then subjected to tensile forces till failure by using the Instron Universal testing machine. The machine used a direct pull on the incisal portion of the lingual surface in a labial direction at a height above the denture base resin bar with a crosshead speed of 0.5 mm/min. Results: In the present study, it was found that conventionally cured specimens exhibited higher bond strength than microwave cured specimens and majority of fractures occur within the body of the tooth. It was found that debonding occurs within the body of the tooth rather than tooth acrylic interface, so there is no need of surface treatment of ridge lap surface. Conclusion: Conventionally cured specimens possess statistically higher bond strength than microwave cured specimens. PMID:26225106

  9. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  10. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  11. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  12. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    PubMed

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers. PMID:6499426

  13. Poly(amide-graft-acrylate) interfacial compounds

    NASA Astrophysics Data System (ADS)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  14. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  15. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  16. Resin bonding of metal brackets to glazed zirconia with a porcelain primer

    PubMed Central

    Lee, Jung-Hwan; Lee, Milim; Kim, Kyoung-Nam

    2015-01-01

    Objective The aims of this study were to compare the shear bond strength between orthodontic metal brackets and glazed zirconia using different types of primer before applying resin cement and to determine which primer was more effective. Methods Zirconia blocks were milled and embedded in acrylic resin and randomly assigned to one of four groups: nonglazed zirconia with sandblasting and zirconia primer (NZ); glazed zirconia with sandblasting, etching, and zirconia primer (GZ); glazed zirconia with sandblasting, etching, and porcelain primer (GP); and glazed zirconia with sandblasting, etching, zirconia primer, and porcelain primer (GZP). A stainless steel metal bracket was bonded to each target surface with resin cement, and all specimens underwent thermal cycling. The shear bond strength of the specimens was measured by a universal testing machine. A scanning electron microscope, three-dimensional optical surface-profiler, and stereoscopic microscope were used to image the zirconia surfaces. The data were analyzed with one-way analyses of variance and the Fisher exact test. Results Group GZ showed significantly lower shear bond strength than did the other groups. No statistically significant differences were found among groups NZ, GP, and GZP. All specimens in group GZ showed adhesive failure between the zirconia and resin cement. In groups NZ and GP, bonding failed at the interface between the resin cement and bracket base or showed complex adhesive and cohesive failure. Conclusions Porcelain primer is the more appropriate choice for bonding a metal bracket to the surface of a full-contour glazed zirconia crown with resin cement. PMID:26629476

  17. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  18. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  19. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  20. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-01-01

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated. PMID:26248072

  1. Investigation of fluorinated (Meth)acrylate monomers and macromonomers suitable for a hydroxy-containing acrylate monomer in UV nanoimprinting.

    PubMed

    Ito, Shunya; Kaneko, Shu; Yun, Cheol Min; Kobayashi, Kei; Nakagawa, Masaru

    2014-06-24

    We investigated reactive fluorinated (meth)acrylate monomers and macromonomers that caused segregation at the cured resin surface of a viscous hydroxy-containing monomer, glycerol 1,3-diglycerolate diacrylate (GDD), and decreased the demolding energy in ultraviolet (UV) nanoimprinting with spin-coated films under a condensable alternative chlorofluorocarbon gas atmosphere. The X-ray photoelectron spectroscopy and contact angle measurements used to determine the surface free energy suggested that a nonvolatile silicone-based methacrylate macromonomer with fluorinated alkyl groups segregated at the GDD-based cured resin surface and decreased the surface free energy, while fluorinated acrylate monomers hardly decreased the surface free energy because of their evaporation during the annealing of the spin-coated films. The average demolding energy of GDD-based cured resins with the macromonomer having fluorinated alkyl groups was smaller than that with the macromonomer having hydrocarbon alkyl groups. The fluorinated alkyl groups were responsible for decreasing the demolding energy rather than the polysiloxane main chains. We demonstrated that the GDD-based UV-curable resin with the fluorinated silicone-based macromonomer was suitable for step-and-repeat UV nanoimprinting with a bare silica mold, in addition to silica molds treated by chemical vapor surface modification with trifluoro-1,1,2,2-tetrahydropropyltrimethoxysilane (FAS3) and tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (FAS13). PMID:24892792

  2. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  3. The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

    PubMed Central

    Parkhedkar, Rambhau D.; Mowade, Tushar Krishnarao

    2012-01-01

    PURPOSE The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins. PMID:22439093

  4. Chemical resistance of optical plastics and resin for level detectors

    NASA Astrophysics Data System (ADS)

    Omegna, Cicero L.; Fontes Garcia, Jonas; Ramos-Gonzáles, Roddy E.; Barbosa, Luiz C.

    2015-09-01

    A test method was developed to find the ideal optical material that supports the chemical reaction of some fuels. Optical plastics and resin were submerged for long periods of time in reservoirs of ethanol, gasoline, Diesel and biodiesel. The dimensional change and weight change of the submerged samples was measured. A special resin successfully supported the chemical attack of fuels. Samples of acrylic polymer and polycarbonate were used as type of optical plastic.

  5. Synthesis and application of novel EB curable polyester urethane acrylate modified by linseed oil fatty acid

    NASA Astrophysics Data System (ADS)

    Jun, Li; Xuecheng, Ju; Min, Yi; Jinshan, Wei; Hongfei, Ha

    1999-06-01

    A novel polyester urethane acrylate resin modified by linseed oil fatty acid (LFA) was synthesized and EB curing coating was formulated in this work. When the coating cured by EB radiation on the timber, the cured coating was possessed of good performances.

  6. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  7. New modified hydrocarbon resins; An alternative to styrenated terpene resins in hot melts

    SciTech Connect

    Carper, J.D. )

    1990-06-01

    This paper reports on the development of two hydrocarbon-based resin formulations that could be used with different thermoplastic block copolymers to formulate pressure-sensitive adhesives. Results are examined with one of these resins in formulations with styrene-isoprene-styrene (SIS) and styrene-butadiene (SB) compounds. The new modified hydrocarbon resin, with a softening point of 98{degrees} C, matches the adhesive performance of a terpene resin with a softening point of 105{degrees} C. The resin performs as well as the modified terpene in SIS-, SB-, and EVA-based adhesives. The new hydrocarbon resin is especially well suited for hot-melt adhesives. It exhibits low volatility, good color stability, and excellent melt viscosity stability. Since the new resin is based on petroleum hydrocarbon feedstocks, it should be available at moderate, stable prices. The other hydrocarbon resin, with a softening point of 85{degrees} C, produced comparable results.

  8. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  9. Block Copolymer Modified Epoxy Amine System for Reactive Rotational Molding: Structures, Properties and Processability

    NASA Astrophysics Data System (ADS)

    Lecocq, Eva; Nony, Fabien; Tcharkhtchi, Abbas; Gérard, Jean-François

    2011-05-01

    Poly(styrene-butadiene-methylmethacrylate) (SBM) and poly(methylmethacrylate-butyle-acrylate-methylmethacrylate) (MAM) triblock copolymers have been dissolved in liquid DGEBA epoxy resin which is subsequently polymerized by meta-xylene diamine (MXDA) or Jeffamine EDR-148. A chemorheology study of these formulations by plate-plate rheology and by thermal analysis has allowed to conclude that the addition of these copolymer blocks improve the reactive rotational moulding processability without affecting the processing time. Indeed, it prevents the pooling of the formulation at the bottom of the mould and a too rapid build up of resin viscosity of these thermosetting systems. The morphology of the cured blends examined by scanning electron microscopy (SEM) shows an increase of fracture surface area and thereby a potential increase of the toughness with the modification of epoxy system. Dynamic mechanical spectroscopy (DMA) and opalescence of final material show that the block PMMA, initially miscible, is likely to induce phase separation from the epoxy-amine matrix. Thereby, the poor compatibilisation between the toughener and the matrix has a detrimental effect on the tensile mechanical properties. The compatibilisation has to be increased to improve in synergy the processability and the final properties of these block copolymer modified formulations. First attempts could be by adapting the length and ratio of each block.

  10. Block copolymers for enhanced oil recovery

    SciTech Connect

    Wu, M.M.; Ball, L.E.

    1987-05-19

    A water soluble block copolymer is described comprising two or more water soluble polymer blocks, wherein the water soluble polymer blocks comprise polymerized monomers. The monomers are selected from the group consisting of acrylamide, methacrylamide, vinyl methyl ether, acrylic and methacrylic acid and their water soluble salts and N-substituted acrylamides.

  11. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

    PubMed Central

    ArRejaie, Aws S.; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  12. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base.

    PubMed

    Gad, Mohammed; ArRejaie, Aws S; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  13. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn starch hydrolyzate....

  14. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (a) (1) of this section is used as a flocculent in the clarification of beet sugar juice and liquor or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per... mineral scale in beet sugar juice and liquor or cane sugar juice and liquor in an amount not to exceed...

  15. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... specifications: (1) A minimum molecular weight of 3 million. (2) Viscosity range: 3,000 to 6,000 centipoises...

  16. Composite resin in medicine and dentistry.

    PubMed

    Stein, Pamela S; Sullivan, Jennifer; Haubenreich, James E; Osborne, Paul B

    2005-01-01

    Composite resin has been used for nearly 50 years as a restorative material in dentistry. Use of this material has recently increased as a result of consumer demands for esthetic restorations, coupled with the public's concern with mercury-containing dental amalgam. Composite is now used in over 95% of all anterior teeth direct restorations and in 50% of all posterior teeth direct restorations. Carbon fiber reinforced composites have been developed for use as dental implants. In medicine, fiber-reinforced composites have been used in orthopedics as implants, osseous screws, and bearing surfaces. In addition, hydroxyapatite composite resin has become a promising alternative to acrylic cement in stabilizing fractures and cancellous screw fixation in elderly and osteoporotic patients. The use of composite resin in dentistry and medicine will be the focus of this review, with particular attention paid to its physical properties, chemical composition, clinical applications, and biocompatibility. PMID:16393132

  17. Jetted mixtures of particle suspensions and resins

    NASA Astrophysics Data System (ADS)

    Hoath, S. D.; Hsiao, W.-K.; Hutchings, I. M.; Tuladhar, T. R.

    2014-10-01

    Drop-on-demand (DoD) ink-jetting of hard particle suspensions with volume fraction Φ ˜ 0.25 has been surveyed using 1000 ultra-high speed videos as a function of particle size (d90 = 0.8—3.6 μm), with added 2 wt. % acrylic (250 kDa) or 0.5 wt. % cellulose (370 kDa) resin, and also compared with Newtonian analogues. Jet break-off times from 80 μm diameter nozzles were insensitive (120 ± 10 μs) to particle size, and resin jet break-off times were not significantly altered by >30 wt. % added particles. Different particle size grades can be jetted equally well in practice, while resin content effectively controls DoD break-off times.

  18. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  19. A method for measuring dermal exposure to multifunctional acrylates.

    PubMed

    Surakka, J; Johnsson, S; Rosén, G; Lindh, T; Fischer, T

    1999-12-01

    UV-curable acrylates are used increasingly for coating wood surfaces in the furniture industry. One of the active components, tripropylene glycol diacrylate (TPGDA), is known to be both an allergen and irritant to the skin. Methods to measure dermal exposure to skin irritants and allergens, such as acrylates, are insufficient for exposure assessment and there is none for this compound. The aim of this investigation was to develop a skin and surface sampling method, based on tape stripping, and a gas chromatographic method for quantitative analysis for assessing occupational skin exposure to multifunctional acrylates. Twelve adhesives were tested for their efficiency to remove TPGDA and UV-coating from a glass surface, the skin of guinea pigs and human volunteers employing the tape-stripping method in order to find the best performing tape. Variables that affect removal efficiency such as the applied dose and its retention time on the skin, tape adhesion time on the skin, and the number of strippings required to detect the contaminant from the skin were studied. Fixomull tape performed the best during sampling and analysis and had the most consistent removal efficiencies for the studied substances. The average removal efficiency with a single stripping at the 2 microliters TPGDA exposed skin sites was 85% (RSD = 14.1), and for UV-resin exposed sites 63% (RSD = 20.2). The results indicated that this method can be used for measuring dermal exposure to multifunctional acrylates efficiently, accurately, and economically. This method provides a sensitive and powerful tool for the assessment of dermal exposure to multifunctional acrylates both from the skin and from other contaminated surfaces in occupational field settings. PMID:11529185

  20. Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

    PubMed Central

    Shim, Ji-Suk; Lee, Jeong-Yol; Choi, Yeon-Jo; Shin, Sang-Wan

    2015-01-01

    PURPOSE This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at 60℃, 100℃, or 140℃. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (α=.05). RESULTS There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at 100℃ and 140℃. CONCLUSION Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment. PMID:25722837

  1. Stress and flow analyses of ultraviolet-curable resin during curing

    NASA Astrophysics Data System (ADS)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  2. Starch graft poly(methyl acrylate) loose-fill foam: preparation, properties and degradation.

    PubMed

    Chen, L; Gordon, S H; Imam, S H

    2004-01-01

    Starch graft poly(methyl acrylate) (S-g-PMA) was prepared by ceric ion initiation of methyl acrylate in an aqueous corn starch slurry (prime starch) which maximized the accessibility of the starch for graft polymerization. A new ceric ion reaction sequence was established as starch-initiator-methyl acrylate followed by addition of a small amount of ceric ion solution when the graft polymerization was almost complete to quench the reaction. As a result of this improved procedure, no unreacted methyl acrylate monomer remained, and thus, essentially no ungrafted poly(methyl acrylate) homopolymer was formed in the final grafted product. Quantities of the high purity S-g-PMA so prepared in pilot scale were converted to resin pellets and loose-fill foam by single screw and twin screw extrusion. The use of prime starch significantly improved the physical properties of the final loose-fill foam, in comparison to foam produced from regular dry corn starch. The S-g-PMA loose-fill foam had compressive strength and resiliency comparable to expanded polystyrene but higher bulk density. The S-g-PMA loose-fill foam also had better moisture and water resistance than other competitive starch-based materials. Studies indicated that the starch portion in S-g-PMA loose-fill foam biodegraded rapidly, whereas poly(methyl acrylate) remained relatively stable under natural environmental conditions. PMID:14715032

  3. Synthesis and characterization of amphoteric resins and its use for treatment of radioactive liquid waste

    SciTech Connect

    Siyam, T.; El-Naggar, I.M.; Aly, H.F.

    1996-12-31

    Amphoteric resins such as poly (acrylamide-acrylic acid-diallylamine-hydrochloride) {open_quotes}P(AH-AA-DAA){sup +}Cl{close_quotes} and poly (acrylamide-acrylic acid-dially-ethylamine-hydrochloride) {open_quotes}P(AM-AA-DAEA){sup +} Cl{close_quotes} were prepared by gamma radiation-induced polymerization of acrylic acid {open_quotes}AA{close_quotes} in the presence of poly(amidoamines) such as poly(acryl-amide-diallyamine-hydrochloride) {open_quotes}P(AM- DAAH){sup +}Cl{close_quotes} and poly(acrylamide-dially-ethylamine-hydrochloride){close_quotes}P(AM-DAEAH){sup +} Cl{sup -}{close_quotes} it as template polymers using a template polymerization technique. Spectroscopic studies showed that resins contain both amide- and carboxylic groups, and the peak of {r_angle}NH of amine salts at (3000-2700 cm{sup {minus}1}) and (2700-2500 cm{sup {minus}1}) is disappeared. This indicates that the addition of acrylic acid monomer on ammonium groups. These ammonium groups in template polymers are converted into acrylic acid chain ends in the obtained resins accordingly, the probability of the polymer degradation of decreases may be attributed to the high radiation stability of these chain ends of acrylic acid units. The capacities of the obtained resins increase by increasing the absorbed doses of about {approximately}20 kGy, but at high doses the capacities decrease. On increasing the amines ratio in template polymers the capacities of resins for cation decreased but increased for anions. The capacities of the product materials to some heavy metal ions decrease with increasing the hydrogen ion concentrations and the selectivity is decreased in the order Cu{sup 2+} > Co{sup 2+} > Cs{sup +}.

  4. JKR studies of adhesion with model acrylic elastomers

    SciTech Connect

    Shull, K.R.; Ahn, D.

    1996-12-31

    Acrylic elastomers are widely used in coating applications because of their inherent thermal stability, oil resistance and adhesive properties. These same features make acrylic elastomers attractive for fundamental studies of polymer adhesion. This endeavor has been simplified recently by the development of techniques for producing monodisperse acrylic homopolymers and block copolymers from anionically synthesized parent polyacrylates, thus allowing precise microstructural control of adhering surfaces. In terms of the adhesion measurement itself, an adhesion test based upon the theory of Johnson, Kendall and Roberts (JKR), henceforth referred to as the JKR technique, is well suited for probing the molecular origins of adhesion in elastomeric systems. This technique is quite practical, and minimizes the sample volume to reduce bulk viscoelastic losses. Further, the JKR technique permits testing at very low crack velocities, where interfacial effects are unobscured by bulk effects. In this paper, the authors report the results of JKR adhesion tests between poly(n-butyl acrylate) (PNBA) elastomers and poly(methyl methacrylate) (PMMA). The latter is employed as a control substrate because its inertness and low surface energy (relative to metallic or silicon based surfaces) are conducive to the creation of reproducible solid surfaces.

  5. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    PubMed

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database. PMID:22454327

  6. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  7. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  8. Transparent acrylic enamel slide holograms

    NASA Astrophysics Data System (ADS)

    Ponce-Lee, E. L.; Olivares Pérez, A.; Ruiz-Limón, B.; Hernández-Garay, M. P.; Toxqui-López, S.

    2006-02-01

    We present holograms generated in a computer to an acrylic enamel slide (Comex (R)), getting phase holograms. The information in the mask is transferred to the material by temperature gradients generated by rubbing. The refraction index is transformed at each material point by the temperature changes, thus the film is recorded and developed by itself. this material can be used for soft lithography.

  9. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  10. High-Temperature Polyimide Resin

    NASA Technical Reports Server (NTRS)

    Vanucci, Raymond D.; Malarik, Diane C.

    1990-01-01

    Improved polyimide resin used at continuous temperatures up to 700 degrees F (371 degrees C). PMR-II-50, serves as matrix for fiber-reinforced composites. Material combines thermo-oxidative stability with autoclave processability. Used in such turbine engine components as air-bypass ducts, vanes, bearings, and nozzle flaps. Other potential applications include wing and fuselage skins on high-mach-number aircraft and automotive engine blocks and pistons.

