Science.gov

Sample records for acrylic resin materials

  1. Flexural Strength of Cold and Heat Cure Acrylic Resins Reinforced with Different Materials

    PubMed Central

    Heidari, Bijan; Firouz, Farnaz; Izadi, Alireza; Ahmadvand, Shahbaz

    2015-01-01

    Objectives: Heat-polymerized acrylic resin has been the most commonly used denture base material for over 60 years. However, the mechanical strength of acrylic resin is not adequate for long-term clinical performance of dentures. Consequently, fracture is a common clinical occurrence, which often develops in the midline of the denture base. This study aimed to evaluate the efficacy of cold-cure and heat-cure acrylic resins, reinforced with glass fibers, polyethylene fibers, and metal wire for denture base repair. Materials and Methods: Ninety specimens were prepared and allocated to nine groups. Ten specimens were considered as controls, and 80 were divided into 8 experimental groups. In the experimental groups, the specimens were sectioned into two halves from the middle, and were then divided into two main groups: one group was repaired with heat cure acrylic resin, and the other with cold cure acrylic resin. Each group was divided into 4 subgroups: unreinforced, reinforced with glass fibers, polyethylene fibers, and metal wire. All specimens were subjected to a 3-point bending test, and the flexural strength was calculated. Results: The group repaired with heat cure acrylic resin and reinforced with glass fiber showed the highest flexural strength; however, the group repaired with cold cure acrylic resin and reinforced with polyethylene fibers had the lowest flexural strength. There was no significant difference between the groups repaired with heat cure and cold cure acrylic resins without reinforcement. Conclusion: Repairing denture base with heat cure acrylic resin, reinforced with glass fibers increases the flexural strength of denture base. PMID:26877726

  2. The bond strength of elastomer tray adhesives to thermoplastic and acrylic resin tray materials.

    PubMed

    Hogans, W R; Agar, J R

    1992-04-01

    This study evaluated the bond strength of selected impression materials (Permlastic, Express, and Hydrosil) to a thermoplastic custom tray material as a function of drying time of the adhesive after application to a tray material. In addition, bond strengths of a polysulfide impression material to an acrylic resin tray material and to a thermoplastic tray material made directly against wax were evaluated. Bond strengths were obtained directly from values of applied load at failure and important conclusions were drawn. PMID:1507140

  3. Effect of silver nanoparticles incorporation on viscoelastic properties of acrylic resin denture base material

    PubMed Central

    Mahross, Hamada Zaki; Baroudi, Kusai

    2015-01-01

    Objective: The objective was to investigate the effect of silver nanoparticles (AgNPs) incorporation on viscoelastic properties of acrylic resin denture base material. Materials and Methods: A total of 20 specimens (60 × 10 × 2 mm) of heat cured acrylic resin were constructed and divided into four groups (five for each), according to the concentration of AgNPs (1%, 2%, and 5% vol.) which incorporated into the liquid of acrylic resin material and one group without additives (control group). The dynamic viscoelastic test for the test specimens was performed using the computerized material testing system. The resulting deflection curves were analyzed by material testing software NEXYGEN MT. Results: The 5% nanoparticles of silver (NAg) had significantly highest mean storage modulus E’ and loss tangent Tan δ values followed by 2% NAg (P < 0.05). For 1% nanosilver incorporation (group B), there were no statistically significant differences in storage modulus E’, lost modulus E” or loss tangent Tan δ with other groups (P > 0.05). Conclusion: The AgNPs incorporation within the acrylic denture base material can improve its viscoelastic properties. PMID:26038651

  4. Biofilm-forming ability and adherence to poly-(methyl-methacrylate) acrylic resin materials of oral Candida albicans strains isolated from HIV positive subjects

    PubMed Central

    Uzunoglu, Emel; Dolapci, Istar; Dogan, Arife

    2014-01-01

    PURPOSE This study evaluated the adhesion to acrylic resin specimens and biofilm formation capability of Candida albicans strains isolated from HIV positive subjects' oral rinse solutions. MATERIALS AND METHODS The material tested was a heat-cured acrylic resin (Acron Duo). Using the adhesion and crystal violet assays, 14 oral Candida albicans isolated from HIV-positive subjects and 2 references Candida strains (C. albicans ATCC 90028 and C. albicans ATCC 90128) were compared for their biofilm production and adhesion properties to acrylic surfaces in vitro. RESULTS There were no significant differences in adhesion (P=.52) and biofilm formation assays (P=.42) by statistical analysis with Mann-Whitney test. CONCLUSION Denture stomatitis and increased prevalence of candidal carriage in HIV infected patients is unlikely to be related to the biofilm formation and adhesion abilities of C. albicans to acrylic resin materials. PMID:24605203

  5. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  6. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be...) Acrylamide-acrylic acid resins are produced by the polymerization of acrylamide with partial hydrolysis or...

  7. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  8. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  9. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resin. 573.120 Section 573... Food Additive Listing § 573.120 Acrylamide-acrylic acid resin. Acrylamide-acrylic acid resin... acrylamide with partial hydrolysis, or by copolymerization of acrylamide and acrylic acid with the...

  11. Colour Stability of Heat and Cold Cure Acrylic Resins

    PubMed Central

    Ganesh, P R; Reddy, Madan Mohan; Ebenezar, A.V. Rajesh; Sivakumar, G

    2015-01-01

    Introduction: To evaluate the colour stability of heat and cold cure acrylic resins under simulated oral conditions with different colorants. Materials and Methods: Three different brands of heat cure acrylic resin and two rapid cure auto polymerizing acrylic resin of commercial products such as Trevelon Heat Cure (THC), DPI Heat cure (DHC), Pyrax Heat Cure (PHC), DPI Cold cure (DCC) and Acralyn-R-Cold cure (ACC) have been evaluated for discoloration and colour variation on subjecting it to three different, commonly employed food colorants such as Erythrosine, Tartarizine and Sunset yellow. In order to simulate the oral condition the food colorants were diluted with artificial saliva to the samples taken up for the study. These were further kept in an incubator at 37°C ± 1°C. The UV-visible spectrophotometer has been utilized to evaluate the study on the basis of CIE L* a* b* system. The prepared samples for standard evaluation have been grouped as control group, which has been tested with a white as standard, which is applicable for testing the colour variants. Results: The least colour changes was found to be with Sunset Yellow showing AE* value of 3.55 with heat cure acrylic resin branded as PHC material and the highest colour absorption with Tartarizine showing AE* value of 12.43 in rapid cure autopolymerzing acrylic resin material branded as ACC material. Conclusion: ACC which is a self cure acrylic resin shows a higher colour variation to the tartarizine food coloration. There were not much of discoloration values shown on the denture base resins as the food colorants are of organic azodyes. PMID:25738078

  12. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylamide-acrylic acid resins. 176.110 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  13. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  14. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  15. 21 CFR 176.110 - Acrylamide-acrylic acid resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylamide-acrylic acid resins. 176.110 Section... Substances for Use Only as Components of Paper and Paperboard § 176.110 Acrylamide-acrylic acid resins. Acrylamide-acrylic acid resins may be safely used as components of articles intended for use in...

  16. Bond strength between acrylic resin and maxillofacial silicone

    PubMed Central

    HADDAD, Marcela Filié; GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; CREPALDI, Nádia de Marchi; PESQUEIRA, Aldiéris Alves; BANNWART, Lisiane Cristina

    2012-01-01

    The development of implant dentistry improved the possibilities of rehabilitation with maxillofacial prosthesis. However, clinically it is difficult to bond the silicone to the attachment system. Objectives This study aimed to evaluate the effect of an adhesive system on the bond strength between acrylic resin and facial silicone. Material and Methods A total of 120 samples were fabricated with auto-polymerized acrylic resin and MDX 4-4210 facial silicone. Both materials were bonded through mechanical retentions and/or application of primers (DC 1205 primer and Sofreliner primer S) and adhesive (Silastic Medical Adhesive Type A) or not (control group). Samples were divided into 12 groups according to the method used to attach the silicone to the acrylic resin. All samples were subjected to a T-peel test in a universal testing machine. Failures were classified as adhesive, cohesive or mixed. The data were evaluated by the analysis of variance (ANOVA) and the Tukey's HSD test (α=.05). Results The highest bond strength values (5.95 N/mm; 3.07 N/mm; 4.75 N/mm) were recorded for the samples that received a Sofreliner primer application. These values were significantly higher when the samples had no scratches and did not receive the application of Silastic Medical Adhesive Type A. Conclusions The most common type of failure was adhesive. The use of Sofreliner primer increased the bond strength between the auto-polymerized acrylic resin and the Silastic MDX 4-4210 facial silicone. PMID:23329247

  17. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    PubMed Central

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed. PMID:26330974

  18. Attachment of Candida albicans to denture base acrylic resin processed by three different methods.

    PubMed

    Young, Beth; Jose, Anto; Cameron, Donald; McCord, Fraser; Murray, Colin; Bagg, Jeremy; Ramage, Gordon

    2009-01-01

    Denture stomatitis is a debilitating disease associated with the presence of adherent Candida albicans. This study compared the attachment capacity of C. albicans to three different acrylic resin materials (self-curing [SC], conventional pressure-packed [CPP], and injection-molded [IM]) to determine whether the physical properties of the materials influenced candidal attachment. No significant differences in attachment between the isolates were observed for each acrylic resin. However, a comparison of the mean of all isolates showed significantly less attachment to SC than to CPP (P < .05). These data indicate that choice of denture acrylic resin material may influence the capacity for developing denture stomatitis. PMID:20095199

  19. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine.

    PubMed

    Harrison, A

    1978-04-01

    Wear tests of various combinations of acrylic resin and porcelain were made using a machine which was designed to test materials under conditions similar to those of masticatory function by simulating the loads, sliding distances, and contact times encountered in the human masticatory cycle. The results showed that the amount of wear of the two materials worn in combination depended on the nature of the surrounding medium and on the surface roughness of the opposing material. Acrylic resin showed good wear resistance provided no third party abrasive or opposing hard, rough surface was present. When a mild abrasive was incorporated in the system, the acrylic resin vs acrylic resin combination wore almost seven times more than porcelain vs porcelain. Clinical experience would suggest that this is a reasonably sound order of wear. PMID:213546

  20. A Comparison of Shear Bond Strength of Ceramic and Resin Denture Teeth on Different Acrylic Resin Bases

    PubMed Central

    Corsalini, Massimo; Venere, Daniela Di; Pettini, Francesco; Stefanachi, Gianluca; Catapano, Santo; Boccaccio, Antonio; Lamberti, Luciano; Pappalettere, Carmine; Carossa, Stefano

    2014-01-01

    The purpose of this study is to compare the shear bond strength of different resin bases and artificial teeth made of ceramic or acrylic resin materials and whether tooth-base interface may be treated with aluminium oxide sandblasting. Experimental measurements were carried on 80 specimens consisting of a cylinder of acrylic resin into which a single tooth is inserted. An ad hoc metallic frame was realized to measure the shear bond strength at the tooth-base interface. A complete factorial plan was designed and a three-way ANalysis Of VAriance (ANOVA) was carried out to investigate if shear bond strength is affected by the following factors: (i) tooth material (ceramic or resin); (ii) base material (self-curing or thermal-curing resin); (iii) presence or absence of aluminium oxide sandblasting treatment at the tooth-base interface. Tukey post hoc test was also conducted to evaluate any statistically significant difference between shear strength values measured for the dif-ferently prepared samples. It was found from ANOVA that the above mentioned factors all affect shear strength. Furthermore, post hoc analysis indi-cated that there are statistically significant differences (p-value=0.000) between measured shear strength values for: (i) teeth made of ceramic material vs. teeth made of acrylic resin material; (ii) bases made of self-curing resin vs. thermal-curing resin; (iii) specimens treated with aluminium oxide sandblasting vs. untreated specimens. Shear strength values measured for acryl-ic resin teeth were on average 70% higher than those measured for ceramic teeth. The shear bond strength was maximized by preparing samples with thermal-curing resin bases and resin teeth submitted to aluminium oxide sandblasting. PMID:25614770

  1. Effect of different palatal vault shapes on the dimensional stability of glass fiber-reinforced heat-polymerized acrylic resin denture base material

    PubMed Central

    Dalkiz, Mehmet; Arslan, Demet; Tuncdemir, Ali Riza; Bilgin, M.Selim; Aykul, Halil

    2012-01-01

    Objective: The aim of this study was to determine the effect of different palatal vault shapes on the dimensional stability of a glass fiber reinforced heat polymerized acrylic resin denture base material. Methods: Three edentulous maxilla with shallow, deep and medium shaped palatal vaults were selected and elastomeric impressions were obtained. A maxillary cast with four reference points (A, B, C, and D) was prepared to serve as control. Point (A) was marked in the anterior midline of the edentulous ridge in the incisive papillary region, points (B) and (C) were marked in the right and left posterior midlines of the edentulous ridge in the second molar regions, and point (D) was marked in the posterior palatal midline near the fovea palatina media (Figure 2). To determine linear dimensional changes, distances between four reference points (A–B, A–C, A–D and B–C) were initially measured with a metal gauge accurate within 0.1 mm under a binocular stereo light microscope and data (mm) were recorded. Results: No significant difference of interfacial distance was found in sagittal and frontal sections measured 24 h after polymerization and after 30 days of water storage in any of experimental groups (P>.05). Significant difference of linear dimension were found in all experimental groups (P<.01) between measurements made 24 h after polymerization of specimens and 30 days after water storage. Conclusion: Palatal vault shape and fiber impregnation into the acrylic resin bases did not affect the magnitude of interfacial gaps between the bases and the stone cast surfaces. PMID:22229010

  2. Acrylic resin injection method for blood vessel investigations.

    PubMed

    Suwa, Fumihiko; Uemura, Mamoru; Takemura, Akimichi; Toda, Isumi; Fang, Yi-Ru; Xu, Yuan Jin; Zhang, Zhi Yuan

    2013-01-01

    The injection of acrylic resin into vessels is an excellent method for macroscopically and microscopically observing their three-dimensional features. Conventional methods can be enhanced by removal of the polymerization inhibitor (hydroquinone) without requiring distillation, a consistent viscosity of polymerized resin, and a constant injection pressure and speed. As microvascular corrosion cast specimens are influenced by viscosity, pressure, and speed changes, injection into different specimens yields varying results. We devised a method to reduce those problems. Sodium hydroxide was used to remove hydroquinone from commercial methylmethacrylate. The solid polymer and the liquid monomer were mixed using a 1 : 9 ratio (low-viscosity acrylic resin, 9.07 ± 0.52 mPa•s) or a 3:7 ratio (high-viscosity resin, 1036.33 ± 144.02 mPa•s). To polymerize the acrylic resin for injection, a polymerization promoter (1.0% benzoyl peroxide) was mixed with a polymerization initiator (0.5%, N, N-dimethylaniline). The acrylic resins were injected using a precise syringe pump, with a 5-mL/min injection speed and 11.17 ± 1.60 mPa injection pressure (low-viscosity resin) and a 1-mL/min injection speed and 58.50 ± 5.75 mPa injection pressure (high-viscosity resin). Using the aforementioned conditions, scanning electron microscopy indicated that sufficient resin could be injected into the capillaries of the microvascular corrosion cast specimens. PMID:24107720

  3. In Vitro Antifungal Evaluation of Seven Different Disinfectants on Acrylic Resins

    PubMed Central

    Yildirim-Bicer, A. Z.; Peker, I.; Akca, G.; Celik, I.

    2014-01-01

    Objective. The aim of this study was to evaluate alternative methods for the disinfection of denture-based materials. Material and Methods. Two different denture-based materials were included in the study. Before microbial test, the surface roughness of the acrylic resins was evaluated. Then, the specimens were divided into 8 experimental groups (n = 10), according to microorganism considered and disinfection methods used. The specimens were contaminated in vitro by standardized suspensions of Candida albicans ATCC#90028 and Candida albicans oral isolate. The following test agents were tested: sodium hypochlorite (NaOCl 1%), microwave (MW) energy, ultraviolet (UV) light, mouthwash containing propolis (MCP), Corega Tabs, 50% and 100% white vinegar. After the disinfection procedure, the number of remaining microbial cells was evaluated in CFU/mL. Kruskal-Wallis, ANOVA, and Dunn's test were used for multiple comparisons. Mann Whitney U test was used to compare the surface roughness. Results. Statistically significant difference (P < 0.05) was found between autopolymerised and heat-cured acrylic resins. The autopolymerised acrylic resin surfaces were rougher than surfaces of heat-cured acrylic resin. The most effective disinfection method was 100% white vinegar for tested microorganisms and both acrylic resins. Conclusion. This study showed that white vinegar 100% was the most effective method for tested microorganisms. This agent is cost-effective and easy to access and thus may be appropriate for household use. PMID:24995305

  4. [New acrylic resins with very low residual monomer].

    PubMed

    Ohe, Y; Kadoma, Y; Imai, Y

    1989-07-01

    New experimental acrylic resins were prepared by polymerization of MMA in the presence of vinylidene fluoride/hexafluoropropylene copolymer. The amount of residual monomer in the resins prepared by visible light curing, cold curing, and heat curing, at various polymer/monomer ratios, was measured and compared with the usual MMA/PMMA resin. In the visible light cured resins containing 60 or 70 wt% of the fluoropolymer, the amount of residual monomer was less than 0.1%. In the cold cured resins, the amount of residual monomer was very low: 0.2% and 0.7% for the resins containing 70 and 60 wt% of the polymer, respectively. These values were comparable to the usual heat cured MMA/PMMA resins. In the heat cured resins, the amount of residual monomer was the lowest; less than 0.1%, even in the resin consisting of 50 wt% polymer. Thus, we prepared new acrylic resins with much less residual monomer than the usual MMA/PMMA resins. PMID:2491165

  5. Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization.

    PubMed

    Jiang, Lijia; Xiong, Wei; Zhou, Yushen; Liu, Ying; Huang, Xi; Li, Dawei; Baldacchini, Tommaso; Jiang, Lan; Lu, Yongfeng

    2016-06-13

    Microfabrication by two-photon polymerization is investigated using resins based on thiol-ene chemistry. In particular, resins containing different amounts of a tetrafunctional acrylic monomer and a tetrafunctional thiol molecule are used to create complex microstructures. We observe the enhancement of several characteristics of two-photon polymerization when using thiol-acrylic resins. Specifically, microfabrication is carried out using higher writing velocities and it produces stronger polymeric microstructures. Furthermore, the amount of shrinkage typically observed in the production of three-dimensional microstructures is reduced also. By means of microspectrometry, we confirm that the thiol-acrylate mixture in TPP resins promote monomer conversion inducing a higher degree of cross-linked network formation. PMID:27410383

  6. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    PubMed Central

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  7. Effects of denture teeth on the dimensional accuracy of acrylic resin denture bases.

    PubMed

    Baemmert, R J; Lang, B R; Barco, M T; Billy, E J

    1990-01-01

    The Michigan Computer-Graphics Coordinate Measurement System was used to determine the effects of artificial denture teeth on the accuracy of acrylic resin denture bases. Two poly(methyl methacrylate) acrylic resins and two processing techniques were tested. Groups processed with denture teeth reproduced more accurate points than groups processed without denture teeth. Groups processed with a conventional heat-polymerized acrylic resin reproduced more accurate points than groups polymerized with an injection pressing type of acrylic resin. PMID:2083021

  8. Surface integrity of provisional resin materials

    NASA Astrophysics Data System (ADS)

    Abouelatta, O. B.; El-Bediwi, A.; Sakrana, A.; Jiang, X. Q.; Blunt, L.

    2006-03-01

    Provisional resin materials are widely used in prosthetic dentistry and play an important role in the success of restorative treatment. Therefore, these materials must meet the requirements of preserving surface integrity during the treatment process. This study was done to evaluate surface roughness and microhardness of two provisional resin materials after 37 °C water storage. Two rectangular samples 21 mm × 11 mm × 3 mm, one bis-acrylic (bis-acrylic-Protemp II) and one polyethyl methacrylate (Trim®-PEMA) were fabricated as examples of provisional materials (n = 5 per material). The specimens were stored in 37 °C deionized distilled water for 24 h, 1, 2 and 3 weeks. The control specimens were not stored in water. The surface roughness of the tested materials (n = 10) was measured using a profilometer. Microhardness tests were conducted using a Vickers microscope mounted indenter system (n = 10). At 24 h, the surface roughness was recorded with bis-acrylic-Protemp II as higher than methacrylate materials. No significant differences of microhardness between Trim®-PEMA and bis-acrylic-Protemp II were recognized at 1, 2 and 3 weeks. The microhardness values increased with the increase of surface roughness and vice versa in both Trim®-PEMA and bis-acrylic-Protemp II. Both surface roughness and microhardness are affected by water storage. Bis-acrylic-Protemp II revealed better results in hardness than methacrylate resins, whereas Trim®-PEMA has a better surface roughness.

  9. Influence of Surface Modifications of Acrylic Resin Teeth on Shear Bond Strength with Denture Base Resin-An Invitro Study

    PubMed Central

    Krishnan, Madhusudan; Krishnan, Chitra Shankar; Azhagarasan, N.S.; Sampathkumar, Jayakrishnakumar; Ramasubramanian, Hariharan

    2015-01-01

    Background Debonding of artificial teeth from the denture base is an important issue for edentulous patients rehabilitated with conventional or implant supported complete dentures. Aim The purpose of this study was to evaluate shear bond strength between denture base resin and acrylic resin denture teeth subjected to three different surface modifications on the ridge lap area as compared to unmodified denture teeth. Materials and Methods Forty acrylic resin central incisor denture teeth were selected and randomly divided into four test groups. The teeth in each group were subjected to one of the three different surface modifications, namely, chemical treatment, sandblasting and placement of retentive grooves on the ridge lap area respectively, prior to packing of the denture base resin. The group with unmodified teeth served as control. Forty acrylic resin test blocks thus obtained were tested for shear bond strength between acrylic resin teeth and denture base resin in Universal Testing Machine. Data obtained was statistically analysed using one-way ANOVA and Student- Newman- Keul’s test (p< 0.05). Results Analysis of shear bond strength revealed that retentive grooves on the ridge lap area showed highest bond strength values followed by sandblasting and both were statistically significant compared to the control and chemically treated groups. Unmodified surface of the resin teeth showed the least bond strength. Conclusion Within the limitations of this invitro study the placement of retentive grooves or sandblasting of the ridge lap area showed highly significant improvement in shear bond strength compared to the unmodified surface. Chemical treatment did not result in any significant improvement in the shear bond strength compared to the unmodified surface. PMID:26501005

  10. The effect of various frequencies of ultrasonic cleaner in reducing residual monomer in acrylic resin.

    PubMed

    Charasseangpaisarn, Taksid; Wiwatwarrapan, Chairat

    2015-12-01

    Monomer remaining in denture base acrylic can be a major problem because it may cause adverse effects on oral tissue and on the properties of the material. The purpose of this study was to compare the effect of various ultrasonic cleaner frequencies on the amount of residual monomer in acrylic resin after curing. Forty-two specimens each of Meliodent heat-polymerized acrylic resin (M) and Unifast Trad Ivory auto-polymerized acrylic resin (U) were prepared according to their manufacturer's instructions and randomly divided into seven groups: Negative control (NC); Positive control (PC); and five ultrasonic treatment groups: 28 kHz (F1), 40 kHz (F2), 60 kHz (F3) (M=10 min, U=5 min), and 28 kHz followed by 60 kHz (F4: M=5 min per frequency, U=2.5 min per frequency, and F5: M=10 min followed by 5 min per frequency, U=5 min followed by 2.5 min per frequency). Residual monomer was determined by HPLC following ISO 20795-1. The data were analyzed by One-way ANOVA and Tukey HSD. There was significantly less residual monomer in the auto-polymerized acrylic resin in all ultrasonic treatment groups and the PC group than that of the NC group (p<0.05). However, the amount of residual monomer in group F3 was significantly higher than that of the F1, F4, and PC groups (p<0.05). In contrast, ultrasonic treatment did not reduce the amount of residual monomer in heat-polymerized acrylic resin (p>0.05). The amount of residual monomer in heat-polymerized acrylic resin was significantly lower than that of auto-polymerized acrylic resin. In conclusion, ultrasonic treatment at low frequencies is recommended to reduce the residual monomer in auto-polymerized acrylic resin and this method is more practical in a clinical situation than previously recommended methods because of reduced chairside time. PMID:26190059

  11. Industrially relevant epoxy-acrylate hybrid resin photopolymerizations

    NASA Astrophysics Data System (ADS)

    Ajiboye, Gbenga I.

    Photopolymerization of epoxy-acrylate hybrid resins takes advantages of inherent properties present in the free-radical and cationic reactions to reduce oxygen inhibition problems that plague free-radical reactions. Similarly, the combined reaction mechanisms reduce moisture sensitivity of the cationic reactions. Despite the advantages of epoxy-acrylate hybrid resins, problems persist that need to be addressed. For example, low conversion and polymerization rate of the epoxides are a problem, because the fast acrylate conversion prevents the epoxide from reaching high conversion. Controlling phase separation is challenging, since two moieties with different properties are reacting. The physical properties of the polymer will be impacted by the availability of different moieties. High shrinkage stress results from the acrylate moiety, causing buckling and cracking in film and coating applications. The overall goal of this study is to use the fundamental knowledge of epoxy-acrylate hybrid resins to formulate industrially viable polymers. In order to achieve this goal, the study focuses on the following objectives: (I) determine the apparent activation energy of the hybrid monomer METHB, (II) increase epoxide conversion and polymerization rate of hybrid formulations, and (III) control physical properties in epoxy-acrylate hybrid resins. In order to increase the epoxide conversion and rate of polymerization, the sensitivity of epoxides to alcohol is used to facilitate the activated monomer (AM) mechanism and induce a covalent bond between the epoxide and acrylate polymers through the hydroxyl group. It is hypothesized that if the AM mechanism is facilitated, epoxide conversion will increase. As a result, the resins can be tailored to control phase separation and physical properties, and shrinkage stress can be reduced. In pursuit of these objectives, the hybrid monomer METHB was polymerized at temperatures ranging from 30°C to 70°C to obtain apparent activation

  12. Cytocompatible antifungal acrylic resin containing silver nanoparticles for dentures

    PubMed Central

    Acosta-Torres, Laura Susana; Mendieta, Irasema; Nuñez-Anita, Rosa Elvira; Cajero-Juárez, Marcos; Castaño, Víctor M

    2012-01-01

    Background Inhibition of Candida albicans on denture resins could play a significant role in preventing the development of denture stomatitis. The safety of a new dental material with antifungal properties was analyzed in this work. Methods Poly(methyl methacrylate) [PMMA] discs and PMMA-silver nanoparticle discs were formulated, with the commercial acrylic resin, Nature-CrylTM, used as a control. Silver nanoparticles were synthesized and characterized by ultraviolet-visible spectroscopy, dispersive Raman spectroscopy, and transmission electron microscopy. The antifungal effect was assessed using a luminescent microbial cell viability assay. Biocompatibility tests were carried out using NIH-3T3 mouse embryonic fibroblasts and a Jurkat human lymphocyte cell line. Cells were cultured for 24 or 72 hours in the presence or absence of the polymer formulations and analyzed using three different tests, ie, cellular viability by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and cell proliferation by enzyme-linked immunosorbent assay BrdU, and genomic DNA damage (Comet assay). Finally, the samples were evaluated mechanically, and the polymer-bearing silver nanoparticles were analyzed microscopically to evaluate dispersion of the nanoparticles. Results The results show that PMMA-silver nanoparticle discs significantly reduce adherence of C. albicans and do not affect metabolism or proliferation. They also appear not to cause genotoxic damage to cells. Conclusion The present work has developed a new biocompatible antifungal PMMA denture base material. PMID:22969297

  13. [MORPHOLOGICAL FEATURES OF RAT MUCOUS MEMBRANE OF THE TONGUE EARLY AFFECTED BY ACRYLIC RESIN MONOMER].

    PubMed

    Davydenko, V; Nidzelskiy, M; Starchenko, I; Davydenko, A; Kuznetsov, V

    2016-03-01

    Base materials, made on the basis of various derivatives of acrylic and methacrylic acids, have been widely used in prosthetic dentistry. Free monomer, affecting the tissues of prosthetic bed and the whole body, is always found in dentures. Therefore, study of the effect of acrylic resins' monomer on mucous membrane of the tongue is crucial. Rat tongue is very similar to human tongue, and this fact has become the basis for selecting these animals to be involved into the experiment. The paper presents the findings related to the effect of "Ftoraks" base acrylic resin monomer on the state of rat mucous membrane of the tongue and its regeneration. The microscopy has found that the greatest changes in the mucous membrane of the tongue occur on day 3 and 7 day after applying the monomer and are of erosive and inflammatory nature. Regeneration of tongue epithelium slows down. PMID:27119844

  14. [Hydrogen peroxide, chloramine T and chlorhexidrine in the disinfection of acrylic resin].

    PubMed

    Czerwińska, W; Kedzia, A; Kałowski, M

    1978-01-01

    The effectiveness of 3% h drogen peroxide, 5% chloramine T and 0,5% chlorhexidine gluconate solutions in disinfection of acrylic resine plates massively infected with oral flora was analysed. The acrylic resine plates used for investigations, were infected in vitro with mixed salivary flora characterized by small numbers of yeast-like fungi (1st group), or great number of these microorganisms (2nd group). Infected plates were exposed to solutions of analysed disinfectants during various time periods. After rinsing or inactivation of disinfectant residues, acrylic plates were put into bacteriological medium and incubated during 7 days period in 37 degrees C. The results of this study indicated the effectiveness of acrylic plates disinfection to be dependent on used disinfectant, time of exposition, and microorganisms present on the surface of acrylic resine. The solutions of disinfectants were less active in the cases of plates infected with material containing great numbers of yeast-like microorganisms. Among analysed disinfectants 0,5% solution of chlorhexidine was characterized by most effective and rapid activity, whereas 3% solution of hydrogen peroxide was found to be the least effective. PMID:364448

  15. The bond between acrylic resin denture teeth and the denture base: recommendations for best practice.

    PubMed

    Radford, D R; Juszczyk, A S; Clark, R K F

    2014-02-01

    Failure of the bond between denture teeth and base acrylic resin has been shown to be a cause of denture failure leading to inconvenience and costly repair. The optimal combination of acrylic resin denture tooth, denture base material, laboratory protocol and processing method has not yet been established. Extensive research enables the following recommendations for best practice to be made. Adopt practices that maximise the strength of the bond: select appropriate denture teeth; select base acrylic resin from the same manufacturer as the denture teeth; remove the glaze from ridgelaps of the denture teeth; apply monomer to the ridgelaps of the denture teeth before packing the base acrylic resin dough; use the manufacturers' recommended liquid/powder ratio; follow the manufacturers' recommended curing cycle; allow the flask to cool slowly and rest before deflasking. Adopt practices that avoid factors detrimental to bond strength: remove all traces of wax from the ridge laps of the denture teeth; remove all traces of mould seal from the ridgelaps of the denture teeth. It is evident that a number of factors are involved which may assist or prevent formation of an adequate bond, suggesting that attention to detail by the dental technician may be the most critical factor. PMID:24557385

  16. Do flexible acrylic resin lingual flanges improve retention of mandibular complete dentures?

    PubMed Central

    Ahmed Elmorsy, Ayman Elmorsy; Ahmed Ibraheem, Eman Mostafa; Ela, Alaa Aboul; Fahmy, Ahmed; Nassani, Mohammad Zakaria

    2015-01-01

    Objectives: The aim of this study was to compare the retention of conventional mandibular complete dentures with that of mandibular complete dentures having lingual flanges constructed with flexible acrylic resin “Versacryl.” Materials and Methods: The study sample comprised 10 completely edentulous patients. Each patient received one maxillary complete denture and two mandibular complete dentures. One mandibular denture was made of conventional heat-cured acrylic resin and the other had its lingual flanges made of flexible acrylic resin Versacryl. Digital force-meter was used to measure retention of mandibular dentures at delivery and at 2 weeks and 45 days following denture insertion. Results: The statistical analysis showed that at baseline and follow-up appointments, retention of mandibular complete dentures with flexible lingual flanges was significantly greater than retention of conventional mandibular dentures (P < 0.05). In both types of mandibular dentures, retention of dentures increased significantly over the follow-up period (P < 0.05). Conclusions: The use of flexible acrylic resin lingual flanges in the construction of mandibular complete dentures improved denture retention. PMID:26539387

  17. Effect of Nanoclay on Thermal Conductivity and Flexural Strength of Polymethyl Methacrylate Acrylic Resin

    PubMed Central

    Ghaffari, Tahereh; Barzegar, Ali; Hamedi Rad, Fahimeh; Moslehifard, Elnaz

    2016-01-01

    Statement of the Problem The mechanical and thermal properties of polymethyl methacrylate (PMMA) acrylic resin should be improved to counterweigh its structural deficiencies. Purpose The aim of this study was to compare the flexural strength and thermal conductivity of conventional acrylic resin and acrylic resin loaded with nanoclay. Materials and Method The methacrylate monomer containing the 0.5, 1 and 2 wt% of nanoclay was placed in an ultrasonic probe and mixed with the PMMA powder. Scanning electron microscopy was used to verify homogeneous distribution of particles. Twenty-four 20×20×200-mm cubic samples were prepared for flexural strength test; 18 samples containing nanoclay and 6 samples for the control group. Another 24 cylindrical samples of 38×25 mm were prepared for thermal conductivity test. One-way ANOVA was used for statistical analysis, followed by multiple-comparison test (Scheffé’s test). Statistical significance was set at p< 0.05. Results Increasing the concentration of nanoclay incorporated into the acrylic resin samples increased thermal conductivity but decreased flexural strength (p< 0.05). Conclusion Based on the results of this study, adding nanoclay particles to PMMA improved its thermal conductivity, while it had a negative effect on the flexural strength. PMID:27284557

  18. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    SciTech Connect

    Tajau, Rida; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd

    2014-02-12

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  19. Development of palm oil-based UV-curable epoxy acrylate and urethane acrylate resins for wood coating application

    NASA Astrophysics Data System (ADS)

    Tajau, Rida; Ibrahim, Mohammad Izzat; Yunus, Nurulhuda Mohd; Mahmood, Mohd Hilmi; Salleh, Mek Zah; Salleh, Nik Ghazali Nik

    2014-02-01

    The trend of using renewable sources such as palm oil as raw material in radiation curing is growing due to the demand from the market to produce a more environmental friendly product. In this study, the radiation curable process was done using epoxy acrylate and urethane acrylate resins which are known as epoxidised palm olein acrylate (EPOLA) and palm oil based urethane acrylate (POBUA), respectively. The purpose of the study was to investigate curing properties and the application of this UV-curable palm oil resins for wood coating. Furthermore, the properties of palm oil based coatings are compared with the petrochemical-based compound such as ebecryl (EB) i.e. EB264 and EB830. From the experiment done, the resins from petrochemical-based compounds resulted higher degree of crosslinking (up to 80%) than the palm oil based compounds (up to 70%), where the different is around 10-15%. The hardness property from this two type coatings can reached until 50% at the lower percentage of the oligomer. However, the coatings from petrochemical-based have a high scratch resistance as it can withstand at least up to 3.0 Newtons (N) compared to the palm oil-based compounds which are difficult to withstand the load up to 1.0 N. Finally, the test on the rubber wood substrate showed that the coatings containing benzophenone photoinitiator give higher adhesion property and their also showed a higher glosiness property on the glass substrate compared to the coatings containing irgacure-819 photoinitiator. This study showed that the palm oil coatings can be a suitable for the replacement of petrochemicals compound for wood coating. The palm oil coatings can be more competitive in the market if the problems of using high percentage palm oil oligomer can be overcome as the palm oil price is cheap enough.

  20. Chromatic stability of acrylic resins of artificial eyes submitted to accelerated aging and polishing

    PubMed Central

    GOIATO, Marcelo Coelho; dos SANTOS, Daniela Micheline; SOUZA, Josiene Firmino; MORENO, Amália; PESQUEIRA, Aldiéris Alves

    2010-01-01

    Esthetics and durability of materials used to fabricate artificial eyes has been an important eissue since artificial eyes are essential to restore esthetics and function, protect the remaining tissues and help with patients' psychological therapy. However, these materials are submitted to degrading effects of environmental agents on the physical properties of the acrylic resin. Objective This study assessed the color stability of acrylic resins used to fabricate sclera in three basic shades (N1, N2 and N3) when subjected to accelerated aging, mechanical and chemical polishing. Material and methods Specimens of each resin were fabricated and submitted to mechanical and chemical polishing. Chromatic analysis was performed before and after accelerated aging through ultraviolet reflection spectrophotometry. Results All specimens revealed color alteration following polishing and accelerated aging. The resins presented statistically significant chromatic alteration (p<0.01) between the periods of 252 and 1008 h. Conclusions Both polishing methods presented no significant difference between the values of color derivatives of resins. PMID:21308298

  1. Radiation curing of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Pietrzak, M.; Janowska, G.

    Polyester resin containing acrylic acid or its salts was cured with γ 60Co radiation. The course of curing was examined, the gel content and polymerization shrinkage were measured and also thermographic and IR absorption analyses were carried out. It was found that manganese, iron and copper acrylates inhibited the curing of resin while the remaining additives showed a slightly stimulating action. All the additives decreased the polymerization shrinkage by a factor of 2-3 and iron acrylate by as much as 8 times (up to 1%). They also increased the activation energy of the thermal decomposition of resin, and calcium, barium and copper acrylates increased the thermal stability of resin by 20 K. IR absorption spectra showed that acrylic acid and its salts reacted mainly with the monomeric component of the resin (styrene) whereas iron and copper acrylates first attacked the unsaturated bonds of the oligoester.

  2. The Effect of Al2O3 Addition on the Thermal Diffusivity of Heat Activated Acrylic Resin

    PubMed Central

    Atla, Jyothi; Manne, Prakash; Gopinadh, A.; Sampath, Anche; Muvva, Suresh Babu; Kishore, Krishna; Sandeep, Chiramana; Chittamsetty, Harika

    2013-01-01

    Aim: This study aimed at investigating the effect of adding 5% to 20% by weight aluminium oxide powder (Al2O3) on thermal diffusivity of heat–polymerized acrylic resin. Material and Methods: Twenty five cylindrical test specimens with an embedded thermocouple were used to determine thermal diffusivity over a physiologic temperature range (0 to 70°C). The specimens were divided into five groups (5 specimens/group) which were coded A to E. Group A was the control group (unmodified acrylic resin specimens). The specimens of the remaining four groups were reinforced with 5%, 10%, 15%, and 20% Al2O3 by weight. Results were analysed by using one–way analysis of variance (ANOVA). Results: Test specimens which belonged to Group E showed the highest mean thermal diffusivity value of 10.7mm2/sec, followed by D (9.09mm2/sec), C (8.49mm2/sec), B(8.28mm2/sec) and A(6.48mm2/sec) groups respectively. Thermal diffusivities of the reinforced acrylic resins were found to be significantly higher than that of the unmodified acrylic resin. Thermal diffusivity was found to increase in proportion to the weight percentage of alumina filler. Conclusion: Al2O3 fillers have potential to provide increased thermal diffusivity. Increasing the heat transfer characteristics of the acrylic resin base material could lead to more patient satisfaction. PMID:24086917

  3. Flexural strength of acrylic resin denture bases processed by two different methods.

    PubMed

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of the conventional method (P=0.006). This difference was statistically significant (P=0.006). Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the molding technique. PMID:25346833

  4. Flexural Strength of Acrylic Resin Denture Bases Processed by Two Different Methods

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of the conventional method (P=0.006). This difference was statistically significant (P=0.006). Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the molding technique. PMID:25346833

  5. Influence of ozone and paracetic acid disinfection on adhesion of resilient liners to acrylic resin

    PubMed Central

    2016-01-01

    PURPOSE The aim of this study was to evaluate the effect of paracetic acid (PAA) and ozone disinfection on the tensile bond strength (TBS) of silicone-based resilient liners to acrylic resins. MATERIALS AND METHODS One hundred and twenty dumbbell shaped heat-polymerized acrylic resins were prepared. From the mid segment of the specimens, 3 mm of acrylic were grinded off and separated parts were reattached by resilient liners. The specimens were divided into 2 control (control1, control7) and 4 test groups of PAA and ozone disinfection (PAA1, PAA7, ozone1 and ozone7; n=10). While control groups were immersed in distilled water for 10 min (control1) and 7 days (control7), test groups were subjected to PAA (16 g/L) or ozone rich water (4 mg/L) for 1 cycle (10 min for PAA and 60 min for ozone) per day for 7 days prior to tensile tests. Measurements of the TBS were analyzed using 3-way ANOVA and Tukey's HSD test. RESULTS Adhesive strength of Mollosil decreased significantly by application of ozone disinfection. PAA disinfection had no negative effect on the TBS values of Mollosil and Molloplast B to acrylic resin. Single application of ozone disinfection did not have any negative effect on TBS values of Molloplast B, but prolonged exposure to ozone decreased its adhesive strength. CONCLUSION The adhesion of resilient liners to acrylic was not adversely affected by PAA disinfection. Immersion in ozonated water significantly decreased TBS of Mollosil. Prolonged exposure to ozone negatively affects adhesion of Molloplast B to denture base materials. PMID:27555898

  6. Flexural strength of acrylic resin repairs processed by different methods: water bath, microwave energy and chemical polymerization

    PubMed Central

    ARIOLI FILHO, João Neudenir; BUTIGNON, Luís Eduardo; PEREIRA, Rodrigo de Paula; LUCAS, Matheus Guilherme; MOLLO JUNIOR, Francisco de Assis

    2011-01-01

    Denture fractures are common in daily practice, causing inconvenience to the patient and to the dentists. Denture repairs should have adequate strength, dimensional stability and color match, and should be easily and quickly performed as well as relatively inexpensive. Objective The aim of this study was to evaluate the flexural strength of acrylic resin repairs processed by different methods: warm water-bath, microwave energy, and chemical polymerization. Material and methods Sixty rectangular specimens (31x10x2.5 mm) were made with warm water-bath acrylic resin (Lucitone 550) and grouped (15 specimens per group) according to the resin type used to make repair procedure: 1) specimens of warm water-bath resin (Lucitone 550) without repair (control group); 2) specimens of warm water-bath resin repaired with warm water-bath; 3) specimens of warm water-bath resin repaired with microwave resin (Acron MC); 4) specimens of warm water-bath resin repaired with autopolymerized acrylic resin (Simplex). Flexural strength was measured with the three-point bending in a universal testing machine (MTS 810 Material Test System) with load cell of 100 kgf under constant speed of 5 mm/min. Data were analyzed statistically by Kruskal-Wallis test (p<0.05). Results The control group showed the best result (156.04±1.82 MPa). Significant differences were found among repaired specimens and the results were decreasing as follows: group 3 (43.02±2.25 MPa), group 2 (36.21±1.20 MPa) and group 4 (6.74±0.85 MPa). Conclusion All repaired specimens demonstrated lower flexural strength than the control group. Repairs with autopolymerized acrylic resin showed the lowest flexural strength. PMID:21625742

  7. Water Sorption and Flexural Strength of Thermoplastic and Conventional Heat-Polymerized Acrylic Resins

    PubMed Central

    Hemmati, Mohammad Ali; Vafaee, Fariborz

    2015-01-01

    Objectives: The aim of this study was to assess and compare the water sorption and flexural strength of thermoplastic and conventional acrylic resins. Materials and Methods: Water sorption and flexural strength were compared between a thermoplastic modified polymethyl methacrylate (PMMA) denture base resin (group A) and a heat-polymerized PMMA acrylic resin (group B) as the control group (n=10). A three-point bending test was carried out for flexural strength testing. For water sorption test, 10 disc-shaped samples were prepared. After desiccating, the samples were weighed and immersed in distilled water for seven days. Then, they were weighed again, and desiccated for the second and third times. Differences between the mean values in the two groups were analyzed using Student’s t-test. Results: The mean value of water sorption was 14.74±1.36 μg/mm3 in group A, and 19.11±0.90 μg/mm3 in group B; this difference was statistically significant (P< 0.001). The mean value of flexural strength was 88.21±8.63 MPa in group A and 77.77±9.49 MPa in group B. A significant difference was observed between the two groups (P= 0.019). Conclusion: Flexural strength of group A was significantly higher than that of group B, and its water sorption was significantly lower. Thus, thermoplastic resins can be a suitable alternative to conventional PMMA acrylic resins as denture base materials. PMID:26877737

  8. Dimensional Changes of Acrylic Resin Denture Bases: Conventional Versus Injection-Molding Technique

    PubMed Central

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Objective: Acrylic resin denture bases undergo dimensional changes during polymerization. Injection molding techniques are reported to reduce these changes and thereby improve physical properties of denture bases. The aim of this study was to compare dimensional changes of specimens processed by conventional and injection-molding techniques. Materials and Methods: SR-Ivocap Triplex Hot resin was used for conventional pressure-packed and SR-Ivocap High Impact was used for injection-molding techniques. After processing, all the specimens were stored in distilled water at room temperature until measured. For dimensional accuracy evaluation, measurements were recorded at 24-hour, 48-hour and 12-day intervals using a digital caliper with an accuracy of 0.01 mm. Statistical analysis was carried out by SPSS (SPSS Inc., Chicago, IL, USA) using t-test and repeated-measures ANOVA. Statistical significance was defined at P<0.05. Results: After each water storage period, the acrylic specimens produced by injection exhibited less dimensional changes compared to those produced by the conventional technique. Curing shrinkage was compensated by water sorption with an increase in water storage time decreasing dimensional changes. Conclusion: Within the limitations of this study, dimensional changes of acrylic resin specimens were influenced by the molding technique used and SR-Ivocap injection procedure exhibited higher dimensional accuracy compared to conventional molding. PMID:25584050

  9. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  10. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  11. Allergic effects of the residual monomer used in denture base acrylic resins

    PubMed Central

    Rashid, Haroon; Sheikh, Zeeshan; Vohra, Fahim

    2015-01-01

    Denture base resins are extensively used in dentistry for a variety of purposes. These materials can be classified as chemical, heat, light, and microwave polymerization materials depending upon the factor which starts the polymerization reaction. Their applications include use during denture base construction, relining existing dentures, and for fabrication of orthodontic removable appliances. There have been increased concerns regarding the safe clinical application of these materials as their biodegradation in the oral environment leads to harmful effects. Along with local side effects, the materials have certain occupational hazards, and numerous studies can be found in the literature mentioning those. The purpose of this article is to outline the cytotoxic consequences of denture base acrylic resins and clinical recommendations for their use. PMID:26929705

  12. Toxicity analysis of ocular prosthesis acrylic resin with or without pigment incorporation in human conjunctival cell line.