  11. Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Obturated with Resin Based Adhesive Sealers with Conventional Obturation Technique: An In vitro Study

    PubMed Central

    Langalia, Akshay K; Dave, Bela; Patel, Neeta; Thakkar, Viral; Sheth, Sona; Parekh, Vaishali

    2015-01-01

    Background: To compare fracture resistance of endodontically treated teeth obturated with different resin-based adhesive sealers with a conventional obturation technique. Materials and Methods: A total of 60 Single canaled teeth were divided into five groups. The first group was taken as a negative control. The rest of the groups were shaped using ProFile rotary files (Dentsply Maillefer, Ballaigues, Switzerland). The second group was obturated with gutta-percha and a ZOE-based sealer Endoflas FS (Sanlor Dental Products, USA). The third group was obturated with gutta-percha and an epoxy-based sealer AH Plus (Dentsply, DeTrey, Germany). The fourth group was obturated with Resilon (Pentron Clinical Technologies, Wallingford, CT) and RealSeal sealer (Pentron Clinical Technologies). The fifth group was obturated with EndoREZ points and EndoREZ sealer (both from Ultradent, South Jordan, UT). Roots were then embedded into acrylic blocks and were then fixed into a material testing system and loaded with a stainless steel pin with a crosshead speed of 5 mm/min until fracture. The load at which the specimen fractured was recorded in Newtons. Results: It was found that forces at fracture were statistically significant for the newer resin systems, Resilon, and EndoREZ. Conclusion: It was concluded that roots obturated with newer resin systems (Resilon and EndoREZ) enhanced the root strength almost up to the level of the intact roots. PMID:25859099

  12. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  13. Catalytic production of methyl acrylates by gold-mediated cross coupling of unsaturated aldehydes with methanol

    NASA Astrophysics Data System (ADS)

    Karakalos, Stavros; Zugic, Branko; Stowers, Kara J.; Biener, Monika M.; Biener, Juergen; Friend, Cynthia M.; Madix, Robert J.

    2016-10-01

    Modern methods of esterification, one of the most important reactions in organic synthesis, are reaching their limits, as far as waste and expense are concerned. Novel chemical approaches to ester formation are therefore of importance. Here we report a simple procedure free of caustic reagents or byproducts for the facile direct oxidative methyl esterification of aldehydes over nanoporous Au catalysts. Complementary model studies on single crystal gold surfaces establish the fundamental reactions involved. We find that methanol more readily reacts with adsorbed active oxygen than do the aldehydes, but that once the aldehydes do react, they form strongly-bound acrylates that block reactive sites and decrease the yields of acrylic esters under steady flow conditions at 420 K. Significant improvements in yield can be achieved by operating at higher temperatures, which render the site-blocking acrylates unstable.

  14. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  15. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  16. Hand/face/neck localized pattern: sticky problems--resins.

    PubMed

    Cao, Lauren Y; Sood, Apra; Taylor, James S

    2009-07-01

    Plastic resin systems have an increasingly diverse array of applications but also induce health hazards, the most common of which are allergic and irritant contact dermatitis. Contact urticaria, pigmentary changes, and photoallergic contact dermatitis may occasionally occur. Other health effects, especially respiratory and neurologic signs and symptoms, have also been reported. These resin systems include epoxies, the most frequent synthetic resin systems to cause contact dermatitis, (meth)acrylics, polyurethanes, phenol-formaldehydes, polyesters, amino resins (melamine-formaldehydes, urea-formaldehydes), polyvinyls, polystyrenes, polyolefins, polyamides and polycarbonates. Contact dermatitis usually occurs as a result of exposure to the monomers and additives in the occupational setting, although reports from consumers, using the raw materials or end products periodically surface. Resin- and additive-induced direct contact dermatitis usually presents on the hands, fingers, and forearms, while facial, eyelid, and neck involvement may occur through indirect contact, eg, via the hands, or from airborne exposure. Patch testing with commercially available materials, and in some cases the patient's own resins, is important for diagnosis. Industrial hygiene prevention techniques are essential to reduce contact dermatitis when handling these resin systems. PMID:19580919

  17. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections. PMID:26162470

  18. Shear bond strength of provisional restoration materials repaired with light-cured resins.

    PubMed

    Chen, Hsiu-Lin; Lai, Yu-lin; Chou, I-chiang; Hu, Chiung-Jen; Lee, Shyh-yuan

    2008-01-01

    This study evaluated the repair bond strengths of light-cured resins to provisional restoration materials with different chemical compositions and polymerization techniques. Fifty discs (10 mm in diameter and 1.5 mm thick) were fabricated for each provisional resin base material, including a self-cured methacrylate (Alike), self-cured bis-acrylate (Protemp 3 Garant), light-cured bis-acrylate (Revotek LC) and a heat-cured methacrylate (Namilon). All specimens were stored in distilled water at 37 degrees C for seven days before undergoing repair with one of four light-cured resins, including AddOn, Revotek LC, Dyractflow and Unifast LC and a self-cured resin (Alike), according to the manufacturers' instructions, for a total of 200 specimens. After 24 hours of storage in 37 degrees C water, the shear bond strengths were measured with a universal testing machine and fracture surfaces were examined under a stereomicroscope. Two-way ANOVA revealed that provisional resin-base material (p < 0.001), repair material (p < 0.001) and their interactions (p < 0.001) significantly affected the repair strength. Tukey's multiple comparisons showed that the lowest bonding strengths were found in specimens of heat-cured methacrylate resin materials repaired with bis-acryl resins, with their failure modes primarily being of the adhesive type. The highest bond strengths were recorded when the provisional resin-base materials and repairing resins had similar chemical components and the failure modes tended to be of the cohesive type. PMID:18833857

  19. Two-Dimensional Patterning of Inorganic Particles in Resin Using Ultrasound-Induced Plate Vibration

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Masuda, Yoshitake; Yasui, Kyuichi; Kato, Kazumi

    2011-08-01

    The fabrication of a two-dimensional millimeter-sized pattern of micrometer-sized titanium dioxide particles in UV-reactive acrylic resin using 1.93 MHz ultrasound is demonstrated. A mixture of particles and resin is set in a thin layer between square glass plates of which one plate is irradiated with ultrasound. Both vibration normal to the plate and the wave propagating in the mixture form standing waves to provide a two-dimensional pattern of the particles. Scanning electron microscopy and X-ray diffraction analysis of the UV-hardened pattern indicate that the titanium dioxide particles are embedded in the resin.

  20. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  1. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  2. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  3. Cork-resin ablative insulation for complex surfaces and method for applying the same

    NASA Technical Reports Server (NTRS)

    Walker, H. M.; Sharpe, M. H.; Simpson, W. G. (Inventor)

    1980-01-01

    A method of applying cork-resin ablative insulation material to complex curved surfaces is disclosed. The material is prepared by mixing finely divided cork with a B-stage curable thermosetting resin, forming the resulting mixture into a block, B-stage curing the resin-containing block, and slicing the block into sheets. The B-stage cured sheet is shaped to conform to the surface being insulated, and further curing is then performed. Curing of the resins only to B-stage before shaping enables application of sheet material to complex curved surfaces and avoids limitations and disadvantages presented in handling of fully cured sheet material.

  4. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  5. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  6. Heart Block

    MedlinePlus

    ... Block Explore Heart Block What Is... Electrical System & EKG Results Types Causes Who Is at Risk Signs & ... heart block. Doctors use a test called an EKG (electrocardiogram) to help diagnose heart block. This test ...

  7. [Preparation of carbon fiber reinforced fluid type resin denture (author's transl)].

    PubMed

    Kasuga, H; Sato, H; Nakabayashi, N

    1980-01-01

    Transverse strength of cured fluid resins is weaker than that of the heat cured. We have studied to improve the mechanical strength of self-cured acrylic resin by application of carbon fibers as reinforcement and simple methods which must be acceptable for technicians are proposed. A cloth type carbon fiber was the best reinforcement among studied carbon fibers such as chopped or mat. The chopped fibers were difficult to mix homogeneously with fluid resins and effectiveness of the reinforcement was low. Breaking often occurred at the interface between the reinforcement and resin in the cases of mat which gave defects to the test specimens. To prepare reinforced denture, the cloth was trimmed on the master cast after removal of wax and the prepreg was formed with the alginate impression on the cast by Palapress and the cloth. Other steps were same as the usual fluid resin. PMID:6929856

  8. Effect of SiO2-acryl nanohybrid coating layers on transparent conducting oxide-poly(ethylene terephthalate) superstrate.

    PubMed

    Kang, Y T; Kang, D P; Kang, D J; Chung, I D

    2013-05-01

    SiO2-acryl nanohybrid coating layers were produced by hybridizing acrylic resin and surface-modified colloidal silica (CS) nanoparticles. First, CS nanoparticles were modified with methyltrimethoxysilane (MTMS) and vinyltrimethoxysilane (VTMS) by a sol-gel process. The surface-modified CS nanoparticles were then solvent-exchanged to be homogeneous in acrylic resin. The Hybrid materials were mixed in variation with the amount of surface-modified CS nanoparticles, coated with poly(ethylene terephthalate) (PET), then finally cured by UV light to obtain a hybrid coating layer. Field emission scanning electron microscopy (FE-SEM), particle size analysis (using a Zetasizer), and atomic force microscopy (AFM) were performed to determine the morphology of the hybrid thin-films. Thermogravimetric analysis (TGA) was used to investigate the thermal properties. Fourier-transform infrared (FTIR), ultraviolet-visible (UVNis) spectroscopies, and pencil hardness were used to obtain the details of chemical structures, optical properties, and hardness, respectively. The hybrid thin films had shown to be enhanced properties compared to their urethane acrylate prepolymer (UAP) coating film. PMID:23858925

  9. The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite.

    PubMed

    Vallittu, P K

    1995-04-01

    The aim of this study was to establish (i) the causes and effects of void space formation in acrylic-glass fibre composite material; and (ii) to clarify the effect of polymerization time of acrylic resin on the transverse strength of heat-cured acrylic resin test specimens. In study 1, three transverse sections of the continuous glass fibre reinforced test specimens (n = 48) were studied by a scanning electron microscope (SEM) and the SEM-micrographs were analysed by a computerized picture analyser. The results suggested that the void space inside the test specimens is caused by a lack of the adsorbed monomer liquid in the fibre bundle before polymerization. The correlation coefficient between these two factors was -0.633 (P < 0.001). No correlation was found between the void space of the acrylic-glass fibre composite and the transverse strength of the test specimens (r = 0.000, P = 1.000). The results of study 2 showed that the transverse strengths of test specimens (n = 240, total) subjected to polymerization of different time spans did not vary significantly (P > 0.05). PMID:7769523

  10. Synthesis and characterization of core-shell acrylate based latex and study of its reactive blends.

    PubMed

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-03-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  11. Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends

    PubMed Central

    Liu, Xiang; Fan, Xiao-Dong; Tang, Min-Feng; Nie, Ying

    2008-01-01

    Techniques in resin blending are simple and efficient method for improving the properties of polymers, and have been used widely in polymer modification field. However, polymer latex blends such as the combination of latexes, especially the latexes with water-soluble polymers, were rarely reported. Here, we report a core-shell composite latex synthesized using methyl methacrylate (MMA), butyl acrylate (BA), 2-ethylhexyl acrylate (EHA) and glycidyl methacrylate (GMA) as monomers and ammonium persulfate and sodium bisulfite redox system as the initiator. Two stages seeded semi-continuous emulsion polymerization were employed for constructing a core-shell structure with P(MMA-co-BA) component as the core and P(EHA-co-GMA) component as the shell. Results of Transmission Electron Microscopy (TEM) and Dynamics Light Scattering (DLS) tests confirmed that the particles obtained are indeed possessing a desired core-shell structural character. Stable reactive latex blends were prepared by adding the latex with waterborne melamine-formaldehyde resin (MF) or urea-formaldehyde resin (UF). It was found that the glass transition temperature, the mechanical strength and the hygroscopic property of films cast from the latex blends present marked enhancements under higher thermal treatment temperature. It was revealed that the physical properties of chemically reactive latexes with core-shell structure could be altered via the change of crosslinking density both from the addition of crosslinkers and the thermal treatment. PMID:19325753

  12. The Effect of Aloe Vera, Pomegranate Peel, Grape Seed Extract, Green Tea, and Sodium Ascorbate as Antioxidants on the Shear Bond Strength of Composite Resin to Home-bleached Enamel

    PubMed Central

    Sharafeddin, Farahnaz; Farshad, Farnaz

    2015-01-01

    Statement of the Problem Immediate application of bonding agent to home- bleached enamel leads to significant reduction in the shear bond strength of composite resin due to the residual oxygen. Different antioxidant agents may overcome this problem. Purpose This study aimed to assess the effect of different antioxidants on the shear bond strength of composite resin to home-bleached. Materials and Method Sixty extracted intact human incisors were embedded in cylindrical acrylic resin blocks (2.5×1.5 cm), with the coronal portion left out of the block. After bleaching the labial enamel surface with 15% carbamide peroxide, they were randomly divided into 6 groups (n=10). Before performing composite resin restoration by using a cylindrical Teflon mold (5×2 mm), each group was treated with one of the following antioxidants: 10% sodium ascorbate solution, 10% pomegranate peel solution, 10% grape seed extract, 5% green tea extract, and aloe vera leaf gel. One group was left untreated as the control. The shear bond strength of samples was tested under a universal testing machine (ZwickRoell Z020). The shear bond strength data were analyzed by one-way ANOVA and post hoc Tukey tests (p< 0.05). Results No significant difference existed between the control and experimental groups. Moreover, there was no statistically significant difference between the effects of different antioxidants on the shear bond strength of bleached enamel. Conclusion Different antioxidants used in this study had the same effect on the shear bond strength of home-bleached enamel, and none of them caused a statistically significant increase in its value. PMID:26636116

  13. Cross-linked network development in compatibilized alkyd/acrylic hybrid latex films for the creation of hard coatings.

    PubMed

    Wang, Tao; de las Heras Alarcón, Carolina; Goikoetxea, Monika; Beristain, Itxaso; Paulis, Maria; Barandiaran, Maria J; Asua, José M; Keddie, Joseph L

    2010-09-01

    Hybrids made from an alkyd resin and an acrylic copolymer can potentially combine the desired properties of each component. Alkyd/acrylic hybrid latex particles were synthesized via miniemulsion polymerization and used to create films at room temperature. Comparisons of the alkyd auto-oxidative cross-linking rates and the associated network development are made between two alkyd resins (with differing levels of hydrophilicity as measured by their acid numbers). The effects of increasing the compatibilization between the alkyd and the acrylic phase via functionalization with glycidyl methacrylate (GMA) are investigated. Magnetic resonance profiling and microindentation measurements reveal that film hardening occurs much faster in a GMA-functionalized alkyd hybrid than in the standard hybrid. The film's hardness increases by a factor of 4 over a 5-day period. The rate of cross-linking is significantly slower in nonfunctionalized alkyd hybrid films and when the more hydrophilic alkyd resin is used. Tensile deformation of the hybrid latex films reveals the effects of GMA functionalization and drier concentration in creating a denser cross-linked network. Modeling of the tensile deformation behavior of the hybrid films used a combination of the upper convected Maxwell model (to describe the viscoelastic component) and the Gent model (to describe the elastic component). The modeling provides a correlation between the cross-linked network formation and the resulting mechanical properties. PMID:20704338

  14. Radiopurity measurement of acrylic for DEAP-3600

    SciTech Connect

    Nantais, C. M.; Boulay, M. G.; Cleveland, B. T.

    2013-08-08

    The spherical acrylic vessel that contains the liquid argon target is the most critical detector component in the DEAP-3600 dark matter experiment. Alpha decays near the inner surface of the acrylic vessel are one of the main sources of background in the detector. A fraction of the alpha energy, or the recoiling nucleus from the alpha decay, could misreconstruct in the fiducial volume and result in a false candidate dark matter event. Acrylic has low levels of inherent contamination from {sup 238}U and {sup 232}Th. Another background of particular concern is diffusion of {sup 222}Rn during manufacturing, leading to {sup 210}Pb contamination. The maximum acceptable concentrations in the DEAP-3600 acrylic vessel are ppt levels of {sup 238}U and {sup 232}Th equivalent, and 10{sup −8} ppt {sup 210}Pb. The impurities in the bulk acrylic will be measured by vaporizing a large quantity of acrylic and counting the concentrated residue with ultra-low background HPGe detectors and a low background alpha spectrometer. An overview of the acrylic assay technique is presented.

  15. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid... for use in contact with food subject to the provisions of this section. (a) The ethylene-acrylic...

  16. Occupational respiratory disease caused by acrylates.

    PubMed

    Savonius, B; Keskinen, H; Tuppurainen, M; Kanerva, L

    1993-05-01

    Acrylates are compounds used in a variety of industrial fields and their use is increasing. They have many features which make them superior to formerly used chemicals, regarding both their industrial use and their possible health effects. Contact sensitization is, however, one of their well known adverse health effects but they may also cause respiratory symptoms. We report on 18 cases of respiratory disease, mainly asthma, caused by different acrylates, 10 cases caused by cyanoacrylates, four by methacrylates and two cases by other acrylates. PMID:8334539

  17. Selection of di(meth)acrylate monomers for low pollution of fluorinated mold surfaces in ultraviolet nanoimprint lithography.

    PubMed

    Nakagawa, Masaru; Kobayashi, Kei; Hattori, Azusa N; Ito, Shunya; Hiroshiba, Nobuya; Kubo, Shoichi; Tanaka, Hidekazu

    2015-04-14

    We used fluorescence microscopy to show that low adsorption of resin components by a mold surface was necessary for continuous ultraviolet (UV) nanoimprinting, as well as generation of a low release energy on detachment of a cured resin from a template mold. This is because with low mold pollution, fracture on demolding occurred at the interface between the mold and cured resin surfaces rather than at the outermost part of the cured resin. To achieve low mold pollution, we investigated the radical photopolymerization behaviors of fluorescent UV-curable resins and the mechanical properties (fracture toughness, surface hardness, and release energy) of the cured resin films for six types of di(meth)acrylate-based monomers with similar chemical structures, in which polar hydroxy and aromatic bulky bisphenol moieties and methacryloyl or acryloyl reactive groups were present or absent. As a result, we selected bisphenol A glycerolate dimethacrylate (BPAGDM), which contains hydroxy, bisphenol, and methacryloyl moieties, which give good mechanical properties, monomer bulkiness, and mild reactivity, respectively, as a suitable base monomer for UV nanoimprinting under an easily condensable alternative chlorofluorocarbon (HFC-245fa) atmosphere. The fluorescent UV-curable BPAGDM resin was used for UV nanoimprinting and lithographic reactive ion etching of a silicon surface with 32 nm line-and-space patterns without a hard metal layer. PMID:25793911

  18. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  19. Effect of resin content and substrate on the emission of BTEX and carbonyls from low-VOC water-based wall paint.

    PubMed

    Zhao, Ping; Cheng, Yu-Hsiang; Lin, Chi-Chi; Cheng, Yu-Lin

    2016-02-01

    The primary aim of this work is to explore the effect of resin content and the effect of substrate on the emission of benzene, toluene, ethylbenzene, and xylene (BTEX) and carbonyls from low-VOC water-based wall paint. Four low-volatile organic compound (VOC) paints include paints A (20% acrylic), B (30% acrylic), C (20% polyvinyl acetate), and D (30% polyvinyl acetate) were painted on stainless steel specimen for the study of resin effect. Green calcium silicate, green cement, and stainless steel were painted with paints A and C for the study of substrate effect. Concentrations of the VOCs in the chamber decreased with the elapsed time. Both resin type and resin quantity in paint had effects on VOC emissions. Paints with acrylic resin emitted less BTEX and carbonyls than paints with polyvinyl acetate resin. However, the effects of resin quantity varied with VOCs. Porous substrates were observed to interact more strongly with paints than inert substrates. Both green calcium silicate and green cement substrates have strong power of adsorption of VOCs from wall paints, namely toluene, formaldehyde, acetaldehyde, 2-butanone, methacrolein, butyraldehyde, and benzaldehyde. Some compounds like toluene, formaldehyde, and butyaldehyde were desorbed very slowly from green calcium silicate and green cement substrates. PMID:26498819

  20. Thermally stimulated current spectra of binder resin powders for copiers: Correction for thermal shrinkage of the sample powder compactions

    NASA Astrophysics Data System (ADS)

    Ikezakt, K.; Murata, Y.

    2008-12-01

    Thermally stimulated current (TSC) spectra observed under open- circuit condition for styrene- acrylic binder resin powder compactions for toners are corrected for their thermal shrinkage during TSC observation. For this binder resin, extrinsic current from motion of powder compactions with charges due to their thermal shrinkage was found to be much more effective than the sensitivity coefficient of a TSC measuring apparatus used. Particle size dependence of charge retention power of the resin powders was also examined by using this correction method and found that it decreased with decreasing their particle size.

  1. Preparation of poly (styrene)-b-poly (acrylic acid)/γ-Fe 2O 3 composites

    NASA Astrophysics Data System (ADS)

    Zhang, L. D.; Liu, W. L.; Xiao, C. L.; Yao, J. S.; Fan, Z. P.; Sun, X. L.; Zhang, X.; Wang, L.; Wang, X. Q.

    2011-12-01

    The use of a block copolymer, poly (styrene)-b-poly (acrylic acid) (PS-b-PAA) to prepare a magnetic nanocomposite was investigated. Poly (styrene)-poly (t-butyl acrylate) block copolymer, being synthesized by atom transfer radical polymerization, was hydrolyzed with hydrochloric acid for obtaining PS-b-PAA. The obtained PS-b-PAA was then compounded with the modified γ-Fe2O3, and subsequently the magnetic nanocomposite was achieved. The products were characterized by 1H NMR, FTIR, gel permeation chromatography, thermogravimetric analysis, transmission electron microscopy and vibrating sample magnetometer. The results showed that the nanocomposites exhibited soft magnetism, with the mean diameter of 100 nm approximately.

  2. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  3. Delayed cure bismaleimide resins

    DOEpatents

    Not Available

    1982-08-12

    Prior art polybismaleimides begin to polymerize at or just above the melting point of the monomer. This patent describes new bismaleimide resins which have an increased pot life and provide longer time periods in which the monomer remains fluid. The resins can be polymerized into molded articles with a high uniformity of properties. (DLC)

  4. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces.

    PubMed

    Dong, Rong; Krishnan, Sitaraman; Baird, Barbara A; Lindau, Manfred; Ober, Christopher K

    2007-10-01

    Protein patterning was carried out using a simple procedure based on photolithography wherein the protein was not subjected to UV irradiation and high temperatures or contacted with denaturing solvents or strongly acidic or basic solutions. Self-assembled monolayers of poly(ethylene glycol) (PEG) on silicon surfaces were exposed to oxygen plasma through a patterned photoresist. The etched regions were back-filled with an initiator for surface-initiated atom transfer radical polymerization (ATRP). ATRP of sodium acrylate was readily achieved at room temperature in an aqueous medium. Protonation of the polymer resulted in patterned poly(acrylic acid) (PAA) brushes. A variety of biomolecules containing amino groups could be covalently tethered to the dense carboxyl groups of the brush, under relatively mild conditions. The PEG regions surrounding the PAA brush greatly reduced nonspecific adsorption. Avidin was covalently attached to PAA brushes, and biotin-tagged proteins could be immobilized through avidin-biotin interaction. Such an immobilization method, which is based on specific interactions, is expected to better retain protein functionality than direct covalent binding. Using biotin-tagged bovine serum albumin (BSA) as a model, a simple strategy was developed for immobilization of small biological molecules using BSA as linkages, while BSA can simultaneously block nonspecific interactions. PMID:17880179

  5. Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491

    SciTech Connect

    Fehrmann, Henning; Aign, Joerg

    2013-07-01

    In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

  6. Allergic contact dermatitis to acrylates in disposable blue diathermy pads.

    PubMed Central

    Sidhu, S. K.; Shaw, S.

    1999-01-01

    We report 2 cases of elicitation of allergic contact dermatitis to acrylates from disposable blue diathermy pads used on patients who underwent routine surgery. Their reactions were severe, and took approximately 5 weeks to resolve. Both patients gave a prior history of finger tip dermatitis following the use of artificial sculptured acrylic nails, which is a common, but poorly reported, cause of acrylate allergy. Patch testing subsequently confirmed allergies to multiple acrylates present in both the conducting gel of disposable blue diathermy pads, and artificial sculptured acrylic nails. We advocate careful history taking prior to surgery to avoid unnecessary exposure to acrylates in patients already sensitized. Images Figure 1 Figure 2 PMID:10364952

  7. Application of electrolyzed acid water to sterilization of denture base part 1. Examination of sterilization effects on resin plate.

    PubMed

    Nagamatsu, Y; Tajima, K; Kakigawa, H; Kozono, Y

    2001-06-01

    Bactericidal activities of electrolyzed strong and weak acid waters for acrylic denture base resin were evaluated in order to discuss the applicability of these waters for sterilization of denture base. Only 1-minute immersion in the electrolyzed strong or weak acid water could completely eliminate the attached bacteria, Staphylococcus aureus 209P, on the resin plate. When the resin was relined with tissue conditioner, 5-minute immersion or 1- to 2-minute ultrasonic cleaning reduced the number of the bacteria from 10(5)/cm2 level to 10(1)/cm2 and no surviving bacteria could be detected after 10-minute treatment. These findings suggest that both the electrolyzed strong and weak acid waters are well applicable to the disinfectant for acrylic denture base showing excellent bactericidal activities in a significantly shorter treatment as compared with the conventional denture cleaning. PMID:11523978

  8. Development of resins for composites by resin transfer molding

    NASA Technical Reports Server (NTRS)

    Woo, Edmund P.; Puckett, Paul M.; Maynard, Shawn J.

    1991-01-01

    Designed to cover a wide range of resin technology and to meet the near-term and long-term needs of the aircraft industry, this research has three objectives: to produce resin transfer molding (RES) resins with improved processability, to produce prepreg systems with high toughness and service temperature, and to produce new resin systems. Progress on reaching the objectives is reported.

  9. The impact of polymerization method on tensile bond strength between denture base and acrylic teeth.

    PubMed

    Hashem, Mohamed; Binmgren, Mohammed A; Alsaleem, Samah O; Vellappally, Sajith; Assery, Mansour K; Sukumaran, Anil

    2014-01-01

    Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base. PMID:25307813

  10. Effect of Nanosilver on Thermal and Mechanical Properties of Acrylic Base Complete Dentures

    PubMed Central

    Hamedi-Rad, Fahimeh; Ghaffari, Tahereh; Rezaii, Farzad; Ramazani, Ali

    2014-01-01

    Objective: Polymethyl methacrylate (PMMA), widely used as a prosthodontic base, has many disadvantages, including a high thermal expansion coefficient and low thermal conductivity, a low elasticity coefficient, low impact strength and low resistance to fatigue. This study aimed to make an in vitro comparison of the thermal conductivity, compressive strength, and tensile strength of the acrylic base of complete dentures with those of acrylic reinforced with nanosilver. Materials and Methods: For this study, 36 specimens were prepared. The specimens were divided into three groups of 12; which were further divided into two subgroups of control (unmodified PMMA) and test (PMMA mixed with 5 weight% nanosilver).The results were analysed by Independent t-test. Results: This study showed that the mean thermal conductivity and compressive strength of PMMA reinforced with nanosilver were significantly higher than the unmodified PMMA (P<0.05), while the tensile strength decreased significantly after the incorporation of nanosilver (P<0.05). Conclusion: Considering our results suggesting the favorable effect of silver nanoparticles on improving the thermal conductivity and compressive strength of PMMA, use of this material in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25628675

  11. Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites

    NASA Astrophysics Data System (ADS)

    Dashtizadeh, Ahmad; Abdouss, Majid; Mahdavi, Hossein; Khorassani, Manuchehr

    2011-01-01

    To prepare nano-composite emulsion acrylic resins with improved surface hardness and solvent resistance, nano-silica particles were treated with surfactants. The monomers of methyl methacrylate/butylacrylate were co-polymerized on the surface of dispersed silica particles. Several emulsions with different silica contents and copolymer mole fractions were prepared. Finally the emulsions were modified to water-based acrylic coatings and improved properties such as surface hardness, solvent resistance and glossiness were determined. The study of coatings was directed to find the improved resin by optimum surface properties. Size distribution and morphology of latexes were characterized by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy and scanning electron microscopy. The glass transition temperature of nano-composites was measured and discussed its relation with silica contents, monomer mole fractions and improved properties of coatings. The optimum pendulum hardness of coatings was on 0.46 methyl methacrylate mole fraction and 120 g silica content. An increase in pendulum hardness of nano-composites with the addition of modified silica was observed. DLS and TEM studies indicate that silica particles were dispersed homogenously through the polymer matrix.

  12. MCF (Magnetic Compound Fluid) Polishing Process for Free-formed Resin Device using Robotic Arm

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Sato, T.; Lin, W.; Yamamoto, K.; Shimada, K.

    2011-01-01

    The automatic polishing process for three-dimensional forms, such as prototype models of products made of acrylic resin, are being required to develop in order to reduce cost and time consumption. This paper proposes a new polishing technique using magnetic compound fluid (MCF) and robotic arm. Firstly, a polishing unit, which can generate a dynamic magnetic field and be attachable to the robotic arm, is developed. This unit can hold MCF slurry that acts as a flexible and restorable polishing tool for the sake of magnetic force. Secondly, the effects of the clearance between workpiece and polishing unit, the composition of MCF slurry, the relative motion, the dynamic magnetic field and the supplied amount of slurry on polishing characteristics of acrylic resin are experimentally demonstrated. As a result, the smoothest surface roughness is achieved to below 10 nm Ra in a few min, and the feasibility of polishing the free-formed device by controlling robotic arm has been confirmed.

  13. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  14. Biocidal quaternary ammonium resin

    NASA Technical Reports Server (NTRS)

    Janauer, G. E.

    1983-01-01

    Activated carbon (charcoal) and polymeric resin sorbents are widely used in the filtration and treatment of drinking water, mainly to remove dissolved organic and inorganic impurities and to improve the taste. Earlier hopes that activated carbon might "disinfect' water proved to be unfounded. The feasibility of protecting against microbial infestation in charcoal and resin beds such as those to be incorporated into total water reuse systems in spacecraft was investigated. The biocidal effect of IPCD (insoluable polymeric contact disinfectants) in combination with a representative charcoal was assessed. The ion exchange resins (IPCD) were shown to adequately protect charcoal and ion exchange beds.

  15. SOURCE ASSESSMENT: ACRYLIC ACID MANUFACTURE; STATE-OF-THE-ART

    EPA Science Inventory

    This report summarizes data on air emissions from the production of acrylic acid. Hydrocarbons, carbon monoxide, and nitrogen oxide are emitted from various operations. Hydrocarbon emissions consist of acetaldehyde, acetic acid, acetone acrolein, acrylic acid, benzene, phenol, pr...

  16. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH THREE PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    Permeation tests were conducted with trimethylolpropane triacrylate TMPTA), 1,6-hexanediol diacrylate (HDDA), and two mixtures of 1,6-hexanediol diacrylate with 2-ethylhexyl acrylate (EHA) to better understand the permeation behavior of multifunctional acrylate compounds. he test...

  17. Wear of resin-modified glass ionomers: an in vitro study.

    PubMed

    Futatsuki, M; Nozawa, M; Ogata, T; Nakata, M

    2001-01-01

    The purpose of this study was to evaluate the wear resistance and clinical applicability of resin-modified glass ionomer cements as restorative or fissure-sealing materials. The in vitro wear of resin-modified glass ionomers was compared to conventional glass ionomers, a resin-based sealant, and a composite resin. A three-body wear test (enamel block--polymethylmethacrylate powder--experimental dental material) was performed by 20,000 cycles with a load of 4 kgf/cm2. The depth of wear of the experimental materials was measured and calculated using a computerized laser surface scanner. The glass ionomers generally showed more wear than the resin-based sealant and the composite resin, but there was no difference in wear between resin-modified and conventional glass ionomers. Type III ionomers (used for sealant) showed lower wear resistance than type II ionomers (used for restoration). PMID:11497010

  18. Thermally stable laminating resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Vaughan, R. W.; Burns, E. A.

    1972-01-01

    Improved thermally stable laminating resins were developed based on the addition-type pyrolytic polymerization. Detailed monomer and polymer synthesis and characterization studies identified formulations which facilitate press molding processing and autoclave fabrication of glass and graphite fiber reinforced composites. A specific resin formulation, termed P10P was utilized to prepare a Courtaulds HMS reinforced simulated airfoil demonstration part by an autoclave molding process.

  19. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylate ester copolymer coating. 175.210 Section... COATINGS Substances for Use as Components of Coatings § 175.210 Acrylate ester copolymer coating. Acrylate ester copolymer coating may safely be used as a food-contact surface of articles intended for...

  20. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  1. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare a scan from 10.5 microns...

  2. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  3. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  4. 21 CFR 177.1320 - Ethylene-ethyl acrylate copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... prescribed for polyethylene in § 177.1520. (1) Specifications—(i) Infrared identification. Ethylene-ethyl acrylate copolymers can be identified by their characteristic infrared spectra. (ii) Quantitative determination of ethyl acrylate content. The ethyl acrylate can be determined by the infrared spectra. Prepare...

  5. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  6. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  7. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  8. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated acrylic copolymer (generic... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical substance... fluorinated acrylic copolymer (PMN P-95-1208) is subject to reporting under this section for the...

  9. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  10. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  11. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  12. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  13. 21 CFR 177.1310 - Ethylene-acrylic acid copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-acrylic acid copolymers. 177.1310 Section... Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1310 Ethylene-acrylic acid copolymers. The ethylene-acrylic acid copolymers identified in paragraph (a) of this section may be...

  14. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  15. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  16. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  17. 40 CFR 721.10528 - Modified fluorinated acrylates (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Modified fluorinated acrylates... Specific Chemical Substances § 721.10528 Modified fluorinated acrylates (generic). (a) Chemical substances... modified fluorinated acrylates (PMNs P-12-30, P-12-31, and P-12-32) are subject to reporting under...

  18. 40 CFR 721.10528 - Modified fluorinated acrylates (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Modified fluorinated acrylates... Specific Chemical Substances § 721.10528 Modified fluorinated acrylates (generic). (a) Chemical substances... modified fluorinated acrylates (PMNs P-12-30, P-12-31, and P-12-32) are subject to reporting under...

  19. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  20. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  1. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance nickel acrylate complex (PMN P-85-1034) is subject to reporting...

  2. 40 CFR 721.5325 - Nickel acrylate complex.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Nickel acrylate complex. 721.5325... Substances § 721.5325 Nickel acrylate complex. Link to an amendment published at 79 FR 34637, June 18, 2014... nickel acrylate complex (PMN P-85-1034) is subject to reporting under this section for the...

  3. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  4. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  5. 40 CFR 721.10180 - Trifunctional acrylic ester (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trifunctional acrylic ester (generic... Specific Chemical Substances § 721.10180 Trifunctional acrylic ester (generic). (a) Chemical substance and... acrylic ester (PMN P-04-692) is subject to reporting under this section for the significant new...

  6. 40 CFR 721.324 - Alkoxylated acrylate polymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkoxylated acrylate polymer (generic... Substances § 721.324 Alkoxylated acrylate polymer (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkoxylated acrylate...

  7. Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films.

    PubMed

    Torabi, Saeid; Mahdavian, Ali Reza; Sanei, Mahmood; Abdollahi, Amin

    2016-02-01

    This study represents a new method for preparation of acrylic/chitosan films with antibacterial activity and non-toxic properties through an environmental friendly process containing a water-base acrylic resin and chitosan as an abundant natural polymer. Functional and positively charged acrylic particles based on butyl acrylate (BA)-methyl methacrylate (MMA)-glycidyl methacrylate (GMA) terpolymer were prepared with layered structure via semi-continuous emulsion polymerization. FTIR spectroscopy confirmed the presence of epoxy functional groups and size distribution of particles were evaluated by DLS and SEM as well. Films were prepared through mixing of chitosan solution and the prepared latex for the first time. SEM and EDX analyses revealed that chitosan has been distributed through the polymeric matrix uniformly. TGA data showed that introducing chitosan increases the maximum degradation temperature. It was found that the obtained films including positively charged chitosan reveal enhanced antibacterial activity against Staphylococcus areus and Escherichia coli. Also cytotoxicity analysis shows reasonable non-toxic behavior of the obtained composite films. PMID:26652342

  8. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  9. Comparative Evaluation of Tensile Bond Strength between Silicon Soft Liners and Processed Denture Base Resin Conditioned by Three Modes of Surface Treatment: An Invitro Study.