    PubMed

    da Silva, Emily Vivianne Freitas; Goiato, Marcelo Coelho; Bonatto, Liliane da Rocha; de Medeiros, Rodrigo Antonio; Santos, Daniela Micheline Dos; Rangel, Elidiane Cipriano; Oliveira, Sandra Helena Penha de

    2016-10-01

    The aim of this study was to evaluate the influence of pigment incorporation on the cytotoxicity of ocular prosthesis N1 color acrylic resin. Nine samples were manufactured by heat-polymerization in water bath and divided into 3 groups: acrylic resin without pigment incorporation (group R), acrylic resin with pigment incorporation (group RP), and acrylic pigment (group P). Eluates formed after 72h of sample immersion in medium were incubated with conjunctival cell line (Chang conjunctival cells) for 72h. The negative control group consisted in medium without samples (group C). The cytotoxic effect from the eluates was evaluated using MTT assay (cell proliferation), ELISA assay (quantification of IL1β, IL6, TNF α and CCL3/MIP1α) and RT-PCR assay (mRNA expression of COL IV, TGF β and MMP9). Data were submitted to ANOVA with Bonferroni post-tests (p<0.05). All groups were considered non-cytotoxic based on cell proliferation. However, resin with pigment incorporation showed significant IL6 quantity increase. Resin without pigment incorporation exhibited higher mRNA expression of COL IV, MMP9 and TGF β, however it was also observed for the negative control group. The materials exhibited divergent biological behavior. Despite the pigment incorporation that resulted in an increase of IL6, no cytotoxicity was observed based on cell proliferation. PMID:27521695

  13. Antifungal Effect of Zataria multiflora Essence on Experimentally Contaminated Acryl Resin Plates With Candida albicans

    PubMed Central

    Jafari, Abbas Ali; Falah Tafti, Abbas; Hoseiny, Seyed Mehdi; Kazemi, Abdolhossein

    2015-01-01

    Background: Adherence and colonization of Candida species particularly C. albicans on denture surfaces, forms a microbial biofilm, which may result denture stomatitis in complete denture users. Objectives: The purpose of the present study was to evaluate the antifungal effect Zataria multiflora essence in removing of Candida albicans biofilms on experimentally contaminated resin acryl plates. Materials and Methods: In the present experimental study, 160 resin acrylic plates (10 × 10 × 1 mm) were contaminated by immersion in 1 × 103 C. albicans suspension for 24 hours to prepare experimental Candida biofilms. The total number of Candida cells, which adhered to 20 randomly selected acryl resin plates was determined as the Candia load before cleaning. The remaining 140 plates were divided to seven groups of 20 and immersed in five concentrations of Zataria multiflora essence from 50 to 3.125 mg/mL as test, 100000 IU nystatin as the positive and sterile physiologic serum as the negative control. The remaining Candida cells on each acryl plate were also enumerated and data were analyzed using the SPSS 16 software with Kruskal-Wallis and Wilcoxon tests. Results: Zataria essence at concentrations of 50 and 25 mg/mL removed 100% of attached Candida cells similar to nystatine (MFC), while weaker Zataria essence solutions cleaned 88%, 60.5% and 44.7% of attached Candida cells. Kruskal-wallis test showed a statistically significant difference between all test groups (P = 0.0001). In this study 12.5 mg/mL concentration of Zataria multiflora was considered as the minimum inhibitory concentration (MIC90). Conclusions: Zataria essence, at concentrations of 50 and 25 mg/mL, effectively removed Candida cells that had adhered to the denture surface, similar to the level of removal observed for 100000 IU nystatin. PMID:25763273

  14. Effect of Polymerization Cycles on Gloss, Roughness, Hardness and Impact Strength of Acrylic Resins.

    PubMed

    Consani, Rafael Leonardo Xediek; Folli, Bianca L; Nogueira, Moises C F; Correr, Americo Bortolazzo; Mesquita, Marcelo F

    2016-04-01

    The aim of this study was to evaluate the conventional and boiled polymerization cycles on gloss, roughness, hardness and impact strength of acrylic resins. Samples were made for each Classico and QC-20 materials (n=10) in dental stone molds obtained from rectangular metallic matrices embedded in metallic flasks. The powder-liquid ratio and manipulation of the acrylic resins' were accomplished according to manufacturers' instructions and the resins were conventionally packed in metallic flasks. After polymerization by (1) conventional: 74 °C for 9 h (Classico) and (2) boiled: 20 min (QC-20) cycles, the samples were deflasked after cooling at room temperature and conventionally finished and polished. The properties were evaluated after storage in water at 37 °C for 24 h. Gloss was verified with Multi Gloss 268 meter (Konica Minolta), surface roughness was measured with Surfcorder SE 1700 rugosimeter (Kosaka), Knoop hardness number was obtained with HMV-200 microdurometer, and impact strength was measured in an Otto Wolpert-Werke device by Charpy system (40 kpcm). Data were subjected to Student's t-test (at α=0.05). The results were: Gloss: 67.7 and 62.2 for Classico and QC-20 resins, respectively; Surface roughness: 0.874 and 1.469 Ra-µm for Classico and QC-20, respectively; Knoop hardness: 27.4 and 26.9 for Classico and QC-20, respectively; and Impact strength: 37.6 and 33.6 kgf/cm2 for Classico and QC-20, respectively. No statistically significant difference (p>0.05)were found between the resins for the evaluated properties. In conclusion, conventional and boiled polymerization cycles had similar effects on gloss, roughness, hardness and impact strength of both Classico and QC-20 resins. PMID:27058380

  15. An ORMOSIL-Containing Orthodontic Acrylic Resin with Concomitant Improvements in Antimicrobial and Fracture Toughness Properties

    PubMed Central

    Rueggeberg, Frederick A.; Niu, Li-na; Mettenberg, Donald; Yiu, Cynthia K. Y.; Blizzard, John D.; Wu, Christine D.; Mao, Jing; Drisko, Connie L.; Pashley, David H.; Tay, Franklin R.

    2012-01-01

    Global increase in patients seeking orthodontic treatment creates a demand for the use of acrylic resins in removable appliances and retainers. Orthodontic removable appliance wearers have a higher risk of oral infections that are caused by the formation of bacterial and fungal biofilms on the appliance surface. Here, we present the synthetic route for an antibacterial and antifungal organically-modified silicate (ORMOSIL) that has multiple methacryloloxy functionalities attached to a siloxane backbone (quaternary ammonium methacryloxy silicate, or QAMS). By dissolving the water-insoluble, rubbery ORMOSIL in methyl methacrylate, QAMS may be copolymerized with polymethyl methacrylate, and covalently incorporated in the pressure-processed acrylic resin. The latter demonstrated a predominantly contact-killing effect on Streptococcus mutans ATCC 36558 and Actinomyces naselundii ATCC 12104 biofilms, while inhibiting adhesion of Candida albicans ATCC 90028 on the acrylic surface. Apart from its favorable antimicrobial activities, QAMS-containing acrylic resins exhibited decreased water wettability and improved toughness, without adversely affecting the flexural strength and modulus, water sorption and solubility, when compared with QAMS-free acrylic resin. The covalently bound, antimicrobial orthodontic acrylic resin with improved toughness represents advancement over other experimental antimicrobial acrylic resin formulations, in its potential to simultaneously prevent oral infections during appliance wear, and improve the fracture resistance of those appliances. PMID:22870322

  16. Wear of feldspathic ceramic, nano-filled composite resin and acrylic resin artificial teeth when opposed to different antagonists.

    PubMed

    Ghazal, Muhamad; Hedderich, Jürgen; Kern, Matthias

    2008-12-01

    The aim of this study was to evaluate the wear of denture teeth and their antagonists produced by two-body and three-body wear tests. Three types of denture teeth, namely feldspathic ceramic (FC), nano-filled composite resin (NCR), and experimental acrylic resin teeth (AR), were tested. For each type two groups of eight upper premolars each were prepared. The first group was tested against cusps from the same material and the second group was tested against human enamel cusps. Each group was loaded with a total of 200,000 chewing cycles (two-body wear 100,000 cycles and three-body wear 100,000 cycles). Wear was analyzed by measuring the maximum depth and volume loss of the denture teeth using a laser scanner and by measuring the vertical loss of the antagonists using an optical macroscope. Statistically, there was no significant difference between the following combinations: FC-FC and NCR-NCR regarding the vertical and volume loss; and FC-enamel and NCR-enamel regarding the total vertical substance loss. The combinations AR-AR and AR-enamel showed higher wear values than the other combinations. For complete dentures, composite resin and ceramic teeth showed similar vertical and volume loss, whereas composite resin teeth seemed to be more suitable for partial dentures opposing natural teeth in terms of wear of teeth and antagonists. PMID:19049531

  17. COLOR STABILITY OF DENTURE TEETH AND ACRYLIC BASE RESIN SUBJECTED DAILY TO VARIOUS CONSUMER CLEANSERS

    PubMed Central

    Moon, Audrey; Powers, John M.; Kiat-amnuay, Sudarat

    2014-01-01

    Objective This study evaluated color stability of acrylic denture teeth and base resins after 48 weeks of commercial denture cleanser simulation. Materials and Methods Two brands of denture teeth (Trubyte Portrait IPN, TP; SR Vivodent DCL, SR) in shades A1, B1, and C1 and three acrylic base resins (Lucitone, LU; Paragon, PA; Valplast, VA) prepared to manufacturer’s specifications, were exposed 10 hours daily to four cleansers (Clorox Bleach, CB; Polident 3-minute, PO3; Efferdent, EF; and Kleenite, KL) and distilled water (DW) control, approximating consumer overnight use. Color measurements used the CIE L*a*b* color space (0, 4, 12, 24, 36, and 48 weeks.) Color differences (ΔE*) at 48-weeks were subjected to 4-way analysis-of-variance (ANOVA). Mean values were compared with Fisher’s PLSD intervals (0.05 significance level). Results Mean color differences (ΔE*) demonstrated color changes in each material. ANOVA indicated color changes in teeth were significantly affected by both cleansers and teeth brand (p<0.05), but not shade. Color changes in base resins were significantly affected by cleansers (p<0.05), but not brand alone. Overall, KL produced the least color change while CB and PO3 produced the most for all materials. Conclusions After 48 weeks of daily simulation, TP teeth were more color-stable than SR in all cleansers except EF (p<0.0001). Base resin VA was less color-stable than LU and PA. Cleanser KL resulted in the lowest color changes. Clinical Significance All tested materials yield clinically acceptable color changes (ΔE*<3.5); all cleansing methods tested can be recommended, though Kleenite demonstrated the least change after 48-weeks. PMID:24980803

  18. Silver hollow optical fibers with acrylic silicone resin coating as buffer layer for sturdy structure

    NASA Astrophysics Data System (ADS)

    Iwai, Katsumasa; Takaku, Hiroyuki; Miyagi, Mitsunobu; Shi, Yi-Wei; Zhu, Xiao-Song; Matsuura, Yuji

    2016-03-01

    For sturdy silver hollow optical fibers, acrylic silicone resin is newly used as a buffer layer between an inner silver layer and a silica capillary. This acrylic silicone resin film prevents the glass surface from chemical and mechanical micro damages during silver plating process, which deteriorate mechanical strength of the hollow fibers. In addition, it keeps high adhesion of the silver layer with the glass surface. We discuss improvement of mechanical strength of the hollow glass fibers without deterioration of optical properties.

  19. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... polymer units derived from methyl acrylate. (b) The finished food-contact article, when extracted with the... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  20. Applications of Blue Light-curing Acrylic Resin to Forensic Sample Preparation and Microtomy.

    PubMed

    Groves, Ethan; Palenik, Christopher S

    2016-03-01

    This study discusses the results of an evaluation of a one-part blue light-curing acrylic resin for embedding trace evidence prior to the preparation of thin sections with a microtome. Through a comparison to several epoxy resins, the physical properties relevant to both trace evidence examination and analytical microscopy in general, including as viscosity, clarity, color, hardness, and cure speed, were explored. Finally, thin sections from paint samples embedded in this acrylic resin were evaluated to determine if, through smearing or impregnation, the resin contributed to the infrared spectra. The results of this study show that blue light-curing acrylic resins provide the desired properties of an embedding medium, generate high-quality thin sections, and can significantly simplify the preparation of paint chips, fibers and a multitude of other types of microscopic samples in the forensic trace evidence laboratory. PMID:27404623

  1. IN VITRO ANTIFUNGAL ACTION OF DIFFERENT SUBSTANCES OVER MICROWAVED-CURED ACRYLIC RESINS

    PubMed Central

    Montagner, Henrique; Montagner, Francisco; Braun, Katia Olmedo; Peres, Paulo Edelvar Correa; Gomes, Brenda Paula Figueiredo de Almeida

    2009-01-01

    Objective: The presence of Candida albicans on the surfaces of denture-base acrylic resins is strongly related to the development of oral stomatitis. This study evaluated the antifungal action of different agents over microwave-cured acrylic resin without polishing specimens previously contaminated with Candida albicans. Material and Methods: Sixty specimens were immersed in BHI broth previously inoculated with the yeast and stored for 3 h at 37°C. They were divided into 5 experimental groups (n=10): G1: 2% chlorhexidine solution (10 min); G2: 0.5% sodium hypochlorite (10 min); G3: modified sodium hypochlorite (10 min); G4: effervescent agent (5 min); G5: hydrogen peroxide 10v (30 min). The specimens of the control group 1 (C1) were not disinfected. Ten additional specimens of the control group 2 (C2) were not infected with the yeast, aiming to check the asepsis during the experiment. The disinfection agents were neutralized and the acrylic resin specimens were immersed in BHI Broth for 24 h. Culture media turbidity was evaluated spectrophotometrically according to the transmittance degree, i.e. the higher the transmittance the stronger the antimicrobial action. Statistical analysis was performed (Kruskal-Wallis Test, p<0.05). Results: The results, represented by the medians, were: G1 = 40; G2 = 100; G3 = 100; G4 = 90; G5 = 100; C1 = 40; C2 = 100. Conclusions: This in vitro study suggested that sodium hypochlorite-based substances and hydrogen peroxide are more efficient disinfectants against C. albicans than 2% chlorhexidine solution and the effervescent agent. PMID:19936521

  2. Comparison of Impact Strength and Fracture Morphology of Different Heat Cure Denture Acrylic Resins: An In vitro Study

    PubMed Central

    Praveen, B; Babaji, Harsha V; Prasanna, B G; Rajalbandi, Santosh Kumar; Shreeharsha, T V; Prashant, G M

    2014-01-01

    Background: The fracture of acrylic resin denture is rather common occurrence and causes inconvenience to the patients. This study was carried out to evaluate and compare the impact strength and fracture morphology of four different heat cure acrylic materials. Materials and Methods: Acrylic resin specimens were prepared using preformed metal die of dimension 65 × 10 × 3 mm. The specimens were finished, polished and subjected to impact strength evaluation using impact testing machine. The loads at which the specimens fracture are recorded and subjected to statistical analysis. Fracture surface analysis was done. Macroscopic analysis was performed by visual inspection of the fractured surfaces using a stereoscopic microscope. About 5 mm sections of all the fragments were subjected to scanning electron microscopy for microscopic analysis to verify fracture morphology. Results: Mean values of the impact strength were compared by statistical methods. The impact strength data were subjected to variance homogeneity tests. Fracture surface analysis data was analyzed by statistical methods. The mean impact strength of Lucitone 199 was higher than Acrylyn-H, DPI Heat cure & Trevalon. Conclusion: Within the limitations of this study, it was concluded that the impact strength of the acrylic resins is affected by the reinforcement of fibers. Increased intermediate fractures increased impact strength. Brittle fractures morphology showed fewer undercuts and clearer surface. Intermediate fractures morphology showed more undercuts than clear surfaces. PMID:25395786

  3. An in vitro study into the effect of a limited range of denture cleaners on surface roughness and removal of Candida albicans from conventional heat-cured acrylic resin denture base material.

    PubMed

    Harrison, Z; Johnson, A; Douglas, C W I

    2004-05-01

    This study evaluated the abrasiveness of four denture cleaners on the surface of denture base material and assessed their ability to remove Candida albicans. Acrylic resin discs 20 mm diameter and 2 mm thick were identically produced and polished. Four cleaners were evaluated: conventional toothpaste; toothpaste with stain remover; denture cleaning paste and an immersion type cleaner, and water were used as control. These were used at dilutions of 1:1, 1:2 and 1:3 with water. An electric toothbrush was used, and the discs cleaned to simulate 1 years' cleaning. The surface roughness of the discs were then measured, before and after cleaning, using a stylus profilometer, then inoculated with 1.2 x 10(6)C. albicans cells. The effectiveness of the denture cleaners to remove C. albicans cells was assessed following a single cleaning event. The immersion cleaner was significantly less abrasive than paste cleaners (P < 0.05). There were no significant differences between any dilutions for any cleaner used (P > 0.05). Immersion and paste cleaners removed almost all recoverable C. albicans from the discs, as cleaning with water alone was less effective (P < 0.05). An immersion type cleaner was found to be the most suitable cleaner because of its low abrasivity and effective removal of organic debris. PMID:15140172

  4. Comparison of Adhesive Resistance to Chewing Gum among Denture Base Acrylic Resin, Cobalt-Chromium Alloy, and Zirconia.

    PubMed

    Wada, Takeshi; Takano, Tomofumi; Ueda, Takayuki; Sakurai, Kaoru

    2016-01-01

    The purpose of this study was to compare the adhesiveness of chewing gum to acrylic resin, cobalt-chromium alloy, and zirconia. Test specimens were fabricated using acrylic resin (resin), cobalt-chromium alloy (Co-Cr), and Ceria stabilized tetragonal zirconia polycrystal-based nanostructured zirconia/alumina composite (zirconia). Specimens of each material were attached to the upper and lower terminals of a digital force gauge. The operator masticated chewing gum, wiped off any saliva, and placed the gum on the lower specimen. The gum was compressed to a thickness of 1 mm between the upper and lower specimens. Thereafter, traction was applied to the upper specimen at a cross-head speed of 100 mm/min under 3 different conditions (dry, wet with distilled water, and wet with artificial saliva) to determine the maximum adhesive strength of the chewing gum. The statistical analysis was performed using the Bonferroni test after a one-way analysis of variance (α=0.05). Under dry conditions, adhesive force was 14.8±6.8 N for resin, 14.0±4.8 N for Co-Cr, and 4.3±2.3 N for zirconia. Significant differences were noted between resin and zirconia, and between Co-Cr and zirconia. When distilled water was applied to the specimen surface, the adhesive strength was 16.8±1.7 N for resin, 8.3±2.1 N for Co-Cr, and 2.7±0.8 N for zirconia. Significant differences were noted between resin and Co-Cr, resin and zirconia, and Co-Cr and zirconia. When artificial saliva was applied to the specimen surface, the adhesive force was 18.5±2.8 N for resin, 5.3±0.8 N for Co-Cr, and 3.0±1.7 N for zirconia. Significant differences were noted between resin and Co-Cr, and resin and zirconia. Chewing gum adhered less strongly to zirconia than to acrylic resin or cobalt-chromium alloy. PMID:26961330

  5. Preparation and properties of acrylic resin coating modified by functional graphene oxide

    NASA Astrophysics Data System (ADS)

    Dong, Rui; Liu, Lili

    2016-04-01

    To improve the dispersion and the strength of filler-matrix interface in acrylic resin, the functional graphene oxide (FGO) was obtained by surface modification of graphene oxide (GO) by γ-methacryloxypropyl trimethoxysilane (KH-570) and then the acrylic nanocomposites containing different loadings of GO and FGO were prepared. The structure, morphology and dispersion/exfoliation of the FGO were characterized by XRD, FT-IR, Raman, XPS, SEM and TEM. The results demonstrated that the KH-570 was successfully grafted onto the surface of GO sheets. Furthermore, the corresponding thermal, mechanical and chemical resistance properties of the acrylic nanocomposites filled with the FGO were studied and compared with those of neat acrylic and GO/acrylic nanocomposites. The results revealed that the loading of FGO effectively enhanced various properties of acrylic resin. These findings confirmed that the dispersion and interfacial interaction were greatly improved by incorporation of FGO, which might be the result of covalent bonds between the FGO and the acrylic matrix. This work demonstrates an in situ polymerization method to construct a flexible interphase structure, strong interfacial interaction and good dispersion of FGO in acrylic nanocomposites, which can reinforce the polymer properties and be applied in research and industrial areas.

  6. Assessment of the flexural strength of two heat-curing acrylic resins for artificial eyes.

    PubMed

    Fernandes, Aline Ursula Rocha; Portugal, Aline; Veloso, Letícia Rocha; Goiato, Marcelo Coelho; Santos, Daniela Micheline dos

    2009-01-01

    Prosthetic eyes are artificial substitutes for the eyeball, made of heat-curing acrylic resin, serving to improve the esthetic appearance of the mutilated patient and his/her inclusion in society. The aim of this study was to assess the flexural strength of two heat-curing acrylic resins used for manufacturing prosthetic eyes. Thirty-six specimens measuring 64 x 10 x 3.3 mm were obtained and divided into four groups: acrylic resin for artificial sclera N1 (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GI) and microwave-cured (GII); colorless acrylic resin for prosthetic eyes (Artigos Odontológicos Clássico, São Paulo, SP, Brazil), heat-cure water technique (GIII) and microwave-cured (GIV). Mechanical tests using three point loads were performed in a test machine (EMIC, São José dos Pinhais, PR, Brazil). The analysis of variance and the Tukey test were used to identify significant differences (p < 0.01). Groups GII and GIV presented, respectively, the highest (98.70 +/- 11.90 MPa) and lowest means (71.07 +/- 8.93 MPa), with a statistically significant difference. The cure method used for the prosthetic eye resins did not interfere in their flexural strength. It was concluded that all the resins assessed presented sufficient flexural strength values to be recommended for the manufacture of prosthetic eyes. PMID:19893960

  7. Evaluation of shear bond strength of repair acrylic resin to Co-Cr alloy

    PubMed Central

    Külünk, Şafak; Külünk, Tolga; Saraç, Duygu; Baba, Seniha

    2014-01-01

    PURPOSE The purpose of this study was to investigate the impact of different surface treatment methods and thermal ageing on the bond strength of autopolymerizing acrylic resin to Co-Cr. MATERIALS AND METHODS Co-Cr alloy specimens were divided into five groups according to the surface conditioning methods. C: No treatment; SP: flamed with the Silano-Pen device; K: airborne particle abrasion with Al2O3; Co: airborne particle abrasion with silica-coated Al2O3; KSP: flamed with the Silano-Pen device after the group K experimental protocol. Then, autopolymerized acrylic resin was applied to the treated specimen surfaces. All the groups were divided into two subgroups with the thermal cycle and water storage to determine the durability of the bond. The bond strength test was applied in an universal test machine and treated Co-Cr alloys were analyzed by scanning electron microscope (SEM). Two-way analysis of variance (ANOVA) was used to determine the significant differences among surface treatments and thermocycling. Their interactons were followed by a multiple comparison' test performed uing a post hoc Tukey HSD test (α=.05). RESULTS Surface treatments significantly increased repair strengths of repair resin to Co-Cr alloy. The repair strengths of Group K, and Co significantly decreased after 6,000 cycles (P<.001). CONCLUSION Thermocycling lead to a significant decrease in shear bond strength for air abrasion with silica-coated aluminum oxide particles. On the contrary, flaming with Silano-Pen did not cause a significant reduction in adhesion after thermocycling. PMID:25177470

  8. Comparison of two different silane compounds used for improving adhesion between fibres and acrylic denture base material.

    PubMed

    Vallittu, P K

    1993-09-01

    This study was aimed at clarifying the effects of two different silane compounds on the adhesion between the different fibres and acrylic resin. The fibres used as reinforcement in the acrylic resin test specimens were glass, carbon and aramid fibres and the silane treated and untreated versions of each type of the fibres were tested. The fracture resistance of the test specimens were assessed and the fibres were studied by a scanning electron microscope (SEM) to establish the adhesion between the fibres and acrylic resin. The results showed that silanization of glass and aramid fibres enhances the adhesion between the fibres and acrylic resin. The findings were confirmed by the SEM photographs taken. The use of a scanning electron microscope proved to be useful for the investigation of the adhesive properties of the materials used. PMID:10412475

  9. Effect of microwave treatments on dimensional accuracy of maxillary acrylic resin denture base.

    PubMed

    Pavan, Sabrina; Arioli Filho, João Neudenir; Dos Santos, Paulo Henrique; Mollo, Francisco de Assis

    2005-01-01

    Microwave energy has been used as an alternative method for disinfection and sterilization of dental prostheses. This study evaluated the influence of microwave treatment on dimensional accuracy along the posterior palatal border of maxillary acrylic resin denture bases processed by water-bath curing. Thirty maxillary acrylic bases (3-mm-thick) were made on cast models with Clássico acrylic resin using routine technique. After polymerization and cooling, the sets were deflasked and the bases were stored in water for 30 days. Thereafter, the specimens were assigned to 3 groups (n=10), as follows: group I (control) was not submitted to any disinfection cycle; group II was submitted to microwave disinfection for 3 min at 500 W; and in group III microwaving was done for 10 min at 604 W. The acrylic bases were fixed on their respective casts with instant adhesive (Super Bonder) and the base/cast sets were sectioned transversally in the posterior palatal zone. The existence of gaps between the casts and acrylic bases was assessed using a profile projector at 5 points. No statistically significant differences were observed between the control group and group II. However, group III differed statistically from the others (p<0.05). Treatment in microwave oven at 604 W for 10 min produced the greatest discrepancies in the adaptation of maxillary acrylic resin denture bases to the stone casts. PMID:16475605

  10. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  11. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  12. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and...

  13. 21 CFR 177.1340 - Ethylene-methyl acrylate copolymer resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Ethylene-methyl acrylate copolymer resins. 177.1340 Section 177.1340 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS...

  14. Prosthodontic self-treatment with acrylic resin super glue: a case report.

    PubMed

    Winkler, Sheldon; Wood, Robert; Facchiano, Anne M; Boberick, Kenneth G; Patel, Amita R

    2006-01-01

    A case history is presented of a patient who fabricated 3 prostheses from autopolymerizing acrylic resin intended for fingernail augmentation and then cemented them into her mouth with super glue. Patients must be warned not to attempt self-treatment for esthetics with self-fabricated prostheses because severe adverse and irreversible hard and soft tissue reactions may occur. PMID:16836177

  15. Effects of acrylic resin monomers on porcine coronary artery reactivity.

    PubMed

    Abebe, Worku; West, Daniel; Rueggeberg, Frederick A; Pashley, David; Mozaffari, Mahmood S

    2016-07-01

    The purpose of the present investigation was to assess the reactivity of porcine coronary arteries under in vitro conditions following their exposure to methyl methacrylate (MMA) and hydroxyethyl methacrylate (HEMA) monomers. Confirming previous studies using rat aortas, both MMA and HEMA induced acute/direct relaxation of coronary ring preparations, which was partly dependent on the endothelium. With prolonged tissue exposure, both monomers caused time- and concentration-dependent inhibition of receptor-mediated contraction of the vascular smooth muscle caused by prostaglandin F2∝ (PGF2∝), with HEMA causing more inhibition than MMA. Hydroxyethyl methacrylate, but not MMA, also produced impairment of non-receptor-mediated contraction of the coronary smooth muscle induced by KCl. On the other hand, neither HEMA nor MMA altered relaxation of the smooth muscle produced by the direct-acting pharmacological agent, sodium nitroprusside (SNP). While exposure to HEMA impaired endothelium-dependent vasorelaxation caused by bradykinin (BK), MMA markedly enhanced this endothelial-mediated response of the arteries. The enhanced endothelial response produced by MMA was linked to nitric oxide (NO) release. In conclusion, with prolonged tissue exposure, MMA causes less pronounced effects/adverse consequences on coronary smooth muscle function relative to the effect of HEMA, while enhancing vasorelaxation associated with release of NO from the endothelium. Accordingly, MMA-containing resin materials appear to be safer for human applications than materials containing HEMA. PMID:27132475

  16. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  17. The effect of flexible acrylic resin on masticatory muscle activity in implant-supported mandibular overdentures: a controlled clinical trial

    PubMed Central

    Ibraheem, Eman Mostafa Ahmed; Nassani, Mohammad Zakaria

    2016-01-01

    Background It is not yet clear from the current literature to what extent masticatory muscle activity is affected by the use of flexible acrylic resin in the construction of implant-supported mandibular overdentures. Objective To compare masticatory muscle activity between patients who were provided with implant-supported mandibular overdentures constructed from flexible acrylic resin and those who were provided with implant-supported mandibular overdentures constructed from heat-cured conventional acrylic resin. Methods In this clinical trial, 12 completely edentulous patients were selected and randomly allocated into two equal treatment groups. Each patient in Group 1 received two implants to support a mandibular overdenture made of conventional acrylic resin. In Group 2, the patients received two implants to support mandibular overdentures constructed from “Versacryl” flexible acrylic resin. The maxillary edentulous arch for patients in both groups was restored by conventional complete dentures. For all patients, masseter and temporalis muscle activity was evaluated using surface electromyography (sEMG). Results The results showed a significant decrease in masticatory muscle activity among patients with implant-supported mandibular overdentures constructed from flexible acrylic resin. Conclusion The use of “Versacryl” flexible acrylic resin in the construction of implant-supported mandibular overdentures resulted in decreased masticatory muscle activity. PMID:26955445

  18. Antimicrobial activity of a quaternary ammonium methacryloxy silicate-containing acrylic resin: a randomised clinical trial

    PubMed Central

    Liu, Si-ying; Tonggu, Lige; Niu, Li-na; Gong, Shi-qiang; Fan, Bing; Wang, Liguo; Zhao, Ji-hong; Huang, Cui; Pashley, David H.; Tay, Franklin R.

    2016-01-01

    Quaternary ammonium methacryloxy silicate (QAMS)-containing acrylic resin demonstrated contact-killing antimicrobial ability in vitro after three months of water storage. The objective of the present double-blind randomised clinical trial was to determine the in vivo antimicrobial efficacy of QAMS-containing orthodontic acrylic by using custom-made removable retainers that were worn intraorally by 32 human subjects to create 48-hour multi-species plaque biofilms, using a split-mouth study design. Two control QAMS-free acrylic disks were inserted into the wells on one side of an orthodontic retainer, and two experimental QAMS-containing acrylic disks were inserted into the wells on the other side of the same retainer. After 48 hours, the disks were retrieved and examined for microbial vitality using confocal laser scanning microscopy. No harm to the oral mucosa or systemic health occurred. In the absence of carry-across effect and allocation bias (disks inserted in the left or right side of retainer), significant difference was identified between the percentage kill in the biovolume of QAMS-free control disks (3.73 ± 2.11%) and QAMS-containing experimental disks (33.94 ± 23.88%) retrieved from the subjects (P ≤ 0.001). The results validated that the QAMS-containing acrylic exhibits favourable antimicrobial activity against plaque biofilms in vivo. The QAMS-containing acrylic may also be used for fabricating removable acrylic dentures. PMID:26903314

  19. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  20. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  1. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... produced by the polymerization of acrylamide with partial hydrolysis, or by copolymerization of acrylamide... polyacrylate-acrylamide resin is produced by the polymerization and subsequent hydrolysis of acrylonitrile in...

  2. Radioluminescence of polyester resin modified with acrylic acid and its salts

    NASA Astrophysics Data System (ADS)

    Szalińska, H.; Wypych, M.; Pietrzak, M.; Szadkowska-Nicze, M.

    Polimal-109 polyester resin and its compounds containing acrylic acid and its salts such as: sodium, potassium, magnesium, calcium, barium, iron, cobalt, copper and manganese acrylates were studied by the radioluminescence method, including isothermal luminescence (ITL) at a radiation temperature of 77 K, thermoluminescence (RTL) and spectral distributions of isothermal luminescence. Measurements of optical absorption at 77 K before and after irradiation of the investigated samples were also carried out. The results obtained have shown that metal ions play a significant part in the processes taking place in the polyester matrix under the influence of γ 60Co radiation.

  3. Reinforcement of acrylic denture base resin by incorporation of various fibers.

    PubMed

    Chen, S Y; Liang, W M; Yen, P S

    2001-01-01

    This study was designed to evaluate improvements in the mechanical properties of acrylic resin following reinforcement with three types of fiber. Polyester fiber (PE), Kevlar fiber (KF), and glass fiber (GF) were cut into 2, 4, and 6 mm lengths and incorporated at concentrations of 1, 2, and 3% (w/w). The mixtures of resin and fiber were cured at 70 degrees C in a water bath for 13 h, then at 90 degrees C for 1 h, in 70 x 25 x 15 mm stone molds, which were enclosed by dental flasks. The cured resin blocks were cut to an appropriate size and tested for impact strength and bending strength following the methods of ASTM Specification No. 256 and ISO Specification No. 1567, respectively. Specimens used in the impact strength test were reused for the Knoop hardness test. The results showed that the impact strength tended to be enhanced with fiber length and concentration, particularly PE at 3% and 6 mm length, which was significantly stronger than other formulations. Bending strength did not change significantly with the various formulations when compared to a control without fiber. The assessment of Knoop hardness revealed a complex pattern for the various formulations. The Knoop hardness of 3%, 6 mm PE-reinforced resin was comparable to that of the other formulations except for the control without fiber, but for clinical usage this did not adversely affect the merit of acrylic denture base resin. It is concluded that, for improved strength the optimum formulation to reinforce acrylic resin is by incorporation of 3%, 6 mm length PE fibers. PMID:11241340

  4. Acrylic resin-fiber composite--Part I: The effect of fiber concentration on fracture resistance.

    PubMed

    Vallittu, P K; Lassila, V P; Lappalainen, R

    1994-06-01

    This study tested the effect on the fracture resistance of acrylic resin test specimens when different amounts of fibers were incorporated in the resin matrix. The fibers used included glass, carbon, and aramid fibers, with 30 test specimens of each concentration of fibers. Transverse sections of the specimens were studied by scanning electron microscope to establish how the fibers behave in the polymerization process. The results indicated that an increase in the amount of fibers enhanced the fracture resistance of the test specimens (p < 0.001). The SEM micrographs of transverse sections of test polymerized specimens revealed void spaces of different sizes inside the fiber roving. PMID:8040825

  5. Impact and Flexural Strength, and Fracture Morphology of Acrylic Resins With Impact Modifiers

    PubMed Central

    Faot, Fernanda; Panza, Leonardo H V; Garcia, Renata C M Rodrigues; Cury, Altair Antoninha Del Bel

    2009-01-01

    Objectives: This study evaluated the impact and flexural strength and analyzed the fracture behavior of acrylic resins. Methods: Eighteen rectangular specimens were fabricated of Lucitone 550, QC 20 (both unreinforced acrylic resins), Impact 1500 (extra strength impact), Impact 2000 (high impact) according to the manufacturers’ instructions. The impact strength was evaluated in notched specimens (50x6x4mm) and flexural strength in unotched (64x10x3.3mm), using three-point bending test, as well as, stress at yield, Young modulus and displacement at yield. Fragments from mechanical tests were observed by SEM. Data from impact strength, stress at yield and displacement at yield were analyzed by 1-way ANOVA and Tukey test (α=0.05). Young modulus values were analyzed by One-way ANOVA and Dunnett T3 multiple comparisons test (α=0.05). Results: Mean values of impact strength and stress at yield values were higher (P<.005) for Impact 2000 while Young modulus was higher (P<.05) for Lucitone 550; Impact 1500 and Impact 2000 showed significant values (P<.05) in the displacement at yield. Impact fractures of the all acrylic resins were brittle. Bending fractures of Lucitone 550 and Impact 2000 were brittle, QC 20 fractures were ductile and Impact 1500 showed brittle (75%) and ductile (25%) fractures. Conclusion: Within the limitations of this study, the Impact 2000 showed improved mechanical properties with high capacity of stress absorption and energy dissipation before the fracture. PMID:19657461

  6. Synthesis and molecular characterization of acrylate liquid crystalline resin monomers (ALCRM).

    PubMed

    He, X P; Cai, W; Guo, L; Zhou, L Z; Nie, M H

    2015-01-01

    A novel biocompatible resin monomer 4—3—(acryloyloxy)—2—hydroxypropoxy) phenyl 4—(3—(acryloyloxy)—2—hydroxypropoxy) benzoate, as an oral restorative — acrylate liquid crystalline resin monomer (ALCRM) was synthesized. The intermediate product and the final product were characterized by differential scanning calorimetry (DSC), polarized optical microscope (POM), and nuclear magnetic resonance (NMR). A resin matrix which has a potential application in dental composites was prepared by photopolymerizing ALCRM and triethylene glycol dimethacrylate (TEGDMA) as a primary and diluted monomer with a photosensitizer of camphorquinone (CQ) and 2—(Dimethylamino)ethyl methacrylate (DMAEMA) mixture. The molar ratio of ALCRM and TEGDMA was 7:3. The properties such as the curing depth, curing time, and the volumetric shrinkage of the resin matrix were investigated and compared with a traditional composite resin matrix Bis—GMA. After photocuring polymerization, the conversion degree of the resin matrix is 68.06%, higher than Bis—GMA/TEGDMA; the curing time is 4.08±0.20min, the curing depth is 2.10±0.17mm, and the volumetric shrinkage is 3.62%±0.26%. All the properties exhibit a better performance of the prepared resin matrix than Bis—GMA. PMID:26475389

  7. Synthesis of polymer nanocomposites by UV-curing of silver nano particles-acrylic resins

    NASA Astrophysics Data System (ADS)

    Balan, L.; Schneider, R.; Soppera, O.; Lougnot, D. J.

    2007-09-01

    We present here a simple method to synthesize organic-dispersible colloids and a scenario for the ultra-fast fabrication of silver/polymer nanocomposite by light-induced crosslinking polymerization. The objective of this work was to apply UV-curing technology for the fabrication of nanocomposite materials containing silver nanoparticles dispersed in a polymer binder. This new route allows processing operations to be simplified and the properties of the final product to be improved. A special attention has been paid to the synthesis and dispersion of metal nanoparticles in various monomers and oligomers and to the photopolymerization kinetics. The silver nanoparticles were generated by reduction of AgNO 3 with t-BuONa activated sodium hydride. Ag(0) particles present a narrow size distribution with an average diameter of 6.5 nm. Transmission electron microscopy (TEM) analysis has shown that Ag(0) nanoparticles are well dispersed in the acrylic resin. The curing process was followed quantitatively by FTIR spectroscopy through the decrease upon UV exposure of the IR bands characteristic of the functional groups. The silver nanoparticles have no detrimental effect on the photopolymerization kinetics. The incorporation of metal nanoparticles was found to greatly reduce the gloss of UV-cured coatings. Moreover, the outstanding optical and viscoelastic properties of these UV-cured nanocomposites opens up interesting perspectives in various fields of applications (optics, nanoelectronic, biology...).

  8. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins

    PubMed Central

    Ghaffari, Tahereh; Hamedi-rad, Fahimeh

    2015-01-01

    Background and aims. Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Silver nano-particles (AgNps) have been added to PMMA because of their antimicrobial properties, but their effect on the mechanical properties of PMMA is unknown. The aim of this study was to investigate the effects of AgNps on the tensile strength of PMMA. Materials and methods. For this study, 12 specimens were prepared and divided into two groups. Group 1 included PMMA without AgNps and group 2 included PMMA mixed with 5 wt% of AgNps. Tensile strength of the specimens was measured by Zwick Z100 apparatus. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. This study showed that the mean tensile strength of PMMA in group 2 was significantly lower than that in group 1. Therefore, the tensile strength decreased significantly after incorporation of silver nano-particles. Conclusion. Within the limitations of this study, tensile strength of acrylic resin specimens was influenced by silver nano-particles. PMID:25973153

  9. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin.

    PubMed

    Gong, Shi-Qiang; Epasinghe, D Jeevanie; Zhou, Bin; Niu, Li-Na; Kimmerling, Kirk A; Rueggeberg, Frederick A; Yiu, Cynthia K Y; Mao, Jing; Pashley, David H; Tay, Franklin R

    2013-06-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol-gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly(methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  10. Effect of water-aging on the antimicrobial activities of an ORMOSIL-containing orthodontic acrylic resin

    PubMed Central

    Gong, Shi-qiang; Epasinghe, D. Jeevanie; Zhou, Bin; Niu, Li-na; Kimmerling, Kirk A.; Rueggeberg, Frederick A.; Yiu, Cynthia K.Y.; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2013-01-01

    Quaternary ammonium methacryloxy silicate (QAMS), an organically modified silicate (ORMOSIL) functionalized with polymerizable methacrylate groups and an antimicrobial agent with a long lipophilic alkyl chain quaternary ammonium group, was synthesized through a silane-based sol–gel route. By dissolving QAMS in methyl methacrylate monomer, this ORMOSIL molecule was incorporated into an auto-polymerizing, powder/liquid orthodontic acrylic resin system, yielding QAMS-containing poly (methyl methacrylate). The QAMS-containing acrylic resin showed a predominant contact-killing effect on Streptococcus mutans (ATCC 35668) and Actinomyces naeslundii (ATCC 12104) biofilms, while inhibiting adhesion of Candida albicans (ATCC 90028) on the acrylic surface. The antimicrobial activities of QAMS-containing acrylic resin were maintained after a 3 month water-aging period. Bromophenol blue assay showed minimal leaching of quaternary ammonium species when an appropriate amount of QAMS (<4 wt.%) was incorporated into the acrylic resin. The results suggest that QAMS is predominantly co-polymerized with the poly(methyl methacrylate) network, and only a minuscule amount of free QAMS molecules is present within the polymer network after water-aging. Acrylic resin with persistent antimicrobial activities represents a promising method for preventing bacteria- and fungus-induced stomatitis, an infectious disease commonly associated with the wearing of removable orthodontic appliances. PMID:23485857

  11. Effect of light-curing, pressure, oxygen inhibition, and heat on shear bond strength between bis-acryl provisional restoration and bis-acryl repair materials

    PubMed Central

    Shim, Ji-Suk; Lee, Jeong-Yol; Choi, Yeon-Jo; Shin, Sang-Wan

    2015-01-01

    PURPOSE This study aimed to discover a way to increase the bond strength between bis-acryl resins, using a comparison of the shear bond strengths attained from bis-acryl resins treated with light curing, pressure, oxygen inhibition, and heat. MATERIALS AND METHODS Self-cured bis-acryl resin was used as both a base material and as a repair material. Seventy specimens were distributed into seven groups according to treatment methods: pressure - stored in a pressure cooker at 0.2 Mpa; oxygen inhibition- applied an oxygen inhibitor around the repaired material,; heat treatment - performed heat treatment in a dry oven at 60℃, 100℃, or 140℃. The shear bond strength was measured with a universal testing machine, and the shear bond strength (MPa) was calculated from the peak load of failure. A comparison of the bond strength between the repaired specimens was conducted using one-way ANOVA and Tukey multiple comparison tests (α=.05). RESULTS There were no statistically significant differences in the shear bond strength between the control group and the light curing, pressure, and oxygen inhibition groups. However, the heat treatment groups showed statistically higher bond strengths than the groups treated without heat, and the groups treated at a higher temperature resulted in higher bond strengths. Statistically significant differences were seen between groups after different degrees of heat treatment, except in groups heated at 100℃ and 140℃. CONCLUSION Strong bonding can be achieved between a bis-acryl base and bis-acryl repair material after heat treatment. PMID:25722837

  12. Antimicrobial properties of poly (methyl methacrylate) acrylic resins incorporated with silicon dioxide and titanium dioxide nanoparticles on cariogenic bacteria

    PubMed Central

    Sodagar, Ahmad; Khalil, Soufia; Kassaee, Mohammad Zaman; Shahroudi, Atefe Saffar; Pourakbari, Babak; Bahador, Abbas

    2016-01-01

    Aim: To assess the effects of adding nano-titanium dioxide (nano-TiO2) and nano-silicon dioxide (nano-SiO2) and their mixture to poly (methyl methacrylate) (PMMA) to induce antimicrobial activity in acrylic resins. Materials and Methods: Acrylic specimens in size of 20 mm × 20 mm × 1 mm of 0.5% and 1% of nano-TiO2 (21 nm) and nano-SiO2 (20 nm) and their mixture (TiO2/SiO2 nanoparticles) (1:1 w/w) were prepared from the mixture of acrylic liquid containing nanoparticles and acrylic powder. To obtain 0.5% and 1% concentration, 0.02 g and 0.04 g of the nanoparticles was added to each milliliter of the acrylic monomer, respectively. Antimicrobial properties of six specimens of these preparations, as prepared, were assessed against planktonic Lactobacillus acidophilus and Streptococcus mutans at 0, 15, 30, 45, 60, 75, and 90 min follow-up by broth dilution assay. The specimens of each group were divided into three subgroups: Dark, daylight, or ultraviolet A (UVA). The percent of bacterial reduction is found out from the counts taken at each time point. Statistical Analysis: Data were analyzed using one-way analysis of variance and Tukey's post hoc analysis. Results: Exposure to PMMA containing the nanoparticles reduced the bacterial count by 3.2–99%, depending on the nanoparticles, bacterial types, and light conditions. Planktonic cultures of S. mutans and L. acidophilus exposed to PMMA containing 1% of TiO2/SiO2 nanoparticles showed a significant decrease (P < 0.001) (98% and 99%, respectively) in a time-dependent manner under UVA. The S. mutans and L. acidophilus counts did not significantly decrease in PMMA containing 0.5% nano-TiO2 and PMMA containing 0.5% nano-SiO2 in the dark. No statistically significant reduction (P > 0.05) was observed in the counts of S. mutans and L. acidophilus in PMMA without the nanoparticles exposed to UVA. Conclusions: PMMA resins incorporated with TiO2/SiO2 nanoparticles showed strong antimicrobial activity against the cariogenic

  13. The Influence of Polymerization Type and Reinforcement Method on Flexural Strength of Acrylic Resin

    PubMed Central

    Fonseca, Rodrigo Borges; Kasuya, Amanda Vessoni Barbosa; Favarão, Isabella Negro; Naves, Lucas Zago; Hoeppner, Márcio Grama

    2015-01-01

    The aim of this study was to evaluate the flexural strength of acrylic resin bars by varying the types of resin polymerization and reinforcement methods. Fourteen groups (N = 10) were created by the interaction of factors in study: type of resin (self-cured (SC) or heat-cured (HC)) and reinforcement method (industrialized glass fiber (Ind), unidirectional glass fiber (Uni), short glass fiber (Short), unidirectional and short glass fiber (Uni-Short), thermoplastic resin fiber (Tpl), and steel wire (SW)). Reinforced bars (25 × 2 × 2 mm) were tested in flexural strength (0.5 mm/min) and examined by scanning electron microscopy (SEM). Data (MPa) were submitted to factorial analysis, ANOVA, and Tukey and T-student tests (a = 5%) showing significant interaction (P = 0.008), for SC: Uni (241.71 ± 67.77)a, Uni-Short (221.05 ± 71.97)a, Ind (215.21 ± 46.59)ab, SW (190.51 ± 31.49)abc, Short (156.31 ± 28.76)bcd, Tpl (132.51 ± 20.21)cd, Control SC (101.47 ± 19.79)d and for HC: Ind (268.93 ± 105.65)a, Uni (215.14 ± 67.60)ab, Short (198.44 ± 95.27)abc, Uni-Short (189.56 ± 92.27)abc, Tpl (161.32 ± 62.51)cd, SW (106.69 ± 28.70)cd, and Control HC (93.39 ± 39.61)d. SEM analysis showed better fiber-resin interaction for HC. Nonimpregnated fibers, irrespective of their length, tend to improve fracture strength of acrylics. PMID:25879079

  14. Gel time of calcium acrylate grouting material.

    PubMed

    Han, Tong-Chun

    2004-08-01

    Calcium acrylate is a polymerized grout, and can polymerize in an aqueous solution. The polymerization reaction utilizes ammonium persulfate as a catalyst and sodium thiosulfate as the activator. Based on the theory of reaction kinetics, this study on the relation between gel time and concentration of activator and catalyst showed that gel time of calcium acrylate is inversely proportional to activator and catalyst concentration. A formula of gel time is proposed, and an example is provided to verify the proposed formula. PMID:15236477

  15. Effects of Sonication Conditions on Ultrasonic Dispersion of Inorganic Particles in Acrylic Resin

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Yasui, Kyuichi; Towata, Atsuya; Kato, Kazumi

    2011-07-01

    The effects of sonication conditions on the ultrasonic dispersion of titanium dioxide particles in acrylic resin are investigated. Pulsing operation at appropriate on-off duty cycles enables us to attain a particle size smaller than that at a continuous wave (CW) at the same net time of sonication between operations. It is useful that frequency-sweep operation attains almost the same particle size as that at CW, which can provide a constant dispersion of particles even if the resonant frequency used to effectively drive an ultrasonic transducer changes with liquid conditions, such as the temperature and acoustic impedance of a liquid.

  16. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH SELECTED PROTECTIVE GLOVE MATERIALS

    EPA Science Inventory

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research ...

  17. Bond strength of acrylic teeth to denture base resin after various surface conditioning methods before and after thermocycling.

    PubMed

    Saavedra, Guilherme; Valandro, Luiz Felipe; Leite, Fabiola Pessoa Pereira; Amaral, Regina; Ozcan, Mutlu; Bottino, Marco A; Kimpara, Estevão T

    2007-01-01

    This study aimed to evaluate the durability of adhesion between acrylic teeth and denture base acrylic resin. The base surfaces of 24 acrylic teeth were flatted and submitted to 4 surface treatment methods: SM1 (control): No SM; SM2: application of a methyl methacrylate-based bonding agent (Vitacol); SM3: air abrasion with 30-microm silicone oxide plus silane; SM4: SM3 plus SM2. A heat-polymerized acrylic resin was applied to the teeth. Thereafter, bar specimens were produced for the microtensile test at dry and thermocyled conditions (60 days water storage followed by 12,000 cycles). The results showed that bond strength was significantly affected by the SM (P < .0001) (SM4 = SM2 > SM3 > SM1) and storage regimens (P < .0001) (dry > thermocycled). The methyl methacrylate-based adhesive showed the highest bond strength. PMID:17455445

  18. Comparative failure load values of acrylic resin denture teeth bonded to three different heat cure denture base resins: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Dua, Amit; Dua, Mahima; Sehgal, Varun; Setya, Gaurav; Dhall, Rupinder Singh

    2016-01-01

    Aim and Objectives: Acrylic teeth are used for fabrication of dentures. Debonding of tooth – denture base bond is routine problem in dental practice. The aim of this study was to comparatively evaluate failure load of acrylic resin denture teeth bonded to three different heat resin. Materials and Methods: Four groups were created out of test samples central incisors (11). Group I: Control, whereas Group II, Group III and Group IV were experimental groups modified with diatoric hole, cingulum ledge lock and Teeth modified with both diatoric hole and cingulum ledge lock, respectively. These test specimens with 3 teeth (2 central [11, 21] and 1, lateral [12] incisors) positioned imitating arrangement of teeth in the conventional denture, prepared by three different heat cure materials (DPI, Trevalon, Acralyn-H). A shear load was applied at cingulum of central incisor (11) at 130° to its long axis using universal tester at a cross head speed of 5 mm/min until failure occurred. Failure load test was conducted and statistical analysis was performed using SPSS 16 software package (IBM Company, New York, U.S). Results: Highest failure load was seen in Group IV specimens, prepared by Trevalon but did not significantly differ from that of DPI. Conclusion: The failure load of bonding denture teeth to three different heat cure materials was notably affected by modifications of ridge lap before processing. The specimens with a combination of diatoric hole and cingulum ledge lock, prepared by Trevalon showed highest failure load but did not significantly vary from that of DPI. The control group prepared by Acralyn-H showed lowest failure load but did not significantly differ from that of DPI. PMID:27195221

  19. A technique to splint and verify the accuracy of implant impression copings with light-polymerizing acrylic resin.

    PubMed

    Rutkunas, Vygandas; Ignatovic, Jevgenija

    2014-03-01

    Transferring the implant position from the mouth to the definitive cast is one of the most critical steps in implant prosthodontics. To achieve a passive fit of the prosthesis, an accurate implant impression is crucial because discrepancies can induce both biologic and technical complications. Analysis of available research data suggests that a direct (pick-up) impression technique with splinted copings is the technique of choice, particularly for multiple implants. However, the traditional method of splinting the copings with autopolymerizing acrylic resin is a technique-sensitive and time- consuming procedure. This report describes a straightforward method of splinting impression copings with light-polymerizing acrylic resin, with minimal amount of autopolymerizing acrylic resin. The method also can be used to verify splinting accuracy. PMID:24445030

  20. Shear bond strength of provisional restoration materials repaired with light-cured resins.

    PubMed

    Chen, Hsiu-Lin; Lai, Yu-lin; Chou, I-chiang; Hu, Chiung-Jen; Lee, Shyh-yuan

    2008-01-01

    This study evaluated the repair bond strengths of light-cured resins to provisional restoration materials with different chemical compositions and polymerization techniques. Fifty discs (10 mm in diameter and 1.5 mm thick) were fabricated for each provisional resin base material, including a self-cured methacrylate (Alike), self-cured bis-acrylate (Protemp 3 Garant), light-cured bis-acrylate (Revotek LC) and a heat-cured methacrylate (Namilon). All specimens were stored in distilled water at 37 degrees C for seven days before undergoing repair with one of four light-cured resins, including AddOn, Revotek LC, Dyractflow and Unifast LC and a self-cured resin (Alike), according to the manufacturers' instructions, for a total of 200 specimens. After 24 hours of storage in 37 degrees C water, the shear bond strengths were measured with a universal testing machine and fracture surfaces were examined under a stereomicroscope. Two-way ANOVA revealed that provisional resin-base material (p < 0.001), repair material (p < 0.001) and their interactions (p < 0.001) significantly affected the repair strength. Tukey's multiple comparisons showed that the lowest bonding strengths were found in specimens of heat-cured methacrylate resin materials repaired with bis-acryl resins, with their failure modes primarily being of the adhesive type. The highest bond strengths were recorded when the provisional resin-base materials and repairing resins had similar chemical components and the failure modes tended to be of the cohesive type. PMID:18833857

  1. Studies on acrylated epoxydised triglyceride resin-co-butyl methacrylate towards the development of biodegradable pressure sensitive adhesives.

    PubMed

    David, S Begila; Sathiyalekshmi, K; Gnana Raj, G Allen

    2009-12-01

    The potential chemical utility of Soya bean oil for the preparation of novel biodegradable polymeric pressure sensitive adhesive has been investigated. Epoxy resin was prepared through in situ epoxidation of Soya bean oil under controlled reaction conditions. Acrylated epoxidised triglyceride resin (AET resin) and copolymer of AET resin with butyl methacrylate were prepared and evaluated. Higher the concentration of butyl methacrylate higher is the degree of copolymerization of AET resin with butyl methacrylate. An optimum concentration of AET resin with butyl methacrylate (100 : 0.40) yields favourable shear holding time and peel strength to qualify as pressure sensitive adhesive. The candidate PSA formulation is biodegradable with antimicrobial activity against gram positive S. aureus ATCC 25923. PMID:18584126

  2. The effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resin: An in vitro study

    PubMed Central

    Anasane, Nayana; Ahirrao, Yogesh; Chitnis, Deepa; Meshram, Suresh

    2013-01-01

    Background: Denture fracture is an unresolved problem in complete denture prosthodontics. However, the repaired denture often experiences a refracture at the repaired site due to poor transverse strength. Hence, this study was conducted to evaluate the effect of joint surface contours and glass fiber reinforcement on the transverse strength of repaired acrylic resins. Materials and Methods: A total of 135 specimens of heat polymerized polymethyl methacrylate resin of dimensions 64 × 10 × 2.5 mm were fabricated. Fifteen intact specimens served as the control and 120 test specimens were divided into four groups (30 specimens each), depending upon the joint surface contour (butt, bevel, rabbet and round), with two subgroups based on type of the repair. Half of the specimens were repaired with plain repair resin and the other half with glass fibers reinforced repair resin. Transverse strength of the specimens was determined using three-point bending test. The results were analyzed using one-way ANOVA and Tukey post-hoc test (α= 0.05). Results: Transverse strength values for all repaired groups were significantly lower than those for the control group (P < 0.001) (88.77 MPa), with exception of round surface design repaired with glass fiber reinforced repair resin (89.92 MPa) which was significantly superior to the other joint surface contours (P < 0.001). Glass fiber reinforced resin significantly improved the repaired denture base resins as compared to the plain repair resin (P < 0.001). Conclusion: Specimens repaired with glass fiber reinforced resin and round surface design exhibited highest transverse strength; hence, it can be advocated for repair of denture base resins. PMID:23946739

  3. Using Latex Balls and Acrylic Resin Plates to Investigate the Stacking Arrangement and Packing Efficiency of Metal Crystals

    ERIC Educational Resources Information Center

    Ohashi, Atsushi

    2015-01-01

    A high-school third-year or undergraduate first-semester general chemistry laboratory experiment introducing simple-cubic, face-centered cubic, body-centered cubic, and hexagonal closest packing unit cells is presented. Latex balls and acrylic resin plates are employed to make each atomic arrangement. The volume of the vacant space in each cell is…

  4. Characterization of acrylic resins used for restoration of artworks by pyrolysis-silylation-gas chromatography/mass spectrometry with hexamethyldisilazane.

    PubMed

    Osete-Cortina, Laura; Doménech-Carbó, María Teresa

    2006-09-15

    A procedure based on the technique of the pyrolysis-GC/MS has been applied, in this work, in order to determine the composition of synthetic acrylic resins employed in artworks. The method is based on the on line derivatization of these resins using hexamethyldisilazane (HMDS). Results obtained have been compared with those others from direct pyrolysis and in situ thermally assisted hydrolysis and methylation with tetramethylammonium hydroxide (TMAH). Sensitivity using HMDS as derivatising reagent is found similar to that from direct pyrolysis and methylation with TMAH. Better resolution of the most representative peaks has been also obtained. Additionally, this method reduces the formation of free acrylic acid molecules during the pyrolysis process and, in consequence, more simplified and well-resolved chromatograms are obtained. Finally, the reported procedure has been successfully used for characterizing several acrylic-based varnishes and binding media currently used in Fine Arts and real pictorial samples from graffiti performed on a Middle Ages bridge. PMID:16797558

  5. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  6. Comparative evaluation of different mechanical modifications of denture teeth on bond strength between high-impact acrylic resin and denture teeth: An in vitro study

    PubMed Central

    Phukela, Sumit Singh; Chintalapudi, Siddesh Kumar; Sachdeva, Harleen; Dhall, Rupinder Singh; Sharma, Neeraj; Prabhu, Allama

    2016-01-01

    Aim and Objective: Acrylic teeth separates from the denture base and remains a major worry in day-to-day routine dental procedure. The present study was conducted to comparatively evaluate different mechanical modifications of acrylic teeth on bond strength between Lucitone 199 heat cure resin and cross-linked teeth. Materials and Methods: The test specimens, central incisors (21) were demarcated into four groups. Group 1 was the control group, whereas Group 2, Group 3, and Group 4 were experimental groups modified with round groove, vertical groove, and T-shaped groove, respectively. The preparation of masterpiece was done by aligning the long axis of the central incisor teeth at 45° to the base of a wax block (8 mm × 10 mm × 30 mm), with ridge lap surface contacting the base. These test specimen (21) was prepared by Lucitone 199 heat cure resin. Evaluation of bond strength of all the specimens was done using universal tester (materials testing machine). Shapiro–Wilk Test, one-way analysis of variance (ANOVA), and Bonferroni test were done to do statistical investigation. Results: Group 1 specimens prepared by Lucitone 199 heat cure resin showed the lowest bond strength and Group 4 specimens prepared with T-shaped groove packed with Lucitone 199 exhibited the highest bond strength. Conclusion: The bond strength between Lucitone 199 heat cure resin and cross-linked teeth was increased when mechanical modifications was done on denture teeth. The specimens prepared with T-shaped groove packed with Lucitone 199 heat cure resin showed the highest bond strength followed by Group 3, Group 2, and lastly Group 1 prepared by Lucitone 199 heat cure resin. PMID:27114957

  7. Geopolymer resin materials, geopolymer materials, and materials produced thereby

    DOEpatents

    Seo, Dong-Kyun; Medpelli, Dinesh; Ladd, Danielle; Mesgar, Milad

    2016-03-29

    A product formed from a first material including a geopolymer resin material, a geopolymer resin, or a combination thereof by contacting the first material with a fluid and removing at least some of the fluid to yield a product. The first material may be formed by heating and/or aging an initial geopolymer resin material to yield the first material before contacting the first material with the fluid. In some cases, contacting the first material with the fluid breaks up or disintegrates the first material (e.g., in response to contact with the fluid and in the absence of external mechanical stress), thereby forming particles having an external dimension in a range between 1 nm and 2 cm.

  8. The Effect on the Flexural Strength, Flexural Modulus and Compressive Strength of Fibre Reinforced Acrylic with That of Plain Unfilled Acrylic Resin – An in Vitro Study

    PubMed Central

    Thomas, Tony C; K, Aswini Kumar; Krishnan, Vinod; Mathew, Anil; V, Manju

    2015-01-01

    Aim: The aim of this in vitro study was to compare the flexural strength, the flexural modulus and compressive strength of the acrylic polymer reinforced with glass, carbon, polyethylene and Kevlar fibres with that of plain unfilled resin. Materials and Methods: A total of 50 specimens were prepared and divided into 10 specimens each under 5 groups namely group 1- control group without any fibres, group 2 – carbon fibres, group 3- glass fibres, group 4 – polyethylene, group 5- Kevlar. Universal testing machine (Tinius olsen, USA) was used for the testing of these specimens. Out of each group, 5 specimens were randomly selected and testing was done for flexural strength using a three point deflection test and three point bending test for compressive strength and the modulus was plotted using a graphical method. Statistical analysis was done using statistical software. Results: The respective mean values for samples in regard to their flexural strength for PMMA plain, PMMA+ glass fibre, PMMA+ carbon, PMMA+ polyethylene and PMMA+ Kevlar were 90.64, 100.79, 102.58, 94.13 and 96.43 respectively. Scheffes post hoc test clearly indicated that only mean flexural strength values of PMMA + Carbon, has the highest mean value. One-way ANOVA revealed a non-significant difference among the groups in regard to their compressive strength. Conclusion: The study concludes that carbon fibre reinforced samples has the greatest flexural strength and greatest flexural modulus, however the compressive strength remains unchanged. PMID:25954696

  9. Morphological alteration of microwave disinfected acrylic resins used for dental prostheses

    NASA Astrophysics Data System (ADS)

    Popescu, M. C.; Bita, B. I.; Avram, A. M.; Tucureanu, V.; Schiopu, P.

    2015-02-01

    In this paper we aim to perform a cross section morphological characterization of an acrylic polymer used for dental prostheses subjected to microwave disinfection. The method was largely investigated and the microbiological effectiveness is well established, but there are some issues regarding the in-depth alteration of the material. In our research, the surface roughness is insignificant and the samples were not polished or refined by any means. Two groups of 7 acrylic discs (20 mm diameter, 2 mm thickness) were prepared from a heat-cured powder. Half of the samples embedded a stainless steel reinforcement, in order to observe the changes at the interfaces between the polymer and metallic wire. After the gradual wet microwave treatment, the specimens - including the controls - were frozen in liquid nitrogen and broken into pieces. Fragments were selected for gold metallization to ensure a good contrast for SEM imaging. We examined the samples in cross section employing a high resolution SEM. We have observed the alterations occurred at the surface of the acrylic sample and at the interface with the metallic wire along with the increase of the power and exposure time. The bond configuration of acrylate samples was analysed by FTIR spectrometry.

  10. Prediction of capacity factors for aqueous organic solutes adsorbed on a porous acrylic resin

    USGS Publications Warehouse

    Thurman, E.M.

    1978-01-01

    The capacity factors of 20 aromatic, allphatic, and allcycllc organic solutes with carboxyl, hydroxyl, amine, and methyl functional groups were determined on Amberlite XAD-8, a porous acrylic resin. The logarithm of the capacity factor, k???, correlated inversely with the logarithm of the aqueous molar solubility with significance of less than 0.001. The log k???-log solubility relationship may be used to predict the capacity of any organic solute for XAD-8 using only the solubility of the solute. The prediction is useful as a guide for determining the proper ratio of sample to column size In the preconcentration of organic solutes from water. The inverse relationship of solubility and capacity is due to the unfavorable entropy of solution of organic solutes which affects both solubility and sorption.

  11. Effects of Laboratory Disinfecting Agents on Dimensional Stability of Three Commercially Available Heat-Cured Denture Acrylic Resins in India: An In-Vitro Study

    PubMed Central

    Jujare, Ravikanth Haridas; Varghese, Rana Kalappattil; Singh, Vishwa Deepak; Gaurav, Amit

    2016-01-01

    Introduction Dental professionals are exposed to a wide variety of microorganisms which calls for use of effective infection control procedures in the dental office and laboratories that can prevent cross-contamination that could extend to dentists, dental office staff, dental technicians as well as patients. This concern has led to a renewed interest in denture sterilization and disinfection. Heat polymerized dentures exhibit dimensional change during disinfection procedure. Aim The purpose of this study was to determine the influence of different types of widely used laboratory disinfecting agents on the dimensional stability of heat-cured denture acrylic resins and to compare the dimensional stability of three commercially available heat-cured denture acrylic resins in India. Materials and Methods Twelve specimens of uniform dimension each of three different brands namely Stellon, Trevalon and Acralyn-H were prepared using circular metal disc. Chemical disinfectants namely 2% alkaline glutaraldehyde, 1% povidone-iodine, 0.5% sodium hypochlorite and water as control group were used. Diameter of each specimen was measured before immersion and after immersion with time interval of 1 hour and 12 hours. The data was evaluated statistically using one way analysis of variance. Results All the specimens in three disinfectants and in water exhibited very small amount of linear expansion. Among three disinfectants, specimens in 2% alkaline glutaraldehyde exhibited least(0.005mm) and water showed highest (0.009mm) amount of dimensional change. Among resins, Trevalon showed least (0.067mm) and Acralyn-H exhibited highest (0.110mm) amount of dimensional change. Conclusion Although, all the specimens of three different brands of heat-cured denture acrylic resins exhibited increase in linear dimensional change in all the disinfectants and water, they were found to be statistically insignificant. PMID:27134996

  12. Characterization and bacterial anti-adherent effect on modified PMMA denture acrylic resin containing platinum nanoparticles

    PubMed Central

    2014-01-01

    PURPOSE This study characterized the synthesis of a modified PMMA (Polymethyl methacrylate) denture acrylic loading platinum nanoparticles (PtN) and assessed its bacterial inhibitory efficacy to produce novel antimicrobial denture base material. MATERIALS AND METHODS Polymerized PMMA denture acrylic disc (20 mm × 2 mm) specimens containing 0 (control), 10, 50, 100 and 200 mg/L of PtN were fabricated respectively. The obtained platinum-PMMA nanocomposite (PtNC) was characterized by TEM (transmission electron microscopy), SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy), thermogravimetric and atomic absorption spectrophotometer analysis. In antimicrobial assay, specimens were placed on the cell culture plate, and 100 µL of microbial suspensions of S. mutans (Streptococcus mutans) and S. sobrinus (Streptococcus sobrinus) were inoculated then incubated at 37℃ for 24 hours. The bacterial attachment was tested by FACS (fluorescence-activated cell sorting) analysis after staining with fluorescent probe. RESULTS PtN were successfully loaded and uniformly immobilized into PMMA denture acrylic with a proper thermal stability and similar surface morphology as compared to control. PtNC expressed significant bacterial anti-adherent effect rather than bactericidal effect above 50 mg/L PtN loaded when compared to pristine PMMA (P=.01) with no or extremely small amounts of Pt ion eluted. CONCLUSION This is the first report on the synthesis and its antibacterial activity of Pt-PMMA nanocomposite. PMMA denture acrylic loading PtN could be a possible intrinsic antimicrobial denture material with proper mechanical characteristics, meeting those specified for denture bases. For clinical application, future studies including biocompatibility, color stability and warranting the long-term effect were still required. PMID:25006385

  13. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis.

    PubMed

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  14. Antifungal Effect of Henna against Candida albicans Adhered to Acrylic Resin as a Possible Method for Prevention of Denture Stomatitis

    PubMed Central

    Nawasrah, Amal; AlNimr, Amani; Ali, Aiman A.

    2016-01-01

    Denture stomatitis is a very common disease affecting the oral mucosa of denture wearers. The aim of this study was to measure the antifungal effect of henna against Candida albicans adhered to acrylic resin as a possible method for prevention of denture stomatitis. One-hundred-eighty acrylic plates were prepared of heat-cured acrylic denture resin. The specimens were divided into six groups of 30 samples each. The first group was only polymer and monomer following the conventional manufacturer instruction for processing complete dentures. The other five groups were processed by adding different concentration of Yamani henna powder (Harazi) to the polymer in a concentration of henna: polymer 1%, 2.5%, 5%, 7.5% and 10%, respectively. Samples were incubated in artificial saliva rich with Candida albicans at 37 °C, and the effect of henna on Candida albicans was evaluated in two different methods: semi-quantitative slide count and a culture-based quantitative assay (quantitative). Variation in the number of live Candida was observed with the increase in the concentration of Yamani henna powder. It was observed that the variation in live Candida, between control group and group B (concentration of Yamani henna powder was 1%), was statistically significant with a p-value of 0.0001. Similarly, variations in live Candida were significant, when the concentration of powder was 7.5% or 10% in contrast with control group and p-values were 0.0001 and 0.001 respectively. Adding henna to acrylic resin denture could be effective in controlling Candida albicans proliferation on the denture surface; however, its effects on the physical properties of acrylic resin denture need further studies. PMID:27223294

  15. Effect of toothbrushes and denture brushes on heat-polymerized acrylic resins.

    PubMed

    de Freitas Pontes, Karina Matthes; de Holanda, Janaína Câncio; Fonteles, Cristiane Sa Roriz; Pontes, Cassio de Barros; Lovato da Silva, Cláudia Helena; Paranhos, Helena de Freitas Oliveira

    2016-01-01

    It is important to choose an appropriate brush for denture cleaning to prevent damage to the surface properties of prosthetic devices. The purpose of this study was to evaluate the abrasiveness of toothbrushes and denture brushes on boiled and microwave-processed acrylic resins. Specimens of 4 resin brands were prepared (n = 30). Five brands of brushes (n = 6) were used in a toothbrushing machine, first for 17,800 strokes and then for an additional 35,600 strokes (total of 53,400), at a load of 200 g. An analytical balance and a profilometer were used to assess the weight and surface roughness, respectively, before and after 17,800 and 53,400 strokes. Analysis of variance and Tukey tests were used for data analysis (α = 0.05). Weight loss increased with time, while surface roughness remained the same. There were no statistically significant differences among toothbrushes and denture brushes in the resulting weight loss (17,800 strokes, 1.83 mg; 53,400 strokes, 3.78 mg) or surface roughness (17,800 or 53,400 strokes, 0.14 µm). The weight loss values after 53,400 brush strokes indicated that Clássico (2.28 mg) and VIPI Wave (2.75 mg) presented significantly greater abrasion resistance than Lucitone 550 (3.36 mg) and Onda-Cryl (2.85 mg) (P < 0.05). The type of brush and the polymerization method did not influence resin wear after brushing. PMID:26742168

  16. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  17. Investigation of flexural strength and cytotoxicity of acrylic resin copolymers by using different polymerization methods

    PubMed Central

    Ozdemir, Ali Kemal; Turgut, Mehmet; Boztug, Ali; Sumer, Zeynep

    2015-01-01

    PURPOSE The aim of this study was to appraise the some mechanical properties of polymethyl methacrylate based denture base resin polymerized by copolymerization mechanism, and to investigate the cytotoxic effect of these copolymer resins. MATERIALS AND METHODS 2-hydroxyethyl methacrylate (HEMA) and isobutyl methacrylate (IBMA) were added to monomers of conventional heat polymerized and injection-molded poly methyl methacrylate (PMMA) resin contents of 2%, 3%, and 5% by volume and polymerization was carried out. Three-point bending test was performed to detect flexural strength and the elasticity modulus of the resins. To determine the statistical differences between the study groups, the Kruskall-Wallis test was performed. Then pairwise comparisons were performed between significant groups by Mann-Whitney U test. Agar-overlay test was performed to determine cytotoxic effect of copolymer resins. Chemical analysis was determined by FTIR spectrum. RESULTS Synthesis of the copolymer was approved by FTIR spectroscopy. Within the conventional heat-polymerized group maximum transverse strength had been seen in the HEMA 2% concentration; however, when the concentration ratio increased, the strength decreased. In the injection-molded group, maximum transverse strength had been seen in the IBMA 2% concentration; also as the concentration ratio increased, the strength decreased. Only IBMA showed no cytotoxic effect at low concentrations when both two polymerization methods applied while HEMA showed cytotoxic effect in the injection-molded resins. CONCLUSION Within the limitations of this study, it may be concluded that IBMA and HEMA may be used in low concentration and at high temperature to obtain non-cytotoxic and durable copolymer structure. PMID:25932307

  18. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry.

    PubMed

    Harrison, A; Huggett, R; Handley, R W

    1979-01-01

    This investigation studies the relationship of hardness, elastic modulus and scratch width as dependent variables to the abrasion resistance of twenty-three dental acrylic resins. The multiple correlation R, when all three variables are used as predictors, is 0.727. Because of the significant intercorrelations between the variables themselves a stepwise multiple regression analysis showed hardness as a redundant variable. Abrasive wear can be estimated from the following equation Abrasive wear = 806.1 - 0.1498 modulus + 0.681 scratch width (R = 0.725; standard deviation of estimate +/- 50.8) The deletion of scratch width does not appreciably reduce the standard deviation of the estimate: Abrasive wear = 1063.4 - 0.2055 modulus (r = 0.683; standard deviation of estimate +/- 50.3) The method of curing the specimens conformed to the respective manufacturers' instructions. Abrasion and scratch tests were performed using methods developed by the authors and previously described in the literature, whereas the hardness and elastic modulus results were devised from standard test procedures. Further research is currently in progress to improve the predictive power of abrasion resistance with additional new variables. PMID:429382

  19. Permeation of multifunctional acrylates through selected protective glove materials.

    PubMed

    Renard, E P; Goydan, R; Stolki, T

    1992-02-01

    In support of the Premanufacture Notification (PMN) program of the Environmental Protection Agency's Office of Toxic Substances, the resistance of three glove materials to permeation by multifunctional acrylate compounds was evaluated through a program for the Office of Research and Development. Several recent PMN submissions relate to multifunctional acrylates and essentially no permeation data are available for this class of compounds. To better understand permeation behavior, tests were conducted with trimethylolpropane triacrylate (TMPTA), 1,6-hexanediol diacrylate (HDDA), and two mixtures of HDDA with 2-ethylhexyl acrylate (EHA). Because of the low vapor pressure and low water solubility of these compounds, the tests were conducted by using ASTM Method F739-85 with a silicone rubber sheeting material as the collection medium. Tests were performed at 20 degrees C with butyl, natural, and nitrile rubber glove materials. None of the acrylate compounds nor mixtures was found to permeate the butyl or nitrile rubber under the test conditions. Permeation through the natural rubber was observed in tests with pure HDDA, a 50% HDDA/50% EHA mixture, and a 25% HDDA/75% EHA mixture. TMPTA permeation through the natural rubber was also detected, but only in one of the triplicate tests after the 360-480 min sampling interval. For pure HDDA, the breakthrough detection time was 30-60 min and the steady-state permeation rate was 0.92 micrograms/cm2-min. For the HDDA/EHA mixtures, permeation of both mixture components was detected during the same sampling interval in each test. The breakthrough detection time was 30-60 min for the 50/50 mixture and from 15-30 to 30-60 min for the 25/75 mixture.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1543127

  20. Influence of nanoparticles on color stability, microhardness, and flexural strength of acrylic resins specific for ocular prosthesis

    PubMed Central

    Andreotti, Agda Marobo; Goiato, Marcelo Coelho; Moreno, Amália; Nobrega, Adhara Smith; Pesqueira, Aldiéris Alves; dos Santos, Daniela Micheline

    2014-01-01

    The aim of this study was to assess the effect of adding nanoparticles to N1 acrylic resin intended for artificial sclera, in terms of the color stability, microhardness, and flexural strength of the resin. Three hundred samples of N1 acrylic resin were used: 100 samples for color stability and microhardness tests (each test was performed on the opposite side of each sample), and 200 samples for flexural strength testing (100 samples before and after 1,008 hours of accelerated aging). Samples for each test were separated into ten groups (n=10), ie, without nanoparticles (control group) or with nanoparticles of zinc oxide, titanium dioxide (TiO2), and barium sulfate at weight concentrations of 1%, 2%, and 2.5% (nanoparticle groups). Data were subjected to statistical analysis with nested analysis of variance and Tukey’s test (P<0.05 significance level). Among the nanoparticle groups, the TiO2 groups showed better color stability at all concentrations. Microhardness values increased after artificial aging, except for the control and zinc oxide groups. After aging, the 1%–2% TiO2 groups had significantly higher microhardness values compared with the other nanoparticle groups. Before aging, there was a significant difference in flexural strength between the control and nanoparticle groups. After aging, the control and TiO2 groups, regardless of concentration, showed the lowest flexural strength values. Incorporation of nanoparticles directly influenced the acrylic resin properties, with TiO2 being the most influential nanoparticle in terms of the evaluated properties. PMID:25525359

  1. MASS LOSS OF FOUR COMMERCIALLY AVAILABLE HEAT-POLYMERIZED ACRYLIC RESINS AFTER TOOTHBRUSHING WITH THREE DIFFERENT DENTIFRICES

    PubMed Central

    Freitas-Pontes, Karina M.; Silva-Lovato, Cláudia H.; Paranhos, Helena F. O.

    2009-01-01

    The association between a toothbrush and a dentifrice is the most used denture cleaning method. The purpose of this study was to evaluate the abrasiveness of specific and non-specific denture cleaning dentifrices on different heat-polymerized acrylic resins. Sixteen specimens (90x30x3mm) of each acrylic resin (QC-20, Lucitone 550, Clássico, Vipi-Cril) were prepared and randomly assigned to 4 groups: 1: control (distilled water), 2: Colgate, 3: Bonyplus and 4: Dentu-Creme. The specimens were subjected to simulated toothbrushing in an automatic brushing machine using 35,600 brush strokes for each specimen. Brushing abrasion run at a 200-g load with the specimens immersed in 2:1 dentifrice/water slurry. Specimens were reconditioned to constant mass and the mass loss (mg) was evaluated. Data were analyzed by 2-way ANOVA and Tukey's test (α=0.05). Analysis of dentifrices' abrasive particles was made by scanning electron microscopy. Colgate produced the greatest mass reduction (42.44 mg, p<0.05), followed by Dentu-Creme (33.60 mg). Bonyplus was the less abrasive (19.91 mg), similar to the control group (19.69 mg) (p>0.05). The mass loss values indicated that QC-20 (33.13 mg) and Lucitone 550 (33.05 mg) resins were less (p<0.05) resistant to abrasion than Clássico (26.04 mg) and Vipi-Cril (23.43 mg). In conclusion, Colgate produced the greatest abrasion. Specific dentifrices for dentures tend to cause less damage to acrylic resins.

  2. Safety and Tolerability of Essential Oil from Cinnamomum zeylanicum Blume Leaves with Action on Oral Candidosis and Its Effect on the Physical Properties of the Acrylic Resin.

    PubMed

    Oliveira, Julyana de Araújo; da Silva, Ingrid Carla Guedes; Trindade, Leonardo Antunes; Lima, Edeltrudes Oliveira; Carlo, Hugo Lemes; Cavalcanti, Alessandro Leite; de Castro, Ricardo Dias

    2014-01-01

    The anti-Candida activity of essential oil from Cinnamomum zeylanicum Blume, as well as its effect on the roughness and hardness of the acrylic resin used in dental prostheses, was assessed. The safety and tolerability of the test product were assessed through a phase I clinical trial involving users of removable dentures. Minimum inhibitory concentration (MIC) and minimum fungicidal concentrations (MFC) were determined against twelve Candida strains. Acrylic resin specimens were exposed to artificial saliva (GI), C. zeylanicum (GII), and nystatin (GIII) for 15 days. Data were submitted to ANOVA and Tukey posttest (α = 5%). For the phase I clinical trial, 15 healthy patients used solution of C. zeylanicum at MIC (15 days, 3 times a day) and were submitted to clinical and mycological examinations. C. zeylanicum showed anti-Candida activity, with MIC = 625.0 µg/mL being equivalent to MFC. Nystatin caused greater increase in roughness and decreased the hardness of the material (P < 0.0001), with no significant differences between GI and GII. As regards the clinical trial, no adverse clinical signs were observed after intervention. The substance tested had a satisfactory level of safety and tolerability, supporting new advances involving the clinical use of essential oil from C. zeylanicum. PMID:25574178

  3. Effect of nonthermal plasma treatment on surface chemistry of commercially-pure titanium and shear bond strength to autopolymerizing acrylic resin.