    PubMed

    Surapaneni, Hemchand; Ariga, Padma; Haribabu, R; Ravi Shankar, Y; Kumar, V H C; Attili, Sirisha

    2013-09-01

    Soft denture liners act as a cushion for the denture bearing mucosa through even distribution of functional load, avoiding local stress concentrations and improving retention of dentures there by providing comfort to the patient. The objective of the present study was to compare and evaluate the tensile bond strengths of silicone-based soft lining materials (Ufi Gel P and GC Reline soft) with different surface pre treatments of heat cure PMMA denture base acrylic resin. Stainless steel dies measuring 40 mm in length; 10 mm in width and 10 mm in height (40 × 10 × 10) were machined to prepare standardized for the polymethyl methacrylate resin blocks. Stainless steel dies (spacer for resilient liner) measuring 3 mm thick; 10 mm long and 10 mm wide were prepared as spacers to ensure uniformity of the soft liner being tested. Two types of Addition silicone-based soft lining materials (room temperature polymerised soft lining materials (RTPSLM): Ufi Gel P and GC Reline soft) were selected. Ufi Gel P (VOCO, Germany), GC Reline soft (GC America) are resilient, chairside vinyl polysiloxane denture reliners of two different manufacturers. A total of 80 test samples were prepared of which 40 specimens were prepared for Group A (Ufi Gel P) and 40 specimens for Group B (GC Reline soft). In these groups, based on Pre-treatment of acrylic resin specimens each group was subdivided into four sub groups of 10 samples each. Sub-group I-without any surface treatment. Sub-group II-sand blasted Sub-group III-treated with Methyl Methacrylate monomer Sub-group IV-treated with chemical etchant Acetone. The results were statistically analysed by Kruscal Wallis test, Mann-Whitney U test, and Independent t test. The specimens treated with MMA monomer wetting showed superior and significant bond strength than those obtained by other surface treatments. The samples belonging to subgroups of GC Reline soft exhibit superior tensile bond strength than subgroups of Ufi Gel P. The modes

  10. Population Blocks.

    ERIC Educational Resources Information Center

    Smith, Martin H.

    1992-01-01

    Describes an educational game called "Population Blocks" that is designed to illustrate the concept of exponential growth of the human population and some potential effects of overpopulation. The game material consists of wooden blocks; 18 blocks are painted green (representing land), 7 are painted blue (representing water); and the remaining…

  11. A silver bullet: elemental silver as an efficient reducing agent for atom transfer radical polymerization of acrylates.

    PubMed

    Williams, Valerie A; Ribelli, Thomas G; Chmielarz, Pawel; Park, Sangwoo; Matyjaszewski, Krzysztof

    2015-02-01

    Elemental silver was used as a reducing agent in the atom transfer radical polymerization (ATRP) of acrylates. Silver wire, in conjunction with a CuBr(2)/TPMA catalyst, enabled the controlled, rapid preparation of polyacrylates with dispersity values down to Đ = 1.03. The silver wire in these reactions was reused several times in sequential reactions without a decline in performance, and the amount of copper catalyst used was reduced to 10 ppm without a large decrease in control. A poly(n-butyl acrylate)-block-poly(tert-butyl acrylate) diblock copolymer was synthesized with a molecular weight of 91 400 and Đ = 1.04, demonstrating good retention of chain-end functionality and a high degree of livingness in this ATRP system. PMID:25599253

  12. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyether acrylate. 721.405 Section 721.405 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL...) The significant new uses are: (i) Release to water. Requirements as specified in § 721.90 (a)(1),...

  13. Worn down nails after acrylic nail removal.

    PubMed

    Wu, Timothy P; Morrison, Brian W; Tosti, Antonella

    2015-01-01

    Worn-down nail syndrome is a nail disorder characterized by thinning of the distal nail plate caused by repetitive chemical or mechanical trauma. We present a previously undescribed source of worn-down nail syndrome caused by trauma from nail filing after acrylic nail removal. PMID:25612131

  14. Acrylic Tanks for Stunning Chemical Demonstrations

    ERIC Educational Resources Information Center

    Mirholm, Alexander; Ellervik, Ulf

    2009-01-01

    We describe the use of acrylic tanks (400 x 450 x 27 mm) for visualization of chemical demonstrations in aqueous solutions. Examples of well-suited demonstrations are oscillating reactions, pH indicators, photochemical reduction of Lauth's violet, and chemoluminiscent reactions. (Contains 1 figure.)

  15. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  16. Synthesis and swelling properties of β-cyclodextrin-based superabsorbent resin with network structure.

    PubMed

    Huang, Zhanhua; Liu, Shouxin; Fang, Guizhen; Zhang, Bin

    2013-02-15

    A biodegradable, β-cyclodextrin-based superabsorbent resin was synthesized by the inverse suspension method. The microstructure, chemical structure, and thermal performance of the resin were characterized by scanning electron microscopy, Fourier transform-infrared spectroscopy, and differential scanning calorimetry. The effects of the synthesis conditions (dosage of cross-linking agent, mass ratios of acrylic acid to acrylamide, mass ratios of β-cyclodextrin to total monomer, neutralization degree, initiator dosage, and reaction time) were optimized to achieve a resin with a maximum swelling capacity. The water absorbency of the optimized resin in distilled water was 1544.76 g/g and that in 0.9 wt.% NaCl was 144.52 g/g. The resin, which is thermoplastic as well as pH-sensitive, had good salt resistance and underwent a maximum in swelling with time in CaCl(2) and AlCl(3) solutions. The fracture surface of the dry resin contained many pores. After swelling, the internal hydrogel showed a typical three-dimensional network structure. The biodegradation of the resin reached 71.2% after 18 days treatment at 30 °C with Lentinus edodes. PMID:23399293

  17. Polyethyleneimine nanoparticles incorporated into resin composite cause cell death and trigger biofilm stress in vivo

    PubMed Central

    Beyth, Nurit; Yudovin-Farber, Ira; Perez-Davidi, Michael; Domb, Abraham J.; Weiss, Ervin I.

    2010-01-01

    Incorporation of cross-linked quaternary ammonium polyethylenimine (QPEI) nanoparticles in dental resin composite has a long-lasting and wide antimicrobial effect with no measured impact on biocompatibility in vitro. We hypothesized that QPEI nanoparticles incorporated into a resin composite have a potent antibacterial effect in vivo and that this stress condition triggers a suicide module in the bacterial biofilm. Ten volunteers wore a removable acrylic appliance, in which two control resin composite specimens and two resin composite specimens incorporating 1% wt/wt QPEI nanoparticles were inserted to allow the buildup of intraoral biofilms. After 4 h, the specimens were removed and tested for bacterial vitality and biofilm thickness, using confocal laser scanning microscopy. The vitality rate in specimens incorporating QPEI was reduced by > 50% (p < 0.00001), whereas biofilm thickness was increased (p < 0.05). The ability of the biofilm supernatant to restore bacterial death was tested in vitro. The in vitro tests showed a 70% decrease in viable bacteria (p < 0.05). Biofilm morphological differences were also observed in the scanning electron microscope micrographs of the resin composite versus the resin composite incorporating QPEI. These results strongly suggest that QPEI nanoparticles incorporated at a low concentration in resin composite exert a significant in vivo antibiofilm activity and exhibit a potent broad spectrum antibacterial activity against salivary bacteria. PMID:21131569

  18. UV-curable acrylated coating from epoxidized palm oil

    NASA Astrophysics Data System (ADS)

    Rahman, Nurliyana Abd; Badri, Khairiah Haji; Salleh, Nik Ghazali Nik

    2014-09-01

    The properties of coating film prepared from the incorporation of acrylated palm oil (EPOLA) in commercial epoxy acrylate have been studied. A series of different amount of EPOLA was mixed with commercial epoxy acrylate. The blended acrylates passed through UV light to produce a non-tacky film. The conversion of acrylate double bond was monitored by FTIR. The effect of EPOLA concentration onto coated films were investigated by determination of the pendulum hardness and gel content. The higher the amount of EPOLA, the lower the pendulum hardness and the gel content but to a level acceptable for usage in the high-end applications.

  19. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  20. Graphite fiber reinforced thermoplastic resins

    NASA Technical Reports Server (NTRS)

    Novak, R. C.

    1975-01-01

    Mechanical properties of neat resin samples and graphite fiber reinforced samples of thermoplastic resins were characterized with particular emphasis directed to the effects of environmental exposure (humidity, temperature and ultraviolet radiation). Tensile, flexural, interlaminar shear, creep and impact strengths were measured for polysulfone, polyarylsulfone and a state-of-the-art epoxy resin samples. In general, the thermoplastic resins exhibited environmental degradation resistance equal to or superior to the reference epoxy resin. Demonstration of the utility and quality of a graphite/thermoplastic resin system was accomplished by successfully thermoforming a simulated compressor blade and a fan exit guide vane.

  1. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    PubMed Central

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074

  2. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  3. Detection of Defects in Acrylic and Steel Inclusions in Gypsum Using Compton Backscattered Gamma Rays

    NASA Astrophysics Data System (ADS)

    Boldo, Emerson M.; Appoloni, Carlos R.

    2011-08-01

    Compton scattering of gamma radiation is a nondestructive technique used for the detection of defects and inclusions in materials. The methodology allows one-side inspection of large structures, is relatively inexpensive and can be portable. The number of photons inelastically scattered within a well-defined volume element is linearly proportional to the electron density of the material. Targeting a sample with a collimated beam of gamma rays, the energy spectrum of backscattered photons can be used to determine local density perturbations. In this work we used the Compton backscattering technique to detection of small collinear defects in acrylic blocks and steel rods inclusions in gypsum blocks samples. The samples were irradiated with gamma rays from a O/2 mm collimated 241Am (100 mCi) source and the inelastically scattered photons were collected at an angle of 135° by a CdTe detector with a O/7 mm×30 mm collimation. Scanning was achieved by lateral movement of the sample blocks across the source and detector field of view in steps of 1 mm. The results showed that defects in the acrylic samples as small as 3 mm in size were visible in the intensity versus energy spectrum. The tests on gypsum blocks with steel rods inclusions suggest that, for a low energy and activity source, the effects of beam attenuation are more decisive to the scattered intensity than increasing of material density. An analysis of the density contrast is also presented.

  4. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  5. Structural study of photodegraded acrylic-coated lime wood using Fourier transform infrared and two-dimensional infrared correlation spectroscopy.

    PubMed

    Popescu, Carmen-Mihaela; Simionescu, Bogdan C

    2013-06-01

    The weathering of acrylic films and acrylic-coated lime wood (Tillia cordata Mill.) were examined using Fourier transform infrared (FT-IR) and two-dimensional infrared correlation spectroscopy. The obtained results showed chemical changes induced by exposure to weathering conditions, in both films and coated wood. The observed spectral changes of the acrylic films refer to the absorption band assigned to the C-O stretching, which progressively decreases with increasing exposure time. In the spectra of treated wood samples the main signal indicating the advance of oxidation during the photodegradation exposure is the gradual increase and broadening of the band in the carbonyl region. This is due to the formation of the non-hydrogen bonded aliphatic carboxylic acids and γ-lactone structures in the acrylic resin and of the nonconjugated ketones, carboxyl groups, and lactones in wood. As a consequence, the increase of the 1734 cm(-1) band is due to the degradation of lignin from wood surface. These observations are also supported by the decreased intensities of the bands at 1598 and 1505 cm(-1), assigned to C=C of aromatic skeletal (lignin). The relative intensity of the characteristic aromatic lignin band at 1505 cm(-1) decreases up to 25% of its original value after weathering, being less than half of the value obtained for uncoated wood. Two-dimensional infrared (2D IR) correlation spectroscopy was used to identify the sequence of the modifications of the different stretching vibrations bands under the weathering conditions, the method allowing the prediction of the order of degradation reactions. The acrylic resin degradation starts with the formation of radicals by abstraction of the tertiary hydrogen atoms of the methyl acrylate units and the α-CH3 groups from the ethyl methacrylate units. The subsequent decomposition and oxidation led to the formation of alcohol groups, hydroperoxides, ketones, and/or carboxylic acid groups. The 2D IR correlation spectra of

  6. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

    PubMed Central

    2016-01-01

    PURPOSE This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction. PMID:27350849

  7. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  9. An in vitro evaluation of the effect of sandblasting and laser surface treatment on the shear bond strength of a composite resin to the facial surface of primary anterior stainless steel crowns

    PubMed Central

    Nandlal, Bhojraj

    2015-01-01

    Objectives: The present study was conducted to evaluate the optimal method of enhancing the bond strength of a composite resin to the facial surface of the primary anterior stainless steel crowns using various surface treatments namely Nd: YAG laser surface treatment, sandblasting , alloy primer application and no surface treatment. Study Design: The study sample consisted of 60 primary anterior stainless steel crowns (UnitekTM size R 4), with 15 samples randomly divided into the 4 study groups, embedded in acrylic blocks. The facial surface of these surface treated crowns was utilized as the bonding surface to which 2.5mm diameter composite resin cylinders were bonded for the evaluation of the shear bond strength. Shear bond strength measurements were made using a universal testing machine utilizing a shearing blade (jig).The mode of failure at composite-metal interface was determined using a Stereomicroscope at 10 X magnification. Results: The mean bond strength values obtained for surface treatment of Nd: YAG laser surface treated, Sandblasting ,Alloy Primer and No surface treatments were 17.01±.92 , 13.18 ± .73, 7.46 ± .70 and 7.33 ± .77 MPa respectively. The obtained bond strength values were subjected to a one way ANOVA and a Scheffe’s post-hoc comparison test. The results of the present study indicated that Laser surface treatment of the facial surface of the crowns enhanced the bond strength of the composite resin significantly compared to the other groups. Conclusions: Nd: YAG laser surface treatment produced an excellent surface roughness and obtained the highest shear bond strength values suggestive for recommendation as an optimal surface treatment to be used to enhance the resin-metal bond at the interface of the composite resin and the facial surface of primary anterior stainless steel crowns for the purpose of chairside veneering. Key words:Nd: YAG laser treatment, Sandblasting, Primary anterior stainless steel crown, Chairside veneering

  10. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  11. Lava ultimate resin nano ceramic for CAD/ CAM: customization case study.

    PubMed

    Koller, M; Arnetzl, G V; Holly, L; Arnetzl, G

    2012-01-01

    Lava Ultimate Resin Nano Ceramic (RNC) blocks are innovative new CAD/CAM materials that make it possible to achieve superior esthetic results in easy steps. The blocks are made of nano ceramic particles embedded in a highly cured resin matrix. Therefore, composite materials can be used to characterize and adjust resin nano ceramic restorations after milling. The milled RNC restorations can be individualized intra-orally or extra-orally, either before or after insertion. Unlike conventional ceramic restorations, customization and glaze firing is neither necessary nor possible with RNC restorations. This opens up the opportunity for intraoral individualization and adaptation of the restorations. PMID:22891419

  12. Ionic Blocks

    ERIC Educational Resources Information Center

    Sevcik, Richard S.; Gamble, Rex; Martinez, Elizabet; Schultz, Linda D.; Alexander, Susan V.

    2008-01-01

    "Ionic Blocks" is a teaching tool designed to help middle school students visualize the concepts of ions, ionic compounds, and stoichiometry. It can also assist high school students in reviewing their subject mastery. Three dimensional blocks are used to represent cations and anions, with color indicating charge (positive or negative) and size…

  13. 'Weightless' acrylic painting by Jack Kroehnke

    NASA Technical Reports Server (NTRS)

    1987-01-01

    'Weightless' acrylic painting by Jack Kroehnke depicts STS-26 Discovery, Orbiter Vehicle (OV) 103, Mission Specialist (MS) David C. Hilmers participating in extravehicular activity (EVA) simulation in JSC Weightless Environment Training Facility (WETF) Bldg 29. In the payload bay (PLB) mockup, Hilmers, wearing extravehicular mobility unit (EMU), holds onto the mission-peculiar equipment support structure in foreground while SCUBA-equipped diver monitors activity overhead and camera operator records EVA procedures. Copyrighted art work for use by NASA.

  14. Epoxy coatings over latex block fillers

    SciTech Connect

    Vincent, L.D.

    1997-12-01

    Failures of polymerized epoxy coatings applied over latex/acrylic block fillers continue to plague owners of commercial buildings, particularly those with high architectural content such as condominiums, high rise offices, etc. Water treatment facilities in paper mills are especially prone to this problem. The types of failures include delamination of the topcoats, blisters in both the block fillers and the topcoats and disintegration of the block filler itself. While the problem is well known, the approach to a solution is not. A study of several coatings manufacturer`s Product Data Sheets shows a wide variance in the recommendations for what are purportedly generically equivalent block fillers. While one manufacturer might take an essentially architectural approach, another will take a heavy-duty industrial approach. To the specifying architect or engineer who has little training in the complexities of protective coating systems, this presents a dilemma. Who does he believe? What does he specify? To whom can he turn for independent advice?

  15. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  16. Nontoxic Resins Advance Aerospace Manufacturing

    NASA Technical Reports Server (NTRS)

    2009-01-01

    The 2008 NASA Commercial Invention of the Year, PETI-330, is a polyimide matrix resin that performs well at high temperatures and is easily processed into composites in a simple, short curing cycle. Invented by scientists at Langley Research Center, PETI-330 is now licensed to Ube Industries, based in Japan with its American headquarters in New York. In addition to being durable and lightweight, the resin is also nontoxic, which makes it safe for workers to handle. PETI-330 was created specifically for heat-resistant composites formed with resin transfer molding and resin infusion, which formerly could only be used with low temperature resin systems.

  17. UV-curable polyurethane acrylate coatings with different acrylate monomers as reactive diluents

    SciTech Connect

    Nabeth, B.; Gerard, J.F.; Pascault, J.P.

    1995-12-01

    Two series of UV-curable polyurethane acrylate (PUA) based on polycaprolactone (PCL), tetraxylylene diisocyanate (TMXDI), and hydroxyethyl acrylate (HEA) or hydroxyethyl methacrylate (HEMA) were studied. These ones were considered with different acrylates as reactive diluents. The effect of the chemical nature and functionality of the reactive diluents on the thermal and dynamic mechanical properties (DMS) was investigated. From a thermodynamic point of view, the PUA seem to display a one phase structure by DMS. Nevertheless, the statistic heterogeneities due to the use of three monomers or more can explain the Tg values and the mechanical relaxations of the PUA. The Tg-onset of the PUA is slightly influenced by the nature of the reactive diluents but is dependent on the Tg of the oligomer confirming the description of the structure using a clusters model. The same conclusions could be done from the dynamic mechanical spectra of the PUA sandwiched and UV-cured between two glass plates.