    PubMed

    Vechiato-Filho, Aljomar José; da Silva Vieira Marques, Isabella; dos Santos, Daniela Micheline; Matos, Adaias Oliveira; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Barão, Valentim Adelino Ricardo

    2016-03-01

    The effect of nonthermal plasma on the surface characteristics of commercially pure titanium (cp-Ti), and on the shear bond strength between an autopolymerizing acrylic resin and cp-Ti was investigated. A total of 96 discs of cp-Ti were distributed into four groups (n=24): Po (no surface treatment), SB (sandblasting), Po+NTP and SB+NTP (methane plasma). Surface characterization was performed through surface energy, surface roughness, scanning microscopy, energy dispersive spectroscopy, and X-ray diffraction tests. Shear bond strength test was conducted immediately and after thermocycling. Surface treatment affected the surface energy and roughness of cp-Ti discs (P<.001). SEM-EDS showed the presence of the carbide thin film. XRD spectra revealed no crystalline phase changes. The SB+NTP group showed the highest bond strength values (6.76±0.70 MPa). Thermocycling reduced the bond strength of the acrylic resin/cp-Ti interface (P<.05), except for Po group. NTP is an effective treatment option for improving the shear bond strength between both materials. PMID:26706504

  4. Safety and Tolerability of Essential Oil from Cinnamomum zeylanicum Blume Leaves with Action on Oral Candidosis and Its Effect on the Physical Properties of the Acrylic Resin

    PubMed Central

    Oliveira, Julyana de Araújo; da Silva, Ingrid Carla Guedes; Trindade, Leonardo Antunes; Lima, Edeltrudes Oliveira; Carlo, Hugo Lemes; Cavalcanti, Alessandro Leite; de Castro, Ricardo Dias

    2014-01-01

    The anti-Candida activity of essential oil from Cinnamomum zeylanicum Blume, as well as its effect on the roughness and hardness of the acrylic resin used in dental prostheses, was assessed. The safety and tolerability of the test product were assessed through a phase I clinical trial involving users of removable dentures. Minimum inhibitory concentration (MIC) and minimum fungicidal concentrations (MFC) were determined against twelve Candida strains. Acrylic resin specimens were exposed to artificial saliva (GI), C. zeylanicum (GII), and nystatin (GIII) for 15 days. Data were submitted to ANOVA and Tukey posttest (α = 5%). For the phase I clinical trial, 15 healthy patients used solution of C. zeylanicum at MIC (15 days, 3 times a day) and were submitted to clinical and mycological examinations. C. zeylanicum showed anti-Candida activity, with MIC = 625.0 µg/mL being equivalent to MFC. Nystatin caused greater increase in roughness and decreased the hardness of the material (P < 0.0001), with no significant differences between GI and GII. As regards the clinical trial, no adverse clinical signs were observed after intervention. The substance tested had a satisfactory level of safety and tolerability, supporting new advances involving the clinical use of essential oil from C. zeylanicum. PMID:25574178

  5. Effect of the Simulated Disinfection by Microwave Energy on the Impact Strength of the Tooth/Acrylic Resin Adhesion

    PubMed Central

    Consani, Rafael L.X.; Mesquita, Marcelo F.; Zampieri, Marinaldo H.; Mendes, Wilson B.; Consani, Simonides

    2008-01-01

    The objective of this study was to determine the effect of simulated microwave disinfection on the tooth/acrylic resin impact strength. Acrylic molar teeth with a wax stick attached to the ridge lap were included in brass flasks. Specimens were made with Classico thermopolymerized acrylic resin, according to the groups: 1 and 5 - tooth with no treatment (control); 2 and 6 – tooth bur abrasion; 3 and 7 – tooth bur retention; and 4 and 8 – tooth monomer etch. Eighty specimens (n=10) were polymerized in bath cycle at 74ºC for 9 hours and deflasked after flask cooling. Specimen from groups 2, 4, 6 and 8 was submitted to simulated microwave disinfection in a microwave oven at 650W for 3 minutes. Impact strength test was performed with an Otto Wolpert-Werke machine (Charpy system) with an impact load of 40 kpcm. Fracture load value was transformed into impact strength as a function of the bond area (kfg/cm2). Collected data were submitted to ANOVA and Tukey’s test (α=.05) and results indicate that the simulated microwave disinfection decreased the impact strength in all treatments. PMID:19088877

  6. Reinforcement of acrylic resins for provisional fixed restorations. Part III: effects of addition of titania and zirconia mixtures on some mechanical and physical properties.

    PubMed

    Panyayong, W; Oshida, Y; Andres, C J; Barco, T M; Brown, D T; Hovijitra, S

    2002-01-01

    Acrylic resins have been used in many different applications in dentistry, especially in the fabrication of provisional fixed partial dentures. Ideally, a provisional crown and bridge material should be easy to handle and should protect teeth against physical, chemical, and thermal injuries. Some of the problems associated with this use are related to the material's poor mechanical properties. It has been demonstrated that acrylic resin can be strengthened through the addition of structural component of different size distributed in the acrylic matrix, thus forming a composite structure. The purpose of this study was to investigate the addition effects of mixtures of titania (titanium dioxide, TiO(2)) powder and zirconia (zirconium dioxide, ZrO(2)) powder being incorporated with pre-polymerized beads mixed in monomer liquid, on some mechanical and physical properties of PMMA resin. The pre-polymerized powder poly(methyl methacrylate) resin was admixed with titania and zirconia powder. A mixing ratio was controlled by volume % of 0, 1.0, 2.0, and 3.0 (samples with 0 v/o served as control groups). For using mixture of titania and zirconia, total amount of the mixture was controlled by volume % of 1.0, 2.0, and 3.0, in which titania and zirconia were mixed at the ratio 1 :1, 1 :2 and 2 :1. Prior to mechanical tests, all rectangular-shaped samples (25 mm x 2 mm x 5 mm) were stored in 37 degrees C distilled water for 7 days after polishing all six sides of samples. Samples were then subjected to the three-point bending flexion test to evaluate the bending strength as well as the modulus of elasticity. Weight gain and exothermic reaction survey were investigated as well. All data were collected and analyzed with one-way analysis of variance (ANOVA) and Sidak method (p=0.05). It was found that the addition of particles generally decreased the water absorbed by the composite system. Only 1 percent by volume concentration of 1 :1 ratio and 2 percent by volume concentration

  7. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations

    PubMed Central

    Ghaffari, Tahereh; Hamedirad, Fahimeh; Ezzati, Baharak

    2014-01-01

    Background and aims. Polymethyl methacrylate, PMMA, is widely used in prosthodontics for fabrication of removable prostheses. This study was undertaken to investigate the effect of adding silver nanoparticles (AgNPs) to PMMA at 2% and 0.2% concentrations on compressive and tensile strengths of PMMA. Materials and methods. The silver nanoparticles were mixed with heat-cured acrylic resin in an amalgamator in two groups at 0.2 and 2 wt% of AgNPs. Eighteen 2×20×200-mm samples were prepared for tensile strength test, 12 samples containing silver nanoparticle and 6 samples for the control group. Another 18 cylindrical 25×38-mm samples were prepared for compressive strength test. Scanning electron microscopy was used to verify homogeneous distribution of particles. The powder was manually mixed with a resin monomer and then the mixture was properly blended. Before curing, the paste was packed into steel molds. After curing, the specimens were removed from the molds. One-way ANOVA was used for statistical analysis, followed by multiple comparison test (Scheffé’s test). Results. This study showed that the mean compressive strength of PMMA reinforced with AgNPs was significantly higher than that of the unmodified PMMA (P<0.05). It was not statistically different between the two groups reinforced with AgNPs. The tensile strength was not significantly different between the 0.2% group and unmodified PMMA and it de-creased significantly after incorporation of 2% AgNPs (P<0.05). Conclusion. Based on the results and the desirable effect of nanoparticles of silver on improvement of compressive strength of PMMA, use of this material with proper concentration in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25587381

  8. Resin Characterization in Cured Composite Materials

    NASA Technical Reports Server (NTRS)

    Young, P. R.; Chang, A.

    1985-01-01

    Molecular-level characterization of polymeric matrix resin in cured graphite-reinforced composite materials now determined through analysis of diffuse reflectance (DR) with Fourier Transform Infrared (FTIR) spectroscopy. Improved analytical method based on diffuse reflectance. DR/ FTIR technique successfully applied to analysis of several different composites and adhesives impossible to analyze by conventional methods.

  9. Synthesis and characterization of a sphere-like modified chitosan and acrylate resin composite for organics absorbency

    NASA Astrophysics Data System (ADS)

    Xin, S. S.; Wang, Y. H.; Li, Q. R.; Zhang, Q.; Wang, X. P.

    2015-07-01

    In this study, the chitosan (deacetylation degree >95%) was modified with vinyltriethoxysilane (A151) and became hydrophobic. The modified chitosan and acrylate resin composite can be synthesized by butyl methacrylate (BMA), butyl acrylate (BA), poly vinyl alcoho(PVA), N,N’-methylene bisacrylamide (MBA), benzoyl peroxide (BPO), and ethyl acetate under microwave irradiation. The optimal synthetic condition was as follows: the molar ratio of BA and BMA was 1.5:1, the dosage of ethyl acetate, PVA, MBA, BPO and modified chitosan were 50 wt.%, 10 wt.%, 1.5 wt.%, 2.0 wt.% and 1.0 wt.% of monomers, respectively. The adsorption capacity of the composite for CHCl3 and CCl4 were approximate to 53 g/g and 44 g/g, respectively. The organics absorbency and regeneration of the samples were also tested, and the samples were characterized by analysis of the scanning electron microscope and simultaneous thermo gravimetric/differential thermal.

  10. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  11. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  12. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  13. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  14. 21 CFR 872.3690 - Tooth shade resin material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tooth shade resin material. 872.3690 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3690 Tooth shade resin material. (a) Identification. Tooth shade resin material is a device composed of materials such as bisphenol-A...

  15. Effect of sodium hypochlorite and peracetic acid on the surface roughness of acrylic resin polymerized by heated water for short and long cycles

    PubMed Central

    Sczepanski, Felipe; Sczepanski, Claudia Roberta Brunnquell; Berger, Sandrine Bittencourt; Consani, Rafael Leonardo Xediek; Gonini-Júnior, Alcides; Guiraldo, Ricardo Danil

    2014-01-01

    Objective: To evaluate the surface roughness of acrylic resin submitted to chemical disinfection via 1% sodium hypochlorite (NaClO) or 1% peracetic acid (C2H4O3). Materials and Methods: The disc-shaped resin specimens (30 mm diameter ×4 mm height) were polymerized by heated water using two cycles (short cycle: 1 h at 74°C and 30 min at 100°C; conventional long cycle: 9 h at 74°C). The release of substances by these specimens in water solution was also quantified. Specimens were fabricated, divided into four groups (n = 10) depending on the polymerization time and disinfectant. After polishing, the specimens were stored in distilled deionized water. Specimens were immersed in 1% NaClO or 1% C2H4O3 for 30 min, and then were immersed in distilled deionized water for 20 min. The release of C2H4O3 and NaClO was measured via visual colorimetric analysis. Roughness was measured before and after disinfection. Roughness data were subjected to two-way ANOVA and Tukey's test. Results: There was no interaction between polymerization time and disinfectant in influencing the average surface roughness (Ra, P = 0.957). Considering these factors independently, there were significant differences between short and conventional long cycles (P = 0.012), but no significant difference between the disinfectants hypochlorite and C2H4O3 (P = 0.366). Visual colorimetric analysis did not detect release of substances. Conclusion: It was concluded that there was the difference in surface roughness between short and conventional long cycles, and disinfection at acrylic resins polymerized by heated water using a short cycle modified the properties of roughness. PMID:25512737

  16. PERMEATION OF MULTIFUNCTIONAL ACRYLATES THROUGH THREE PROTECTIVE CLOTHING MATERIALS

    EPA Science Inventory

    Permeation tests were conducted with trimethylolpropane triacrylate TMPTA), 1,6-hexanediol diacrylate (HDDA), and two mixtures of 1,6-hexanediol diacrylate with 2-ethylhexyl acrylate (EHA) to better understand the permeation behavior of multifunctional acrylate compounds. he test...

  17. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  18. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  19. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  20. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  1. 21 CFR 872.3310 - Coating material for resin fillings.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Coating material for resin fillings. 872.3310... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3310 Coating material for resin fillings. (a) Identification. A coating material for resin fillings is a device intended to be applied to...

  2. The use of acrylic resin oral prosthesis in radiation therapy of oral cavity and paranasal sinus cancer

    SciTech Connect

    Cheng, V.S.T.; Oral, K.; Aramamy, M.A.

    1982-07-01

    In radiation therapy of cancer of the oral cavity and the paranasal sinuses, the extent to which the tissues of the oral cavity are included in the radiation treatment portals will determine the severity of the oral discomfort during treatment. This will affect the nutritional status of the patients, and may eventually affect the total dose of radiation which the patients can receive for treatment of their cancers. In cooperation with the Maxillofacial Prosthetic Department, an acrylic resin oral prosthesis was developed. This prosthesis is easy to use and can be made for each individual patient within 24 hours. It allows for maximum sparing of the normal tissues in the oral cavity and can be modified for shielding of backscattered electrons from heavy metals in the teeth. We have also found that acrylic resin extensions can be built onto the posterior edge of post-maxillectomy obturators; this extension can be used as a carrier for radioactive sources to deliver radiation to deep seated tumor modules in the paranasal sinuses.

  3. Effect of conventional water-bath and experimental microwave polymerization cycles on the flexural properties of denture base acrylic resins.

    PubMed

    Spartalis, Guilherme Kloster; Cappelletti, Lucas Kravchychyn; Schoeffel, Amanda Cristina; Michél, Milton Domingos; Pegoraro, Thiago Amadei; Arrais, César Augusto Galvão; Neppelenbroek, Karin Hermana; Urban, Vanessa Migliorini

    2015-01-01

    The effect of polymerization cycles on flexural properties of conventional (Vipi Cril(®)-VC) or microwave-processed (Vipi Wave(®)-VW) denture base acrylic resins was evaluated. Specimens (n=10) were submitted to the cycles: WB=65ºC for 1 h+1 h boiling water (VC cycle); M630/25=10 min at 270 W+5 min at 0 W+10 min at 360 W (VW cycle); M650/5=5 min at 650 W; M700/4=4 min at 700 W; and M550/3=3 min at 550 W. Specimens were submitted to a three-point bending test at 5 mm/min until fracture. Flexural strength (MPa) and elastic modulus (GPa) data were analyzed by 2-way ANOVA/Tukey HSD (α=0.05). Overall, VC showed higher values than VW. The results obtained with microwave polymerization did not differ from those obtained with water-bath for both acrylic resins. The results observed when polymerization cycles using medium power and shorter time were used did not differ from those when manufacturer's recommended microwave cycle was applied. Conventional VC might be microwave-processed without compromising its flexural properties. PMID:26438986

  4. Effect of leaching residual methyl methacrylate concentrations on in vitro cytotoxicity of heat polymerized denture base acrylic resin processed with different polymerization cycles

    PubMed Central

    BURAL, Canan; AKTAŞ, Esin; DENIZ, Günnur; ÜNLÜÇERÇI, Yeşim; BAYRAKTAR, Gülsen

    2011-01-01

    Objectives Residual methyl methacrylate (MMA) may leach from the acrylic resin denture bases and have adverse effects on the oral mucosa. This in vitro study evaluated and correlated the effect of the leaching residual MMA concentrations ([MMA]r) on in vitro cytotoxicity of L-929 fibroblasts. Material and Methods A total of 144 heat-polymerized acrylic resin specimens were fabricated using 4 different polymerization cycles: (1) at 74ºC for 9 h, (2) at 74ºC for 9 h and terminal boiling (at 100ºC) for 30 min, (3) at 74ºC for 9 h and terminal boiling for 3 h, (4) at 74ºC for 30 min and terminal boiling for 30 min. Specimens were eluted in a complete cell culture medium at 37ºC for 1, 2, 5 and 7 days. [MMA]r in eluates was measured using high-performance liquid chromatography. In vitro cytotoxicity of eluates on L-929 fibroblasts was evaluated by means of cell proliferation using a tetrazolium salt XTT (sodium 3´-[1-phenyl-aminocarbonyl)-3,4-tetrazolium]bis(4-methoxy-6-nitro)benzenesulphonic acid) assay. Differences in [MMA]r of eluates and cell proliferation values between polymerization cycles were statistically analyzed by Kruskal-Wallis, Friedman and Dunn's multiple comparison tests. The correlation between [MMA]r of eluates and cell proliferation was analyzed by Pearson's correlation test (p<0.05). Results [MMA]r was significantly (p≤0.001) higher in eluates of specimens polymerized with cycle without terminal boiling after elution of 1 and 2 days. Cell proliferation values for all cycles were significantly (p<0.01) lower in eluates of 1 day than those of 2 days. The correlation between [MMA]r and cell proliferation values was negative after all elution periods, showing significance (p<0.05) for elution of 1 and 2 days. MMA continued to leach from acrylic resin throughout 7 days and leaching concentrations markedly reduced after elution of 1 and 2 days. Conclusion Due to reduction of leaching residual MMA concentrations, use of terminal boiling in the

  5. Argon Ion Laser Polymerized Acrylic Resin: A Comparative Analysis of Mechanical Properties of Laser Cured, Light Cured and Heat Cured Denture Base Resins

    PubMed Central

    Murthy, S Srinivasa; Murthy, Gargi S

    2015-01-01

    Background: Dentistry in general and prosthodontics in particular is evolving at greater pace, but the denture base resins poly methyl methacrylate. There has been vast development in modifying chemically and the polymerization techniques for better manipulation and enhancement of mechanical properties. One such invention was introduction of visible light cure (VLC) denture base resin. Argon ion lasers have been used extensively in dentistry, studies has shown that it can polymerize restorative composite resins. Since composite resin and VLC resin share the same photo initiator, Argon laser is tested as activator for polymerizing VLC resin. In the Phase 1 study, the VLC resin was evaluated for exposure time for optimum polymerization using argon ion laser and in Phase 2; flexural strength, impact strength, surface hardness and surface characteristics of laser cured resin was compared with light cure and conventional heat cure resin. Materials and Methods: Phase 1; In compliance with American Dental Association (ADA) specification no. 12, 80 samples were prepared with 10 each for different curing time using argon laser and evaluated for flexural strength on three point bend test. Results were compared to established performance requirement specified. Phase 2, 10 specimen for each of the mechanical properties (30 specimen) were polymerized using laser, visible light and heat and compared. Surface and fractured surface of laser, light and heat cured resins were examined under scanning electron microscope (SEM). Results: In Phase 1, the specimen cured for 7, 8, 9 and 10 min fulfilled ADA requirement. 8 min was taken as suitable curing time for laser curing. Phase 2 the values of mechanical properties were computed and subjected to statistical analysis using one-way ANOVA and Tukey post-hoc test. The means of three independent groups showed significant differences between any two groups (P < 0.001). Conclusion: Triad VLC resin can be polymerized by argon ion laser with

  6. Influence of acrylamide monomer addition to the acrylic denture-base resins on mechanical and physical properties

    PubMed Central

    Aydogan Ayaz, Elif; Durkan, Rukiye

    2013-01-01

    The aim of the study was to evaluate the effect of adding acrylamide monomer (AAm) on the characterization, flexural strength, flexural modulus and thermal degradation temperature of poly(methyl methacrylate) (PMMA) denture-base resins. Specimens (n=10) were fabricated from a conventional heat-activated QC-20 (Qc-) and a microwave heat-activated Acron MC (Ac-) PMMA resins. Powder/liquid ratio followed the manufacturer's instructions for the control groups (Qc-c and Ac-c) and for the copolymer groups, the resins were prepared with 5% (−5), 10% (−10), 15% (−15) and 20% (−20) acrylamide contents, according to the molecular weight ratio, respectively. The flexural strength and flexural modulus were measured by a three-point bending test. The data obtained were statistically analyzed by Kruskal–Wallis test (α=0.05) to determine significant differences between the groups. The chemical structures of the resins were characterized by the nuclear magnetic resonance spectroscopy. Thermal stabilities were determined by thermogravimetric analysis (TGA) with a heating rate of 10 °C⋅min−1 from 35 °C to 600 °C. Control groups from both acrylic resins showed the lowest flexural strength values. Qc-15 showed significant increase in the flexural strength when compared to Qc-c (P<0.01). Ac-10 and Ac-15 showed significance when compared to Ac-c (P<0.01). Acrylamide incorporation increased the elastic modulus in Qc-10, Qc-15 and Qc-20 when compared to Qc-c (P<0.01). Also significant increase was observed in Ac-10, Ac-15 and Ac-20 copolymer groups when compared to Ac-c (P<0.01). According to the 1H-nuclear magnetic resonance (NMR) results, acrylamide copolymerization was confirmed in the experimental groups. TGA results showed that the thermal stability of PMMA is increased by the insertion of AAm. PMID:24030556

  7. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum. PMID:25822408

  8. Surface properties of multilayered, acrylic resin artificial teeth after immersion in staining beverages

    PubMed Central

    NEPPELENBROEK, Karin Hermana; KUROISHI, Eduardo; HOTTA, Juliana; MARQUES, Vinicius Rizzo; MOFFA, Eduardo Buozi; SOARES, Simone; URBAN, Vanessa Migliorini

    2015-01-01

    Objective To evaluate the effect of staining beverages (coffee, orange juice, and red wine) on the Vickers hardness and surface roughness of the base (BL) and enamel (EL) layers of improved artificial teeth (Vivodent and Trilux). Material and Methods Specimens (n=8) were stored in distilled water at 37°C for 24 h and then submitted to the tests. Afterwards, specimens were immersed in one of the staining solutions or distilled water (control) at 37°C, and the tests were also performed after 15 and 30 days of immersion. Data were analyzed using 3-way ANOVA and Tukey’s test (α=0.05). Results Vivodent teeth exhibited a continuous decrease (p<0.0005) in hardness of both layers for up to 30 days of immersion in all solutions. For Trilux teeth, similar results were found for the EL (p<0.004), and the BL showed a decrease in hardness after 15 days of immersion (p<0.01). At the end of 30 days, this reduction was not observed for coffee and water (p>0.15), but red wine and orange juice continuously reduced hardness values (p<0.0004). Red wine caused the most significant hardness changes, followed by orange juice, coffee, and water (p<0.006). No significant differences in roughness were observed for both layers of the teeth during the immersion period, despite the beverage (p>0.06). Conclusions Hardness of the two brands of acrylic teeth was reduced by all staining beverages, mainly for red wine. Roughness of both layers of the teeth was not affected by long-term immersion in the beverages. PMID:26398509

  9. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  10. INFLUENCE OF A COBALT-CHROMIUM METAL FRAMEWORK ON SURFACE ROUGHNESS AND KNOOP HARDNESS OF VISIBLE LIGHT-POLYMERIZED ACRYLIC RESINS

    PubMed Central

    de Souza, Joane Augusto; Garcia, Renata Cunha Matheus Rodrigues; Moura, Juliana Silva; Cury, Altair Antoninha Del Bel

    2006-01-01

    Although visible light-polymerized acrylic resins have been used in removable partial dentures, it is not clear whether the presence of a metal framework could interfere with their polymerization, by possibly reflecting the light and affecting important properties, such as roughness and hardness, which would consequently increase biofilm accumulation. The aim of this study was to compare the roughness and Knoop hardness of a visible light-polymerized acrylic resin and to compare these values to those of water-bath- and microwave-polymerized resins, in the presence of a metal framework. Thirty-six specimens measuring 30.0 × 4.0 ± 0.5 mm of a microwave- (Onda Cryl), a visible light- (Triad) and a water-bath- polymerized (Clássico) (control) acrylic resins containing a cobalt-chromium metal bar were prepared. After processing, specimens were ground with 360 to 1000-grit abrasive papers in a polishing machine, followed by polishing with cloths and 1μm diamond particle suspension. Roughness was evaluated using a profilometer (Surfcorder SE 1700) and Knoop hardness (Kg/mm2) was assayed using a microhardness tester (Shimadzu HMV 2000) at distances of 50, 100, 200, 400 and 800 μm from the metal bar. Roughness and Knoop hardness means were submitted to two-way ANOVA and compared by Tukey and Kruskal Wallis tests at a 5% significance level Statistically significant differences were found (p<0.05) for roughness and Knoop hardness, with light-polymerized resin presenting the highest values (Ra = 0.11 μm and hardness between 20.2 and 21.4 Kg/mm2). Knoop values at different distances from the metal bar did not differ statistically (p>0.05). Within the limitations of this in vitro study, it was concluded that the presence of metal did not influence roughness and hardness values of any of the tested acrylic resins. PMID:19089075

  11. Influence of Sea Water Aging on the Mechanical Behaviour of Acrylic Matrix Composites

    NASA Astrophysics Data System (ADS)

    Davies, P.; Le Gac, P.-Y.; Le Gall, M.

    2016-07-01

    A new matrix resin was recently introduced for composite materials, based on acrylic resin chemistry allowing standard room temperature infusion techniques to be used to produce recyclable thermoplastic composites. This is a significant advance, particularly for more environmentally-friendly production of large marine structures such as boats. However, for such applications it is essential to demonstrate that composites produced with these resins resist sea water exposure in service. This paper presents results from a wet aging study of unreinforced acrylic and glass and carbon fibre reinforced acrylic composites. It is shown that the acrylic matrix resin is very stable in seawater, showing lower property losses after seawater aging than those of a commonly-used epoxy matrix resin. Carbon fibre reinforced acrylic also shows good property retention after aging, while reductions in glass fibre reinforced composite strengths suggest that specific glass fibre sizing may be required for optimum durability.

  12. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  13. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  14. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  15. 21 CFR 872.3670 - Resin impression tray material.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resin impression tray material. 872.3670 Section 872.3670 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3670 Resin impression tray material....

  16. The effect of acrylic latex-based polymer on cow blood adhesive resins for wood composites

    NASA Astrophysics Data System (ADS)

    Yan, J.; Lin, H. L.; Feng, G. Z.; Gunasekaran, S.

    2016-07-01

    In this paper, alkali-modified cow blood adhesive (BA) and blood adhesive/acrylic latex-based adhesive (BA/ALB) were prepared. The physicochemical and adhesion properties of cow blood adhesive such as UV- visible spectra, particle size, viscosity were evaluated; share strength, water resistance were tested. UV- visible spectra indicates that the strong bonding strength of BA/ALB appeared after incorporating; the particle size of adhesive decreased with the increase of ALB concentration, by mixing ALB and BA, hydrophilic polymer tends locate or extand the protein chains and provide stability of the particles; viscosity decreased as shear rate increased in concordance with a pseudoplastic behavior; both at dry and soak conditions, BA and ALB/BA show significant difference changes when mass fraction of ALB in blend adhesive was over 30% (p < 0.05). ALB/ BA (ALB30%) is not significant different than that of phenol formaldehyde which was used as control. A combination of cow blood and acrylic latex-based adhesive significantly increased the strength and water resistance of the resulting wood.

  17. The pH effect of solvent in silanization on fluoride released and mechanical properties of heat-cured acrylic resin containing fluoride-releasing filler.

    PubMed

    Nakornchai, Natha; Arksornnukit, Mansuang; Kamonkhantikul, Krid; Takahashi, Hidekazu

    2016-01-01

    This study aimed to evaluate the effect of an acidic-adjusted pH of solvent in silanization on the amount of fluoride released and mechanical properties of heat-cured acrylic resin containing a silanized fluoride-releasing filler. The experimental groups were divided into 4 groups; non-silanized, acidic-adjusted pH, non-adjusted pH, and no filler as control. For fluoride measurement, each specimen was placed in deionized water which was changed every day for 7 days, every week for 7 weeks and measured. The flexural strength and flexural modulus were evaluated after aging for 48 h, 1, and 2 months. Two-way ANOVA indicated significant differences among groups, storage times, and its interaction in fluoride measurement and flexural modulus. For flexural strength, there was significant difference only among groups. Acidic-adjusted pH of solvent in silanization enhanced the amount of fluoride released from acrylic resin, while non-adjusted pH of solvent exhibited better flexural strength of acrylic resin. PMID:27252000

  18. Comparison of the dimensional stability of two waxes and two acrylic resin processing techniques in the production of complete dentures.

    PubMed

    Sykora, O; Sutow, E J

    1990-05-01

    Two base plate waxes and two denture processing techniques were independently compared for dimensional stability. Occlusion rims were constructed from extra hard and medium soft base plate waxes and teeth were set. Acrylic resin bases were processed by a trial packing technique, and a continuous injection system. Tooth movement was measured in the horizontal and vertical planes to assess wax and denture base dimensional changes at various steps in the process, and after 1, 3, and 8 weeks of denture base immersion in water at room temperature. Posterior palatal border adaptation, incisal pin opening and loss of centric occlusion contacts, were also measured. Results showed there were no significant differences between the two waxes as determined by tooth movement in the horizontal and vertical planes. In comparison to the trial packing technique, the continuous injection system showed significantly smaller changes for incisal pin opening and loss of centric occlusion, and better adaptation of the posterior palatal border to the cast. Measurement of tooth movement in the horizontal and vertical planes showed no significant differences between the two processing techniques for times prior to immersion in water, whereas after 8 weeks immersion the continuous injection technique showed smaller dimensional changes, relative to the original dimensions at the time of investing. PMID:2189970

  19. Prosthetic rehabilitation with collapsible hybrid acrylic resin and permanent silicone soft liner complete denture of a patient with scleroderma-induced microstomia.

    PubMed

    Singh, Kunwarjeet; Gupta, Nidhi; Gupta, Ridhimaa; Abrahm, Dex

    2014-07-01

    Scleroderma is an autoimmune multisystem rheumatic condition characterized by fibrosis of connective tissues of the body, resulting in hardening and impairment of the function of different organs. Deposition of collagen fibers in peri-oral tissues causes loss of elasticity and increased tissue stiffness, resulting in restricted mouth opening. A maximal oral opening smaller than the size of a complete denture can make prosthetic treatment challenging. Patients with microstomia who must wear removable dental prostheses (RDPs) often face the difficulty of being unable to insert or remove a conventional RDP. A sectional-collapsible denture is indicated for the prosthetic management of these patients, but reduced manual dexterity often makes intraoral manipulation of the prosthesis difficult. A single collapsible complete denture is a better choice for functional rehabilitation of these patients. This clinical report describes in detail the prosthodontic management of a maxillary edentulous patient with restricted mouth opening induced by scleroderma with a single collapsible removable complete denture fabricated with heat-polymerized silicone soft liner and heat-cured acrylic resin. The preliminary and secondary impressions were made with moldable aluminum trays by using putty and light-body poly(vinyl siloxane) elastomeric impression material. The collapsed denture can be easily inserted and removed by the patient and also provides adequate function in the mouth. PMID:24417310

  20. Nanoporous nonwoven fibril-like morphology by cooperative self-assembly of poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene and phenolic resin.

    PubMed

    Deng, Guodong; Qiang, Zhe; Lecorchick, Willis; Cavicchi, Kevin A; Vogt, Bryan D

    2014-03-11

    Cooperative self-assembly of block copolymers with (in)organic precursors effectively generates ordered nanoporous films, but the porosity is typically limited by the need for a continuous (in)organic phase. Here, a network of homogeneous fibrous nanostructures (≈20 nm diameter cylinders) having high porosity (≈ 60%) is fabricated by cooperative self-assembly of a phenolic resin oligomer (resol) with a novel, nonfrustrated, ABC amphiphilic triblock copolymer template, poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene (PEO-b-PEA-b-PS), via a thermally induced self-assembly process. Due to the high glass transition temperature (Tg) of the PS segments, the self-assembly behavior is kinetically hindered as a result of competing effects associated with the ordering of the self-assembled system and the cross-linking of resol that suppresses segmental mobility. The balance in these competing processes reproducibly yields a disordered fibril network with a uniform fibril diameter. This nonequilibrium morphology is dependent on the PEO-b-PEA-b-PS to resol ratio with an evolution from a relatively open fibrous structure to an apparent poorly ordered mixed lamellae-cylinder morphology. Pyrolysis of these former films at elevated temperatures yields a highly porous carbon film with the fibril morphology preserved through the carbonization process. These results illustrate a simple method to fabricate thin films and coatings with a well-defined fiber network that could be promising materials for energy and separation applications. PMID:24548298

  1. Characterization of cross-linking structures in UV-cured acrylic ester resin by MALDI-MS combined with supercritical methanolysis.

    PubMed

    Matsubara, Hideki; Hata, Shun-Ichiro; Kondo, Yosuke; Ishida, Yasuyuki; Takigawa, Hiroshi; Ohtani, Hajime

    2006-11-01

    The cross-linking structure of the ultra violet (UV)-cured resin prepared from dipentaerithritol hexacrylate (DPHA) was characterized by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with supercritical methanolysis. The MALDI-mass spectrum of the decomposition products obtained by supercritical methanolysis contained a series of peaks of sodium-cationized methyl acrylate (MA) oligomers up to around m/z = 4000 formed through selective cleavage and methylation occurred at ester linkages in UV-cured DPHA. Furthermore, in order to observe widely distributed sequence lengths in the cross-linking junctions, the decomposed products of the cured resin were then fractionated using size exclusion chromatography followed by the MALDI-MS measurements of the individual fractions. The MALDI-mass spectra of the lower molar mass fractions mainly consisted of a series of peaks of MA oligomers around m/z values of several thousands, whereas those of higher molecular weight showed a broad peak up to m/z ca. 180000. The observed distributions of the supercritical methanolysis products suggested that the network junctions in the given UV-cured resin were composed of up to around 2000 acrylate units. PMID:17099270

  2. Degradation, Fatigue, and Failure of Resin Dental Composite Materials

    SciTech Connect

    Drummond, J.L.

    2008-11-03

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle- or fiber-filler-containing indirect dental resin composite materials. The focus will be on the effects of degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed-mode loading on flexure strength and fracture toughness. Several selected papers will be examined in detail with respect to mixed and cyclic loading, and 3D tomography with multi-axial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and/or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection); after that time period, failure most often results from secondary decay.

  3. Degradation, fatigue and failure of resin dental composite materials

    PubMed Central

    Drummond, James L.

    2008-01-01

    The intent of this article is to review the numerous factors that affect the mechanical properties of particle or fiber filler containing, indirect dental resin composite materials. The focus will be on degradation due to aging in different media, mainly water and water and ethanol, cyclic loading, and mixed mode loading on the flexure strength and fracture toughness. Next several selected papers will be examined in detail with respect to mixed and cyclic loading and then an examination of 3D tomography using multiaxial compression specimens. The main cause of failure, for most dental resin composites, is the breakdown of the resin matrix and or the interface between the filler and the resin matrix. In clinical studies, it appears that failure in the first 5 years is a restoration issue (technique or material selection) and after that time period from secondary decay. PMID:18650540

  4. Characteristics of a veteran acrylic lens relative to acrylic lens materials after accelerated laboratory weathering

    NASA Astrophysics Data System (ADS)

    Miller, David C.; Arndt, Thomas; Kogler, René

    2015-09-01

    The durability of poly(methyl methacrylate) is examined using veteran lenses obtained from CPV modules fielded for 27 years in Phoenix. The lens facets were milled from the lens interior, followed by depth-specific toming to characterize variation at four depths through the thickness. Optical transmittance was measured using a spectrophotometer, both with and without an integrating sphere. Diffuse transmittance (the optical haze) and yellowness index were determined from the transmittance. Molecular weight was characterized using size exclusion chromatography, also in conjunction with the toming. The veteran lens material is compared to contemporary PMMA formulations, aged in an indoor chamber. The modest reductions in transmittance and molecular weight for the lenses were generally similar to those of the contemporary materials, suggesting an indoor accelerated aging test might be used; additional tests must, however, be applied to invoke the haze, uniquely observed for the lens specimen.

  5. Dental fiber-post resin base material: a review

    PubMed Central

    Xu, Chun; Zhang, Fu-qiang

    2014-01-01

    Teeth that have short clinical crown, which are not alone enough to support the definitive restoration can be best treated using the post and core system. The advantages of fiber post over conventional metallic post materials have led to its wide acceptance. In addition to that the combination of aesthetic and mechanical benefits of fiber post has provided it with a rise in the field of dentistry. Also the results obtained from some clinical trials have encouraged the clinicians to use the fiber posts confidently. Fiber posts are manufactured from pre-stretched fibers impregnated within a resin matrix. The fibers could that be of carbon, glass/silica, and quartz, whereas Epoxy and bis-GMA are the most widely used resin bases. But recently studies are also found to be going on for polyimide as possible material for the fiber post resin base as a substitute for the conventional materials. PMID:24605208

  6. Advanced composites: Environmental effects on selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    The effects that expected space flight environment has upon the mechanical properties of epoxy and polyimide matrix composites were analyzed. Environmental phenomena covered water immersion, high temperature aging, humidity, lightning strike, galvanic action, electromagnetic interference, thermal shock, rain and sand erosion, and thermal/vacuum outgassing. The technology state-of-the-art for graphite and boron reinforced epoxy and polyimide matrix materials is summarized to determine the relative merit of using composites in the space shuttle program. Resin matrix composites generally are affected to some degree by natural environmental phenomena with polyimide resin matrix materials less affected than epoxies.

  7. Development of Periodic and Three-Dimensional Structures in Acrylic-Monomer Photopolymer Materials by Holographic Methods

    NASA Astrophysics Data System (ADS)

    Vorzobova, N. D.; Bulgakova, V. G.; Moskalenko, A. I.; Pavlovets, I. M.; Denisyuk, I. Yu.; Burunkova, Yu. É.

    2015-01-01

    We show the possibility and advantages of using photopolymer materials based on acrylic monomers and nanocomposites in holography. Holographic characteristics of these materials and conditions for forming periodic structures and three-dimensional elements in them are determined.

  8. Peel bond strength of resilient liner modified by the addition of antimicrobial agents to denture base acrylic resin

    PubMed Central

    ALCÂNTARA, Cristiane S.; de MACÊDO, Allana F.C.; GURGEL, Bruno C.V.; JORGE, Janaina H.; NEPPELENBROEK, Karin H.; URBAN, Vanessa M.

    2012-01-01

    In order to prolong the clinical longevity of resilient denture relining materials and reduce plaque accumulation, incorporation of antimicrobial agents into these materials has been proposed. However, this addition may affect their properties. Objective This study evaluated the effect of the addition of antimicrobial agents into one soft liner (Soft Confort, Dencril) on its peel bond strength to one denture base (QC 20, Dentsply). Material and Methods Acrylic specimens (n=9) were made (75x10x3 mm) and stored in distilled water at 37ºC for 48 h. The drug powder concentrations (nystatin 500,000U - G2; nystatin 1,000,000U - G3; miconazole 125 mg - G4; miconazole 250 mg - G5; ketoconazole 100 mg - G6; ketoconazole 200 mg - G7; chlorhexidine diacetate 5% - G8; and 10% chlorhexidine diacetate - G9) were blended with the soft liner powder before the addition of the soft liner liquid. A group (G1) without any drug incorporation was used as control. Specimens (n=9) (75x10x6 mm) were plasticized according to the manufacturers' instructions and stored in distilled water at 37ºC for 24 h. Relined specimens were then submitted to a 180-degree peel test at a crosshead speed of 10 mm/min. Data (MPa) were analyzed by analysis of variance (α=0.05) and the failure modes were visually classified. Results No significant difference was found among experimental groups (p=0.148). Cohesive failure located within the resilient material was predominantly observed in all tested groups. Conclusions Peel bond strength between the denture base and the modified soft liner was not affected by the addition of antimicrobial agents. PMID:23329241

  9. Effect of Food Simulating Agents on the Hardness and Bond Strength of a Silicone Soft Liner to a Denture Base Acrylic Resin

    PubMed Central

    Khaledi, A.A.R.; Bahrani, M.; Shirzadi, S.

    2015-01-01

    Statement of the Problem: Bonding failure between acrylic resin and soft liner material and also gradual loss of soft liner resiliency over time are two impending challenges frequently recognized with a denture base embraced with a resilient liner. Since patients drink various beverages, it is crucial to assess the influences of these beverages on physical characteristics of soft liners. Purpose: This in vitro study envisioned to assess the influence of food simulating agents (FSA) on the hardness of a silicone soft liner by employing a Shore A durometer test and also evaluate its bond strength to a denture base resin by using tensile bond strength test. Materials and Methods: To test the hardness of samples, 50 rectangular samples (40 mm × 10 mm × 3 mm) were prepared from a heat-polymerized polymethyl methacrylate (Meliodent). Mollosil, a commercially available silicone resilient liner, was provided and applied on the specimens following the manufacturer’s directions. In order to test tensile bond strength, 100 cylindrical specimens (30 mm × 10 mm) were fabricated. The liners were added between specimens with the thicknesses of 3 mm. The specimens were divided into 5 groups (n=10) and immersed in distilled water, heptane, citric acid, and 50% ethanol. For each test, we used 10 specimens as a baseline measurement; control group. All specimens were kept in dispersed containers at 37ºC for 12 days and all solutions were changed every day. The hardness was verified using a Shore A durometer and the tensile bond strength was examined by an Instron testing machine at a cross-head speed of 5 mm/min. The records were analyzed employing one-way ANOVA, Tukey’s HSD, and LSD tests. Results: The mean tensile bond strength ± standard deviation (SD) for Mollosil was as follows for each group: 3.1 ± 0.4 (water), 1.8 ± 0.4 (citric acid), 3.0 ± 0.4 (heptane), 1.2 ± 0.3 (50% ethanol), and 3.8 ± 0.4 (control). The hardness values for each group were: 28.7 ± 2.11 (water

  10. UV curing of nanoparticle reinforced acrylates

    NASA Astrophysics Data System (ADS)

    Bauer, F.; Flyunt, R.; Czihal, K.; Ernst, H.; Naumov, S.; Buchmeiser, M. R.

    2007-12-01

    To improve the surface hardness of radiation cured acrylate coatings, both silica nanoparticles and alumina particles with a few microns in size have been embedded into acrylate formulations. Regular mixing of nanoparticles into acrylate formulations, however, leads to highly viscous solutions inappropriate for coating procedures. The incompatibility of inorganic fillers and organic polymers can be avoided by surface modification of nanoparticles using trialkoxysilanes, which provide an interface between the two dissimilar materials. Nanoparticles modified by methacryloxypropyltrimethoxysilane (MEMO) and vinyltrimethoxysilane (VTMO), both having polymerisation-active groups, may be crosslinked with the acrylate resin. UV curing of the nanocomposites revealed an unexpected lower reactivity of the vinyl groups of VTMO modified silica compared to MEMO grafted on silica. For VTMO modification, DFT calculations showed a decrease of Mulliken atomic charge for the olefinic carbons pointing to a lower reactivity. For UV cured nano/microhybrid composites, a significant improvement of abrasion resistance was obtained.

  11. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials

    PubMed Central

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 37°C storage in an incubator, Knoop hardness measurements were obtained at the bottom. The data were analyzed with three-way ANOVA, t-test, and one-way ANOVA. Results. The KHN of NX3 was of significantly higher than that of Variolink Veneer (P < 0.05). The KHN of resin cement polymerized under different ceramic types and thicknesses was significant difference (P < 0.05). Conclusion. Resin cements polymerized under different ceramic materials and thicknesses showed statistically significant differences in KHN. PMID:22548062

  12. Comparative evaluation of effect of metal primer and sandblasting on the shear bond strength between heat cured acrylic denture base resin and cobalt-chromium alloy: An in vitro study

    PubMed Central

    Kalra, Sandeep; Kharsan, Vishwas; Kalra, Nidhi Mangtani

    2015-01-01

    Aims: The aim of this study was to evaluate the effect of metal primers and sandblasting on the shear bond strength (SBS) of heat cured acrylic denture base resin to cobalt-chromium (Co-Cr) alloy. Materials and Methods: A total number of 40 disk shaped wax patterns (10 mm in diameter and 2 mm in thickness) were cast in Co-Cr alloy. Samples were divided into 4 groups depending on the surface treatment received. Group 1: No surface treatment was done and acts as control group. Group 2: Only sandblasting was done. Group 3: Only metal primer was applied. Group 4: Both metal primer and sandblasting were done. After surface treatment samples had been tested in Universal Testing Machine at crosshead speed of 0.5 mm/min in shear mode and scanning, electron microscope evaluation was done to observe the mode of failure. Statistical Analysis: All the observations obtained were analyzed statistically using software SPSS version 17; one-way analysis of variance (ANOVA) and post-hoc Tukey test were applied. Results: The one-way ANOVA indicated that SBS values varied according to type of surface treatment done. The SBS was highest (18.70 ± 1.2 MPa) when both sandblasting and metal primer was done when compared with no surface treatment (2.59 ± 0.32 MPa). Conclusions: It could be concluded that the use of metal primers along with sandblasting significantly improves the bonding of heat cured acrylic denture base resin with the Co-Cr alloy. PMID:26321840

  13. Nonlinear Inelastic Mechanical Behavior Of Epoxy Resin Polymeric Materials

    NASA Astrophysics Data System (ADS)

    Yekani Fard, Masoud

    Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that

  14. Dimensional stability of complete denture permanent acrylic resin denture bases; A comparison of dimensions before and after a second curing cycle.

    PubMed

    Fenlon, Michael Robert; Juszczyk, Andrzej Stanislaw; Rodriguez, Jose Mauricio; Curtis, Richard Victor

    2010-03-01

    The purpose of this study was to measure deformation of mandibular complete denture permanent bases after secondary curing. A cast of a flat mandibular edentulous ridge was duplicated ten times. A wax base was laid on the original cast, two wax sprues were attached and an overcast was made. The overcast was used to produce wax bases similar in outline and thickness on the duplicate casts. These were invested and following manufacturer's instructions ten similar acrylic resin bases were produced. The fitting surface of each denture base was scanned on a contacting scanner with an axis resolution of 1 microm and accurate to 25 microm. Denture teeth were waxed up on the base on the original master cast, an overcast was made to produce wax ups and tooth positions that were similar in outline and thickness to the original. These were processed, removed from the flasks and excess acrylic resin was removed. The denture bases were rescanned in an identical fashion to the first scanning procedure. Using commercially developed metrology software calibrated colour maps were generated for each denture base that illustrates measurements of differences between pairs of surfaces. Histograms showing distributions of distances between points were constructed. 50% of the points were separated by a mean 50 microm or less and that 90% of the points were separated by 160 microm or less. The maximum separation was of 380 microm. Complete denture permanent bases were not found to distort significantly as a result of being subjected to a second heat curing cycle as part of final processing of dentures. PMID:20397501

  15. PMMA-based composite materials with reactive ceramic fillers: IV. Radiopacifying particles embedded in PMMA beads for acrylic bone cements.

    PubMed

    Abboud, M; Casaubieilh, L; Morvan, F; Fontanille, M; Duguet, E

    2000-01-01

    New acrylic bone cements were prepared from alumina particles previously treated by 3-(trimethoxysilyl)propylmethacrylate (gamma-MPS) and embedded in poly(methylmethacrylate-co-ethylacrylate) beads with about 7 mol% of ethyl acrylate repeating units. The encapsulation was performed through a conventional suspension polymerization process. The influence of (i) the concentration of the dispersion stabilizer and (ii) the alumina content upon the shape, size, and size distribution of the acrylic beads was studied. Cements were prepared from each batch by hand-mixing alumina-filled acrylic beads with a liquid monomer mixture containing methyl methacrylate, n-butyl methacrylate, and N,N-dimethyl-p-toluidine. Benzoyl peroxide was previously added to the solid part. The powder-to-liquid ratio was equal to 2 for each formulation. Compressive strength of cured cement decreases with alumina content, whereas compressive modulus remains roughly constant. These results are in contradiction to those obtained for cements based on a mixture of gamma-MPS-treated alumina and unfilled acrylic beads. Nevertheless, they are interpreted in terms of alumina arrangement in the cement. In the first case, alumina particles contribute to the reinforcement of the dispersed acrylic phase, with poor benefits for the whole materials. In the second case, they allow the reinforcement of the continuous acrylic phase and, therefore, the cement's one. PMID:11074433

  16. In vitro analysis of different properties of acrylic resins for ocular prosthesis submitted to accelerated aging with or without photopolymerized glaze.

    PubMed

    Santos, Daniela Micheline Dos; Nagay, Bruna Egumi; da Silva, Emily Vivianne Freitas; Bonatto, Liliane da Rocha; Sonego, Mariana Vilela; Moreno, Amália; Rangel, Elidiane Cipriano; da Cruz, Nilson Cristino; Goiato, Marcelo Coelho

    2016-12-01

    The effect of a photopolymerized glaze on different properties of acrylic resin (AR) for ocular prostheses submitted to accelerated aging was investigated. Forty discs were divided into 4 groups: N1 AR without glaze (G1); colorless AR without glaze (G2); N1 AR with glaze (G3); and colorless AR with glaze (G4). All samples were polished with sandpaper (240, 600 and 800-grit). In G1 and G2, a 1200-grit sandpaper was also used. In G3 and G4, samples were coated with MegaSeal glaze. Property analysis of color stability, microhardness, roughness, and surface energy, and assays of atomic force microscopy, scanning electron microscopy, and energy-dispersive spectroscopy were performed before and after the accelerated aging (1008h). Data were submitted to the ANOVA and Tukey Test (p<0.05). Groups with glaze exhibited statistically higher color change and roughness after aging. The surface microhardness significantly decreased in groups with glaze and increased in groups without glaze. The surface energy increased after the aging, independent of the polishing procedure. All groups showed an increase of surface irregularities. Photopolymerized glaze is an inadequate surface treatment for AR for ocular prostheses and it affected the color stability, roughness, and microhardness. The accelerated aging interfered negatively with the properties of resins. PMID:27612795

  17. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass.

    PubMed

    Hesaraki, S

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO2-CaO-P2O5 glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. PMID:27040248

  18. Rapid removal of copper with magnetic poly-acrylic weak acid resin: quantitative role of bead radius on ion exchange.

    PubMed

    Fu, Lichun; Shuang, Chendong; Liu, Fuqiang; Li, Aimin; Li, Yan; Zhou, Yang; Song, Haiou

    2014-05-15

    A novel magnetic weak acid resin NDMC was self-synthesized for the removal of Cu(2+) from aqueous solutions. NDMC showed superior properties on the removal of Cu(2+) compared to commercial resins C106 and IRC-748, which was deeply investigated by adsorption isotherms and kinetic tests. The equilibrium adsorption amount of Cu(2+) onto NDMC (267.2mg/g) was almost twice as large as that onto IRC-748 (120.0mg/g). The adsorption kinetics of Cu(2+) onto the three resins fitted well with the pseudo-second-order equation. The initial adsorption rate h of NDMC was about 4 times that of C106 and nearly 8 times that of IRC-748 at the initial concentration of 500mg/L. External surface area was determined to be the key factor in rate-controlling by further analyzing the adsorption thermodynamics, kinetics parameters and physicochemical properties of the resins. NDMC resin with the smallest bead radius possessed the largest external surface and therefore exhibited the fastest kinetics. The adsorption amount of Cu(2+) onto NDMC was not influenced as the concentration of Na(+) increased from 1.0 to 10.0mM/L. Dilute HCl solution could effectively desorb Cu(2+). NDMC demonstrated high stability during 10 adsorption/desorption cycles, showing great potential in the rapid removal of Cu(2+) from wastewater. PMID:24681592

  19. RGD Surface Functionalization of the Hydrophilic Acrylic Intraocular Lens Material to Control Posterior Capsular Opacification

    PubMed Central

    Huang, Yi-Shiang; Bertrand, Virginie; Bozukova, Dimitriya; Pagnoulle, Christophe; Labrugère, Christine; De Pauw, Edwin; De Pauw-Gillet, Marie-Claire; Durrieu, Marie-Christine

    2014-01-01

    Posterior Capsular Opacification (PCO) is the capsule fibrosis developed on implanted IntraOcular Lens (IOL) by the de-differentiation of Lens Epithelial Cells (LECs) undergoing Epithelial Mesenchymal Transition (EMT). Literature has shown that the incidence of PCO is multifactorial including the patient's age or disease, surgical technique, and IOL design and material. Reports comparing hydrophilic and hydrophobic acrylic IOLs have shown that the former has more severe PCO. On the other hand, we have previously demonstrated that the adhesion of LECs is favored on hydrophobic compared to hydrophilic materials. By combining these two facts and contemporary knowledge in PCO development via the EMT pathway, we propose a biomimetically inspired strategy to promote LEC adhesion without de-differentiation to reduce the risk of PCO development. By surface grafting of a cell adhesion molecule (RGD peptide) onto the conventional hydrophilic acrylic IOL material, the surface-functionalized IOL can be used to reconstitute a capsule-LEC-IOL sandwich structure, which has been considered to prevent PCO formation in literature. Our results show that the innovative biomaterial improves LEC adhesion, while also exhibiting similar optical (light transmittance, optical bench) and mechanical (haptic compression force, IOL injection force) properties compared to the starting material. In addition, compared to the hydrophobic IOL material, our bioactive biomaterial exhibits similar abilities in LEC adhesion, morphology maintenance, and EMT biomarker expression, which is the crucial pathway to induce PCO. The in vitro assays suggest that this biomaterial has the potential to reduce the risk factor of PCO development. PMID:25501012

  20. Evaluation of Bond Strength of Acrylic Teeth to Denture Base using Different Polymerization Techniques: A Comparative Study

    PubMed Central

    Yadav, Naveen S; Somkuwar, Surabhi; Mishra, Sunil Kumar; Hazari, Puja; Chitumalla, Rajkiran; Pandey, Shilpi K

    2015-01-01

    Background: Acrylic teeth have long been used in the treatment of a complete denture. One of the primary advantages of acrylic teeth is their ability to adhesively bond to the denture base resins. Although the bonding seems satisfactory, however, bond failures at the acrylic teeth and denture base resin interface are still a common clinical problem in prosthodontics. The purpose of this study was to evaluate the bond strength of acrylic teeth to denture base using different polymerizing techniques. Materials and Methods: Acrylic resin teeth were bonded to heat cure acrylic resin and were polymerized by conventional water bath and microwave energy. The samples are then retrieved from the flask; trimmed and polished. The samples were then subjected to tensile forces till failure by using the Instron Universal testing machine. The machine used a direct pull on the incisal portion of the lingual surface in a labial direction at a height above the denture base resin bar with a crosshead speed of 0.5 mm/min. Results: In the present study, it was found that conventionally cured specimens exhibited higher bond strength than microwave cured specimens and majority of fractures occur within the body of the tooth. It was found that debonding occurs within the body of the tooth rather than tooth acrylic interface, so there is no need of surface treatment of ridge lap surface. Conclusion: Conventionally cured specimens possess statistically higher bond strength than microwave cured specimens. PMID:26225106

  1. Chairside resin-based provisional restorative materials for fixed prosthodontics.

    PubMed

    Strassler, Howard E; Lowe, Robert A

    2011-01-01

    Provisional restorations are vital to fixed prosthodontics treatment, providing an important diagnostic function while in place. In addition to protecting the prepared teeth, provisionalization enables clinicians to refine biologic and biomechanical issues before the final restoration is fabricated. Adjustments can be made in the provisional restoration to achieve both the clinician's and patient's desired results. The fabrication of temporary restorations requires that clinicians be proficient with a variety of materials and techniques that can be used to make well-adapted and functional provisionals. There are many material choices available to temporize a single crown as well as multi-unit fixed partial dentures, and the selection of provisional materials should be made based on a case-by-case evaluation. This article provides a review of polymeric resin provisional materials. PMID:22167927

  2. Properties of a glass-ionomer/resin-composite hybrid material.

    PubMed

    Mathis, R S; Ferracane, J L

    1989-09-01

    A small percentage of the liquid resin used in commercial dental composites was added to the liquid used in a commercial glass-ionomer restorative in order to produce a fluoride-containing hybrid restorative-type material that would adhere to dentin while being stronger, less brittle, and less sensitive to desiccation in the oral cavity than glass ionomer. Compressive strength, yield strength, elastic modulus, fracture toughness, and tensile strength were analyzed for this hybrid, light-cured material. In addition, the solubility in water, adhesion to dentin, and surface roughness were also examined in vitro. The results suggest that the early (one-hour) mechanical properties of the hybrid material exceed those of glass ionomer. In addition, the brittleness and solubility of the material are less than those of commercial glass ionomer, while adhesion to dentin is unaffected. Most importantly, surface crazing, a documented problem with some glass ionomers when they become desiccated, is alleviated with this hybrid formulation. PMID:2638281

  3. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles.

    PubMed

    Slane, Josh; Vivanco, Juan; Rose, Warren; Ploeg, Heidi-Lynn; Squire, Matthew

    2015-03-01

    Prosthetic joint infection is one of the most serious complications that can lead to failure of a total joint replacement. Recently, the rise of multidrug resistant bacteria has substantially reduced the efficacy of antibiotics that are typically incorporated into acrylic bone cement. Silver nanoparticles (AgNPs) are an attractive alternative to traditional antibiotics resulting from their broad-spectrum antimicrobial activity and low bacterial resistance. The purpose of this study, therefore, was to incorporate metallic silver nanoparticles into acrylic bone cement and quantify the effects on the cement's mechanical, material and antimicrobial properties. AgNPs at three loading ratios (0.25, 0.5, and 1.0% wt/wt) were incorporated into a commercial bone cement using a probe sonication technique. The resulting cements demonstrated mechanical and material properties that were not substantially different from the standard cement. Testing against Staphylococcus aureus and Staphylococcus epidermidis using Kirby-Bauer and time-kill assays demonstrated no antimicrobial activity against planktonic bacteria. In contrast, cements modified with AgNPs significantly reduced biofilm formation on the surface of the cement. These results indicate that AgNP-loaded cement is of high potential for use in primary arthroplasty where prevention of bacterial surface colonization is vital. PMID:25579913

  4. Microtensile bond strength of indirect resin composite to resin-coated dentin: interaction between diamond bur roughness and coating material.

    PubMed

    Kameyama, Atsushi; Oishi, Takumi; Sugawara, Toyotarou; Hirai, Yoshito

    2009-02-01

    This aim of this study was to determine the effect of type of bur and resin-coating material on microtensile bond strength (microTBS) of indirect composite to dentin. Dentin surfaces were first ground with two types of diamond bur and resin-coated using UniFil Bond (UB) or Adper Single Bond (SB), and then bonded to a resin composite disc for indirect restoration with adhesive resin cement. After storage for 24 hr in distilled water at 37 degrees C, microTBS was measured (crosshead speed 1 mm/min). When UB was applied to dentin prepared using the regular-grit diamond bur, microTBS was significantly lower than that in dentin prepared using the superfine-grit bur. In contrast, no significant difference was found between regular-grit and superfine-grit bur with SB. However, more than half of the superfine-grit specimens failed before microTBS testing. These results indicate that selection of bur type is important in improving the bond strength of adhesive resin cement between indirect resin composite and resin-coated dentin. PMID:19622875

  5. PETIs as High-Temperature Resin-Transfer-Molding Materials

    NASA Technical Reports Server (NTRS)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  6. Advances in acrylic-alkyd hybrid synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Dziczkowski, Jamie

    2008-10-01

    In situ graft acrylic-alkyd hybrid resins were formed by polymerizing acrylic and acrylic-mixed monomers in the presence of alkyds by introduction of a free radical initiator to promote graft formation. Two-dimensional NMR, specifically gradient heteronuclear multiple quantum coherence (gHMQC), was used to clarify specific graft sites of the hybrid materials. Both individual and mixed-monomer systems were produced to determine any individual monomer preferences and to model current acrylic-alkyd systems. Different classes of initiators were used to determine any initiator effects on graft location. The 2D-NMR results confirm grafting at doubly allylic hydrogens located on the fatty acid chains and the polyol segment of the alkyd backbone. The gHMQC spectra show no evidence of grafting across double bonds on either pendant fatty acid groups or THPA unsaturation sites for any of the monomer or mixed monomer systems. It was also determined that choice of initiator has no effect on graft location. In addition, a design of experiments using response surface methodology was utilized to obtain a better understanding of this commercially available class of materials and relate both the chemical and physical properties to one another. A Box-Behnkin design was used, varying the oil length of the alkyd phase, the degree of unsaturation in the polyester backbone, and acrylic to alkyd ratio. Acrylic-alkyd hybrid resins were reduced with an amine/water mixture. Hydrolytic stability was tested and viscoelastic properties were obtained to determine crosslink density. Cured films were prepared and basic coatings properties were evaluated. It was found that the oil length of the alkyd is the most dominant factor for final coatings properties of the resins. Acrylic to alkyd ratio mainly influences the resin properties such as acid number, average molecular weight, and hydrolytic stability. The degree of unsaturation in the alkyd backbone has minimal effects on resin and film

  7. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed...

  8. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When..., paint-related material, adhesives, ink and resins must be packaged as follows: (1) As prescribed...

  9. Alternative materials to acrylic bone cement for delivery of depot antibiotics in orthopaedic infections.

    PubMed

    McLaren, Alex C

    2004-10-01

    Acrylic bone cement has considerable laboratory and clinical data validating it as a delivery material for depot administration of antibiotics. However, an alternate material that does not require a secondary procedure for removal is desired. Many biodegradable materials have been evaluated as alternatives including protein-based materials (collagen, fibrin, thrombin, clotted blood), bone-graft, bone-graft substitutes and extenders (hydroxyapatite, beta-tricalcium phosphate, calcium sulfate, bioglass), and synthetic polymers (polyhanhydride, polylactide, polyglycolide, polyhydroxybutyrate-co-hydroxyvalerate, polyhydroxyalkanoate). Various forms and combinations of these materials have been investigated worldwide, characterizing their elution properties and performance in treating osteomyelitis in animal models. Many of these have had limited clinical evaluation. Outside the United States, some of these materials are used clinically. In the United States, none have been approved. None are commercially available for clinical use. Morselized cancellous bone and calcium sulfate are the two materials that have been used clinically in the United States on a physician-prescribed, hand-mixed, basis. Considering the limited clinical data that currently are available, the use of these materials still is experimental. Clinical application should be cautious, limiting the total antibiotic load. Until definitive data are available, a prudent dose would be no higher than one that would have acceptable toxicity risk if administered intravenously over 24 hours. PMID:15552144

  10. Resin luting materials: Tissue response in dog's teeth.

    PubMed

    Bezzon, Osvaldo L; Rivera, Daniella S H; Silva, Raquel A B; Oliveira, Daniela S B; Silva-Herzog, Daniel; Nelson-Filho, Paulo; Lucisano, Marília P; Silva, Léa A B

    2015-12-01

    The aim of this study was to evaluate radiographically and histologically the pulpal and periapical response to self-adhesive (Rely X™ Unicem) and self-etching and self-curing (Multilink(®)) resin-based luting materials in deep cavities in dogs' teeth. Deep class V cavities (0.5-mm-thick dentin) were prepared in 60 canine premolars and the following materials were applied on cavity floor: Groups I/V-RelyX™ Unicem; Groups II/VI-Multilink(®); Groups III/VII-zinc phosphate cement (control) and; Groups IV/VIII-gutta-percha (control). Cavities were restored with silver amalgam. Animals were euthanized after 10 days (groups I-IV) and 90 days (groups V-VIII). Tooth/bone blocks were radiographed and processed for histopathological evaluation of pulp and periapical tissue response to the materials. All materials presented similar histopathological features and radiographic findings at both periods. The pulp tissue was intact. The apical and periapical regions and periodontal ligament thickness were normal. No inflammatory cells, resorption of mineralized tissue (dentin, cementum, and alveolar bone) or bacteria were observed. The lamina dura was intact and no areas of periapical bone rarefaction or internal/external root resorption were observed radiographically. It can be concluded that Rely X™ Unicem and Multilink(®) caused no adverse tissue reactions and may be indicated for cementation of indirect restorations in deep dentin cavities without pulp exposure. PMID:26497153

  11. The effect of different fiber reinforcements on flexural strength of provisional restorative resins: an in-vitro study

    PubMed Central

    Parkhedkar, Rambhau D.; Mowade, Tushar Krishnarao

    2012-01-01

    PURPOSE The aim of this study was to compare the flexural strength of polymethyl methacrylate (PMMA) and bis-acryl composite resin reinforced with polyethylene and glass fibers. MATERIALS AND METHODS Three groups of rectangular test specimens (n = 15) of each of the two resin/fiber reinforcement were prepared for flexural strength test and unreinforced group served as the control. Specimens were loaded in a universal testing machine until fracture. The mean flexural strengths (MPa) was compared by one way ANOVA test, followed by Scheffe analysis, using a significance level of 0.05. Flexural strength between fiber-reinforced resin groups were compared by independent samples t-test. RESULTS For control groups, the flexural strength for PMMA (215.53 MPa) was significantly lower than for bis-acryl composite resin (240.09 MPa). Glass fiber reinforcement produced significantly higher flexural strength for both PMMA (267.01 MPa) and bis-acryl composite resin (305.65 MPa), but the polyethylene fibers showed no significant difference (PMMA resin-218.55 MPa and bis-acryl composite resin-241.66 MPa). Among the reinforced groups, silane impregnated glass fibers showed highest flexural strength for bis-acryl composite resin (305.65 MPa). CONCLUSION Of two fiber reinforcement methods evaluated, glass fiber reinforcement for the PMMA resin and bis-acryl composite resin materials produced highest flexural strength. Clinical implications On the basis of this in-vitro study, the use of glass and polyethylene fibers may be an effective way to reinforce provisional restorative resins. When esthetics and space are of concern, glass fiber seems to be the most appropriate method for reinforcing provisional restorative resins. PMID:22439093

  12. Effect of power density on shrinkage of dental resin materials.

    PubMed

    Oberholzer, Theunis G; Pameijer, Cornelis H; Grobler, Sias R; Rossouw, Roelof J

    2003-01-01

    This study compares volumetric changes and rates of shrinkage during different stages of polymerization of dental resin composites and compomers exposed to the same total energy by using two different combinations of power density and exposure duration. A hybrid composite and its equivalent flowable and a compomer and its equivalent flowable were exposed using a halogen curing unit set at 400 mW/cm2 for 40 seconds and 800 mW/cm2 for 20 seconds: delivering 16 J/cm2 in both cases. Volumetric changes were recorded every 0.5 seconds using a mercury dilatometer. Ten replications per test condition were performed and the data were subjected to ANOVA. Statistically significant differences in shrinkage values and rates among different power densities were determined by means of paired t-tests at a 95% confidence level. Significantly more shrinkage (p<0.05) was found for the higher filled materials, Z250 and Dyract AP, when higher power density was used. However, no significant differences were found between their flowable counterparts when exposed to various power densities. Of the four materials, only Dyract AP exhibited no significant difference in shrinkage rate when various power densities were used. All the other materials exhibited significantly higher rates (p<0.05) at the higher power density. PMID:14531610

  13. Investigation of the effect of resin material on impact damage to graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Palmer, R. J.

    1981-01-01

    The results of an experimental program are described which establishes the feasibility and guide lines for resin development. The objective was to identify the basic epoxy neat resin properties that improve low velocity impact resistance and toughness to graphite-epoxy laminates and at the same time maintain useful structural laminate mechanical properties. Materials tests from twenty-three toughened epoxy resin matrix systems are included.

  14. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  15. Solidification of radioactive waste resins using cement mixed with organic material

    NASA Astrophysics Data System (ADS)

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-01

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  16. [Current status and further prospects of dental resin-based materials with antibacterial properties].

    PubMed

    Shi, X; Lu, H B; Mao, J; Gong, S Q

    2016-09-01

    The mode of dental antibacterial resin-based materials can be divided into two types, namely, single and combined antibacterial mode. With regard to single antibacterial mode, only one kind of antibacterial agent is added into the resin, which can be released or act as contacting antibacterial agent. The single mode resin has limitation in sterilization methods and effect. As for combined antibacterial mode, it is a combination of different types of biocides and thus maximizes the sterilizing effect, including the releasing antibacterial agent incorporated with the contacting antibacterial agent or antibacterial agents combined with calcium compound possessing biological mineralization function. In this paper, current status and further prospects of dental resin-based materials with antibacterial properties are reviewed from the perspectives of single and combined antibacterial modes to provide guidance for dental antibacterial resin material research. PMID:27596349

  17. Toward pH-responsive coating materials--high-throughput study of (meth)acrylic copolymers.

    PubMed

    Krieg, Andreas; Arici, Elif; Windhab, Norbert; Schattka, Jan Hendrik; Schubert, Stephanie; Schubert, Ulrich S

    2014-08-11

    The release behavior of a model compound (β-naphthol orange) encapsulated in (meth)acrylate-based statistical copolymers under different environmental conditions was investigated. From monomers of varying polarity (methyl acrylate, ethyl acrylate, tert-butyl acrylate, 2-ethylhexyl methacrylate, and benzyl methacrylate) in combination with methacrylic acid, five polymer series were synthesized by free radical polymerization. The pH-dependent release kinetics were investigated via UV-vis spectroscopy at pH 1.2 and 6.8, simulating physiological conditions in the stomach and intestines. Furthermore, the influence of different ethanol contents (0 and 40 vol %) in the acidic medium was investigated. The whole approach was designed to meet the requirements of a high-throughput experimentation workflow. PMID:24964068

  18. An evaluation of epoxy resin phantom materials for electron dosimetry

    NASA Astrophysics Data System (ADS)

    Nisbet, A.; Thwaites, D. I.

    1998-06-01

    The use of epoxy resin `solid water' (water substitute) phantoms is becoming increasingly common in radiotherapy dosimetry, and depth ionization curves and conversion factors from ionization to dose identical to water have often been assumed. Fluence ratios of water to solid water for WTe (produced by Radiation Physics, St Bartholomew's Hospital, London) and RMI 457 (produced by Radiation Measurements Inc., Middleton, Wisconsin) have therefore been determined and have been found to decrease with energy, which, within measurement uncertainty, can be described with a linear function dependent on mean electron beam energy at the depth of measurement, . The fluence ratios for WTe are very close to unity (i.e. within the measuring uncertainty) for most of the energies examined, the exception being a nominal 20 MeV beam. The results also show that an assumption of unity for the fluence ratios of RMI 457 may introduce a systematic error of the order of 1% in electron beam dosimetry at lower energies. As regards the depth ionization curves measured in the respective solid water materials, these are shown to be in agreement with those measured in water within the limits of the measuring uncertainty.

  19. The Effect of Artificial Aging on The Bond Strength of Heat-activated Acrylic Resin to Surface-treated Nickel-chromium-beryllium Alloy

    PubMed Central

    Al Jabbari, Youssef S.; Zinelis, Spiros; Al Taweel, Sara M.; Nagy, William W.

    2016-01-01

    Purpose The debonding load of heat-activated polymethylmethacrylate (PMMA) denture base resin material to a nickel-chromium-beryllium (Ni-Cr-Be) alloy conditioned by three different surface treatments and utilizing two different commercial bonding systems was investigated. Materials and Methods Denture resin (Lucitone-199) was bonded to Ni-Cr-Be alloy specimens treated with Metal Primer II, the Rocatec system with opaquer and the Rocatec system without opaquer. Denture base resin specimens bonded to non-treated sandblasted Ni-Cr-Be alloy were used as controls. Twenty samples for each treatment condition (80 specimens) were tested. The 80 specimens were divided into two categories, thermocycled and non-thermocycled, containing four groups of ten specimens each. The non-thermocycled specimens were tested after 48 hours’ storage in room temperature water. The thermocycled specimens were tested after 2,000 cycles in 4°C and 55°C water baths. The debonding load was calculated in Newtons (N), and collected data were subjected by non parametric test Kruskal-Wallis One Way Analysis of Variance on Ranks and Dunn’s post hoc test at the α = 0.05. Results The Metal Primer II and Rocatec system without opaquer groups produced significantly higher bond strengths (119.9 and 67.6 N), respectively, than did the sandblasted and Rocatec system with opaquer groups, where the bond strengths were 2.6 N and 0 N, respectively. The Metal Primer II was significantly different from all other groups (P<0.05). The bond strengths of all groups were significantly decreased (P<0.05) after thermocycling. Conclusions Although thermocycling had a detrimental effect on the debonding load of all surface treatments tested, the Metal Primer II system provided higher values among all bonding systems tested, before and after thermocycling. PMID:27335613

  20. Chitosan-graft-poly(n-butyl acrylate) copolymer: Synthesis and characterization of a natural/synthetic hybrid material.

    PubMed

    Anbinder, Pablo; Macchi, Carlos; Amalvy, Javier; Somoza, Alberto

    2016-07-10

    Two chitosan polymers with different deacetylation degree and molecular weight were subjected to grafting reactions with the aim to enhance the properties of these bio-based materials. Specifically, n-butyl acrylate in different proportions was grafted onto two different deacetylation degree (DD%) chitosan using radical initiation in a surfactant free emulsion system. Infrared spectroscopy was used to confirm grafting and products grafting percentage and efficiency were evaluated against acrylate/chitosan ratio and DD%. Thermal and structural properties and the behavior against water of the raw and grafted biopolymers were studied using several experimental techniques: differential scanning calorimetry, transmission electron microscopy, dynamic light scattering, water swelling, contact angle and positron annihilation lifetime spectroscopy. The influence of the grafting process on the morphological and physicochemical properties of the prepared natural/synthetic hybrid materials is discussed. PMID:27106155

  1. Effect of a silane coupling agent on the optical and the mechanical characteristics of nanodiamond/acrylic resin composites

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Gun; Chun, Yoon-Soo; Lim, Dae-Soon; Kim, Jung Youl

    2014-10-01

    Nanodiamond (ND) is a good candidate for a filler material to fabricate transparent films. This study explores a characterization of the optical and the mechanical properties of ND dispersed polymer films. An attrition milling method was adapted to break ND aggregates, and a silane coupling agent (3-methacryloxypropyltrimethoxysilane) was used to modify the ND surfaces and stabilize the dispersion. Dipentaerylthritol hexaacrylate and pentaerythritol tetraacrylate were used in the polymer matrix, and up to 3 wt.% of ND was added to improve the mechanical properties. Fabricated composites were analyzed and tested using UV-visible spectroscopy for the optical properties and a Micro-Vickers hardness tester and ball-on-disktype friction tester for the mechanical properties. Results show that the transmittance of the ND-added composite increased with decreasing aggregate size. Through the addition of small amounts of NDs, the mechanical properties were greatly improved, the material became 3.5 times as hard, and the wear rate were greatly decreased. Possible mechanisms responsible for the enhancement of the mechanical and the optical properties are discussed.

  2. Chemical resistance of optical plastics and resin for level detectors

    NASA Astrophysics Data System (ADS)

    Omegna, Cicero L.; Fontes Garcia, Jonas; Ramos-Gonzáles, Roddy E.; Barbosa, Luiz C.

    2015-09-01

    A test method was developed to find the ideal optical material that supports the chemical reaction of some fuels. Optical plastics and resin were submerged for long periods of time in reservoirs of ethanol, gasoline, Diesel and biodiesel. The dimensional change and weight change of the submerged samples was measured. A special resin successfully supported the chemical attack of fuels. Samples of acrylic polymer and polycarbonate were used as type of optical plastic.

  3. The effect of two artificial salivas on the adhesion of Candida albicans to heat-polymerized acrylic resin

    PubMed Central

    2015-01-01

    PURPOSE Xerostomia can diminish the quality of life, leads to changes in normal chemical composition of saliva and oral microbiata, and increases the risk for opportunistic infections, such as Candida albicans. Various artificial salivas have been considered for patients with xerostomia. However, the knowledge on the antifungal and antiadhesive activity of artificial saliva substitutes is limited. The aim of the present study was to evaluate influence of two artificial salivas on the adhesion of Candida albicans to the polymethylmethacrylate disc specimens. MATERIALS AND METHODS Two commercial artificial salivas (Saliva Orthana and Biotene Oral Balance Gel) were selected. 45 polymethylmethacrylate disc specimens were prepared and randomly allocated into 3 groups; Saliva Orthana, Biotene-Oral Balance gel and distilled water. Specimens were stored in the artificial saliva or in the sterile distilled water for 60 minutes at 37℃. Then they were exposed to yeast suspensions including Candida albicans. Yeast cells were counted using ×40 magnification under a light microscope and data were analysed. RESULTS Analysis of data indicated statistically significant difference in adhesion of Candida albicans among all experimental groups (P=.000). Findings indicated that Saliva Orthana had higher adhesion scores than the Biotene Oral Balance gel and distilled water (P<.05). CONCLUSION In comparison of Saliva Orthana, the use of Biotene Oral Balance Gel including lysozyme, lactoferrin and peroxidase may be an appropriate treatment method to prevent of adhesion of Candida albicans and related infections in patients with xerostomia. PMID:25932306

  4. The sensitizing capacity of multifunctional acrylates in the guinea pig.

    PubMed

    Björkner, B

    1984-10-01

    The multifunctional acrylates used in ultraviolet (UV) curable resins act as cross-linkers and "diluents". They are usually based on di(meth)acrylate esters of dialcohols or tri- and tetra-acrylate esters of polyalcohols. In UV-curable coatings, the most commonly used are pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and 1,6-hexanediol diacrylate (HDDA). In other uses, such as dental composite resin materials, the dimethacrylic monomers based on n-ethylene glycol are the most useful. The sensitizing capacity of various multifunctional acrylates and their cross-reactivity pattern have been investigated with the guinea pig maximization test. The tests show that BUDA (1,4-butanediol diacrylate) and HDDA are moderate to strong sensitizers and that they probably cross-react with each other. The n-ethylene glycol diacrylates and methacrylates tested are weak or non-sensitizers. Tripropylene glycol diacrylate (TPGDA) is a moderate and neopentyl glycol diacrylate (NPGDA) a strong sensitizer, whereas neopentyl glycol dimethacrylate is a non-sensitizer. The commercial PETA is a mixture of pentaerythritol tri- and tetra-acrylate (PETA-3 and PETA-4). PETA-3 is a much stronger sensitizer than PETA-4. Simultaneous reactions were seen between PETA-3, PETA-4 and TMPTA. The oligotriacrylate OTA 480 is a moderate sensitizer, but no concomitant reactions were seen with PETA-3, PETA-4 or TMPTA. Of the multifunctional acrylates tested, the di- and triacrylic compounds should be regarded as potent sensitizers. The methacrylated multifunctional acrylic compounds are weak or non-sensitizers. PMID:6499426

  5. Phenolic cation exchange resin material for recovery of cesium and strontium

    DOEpatents

    Ebra, Martha A.; Wallace, Richard M.

    1983-01-01

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear waste solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs.sup.+ and Sr.sup.2+ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  6. Phenolic cation-exchange resin material for recovery of cesium and strontium. [Patent application

    DOEpatents

    Ebra, M.A.; Wallace, R.M.

    1982-05-05

    A phenolic cation exchange resin with a chelating group has been prepared by reacting resorcinol with iminodiacetic acid in the presence of formaldehyde at a molar ratio of about 1:1:6. The material is highly selective for the simultaneous recovery of both cesium and strontium from aqueous alkaline solutions, such as, aqueous alkaline nuclear wate solutions. The organic resins are condensation polymers of resorcinol and formaldehyde with attached chelating groups. The column performance of the resins compares favorably with that of commercially available resins for either cesium or strontium removal. By combining Cs/sup +/ and Sr/sup 2 +/ removal in the same bed, the resins allow significant reduction of the size and complexity of facilities for processing nuclear waste.

  7. A theoretical study of resin flows for thermosetting materials during prepreg processing

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  8. Repair bond strength of dual-cured resin composite core buildup materials

    PubMed Central

    El-Deeb, Heba A.; Ghalab, Radwa M.; Elsayed Akah, Mai M.; Mobarak, Enas H.

    2015-01-01

    The reparability of dual-cured resin composite core buildup materials using a light-cured one following one week or three months storage, prior to repair was evaluated. Two different dual-cured resin composites; Cosmecore™ DC automix and Clearfil™ DC automix core buildup materials and a light-cured nanofilled resin composite; Filtek™ Z350 XT were used. Substrate specimens were prepared (n = 12/each substrate material) and stored in artificial saliva at 37 °C either for one week or three months. Afterward, all specimens were ground flat, etched using Scotchbond™ phosphoric acid etchant and received Single Bond Universal adhesive system according to the manufacturers’ instructions. The light-cured nanofilled resin composite (Filtek™ Z350 XT) was used as a repair material buildup. To determine the cohesive strength of each solid substrate material, additional specimens from each core material (n = 12) were prepared and stored for the same periods. Five sticks (0.8 ± 0.01 mm2) were obtained from each specimen (30 sticks/group) for microtensile bond strength (μTBS) testing. Modes of failure were also determined. Two-way ANOVA revealed a significant effect for the core materials but not for the storage periods or their interaction. After one week, dual-cured resin composite core buildup materials (Cosmecore™ DC and Clearfil™ DC) achieved significantly higher repair μTBS than the light-cured nanofilled resin composite (Filtek™ Z350 XT). However, Clearfil™ DC revealed the highest value, then Cosmecore™ DC and Filtek™ Z350 XT, following storage for 3-month. Repair strength values recovered 64–86% of the cohesive strengths of solid substrate materials. The predominant mode of failure was the mixed type. Dual-cured resin composite core buildup materials revealed acceptable repair bond strength values even after 3-month storage. PMID:26966567

  9. Synthesis of Radiation Curable Palm Oil-Based Epoxy Acrylate: NMR and FTIR Spectroscopic Investigations.

    PubMed

    Salih, Ashraf M; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md Zin Wan

    2015-01-01

    Over the past few decades, there has been an increasing demand for bio-based polymers and resins in industrial applications, due to their potential lower cost and environmental impact compared with petroleum-based counterparts. The present research concerns the synthesis of epoxidized palm oil acrylate (EPOLA) from an epoxidized palm oil product (EPOP) as environmentally friendly material. EPOP was acrylated by acrylic acid via a ring opening reaction. The kinetics of the acrylation reaction were monitored throughout the reaction course and the acid value of the reaction mixture reached 10 mg KOH/g after 16 h, indicating the consumption of the acrylic acid. The obtained epoxy acrylate was investigated intensively by means of FTIR and NMR spectroscopy, and the results revealed that the ring opening reaction was completed successfully with an acrylation yield about 82%. The UV free radical polymerization of EPOLA was carried out using two types of photoinitiators. The radiation curing behavior was determined by following the conversion of the acrylate groups. The cross-linking density and the hardness of the cured EPOLA films were measured to evaluate the effect of the photoinitiator on the solid film characteristics, besides, the thermal and mechanical properties were also evaluated. PMID:26248072

  10. Poly(amide-graft-acrylate) interfacial compounds

    NASA Astrophysics Data System (ADS)

    Zamora, Michael Perez

    Graft copolymers with segments of dissimilar chemistries have been shown to be useful in a variety of applications as surfactants, compatibilizers, impact modifiers, and surface modifiers. The most common route to well defined graft copolymers is through the use of macromonomers, polymers containing a reactive functionality and thus capable of further polymerization. However, the majority of the studies thus far have focused on the synthesis of macromonomers capable of reacting with vinyl monomers to form graft copolymers. This study focused on the synthesis of macromonomers capable of participating in condensation polymerizations. A chain transfer functionalization method was utilized. Cysteine was evaluated as a chain transfer agent for the synthesis of amino acid functionalized poly(acrylate) and poly(methacrylate) macromonomers. Low molar mass, functionalized macromonomers were produced. These macromonomers were proven to be capable of reacting with amide precursors to form poly(amide-g-acrylate) graft copolymers. Macromonomers and graft copolymers were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR) spectroscopy, elemental analysis (EA), inductively coupled plasma (ICP), and differential scanning calorimetry (DSC). The second part of this research involved poly(dimethacrylate) dental restorative materials. Volumetric shrinkage during the cure of these resins results in a poor interface between the resin and the remaining tooth structure, limiting the lifetime of these materials. Cyclic anhydrides were incorporated into common monomer compositions used in dental applications. Volume expansion from the ring opening hydrolysis of these anhydrides was shown to be feasible. The modified dental resins were characterized by swelling, extraction and ultraviolet spectroscopy (UV), and density measurements. Linear poLymers designed to model the crosslinked dental resins were

  11. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2011-07-12

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  12. Electronically and ionically conductive porous material and method for manufacture of resin wafers therefrom

    DOEpatents

    Lin, YuPo J.; Henry, Michael P.; Snyder, Seth W.

    2008-11-18

    An electrically and ionically conductive porous material including a thermoplastic binder and one or more of anion exchange moieties or cation exchange moieties or mixtures thereof and/or one or more of a protein capture resin and an electrically conductive material. The thermoplastic binder immobilizes the moieties with respect to each other but does not substantially coat the moieties and forms the electrically conductive porous material. A wafer of the material and a method of making the material and wafer are disclosed.

  13. Effects of Protective Resin Coating on the Surface Roughness and Color Stability of Resin-Based Restorative Materials

    PubMed Central

    Tüzüner, Tamer; Korkmaz, Fatih Mehmet; Baygın, Özgül; Bağış, Yıldırım Hakan

    2014-01-01

    The aim of this study was to evaluate the effects of nanofilled protective resin coating (RC) on the surface roughness (Ra) and color stability (ΔE) of resin-based restorative materials (RM) (compomer (C), nanofilled composite (NF), and microhybrid composite (MH)) after being submitted to the ultraviolet aging (UV) method. Thirty-six specimens were prepared (n = 6 for each group). The Ra and (ΔE) values and SEM images were obtained before and after UV. Significant interactions were found among the RM-RC-UV procedures for Ra (P < 0.001). After the specimens were submitted to UV, the Ra values were significantly increased, regardless of the RC procedure (with RC; P < 0.01 for all, without RC; C (P < 0.01), NF (P < 0.001), and MH (P < 0.001)) for each RM. Significant interactions were found between the RM-RC (P < 0.001) procedures for the ΔE values. The ΔE values were increased in each group after applying the RC procedures (P < 0.001). Protective RC usage for RM could result in material-related differences in Ra and ΔE as with used UV method. PMID:25162066

  14. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base

    PubMed Central

    ArRejaie, Aws S.; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  15. The Reinforcement Effect of Nano-Zirconia on the Transverse Strength of Repaired Acrylic Denture Base.

    PubMed

    Gad, Mohammed; ArRejaie, Aws S; Abdel-Halim, Mohamed Saber; Rahoma, Ahmed

    2016-01-01

    Objective. The aim of this study was to evaluate the effect of incorporation of glass fiber, zirconia, and nano-zirconia on the transverse strength of repaired denture base. Materials and Methods. Eighty specimens of heat polymerized acrylic resin were prepared and randomly divided into eight groups (n = 10): one intact group (control) and seven repaired groups. One group was repaired with autopolymerized resin while the other six groups were repaired using autopolymerized resin reinforced with 2 wt% or 5 wt% glass fiber, zirconia, or nano-zirconia particles. A three-point bending test was used to measure the transverse strength. The results were analyzed using SPSS and repeated measure ANOVA and post hoc least significance (LSD) test (P ≤ 0.05). Results. Among repaired groups it was found that autopolymerized resin reinforced with 2 or 5 wt% nano-zirconia showed the highest transverse strength (P ≤ 0.05). Repairs with autopolymerized acrylic resin reinforced with 5 wt% zirconia showed the lowest transverse strength value. There was no significant difference between the groups repaired with repair resin without reinforcement, 2 wt% zirconia, and glass fiber reinforced resin. Conclusion. Reinforcing of repair material with nano-zirconia may significantly improve the transverse strength of some fractured denture base polymers. PMID:27366150

  16. Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1988-01-01

    Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.

  17. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  18. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  19. 49 CFR 173.173 - Paint, paint-related material, adhesives, ink and resins.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Paint, paint-related material, adhesives, ink and... Than Class 1 and Class 7 § 173.173 Paint, paint-related material, adhesives, ink and resins. (a) When... requirements apply. Except as otherwise provided in this part, the description “Paint” is the proper...