  18. Synthesis of a liquid-crystalline resin monomer with the property of low shrinkage polymerization.

    PubMed

    Liu, Wenwen; Chen, Su; Liu, Yiran; Ma, Yuanping; Wang, Na; Zhang, Zhenting; Yang, Yuzhe

    2013-01-01

    To reduce the polymerization shrinkage of the dental resin composites, a new liquid-crystalline resin monomer was developed. The acrylate liquid crystalline resin monomer (ALCRM), (4-3-(acryloyloxy)-2-hydroxypropoxy) phenyl 4-(3-(acryloyloxy)-2-hydroxypropoxy) benzoate, was synthesized by a three-step method. Using the ALCRM as the main monomer, the degree of conversion (DC) and the volume shrinkage of the resin matrix were compared with the traditional composite resin monomer (Bis-GMA), 2,2-bis[4-(2-hydroxy-3-methacryloyloxy-propoxy)-phenyl] propane. The new monomer showed liquid crystalline characteristics with a mesomorphic phasetransition temperature between 18ºC and 42ºC. When copolymerized with triethylene glycol dimethacrylate (TEGDMA) at a weight ratio of 7:3, the DC of ALCRM was higher and the volume shrinkage was 3.62±0.26%, which was less than that of the Bis-GMA. The ALCRM exhibits promising potential for the development of superior dental resins with low volume shrinkage. PMID:23903635

  19. FRACTURE RESISTANCE OF WEAKENED TEETH RESTORED WITH CONDENSABLE RESIN WITH AND WITHOUT CUSP COVERAGE

    PubMed Central

    Mondelli, Rafael Francisco Lia; Ishikiriama, Sérgio Kiyoshi; de Oliveira, Otávio; Mondelli, José

    2009-01-01

    Objectives: This in vitro study evaluated the fracture resistance of weakened human premolars (MOD cavity preparation and pulp chamber roof removal) restored with condensable resin composite with and without cusp coverage. Material and Methods: Thirty human maxillary premolars were divided into three groups: Group A (control), sound teeth; Group B, wide MOD cavities prepared and the pulp chamber roof removed and restored with resin composite without cusp coverage; Group C, same as Group B with 2.0 mm of buccal and palatal cusps reduced and restored with the same resin. The teeth were included in metal rings with self-curing acrylic resin, stored in water for 24 h and thereafter subjected to a compressive axial load in a universal testing machine at 0.5 mm/min. Results: The mean fracture resistance values ± standart deviation (kgf) were: group A: 151.40 ± 55.32, group B: 60.54 ± 12.61, group C: 141.90 ± 30.82. Statistically significant differences were found only between Group B and the other groups (p<0.05). The condensable resin restoration of weakened human premolars with cusp coverage significantly increased the fracture resistance of the teeth as compared to teeth restored without cusp coverage. Conclusion: The results showed that cusp coverage with condensable resin might be a safe option for restoring weakened endodontically treated teeth. PMID:19466244

  20. Synthesis of a resin monomer-soluble polyrotaxane crosslinker containing cleavable end groups

    PubMed Central

    Seo, Ji-Hun; Nakagawa, Shino; Hirata, Koichiro

    2014-01-01

    Summary A resin monomer-soluble polyrotaxane (PRX) crosslinker with cleavable end groups was synthesized to develop degradable photosetting composite resins. The PRX containing 50 α-cyclodextrins (α-CDs) with disulfide end groups was initially modified with n-butylamine to obtain a resin monomer-soluble PRX. The PRX containing 13 n-butyl groups per α-CD molecule was completely soluble in conventional resin monomers such as 2-hydroxyethyl methacrylate (HEMA) and urethane dimethacrylate (UDMA). The synthesized n-butyl-containing PRX was further modified with 2-aminoethyl methacrylate to provide crosslinkable acrylic groups onto PRX. The prepared resin monomer-soluble PRX crosslinker was successfully polymerized with a mixture of HEMA and UDMA to provide photosetting plastic. It was confirmed that the Vickers hardness of the prepared plastic was greatly decreased after treatment with dithiothreitol. This indicates that the resin monomer-soluble PRX crosslinker can be applied to design degradable photosetting plastics potentially used in the industrial or biomedical field. PMID:25550723

  1. Silica/Ultraviolet-Cured Resin Nanocomposites for Replica Molds in Ultraviolet Nanoimprinting

    NASA Astrophysics Data System (ADS)

    Yun, Cheol Min; Kudo, Shimpei; Nagase, Koichi; Kubo, Shoichi; Nakagawa, Masaru

    2012-06-01

    Fluid UV-curable composite resins made with methacrylate-modified silica nanoparticles (NPs), a diacrylate monomer, and a photoinitiator without nonreactive solvents were prepared to develop composite replica molds in UV nanoimprinting. 1,4-Bis(acryloyloxy)butane was compatible with NPs up to an inorganic silica component of 60 wt %, and its cured composite films showed a high transmittance of >89% at an i-line wavelength of 365 nm. The fluorinated antisticking layer obtained from an antisticking reagent was formed effectively on a composite surface at which bare silica surfaces of NPs appeared by photooxidation of the composite film surface. Composite replica molds could be fabricated by putting a droplet of the composite resin on a silica substrate modified with a reactive adhesion layer, filling cavities of a fluorinated master mold with the resin under a pentafluoropropane (PFP) atmosphere, curing the molded resin by exposure to UV light, and treating the surface of the cured resin with the antisticking reagent after demolding. It was confirmed that the composite replica molds were available for step-and-repeat UV nanoimprinting using an acrylate-type UV-curable resin in PFP. The composite replica molds showed remarkably smaller release energies than the replica mold without NPs.

  2. Influence of Resin Cements on the Tension Force of Cast Frameworks Made by the Technique of Framework Cemented on Prepared Abutments.

    PubMed

    Perroni, Ana Paula; Gomes, Érica Alves; Bielemann, Amália Machado; Baseggio, Bruna; Federizzi, Leonardo; Spazzin, Aloísio Oro; dos Santos, Mateus Bertolini Fernandes

    2015-01-01

    This study evaluated the tension force of cast frameworks made by the technique of framework cemented on prepared abutments using two different resin cements. Forty multi-unit abutment analogs were individually fixed with chemically cured acrylic resin inside PVC cylinders using a parallelometer. Brass cylindrical abutments were tightened to the multi-unit abutments to be used as spacers and then castable UCLA abutments were positioned above. These abutments were cast with Ni-Cr and then divided into 4 groups (n=10): cemented with RelyX U100(r); cemented with RelyX U100(r) and simulation of acrylic resin polymerization process; cemented with Multilink(r); and cemented with Multilink(r) and simulation of acrylic resin polymerization process. Abutments were cemented according to manufacturers' instructions. In a universal testing machine, tensile strength was applied in the direction of the long axis of the abutments at 1 mm/min crosshead speed until displacement of the luted abutments was obtained. The values of maximum tensile force (N) required for the displacement of the luted abutments were tabulated and analyzed statistically by one-way ANOVA with a 95% confidence level. No statistically significant difference was found among the groups (p>0.05). There was an increase in mean tension force when the specimens were subjected to the simulation of acrylic resin polymerization process, but the results did not differ statistically. Both resin cements presented positive results as regards the retention of luted abutments on their respective multi-unit abutments. Both materials may be indicated for the technique of framework cemented on prepared abutments when professionals pursuit better adaptation of implant-supported frameworks. PMID:26312978

  3. Palladium (II) catalyized polymerization of norbornene and acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2000-08-29

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: [(L)Pd(R)(X)].sub.2, where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  4. Palladium (Ii) Catalyzed Polymerization Of Norbornene And Acrylates

    DOEpatents

    Sen, Ayusman; Kacker, Smita; Hennis, April; Polley, Jennifer D.

    2001-10-09

    Homopolymers or copolymers of acrylates, homopolymers or copolymers of norbornenes, and copolymers of acrylates with norbornenes, may be prepared by contacting acrylate and/or norbornene monomer reactant under polymerization conditions and in the presence of a solvent with a catalyst system consisting essentially of a Pd(II) dimer component having the formula: where L is a monodentate phosphorus or nitrogen ligand, X is an anionic group, and R is an alkyl or aryl group.

  5. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymerized copolymer of ethyl acrylate, methyl methacrylate, and methacrylic acid applied in emulsion form to... Glyceryl monostearate Methyl cellulose Mineral oil Paraffin wax Potassium hydroxide Potassium...

  6. Severe Onychodystrophy due to Allergic Contact Dermatitis from Acrylic Nails

    PubMed Central

    Mattos Simoes Mendonca, Marcela; LaSenna, Charlotte; Tosti, Antonella

    2015-01-01

    Acrylic nails, including sculptured nails and the new ultraviolet-curable gel polish lacquers, have been associated with allergic contact dermatitis (ACD). We report 2 cases of ACD to acrylic nails with severe onychodystrophy and psoriasiform changes including onycholysis and subungual hyperkeratosis. In both cases, the patients did not realize the association between the use of acrylate-based manicures and nail changes. One patient had been previously misdiagnosed and treated unsuccessfully for nail psoriasis. The informed clinician should elicit a history of acrylic manicure in patients with these nail changes, especially in cases of suspected nail psoriasis refractory to treatment. Patch testing is a useful tool in confirming diagnosis. PMID:27170940

  7. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate

    PubMed Central

    Miao, Shida; Zhu, Wei; Castro, Nathan J.; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P.; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at −18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  8. 4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate.

    PubMed

    Miao, Shida; Zhu, Wei; Castro, Nathan J; Nowicki, Margaret; Zhou, Xuan; Cui, Haitao; Fisher, John P; Zhang, Lijie Grace

    2016-01-01

    Photocurable, biocompatible liquid resins are highly desired for 3D stereolithography based bioprinting. Here we solidified a novel renewable soybean oil epoxidized acrylate, using a 3D laser printing technique, into smart and highly biocompatible scaffolds capable of supporting growth of multipotent human bone marrow mesenchymal stem cells (hMSCs). Porous scaffolds were readily fabricated by simply adjusting the printer infill density; superficial structures of the polymerized soybean oil epoxidized acrylate were significantly affected by laser frequency and printing speed. Shape memory tests confirmed that the scaffold fixed a temporary shape at -18 °C and fully recovered its original shape at human body temperature (37 °C), which indicated the great potential for 4D printing applications. Cytotoxicity analysis proved that the printed scaffolds had significant higher hMSC adhesion and proliferation than traditional polyethylene glycol diacrylate (PEGDA), and had no statistical difference from poly lactic acid (PLA) and polycaprolactone (PCL). This research is believed to significantly advance the development of biomedical scaffolds with renewable plant oils and advanced 3D fabrication techniques. PMID:27251982

  9. Antimicrobial effects of esters and amides of 3-(5-nitro-2-furyl)acrylic acid.

    PubMed

    Kellová, G; Sturdík, E; Stibrányi, L; Drobnica, L; Augustín, J

    1984-01-01

    The effect of 18 newly synthesized esters and amides of 3-(5-nitro-2-furyl)acrylic acid on bacteria (Escherichia coli, Staphylococcus aureus), yeasts (Saccharomyces cerevisiae, Candida albicans), molds (Aspergillus niger, Penicillium cyclopium, Rhizopus oryzae) and algae (Chlorella pyrenoidosa, Euglena gracilis, Scenedesmus obliquus) was investigated. The MIC values revealed antimycotic, antialgal and antibacterial activity of the studied derivatives. The antimycotic activity was found to decrease with increasing the length of the alkyl chain of esters and after introduction of amino nitrogen into the furylethylene backbone. The inhibitory effect on growth is caused by blocking bioenergetic processes, glycolysis in particular. PMID:6714854

  10. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  11. Flame Retardant Epoxy Resins

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.; Lyon, R. E.

    2004-01-01

    As part of a program to develop fire resistant exterior composite structures for future subsonic commercial aircraft, flame retardant epoxy resins are under investigation. Epoxies and their curing agents (aromatic diamines) containing phosphorus were synthesized and used to prepare epoxy formulations. Phosphorus was incorporated within the backbone of the epoxy resin and not used as an additive. The resulting cured epoxies were characterized by thermogravimetric analysis, propane torch test, elemental analysis and microscale combustion calorimetry. Several formulations showed excellent flame retardation with phosphorous contents as low as 1.5% by weight. The fracture toughness of plaques of several cured formulations was determined on single-edge notched bend specimens. The chemistry and properties of these new epoxy formulations are discussed.

  12. Bismaleimide Copolymer Matrix Resins

    NASA Technical Reports Server (NTRS)

    Parker, John A.; Heimbuch, Alvin H.; Hsu, Ming-Ta S.; Chen, Timothy S.

    1987-01-01

    Graphite composites, prepared from 1:1 copolymer of two new bismaleimides based on N,N'-m-phenylene-bis(m-amino-benzamide) structure have mechanical properties superior to those prepared from other bismaleimide-type resins. New heat-resistant composites replace metal in some structural applications. Monomers used to form copolymers with superior mechanical properties prepared by reaction of MMAB with maleic or citraconic anhydride.

  13. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  14. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, Michael S.; Saunders, Randall

    1997-01-01

    Coupling agents based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization.

  15. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    NASA Astrophysics Data System (ADS)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  16. Acrylic resin guide for locating the abutment screw access channel of cement-retained implant prostheses.

    PubMed

    Ahmed, Ayman; Maroulakos, Georgios; Garaicoa, Jorge

    2016-05-01

    Abutment screw loosening represents a common and challenging technical complication of cement-retained implant prostheses. This article describes the fabrication of a simple and accurate poly(methyl methacrylate) guide for identifying the location and angulation of the abutment screw access channel of a cement-retained implant prosthesis with a loosened abutment screw. PMID:26794698

  17. Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Pan, Xiaoyan; Ni, Yuwei; Zhang, Song; Huang, Jie; Chen, Da; Zhang, Yafei

    2009-05-01

    Defective multiwalled carbon nanotubes (MWCNTs) were introduced to the carbonyl iron (CI) based composites to improve its microwave absorption by a simple ultrasonic mixing process. The electromagnetic parameters were measured in the 2-18 GHz range. Microwave absorption of CI based composites with 2 mm in thickness was evidently enhanced by adding as little as 1.0 wt% defective MWCNTs with two well separated absorption peaks exceeding -20 dB, as compared with that of pure CI based and defective MWCNTs composites. The enhancement mechanism is thought due to the interaction and better electromagnetic match between defective MWCNTs and ferromagnetic CI particles.

  18. Comparative Evaluation of Bond Strength of Dual-Cured Resin Cements: An In-Vitro Study

    PubMed Central

    Kumari, R Veena; Poluri, Ramya Krishna; Nagaraj, Hema; Siddaruju, Kishore

    2015-01-01

    Background: To compare the microtensile bond strength of resin cements to enamel and dentin and to determine the type of bond failure using stereomicroscope. Materials and Methods: In this in-vitro study 40 teeth were embedded in acrylic resin and divided into two main groups i.e., Group A for enamel and Group B for dentin. Each group is again subdivided into four subgroups, which are as follows; Subgroup 1 for Calibra resin cement, Subgroup 2 for Paracem, Subgroup 3 for Variolink II and Subgroup 4 for Rely X ARC. These resin cements were applied on enamel and dentin according to manufacturer’s instructions followed by incremental build-up of composite resin on the top of resin cements. Each tooth was sectioned perpendicular to the resin-substrate interface with a slow speed diamond saw under water cooling yielding sections of approximately 1 mm2. On an average, three sections from each tooth were used for testing. The beams obtained after sectioning were stressed to failure under tension in a custom made stainless steel forceps held in a universal testing machine (Lloyd) at a crosshead speed of 1.0 mm/min. Results were analyzed using two-way analysis of variance, independent t-test, and Tukey’s HSD post-hoc test. Results: Cements bonded to enamel substrates showed higher mean bond strength compared to dentin, which is statistically significant. Rely X ARC showed highest mean bond strength to both the substrates. Conclusion: There was a significant difference between the bond strength to enamel and dentin and, Rely X ARC resin cement showed higher bond strength compared with the other groups. PMID:26225104

  19. Luminescence of W(CO){sub 4}(4-Me-phen) in photosensitive thin films: A molecular probe of acrylate polymerization

    SciTech Connect

    Rawlins, K.A.; Lees, A.J.; Fuerniss, S.J.; Papathomas, K.I.

    1996-07-01

    The complex W(CO){sub 4}(4-Me-phen) (4-Me-phen = 4-methyl-1,10-phenanthroline) has been determined to be luminescent and act as a spectroscopic probe in UV-curable trimethylolpropane triacrylate/poly(methyl methacrylate) thin films. Electronic absorption and luminescence characteristics have been measured for this complex in room-temperature solutions and low-temperature (80 K) glasses and in 10 mil thin films of the unexposed and exposed acrylate resins. In each environment dual luminescence bands were observed which are attributed to triplet-centered metal-to-ligand charge-transfer ({sup 3}MLCT) excited states. For the unexposed photoresist these transitions were recorded at 520 and 750 nm and in the exposed material these are moved to 525 and 715 nm, respectively. The lowest energy emission band undergoes a substantial blue-shift and intensified greatly on polymerization; this phenomenon provides a useful molecular probe of the acrylate cross-linking process. These changes in emission characteristics are associated with a rigidochromic effect imparted on the lowest lying and solvent sensitive b{sub 2} {yields} b{sub 2}({pi}*) {sup 3}MLCT electronically excited state in this complex. The complex W(CO){sub 5}(4-CN-py) (4-CN-py = 4-cyanopyridine) was also investigated as a spectroscopic probe in the acrylate system but appears unsuitable for this purpose as it was found to degrade significantly in the resin. 20 refs., 6 figs.

  20. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  1. From the N-Heterocyclic Carbene-Catalyzed Conjugate Addition of Alcohols to the Controlled Polymerization of (Meth)acrylates.

    PubMed

    Ottou, Winnie Nzahou; Bourichon, Damien; Vignolle, Joan; Wirotius, Anne-Laure; Robert, Fredéric; Landais, Yannick; Sotiropoulos, Jean-Marc; Miqueu, Karinne; Taton, Daniel

    2015-06-22

    Among various N-heterocyclic carbenes (NHCs) tested, only 1,3-bis(tert-butyl)imidazol-2-ylidene (NHC(tBu) ) proved to selectively promote the catalytic conjugate addition of alcohols onto (meth)acrylate substrates. This rather rare example of NHC-catalyzed 1,4-addition of alcohols was investigated as a simple means to trigger the polymerization of both methyl methacrylate and methyl acrylate (MMA and MA, respectively). Well-defined α-alkoxy poly(methyl (meth)acrylate) (PM(M)A) chains, the molar masses of which could be controlled by the initial [(meth)acrylate]0/[ROH]0 molar ratio, were ultimately obtained in N,N-dimethylformamide at 25 °C. A hydroxyl-terminated poly(ethylene oxide) (PEO-OH) macro-initiator was also employed to directly access PEO-b-PMMA amphiphilic block copolymers. Investigations into the reaction mechanism by DFT calculations revealed the occurrence of two competitive concerted pathways, involving either the activation of the alcohol or that of the monomer by NHC(tBu) . PMID:26013759

  2. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  3. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  4. 40 CFR 721.10500 - Acrylated mixed metal oxides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylated mixed metal oxides (generic... Specific Chemical Substances § 721.10500 Acrylated mixed metal oxides (generic). (a) Chemical substance and... mixed metal oxides (PMN P-06-341) is subject to reporting under this section for the significant...

  5. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  6. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  7. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  8. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  9. 40 CFR 721.8082 - Polyester polyurethane acrylate.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polyester polyurethane acrylate. 721... Substances § 721.8082 Polyester polyurethane acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as polyester polyurethane...