  20. Evaluation of MMA-4-META-TBB resin as a dental adhesive material.

    PubMed

    Kuo, Y S

    1984-04-01

    A new adhesive resin containing a reactive monomer, 4-methacryloxyethyl trimellitate anhydride (4-META) was prepared, and its application to hard tooth tissues and metals was studied. Scanning electron microscopy showed that the average length of 4-META resin tags in enamel and dentin was 22 mu and 40 mu respectively. The tensile adhesive strength between 4-META resin and enamel was about 130 kg/cm2 after etching with 65% phosphoric acid. Its bond strength to dentin treated with a cleaning solution of 10% citric acid and 3% ferric chloride was about 190 kg/cm2. In precious alloys heated at 500 degrees C for 5-10 minutes, a bond strength of more than 100 kg/cm2 was obtained. The precious alloys containing Au, Ag, Pt and Cu should be selected especially for dental restorations. In polished non-precious alloys, the bond strength was greater than 100 kg/cm2. If non-precious alloys were oxidized with HNO3, the bond strength increased to 150-200 kg/cm2. The results suggest that the nickel-chromium alloy used in fixed prosthodontics must be treated chemically before adhesion with 4-META resin, but cobalt-chromium alloy used in removable partial dentures bonds well with 4-META resin without chemical treatment. In conclusion, MMA-4-META-TBB resin seems to be a promising adhesive material in dentistry. PMID:6571588

  1. Influence of temperature on styrene emission from a vinyl ester resin thermoset composite material.

    PubMed

    Crawford, Shaun; Lungu, Claudiu T

    2011-08-15

    Composite materials made with vinyl ester resins are lighter, stronger and corrosion resistant compared to most metals, and are increasingly being used as building materials and in public transportation. Styrene monomer is used as both a diluent and strengthener in the production of vinyl ester resin (VER) composites. Some researchers contend that free styrene in VER composites is available to diffuse out of the material into air, perhaps leading to adverse health effects via inhalation exposures in humans, yet there is no known data on styrene emissions from these materials in the literature. In this study, a typical VER composite made with resin containing 38% by weight styrene, reinforced with E-glass fiber and formed using a vacuum assisted resin transfer method was characterized for styrene emissions by environmental test chamber (ETC) methodology. Styrene concentrations in the ETC were measured over a temperature range of 10 to 50 °C. Initial evaporative styrene emissions increase with increasing temperature. There is a nearly linear relationship in the total mass of styrene emitted and emission factor as emissions increase with increasing temperature. Styrene emission factors appear to vary for different materials, which could indicate more complex processes or the influence of material physical properties on emission rates. These results can be used to validate and improve mass transfer emission models for the prediction of volatile organic compound concentrations in indoor environments. PMID:21689842

  2. Effect of disinfection of custom tray materials on adhesive properties of several impression material systems.

    PubMed

    Thompson, G A; Vermilyea, S G; Agar, J R

    1994-12-01

    The effects of impression tray disinfection procedures on the bond strength of impression-material adhesives to two types of resin trays were evaluated with a tensile test. Autopolymerizing acrylic resin and a visible light-curing resin were formed into one-half inch cubes. A screw eye was attached to each cube before polymerization. Perforated trays were fabricated with stops to maintain an even one-eighth inch of impression material over the resin block. Hooks on the opposite side permitted attachment of the metal plate to a mechanical testing machine. Before adhesive was applied, one third of the resin specimens were immersed in a 1:213 iodophor solution; one third in a 10% sodium hypochlorite solution, and one third were kept in the "as fabricated" condition. Polysulfide, polyether, and polyvinyl siloxane impression material-adhesive systems were evaluated. The resin-impression material-metal plate couples were attached to a mechanical testing machine and tensile forces were applied at a separation rate of 5 inches per minute. Mean values for adhesive strength ranged from 3.49 kg/cm2 for the autopolymerizing acrylic resin/iodophor/polyether combination to 10.55 kg/cm2 for the autopolymerizing acrylic resin/untreated/polyvinyl siloxane combination. Differences were detected among materials and disinfecting procedure. Clinically, disinfection of resin trays may adversely affect retention of the impression material to the tray. PMID:7853264

  3. Acrylate Systemic Contact Dermatitis.

    PubMed

    Sauder, Maxwell B; Pratt, Melanie D

    2015-01-01

    Acrylates, the 2012 American Contact Dermatitis Society allergen of the year, are found in a range of products including the absorbent materials within feminine hygiene pads. When fully polymerized, acrylates are nonimmunogenic; however, if not completely cured, the monomers can be potent allergens.A 28-year-old woman is presented, who had her teeth varnished with Isodan (Septodont, Saint-Maur-des-Fossés, France) containing HEMA (2-hydroxyethyl methacrylate) with no initial reaction. Approximately 1 month later, the patient developed a genital dermatitis secondary to her feminine hygiene pads. The initial reaction resolved, but 5 months later, the patient developed a systemic contact dermatitis after receiving a second varnishing.The patient was dramatically patch test positive to many acrylates. This case demonstrates a reaction to likely unpolymerized acrylates within a feminine hygiene pad, as well as broad cross-reactivity or cosensitivity to acrylates, and possibly a systemic contact dermatitis with systemic re-exposure to unpolymerized acrylates. PMID:26367207

  4. Evaluation of chitosan quaternary ammonium salt-modified resin denture base material.

    PubMed

    Song, Rong; Zhong, Zhaohua; Lin, Lexun

    2016-04-01

    Chitosan quaternary ammonium salt displays good antioxidant and antibacterial characteristics and it shows appreciable solubility in water. When added to the traditional denture material to form a resin base, it could promote good oral health by improving the oral environment. In this study, chitosan quaternary ammonium salt was added to the denture material following two different methods. After three months of immersion in artificial saliva, the specimens were tested for tensile strength and were scanned by electron microscope. The murine fibroblast cytotoxicity and antibacterial properties were also tested. The result showed no significant differences in the tensile strength and in the proliferation of murine L929 fibroblast cells. The two structures of chitosan quaternary ammonium salt-modified denture material had different degrees of corrosion resistance and antimicrobial properties. These results indicate that chitosan quaternary ammonium salt-modified resin denture base material has the potential to become a new generation oral denture composite material. PMID:26718869

  5. Epoxy resin synthesis using low molecular weight lignin separated from various lignocellulosic materials.

    PubMed

    Asada, Chikako; Basnet, Sunita; Otsuka, Masaya; Sasaki, Chizuru; Nakamura, Yoshitoshi

    2015-03-01

    A low molecular weight lignin from various lignocellulosic materials was used for the synthesis of bio-based epoxy resins. The lignin extracted with methanol from steam-exploded samples (steaming time of 5 min at steam pressure of 3.5 MPa) from different biomasses (i.e., cedar, eucalyptus, and bamboo) were functionalized by the reaction with epichlorohydrin, catalyzed by a water-soluble phase transfer catalyst tetramethylammonium chloride, which was further reacted with 30 wt% aqueous NaOH for ring closure using methyl ethyl ketone as a solvent. The glycidylated products of the lignin with good yields were cured to epoxy polymer networks with bio-based curing agents i.e., lignin itself and a commercial curing agent TD2131. Relatively good thermal properties of the bio-based epoxy network was obtained and thermal decomposition temperature at 5% weight loss (Td5) of cedar-derived epoxy resin was higher than that derived from eucalyptus and bamboo. The bio-based resin satisfies the stability requirement of epoxy resin applicable for electric circuit boards. The methanol-insoluble residues were enzymatically hydrolyzed to produce glucose. This study indicated that the biomass-derived methanol-soluble lignin may be a promising candidate to be used as a substitute for petroleum-based epoxy resin derived from bisphenol A, while insoluble residues may be processed to give a bioethanol precursor i.e., glucose. PMID:25572718

  6. In vitro evaluation of bond strength and surface roughness of a resin-paint material.

    PubMed

    Muraguchi, Koichi; Suzuki, Shiro; Minami, Hiroyuki; Tanaka, Takuo

    2004-09-01

    This study investigated the stability of a resin-paint material (Master Palette)--which was developed for chairside shade modification of composite restorations--by evaluating its bond strength to indirect resin composite and surface degradation. Bond strength was evaluated with four surface treatments including an application of methylene chloride, airborne particle abrasion with 50 microm aluminum oxide, and additional applications of bonding agents after air-abrasion. The surface roughness (Rz value) of both the resin-paint and indirect resin composite before and after thermo-cycling (4-60 degrees C, 50,000 cycles) was also evaluated. All data were statistically analyzed by two-way ANOVA and Boneferroni's test (p=0.05). It was found that bond strength was improved by bonding agent application (14.9+/-1.9 MPa to 18.6+/-2.2 MPa, p<0.0054) after thermo-cycling. As for surface roughness, its results after thermo-cycling (2.7+/-0.2 microm, p<0.001) demonstrated that the resin-paint needed further improvements to maintain the original surface texture. PMID:15510873

  7. Synthesis and characterization of amphoteric resins and its use for treatment of radioactive liquid waste

    SciTech Connect

    Siyam, T.; El-Naggar, I.M.; Aly, H.F.

    1996-12-31

    Amphoteric resins such as poly (acrylamide-acrylic acid-diallylamine-hydrochloride) {open_quotes}P(AH-AA-DAA){sup +}Cl{close_quotes} and poly (acrylamide-acrylic acid-dially-ethylamine-hydrochloride) {open_quotes}P(AM-AA-DAEA){sup +} Cl{close_quotes} were prepared by gamma radiation-induced polymerization of acrylic acid {open_quotes}AA{close_quotes} in the presence of poly(amidoamines) such as poly(acryl-amide-diallyamine-hydrochloride) {open_quotes}P(AM- DAAH){sup +}Cl{close_quotes} and poly(acrylamide-dially-ethylamine-hydrochloride){close_quotes}P(AM-DAEAH){sup +} Cl{sup -}{close_quotes} it as template polymers using a template polymerization technique. Spectroscopic studies showed that resins contain both amide- and carboxylic groups, and the peak of {r_angle}NH of amine salts at (3000-2700 cm{sup {minus}1}) and (2700-2500 cm{sup {minus}1}) is disappeared. This indicates that the addition of acrylic acid monomer on ammonium groups. These ammonium groups in template polymers are converted into acrylic acid chain ends in the obtained resins accordingly, the probability of the polymer degradation of decreases may be attributed to the high radiation stability of these chain ends of acrylic acid units. The capacities of the obtained resins increase by increasing the absorbed doses of about {approximately}20 kGy, but at high doses the capacities decrease. On increasing the amines ratio in template polymers the capacities of resins for cation decreased but increased for anions. The capacities of the product materials to some heavy metal ions decrease with increasing the hydrogen ion concentrations and the selectivity is decreased in the order Cu{sup 2+} > Co{sup 2+} > Cs{sup +}.

  8. New Anion-Exchange Resins for Improved Separations of Nuclear Material

    SciTech Connect

    Barr, Mary E.; Bartsch, Richard A.; Jarvinen, Gordon D.

    2000-06-01

    We are developing bifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding site characteristics. Resin materials that actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. Our implementation of the 'bifunctionality concept' involves N-derivatization of pyridinium units from a base poly(4- vinylpyridine) resin (PVP) with a second cationic site, such that the two anion-exchange sites are linked by 'spacer' arms of varying length and flexibility. The overall objective of our research is to develop a predictive capability that allows the facile design and implementation of multi-functionalized anion-exchange materials to selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials:Tanks, Plutonium; Subsurface Contaminants; Mixed Waste; and Efficient Separations. Sites within the DOE complex which would benefit from the improved anion exchange technology include Hanford, Idaho, Los Alamos, Oak Ridge, and Savannah River.

  9. Composite resin in medicine and dentistry.

    PubMed

    Stein, Pamela S; Sullivan, Jennifer; Haubenreich, James E; Osborne, Paul B

    2005-01-01

    Composite resin has been used for nearly 50 years as a restorative material in dentistry. Use of this material has recently increased as a result of consumer demands for esthetic restorations, coupled with the public's concern with mercury-containing dental amalgam. Composite is now used in over 95% of all anterior teeth direct restorations and in 50% of all posterior teeth direct restorations. Carbon fiber reinforced composites have been developed for use as dental implants. In medicine, fiber-reinforced composites have been used in orthopedics as implants, osseous screws, and bearing surfaces. In addition, hydroxyapatite composite resin has become a promising alternative to acrylic cement in stabilizing fractures and cancellous screw fixation in elderly and osteoporotic patients. The use of composite resin in dentistry and medicine will be the focus of this review, with particular attention paid to its physical properties, chemical composition, clinical applications, and biocompatibility. PMID:16393132

  10. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora).

    PubMed

    Sabbagh, Joseph; Vreven, José; Leloup, Gaetane

    2004-01-01

    This study compared the radiopacity of 41 resin-based materials using conventional dental x-ray film (Ultraspeed-D) and a digital system (Digora) based on storage phosphor plate technology. For the film-based technique, optical density measurements were carried out using an X-Rite densitometer. Al equivalents (mm) were calculated as described in the literature using a calibration curve of Optical Density versus the thickness of aluminum. Regarding the digital system after exposures of 0.16 and 0.32 seconds, the images were exported to an image processing software (NIH Image Engineering). An approach similar to that used for optical density was used to generate a calibration curve for gray pixel values. Linear correlations were found between the percentage of fillers by weight and x-ray film radiopacity and the Digora system, and the same coefficient of estimation was recorded (r=0.60; p< or = 0.05). A linear correlation was also observed between the conventional x-ray film technique and the Digora system (r=0.93;p< or = 0.05). Using two different exposure times did not affect the radiopacity. Considerable differences were found among materials of the same category. Flowable resin composites were more radiopaque than dentin, while microfine composites were "radiolucent." Most of the available resin-based materials were more radiopaque than enamel. The radiopacity of resin composites depended on their fillers (percentage and type). Using elements with low atomic numbers (Si) resulted in radiolucent materials, while adding elements with high molecular numbers (Ba, Y, Yb), resulted in radiopaque resin composites. Despite the numerous benefits offered by the digital imaging system (low irradiation dose, instant image, image manipulation), the conventional x-ray film technique seems to be more accurate for radiopacity measurements. PMID:15646224

  11. Considerations regarding the optical properties of the composite resin restorative materials.

    PubMed

    Manolea, H; Râcă, R; Coleş, Evantia; Preotu, Gabriela; Mărăşescu, P

    2011-07-01

    The purpose of this study has been to investigate the effects of certain substances frequently used in alimentation on the color stability of the composite resin restorative materials. The research hypothesis was that color stability of the composite resin is affected by the type of composite material used and by the polishing procedure. 14 samples of 5X15X2mm have been prepared from seven universal light curing restorative composite resins. The materials have manipulated and cured using LA 500 Blue Light lamp. A first color determination was done before the introduction of the samples in the dyeing agent with the help of an Easy Shade device. The samples have been splited into two lots each with seven samples. The samples from the first lot have been sectioned into three equal segments. The samples from the second lot have also been sectioned into three equal segments, and in addition to the previous group, their exterior surfaces were processed with a diamond burr. For each type of composite we have introduced a sample in one of the three chosen dyes: red alimentary colorant, coffee and red wine. The color of the samples has been determined again using the Vita Easy Shade device. From clinical point of view the results of this study shows that there are three important factors that matter when we talk about durable aesthetic results: the type of composite resin used for the restoration, the finishing and polishing procedures and the pacients' alimentation habits. The composite resins with a good representation of the anorganic structure are easier to be polished, therefore they have only slight color modifications. Using plastic matrixes for shaping the exterior surface of the restoration is the best solution for obtaining a very smooth surface. The most significant color modifications have been done by the red wine. Coffee and to a smaller extent the red alimentary colorant have modified the color of the restoration material in a smaller degree. PMID:24778835

  12. Advanced composites: Fabrication processes for selected resin matrix materials

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note is based on present state of the art for epoxy and polyimide matrix composite fabrication technology. Boron/epoxy and polyimide and graphite/epoxy and polyimide structural parts can be successfully fabricated. Fabrication cycles for polyimide matrix composites have been shortened to near epoxy cycle times. Nondestructive testing has proven useful in detecting defects and anomalies in composite structure elements. Fabrication methods and tooling materials are discussed along with the advantages and disadvantages of different tooling materials. Types of honeycomb core, material costs and fabrication methods are shown in table form for comparison. Fabrication limits based on tooling size, pressure capabilities and various machining operations are also discussed.

  13. Materials Characterisation and Analysis for Flow Simulation of Liquid Resin Infusion

    NASA Astrophysics Data System (ADS)

    Sirtautas, J.; Pickett, A. K.; George, A.

    2015-06-01

    Liquid Resin Infusion (LRI) processes including VARI and VARTM have received increasing attention in recent years, particularly for infusion of large parts, or for low volume production. This method avoids the need for costly matched metal tooling as used in Resin Transfer Moulding (RTM) and can provide fast infusion if used in combination with flow media. Full material characterisation for LRI analysis requires models for three dimensional fabric permeability as a function of fibre volume content, fabric through-thickness compliance as a function of resin pressure, flow media permeability and resin viscosity. The characterisation of fabric relaxation during infusion is usually determined from cyclic compaction tests on saturated fabrics. This work presents an alternative method to determine the compressibility by using LRI flow simulation and fitting a model to experimental thickness measurements during LRI. The flow media is usually assumed to have isotropic permeability, but this work shows greater simulation accuracy from combining the flow media with separation plies as a combined orthotropic material. The permeability of this combined media can also be determined by fitting the model with simulation to LRI flow measurements. The constitutive models and the finite element solution were validated by simulation of the infusion of a complex aerospace demonstrator part.

  14. New anion-exchange resins for improved separations of nuclear materials. Mid-year progress report

    SciTech Connect

    Barr, M.E.

    1997-06-01

    'The authors are developing multi-functional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion exchange technology. The overall objective of the research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional site interactions in order to determine optimal binding-site characteristics. Their approach uses a thorough determination of the chemical species both in solution and as bound to the resin to determine the characteristics of resin active sites which can actively facilitate specific metal-complex sorption to the resin. The first year milestones were designed to allow us to build off of their extensive expertise with plutonium in nitrate solutions prior to investigating other, less familiar systems. While the principle investigators have successfully developed actinide chelators and ion-exchange materials in the past, the authors were fully aware that integration of this two fields would be challenging, rewarding and, at times, highly frustrating. Relatively small differences in the substrate (cross-linkage, impurities), the active sites (percent substitution, physical accessibility), the actinide solution (oxidation state changes, purity) and the analytical procedures (low detection limits) can produce inconsistent sorption behavior which is difficult to interpret. The potential paybacks for success, however, are enormous. They feel that they have learned a great deal about how to control these numerous variables to produce consistent, reliable analysis of

  15. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, H.L.; Black, S.K.; Diebold, J.P.; Kreibich, R.E.

    1993-08-10

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  16. Resole resin products derived from fractionated organic and aqueous condensates made by fast-pyrolysis of biomass materials

    DOEpatents

    Chum, Helena L.; Black, Stuart K.; Diebold, James P.; Kreibich, Roland E.

    1993-01-01

    A process for preparing phenol-formaldehyde resole resins by fractionating organic and aqueous condensates made by fast-pyrolysis of biomass materials while using a carrier gas to move feed into a reactor to produce phenolic-containing/neutrals in which portions of the phenol normally contained in said resins are replaced by a phenolic/neutral fractions extract obtained by fractionation.

  17. Fracture resistance of endodontically treated teeth restored with a bulkfill flowable material and a resin composite

    PubMed Central

    Isufi, Almira; Plotino, Gianluca; Grande, Nicola Maria; Ioppolo, Pietro; Testarelli, Luca; Bedini, Rossella; Al-Sudani, Dina; Gambarini, Gianluca

    2016-01-01

    Summary Aim To determine and compare the fracture resistance of endodontically treated teeth restored with a bulk fill flowable material (SDR) and a traditional resin composite. Methods Thirty maxillary and 30 mandibular first molars were selected based on similar dimensions. After cleaning, shaping and filling of the root canals and adhesive procedures, specimens were assigned to 3 subgroups for each tooth type (n=10): Group A: control group, including intact teeth; Group B: access cavities were restored with a traditional resin composite (EsthetX; Dentsply-Italy, Rome, Italy); Group C: access cavities were restored with a bulk fill flowable composite (SDR; Dentsply-Italy), except 1.5 mm layer of the occlusal surface that was restored with the same resin composite as Group B. The specimens were subjected to compressive force in a material static-testing machine until fracture occurred, the maximum fracture load of the specimens was measured (N) and the type of fracture was recorded as favorable or unfavorable. Data were statistically analyzed with one-way analysis of variance (ANOVA) and Bonferroni tests (P<0.05). Results No statistically significant differences were found among groups (P<0.05). Fracture resistance of endodontically treated teeth restored with a traditional resin composite and with a bulk fill flowable composite (SDR) was similar in both maxillary and mandibular molars and showed no significant decrease in fracture resistance compared to intact specimens. Conclusions No significant difference was observed in the mechanical fracture resistance of endodontically treated molars restored with traditional resin composite restorations compared to bulk fill flowable composite restorations. PMID:27486505

  18. Radiopacity of different shades of resin-based restorative materials compared to human and bovine teeth.

    PubMed

    Pekkan, Gurel; Ozcan, Mutlu

    2012-01-01

    This study evaluated the radiopacity of different shades of resin-based restorative materials and compared the results to human and bovine dental hard tissues. Disk specimens 6 mm in diameter and 1 mm thick (N = 220, n = 10) were prepared from the following restorative materials: · eight shades of nanofilled composite (Aelite Aesthetic Enamel), · seven shades of nanohybrid composite (Grandio Universal), · six shades of photopolymerized polyacid modified compomer (Glasiosite), and · one shade of hybrid composite (X-tra fil U). Human canine dentin (n = 10), bovine enamel (n = 10), and an aluminum (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted, and equivalent Al thickness (eq Al) values were determined for radiopacity measurements of each material. The data were analyzed using a non-parametric one-way ANOVA (Kruskal-Wallis), and multiple comparisons were made with a Student-Newman-Keuls post hoc test (a = 0.05). Different shades of resin-based restorative materials tested did not reveal statistically significant differences within each material group (p > 0.05). Radiopacity values of the resin-based restorative materials investigated varied depending on their types; however, within different shades of one material type, radiopacity values were comparable. Every shade of nanocomposite material other than Aelite Aesthetic Enamel Incisal LT Gray showed comparable radiopacity to human dentin. Other materials tested demonstrated higher radiopacity compared to human dentin and bovine enamel. PMID:22782058

  19. INFLUENCE OF ENVIRONMENTAL CONDITIONS ON PROPERTIES OF IONOMERIC AND RESIN SEALANT MATERIALS

    PubMed Central

    Kantovitz, Kamila Rosamilia; Pascon, Fernanda Miori; Correr, Gisele Maria; Alonso, Roberta Caroline Bruschi; Rodrigues, Lidiany Karla Azevedo; Alves, Marcelo Correa; Puppin-Rontani, Regina Maria

    2009-01-01

    Objectives: The aim of this study was to determine the effect of environmental conditions on the degradation of ionomeric and resin sealant materials. Material and Methods: FluroShield, Vitremer, and Ketac Molar disc-shaped specimens (n=18/material) were prepared, polished, subjected to initial hardness and roughness readings. Six discs of each material were randomly assigned to one of three different storage solutions: 0.3% citric acid (CA), demineralization solution (DE), and remineralization solution (RE). The specimens were individually immersed in 3 mL of the test solutions, which were daily changed. After 15 days of storage, new surface roughness and hardness readings were done. Fluoride release in the solutions was measured within 15 days. Data were analyzed by ANOVA and Tukey's and Contrast tests (α=0.05). Results: The storage in CA increased the roughness of Vitremer and Ketac Molar. A significant reduction in hardness was observed for all materials after storage in all solutions. For all materials, the greatest amounts of fluoride release occurred during the 1st day. FluroShield presented the same patterns of fluoride release in all solutions. Ketac Molar and Vitremer released the highest amounts of fluoride in the CA solution. Conclusions: Ionomeric materials are more susceptible to degradation than resin-based materials under acidic conditions. Acidic conditions lead to a higher fluoride release from ionomeric materials. PMID:19668988

  20. Methyl acrylate

    Integrated Risk Information System (IRIS)

    Methyl acrylate ; CASRN 96 - 33 - 3 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  1. Acrylic acid

    Integrated Risk Information System (IRIS)

    Acrylic acid ( CASRN 79 - 10 - 7 ) Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Eff

  2. Effects of WO3 Particle Size in WO3/Epoxy Resin Radiation Shielding Material

    NASA Astrophysics Data System (ADS)

    Dong, Yu; Chang, Shu-Quan; Zhang, Hong-Xu; Ren, Chao; Kang, Bin; Dai, Ming-Zhu; Dai, Yao-Dong

    2012-10-01

    To verify the influence of the functional elements particular size for the radiation attenuation coefficients and mechanical properties radiation shielding material based on epoxy resin, we prepare two WO3/E44 samples with different particular sizes of WO3 by a solidified forming approach. The linear attenuation coefficients of these samples are measured for γ-ray photo energies of 59.6, 121.8, and 344.1 keV, etc. using narrow beam transmission geometry. It is found that the linear attenuation coefficients would increase with the decreasing particle size of the WO3 in the epoxy resin based radiation shielding material. The theoretical values of the linear attenuation coefficients and mass attenuation are calculated using WinXcom, and good agreements between the experimental data and the theoretical values are observed. From the studies of the obtained results, it is reported that from the shielding point of view the nano-WO3 is more effective than micro-WO3 in the epoxy resin based radiation shielding material.

  3. Properties of Two Carbon Composite Materials Using LTM25 Epoxy Resin

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Shah, C. H.; Postyn, A. S.

    1996-01-01

    In this report, the properties of two carbon-epoxy prepreg materials are presented. The epoxy resin used in these two materials can yield lower manufacturing costs due to its low initial cure temperature, and the capability of being cured using vacuum pressure only. The two materials selected for this study are MR50/LTM25, and CFS003/LTM25 with Amoco T300 fiber; both prepregs are manufactured by The Advanced Composites Group. MR50/LTM25 is a unidirectional prepreg tape using Mitsubishi MR50 carbon fiber impregnated with LTM25 epoxy resin. CRS003/LTM25 is a 2 by 2 twill fabric using Amoco T300 fiber and impregnated with LTM25 epoxy resin. Among the properties presented in this report are strength, stiffness, bolt bearing, and damage tolerance. Many of these properties were obtained at three environmental conditions: cold temperature/dry (CTD), room temperature/dry (RTD), and elevated temperature/wet (ETW). A few properties were obtained at room temperature/wet (RTW), and elevated temperature/dry (ETD). The cold and elevated temperatures used for testing were -125 F and 180 F, respectively. In addition, several properties related to processing are presented.

  4. Starch graft poly(methyl acrylate) loose-fill foam: preparation, properties and degradation.

    PubMed

    Chen, L; Gordon, S H; Imam, S H

    2004-01-01

    Starch graft poly(methyl acrylate) (S-g-PMA) was prepared by ceric ion initiation of methyl acrylate in an aqueous corn starch slurry (prime starch) which maximized the accessibility of the starch for graft polymerization. A new ceric ion reaction sequence was established as starch-initiator-methyl acrylate followed by addition of a small amount of ceric ion solution when the graft polymerization was almost complete to quench the reaction. As a result of this improved procedure, no unreacted methyl acrylate monomer remained, and thus, essentially no ungrafted poly(methyl acrylate) homopolymer was formed in the final grafted product. Quantities of the high purity S-g-PMA so prepared in pilot scale were converted to resin pellets and loose-fill foam by single screw and twin screw extrusion. The use of prime starch significantly improved the physical properties of the final loose-fill foam, in comparison to foam produced from regular dry corn starch. The S-g-PMA loose-fill foam had compressive strength and resiliency comparable to expanded polystyrene but higher bulk density. The S-g-PMA loose-fill foam also had better moisture and water resistance than other competitive starch-based materials. Studies indicated that the starch portion in S-g-PMA loose-fill foam biodegraded rapidly, whereas poly(methyl acrylate) remained relatively stable under natural environmental conditions. PMID:14715032

  5. Lateral Chain Length in Polyalkyl Acrylates Determines the Mobility of Fibronectin at the Cell/Material Interface

    PubMed Central

    2015-01-01

    Cells, by interacting with surfaces indirectly through a layer of extracellular matrix proteins, can respond to a variety of physical properties, such as topography or stiffness. Polymer surface mobility is another physical property that is less well understood but has been indicated to hold the potential to modulate cell behavior. Polymer mobility is related to the glass-transition temperature (Tg) of the system, the point at which a polymer transitions from an amorphous solid to a more liquid-like state. This work shows that changes in polymer mobility translate to interfacial mobility of extracellular matrix proteins adsorbed on the material surface. This study has utilized a family of polyalkyl acrylates with similar chemistry but different degrees of mobility, obtained through increasing length of the side chain. These materials are used, in conjunction with fluorescent fibronectin, to determine the mobility of this interfacial layer of protein that constitutes the initial cell–material interface. Furthermore, the extent of fibronectin domain availability (III9, III10, - the integrin binding site), cell-mediated reorganization, and cell differentiation was also determined. A nonmonotonic dependence of fibronectin mobility on polymer surface mobility was observed, with a similar trend noted in cell-mediated reorganization of the protein layer by L929 fibroblasts. The availability of the integrin-binding site was higher on the more mobile surfaces, where a similar organization of the protein into networks at the material interface was observed. Finally, differentiation of C2C12 myoblasts was seen to be highly sensitive to surface mobility upon inhibition of cell contractility. Altogether, these findings show that polymer mobility is a subtle influence that translates to the cell/material interface through the protein layer to alter the biological activity of the surface. PMID:26715432

  6. Investigation of Polymer Resin/Fiber Compatibility in Natural Fiber Reinforced Composite Automotive Materials

    SciTech Connect

    Fifield, Leonard S.; Huang, Cheng; Simmons, Kevin L.

    2010-01-01

    Natural fibers represent a lower density and potentially lower cost alternative to glass fibers for reinforcement of polymers in automotive composites. The high specific modulus and strength of bast fibers make them an attractive option to replace glass not only in non-structural automotive components, but also in semi-structural and structural components. Significant barriers to insertion of bast fibers in the fiber reinforced automotive composite market include the high moisture uptake of this lignocellulosic material relative to glass and the weak inherent interface between natural fibers and automotive resins. This work seeks to improve the moisture uptake and resin interfacing properties of natural fibers through improved fundamental understanding of fiber physiochemical architecture and development of tailored fiber surface modification strategies.

  7. Preservation-based approaches to restore posterior teeth with amalgam, resin or a combination of materials.

    PubMed

    Baghdadi, Ziad D

    2002-02-01

    This review is a systematic assessment, from the literature, of the status quo of dental amalgam, resin-based composite and glass-ionomer restorations for carious lesions as it applies to new concepts, coupled with clinical research. Scientifically based and practical new materials and techniques are recommended to include in contemporary practice throughout the world. Clinical and laboratory studies which have been carried out in light of modern conservative principles, and in light of the current emphasis of treating dental caries as a disease process were reviewed and discussed. An approach to managing carious lesions based upon selected advantages of dental amalgam, resin-based composite and glass-ionomer technology applied to what is termed "preservation-based" approaches to restoring teeth has been synthesized. Researched evidence contradicts the notion of "extension for prevention" in favor of maintaining sound tooth structure which would translate into more patients with healthy dentitions for entire lifetimes. PMID:12074231

  8. Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.

    SciTech Connect

    Cairns, Douglas S.; Rossel, Scott M.

    2004-06-01

    Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

  9. NASA/aircraft industry standard specification for graphite fiber toughened thermoset resin composite material

    NASA Technical Reports Server (NTRS)

    1985-01-01

    A standard specification for a selected class of graphite fiber/toughened thermoset resin matrix material was developed through joint NASA/Aircraft Industry effort. This specification was compiled to provide uniform requirements and tests for qualifying prepreg systems and for acceptance of prepreg batches. The specification applies specifically to a class of composite prepreg consisting of unidirectional graphite fibers impregnated with a toughened thermoset resin that produce laminates with service temperatures from -65 F to 200 F when cured at temperatures below or equal to 350 F. The specified prepreg has a fiber areal weight of 145 g sq m. The specified tests are limited to those required to set minimum standards for the uncured prepreg and cured laminates, and are not intended to provide design allowable properties.

  10. New Anion-Exchange Resins for Improved Separations of Nuclear Materials

    SciTech Connect

    Bartsch, Richard A.; Barr, Mary E.

    2001-04-30

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environmental waters as critical needs for the coming years. We propose to develop multifunctional anion-exchange resins that facilitate anion uptake by carefully controlling the structure of the anion receptor site. Our new ion-exchange resins interface the field of ion-specific chelating ligands with robust, commercial ion-exchange technology to provide materials which exhibit superior selectivity and kinetics of sorption and desorption. The following Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new material: Efficient Separations and Processing - radionuclide removal from aqueous phases; Plutonium - Pu, Am or total alpha removal to meet regulatory requirement s before discharge to the environment; Plumes - U and Tc in groundwater, U, Pu, Am, and Tc in soils; Mixed Waste - radionuclide partitioning; High-Level Tank Waste - actinide and Tc removal from supernatants and/or sludges. The basic scientific issues which need to be addressed are actinide complex speciation along with modeling of metal complex/functional site interactions in order to determine optimal binding-site characteristics. Synthesis of multifunctionalized extractants and ion-exchange materials that implement key features of the optimized binding site, and testing of these materials, will provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The long-range implications of this research, however, go far beyond the nuclear complex. This new methodology of ''facilitated uptake'' could revolutionize ion-exchange technology

  11. Biocompatibility of polymethylmethacrylate resins used in dentistry.

    PubMed

    Gautam, Rupali; Singh, Raghuwar D; Sharma, Vinod P; Siddhartha, Ramashanker; Chand, Pooran; Kumar, Rakesh

    2012-07-01

    Biocompatibility or tissue compatibility describes the ability of a material to perform with an appropriate host response when applied as intended. Poly-methylmethacrylate (PMMA) based resins are most widely used resins in dentistry, especially in fabrication of dentures and orthodontic appliances. They are considered cytotoxic on account of leaching of various potential toxic substances, most common being residual monomer. Various in vitro and in vivo experiments and cell based studies conducted on acrylic based resins or their leached components have shown them to have cytotoxic effects. They can cause mucosal irritation and tissue sensitization. These studies are not only important to evaluate the long term clinical effect of these materials, but also help in further development of alternate resins. This article reviews information from scientific full articles, reviews, or abstracts published in dental literature, associated with biocompatibility of PMMA resins and it is leached out components. Published materials were searched in dental literature using general and specialist databases, like the PubMED database. PMID:22454327

  12. Effect of chemical composition on corneal cellular response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2013-10-01

    Characterization of corneal cellular response to hydrogel materials is an important issue in ophthalmic applications. In this study, we aimed to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and material compatibility towards corneal stromal and endothelial cells. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Results of electrokinetic measurements showed that an increase in absolute zeta potential of photopolymerized membranes is observed with increasing the volume ratios of AAc/HEMA. Following 4 days of incubation with various hydrogels, the primary rabbit corneal stromal and endothelial cell cultures were examined for viability, proliferation, and pro-inflammatory gene expression. The samples prepared from the solution mixture containing 0-10 vol.% AAc displayed good cytocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the decreased viability, inhibited proliferation, and stimulated inflammation were noted in both cell types, probably due to the stronger charge-charge interactions. On the other hand, the ionic pump function of corneal endothelial cells exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of material samples having higher anionic charge density (i.e., zeta potential of -38 to -56 mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal stromal and endothelial cell responses to polymeric biomaterials. PMID:23910267

  13. Effects of Light Curing Method and Exposure Time on Mechanical Properties of Resin Based Dental Materials

    PubMed Central

    Alpöz, A. Riza; Ertuḡrul, Fahinur; Cogulu, Dilsah; Ak, Asli Topaloḡlu; Tanoḡlu, Metin; Kaya, Elçin

    2008-01-01

    Objectives The aim of this study was to investigate microhardness and compressive strength of composite resin (Tetric-Ceram, Ivoclar Vivadent), compomer (Compoglass, Ivoclar, Vivadent), and resin modified glass ionomer cement (Fuji II LC, GC Corp) polymerized using halogen light (Optilux 501, Demetron, Kerr) and LED (Bluephase C5, Ivoclar Vivadent) for different curing times. Methods Samples were placed in disc shaped plastic molds with uniform size of 5 mm diameter and 2 mm in thickness for surface microhardness test and placed in a diameter of 4 mm and a length of 2 mm teflon cylinders for compressive strength test. For each subgroup, 20 samples for microhardness (n=180) and 5 samples for compressive strength were prepared (n=45). In group 1, samples were polymerized using halogen light source for 40 seconds; in group 2 and 3 samples were polymerized using LED light source for 20 seconds and 40 seconds respectively. All data were analyzed by two way analysis of ANOVA and Tukey’s post-hoc tests. Results Same exposure time of 40 seconds with a low intensity LED was found similar or more efficient than a high intensity halogen light unit (P>.05), however application of LED for 20 seconds was found less efficient than 40 seconds curing time (P=.03). Conclusions It is important to increase the light curing time and use appropriate light curing devices to polymerize resin composite in deep cavities to maximize the hardness and compressive strength of restorative materials. PMID:19212507

  14. Effect of ceramic coating by aerosol deposition on abrasion resistance of a resin composite material.

    PubMed

    Taira, Yohsuke; Hatono, Hironori; Mizukane, Masahiro; Tokita, Masahiro; Atsuta, Mitsuru

    2006-12-01

    Aerosol deposition (AD coating) is a novel technique to coat solid substances with a ceramic film. The purpose of the present study was to investigate the effect of AD coating on abrasion resistance of a resin composite material. A 5-microm-thick aluminum oxide layer was created on the polymerized resin composite. The specimen was cyclically abraded using a toothbrush abrasion simulator for 100,000 cycles. Abraded surface was then measured with a profilometer to determine the average roughness (Ra) and maximum roughness (Rmax). It was found that abrasion cycling increased the Ra value of the No-AD-coating group, but decreased the Ra and Rmax values of the AD coating group. Moreover, the AD coating group showed significantly smaller Ra and Rmax values after 100,000 abrasion cycles as compared to the No-coating control group. Microscopic observation supported these findings. In conclusion, the resistance of the resin composite against toothbrush abrasion was improved by AD coating. PMID:17338303

  15. New anion-exchange resins for improved separations of nuclear materials

    SciTech Connect

    Barr, M.E.; Bartsch, R.A.

    1998-06-01

    'The overall objective of this research is to develop a predictive capability which allows the facile design and implementation of multi-functionalized anion-exchange materials which selectively sorb metal complexes of interest from targeted process, waste, and environmental streams. The basic scientific issues addressed are actinide complex speciation along with modeling of the metal complex/functional-site interactions in order to determine optimal binding-site characteristics. The new ion-exchange resins interface the rapidly developing field of ion-specific chelating ligands with robust, commercial ion-exchange technology. Various Focus Areas and Crosscutting Programs have described needs that would be favorably impacted by the new materials: Efficient Separations and Processing; Plutonium; Plumes; Mixed Waste; High-Level Tank Waste. Sites within the DOE complex which would benefit from the improved anion-exchange technology include Hanford, INEL, Los Alamos, Oak Ridge, and Savannah River. As of April 1998, this report summarizes work after 1.6 years of a 3-year project. The authors technical approach combines empirical testing with theoretical modeling (applied in an iterative mode) in order to determine optimal binding-site characteristics. They determine actinide-complex speciation in specific media, then develop models for the metal complex/functional-site interactions Synthesis and evaluation of multi-functionalized extractants and ion-exchange materials that implement key features of the optimized binding site provide feedback to the modeling and design activities. Resin materials which actively facilitate the uptake of actinide complexes from solution should display both improved selectivity and kinetic properties. The implementation of the bifunctionality concept involves N-derivatization of pyridinium units from a base poly(4-vinylpyridine) resin with a second cationic site such that the two anion-exchange sites are linked by spacer arms of varying

  16. Infiltration/cure modeling of resin transfer molded composite materials using advanced fiber architectures

    NASA Technical Reports Server (NTRS)

    Loos, Alfred C.; Weideman, Mark H.; Long, Edward R., Jr.; Kranbuehl, David E.; Kinsley, Philip J.; Hart, Sean M.

    1991-01-01

    A model was developed which can be used to simulate infiltration and cure of textile composites by resin transfer molding. Fabric preforms were resin infiltrated and cured using model generated optimized one-step infiltration/cure protocols. Frequency dependent electromagnetic sensing (FDEMS) was used to monitor in situ resin infiltration and cure during processing. FDEMS measurements of infiltration time, resin viscosity, and resin degree of cure agreed well with values predicted by the simulation model. Textile composites fabricated using a one-step infiltration/cure procedure were uniformly resin impregnated and void free. Fiber volume fraction measurements by the resin digestion method compared well with values predicted using the model.

  17. Optimal Composite Material for Low Cost Fabrication of Large Composite Aerospace Structures using NASA Resins or POSS Nanoparticle Modifications

    NASA Technical Reports Server (NTRS)

    Lamontia, Mark A.; Gruber, Mark B.; Jensen, Brian J.

    2006-01-01

    Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.

  18. Penetration of resin-based materials into initial erosion lesion: A confocal microscopic study.

    PubMed

    Ionta, Franciny Querobim; Boteon, Ana Paula; Moretto, Marcelo Juliano; Júnior, Odair Bim; Honório, Heitor Marques; Silva, Thiago Cruvinel; Wang, Linda; Rios, Daniela

    2016-02-01

    The application of resin-based materials is an alternative of treatment for eroded lesions. Nevertheless, there are no studies about the penetration of these materials into eroded lesion, which might affect its adhesion. Therefore, this study evaluated the penetration of four resin-based materials, with and without enamel etching. By using an in vitro protocol, types of treatment were studied at five levels (AdheSE(®) , Tetric N-Bond(®) , Single Bond 2(®) , Helioseal Clear(®) , Icon(®) ) and types of enamel etching in two levels (with and without). Materials were stained with 0.02 mg/mL ethanolic solution of tetramethylrhodamine isothiocyanate. Bovine enamel samples (4 × 4 mm) were immersed in 0.01 M HCl, pH 2.3, for 30 seconds to produce initial eroded lesions. Afterward, the materials were applied on half of sample enamel surface following the manufacturer's instructions. On the other half of sample, the materials were applied without etching the enamel. Materials penetration into the enamel was assessed by Confocal Laser Scanning Microscopy on reflection and fluorescence modes. The penetration depth (PD) was measured using ImageJ software. Data were analyzed by two-way ANOVA and Tukey test (P < 0.05). Regardless of the material, etched enamel resulted in higher PD than non-etched (P < 0.05). Icon(®) showed the highest PD in enamel followed by Helioseal Clear(®) (P < 0.05), with significant difference between them (P < 0.05) and no difference was found among AdheSE(®) , Tetric N-Bond(®) , and Single Bond 2(®) (P > 0.05). It can be concluded that prior enamel etching increased the materials penetration into eroded enamel and the Icon(®) -infiltrant presented highest penetration. PMID:26626706

  19. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, Robert L.; Navratil, James D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately.

  20. Removal of radioactive materials and heavy metals from water using magnetic resin

    DOEpatents

    Kochen, R.L.; Navratil, J.D.

    1997-01-21

    Magnetic polymer resins capable of efficient removal of actinides and heavy metals from contaminated water are disclosed together with methods for making, using, and regenerating them. The resins comprise polyamine-epichlorohydrin resin beads with ferrites attached to the surfaces of the beads. Markedly improved water decontamination is demonstrated using these magnetic polymer resins of the invention in the presence of a magnetic field, as compared with water decontamination methods employing ordinary ion exchange resins or ferrites taken separately. 9 figs.