  10. 40 CFR 721.484 - Fluorinated acrylic copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated acrylic copolymer (generic name). 721.484 Section 721.484 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.484 Fluorinated acrylic copolymer (generic name). (a) Chemical...

  11. 40 CFR 721.336 - Perfluoroalkylethyl acrylate copolymer (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Perfluoroalkylethyl acrylate copolymer (generic name). 721.336 Section 721.336 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.336 Perfluoroalkylethyl acrylate copolymer (generic name). (a)...

  12. The Acrylation of Glycerol: a Precursor to Functionalized Lipids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Didecanoylacryloylglycerol was synthesized from decanoic and acrylic acids and glycerol using K2O as catalyst. This reaction was carried out in hexane in a closed stainless steel reactor at 200°C for 5h. The reactants were added in a 1:3:4 glycerol:decanoic acid:acrylic acid molar ratio. The resu...

  13. 40 CFR 721.330 - Aromatic acrylate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.330 Aromatic acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aromatic acrylate (PMN P-01-420)...

  14. 40 CFR 721.330 - Aromatic acrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.330 Aromatic acrylate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an aromatic acrylate (PMN P-01-420)...

  15. Phosphorus-containing bisimide resins

    NASA Technical Reports Server (NTRS)

    Varma, I. K.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1981-01-01

    The production of fire-resistant resins particularly useful for making laminates with inorganic fibers such as graphite fibers is discussed. The resins are by (1) condensation of an ethylenically unsaturated cyclic anhydride with a bis(diaminophenyl) phosphine oxide, and (2) by addition polymerization of the bisimide so obtained. Up to about 50%, on a molar basis, of benzophenonetetracarboxylic acid anhydride can be substituted for some of the cyclic anhydride to alter the properties of the products. Graphite cloth laminates made with these resins show 800 C char yields greater than 70% by weight in nitrogen. Limiting oxygen indexes of more than 100% are determined for these resins.

  16. A new polyimide laminatine resin

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.; Jewell, R. A.; Stclair, T. L.

    1977-01-01

    Addition polyimide for composite materials is based on liquid monomers and has significant advantages over most existing high-temperature resins. Essentially solventless prepreg has improved drape, tack.

  17. Chemical reactivation of quenched fluorescent protein molecules enables resin-embedded fluorescence microimaging

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Zhou, Zhenqiao; Zhu, Mingqiang; Lv, Xiaohua; Li, Anan; Li, Shiwei; Li, Longhui; Yang, Tao; Wang, Siming; Yang, Zhongqin; Xu, Tonghui; Luo, Qingming; Gong, Hui; Zeng, Shaoqun

    2014-06-01

    Resin embedding is a well-established technique to prepare biological specimens for microscopic imaging. However, it is not compatible with modern green-fluorescent protein (GFP) fluorescent-labelling technique because it significantly quenches the fluorescence of GFP and its variants. Previous empirical optimization efforts are good for thin tissue but not successful on macroscopic tissue blocks as the quenching mechanism remains uncertain. Here we show most of the quenched GFP molecules are structurally preserved and not denatured after routine embedding in resin, and can be chemically reactivated to a fluorescent state by alkaline buffer during imaging. We observe up to 98% preservation in yellow-fluorescent protein case, and improve the fluorescence intensity 11.8-fold compared with unprocessed samples. We demonstrate fluorescence microimaging of resin-embedded EGFP/EYFP-labelled tissue block without noticeable loss of labelled structures. This work provides a turning point for the imaging of fluorescent protein-labelled specimens after resin embedding.

  18. Precision synthesis of bio-based acrylic thermoplastic elastomer by RAFT polymerization of itaconic acid derivatives.

    PubMed

    Satoh, Kotaro; Lee, Dong-Hyung; Nagai, Kanji; Kamigaito, Masami

    2014-01-01

    Bio-based polymer materials from renewable resources have recently become a growing research focus. Herein, a novel thermoplastic elastomer is developed via controlled/living radical polymerization of plant-derived itaconic acid derivatives, which are some of the most abundant renewable acrylic monomers obtained via the fermentation of starch. The reversible addition-fragmentation chain-transfer (RAFT) polymerizations of itaconic acid imides, such as N-phenylitaconimide and N-(p-tolyl)itaconimide, and itaconic acid esters, such as di-n-butyl itaconate and bis(2-ethylhexyl) itaconate, are examined using a series of RAFT agents to afford well-defined polymers. The number-average molecular weights of these polymers increase with the monomer conversion while retaining relatively narrow molecular weight distributions. Based on the successful controlled/living polymerization, sequential block copolymerization is subsequently investigated using mono- and di-functional RAFT agents to produce block copolymers with soft poly(itaconate) and hard poly(itaconimide) segments. The properties of the obtained triblock copolymer are evaluated as bio-based acrylic thermoplastic elastomers. PMID:24243816

  19. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  20. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  1. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  2. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  3. 40 CFR 414.50 - Applicability; description of the thermosetting resins subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the products classified under SIC 28214 thermosetting resins including those resins and resin groups listed below. Product groups are indicated with an asterisk (*). *Alkyd Resins Dicyanodiamide Resin *Epoxy Resins *Fumaric Acid Polyesters *Furan Resins Glyoxal-Urea Formaldehyde Textile Resin...

  4. Imide modified epoxy matrix resins

    NASA Technical Reports Server (NTRS)

    Scola, D. A.; Pater, R. H.

    1981-01-01

    High char yield epoxy using novel bisimide amines (BIA's) as curing agents with a state of the art epoxy resin was developed. Stoichiometric quantities of the epoxy resin and the BIA's were studied to determine the cure cycle required for preparation of resin specimens. The bisimide cured epoxies were designated IME's (imide modified epoxy). The physical, thermal and mechanical properties of these novel resins were determined. The levels of moisture absorption exhibited by the bisimide amine cured expoxies (IME's) were considerably lower than the state of the art epoxies. The strain-to-failure of the control resin system was improved 25% by replacement of DDS with 6F-DDS. Each BIA containing resin exhibited twice the char yield of the control resin MY 720/DDS. Graphite fiber reinforced control (C) and IME resins were fabricated and characterized. Two of the composite systems showed superior properties compared to the other Celion 6000/IME composite systems and state of the art graphite epoxy systems. The two systems exhibited excellent wet shear and flexural strengths and moduli at 300 and 350 F.

  5. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  6. Hydrophilic surface modification of acrylate-based biomaterials.

    PubMed

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  7. New adhesive systems based on functionalized block copolymers

    SciTech Connect

    Kent, M.; Saunders, R.; Hurst, M.; Small, J.; Emerson, J.; Zamora, D.

    1997-05-01

    The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has inherently poor bonding, such as the nickel/silicone interface, and for systems involving metals and alloys which form oxides very rapidly, such as aluminum and stainless steel, where bonding strategies involve stabilizing the native oxide.

  8. Electrochemical characterization of aminated acrylic conducting polymer

    NASA Astrophysics Data System (ADS)

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-01

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  9. Electrochemical characterization of aminated acrylic conducting polymer

    SciTech Connect

    Rashid, Norma Mohammad; Heng, Lee Yook; Ling, Tan Ling

    2015-09-25

    New attempt has been made to synthesize aminated acrylic conducting polymer (AACP) using precursor of phenylvinylsulfoxide (PVS). The process was conducted via the integration of microemulsion and photopolymerization techniques. It has been utilized for covalent immobilization of amino groups by the adding of N-achryiloxisuccinimide (NAS). Thermal eliminating of benzene sulfenic acids from PVS has been done at 250 °C to form electroactive polyacetylene (PA) segment. Characterization of AACP has been conducted using fourier transform infrared (FTIR), scanning electron microscopy (SEM) and linear sweep cyclic voltammetry (CV). A range of 0.3-1.25μm particle size obtained from SEM characterization. A quasi-reversible system performed as shown in electrochemical study.

  10. Effects of two methods of moisture control on marginal microleakage between resin composite and etched enamel: a clinical study.

    PubMed

    Knight, G T; Berry, T G; Barghi, N; Burns, T R

    1993-01-01

    Visible light-polymerized resin composite tabs were bonded to the flattened, acid-etched surface of teeth that were scheduled for extraction. Half of the teeth (group I) were isolated with cotton rolls in conjunction with a saliva ejector. The remaining teeth (group II) were isolated using a rubber dam. Both methods of isolation were used for each patient so that to some extent all patients served as their own controls. Following extraction, all samples were thermocycled 500 times alternating between 6 degrees C and 60 degrees C, after which they were immersed in 5% methylene blue for 4 hours. Each tooth was then mounted in acrylic resin and sectioned on a hard tissue microtome. Microleakage was assessed using a light microscope at x 20 magnification. The use of rubber dam isolation resulted in less microleakage at the enamel resin interface. PMID:8297458

  11. Methods for the synthesis of deuterated acrylate salts

    SciTech Connect

    Yang, Jun; Bonnesen, Peter V.; Hong, Kunlun

    2014-09-09

    A method for synthesizing a deuterated acrylate of the Formula (1), the method comprising: (i) deuterating a propiolate compound of Formula (2) to a methyne-deuterated propiolate compound of Formula (3) in the presence of a base and D.sub.2O: and (ii) reductively deuterating the methyne-deuterated propiolate compound of Formula (3) in a reaction solvent in the presence of deuterium gas and a palladium-containing catalyst to afford the deuterated acrylate of the Formula (1). The resulting deuterated acrylate compounds, derivatives thereof, and polymers derived therefrom are also described.

  12. Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate

    SciTech Connect

    Binder, Thomas; Erpelding, Michael; Schmid, Josef; Chin, Andrew; Sammons, Rhea; Rockafellow, Erin

    2015-04-10

    Conversion of Lignocellulosic Biomass to Ethanol and Butyl Acrylate. The purpose of Archer Daniels Midlands Integrated Biorefinery (IBR) was to demonstrate a modified acetosolv process on corn stover. It would show the fractionation of crop residue to distinct fractions of cellulose, hemicellulose, and lignin. The cellulose and hemicellulose fractions would be further converted to ethanol as the primary product and a fraction of the sugars would be catalytically converted to acrylic acid, with butyl acrylate the final product. These primary steps have been demonstrated.

  13. Investigation of Acrylic Acid at High Pressure Using Neutron Diffraction

    PubMed Central

    2014-01-01

    This article details the exploration of perdeuterated acrylic acid at high pressure using neutron diffraction. The structural changes that occur in acrylic acid-d4 are followed via diffraction and rationalized using the Pixel method. Acrylic acid undergoes a reconstructive phase transition to a new phase at ∼0.8 GPa and remains molecular to 7.2 GPa before polymerizing on decompression to ambient pressure. The resulting product is analyzed via Raman and FT-IR spectroscopy and differential scanning calorimetry and found to possess a different molecular structure compared with polymers produced via traditional routes. PMID:24650085

  14. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  15. A simple solubility tests for the discrimination of acrylic and modacrylic fibers.

    PubMed

    Suga, Keisuke; Narita, Yuji; Suzuki, Shinichi

    2014-05-01

    In a crime scene investigation, single fibers play an important role as significant trace physical evidence. Acrylic fibers are frequently encountered in forensic analysis. Currently, acrylic and modacrylic are not discriminated clearly in Japan. Only results of FT-IR, some of acrylics were difficult to separate clearly to acrylic and modacrylic fibers. Solubility test is primitive but convenient useful method, and Japan Industrial Standards (JIS) recommends FT-IR and solubility test to distinguish acrylic and modacrylic fibers. But recommended JIS dissolving test using 100% N,N-dimethylformamide (DMF) as a solvent, some acrylics could not be discriminated. In this report, we used DMF and ethanol (90:10, v/v) solvent. The JIS method could not discriminate 6 acrylics in 60 acrylics; hence, DMF and ethanol (90:10, v/v) solvent discriminated 59 of the 60 fibers (43 acrylic and 16 modacrylic fibers) clearly, but only one modacrylic fiber incorrectly identified as acrylic. PMID:24673494

  16. Effect of thermocycling on the bond strength of composite resin to bur and laser treated composite resin.

    PubMed

    Özel Bektas, Özden; Eren, Digdem; Herguner Siso, Seyda; Akin, Gulsah E

    2012-07-01

    The objective of this study was to investigate the effect of two different surface treatments (Er:YAG laser and bur) and three different numbers of thermal cycling (no aging, 1,000, 5,000, and 10,000 cycles) on the micro-shear bond strength of repaired composite resin. Ninety-six composite blocks (4 mm × 4 mm × 1 mm) obtained with a micromatrix hybrid composite were prepared. The composite blocks were then randomly divided into four groups (n = 24), according to the thermal cycling procedure: (1) stored in distilled water at 37°C for 24 h (control group), (2) 1,000 cycles, (3) 5,000 cycles, and (4) 10,000 cycles. After aging, the blocks were further subdivided into two subgroups (n = 12), according to surface treatment. Bur and laser-treated composite surfaces were treated with an etch&rinse adhesive system. In addition, a microhybrid composite resin was bonded to the surfaces via polyethylene tubing. Specimens were subjected to micro-shear bond strength test by a universal testing machine with a crosshead speed of 0 and 5 mm/min. The data were analyzed using one-way analysis of variance and Tukey tests (α = 0.05) for micro-shear bond strengths. After conducting a bond strength test, it was found that the laser and bur-treated specimens had similar results. Aging with 10,000 thermocycles significantly affected the repair bond strength of composite resins. PMID:21833556

  17. Chromatography resin support

    DOEpatents

    Dobos, James G.

    2002-01-01

    An apparatus and method of using an improved chromatography resin support is disclosed. The chromatography support platform is provided by a stainless steel hollow cylinder adapted for being inserted into a chromatography column. An exterior wall of the stainless steel cylinder defines a groove for carrying therein an "O"-ring. The upper surface of the stainless steel column is covered by a fine stainless steel mesh welded to the edges of the stainless steel cylinder. When placed upon a receiving ledge defined within a chromatography column, the "O"-ring provides a fluid tight seal with the inner edge wall of the chromatography cylinder. The stainless steel mesh supports the chromatography matrix and provides a back flushable support which is economical and simple to construct.

  18. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  19. Technique for fabricating individualized dentures with a gingiva-shade composite resin.

    PubMed

    Park, Beom-Woo; Kim, Nam-Jin; Lee, Jonghyuk; Lee, Hae-Hyoung

    2016-05-01

    More natural dental esthetics have been sought by patients who wear conventional complete or partial dentures. Recently, gingiva-shade composite resins (GSCRs) have become available for replicating soft tissue for both fixed and removable prostheses. The technique presented is for fabricating individualized complete dentures. First the acrylic resin is mixed with a coloring agent and processed to modify the base shade of the denture. GSCRs are light polymerized onto a prepared space on the buccal surfaces of denture base to replicate the appearance of gingival tissues including blood vessels. The technique provides an outstanding natural, gingiva-like, appearance and allows complete dentures to harmonize with the individual patient's surrounding oral tissues. PMID:26794697

  20. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  1. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  2. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  3. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resins. 178.3930 Section 178.3930 Food and... and Production Aids § 178.3930 Terpene resins. The terpene resins identified in paragraph (a) of this... the terpene resins identified in paragraph (b) of this section may be safely used as components...

  4. 21 CFR 178.3930 - Terpene resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resins. 178.3930 Section 178.3930 Food and... Terpene resins. The terpene resins identified in paragraph (a) of this section may be safely used as components of polypropylene film intended for use in contact with food, and the terpene resins identified...

  5. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  6. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  7. Flammability screening tests of resins

    NASA Technical Reports Server (NTRS)

    Arhart, R. W.; Farrar, D. G.; Hughes, B. M.

    1979-01-01

    Selected flammability characteristics of glass cloth laminates of thermosetting resins are evaluated. A protocol for the evaluation of the flammability hazards presented by glass cloth laminates of thermosetting resins and the usefulness of that protocol with two laminates are presented. The glass laminates of an epoxy resin, M-751 are evaluated for: (1) determination of smoke generation from the laminates; (2) analysis of products of oxidative degradation of the laminates; (3) determination of minimum oxygen necessary to maintain flaming oxidation; (4) evaluation of toxicological hazards.

  8. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  9. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  10. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  11. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  12. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  13. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .../acrylic copolymers shall not be used as polymer modifiers in vinyl chloride homo- or copolymers. (e... (other than articles composed of vinyl chloride homo- or copolymers) intended for use in contact with...

  14. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  15. 21 CFR 177.1060 - n-Alkylglutarimide/acrylic copolymers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... vinyl chloride homo- or copolymers. (e) Conditions of use. The n-alkylglutarimide/acrylic copolymers are used as articles or components of articles (other than articles composed of vinyl chloride homo-...

  16. Use of acrylic sheet molds for elastomeric products

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Koerner, A. E.; Messineo, S. M.

    1970-01-01

    Molds constructed of acrylic sheet are more easily machined than metal, are transparent to ensure complete filling during injection, and have smooth surfaces free of contamination. Technique eliminates flashing on molded parts and mold release agents.

  17. Performance behavior of modified cellulosic fabrics using polyurethane acrylate copolymer.

    PubMed

    Zuber, Mohammad; Shah, Sayyed Asim Ali; Jamil, Tahir; Asghar, Muhammad Irfan

    2014-06-01

    The surface of the cellulosic fabrics was modified using self-prepared emulsions of polyurethane acrylate copolymers (PUACs). PUACs were prepared by varying the molecular weight of polycaprolactone diol (PCL). The PCL was reacted with isophorone diisocyanate (IPDI) and chain was extended with 2-hydroxy ethyl acrylate (HEA) to form vinyl terminated polyurethane (VTPU) preploymer. The VTPU was further co-polymerized through free radical polymerization with butyl acrylate in different proportions. The FT-IR spectra of monomers, prepolymers and copolymers assured the formation of proposed PUACs structure. The various concentrations of prepared PUACs were applied onto the different fabric samples using dip-padding techniques. The results revealed that the application of polyurethane butyl acrylate copolymer showed a pronounced effect on the tear strength and pilling resistance of the treated fabrics. PMID:24661889

  18. Emulsion Polymerization of Butyl Acrylate: Spin Trapping and EPR Study

    NASA Technical Reports Server (NTRS)

    Kim, S.; Westmoreland, D.

    1994-01-01

    The propagating radical in the emulsion polymerization reaction of butyl acrylate was detected by Electron Paramagnetic Resonance spectroscopy using two spin trapping agents, 2-methyl-2nitrosopropane and alpha -N-tert-butylnitrone.

  19. [Reaction of 1,8-naphthyridine azides with ethyl acrylate].

    PubMed

    Livi, O; Ferrarini, P L; Bertini, D; Tonetti, I

    1975-12-01

    The reaction of 1,8-naphthyridine azides with ethyl acrylate leads to the formation of 2-pyrazolines instead of 1,2,3-triazolines. Some of the compounds obtained have undergone pharmacological and microbiological (antibacterial) testing. PMID:1204828

  20. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process. PMID:22279908

  1. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  2. Effect of surface treatments on shear bond strength of denture teeth to denture base resins

    PubMed Central

    Bahrani, Farideh; Khaledi, Amir Ali Reza

    2014-01-01

    Background: Debonding of denture teeth from denture bases is the most common failure in removable dentures. The purpose of this study was to evaluate the effect of surface treatments on shear bond strength of denture teeth to heat-polymerized and autopolymerized denture base resins. Materials and Methods: In this experimental in vitro study, 60 maxillary central incisor acrylic teeth were divided into two groups. Group M was polymerized with heat-polymerized acrylic resin (Meliodent) by compression molding technique and group F was processed by autopolymerized acrylic resin (Futura Gen) by injection molding technique. Within each group, specimens were divided into three subgroups according to the teeth surface treatments (n = 10): (1) ground surface as the control group (M1 and F1), (2) ground surface combined with monomer application (M2 and F2), and (3) airborne particle abrasion by 50 μm Al2O3 (M3 and F3). The shear bond strengths of the specimens were tested by universal testing machine with crosshead speed of 5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests (P < 0.05). Results: The mean shear bond strengths of the studied groups were 96.40 ± 14.01, 124.70 ± 15.64, and 118 ± 16.38 N for M1, M2, and M3 and 87.90 ± 13.48, 117 ± 13.88, and 109.70 ± 13.78 N for F1, F2, and F3, respectively. The surface treatment of the denture teeth significantly affected their shear bond strengths to the both the denture base resins (P < 0.001). However, there were no significant differences between the groups treated by monomer or airborne particle abrasion (P = 0.29). The highest percentage of failure mode was mixed in Meliodent and adhesive in Futura Gen. Conclusion: Monomer application and airborne particle abrasion of the ridge lap area of the denture teeth improved their shear bond strengths to the denture base resins regardless of the type of polymerization. PMID:24688570

  3. Calorimetric Study of Gradient Block-copolymers of Poly(butylacrylate) and Poly(methylmethacrylate)

    NASA Astrophysics Data System (ADS)

    Buzin, A. I.; Pyda, M.; Matyjaszewski, K.; Wunderlich, B.

    2002-03-01

    The miscibility and phase separation in the diblock (AB) and triblock (ABA) copolymers consisting of poly(butyl acrylate) (block B) and gradient copolymers of butyl acrylate and methyl methacrylate (block A) were investigated by means of conventional DSC as a function of the composition of the blocks A. In all copolymers studied, both blocks are presented by two separate glass transition temperatures. The low-temperature transition corresponds to devitrification of block B and is independent of composition and temperature is close to that of pure poly(butyl acrylate), while the higher transition corresponds to glass transition of the copolymeric block A, which decreases and broadens with increasing methylmethacrylate content in block A. The immiscible polymers are connected by chemical bonds, so that the mobilities of the phases influence each other. Shifts in the glass transition temperature and the broadening of the transitions as well as their asymmetry are discussed. --- Supported by NSF, Polymers Program, DMR-9703692, and the Div. of Mat. Sci., BES, DOE at ORNL, managed by UT-Batelle, LLC, for the U.S. Department of Energy, under contract number DOE-AC05-00OR22725.

  4. Stabilizing effects of estertins mercaptide (methyl acrylate) for PVC degradation

    NASA Astrophysics Data System (ADS)

    Zhang, S. H.; Liu, T. M.; Li, J. L.; Wang, C. R.; Li, C.; Wang, Z. Q.

    2016-07-01

    The thermal and UV light (ultraviolet light) stability of PVC films with estertins mercaptide (methyl acrylate), methyltins mercaptide and the compound consisted of estertins mercaptide (methyl acrylate) and hydrotalcite (2:2.5) were investigated by ageing in a circulation oven at 190 °C and irradiating with 72W UV light for 96h, respectively, and then the yellowness and transmission rate were tested by Color Quest XE. Hydrotalcite was proved to have good synergies with estertins mercaptide (methyl acrylate) on improving the thermal stability and UV light stability. The retarding effects of the heat stabilizers to PVC degradation were tested by TGA from 50°C to 600°C. The results show that temperature of HCl evolution from PVC film was improved obviously by compounding with estertins mercaptide(methyl acrylate) and hydrotalcite and estertins mercaptide(methyl acrylate) was found to have a better long term stability. Sn4+ consistence of water and seawater in which films before and after UV light irradiation were soaked for 60 days was analyzed by ICP; the results indicate that the Sn4+ consistence from the films with estertins mercaptide(methyl acrylate) as thermal stabilizer was lower than that from the film with methyltins mercaptide. The crosslink moderately by UV irradiation for PVC films can hold back the dissolution of organotin heat stabilizers from PVC products into water and seawater.

  5. Regenerating Water-Sterilizing Resins

    NASA Technical Reports Server (NTRS)

    Colombo, G. V.; Putnam, D. F.

    1982-01-01

    Iodine-dispensing resin can be regenerated after iodine content has been depleted, without being removed from water system. Resin is used to make water potable by killing bacteria, fungi, and viruses. Regeneration technique may be come basis of water purifier for very long space missions. Enough crystalline iodine for multiple regenerations during mission can be stored in one small cartridge. Cartridge could be inserted in waterline as necessary on signal from iodine monitor or timer.

  6. Liquid monobenzoxazine based resin system

    DOEpatents

    Tietze, Roger; Nguyen, Yen-Loan; Bryant, Mark

    2014-10-07

    The present invention provides a liquid resin system including a liquid monobenzoxazine monomer and a non-glycidyl epoxy compound, wherein the weight ratio of the monobenzoxazine monomer to the non-glycidyl epoxy compound is in a range of about 25:75 to about 60:40. The liquid resin system exhibits a low viscosity and exceptional stability over an extended period of time making its use in a variety of composite manufacturing methods highly advantageous.

  7. Performance and Molding of Photosetting Resin Composite (PRC) Spur Gears by Stereolithography

    NASA Astrophysics Data System (ADS)

    Horiguchi, Masahiro; Suzuki, Kensuke; Takase, Kazuya; Sato, Sadao

    The performance of spur gears composed of photosetting resin composites (PRCs) containing various fillers was investigated experimentally. The materials used in the experiment were acrylic resin (PSA) and epoxy resin (PSEP), cured by irradiation with a helium-cadmium (He-Cd) ultraviolet laser (UVL) at a wavelength of 325 nm. The spur gears were molded by stereolithography using a UVL. The optimum time for the post cure in stereo lithography molding was about 20 minutes. The dedendum bending strength of spur gears made from PSA composites containing 1 wt% organic-modified montmorillonite (OMMT) increased by about 20% compared to neat PSA. The kinetics durability of the PRC spur gears was also found to increase due to the reinforcing effect of the filler. The tensile strength and flexural strength of the PSA/OMMT composite were about 1.2 times those of neat PSA. On the other hand, the flexural strength and modulus of neat PSEP were about 2 times greater than that of neat PSA itself. Moreover, the kinetics durability of neat PSEP also shows high values. From these results, it was concluded that the addition of filler has a significant influence on the characteristics and mechanical properties of spur gears made from photosetting resins.

  8. Comparison of flexural strength in three types of denture base resins: An in vitro study

    PubMed Central

    Jaikumar, R. Arun; Karthigeyan, Suma; Ali, Syed Asharf; Naidu, N. Madhulika; Kumar, R. Pradeep; Vijayalakshmi, K.

    2015-01-01

    Aim: The aim of this study was to evaluate whether the flexural strength of a commercially available, heat polymerized acrylic denture base material could be improved using reinforcements. Materials and Methods: A total of 30 specimens (65 mm × 10 mm × 3 mm) were fabricated; the specimens were divided into three groups with 10 specimens each. They were Group 1 - conventional denture base resins, Group 2 - high impact denture base resins, and Group 3 - glass reinforced denture base resins. The specimens were loaded until failure on a three-point bending test machine. An one-way analysis of variance was used to determine statistical differences among the flexural strength of three groups. Data were analyzed by SPSS software version 21.0© (IBM Corporation, Armonk, NY, USA) and the results were obtained. Results: The flexural strength values showed statistically significant differences among experimental groups (P < 0.005). Conclusion: Within the limitations of the study polymethyl methacrylate (PMMA) reinforced with glass fibers showed the highest flexural strength values this was followed by PMMA reinforced with butadiene styrene, and the least strength was observed in the conventional denture base resins. PMID:26538898

  9. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Pan, Jinshan; Thormann, Esben

    2014-02-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements. PMID:24400981

  10. Analysis of emulsion stability in acrylic dispersions

    NASA Astrophysics Data System (ADS)

    Ahuja, Suresh

    2012-02-01

    Emulsions either micro or nano permit transport or solubilization of hydrophobic substances within a water-based phase. Different methods have been introduced at laboratory and industrial scales: mechanical stirring, high-pressure homogenization, or ultrasonics. In digital imaging, toners may be formed by aggregating a colorant with a latex polymer formed by batch or semi-continuous emulsion polymerization. Latex emulsions are prepared by making a monomer emulsion with monomer like Beta-carboxy ethyl acrylate (β-CEA) and stirring at high speed with an anionic surfactant like branched sodium dodecyl benzene sulfonates , aqueous solution until an emulsion is formed. Initiator for emulsion polymerization is 2-2'- azobis isobutyramide dehydrate with chain transfer agent are used to make the latex. If the latex emulsion is unstable, the resulting latexes produce a toner with larger particle size, broader particle size distribution with relatively higher latex sedimentation, and broader molecular weight distribution. Oswald ripening and coalescence cause droplet size to increase and can result in destabilization of emulsions. Shear thinning and elasticity of emulsions are applied to determine emulsion stability.

  11. Effect of an Extra Hydrophobic Resin Layer on Repair Shear Bond Strength of a Silorane-Based Composite Resin

    PubMed Central

    Mohammadi, Narmin; Bahari, Mahmoud; Kimyai, Soodabeh; Rahbani Nobar, Behnam

    2015-01-01

    Objectives: Composite repair is a minimally invasive and conservative approach. This study aimed to evaluate the effect of an additional hydrophobic resin layer on the repair shear bond strength of a silorane-based composite repaired with silorane or methacrylate-based composite. Materials and Methods: Sixty bar-shaped composite blocks were fabricated and stored in saline for 72 hours. The surface of the samples were roughened by diamond burs and etched with phosphoric acid; then, they were randomly divided into three groups according to the repairing process: Group 1: Silorane composite-silorane bonding agent-silorane composite; group 2: Silorane composite-silorane bonding agent-hydrophobic resin-silorane composite, and group 3: Silorane composite-silorane bonding agent-hydrophobic resin methacrylate-based composite. Repairing composite blocks measured 2.5×2.5×5mm. After repairing, the samples were stored in saline for 24 hours and thermocycled for 1500 cycles. The repair bond strength was measured at a strain rate of 1mm/min. Twenty additional cylindrical composite blocks (diameter: 2.5mm, height: 6mm) were also fabricated for measuring the cohesive strength of silorane-based composite. The data were analyzed using One-way ANOVA and the post hoc Tukey’s test (α=0.05). Results: Cohesive bond strength of silorane composite was significantly higher than the repair bond strengths in other groups (P<0.001). The repair bond strength of group 3 was significantly higher than that of group 1 (P=0.001). Conclusion: Application of an additional hydrophobic resin layer for repair of silorane-based composite with a methacrylate-based composite enhanced the repair shear bond strength. PMID:27559348

  12. Protein absorption and fouling on poly(acrylic acid)-graft-polypropylene microfiltration membrane

    NASA Astrophysics Data System (ADS)

    Liu, Yanjun; Ma, Huiying; Lv, Chunying; Yang, Jia; Fu, Xueqi

    2009-07-01

    A series of pH-sensitive poly (acrylic acid)-graft-polypropylene hollow fiber microfiltration membranes were prepared by UV-photo-irradiation. Bovine serum albumin (BSA) was chosen as the model protein to investigate its absorption and fouling behaviors on membranes. The results showed that the hydrophilicity of grafted membrane was improved by poly(acrylic acid) chains with parts of membrane pores blocked. The grafted membranes were markedly pH-dependent on the water permeability as pH was altered from 1 to 11. The zeta potential of grafted membranes calculated by streaming potential was negative in most pH range. Electrostatic interaction energy calculated by DLVO theory showed the electric interaction force between grafted membrane and BSA was attractive. With the rise of grafting degree, the electric attractive force between grafted membrane and BSA increased as pH=3 and decreased as pH=8, while it kept basically unchanged as pH=4.7. As a result, most serious fouling was observed as pH=4.7. Grafted membranes had a lower BSA absorption and better antifouling behavior as pH=8, while the opposite result was revealed as pH=3. In conclusion, the absorption and fouling behavior of BSA on membranes was pH-dependent due to the pH-dependence of membrane charge, and the conformation of BSA and grafting chains.

  13. Aggregation of poly(acrylic acid)-containing elastin-mimetic copolymers

    PubMed Central

    Paik, Bradford A.; Blanco, Marco A.; Jia, Xinqiao; Roberts, Christopher J.; Kiick, Kristi L.

    2015-01-01

    Polymer-peptide conjugates were produced via the copper-catalyzed alkyne-azide cycloaddition of poly(tert butyl acrylate) (PtBA) and elastin-like peptides. An azide-functionalized polymer was produced via atom-transfer radical polymerization (ATRP) followed by conversion of bromine end groups to azide groups. Subsequent reaction of the polymer with a bis-alkyne-functionalized, elastin-like peptide proceeded with high efficiency, yielding di- and tri-block conjugates, which after deprotection, yielded poly(acrylic acid) (PAA)-based diblock and triblock copolymers. These conjugates were solubilized in dimethyl formamide, and titration of phosphate buffered saline (PBS) induced aggregation. The presence of polydisperse spherical aggregates was confirmed by dynamic light scattering and transmission electron microscopy. Additionally, a coarse-grained molecular model was designed to reasonably capture inter- and intramolecular interactions for the conjugates and its precursors. This model was used to assess the effect of the different interacting molecular forces on the conformational thermodynamic stability of the copolymers. Our results indicated that the PAA’s ability to hydrogen-bond with both itself and the peptide is the main interaction for stabilizing the diblocks and triblocks and driving their self-assembly, while interactions between peptides are suggested to play only a minor role on the conformational and thermodynamic stability of the conjugates. PMID:25611563

  14. Maleimide Functionalized Siloxane Resins

    SciTech Connect

    Loy, D.A.; Shaltout, R.M.

    1999-04-01

    Polyorganosiloxanes are a commercially important class of compounds. They exhibit many important properties, including very low glass transition temperatures, making them useful over a wide temperature range. In practice, the polysiloxane polymer is often mixed with a filler material to help improve its mechanical properties. An alternative method for increasing polymer mechanical strength is through the incorporation of certain substituents on the polymer backbone. Hard substituents such as carbonates and imides generally result in improved mechanical properties of polysiloxanes. In this paper, we present the preparation of novel polysiloxane resins modified with hard maleimide substituents. Protected ethoxysilyl-substituted propyl-maleimides were prepared. The maleimide substituent was protected with a furanyl group and the monomer polymerized under aqueous acidic conditions. At elevated temperatures (>120 C), the polymer undergoes retro Diels-Alder reaction with release of foran (Equation 1). The deprotected polymer can then be selectively crosslinked by a forward Diels-Alder reaction (in the presence of a co-reactant having two or more dime functionalities).

  15. Assembly of Double-Hydrophilic Block Copolymers Triggered by Gadolinium Ions: New Colloidal MRI Contrast Agents.

    PubMed

    Frangville, Camille; Li, Yichen; Billotey, Claire; Talham, Daniel R; Taleb, Jacqueline; Roux, Patrick; Marty, Jean-Daniel; Mingotaud, Christophe

    2016-07-13

    Mixing double-hydrophilic block copolymers containing a poly(acrylic acid) block with gadolinium ions in water leads to the spontaneous formation of polymeric nanoparticles. With an average diameter near 20 nm, the nanoparticles are exceptionally stable, even after dilution and over a large range of pH and ionic strength. High magnetic relaxivities were measured in vitro for these biocompatible colloids, and in vivo magnetic resonance imaging on rats demonstrates the potential utility of such polymeric assemblies. PMID:27224089

  16. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging.

    PubMed

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  17. Synthesis and properties of transparent cycloaliphatic epoxy-silicone resins for opto-electronic devices packaging

    NASA Astrophysics Data System (ADS)

    Gao, Nan; Liu, WeiQu; Yan, ZhenLong; Wang, ZhengFang

    2013-01-01

    Cycloaliphatic epoxy-silicone resins were successfully synthesized through a two-step reaction route: (і) hydrosilylation of 1,3,5,7-tetramethylcyclotetrasiloxane (TMCTS) and 1,2-epoxy-4-vinyl-cyclohexane (VCMX), (іі) blocking of unreacted Sisbnd H in (і) with n-butanol. The molecular structures of the cycloaliphatic epoxy-silicone resins were characterized by Fourier transform infrared (FT-IR) and nuclear magnetic resonance (1H NMR and 29Si NMR). High grafting efficiencies of epoxy groups were confirmed by 1H NMR combined with weighting results, indicating over 90 mol% of cycloaliphatic epoxy were grafted on the silicone resins. Subsequently, Sisbnd H groups from TMCTS were almost totally consumed after the blocking reactions. In comparison with commercial available cycloaliphatic epoxy resin 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (ERL-4221) cured by MHHPA, the cured cycloaliphatic epoxy-silicone resins exhibited better thermal stability, lower water absorption and higher UV/thermal resistance. Moreover, the characteristics of transmittance (>90%, 800 nm), 5 wt.% mass loss temperature (>330 °C) and no yellowing during thermal aging at 120 °C or UV aging for 288 h of the cured cycloaliphatic epoxy-silicone resins, made them possible for power light-emitting diode (LED) encapsulants, or other packaging materials, like optical lenses, and electronic sealings.