  1. An evaluation of epoxy resin phantom materials for megavoltage photon dosimetry

    NASA Astrophysics Data System (ADS)

    Allahverdi, M.; Nisbet, A.; Thwaites, D. I.

    1999-05-01

    Epoxy resin phantom materials have been available for some time and are widely used for dosimetry purposes, not least in audit phantoms. Information on their behaviour is partly available in the literature, but there are different mixes and formulations often given similar names and it may not be appropriate to transfer information from one material to another. Five commercially available water-substitute materials have been evaluated for use in megavoltage photon beams: WT1, WTe, RMI 451, RMI 457 and `plastic water'. Four independent experiments were carried out to compare these materials with water in megavoltage photon beams ranging in energy from cobalt-60 to nominal 16 MV x-rays, and some general conclusions are drawn from the results as to their use. All are suitable for relative dosimetry in megavoltage photon beams. However, differences of up to 1% are observed for absolute measurements. The newer formulations, developed for electron beam use, are also closer to water for megavoltage photon beams.

  2. On-line mass spectrometric monitoring of the polymerization of a phenolic-resin-based material

    NASA Technical Reports Server (NTRS)

    Aikens, D. A.; Wood, G. M.; Upchurch, B. T.

    1975-01-01

    Polymerization of phenolic-resin-based materials requires elevated temperatures. The low thermal conductivity of these materials has led to the use of dielectric heating techniques in lieu of standard convection oven heating to obtain a satisfactory cure. The curing rate and therefore the quality of the cured material depends on the heating rate and maximum temperature attained, parameters which are extremely difficult to measure in dielectric heating units. The dielectric curing of these materials was monitored by using a mass spectrometer to measure the partial pressure of phenol in the gas evolved during polymerization. The resulting plots of phenol partial pressure as a function of time have a characteristic shape, and these may be used to indicate the attainment of complete curing. The validity of the mass spectrometric technique was confirmed by chemical analysis of the polymerized samples.

  3. Effect of chemical composition on corneal tissue response to photopolymerized materials comprising 2-hydroxyethyl methacrylate and acrylic acid.

    PubMed

    Lai, Jui-Yang

    2014-01-01

    The purpose of this work was to investigate the relationship between the feed composition of 2-hydroxyethyl methacrylate (HEMA)/acrylic acid (AAc) and hydrogel material compatibility towards ocular anterior segment tissues, particularly the corneal endothelium. The monomer solutions of HEMA and AAc were mixed at varying volume ratios of 92:0, 87:5, 82:10, 77:15, and 72:20, and were subjected to UV irradiation. Then, the 7-mm-diameter membrane implants made from photopolymerized materials were placed into the ocular anterior chamber for 4days and assessed by biomicroscopic examinations, corneal thickness measurements, and quantitative real-time reverse transcription polymerase chain reaction analyses. The poly(HEMA-co-AAc) implants prepared from the solution mixture containing 0-10vol.% AAc displayed good biocompatibility. However, with increasing volume ratio of AAc and HEMA from 15:77 to 20:72, the enhanced inflammatory response, decreased endothelial cell density, and increased ocular score and corneal thickness were observed, probably due to the influence of surface charge of copolymer membranes. On the other hand, the ionic pump function of corneal endothelium exposed to photopolymerized membranes was examined by analyzing the Na(+),K(+)-ATPase alpha 1 subunit (ATP1A1) expression level. The presence of the implants having higher amount of AAc incorporated in the copolymers (i.e., 15.1 to 24.7μmol) and zeta potential (i.e., -38.6 to -56.5mV) may lead to abnormal transmembrane transport. It is concluded that the chemical composition of HEMA/AAc has an important influence on the corneal tissue responses to polymeric biomaterials. PMID:24268266

  4. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials.

    PubMed

    Arrais, César Augusto Galvão; Kasaz, Aline de Cerqueira; Albino, Luís Gustavo Barrote; Rodrigues, José Augusto; Reis, Andre Figueiredo

    2010-01-01

    This study evaluated the Knoop Hardness (KHN) values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore-Dual, DMG; and FluoroCore2, Dentsply Caulk), and one dual-cured resin cement (Rely X ARC, 3M ESPE) were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter), and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr) or were allowed to self-cure for 10 min in the dark (n = 5). All specimens were then stored in humidity at 37 degrees C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001), regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001). LuxaCore-Dual exhibited higher KHN values than FluoroCore2 (p = 0.00001) when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available. PMID:20658046

  5. Testing Penetration of Epoxy Resin and Diamine Hardeners through Protective Glove and Clothing Materials.

    PubMed

    Henriks-Eckerman, Maj-Len; Mäkelä, Erja A; Suuronen, Katri

    2015-10-01

    Efficient, comfortable, yet affordable personal protective equipment (PPE) is needed to decrease the high incidence of allergic contact dermatitis arising from epoxy resin systems (ERSs) in industrial countries. The aim of this study was to find affordable, user-friendly glove and clothing materials that provide adequate skin protection against splashes and during the short contact with ERS that often occurs before full cure. We studied the penetration of epoxy resin and diamine hardeners through 12 glove or clothing materials using a newly developed test method. The tests were carried out with two ERS test mixtures that had a high content of epoxy resin and frequently used diamine hardeners of different molar masses. A drop (50 µl) of test mixture was placed on the outer surface of the glove/clothing material, which had a piece of Fixomull tape or Harmony protection sheet attached to the inner surface as the collection medium. The test times were 10 and 30 min. The collecting material was removed after the test was finished and immersed into acetone. The amounts of diglycidyl ether of bisphenol A (DGEBA), isophorone diamine (IPDA), and m-xylylenediamine (XDA) in the acetone solution were determined by gas chromatography with mass spectrometric detection. The limit for acceptable penetration of XDA, IPDA, and DGEBA through glove materials was set at 2 µg cm(-2). Penetration through the glove materials was 1.4 µg cm(-2) or less. The three tested chemical protective gloves showed no detectable penetration (<0.5 µg cm(-2)). Several affordable glove and clothing materials were found to provide adequate protection during short contact with ERS, in the form of, for example, disposable gloves or clothing materials suitable for aprons and as additional protective layers on the most exposed parts of clothing, such as the front of the legs and thighs and under the forearms. Every ERS combination in use should be tested separately to find the best skin protection material

  6. Continuous plasma treatment and resin impregnation of a high-strength fiber material

    SciTech Connect

    Tira, J.S.

    1983-09-01

    A system was developed for the continuous plasma treatment of fibrous, reinforcing materials used in composites. Data are presented on the removal of moisture from Kevlar 49 Aramid by the use of argon and zero air plasma. Adhesion test results with plasma-treated, unidirectional Kevlar 49/epoxy laminates showed an improvement in adhesion ranging from 1.4 to 3.7 times, as reported by the plasma treatment effectiveness parameter. Limited tensile testing of resin-impregnated yarn showed no catastropic failure from plasma treatment.

  7. DCPD resin catalyzed with Grubbs catalysts for reinforcing pothole patching materials

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yuan, Kuo-Yao; Zou, Linhua; Yang, Jenn-Ming; Ju, Jiann-Wen; Kao, Wei; Carlson, Larry; Edgecombe, Brian; Stephen, Tony

    2012-04-01

    The potholes and alligator cracks in the asphalt pavement of our country's roadways have become an annoying part of our daily life. In order to reinstate and maintain our pavement infrastructure integrity and durability, we have identified dicyclopentadiene (DCPD) resin for this purpose due to its unique properties - low cost, low viscosity at beginning and ultra-toughness after curing, chemical compatibility with tar, tunable curing profile due to catalyst design. DCPD resin can penetrate into high porous pavement area to reinforce them and block water or moisture seeping channels. It also can strongly bond the pothole patches with original pavement, and hold them together for a whole. With the catalyst design, DCPD could apply for all the weather, cold or hot, wet or dry. In this paper, we will investigate the DCPD reinforcement for cold mix and hot mix for pothole repair, as well as the bonding strength improvement between repair materials and original pavement, and show that DCPD is promising materials for application in reinforced pothole patching materials.

  8. Sustainable UV-curable low refractive index resins with novel polymers for polymer cladding materials

    NASA Astrophysics Data System (ADS)

    Tokoro, Hiroki; Ishikawa, Takako; Koike, Nobuyuki; Yamashina, Yohzoh

    2014-03-01

    Low refractive index polymers are used as cladding materials for high numerical aperture (NA) fibers. Since transparent fluoro polymers are ideal for this application, they have been used over many years. However, some fluoro chemicals face an issue related to perfluoro octanoic acid (PFOA) which is caused by its longtime persistence in the environment and human body. In this research, non-PFOA type UV curable fluoro resins suitable for cladding were developed with novel materials. The cured films showed high transparency, good adhesion to glass and low refractive index of 1.359 and 1.386 at 850 nm. Optical fibers prepared with those cladding showed almost equivalent attenuation to a fiber with commercially available material.

  9. Hand/face/neck localized pattern: sticky problems--resins.

    PubMed

    Cao, Lauren Y; Sood, Apra; Taylor, James S

    2009-07-01

    Plastic resin systems have an increasingly diverse array of applications but also induce health hazards, the most common of which are allergic and irritant contact dermatitis. Contact urticaria, pigmentary changes, and photoallergic contact dermatitis may occasionally occur. Other health effects, especially respiratory and neurologic signs and symptoms, have also been reported. These resin systems include epoxies, the most frequent synthetic resin systems to cause contact dermatitis, (meth)acrylics, polyurethanes, phenol-formaldehydes, polyesters, amino resins (melamine-formaldehydes, urea-formaldehydes), polyvinyls, polystyrenes, polyolefins, polyamides and polycarbonates. Contact dermatitis usually occurs as a result of exposure to the monomers and additives in the occupational setting, although reports from consumers, using the raw materials or end products periodically surface. Resin- and additive-induced direct contact dermatitis usually presents on the hands, fingers, and forearms, while facial, eyelid, and neck involvement may occur through indirect contact, eg, via the hands, or from airborne exposure. Patch testing with commercially available materials, and in some cases the patient's own resins, is important for diagnosis. Industrial hygiene prevention techniques are essential to reduce contact dermatitis when handling these resin systems. PMID:19580919

  10. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    PubMed Central

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  11. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures.

    PubMed

    Arafa, Khalid A O

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  12. Effect of Janus particles as filler materials for acrylate-based dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chen, Hsin-yu; Maliakal, Ashok J.; Kretzschmar, Ilona

    2012-04-01

    Dielectric electroactive polymers respond to an applied electric field by deformation as described by the Maxwell effect. The response depends on the polymers' dielectric constant and stiffness. Addition of a high dielectric filler material has been shown to enhance the strain response. We report preliminary results on the enhancement of p(EGPEA) polymer films by addition of 1 w/v% of gold-capped, 500 nm SiO2 Janus particles (JP-SiO2). In comparison to pure p(EGPEA) and p(EGPEA) filled with unmodified SiO2 particles, JP-SiO2 p(EGPEA) films show an up to 24 times enhanced response. Measurement of the relative dielectric constant and the Young's Modulus indicate that the Janus particle additive increases the relative dielectric constant of the films, while at the same time decreasing the Young's Modulus leading to an overall larger electrostrictive coefficient for the JP-SiO2 p(EGPEA) films.

  13. Influence of dental resin material composition on cross-polarization-optical coherence tomography imaging

    PubMed Central

    Lammeier, Carmen; Li, YuPing; Lunos, Scott; Fok, Alex; Rudney, Joel

    2012-01-01

    Abstract. The purpose of this study was to investigate cross-polarization-optical coherence tomography (CP-OCT) signal attenuation through different resin material compositions. Four distinct composite systems were used: Filtek supreme ultra (FSU) (3M ESPE), IPS empress direct (EMD) (Ivoclar Vivadent), estelite sigma quick (SQK) (Tokuyama Dental), and Z100 (3M ESPE). Cross-sectional images of different composite-demineralized phantoms (n=108) were collected using a 1310-nm intraoral cross-polarization swept source OCT (CP-OCT) imaging system. %T quantified the CP-OCT signal attenuation. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive x-ray spectrometer chemical analysis was utilized to determine how different matrix/filler compositions affected attenuation of the near infrared (NIR) signal. CP-OCT imaging of dental resin composites showed enormous variation in signal attenuation. For each of our composite systems, there was not a consistent attenuation difference in the NIR signal for A to D shades. The four composites had similar measured backscattering values but attenuated the overall signal to different degrees. When comparing the A2 shades between the four different composite systems, the order of highest to lowest of %T was EMD>Z100, FSU>SQK (ANOVA, Tukey, p<0.0001). As a result, we demonstrate the importance of understanding how the constituents of composite materials affect CP-OCT signal attenuation. PMID:23224001

  14. New Advanced Materials for High Performance at the Resin-Dentine Interface.

    PubMed

    Toledano, Manuel; Osorio, Raquel

    2015-01-01

    This chapter provides a tool for the integration of new concepts and biomaterials related with the resin-dentine interface. The principles of dentine demineralisation and remineralisation that shape modern restorative dentistry practices, as well as considerations for the selection of new materials for different restorative approaches, are emphasised. Re-incorporation of mineral into the demineralised dentine matrix is important since the mineral precipitated may work as a constant site for further nucleation, and the remineralised subsurface of the tissue may be more resistant to subsequent acid attack. This deposition of minerals may be due to both spontaneous precipitation induced by local supersaturation of Ca and P in the presence of non-specific tissue alkaline phosphatase or through heterogeneous nucleation sites provided by phosphoproteins within the dentine collagen matrix. Nucleation is a multistep process involving both protein and mineral transition and suggests a temporally synchronised process. Dentine provides both structural and chemical frameworks, acting as a scaffold for mineral deposition at specific sites. The ultimate goal in the design and improvement of new materials for high performance at the resin-dentine interface is to render a stronger and durable adhesion to dental tissues despite the severe conditions in the oral environment. In the present chapter, glass ionomers, calcium-phosphate cements and doped dental adhesives have been selected to represent the cutting edge biomaterials at the interface. PMID:26201275

  15. Transparent acrylic enamel slide holograms

    NASA Astrophysics Data System (ADS)

    Ponce-Lee, E. L.; Olivares Pérez, A.; Ruiz-Limón, B.; Hernández-Garay, M. P.; Toxqui-López, S.

    2006-02-01

    We present holograms generated in a computer to an acrylic enamel slide (Comex (R)), getting phase holograms. The information in the mask is transferred to the material by temperature gradients generated by rubbing. The refraction index is transformed at each material point by the temperature changes, thus the film is recorded and developed by itself. this material can be used for soft lithography.

  16. Effect of surface treatments on shear bond strength of resin composite bonded to CAD/CAM resin-ceramic hybrid materials

    PubMed Central

    Güngör, Merve Bankoğlu; Bal, Bilge Turhan; Ünver, Senem; Doğan, Aylin

    2016-01-01

    PURPOSE The purpose of this study was to assess the effect of surface treatments on shear bond strength of resin composite bonded to thermocycled and non-thermocycled CAD/CAM resin-ceramic hybrid materials. MATERIALS AND METHODS 120 specimens (10×10×2 mm) from each material were divided into 12 groups according to different surface treatments in combination with thermal aging procedures. Surface treatment methods were airborne-particle abrasion (abraded with 50 micron alumina particles), dry grinding (grinded with 125 µm grain size bur), and hydrofluoric acid (9%) and silane application. According to the thermocycling procedure, the groups were assigned as non-thermocycled, thermocycled after packing composites, and thermocycled before packing composites. The average surface roughness of the non-thermocycled specimens were measured after surface treatments. After packing composites and thermocycling procedures, shear bond strength (SBS) of the specimens were tested. The results of surface roughness were statistically analyzed by 2-way Analysis of Variance (ANOVA), and SBS results were statistically analyzed by 3-way ANOVA. RESULTS Surface roughness of GC were significantly lower than that of LU and VE (P<.05). The highest surface roughness was observed for dry grinding group, followed by airborne particle abraded group (P<.05). Comparing the materials within the same surface treatment method revealed that untreated surfaces generally showed lower SBS values. The values of untreated LU specimens showed significantly different SBS values compared to those of other surface treatment groups (P<.05). CONCLUSION SBS was affected by surface treatments. Thermocycling did not have any effect on the SBS of the materials except acid and silane applied GC specimens, which were subjected to thermocycling before packing of the composite resin. PMID:27555894

  17. Effects of intra- and inter-laminar resin content on the mechanical properties of toughened composite materials

    NASA Technical Reports Server (NTRS)

    Grande, Dodd H.; Ilcewicz, Larry B.; Avery, William B.; Bascom, Willard D.

    1991-01-01

    Composite materials having multiphase toughened matrix systems and laminate architectures characterized by resin-rich interlaminar layers (RIL) have been the subject of much recent attention. Such materials are likely to find applications in thick compressively loaded structures such as the keel area of commercial aircraft fuselages. The effects of resin content and its interlaminar and intralaminar distribution on mechanical properties were investigated with test and analysis of two carbon-epoxy systems. The RIL was found to reduce the in situ strengthening effect for matrix cracking in laminates. Mode 2 fracture toughness was found to increase with increasing RIL thickness over the range investigated, and Mode 1 interlaminar toughness was negligibly affected. Compressive failure strains were found to increase with increasing resin content for specimens having no damage, holes, and impact damage. Analytical tools for predicting matrix cracking of off-axis plies and damage tolerance in compression after impact (CAI) were successfully applied to materials with RIL.

  18. Advanced Composites: Mechanical Properties and Hardware Programs for Selected Resin Matrix Materials. [considering space shuttle applications

    NASA Technical Reports Server (NTRS)

    Welhart, E. K.

    1976-01-01

    This design note presents typical mechanical properties tabulated from industrial and governmental agencies' test programs. All data are correlated to specific products and all of the best known products are presented. The data include six epoxies, eight polyimides and one polyquinoxaline matrix material. Bron and graphite are the fiber reinforcements. Included are forty-two summaries of advanced (resin matrix) composite programs in existence in the United States. It is concluded that the selection of appropriate matrices, the geometric manner in which the fibers are incorporated in the matrix and the durability of the bond between fiber and matrix establish the end properties of the composite material and the performance of the fabricated structure.

  19. Standard test evaluation of graphite fiber/resin matrix composite materials for improved toughness

    NASA Technical Reports Server (NTRS)

    Chapman, Andrew J.

    1984-01-01

    Programs sponsored by NASA with the commercial transport manufacturers to develop a technology data base are required to design and build composite wing and fuselage structures. To realize the full potential of composite structures in these strength critical designs, material systems having improved ductility and interlaminar toughness are being sought. To promote systematic evaluation of new materials, NASA and the commercial transport manufacturers have selected and standardized a set of five common tests. These tests evaluate open hole tension and compression performance, compression performance after impact at an energy level of 20 ft-lb, and resistance to delamination. Ten toughened resin matrix/graphite fiber composites were evaluated using this series of tests, and their performance is compared with a widely used composite system.

  20. Robust synthesis of epoxy resin-filled microcapsules for application to self-healing materials.

    PubMed

    Bolimowski, Patryk A; Bond, Ian P; Wass, Duncan F

    2016-02-28

    Mechanically and thermally robust microcapsules containing diglycidyl ether bisphenol A-based epoxy resin and a high-boiling-point organic solvent were synthesized in high yield using in situ polymerization of urea and formaldehyde in an oil-in-water emulsion. Microcapsules were characterized in terms of their size and size distribution, shell surface morphology and thermal resistance to the curing cycles of commercially used epoxy polymers. The size distribution of the capsules and characteristics such as shell thickness can be controlled by the specific parameters of microencapsulation, including concentrations of reagents, stirrer speed and sonication. Selected microcapsules, and separated core and shell materials, were analysed using thermogravimetric analysis and differential scanning calorimetry. It is demonstrated that capsules lose minimal 2.5 wt% at temperatures no higher than 120°C. These microcapsules can be applied to self-healing carbon fibre composite structural materials, with preliminary results showing promising performance. PMID:26755765

  1. Low Temperature Mechanical Testing of Carbon-Fiber/Epoxy-Resin Composite Materials

    NASA Technical Reports Server (NTRS)

    Nettles, Alan T.; Biss, Emily J.

    1996-01-01

    The use of cryogenic fuels (liquid oxygen and liquid hydrogen) in current space transportation vehicles, in combination with the proposed use of composite materials in such applications, requires an understanding of how such materials behave at cryogenic temperatures. In this investigation, tensile intralaminar shear tests were performed at room, dry ice, and liquid nitrogen temperatures to evaluate the effect of temperature on the mechanical response of the IM7/8551-7 carbon-fiber/epoxy-resin system. Quasi-isotropic lay-ups were also tested to represent a more realistic lay-up. It was found that the matrix became both increasingly resistant to microcracking and stiffer with decreasing temperature. A marginal increase in matrix shear strength with decreasing temperature was also observed. Temperature did not appear to affect the integrity of the fiber-matrix bond.

  2. The Use of Micro and Nano Particulate Fillers to Modify the Mechanical and Material Properties of Acrylic Bone Cement

    NASA Astrophysics Data System (ADS)

    Slane, Joshua A.

    Acrylic bone cement (polymethyl methacrylate) is widely used in total joint replacements to provide long-term fixation of implants. In essence, bone cement acts as a grout by filling in the voids left between the implant and the patient's bone, forming a mechanical interlock. While bone cement is considered the `gold standard' for implant fixation, issues such as mechanical failure of the cement mantle (aseptic loosening) and the development of prosthetic joint infection (PJI) still plague joint replacement procedures and often necessitate revision arthroplasty. In an effort to address these failures, various modifications are commonly made to bone cement such as mechanical reinforcement with particles/fibers and the addition of antibiotics to mitigate PJI. Despite these attempts, issues such as poor particle interfacial adhesion, inadequate drug release, and the development of multidrug resistant bacteria limit the effectiveness of bone cement modifications. Therefore, the overall goal of this work was to use micro and nanoparticles to enhance the properties of acrylic bone cement, with particular emphasis placed on improving the mechanical properties, cumulative antibiotic release, and antimicrobial properties. An acrylic bone cement (Palacos R) was modified with three types of particles in various loading ratios: mesoporous silica nanoparticles (for mechanical reinforcement), xylitol microparticles (for increased antibiotic release), and silver nanoparticles (as an antimicrobial agent). These particles were used as sole modifications, not in tandem with one another. The resulting cement composites were characterized using a variety of mechanical (macro to nano, fatigue, fracture, and dynamic), imaging, chemical, thermal, biological, and antimicrobial testing techniques. The primary outcomes of this dissertation demonstrate that: (1) mesoporous silica, as used in this work, is a poor reinforcement phase for acrylic bone cement, (2) xylitol can significantly

  3. Investigation of thiol-ene and thiol-ene-methacrylate based resins as dental restorative materials

    PubMed Central

    Cramer, Neil B.; Couch, Charles L.; Schreck, Kathleen M.; Carioscia, Jacquelyn A.; Boulden, Jordan E.; Stansbury, Jeffrey W.; Bowman, Christopher N.

    2009-01-01

    Objectives The objective of this work was to evaluate thiol-norbornene and thiol-ene-methacrylate systems as the resin phase of dental restorative materials and demonstrate their superior performance as compared to dimethacrylate materials. Methods Polymerization kinetics and overall functional group conversions were determined by Fourier transform infrared spectroscopy (FTIR). Flexural strength and modulus were determined with a 3-point flexural test. Polymerization-induced shrinkage stress was measured with a tensometer. Results Thiol-ene polymer systems were demonstrated to exhibit advantageous properties for dental restorative materials in regards to rapid curing kinetics, high conversion, and low shrinkage and stress. However, both the thiol-norbornene and thiol-allyl ether systems studied here exhibit significant reductions in flexural strength and modulus relative to BisGMA/TEGDMA. By utilizing the thiol-ene component as the reactive diluent in dimethacrylate systems, high flexural modulus and strength are achieved while dramatically reducing the polymerization shrinkage stress. The methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems both exhibited equivalent flexural modulus (2.1 ± 0.1 GPa) and slightly reduced flexural strength (95 ± 1 and 101 ± 3 MPa, respectively) relative to BisGMA/TEGDMA (flexural modulus; 2.2 + 0.1 GPa and flexural strength; 112 ± 3 MPa). Both the methacrylate-thiol-allyl ether and methacrylate-thiol-norbornene systems exhibited dramatic reductions in shrinkage stress (1.1 ± 0.1 and 1.1 ± 0.2 MPa, respectively) relative to BisGMA/TEGDMA (2.6 ± 0.2 MPa). Significance The improved polymerization kinetics and overall functional group conversion, coupled with reductions in shrinkage stress while maintaining equivalent flexural modulus, result in a superior overall dental restorative material as compared to traditional bulk dimethacrylate resins. PMID:19781757

  4. Allergic contact dermatitis due to urethane acrylate in ultraviolet cured inks.

    PubMed Central

    Nethercott, J R; Jakubovic, H R; Pilger, C; Smith, J W

    1983-01-01

    Seven workers exposed to ultraviolet printing inks developed contact dermatitis. Six cases were allergic and one irritant. A urethane acrylate resin accounted for five cases of sensitisation, one of which was also sensitive to pentaerythritol triacrylate and another also to an epoxy acrylate resin. One instance of allergy to trimethylpropane triacrylate accounted for the sixth case of contact dermatitis in this group of workers. An irritant reaction is presumed to account for the dermatitis in the individual not proved to have cutaneous allergy by patch tests. In this instance trimethylpropane triacrylate was thought to be the most likely irritating agent. Laboratory investigation proved urethane acrylate to be an allergen. The results of investigations of the sensitisation potentials of urethane acrylate, methylmethacrylate, epoxy acrylate resins, toluene-2,4-diisocyanate, and other multifunctional acrylic monomers in the albino guinea pig are presented. The interpretation of such predictive tests is discussed. Images PMID:6223656

  5. Photopolymerizations of multicomponent epoxide and acrylate/epoxide hybrid systems for controlled kinetics and enhanced material properties

    NASA Astrophysics Data System (ADS)

    Eom, Ho Seop

    2011-12-01

    Cationic photopolymerization of multifunctional epoxides is very useful for efficient cure at room temperature and has been widely used in coatings and adhesives. Despite excellent properties of the final cured polymers, cationic photopolymerizations of epoxides have seen limited application due to slow reactions (relative to acrylates) and brittleness associated with a highly crosslinked, rigid network. To address these issues, two reaction systems were studied in this thesis: photoinitiated cationic copolymerizations of a cycloaliphatic diepoxide with epoxidized elastomers and acrylate/epoxide hybrid photopolymerizations. Oligomer/monomer structures, viscosity, compositions, and photoinitiator system were hypothesized to play important roles in controlling photopolymerizations of the epoxide-based mixtures. A fundamental understanding of the interplay between these variables for the chosen systems will provide comprehensive guidelines for the future development of photopolymerization systems comparable to the epoxide-based mixtures in this research. For diepoxide/oligomer mixtures, the observed overall enhancement in polymerization rate and ultimate conversion of the cycloaliphatic diepoxide was attributed to the activated monomer mechanism associated with hydroxyl terminal groups in the epoxidized oligomers. This enhancement increased with increasing oligomer content. The mixture viscosity influenced the initial reactivity of the diepoxide for oligomer content above 50 wt.%. Real-time consumption of internal epoxides in the oligomers was successfully determined using Raman spectroscopy. Initial reactivity and ultimate conversion of the internal epoxides decreased with increasing the diepoxide content. This trend was more pronounced for the oligomer containing low internal epoxide content. These results indicate that the reactivity of the hydroxyl groups is higher toward cationic active centers of the diepoxide than those of the internal epoxides in the oligomers

  6. Applicability of cranial models in urethane resin and foam as a substitute for bone: are synthetic materials reliable?

    PubMed

    Muccino, Enrico; Porta, Davide; Magli, Francesca; Cigada, Alfredo; Sala, Remo; Gibelli, Daniele; Cattaneo, Cristina

    2013-09-01

    As literature is poor in functional synthetic cranial models, in this study, synthetic handmade models of cranial vaults were produced in two different materials (a urethane resin and a self-hardening foam), from multiple bone specimens (eight original cranial vaults: four human and four swine), in order to test their resemblance to bone structure in behavior, during fracture formation. All the vaults were mechanically tested with a 2-kg impact weight and filmed with a high-speed camera. Fracture patterns were homogeneous in all swine vaults and heterogeneous in human vaults, with resin fractures more similar to bone fractures. Mean fracture latency time extrapolated by videos were of 0.75 msec (bone), 1.5 msec (resin), 5.12 msec (foam) for human vaults and of 0.625 msec (bone), 1.87 msec (resin), 3.75 msec (foam) for swine vaults. These data showed that resin models are more similar to bone than foam reproductions, but that synthetic material may behave quite differently from bone as concerns fracture latency times. PMID:23865474

  7. [Use of aluminum foil baths for embedding biological materials in epoxide resins].

    PubMed

    Agaev, Iu M; Merkulov, V A

    1975-11-01

    The baths intended for embedding the biological material into epoxide resins are made of aluminium foil, 0.1 mm thick, cut in the form of rectangles (13 X 18 mm). The rectangular foil plates are placed on a soft microporous rubber separator 30--40 mm thick and by means of a form with the base equal to 5 X 10 mm the baths are pressed down by 4 mm deep. The baths are stuck to the paper stripes by rubber cement to ensure easy handling and numeration. In the process of embedding and polymerization the paper stripes having the baths are placed in the exsiccator with P2O5 and thermostate on special aluminium stands. PMID:775710

  8. Light-curing considerations for resin-based composite materials: a review. Part I.

    PubMed

    Malhotra, Neeraj; Mala, Kundabala

    2010-09-01

    There has been a continual advent of improved technologies in dentistry. Among these are the material sciences of resin-based composites (RBCs). Since the introduction of light-cured RBCs, the problem of polymerization shrinkage and the methods used to overcome this have concerned clinicians and researchers. Types of curing light and modes of curing have been shown to affect the degree of polymerization and related shrinkage of RBCs. This review, which is divided into two parts, discusses the contemporary light-curing units. Part I explores the evolution in light-curing units and different curing modes. Part II highlights the clinical considerations regarding light curing of RBCs that are important for achieving optimal curing and maximum polymerization of RBCs in a clinical setting. PMID:20879203

  9. Light-curing considerations for resin-based composite materials: a review. Part II.

    PubMed

    Malhotra, Neeraj; Mala, Kundabala

    2010-10-01

    As discussed in Part I, the type of curing light and curing mode impact the polymerization kinetics of resin-based composite (RBC) materials. Major changes in light-curing units and curing modes have occurred. The type of curing light and mode employed affects the polymerization shrinkage and associated stresses, microhardness, depth of cure, degree of conversion, and color change of RBCs. These factors also may influence the microleakage in an RBC restoration. Apart from the type of unit and mode used, the polymerization of RBCs is also affected by how a light-curing unit is used and handled, as well as the aspects associated with RBCs and the environment. Part II discusses the various clinical issues that should be considered while curing RBC restorations in order to achieve the best possible outcome. PMID:20960988

  10. Effect of a new resin inlay/onlay restorative material on cuspal reinforcement.

    PubMed

    Lopes, L M; Leitao, J G; Douglas, W H

    1991-08-01

    Nine maxillary premolars were restored with composite resin inlays involving large intracoronal cavity preparations. Buccal and lingual bonded strain guages measured the cuspal flexure under a carefully controlled application of occlusal force. The intact tooth was compared with the corresponding preparation and final restoration. The preparation itself greatly reduced the coronal rigidity, but this was completely recovered in the restored tooth, within the functional force of 111 N. A stiffness ratio showed a 97% recovery. From the point of view of cuspal strength, this may mean that larger intracoronal restorations are feasible with this type of restoration. However, other factors, such as chairside time and complexity, and material properties, such as occlusal wear, have to be taken into consideration. PMID:1882059

  11. Resin-Impregnated Carbon Ablator: A New Ablative Material for Hyperbolic Entry Speeds

    NASA Technical Reports Server (NTRS)

    Esper, Jaime; Lengowski, Michael

    2012-01-01

    Ablative materials are required to protect a space vehicle from the extreme temperatures encountered during the most demanding (hyperbolic) atmospheric entry velocities, either for probes launched toward other celestial bodies, or coming back to Earth from deep space missions. To that effect, the resin-impregnated carbon ablator (RICA) is a high-temperature carbon/phenolic ablative thermal protection system (TPS) material designed to use modern and commercially viable components in its manufacture. Heritage carbon/phenolic ablators intended for this use rely on materials that are no longer in production (i.e., Galileo, Pioneer Venus); hence the development of alternatives such as RICA is necessary for future NASA planetary entry and Earth re-entry missions. RICA s capabilities were initially measured in air for Earth re-entry applications, where it was exposed to a heat flux of 14 MW/sq m for 22 seconds. Methane tests were also carried out for potential application in Saturn s moon Titan, with a nominal heat flux of 1.4 MW/sq m for up to 478 seconds. Three slightly different material formulations were manufactured and subsequently tested at the Plasma Wind Tunnel of the University of Stuttgart in Germany (PWK1) in the summer and fall of 2010. The TPS integrity was well preserved in most cases, and results show great promise.

  12. Effect of SiO2-acryl nanohybrid coating layers on transparent conducting oxide-poly(ethylene terephthalate) superstrate.

    PubMed

    Kang, Y T; Kang, D P; Kang, D J; Chung, I D

    2013-05-01

    SiO2-acryl nanohybrid coating layers were produced by hybridizing acrylic resin and surface-modified colloidal silica (CS) nanoparticles. First, CS nanoparticles were modified with methyltrimethoxysilane (MTMS) and vinyltrimethoxysilane (VTMS) by a sol-gel process. The surface-modified CS nanoparticles were then solvent-exchanged to be homogeneous in acrylic resin. The Hybrid materials were mixed in variation with the amount of surface-modified CS nanoparticles, coated with poly(ethylene terephthalate) (PET), then finally cured by UV light to obtain a hybrid coating layer. Field emission scanning electron microscopy (FE-SEM), particle size analysis (using a Zetasizer), and atomic force microscopy (AFM) were performed to determine the morphology of the hybrid thin-films. Thermogravimetric analysis (TGA) was used to investigate the thermal properties. Fourier-transform infrared (FTIR), ultraviolet-visible (UVNis) spectroscopies, and pencil hardness were used to obtain the details of chemical structures, optical properties, and hardness, respectively. The hybrid thin films had shown to be enhanced properties compared to their urethane acrylate prepolymer (UAP) coating film. PMID:23858925

  13. The effect of void space and polymerization time on transverse strength of acrylic-glass fibre composite.

    PubMed

    Vallittu, P K

    1995-04-01

    The aim of this study was to establish (i) the causes and effects of void space formation in acrylic-glass fibre composite material; and (ii) to clarify the effect of polymerization time of acrylic resin on the transverse strength of heat-cured acrylic resin test specimens. In study 1, three transverse sections of the continuous glass fibre reinforced test specimens (n = 48) were studied by a scanning electron microscope (SEM) and the SEM-micrographs were analysed by a computerized picture analyser. The results suggested that the void space inside the test specimens is caused by a lack of the adsorbed monomer liquid in the fibre bundle before polymerization. The correlation coefficient between these two factors was -0.633 (P < 0.001). No correlation was found between the void space of the acrylic-glass fibre composite and the transverse strength of the test specimens (r = 0.000, P = 1.000). The results of study 2 showed that the transverse strengths of test specimens (n = 240, total) subjected to polymerization of different time spans did not vary significantly (P > 0.05). PMID:7769523

  14. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-09

    A resin recycling method that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The method includes receiving the resin in container form. The containers are then ground into resin particles. The particles are exposed to a solvent, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. After separating the particles and the resin, a solvent removing agent is used to remove any residual solvent remaining on the resin particles after separation.

  15. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    PubMed

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. PMID:24746524

  16. Evaluation of Adhesive Bonding of Lithium Disilicate Ceramic Material with Duel Cured Resin Luting Agents

    PubMed Central

    Gundawar, Sham M.; Radke, Usha M.

    2015-01-01

    Purpose: The purpose of this vitro study was to comparatively evaluate the adhesive bonding of dual cured resin luting agents with lithium disilicate ceramic material. Materials and Methods: Porcelain laminate veneers were prepared with lithium disilicate ceramic material i.e. IPS Empress II( E-Max Press). These laminates were bonded with RelyX ARC, Panavia F 2.0, Variolink II, Duolink and Nexus NX3.The porcelain laminates were etched with 9.6% hydrofluoric acid (Pulpdent Corporation) for one minute, washed for 15 sec with three way syringe and dried for 15 sec with air syringe. The silane (Ultradent) was applied with the help of applicator tip in a single coat and kept undisturbed for one minute. The prepared surfaces of the premolars were treated with 37% phosphoric acid (Prime dent) for 15 sec, thoroughly rinsed and dried as per manufactures instructions. The shear bond test was carried out on all samples with the Universal testing machine (Instron U.S.A.) The scanning electron microscopic study was performed at the fractured interface of representative samples from each group of luting agents. Result: In this study, the highest value of shear bond strength was obtained for NEXUS NX3 and the lowest for VARIOLINK II. Conclusion: The difference in bond strength can be interpreted as the difference in fracture resistance of luting agents, to which shearing load was applied during the shear bond strength test. It is inferred from this study that the composition of the luting agent determines the adhesive characteristics in addition to surface treatment and bonding surface area. PMID:25859514

  17. Effect of glycine pretreatment on the shear bond strength of a CAD/CAM resin nano ceramic material to dentin

    PubMed Central

    Ceci, Matteo; Pigozzo, Marco; Scribante, Andrea; Beltrami, Riccardo; Colombo, Marco; Chiesa, Marco

    2016-01-01

    Background The purpose of this study was to evaluate the effect of glycine pretreatment on the shear bond strength between dentin and a CAD/CAM resin nano ceramic material (LavaTM Ultimate Restorative), bonded together with adhesive cements using three different luting protocols (total-etch; self-etch; self-adhesive). Material and Methods Thirty cylinders were milled from resin nano ceramic blocks with CAD/CAM technology. The cylinders were subsequently cemented to the exposed dentin of 30 bovine permanent mandibular incisors. The specimens were assigned into six groups of five teeth each according to luting procedure and dentin pretreatment. In the first two groups (A1, A2) 10 cylinders were cemented using a total-etch protocol; in groups B1 and B2, 10 cylinders were cemented using a self-etch protocol; in groups C1 and C2, 10 cylinders were cemented using a self-adhesive protocol; in groups A1, B1 and C1 the dentinal surface was also treated with glycine powder. All cemented specimens were submitted to a shear bond strength test. Statistical analysis was performed with Stata 9.0 software. Results ANOVA showed the presence of significant differences among the various groups (P <0.0001). Conclusions Glycine did not change the different bond strength demonstrated by the various luting protocols tested. Conventional resin composite cements used together with a self-etch adhesive reported the highest values. However the use of glycine seems to increase the bond strength of self-adhesive resin cements. Key words:Adhesive cements, CAD/CAM, glycine, luting system, resin nano ceramic, shear bond strength. PMID:27034754

  18. The effect of placement of glass fibers and aramid fibers on the fracture resistance of provisional restorative materials.

    PubMed

    Saygili, Gülbin; Sahmali, Sevil M; Demirel, Figen

    2003-01-01

    The fracture resistance of provisional restorations is an important concern for the restorative dentist. The fracture resistance of a material is directly related to its transverse strength. Six specimens of similar dimensions were prepared from three resins (PMMA, PEMA and BIS acryl-composite). The resins were reinforced with glass and aramid fibers. The samples were tested immediately after the material set, following seven days of wet storage using three-point compression loading. The results were analyzed with an analysis of variance (ANOVA). Fracture resistance of the specimens was statistically different (p < 0.001) among the materials. Specimens reinforced with glass fibers showed higher transverse strength (149.82 MPa). The fiber reinforcement of resin materials increased the strength values (20-50%). Within the limitations of this study, the transverse strengths of PMMA, PEMA and BIS acryl-resin composites were improved after reinforcement with glass and aramid fibers. PMID:12540123

  19. Dependence of demagnetizing fields in Fe-based composite materials on magnetic particle size and the resin content

    NASA Astrophysics Data System (ADS)

    Kollár, Peter; Birčáková, Zuzana; Vojtek, Vladimír; Füzer, Ján; Bureš, Radovan; Fáberová, Mária

    2015-08-01

    Demagnetizing fields are in general produced by the volume and surface magnetic poles. The structure of soft magnetic composite materials, where the ferromagnetic particles are insulated from each other, causes the formation of demagnetizing fields produced by the particle surfaces. These fields depend on the amount of insulation and on the shapes, clustering and distribution of ferromagnetic particles. In this work the demagnetizing fields in iron-phenolphormaldehyde resin composite samples were investigated experimentally using the method for determining the demagnetization factor from the anhysteretic magnetization curve measurement. The initial magnetization curves were calculated for an ideal composite with 100% filler content using the values of the demagnetization factor. The results on the "ideal" permeability show differences between the samples with different resin content for each granulometric class, which tells about the internal stresses introduced into ferromagnetic material during the compaction process.

  20. Improvement of solid material for affinity resins by application of long PEG spacers to capture the whole target complex of FK506.

    PubMed

    Mabuchi, Miyuki; Shimizu, Tadashi; Ueda, Masahiro; Mitamura, Kuniko; Ikegawa, Shigeo; Tanaka, Akito

    2015-07-15

    Solid materials for affinity resins bearing long PEG spacers between a functional group used for immobilization of a bio-active compound and the solid surface were synthesized to capture not only small target proteins but also large and/or complex target proteins. Solid materials with PEG1000 or PEG2000 as spacers, which bear a benzenesulfonamide derivative, exhibited excellent selectivity between the specific binding protein carbonic anhydrase type II (CAII) and non-specific ones. These materials also exhibited efficacy in capturing a particular target at a maximal amount. Affinity resins using solid materials with PEG1000 or PEG2000 spacers, bear a FK506 derivative, successfully captured the whole target complex of specific binding proteins at the silver staining level, while all previously known affinity resins with solid materials failed to achieve this objective. These novel affinity resins captured other specific binding proteins such as dynamin and neurocalcin δ as well. PMID:26025877

  1. Numerical simulations of mechanical properties of innovative pothole patching materials featuring high toughness, low viscosity nano-molecular resins

    NASA Astrophysics Data System (ADS)

    Yuan, K. Y.; Yuan, W.; Ju, J. W.; Yang, J. M.; Kao, W.; Carlson, L.

    2012-04-01

    As asphalt pavements age and deteriorate, recurring pothole repair failures and propagating alligator cracks in the asphalt pavements have become a serious issue to our daily life and resulted in high repairing costs for pavement and vehicles. To solve this urgent issue, pothole repair materials with superior durability and long service life are needed. In the present work, revolutionary pothole patching materials with high toughness, high fatigue resistance that are reinforced with nano-molecular resins have been developed to enhance their resistance to traffic loads and service life of repaired potholes. In particular, DCPD resin (dicyclopentadiene, C10H12) with a Rhuthinium-based catalyst is employed to develop controlled properties that are compatible with aggregates and asphalt binders. In this paper, a multi-level numerical micromechanics-based model is developed to predict the mechanical properties of these innovative nanomolecular resin reinforced pothole patching materials. Coarse aggregates in the finite element analysis are modeled as irregular shapes through image processing techniques and randomly-dispersed coated particles. The overall properties of asphalt mastic, which consists of fine aggregates, asphalt binder, cured DCPD and air voids are theoretically estimated by the homogenization technique of micromechanics. Numerical predictions are compared with suitably designed experimental laboratory results.