  18. Conductive resins improve charging and resolution of acquired images in electron microscopic volume imaging

    PubMed Central

    Nguyen, Huy Bang; Thai, Truc Quynh; Saitoh, Sei; Wu, Bao; Saitoh, Yurika; Shimo, Satoshi; Fujitani, Hiroshi; Otobe, Hirohide; Ohno, Nobuhiko

    2016-01-01

    Recent advances in serial block-face imaging using scanning electron microscopy (SEM) have enabled the rapid and efficient acquisition of 3-dimensional (3D) ultrastructural information from a large volume of biological specimens including brain tissues. However, volume imaging under SEM is often hampered by sample charging, and typically requires specific sample preparation to reduce charging and increase image contrast. In the present study, we introduced carbon-based conductive resins for 3D analyses of subcellular ultrastructures, using serial block-face SEM (SBF-SEM) to image samples. Conductive resins were produced by adding the carbon black filler, Ketjen black, to resins commonly used for electron microscopic observations of biological specimens. Carbon black mostly localized around tissues and did not penetrate cells, whereas the conductive resins significantly reduced the charging of samples during SBF-SEM imaging. When serial images were acquired, embedding into the conductive resins improved the resolution of images by facilitating the successful cutting of samples in SBF-SEM. These results suggest that improving the conductivities of resins with a carbon black filler is a simple and useful option for reducing charging and enhancing the resolution of images obtained for volume imaging with SEM. PMID:27020327

  19. The Effect of Different Fiber Concentrations on the Surface Roughness of Provisional Crown and Fixed Partial Denture Resin

    PubMed Central

    Zortuk, Mustafa; Kılıc, Kerem; Uzun, Gulay; Ozturk, Ahmet; Kesim, Bulent

    2008-01-01

    Objectives The aim of this study was to investigate surface roughness in provisional crown acrylics, after polishing, reinforced with different concentrations of glass fibers. Methods A total of 48 disk-shaped specimens were prepared using autopolymerizing acrylic resin. These specimens were divided into four groups according to the level of glass fiber added: Group A (no fiber), Group B (0.5%), Group C (1%) and Group D (2%). After polishing the specimens, an average surface roughness (Ra) value was calculated using a profilometer from four randomly selected points on the surface. Results A significant difference was determined among the surface roughness values of provisional crown resins to which different concentrations of fiber had been added (P<.001). Tukey’s test was then used to perform paired comparisons of the data between the different groups, and a significant difference was found between Group A (no fiber) and the other groups, between Group B (0.5%) and Group D (2%) and between Group C (1%) and Group D. On the other hand, there was no significant difference between Group B and Group C. Conclusions The reinforcement of provisional crown and fixed partial denture resin with glass fibers increases surface roughness. PMID:19212545

  20. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  1. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  2. Development of a novel resin with antimicrobial properties for dental application

    PubMed Central

    de CASTRO, Denise Tornavoi; HOLTZ, Raphael Dias; ALVES, Oswaldo Luiz; WATANABE, Evandro; VALENTE, Mariana Lima da Costa; da SILVA, Cláudia Helena Lovato; dos REIS, Andréa Cândido

    2014-01-01

    The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. Objective To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3). Material and Methods The minimum inhibitory concentration (MIC) of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay - Clássico®. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%), with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05); the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way), and Tukey's test (α=0.05). Results The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p<0.05). Higher rates of the nanomaterial did not alter the mechanical properties of the resin in comparison with the control group (p>0.05). Conclusions The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control. PMID:25466477

  3. A 10-Year Clinical Evaluation of Resin-Bonded Fixed Dental Prostheses on Non-Prepared Teeth.

    PubMed

    Piemjai, Morakot; Özcan, Mutlu; Garcia-Godoy, Franklin; Nakabayashi, Nobuo

    2016-06-01

    This study evaluated the conditions of the non-invasive resin-bonded fixed dental prostheses (FDP) and patient satisfaction up to 10 years of clinical function. A total of 23 patients who required fixed prostheses in the areas of mandibular anterior and premolar, and maxillary anterior region received resin-bonded restorations between 1999-2003. In 13 patients with 14 edentulous areas were restored with an adhesive pontic (natural tooth, acrylic and porcelain). Two indirect proximal veneers using resin composite were placed in each space in 10 patients having 13 edentulous spaces. All prostheses were bonded to the proximal surface of adjacent teeth using resin cement based on 4-META/MMA-TBB. No debonding of proximal veneers but 4 pontic debonding was observed which were rebonded and remained functional until final follow up. The abutments in pontic and proximal veneer groups were free of caries and hypersensitivity. Periodontal health was improved after treatment and was maintained for 10 years except for 4 abutments that still showed some bleeding on probing. Non-invasive resin-bonded FDPs are simple, pain-free, less costly treatment procedures that could provide acceptable clinical longevity with high patient satisfaction. PMID:27424337

  4. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol. PMID:23544644

  5. Biocatalytic functionalization of hydroxyalkyl acrylates and phenoxyethanol via phosphorylation.

    PubMed

    Tasnádi, Gábor; Hall, Mélanie; Baldenius, Kai; Ditrich, Klaus; Faber, Kurt

    2016-09-10

    The enzymatic phosphorylation of phenoxyethanol, 2-hydroxyethyl acrylate and 4-hydroxybutyl acrylate catalyzed by acid phosphatases PhoN-Sf and PiACP at the expense of inorganic di-, tri-, hexameta- or polyphosphate was applied to the preparative-scale synthesis of phosphorylated compounds. The reaction conditions were optimized with respect to enzyme immobilization, substrate concentration, pH and type of phosphate donor. The mild reaction conditions prevented undesired polymerization and hydrolysis of the acrylate ester moiety. Application of a continuous flow system allowed facile scale-up and mono-phosphates were obtained in up to 26% isolated yield with space-time yields of 0.89kgL(-1)h(-1). PMID:27422352

  6. A New Class Of Resins For Deep Ultraviolet Photoresists

    NASA Astrophysics Data System (ADS)

    Osuch, C. E.; Brahim, K.; Hopf, F. R.; McFarland, M. J.; Mooring, A.; Wu, C. J.

    1986-07-01

    As Bowden has pointed out in his recent discussion on high resolution lithography, conventional photoresists are not particularly suitable for use in the deep ultraviolet (DUV) regime.' The reasons for this are: (1) the novolac resin is a strong absorber at wavelengths shorter than 300 nm;2 and (2) the products produced upon irradiation of the photoactive compound (PAC) absorb in this region (which prevents the phenomenon known as "photobleaching" from occurring). Of these two difficulties the first appeared, to us, to be the more restrictive. Therefore we chose to investigate alternate resins, more transparent in the DUV region, to substitute for novolac. We initially sought to remain within the realm of the dissolution inhibition mechanism and to utilize conventional PAC's. Although it was possible to prepare resins having improved UV absorbtion characteristics (a maleimidestyrene copolymer will be discussed here) and to formulate positive acting resists from them, we found that the resists were not able to adequately form high resolution images with vertical wall profiles. Examples of this behavior are presented. Because of the apparent inability to obtain satisfactory wall profiles, we abandoned the methods based on the dissolution inhibition mechanism. We then elected to explore the so-called "chemical amplification" approach pioneered by Wilson, Ito, Frechet, and their coworkers. To this end, maleimide styrene copolymer was substituted on the nitrogen atom with the tertbutyloxy carbonyl group. This resin, upon application of heat, reverts to maleimide styrene via a process which is apparently catalyzed in the presence of acid. These observations led us to develop a photoresist based on a mixture of a photoacid and the N-blocked maleimide/styrene resin. Details of the performance of this resist are presented.

  7. Biosynthetic pathway for acrylic acid from glycerol in recombinant Escherichia coli.

    PubMed

    Tong, Wenhua; Xu, Ying; Xian, Mo; Niu, Wei; Guo, Jiantao; Liu, Huizhou; Zhao, Guang

    2016-06-01

    Acrylic acid is an important industrial feedstock. In this study, a de novo acrylate biosynthetic pathway from inexpensive carbon source glycerol was constructed in Escherichia coli. The acrylic acid was produced from glycerol via 3-hydroxypropionaldehyde, 3-hydroxypropionyl-CoA, and acrylyl-CoA. The acrylate production was improved by screening and site-directed mutagenesis of key enzyme enoyl-CoA hydratase and chromosomal integration of some exogenous genes. Finally, our recombinant strain produced 37.7 mg/L acrylic acid under shaking flask conditions. Although the acrylate production is low, our study shows feasibility of engineering an acrylate biosynthetic pathway from inexpensive carbon source. Furthermore, the reasons for limited acrylate production and further strain optimization that should be performed in the future were also discussed. PMID:26782744

  8. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  9. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  10. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... substituted methyl styrene, methyl methacrylate, and substituted silane. 721.6920 Section 721.6920 Protection... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

  11. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

    PubMed Central

    Albayrak, Hamdi; Korkmaz, Turan; Turkyilmaz, Ilser

    2013-01-01

    PURPOSE To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% TiO2 and 1% ZrO2, 2% Al2O3, 2% TiO2, and 2% ZrO2 by volume, respectively. Rectangular unnotched specimens (50 mm × 6.0 mm × 4.0 mm) were fabricated and droptower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, discshaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION Modification of heat-cured acrylic resin with metal oxides, especially with ZrO2, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically. PMID:24049564

  12. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  13. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  14. Soluble high molecular weight polyimide resins

    NASA Technical Reports Server (NTRS)

    Jones, R. J.; Lubowitz, H. R.

    1970-01-01

    High molecular weight polyimide resins have greater than 20 percent /by weight/ solubility in polar organic solvents. They permit fabrication into films, fibers, coatings, reinforced composite, and adhesive product forms. Characterization properties for one typical polyimide resin are given.

  15. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  16. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  17. Mechanical properties of a waterborne pressure-sensitive adhesive with a percolating poly(acrylic acid)-based diblock copolymer network: effect of pH.

    PubMed

    Gurney, Robert S; Morse, Andrew; Siband, Elodie; Dupin, Damien; Armes, Steven P; Keddie, Joseph L

    2015-06-15

    Copolymerizing an acrylic acid comonomer is often beneficial for the adhesive properties of waterborne pressure-sensitive adhesives (PSAs). Here, we demonstrate a new strategy in which poly(acrylic acid) (PAA) is distributed as a percolating network within a PSA film formed from a polymer colloid. A diblock copolymer composed of PAA and poly(n-butyl acrylate) (PBA) blocks was synthesized using reversible addition-fragmentation chain transfer (RAFT) polymerization and adsorbed onto soft acrylic latex particles prior to their film formation. The thin adsorbed shells on the particles create a percolating network that raises the elastic modulus, creep resistance and tensile strength of the final film. When the film formation occurs at pH 10, ionomeric crosslinking occurs, and high tack adhesion is obtained in combination with high creep resistance. The results show that the addition of an amphiphilic PAA-b-PBA diblock copolymer (2.0 wt.%) to a soft latex provides a simple yet effective means of adjusting the mechanical and adhesive properties of the resulting composite film. PMID:25706199

  18. Incorporation of multiwalled carbon nanotubes to acrylic based bone cements: effects on mechanical and thermal properties.

    PubMed

    Ormsby, Ross; McNally, Tony; Mitchell, Christina; Dunne, Nicholas

    2010-02-01

    Polymethyl methacrylate (PMMA) bone cement-multiwalled carbon nanotube (MWCNT) nanocomposites with a weight loading of 0.1% were prepared using 3 different methods of MWCNT incorporation. The mechanical and thermal properties of the resultant nanocomposite cements were characterised in accordance with the international standard for acrylic resin cements. The mechanical properties of the resultant nanocomposite cements were influenced by the type of MWCNT and method of incorporation used. The exothermic polymerisation reaction for the PMMA bone cement was significantly reduced when thermally conductive functionalised MWCNTs were added. This reduction in exotherm translated in a decrease in thermal necrosis index value of the respective nanocomposite cements, which potentially could reduce the hyperthermia experienced in vivo. The morphology and degree of dispersion of the MWCNTs in the PMMA matrix at different scales were analysed using scanning electron microscopy. Improvements in mechanical properties were attributed to the MWCNTs arresting/retarding crack propagation through the cement by providing a bridging effect into the wake of the crack, normal to the direction of crack growth. MWCNT agglomerations were evident within the cement microstructure, the degree of these agglomerations was dependent on the method used to incorporate the MWCNTs into the cement. PMID:20129413

  19. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.

    PubMed

    Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung

    2010-08-01

    This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables. PMID:20675954

  20. Tailoring the optical and rheological properties of an epoxy acrylate based host-guest system

    NASA Astrophysics Data System (ADS)

    Gleißner, Uwe; Hanemann, Thomas

    2014-05-01

    Polymers with individually adjusted optical and rheological properties are gaining more and more importance in industrial applications like in information technology. To modify the refractive index n, an electron-rich organic dopant is added to a commercially available polymer based resin. Changes in viscosity for applications like ink-jet printing can be achieved by using a comonomer with suitable properties. Therefore we used a commercially available epoxy acrylate based UV-curable polymer matrix to investigate the influence of ethylene glycol dimethacrylate (EGDMA) on viscosity and phenanthrene on refractive index. Refractive index was measured at a wavelength of 589 nm and 20 °C using an Abbe refractometer. As a result the change in viscosity decreased linearly from 47 Pa·s to 4 mPa·s which is a more suitable region for inkjet printing. However, the refractive index decreased at the same time from 1.548 to 1.514. Adding phenanthrene the refractive index increased linearly from 1.548 up to 1.561. It was shown that both, viscosity and refractive index can be successfully adjusted in a wide range depending on desired properties.

  1. Method for loading resin beds

    DOEpatents

    Notz, Karl J.; Rainey, Robert H.; Greene, Charles W.; Shockley, William E.

    1978-01-01

    An improved method of preparing nuclear reactor fuel by carbonizing a uranium loaded cation exchange resin provided by contacting a H.sup.+ loaded resin with a uranyl nitrate solution deficient in nitrate, comprises providing the nitrate deficient solution by a method comprising the steps of reacting in a reaction zone maintained between about 145.degree.-200.degree. C, a first aqueous component comprising a uranyl nitrate solution having a boiling point of at least 145.degree. C with a second aqueous component to provide a gaseous phase containing HNO.sub.3 and a reaction product comprising an aqueous uranyl nitrate solution deficient in nitrate.

  2. Block copolymer adhesion promoters via ring-opening metathesis polymerization

    DOEpatents

    Kent, M.S.; Saunders, R.

    1997-02-18

    Coupling agents are disclosed based on functionalized block copolymers for bonding thermoset polymers to solid materials. These are polymers which possess at least two types of functional groups, one which is able to attach to and react with solid surfaces, and another which can react with a thermoset resin, which are incorporated as pendant groups in monomers distributed in blocks (typically two) along the backbone of the chain. The block copolymers in this invention are synthesized by living ring-opening metathesis polymerization. 18 figs.

  3. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Terpene resin. 172.280 Section 172.280 Food and... Terpene resin. The food additive terpene resin may be safely used in accordance with the following prescribed conditions: (a) The food additive is the betapinene polymer obtained by polymerizing...

  4. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  5. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  6. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  7. 21 CFR 172.280 - Terpene resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Terpene resin. 172.280 Section 172.280 Food and..., Films and Related Substances § 172.280 Terpene resin. The food additive terpene resin may be safely used... polymer obtained by polymerizing terpene hydrocarbons derived from wood. It has a softening point of...

  8. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  9. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  10. 21 CFR 177.1550 - Perfluorocarbon resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Perfluorocarbon resins can be identified by their characteristic infrared spectra. (2) Melt-viscosity. (i) The per-fluoro-carbon resins identified in paragraph (a)(1) of this section shall have a melt viscosity of not... viscosity of the perfluorocarbon resins identified in paragraph (a)(1) of this section shall not vary...

  11. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  12. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  13. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  14. ACUTE TOXICITY AND BEHAVIORAL EFFECTS OF ACRYLATES AND METHACRYLATES TO JUVENILE FATHEAD MINNOWS (JOURNAL VERSION)

    EPA Science Inventory

    Acrylate and methacrylate esters are reactive monomers that are used primarily in the synthesis of acrylic plastics and polymers. Ninety-six hour flow-through acute toxicity tests were conducted with fathead minnows (Pimephales promelas) using 6 acrylates and 6 methacrylates. Nin...

  15. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  16. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  17. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  18. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  19. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  20. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  1. 40 CFR 721.9640 - Salt of an acrylic acid - acrylamide terpolymer (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Salt of an acrylic acid - acrylamide... Specific Chemical Substances § 721.9640 Salt of an acrylic acid - acrylamide terpolymer (generic). (a... generically as salt of an acrylic acid - acrylamide terpolymer (PMN P-99-817) is subject to reporting...

  2. 40 CFR 721.321 - Substituted acrylamides and acrylic acid copolymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted acrylamides and acrylic... New Uses for Specific Chemical Substances § 721.321 Substituted acrylamides and acrylic acid copolymer... identified generically as substituted acrylamides and acrylic acid copolymer (PMN P-00-0490) is subject...

  3. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  4. 40 CFR 721.10192 - Amides, coco, N-[3-(dibutylamino)propyl], acrylates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amides, coco, N- , acrylates. 721... Substances § 721.10192 Amides, coco, N- , acrylates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amides, coco, N- , acrylates (PMN...

  5. 40 CFR 721.10101 - Copolymer of alkyl acrylate and ethyleneglycol dimethacrylate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Copolymer of alkyl acrylate and... Significant New Uses for Specific Chemical Substances § 721.10101 Copolymer of alkyl acrylate and...) The chemical substance identified generically as copolymer of alkyl acrylate and...

  6. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS Reg. No. 34364-83-5) identified in paragraph (a) of this section may be.../methyl acrylate/methyl methacrylate polymers consist of basic polymers produced by the...

  7. 21 CFR 177.2000 - Vinylidene chloride/methyl acrylate/methyl methacrylate polymers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Vinylidene chloride/methyl acrylate/methyl methacrylate polymers. The vinylidene chloride/methyl acrylate/methyl methacrylate polymers (CAS Reg. No. 34364-83-5) identified in paragraph (a) of this section may be.../methyl acrylate/methyl methacrylate polymers consist of basic polymers produced by the...

  8. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  9. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  10. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  11. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  12. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  13. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  14. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  15. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  16. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  17. 40 CFR 721.6560 - Acrylic acid, polymer with substituted ethene.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.6560 Acrylic acid, polymer with substituted ethene. (a) Chemical... as acrylic acid, polymer with substituted ethene (PMN P-91-521) is subject to reporting under...

  18. 40 CFR 721.10032 - Acrylic acid, polymer with substituted acrylamides (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylic acid, polymer with substituted... Specific Chemical Substances § 721.10032 Acrylic acid, polymer with substituted acrylamides (generic). (a... generically as acrylic acid, polymer with substituted acrylamides (PMN P-02-269) is subject to reporting...

  19. 40 CFR 721.463 - Acrylate of polymer based on isophorone diisocyanate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate of polymer based on... New Uses for Specific Chemical Substances § 721.463 Acrylate of polymer based on isophorone... substance identified generically as acrylate of polymer based on isophorone diisocyanate (PMN P-00-0626)...

  20. 40 CFR 721.6920 - Butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Butyl acrylate, polymer with... acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted silane. (a... butyl acrylate, polymer with substituted methyl styrene, methyl methacrylate, and substituted...