  2. Development of highly-filled, bioactive acrylic-based composite bone cements for orthopedic and craniofacial surgery: Tuning of material properties after incorporation of calcium phosphate and antimicrobial fillers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Lucas Carlos

    Bone cements are used in a variety of healthcare specialties ranging from orthopedics to dentistry to craniofacial surgery to spinal disc reconstruction. These materials need characteristics which mimic their surrounding tissues. Currently available materials have struggled to maintain these necessary characteristics. Poly (methyl methacrylate) is a very high strength bio-inert polymer which has been utilized in healthcare since the 1940's. Calcium phosphate cements are well established as being bone mimicking, but cannot sustain the compressive loads in a weight bearing application. This study sought to solve the problem of currently available bone cements by filling calcium phosphates and antimicrobials into an acrylic polymer matrix. The intended outcome was a material capable of retaining high mechanical stability from the acrylic polymer phase, while becoming sufficiently bone mimicking and antimicrobial. This thesis work presented, characterizes the material properties of the developed materials and eventually isolates a material of interest for future studies.

  3. Microtensile bond strength of resin-resin interfaces after 24-hour and 2-month soaking.

    PubMed

    Leavitt, Curry; Boberick, Kenneth G; Winkler, Sheldon

    2007-01-01

    Evaluate the bond strengths of denture base-repair materials to minimize recurrent failure rate. Use microtensile bond strength (muTBS) testing to evaluate the interfacial bonding strength of 6 commercial denture repair materials after 24-hour and 12-month soaking. Blocks of poly(methyl metacrylate) (PMMA) and Triad were fabricated, fractured, and repaired. Twenty bars (1 x 1 x 30 mm) per group were sectioned from each block parallel to the long axis and approximately 90 degrees to the resin-resin repair interface and stored before muTBS testing in a servo-hydraulic tensile-testing machine. Intact PMMA and Triad bars that had been soaked for 24 hours and 12 months were tested for reference. The 24-hour repair strengths for PMMA ranged from 52% to 84% of original strength. Soaking for 12 months resulted in a 20% decrease in strength for the PMMA control. The 12-month repair strengths for PMMA ranged from 43% to 74% of the 12-month soaked material strength. Triad repair tested 35% of original strength after soaking for 24 hours. Permabond (cyanoacrylate) to PMMA tested 47% of original strength after 24 hours of soaking and 26% of the 12-month soaked material strength. Permabond to Triad tested 30% of original strength after 24 hours of soaking. Permabond and Triad showed a 100% adhesive mode of failure. All other materials tested exhibited either an adhesive mode of failure at the denture base-repair-material interface or a complex cohesive failure within the repair-material interface. The muTBS approach can be used to analyze the resin-resin interface of repaired acrylics. The relatively small standard deviations make the muTBS approach attractive. In this study, muTBS was used to evaluate the repair strength of 6 denture repair materials enabling clinicians to make clinical judgments regarding the strongest repair bond available. PMID:17987865

  4. Evaluation of polymethyl methacrylate resin mechanical properties with incorporated halloysite nanotubes

    PubMed Central

    2016-01-01

    PURPOSE This study inspects the effect of incorporating halloysite nanotubes (HNTs) into polymethyl methacrylate (PMMA) resin on its flexural strength, hardness, and Young's modulus. MATERIALS AND METHODS Four groups of acrylic resin powder were prepared. One group without HNTs was used as a control group and the other three groups contained 0.3, 0.6 and 0.9 wt% HNTs. For each one, flexural strength, Young's modulus and hardness values were measured. One-way ANOVA and Tukey's test were used for comparison (P<.05). RESULTS At lower concentration (0.3 wt%) of HNT, there was a significant increase of hardness values but no significant increase in both flexural strength and Young's modulus values of PMMA resin. In contrast, at higher concentration (0.6 and 0.9 wt%), there was a significant decrease in hardness values but no significant decrease in flexural strength and Young's modulus values compared to those of the control group. CONCLUSION Addition of lower concentration of halloysite nanotubes to denture base materials could improve some of their mechanical properties. Improving the mechanical properties of acrylic resin base material could increase the patient satisfaction. PMID:27350849

  5. In vitro toothbrushing abrasion of dental resin composites: packable, microhybrid, nanohybrid and microfilled materials.

    PubMed

    Moraes, Rafael Ratto de; Ribeiro, Daiane dos Santos; Klumb, Mirian Margarete; Brandt, William Cunha; Correr-Sobrinho, Lourenço; Bueno, Márcia

    2008-01-01

    This study evaluated weight loss and surface roughening after toothbrushing of different resin composites: one packable (Solitaire 2, Heraeus Kulzer), one microhybrid (Charisma, Heraeus Kulzer), one nanohybrid (Simile, Pentron) and one microfilled (Durafill VS, Heraeus Kulzer). Cylindrical specimens (n = 20) were prepared. Half of the samples were submitted to 60,000 strokes, at 4 Hz, with a dentifrice-water slurry. Control samples (n = 10) remained stored at 37 degrees C. Pre- and post-abrasion parameters for weight (mg) and surface roughness (Ra, microm) were determined on an analytical balance and a surface profilometer. Data were separately submitted to Repeated Measures ANOVA and Tukey's test (a = 0.05). Percentages of weight loss were analyzed by ANOVA and Tukey's test (a = 0.05). The relationship between both evaluations was assessed by Pearson's test (a = 0.05). The means (%) for weight loss (standard deviation) were 0.65(0.2), 0.93(0.2), 1.25(0.6) and 1.25(0.4) for Simile, Durafill, Charisma and Solitaire, respectively. Baseline roughness means ranged from 0.065(0.01), 0.071(0.01), 0.066(0.02) and 0.074(0.01) for Simile, Durafill, Charisma and Solitaire, respectively, to 0.105(0.04), 0.117(0.03), 0.161(0.03) and 0.214(0.07) after testing. The composites with larger fillers presented higher weight loss and roughening than the finer materials (p < 0.05). For both evaluations, control specimens showed no significant alteration. No significant relationship between loss of weight and roughness alteration was detected (r = 0.322, p = 0.429). PMID:18622479

  6. Chemical study of triterpenoid resinous materials in archaeological findings by means of direct exposure electron ionisation mass spectrometry and gas chromatography/mass spectrometry.

    PubMed

    Modugno, Francesca; Ribechini, Erika; Colombini, Maria Perla

    2006-01-01

    A systematic study of standard triterpenes (alpha-amyrine, oleanolic acid, betulin, lupeol, betulinic acid and lupenone) and of raw resinous materials (frankincense resin, mastic resin and birch bark pitch) was performed using direct exposure electron ionisation mass spectrometry (DE-MS) and gas chromatography/mass spectrometry (GC/MS). DE-MS provides a mass spectral fingerprint of organic materials in a few minutes which highlights the compounds that are the main components in the sample. The application of principal component analysis (PCA) on DE-MS data in the mass ranges m/z 181-260 and m/z 331-500, corresponding to the fragmentation of triterpenoid molecules, enabled us to distinguish between different triterpenoid materials such as mastic resin, frankincense resin and birch bark pitch, and to graphically plot the resinous substances in three separate clusters, retaining 89% of the total variance. GC/MS analysis of the same materials has permitted us to elucidate in detail the molecular composition and to identify minor components and species that act as markers of the degradation undergone by the materials. The paper also reports the results for the organic residues contained in an Egyptian censer (5th-7th century AD) which was recovered in the excavation of the Necropolis of Antinoe (Egypt), and for the hafting material found on a Palaeolithic tool recovered at the site of Campitello (Arezzo, Tuscany), dating back to the Mid-Pleistocene period. Although DE-MS was found to be a fast analytical tool, it failed to give any information on the presence of less abundant compounds when applied to mixtures of different materials: only mastic resin was found in the residues from the Roman censer, whereas GC/MS analysis identified the presence of a vegetable oil from Brassicaceae seeds and Pinaceae resin. Birch bark pitch as a pure material was identified in the sample from the Palaeolithic flint flake using both procedures. PMID:16676320

  7. Fracture resistance of overtly flaring root canals filled with resin-based obturation material

    PubMed Central

    Abdo, Salma B.; Eldarrat, Aziza H.

    2013-01-01

    Background: Reinforcement of root canals obturated with Resilon was reported by several investigators, but no studies reported the reinforcement of overtly flared root canals obturated with Resilon material. The aim of this study was to investigate the fracture resistance of overtly flared root canals filled with Resilon as compared to similar root canals filled with gutta-percha (GP). Materials and Methods: Sixty single-rooted premolars were divided randomly into six groups. Group 1 served as control group. The control group was sub-divided into two groups, a negative group and a positive group. The negative group consisted of root canals that were only cleaned from residual pulpal tissues, however, the positive group had prepared and overtly flared root canals without obturation. Groups 2 and 4 were shaped using 0.04 taper rotary files, while groups 3 and 5 were shaped using 0.06 taper rotary files. Before obturation, the last four groups were further flared coronally with a reverse cone diamond bur. Groups 2 and 3 were obturated with GP and a resin-based sealer, while groups 4 and 5 were obturated with Resilon and Epiphany self-etching primer and Epiphany sealer. Roots were then fixed into a universal testing machine and vertically loaded until fracture. SPSS software (Release 9.0 for Windows, SPSS, Chicago, USA) was used to perform the statistical analysis. Results: Fracture resistance measurements showed that there were differences in resistance to fracture among the experimental groups (ANOVA, P < 0.0001). Mean values of the loading force applied to the negative control group were the highest at 1.81 KN, whereas the mean values for the Resilon groups (Groups 4 and 5) at 1.13 KN and 1.54 KN were found to be higher than the GP groups (Groups 2 and 3) at 0.45 KN and 0.88 KN, respectively. Tukey's post hoc test showed that there was no statistical difference between the mean values of the negative control group and Group 5 (P = 0.69). Conclusion: Obturation of

  8. Quantification of organic eluates from polymerized resin-based dental restorative materials by use of GC/MS.

    PubMed

    Michelsen, Vibeke Barman; Moe, Grete; Skålevik, Rita; Jensen, Einar; Lygre, Henning

    2007-05-01

    Residual monomers, additives and degradation products from resin-based dental restorative materials eluted into the oral cavity may influence the biocompatibility of these materials. Emphasis has been placed on studies addressing cytotoxic, genotoxic and estrogenic potential of these substances. A prerequisite for analyzing the potential of exposure to eluted compounds from dental materials is reliable quantification methods, both real time and accelerated measurements. The purpose of the present study was to quantify nine eluates; 2-hydroxyethyl methacrylate (HEMA), hydroquinone monomethyl ether (MEHQ), camphorquinone (CQ), butylated hydroxytoluene (BHT), ethyl 4-(dimethylamino)benzoate (DMABEE), triethylene glycoldimethacrylate (TEGDMA), trimethylolpropane trimethacrylate (TMPTMA), oxybenzone (HMBP) and drometrizole (TIN P) leaching from specimens of four commonly used resin-based dental materials in ethanol and an aqueous solution. All analyses were performed by use of GC/MS, each component was quantified separately and the results presented in microg mm(-2). This study has shown that elution from various materials differs significantly, not only in the types of eluates, but also regarding amounts of total and of single components. A high amount of HMBP, a UV stabilizer with potential estrogenic activity, was detected from one material in both solutions. PMID:17127109

  9. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  10. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  11. 21 CFR 177.2260 - Filters, resin-bonded.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... of this section. (a) Resin-bonded filters are prepared from natural or synthetic fibers to which have... contain at least 70 weight percent of polymer units derived from ethyl acrylate, no more than 2 weight percent of total polymer units derived from acrylic acid, no more than 10 weight percent of total...

  12. Investigation of an anion exchange resin for cleanup of a coolant used to machine nuclear materials

    SciTech Connect

    Hinton, E.R. Jr.; Tucker, H.L.; Asbury, W.L.

    1986-01-01

    This article describes the interaction of Dowex SBR-P, which is a strongly basic anion exchange resin, with ions found in a used machining coolant. The coolant is used in machining enriched uranium and contains uranium, chloride, nitrite, borate ions, water, and propylene glycol.

  13. The stability of new transparent polymeric materials: The epoxy trimethoxyboroxine system. Part 1: The preparation, characterization and curing of epoxy resins and their copolymers

    NASA Technical Reports Server (NTRS)

    Pearce, E.; Lin, S. C.

    1981-01-01

    The effects of resin composition, curing conditions fillers, and flame retardant additives on the flammability of diglycidyl ether of bisphenol-A (DGEBA) as measured by the oxygen index is examined. The oxygen index of DGEBA cured with various curing agents was between 0.198 to 0.238. Fillers and flame retardant additives can increase the oxygen index dependent on the material and the amount used. Changes in the basic cured resin properties can be anticipated with the addition of noncompatible additives. High flame resistant epoxy resins with good stability and mechanical properties are investigated.

  14. Effect of Nanosilver on Thermal and Mechanical Properties of Acrylic Base Complete Dentures

    PubMed Central

    Hamedi-Rad, Fahimeh; Ghaffari, Tahereh; Rezaii, Farzad; Ramazani, Ali

    2014-01-01

    Objective: Polymethyl methacrylate (PMMA), widely used as a prosthodontic base, has many disadvantages, including a high thermal expansion coefficient and low thermal conductivity, a low elasticity coefficient, low impact strength and low resistance to fatigue. This study aimed to make an in vitro comparison of the thermal conductivity, compressive strength, and tensile strength of the acrylic base of complete dentures with those of acrylic reinforced with nanosilver. Materials and Methods: For this study, 36 specimens were prepared. The specimens were divided into three groups of 12; which were further divided into two subgroups of control (unmodified PMMA) and test (PMMA mixed with 5 weight% nanosilver).The results were analysed by Independent t-test. Results: This study showed that the mean thermal conductivity and compressive strength of PMMA reinforced with nanosilver were significantly higher than the unmodified PMMA (P<0.05), while the tensile strength decreased significantly after the incorporation of nanosilver (P<0.05). Conclusion: Considering our results suggesting the favorable effect of silver nanoparticles on improving the thermal conductivity and compressive strength of PMMA, use of this material in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25628675

  15. Influence of Resin Cements on the Tension Force of Cast Frameworks Made by the Technique of Framework Cemented on Prepared Abutments.

    PubMed

    Perroni, Ana Paula; Gomes, Érica Alves; Bielemann, Amália Machado; Baseggio, Bruna; Federizzi, Leonardo; Spazzin, Aloísio Oro; dos Santos, Mateus Bertolini Fernandes

    2015-01-01

    This study evaluated the tension force of cast frameworks made by the technique of framework cemented on prepared abutments using two different resin cements. Forty multi-unit abutment analogs were individually fixed with chemically cured acrylic resin inside PVC cylinders using a parallelometer. Brass cylindrical abutments were tightened to the multi-unit abutments to be used as spacers and then castable UCLA abutments were positioned above. These abutments were cast with Ni-Cr and then divided into 4 groups (n=10): cemented with RelyX U100(r); cemented with RelyX U100(r) and simulation of acrylic resin polymerization process; cemented with Multilink(r); and cemented with Multilink(r) and simulation of acrylic resin polymerization process. Abutments were cemented according to manufacturers' instructions. In a universal testing machine, tensile strength was applied in the direction of the long axis of the abutments at 1 mm/min crosshead speed until displacement of the luted abutments was obtained. The values of maximum tensile force (N) required for the displacement of the luted abutments were tabulated and analyzed statistically by one-way ANOVA with a 95% confidence level. No statistically significant difference was found among the groups (p>0.05). There was an increase in mean tension force when the specimens were subjected to the simulation of acrylic resin polymerization process, but the results did not differ statistically. Both resin cements presented positive results as regards the retention of luted abutments on their respective multi-unit abutments. Both materials may be indicated for the technique of framework cemented on prepared abutments when professionals pursuit better adaptation of implant-supported frameworks. PMID:26312978

  16. Silicone/Acrylate Copolymers

    NASA Technical Reports Server (NTRS)

    Dennis, W. E.

    1982-01-01

    Two-step process forms silicone/acrylate copolymers. Resulting acrylate functional fluid is reacted with other ingredients to produce copolymer. Films of polymer were formed by simply pouring or spraying mixture and allowing solvent to evaporate. Films showed good weatherability. Durable, clear polymer films protect photovoltaic cells.

  17. System for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2010-11-23

    A resin recycling system that produces essentially contaminant-free synthetic resin material in an environmentally safe and economical manner. The system includes receiving the resin in container form. A grinder grinds the containers into resin particles. The particles are exposed to a solvent in one or more solvent wash vessels, the solvent contacting the resin particles and substantially removing contaminants on the resin particles. A separator is used to separate the resin particles and the solvent. The resin particles are then placed in solvent removing element where they are exposed to a solvent removing agent which removes any residual solvent remaining on the resin particles after separation.

  18. Development of high-toughness low-viscosity nano-molecular resins for reinforcing pothole patching materials

    NASA Astrophysics Data System (ADS)

    Yuan, Wei; Yuan, Matt; Zou, Linhua; Yang, Jenn-Ming; Ju, Woody; Kao, Wei; Carlson, Larry; Edgecombe, Brian; Stephen, Tony; Villacorta, Ricardo; Solamon, Ray

    2011-04-01

    As the nation's asphalt pavements age and deteriorate, the need for corrective measures to restore safety and rideability increases. The potholes and alligator cracks in the asphalt pavement of our country's roadways have become an annoying part of our daily life and no innovative technologies are available to improve the safety of US drivers, reduce the cost of road maintenance. We have identified a polymeric material, dicyclopentadiene (DCPD) resin, which can be cured by Grubb's catalyst and other commercially available catalysts to become an ultratough material with all the desired properties for pothole repair. We have characterized DCPD infiltration characteristics using non-destructive CT scan, and the mechanical properties using indirect tensile test under hot, cold or wet conditions. The preliminary results show that DCPD is a promising material for applications in reinforced pothole patching materials.

  19. Ageing of organic electrical insulating materials due to radiation. Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum

    NASA Astrophysics Data System (ADS)

    Sparado, G.; Calderaro, E.; Schifani, R.; Tutone, R.; Rizzo, G.

    Physical properties of a cycloaliphatic epoxy resin irradiated under vacuum have been investigated. In particular dynamic-mechanical, dielectric and tensile measurements have been performed. This is a useful basis with a view to studying the ageing phenomenon of organic insulating materials due to radiation under the combined effect of environmental conditions. The results indicate that, in the dose range investigated (0-1.5 x 10 6Gy), the main effect of γ-rays under vacuum is to increase the degree of crosslinking

  20. Influence of the base and diluent monomer on network characteristics and mechanical properties of neat resin and composite materials.

    PubMed

    Fróes-Salgado, Nívea Regina de Godoy; Gajewski, Vinícius; Ornaghi, Bárbara Pick; Pfeifer, Carmem Silvia Costa; Meier, Marcia Margarete; Xavier, Tathy Aparecida; Braga, Roberto Ruggiero

    2015-05-01

    This study evaluated the effect of the combination of two dimethacrylate-based monomers [bisphenol A diglycidyl dimethacrylate (BisGMA) or bisphenol A ethoxylated dimethacrylate (BisEMA)] with diluents either derived from ethylene glycol dimethacrylate (ethylene glycol dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate) or 1,10-decanediol dimethacrylate (D3MA) on network characteristics and mechanical properties of neat resin and composite materials. The degree of conversion, maximum rate of polymerization and water sorption/solubility of unfilled resins and the flexural strength and microhardness of composites (after 24 h storage in water and 3 months storage in a 75 vol% ethanol aqueous solution) were evaluated. Data were analyzed with two-way ANOVA and Tukey's test (α = 0.05). The higher conversion and lower water sorption presented by BisEMA co-polymers resulted in greater resistance to degradation in ethanol compared with BisGMA-based materials. In general, conversion and mechanical properties were optimized with the use of long-chain dimethacrylate derivatives of ethylene glycol. D3MA rendered more hydrophobic materials, but with relatively low conversion and mechanical properties. PMID:24728606

  1. Effect of Extraction Media and Storage Time on the Elution of Monomers from Four Contemporary Resin Composite Materials

    PubMed Central

    Tsitrou, Effrosyni; Kelogrigoris, Stavros; Koulaouzidou, Elisabeth; Antoniades-Halvatjoglou, Maria; Koliniotou-Koumpia, Eugenia; van Noort, Richard

    2014-01-01

    Introduction: The purpose of this study was to examine the effect of different extraction media, including culture media, as well as storage times on the elution of monomers from modern dental composites. Materials and Methods: Four contemporary composite materials were tested: (a) Clearfil Majesty Esthetic (Kuraray), (b) Esthet X (DENTSPLY), (c) Filtek Silorane (3M ESPE), and (d) Admira (Voco). Forty-eight specimens were made. The specimens were stored in 1 ml of (a) artificial saliva, (b) Dulbecco's Modified Eagle Medium (DMEM), (c) DMEM plus 10% fetal bovine serum (FBS), and (d) ethanol 75%. The specimens were analyzed after 24 hours and after 1 week of storage. HPLC Liquid Chromatography was performed to analyze the extracted solutions. The statistical package SPSS 18 was used for the statistical analysis of the results. Results: All the materials tested released monomers that were consistent with the base composition of their resin matrix. Bisphenol-A (BPA) was detected in Clearfil Esthetic and EsthetX when ethanol 75% was used for storage. TEGDMA was released at a faster rate compared to the other monomers with most of the monomer eluted in the first 24 hours. The effect of storage solution and storage time on the elution of the same monomers varied between materials. Conclusions: There was a significant effect of time, storage solution, and material on the elution of the detectable unbound monomers. Unbound monomers were detected in culture media, which may lead to false-negative results in cytotoxicity tests of resin composite materials. BPA was detected in two of the tested materials. PMID:24748741

  2. Temperature changes under demineralized dentin during polymerization of three resin-based restorative materials using QTH and LED units

    PubMed Central

    Mousavinasab, Sayed-Mostafa; Moharreri, Mohammadreza; Atai, Mohammad

    2014-01-01

    Objectives Light-curing of resin-based materials (RBMs) increases the pulp chamber temperature, with detrimental effects on the vital pulp. This in vitro study compared the temperature rise under demineralized human tooth dentin during light-curing and the degrees of conversion (DCs) of three different RBMs using quartz tungsten halogen (QTH) and light-emitting diode (LED) units (LCUs). Materials and Methods Demineralized and non-demineralized dentin disks were prepared from 120 extracted human mandibular molars. The temperature rise under the dentin disks (n = 12) during the light-curing of three RBMs, i.e. an Ormocer-based composite resin (Ceram. X, Dentsply DeTrey), a low-shrinkage silorane-based composite (Filtek P90, 3M ESPE), and a giomer (Beautifil II, Shofu GmbH), was measured with a K-type thermocouple wire. The DCs of the materials were investigated using Fourier transform infrared spectroscopy. Results The temperature rise under the demineralized dentin disks was higher than that under the non-demineralized dentin disks during the polymerization of all restorative materials (p < 0.05). Filtek P90 induced higher temperature rise during polymerization than Ceram.X and Beautifil II under demineralized dentin (p < 0.05). The temperature rise under demineralized dentin during Filtek P90 polymerization exceeded the threshold value (5.5℃), with no significant differences between the DCs of the test materials (p > 0.05). Conclusions Although there were no significant differences in the DCs, the temperature rise under demineralized dentin disks for the silorane-based composite was higher than that for dimethacrylate-based restorative materials, particularly with QTH LCU. PMID:25110638

  3. The influence of low concentrations of a water soluble poragen on the material properties, antibiotic release, and biofilm inhibition of an acrylic bone cement.

    PubMed

    Slane, Josh A; Vivanco, Juan F; Rose, Warren E; Squire, Matthew W; Ploeg, Heidi-Lynn

    2014-09-01

    Soluble particulate fillers can be incorporated into antibiotic-loaded acrylic bone cement in an effort to enhance antibiotic elution. Xylitol is a material that shows potential for use as a filler due to its high solubility and potential to inhibit biofilm formation. The objective of this work, therefore, was to investigate the usage of low concentrations of xylitol in a gentamicin-loaded cement. Five different cements were prepared with various xylitol loadings (0, 1, 2.5, 5 or 10 g) per cement unit, and the resulting impact on the mechanical properties, cumulative antibiotic release, biofilm inhibition, and thermal characteristics were quantified. Xylitol significantly increased cement porosity and a sustained increase in gentamicin elution was observed in all samples containing xylitol with a maximum cumulative release of 41.3%. Xylitol had no significant inhibitory effect on biofilm formation. All measured mechanical properties tended to decrease with increasing xylitol concentration; however, these effects were not always significant. Polymerization characteristics were consistent among all groups with no significant differences found. The results from this study indicate that xylitol-modified bone cement may not be appropriate for implant fixation but could be used in instances where sustained, increased antibiotic elution is warranted, such as in cement spacers or beads. PMID:25063107

  4. pH- and ionic-strength-induced structural changes in poly(acrylic acid)-lipid-based self-assembled materials.

    SciTech Connect

    Crisci, A.; Hay, D. N. T.; Seifert, S.; Firestone, M. A.

    2009-01-01

    The effect of a polyanion introduced as a lipid conjugate (poly(acrylic acid)- dimyristoyl-sn-glycero-3-phosphoethanolamine, PAA-DMPE) on the structure of a self-assembled, biomembrane mimetic has been evaluated using synchrotron small-angle X-ray scattering (SAXS). At high grafting density (8-11 mol.%), the PAA chains were found to produce significant changes in structure in response to changes in pH and electrolyte composition. At low pH and in the absence of salt (NaCl), the neutral PAA chains adopt a coil conformational state that leads to the formation of a swollen lamellar structure. Upon the addition of salt at low to intermediate pH values, two lamellar phases, a collapsed and an expanded structure, coexist. Finally, when the polymer is fully ionized (at high pH), the extended conformation of the polymer generates a cubic phase. The results of this study contribute to an understanding of how polyelectrolytes may ultimately be harnessed for the preparation of self-assembling materials responsive to external stimuli.

  5. Characterization of the oxide formed in the presence of poly acrylic acid over the steam generator structural materials of nuclear power plants

    NASA Astrophysics Data System (ADS)

    Joshi, Akhilesh C.; Rufus, Appadurai L.; Suresh, Sumathi; Chandramohan, Palogi; Rangarajan, Srinivasan; Velmurugan, Sankaralingam

    2013-06-01

    On-line addition of polymeric dispersants, such as poly acrylic acid (PAA), to the steam generator (SG) results in the formation of a better protective inner oxide layer that reduces subsequent corrosion of structural materials. Its dispersive action inhibits the growth of a secondary oxide layer thereby facilitating their easy removal. This paper discusses the effect of PAA on the nature of oxides formed over the surfaces of SG. In the case of carbon steel, the inner oxide layer (magnetite) formed in the presence of PAA was protective. Electrochemical studies showed a minimum concentration of 350 ppb of PAA was found to be optimum. On the monel surface, in the absence of PAA, nickel ferrite was formed while in the presence of PAA, the oxide formed was a mixture of oxides of copper and nickel. A concentration of 700 ppb of PAA was found to be optimum for monel. In the case of incoloy, the effect of PAA was not discernible except for the size and morphology of the crystallites formed.

  6. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  7. Comparison of XAD macroporous resins for the concentration of fulvic acid from aqueous solution

    USGS Publications Warehouse

    Aiken, G.R.

    1979-01-01

    Five macroreticular, nonlonlc AmberlHe XAD resins were evaluated for concentration and Isolation of fulvlc acid from aqueous solution. The capacity of each resin for fulvlc acid was measured by both batch and column techniques. Elution efficiencies were determined by desorptlon with 0.1 N NaOH. Highest recoveries were obtained with the acrylic ester resins which proved to be most efficient for both adsorption and elution of fulvlc acid. Compared to the acrylic ester resins, usefulness of the styrene dvlnybenzene resins to remove fulvlc acid is limited because of slow diffusion-controlled adsorption and formation of charge-transfer complexes, which hinders elution. ?? 1979 American Chemical Society.

  8. Improved resins and novel materials and methods for solid phase extraction and high performance liquid chromatography

    SciTech Connect

    Freeze, R.

    1997-10-08

    Solid-phase extraction (SPE) has grown to be one of the most widely used methods for isolation and preconcentration of a vast range of compounds from aqueous solutions. By modifying polymeric SPE resins with chelating functional groups, the selective uptake of metals was accomplished. The resin, along with adsorbed metals, was vaporized in the ICP and detection of the metals was then possible using either mass or emission spectroscopy. Drug analyses in biological fluids have received heightened attention as drug testing is on the increase both in sports and in the work environment. By using a direct-injection technique, biological fluids can be injected directly into the liquid chromatographic system with no pretreatment. A new surfactant, a sulfonated form of Brij-30 (Brij-S) is shown to prevent the uptake of serum proteins on commercial HPLC columns by forming a thin coating on the silica C18 surface. Excellent separations of eight or more drugs with a wide range of retention times were obtained. The separations had sharper peaks and lower retention times than similar separations performed with the surfactant sodium dodecylsulfate (SDS). Quantitative recovery of a number of drugs with limits of detection near 1 ppm with a 5 {micro}l injection volume were obtained. Finally, a method for solid-phase extraction in a syringe is introduced. The system greatly reduced the volume of solvent required to elute adsorbed analytes from the SPE bed while providing a semi-automated setup. SPE in a syringe consists of a very small bed of resin-loaded membrane packed into a GC or HPLC syringe. After extraction, elution was performed with just a few {micro}l of solvent. This small elution volume allowed injection of the eluent directly from the syringe into the chromatographic system, eliminating the handling problems associated with such small volumes.

  9. Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide

    NASA Astrophysics Data System (ADS)

    Pang, Beili; Ryu, Chong-Min; Jin, Xin; Kim, Hyung-Il

    2013-11-01

    Acrylic pressure sensitive adhesives (PSAs) with higher thermal stability for thin wafer handling were successfully prepared by forming composite with the graphene oxide (GO) nanoparticles modified to have vinyl groups via subsequent reaction with isophorone diisocyanate and 2-hydroxyethyl methacrylate. The acrylic copolymer was synthesized as a base resin for PSAs by solution radical polymerization of ethyl acrylate, 2-ethylhexyl acrylate, and acrylic acid followed by further modification with GMA to have the vinyl groups available for UV curing. The peel strength of PSA decreased with the increase of gel content which was dependent on both modified GO content and UV dose. Thermal stability of UV-cured PSA was improved noticeably with increasing the modified GO content mainly due to the strong and extensive interfacial bonding formed between the acrylic copolymer matrix and GO fillers

  10. Antistatic coating for acrylics

    NASA Technical Reports Server (NTRS)

    Hadek, V.; Rembaum, A.; Somono, R. B.

    1979-01-01

    After immersion in low molecular-weight solvents such as acetonitril or nitromethane, clear acrylic plastics dissipate up to 70% of induced electric charge within one minute, yet retain optical clarity.

  11. The acrylic jacket crown.

    PubMed

    Bell, A M

    1975-04-01

    An attempt has been made to cover briefly the many applications of the acrylic jacket crown. It is readily understandable that this type of restoration has many shortcomings but at the same time it has many useful and important applications in dentistry when properly employed. It is hoped that the specialist and generalist alike will have found some new and useful applications of the acrylic jacket crown. PMID:1090464

  12. FRACTURE RESISTANCE OF WEAKENED TEETH RESTORED WITH CONDENSABLE RESIN WITH AND WITHOUT CUSP COVERAGE

    PubMed Central

    Mondelli, Rafael Francisco Lia; Ishikiriama, Sérgio Kiyoshi; de Oliveira, Otávio; Mondelli, José

    2009-01-01

    Objectives: This in vitro study evaluated the fracture resistance of weakened human premolars (MOD cavity preparation and pulp chamber roof removal) restored with condensable resin composite with and without cusp coverage. Material and Methods: Thirty human maxillary premolars were divided into three groups: Group A (control), sound teeth; Group B, wide MOD cavities prepared and the pulp chamber roof removed and restored with resin composite without cusp coverage; Group C, same as Group B with 2.0 mm of buccal and palatal cusps reduced and restored with the same resin. The teeth were included in metal rings with self-curing acrylic resin, stored in water for 24 h and thereafter subjected to a compressive axial load in a universal testing machine at 0.5 mm/min. Results: The mean fracture resistance values ± standart deviation (kgf) were: group A: 151.40 ± 55.32, group B: 60.54 ± 12.61, group C: 141.90 ± 30.82. Statistically significant differences were found only between Group B and the other groups (p<0.05). The condensable resin restoration of weakened human premolars with cusp coverage significantly increased the fracture resistance of the teeth as compared to teeth restored without cusp coverage. Conclusion: The results showed that cusp coverage with condensable resin might be a safe option for restoring weakened endodontically treated teeth. PMID:19466244

  13. PSP resins, new materials which can be hardened by thermal treatment for use in composite materials resistant to heat and fire

    NASA Technical Reports Server (NTRS)

    Ropars, M.; Bloch, B.; Malassine, B.

    1979-01-01

    A class of easy-to-prepare heterocyclic-aromatic polymers which can be used for matrices in reinforced laminates is described. These polymers can be cured after B-staging with very little evolution of volatile materials, and they retain a low melt-viscosity which leads to low-void laminates. Resins are stable at temperatures below 150 C. Properties of composites with various reinforcements, in particular carbon-fiber unidirectional laminates, are described, and the fire behavior of PSP-glass laminates is reported.

  14. Shear bond strength comparison of implant-retained overdenture attachment pickup materials.

    PubMed

    Cayouette, Monica J; Barnes, Logan; Vuthiganon, Jompobe; McPherson, Karen

    2016-01-01

    This study evaluated the shear bond strength (SBS) of 4 different retentive materials for the chairside pickup of dental implant attachments. Shear force was applied to determine the SBS of each material to denture acrylic resin. The difference between SBSs of polymethyl methacrylate and UBAR (claimed to bond to metal) to metal housings was also evaluated. There were no statistically significant differences among the SBSs of Jet Denture Repair Acrylic, EZ PickUp, and UBAR, but Quick Up had an SBS that was significantly lower than that of the other 3 materials. In addition, UBAR had a higher SBS to metal housings than did processed polymethyl methacrylate. PMID:27367633

  15. Six-month evaluation of a resin/dentin interface created by methacrylate and silorane-based materials

    PubMed Central

    SAMPAIO, Renata Kirita Doi; WANG, Linda; de CARVALHO, Rodrigo Varella; GARCIA, Eugenio José; de ANDRADE, Andréa Mello; KLEIN-JÚNIOR, Celso Afonso; GRANDE, Rosa Helena Miranda; MOURA, Sandra Kiss

    2013-01-01

    Objectives: This study aimed to compare the micro-tensile bond strength of methacrylate resin systems to a silorane-based restorative system on dentin after 24 hours and six months water storage. Material and Methods: The restorative systems Adper Single Bond 2/Filtek Z350 (ASB), Clearfil SE Bond/Z350 (CF), Adper SE Plus/Z350 (ASEP) and P90 Adhesive System/Filtek P90 (P90) were applied on flat dentin surfaces of 20 third molars (n=5). The restored teeth were sectioned perpendicularly to the bonding interface to obtain sticks (0.8 mm2) to be tested after 24 hours (24 h) and 6 months (6 m) of water storage, in a universal testing machine at 0.5 mm/min. The data was analyzed via two-way Analysis of Variance/Bonferroni post hoc tests at 5% global significance. Results: Overall outcomes did not indicate a statistical difference for the resin systems (p=0.26) nor time (p=0.62). No interaction between material x time was detected (p=0.28). Mean standard-deviation in MPa at 24 h and 6 m were: ASB 31.38 (4.53) and 30.06 (1.95), CF 34.26 (3.47) and 32.75 (4.18), ASEP 29.54 (4.14) and 33.47 (2.47), P90 30.27 (2.03) and 31.34 (2.19). Conclusions: The silorane-based system showed a similar performance to methacrylate-based materials on dentin. All systems were stable in terms of bond strength up to 6 month of water storage. PMID:23559117

  16. The Chemical Nature of the Fiber/resin Interface in Composite Materials

    NASA Technical Reports Server (NTRS)

    Diefendorf, R. J.

    1984-01-01

    Carbon fiber/epoxy resin composites are considered. The nature of the fiber structure and the interaction that occurs at the interface between fiber and matrix are emphasized. Composite toughness can be improved by increased axial tensile and compressive strengths in the fibers. The structure of carbon fibers indicates that the fiber itself can fail transversely, and different transverse microstructures could provide better transverse strengths. The higher surface roughness of lower modulus and surface-treated carbon fibers provides better mechanical interlocking between the fiber and matrix. The chemical nature of the fiber surface was determined, and adsorption of species on this surface can be used to promote wetting and adhesion. Finally, the magnitude of the interfacial bond strength should be controlled such that a range of composites can be made with properties varying from relatively brittle and high interlaminar shear strength to tougher but lower interlaminar shear strength.

  17. Antibacterial and Biofilm-Disrupting Coatings from Resin Acid-Derived Materials.

    PubMed

    Ganewatta, Mitra S; Miller, Kristen P; Singleton, S Parker; Mehrpouya-Bahrami, Pegah; Chen, Yung P; Yan, Yi; Nagarkatti, Mitzi; Nagarkatti, Prakash; Decho, Alan W; Tang, Chuanbing

    2015-10-12

    We report antibacterial, antibiofilm, and biocompatible properties of surface-immobilized, quaternary ammonium-containing, resin acid-derived compounds and polycations that are known to be efficient antimicrobial agents with minimum toxicities to mammalian cells. Surface immobilization was carried out by the employment of two robust, efficient chemical methods: Copper-catalyzed azide-alkyne 1,3-dipolar cycloaddition click reaction, and surface-initiated atom transfer radical polymerization. Antibacterial and antibiofilm activities against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli were strong. Hemolysis assays and the growth of human dermal fibroblasts on the modified surfaces evidenced their biocompatibility. We demonstrate that the grafting of quaternary ammonium-decorated abietic acid compounds and polymers from surfaces enables the incorporation of renewable biomass in an effective manner to combat bacteria and biofilm formation in biomedical applications. PMID:26324023

  18. Comparative Evaluation of Effect of Water Absorption on the Surface Properties of Heat Cure Acrylic: An in vitro Study

    PubMed Central

    Chandu, G S; Asnani, Pooja; Gupta, Siddarth; Faisal Khan, Mohd.

    2015-01-01

    Background: Use of alkaline peroxide denture cleanser with different temperature of water could cause a change in surface hardness of the acrylic denture and also has a bleaching effect. The purpose of the study was to determine the effect of increased water content during thermal cycling of hot water-treated acrylic on the surface hardness of acrylic denture base when compared to warm water treated acrylic. And to compare the bleaching effect of alkaline peroxide solution on the acrylic denture base on hot water and warm water treated acrylic. Materials and Methods: Forty samples (10 mm × 10 mm × 2.5 mm) were prepared. After the calculation of the initial hardness 40 samples, each was randomly assigned to two groups. Group A: 20 samples were immersed in 250 ml of warm distilled water at 40°C with alkaline peroxide tablet. Group B: 20 samples were immersed in 250 ml of hot distilled water at 100°C with alkaline peroxide tablet. The surface hardness of each test sample was obtained using the digital hardness testing machine recording the Rockwell hardness number before the beginning of the soaking cycles and after completion of 30 soak cycles and compared. Values were analyzed using paired t-test. Five samples from the Group A and five samples from Group B were put side by side and photographed using a Nikon D 40 digital SLR Camera and the photographs were examined visually to assess the change in color. Results: Acrylic samples immersed in hot water showed a statistically significant decrease of 5.8% in surface hardness. And those immersed in warm water showed a statistically insignificant increase of 0.67% in surface hardness. Samples from the two groups showed clinically insignificant difference in color when compared to each other on examination of the photographs. Conclusion: Thermocycling of the acrylic resin at different water bath temperature at 40°C and 100°C showed significant changes in the surface hardness. PMID:25954074

  19. Influence of different luting protocols on shear bond strength of computer aided design/computer aided manufacturing resin nanoceramic material to dentin

    PubMed Central

    Poggio, Claudio; Pigozzo, Marco; Ceci, Matteo; Scribante, Andrea; Beltrami, Riccardo; Chiesa, Marco

    2016-01-01

    Background: The purpose of this study was to evaluate the influence of three different luting protocols on shear bond strength of computer aided design/computer aided manufacturing (CAD/CAM) resin nanoceramic (RNC) material to dentin. Materials and Methods: In this in vitro study, 30 disks were milled from RNC blocks (Lava Ultimate/3M ESPE) with CAD/CAM technology. The disks were subsequently cemented to the exposed dentin of 30 recently extracted bovine permanent mandibular incisors. The specimens were randomly assigned into 3 groups of 10 teeth each. In Group 1, disks were cemented using a total-etch protocol (Scotchbond™ Universal Etchant phosphoric acid + Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 2, disks were cemented using a self-etch protocol (Scotchbond Universal Adhesive + RelyX™ Ultimate conventional resin cement); in Group 3, disks were cemented using a self-adhesive protocol (RelyX™ Unicem 2 Automix self-adhesive resin cement). All cemented specimens were placed in a universal testing machine (Instron Universal Testing Machine 3343) and submitted to a shear bond strength test to check the strength of adhesion between the two substrates, dentin, and RNC disks. Specimens were stressed at a crosshead speed of 1 mm/min. Data were analyzed with analysis of variance and post-hoc Tukey's test at a level of significance of 0.05. Results: Post-hoc Tukey testing showed that the highest shear strength values (P < 0.001) were reported in Group 2. The lowest data (P < 0.001) were recorded in Group 3. Conclusion: Within the limitations of this in vitro study, conventional resin cements (coupled with etch and rinse or self-etch adhesives) showed better shear strength values compared to self-adhesive resin cements. Furthermore, conventional resin cements used together with a self-etch adhesive reported the highest values of adhesion. PMID:27076822

  20. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  1. Effect of amino-modified silica nanoparticles on the corrosion protection properties of epoxy resin-silica hybrid materials.

    PubMed

    Chang, Kung-Chin; Lin, Hui-Fen; Lin, Chang-Yu; Kuo, Tai-Hung; Huang, Hsin-Hua; Hsu, Sheng-Chieh; Yeh, Jui-Ming; Yang, Jen-Chang; Yu, Yuan-Hsiang

    2008-06-01

    In this paper, a series of organic-inorganic hybrid materials consisting of epoxy resin frameworks and dispersed nanoparticles of amino-modified silica (AMS) were successfully prepared. First of all, the AMS nanoparticles were synthesized by carrying out the conventional acid-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) in the presence of (3-aminopropyl)-trimethoxysilane (APTES) molecules. The as-prepared AMS nanoparticles were then characterized by FTIR, 13C-NMR and 29Si-NMR spectroscopy. Subsequently, a series of hybrid materials were prepared by performing in-situ thermal ring-opening polymerization reactions of epoxy resin in the presence of as-prepared AMS nanoparticles and raw silica (RS) particles. The as-prepared epoxy-silica hybrid materials with AMS nanoparticles were found to show better dispersion capability than that of RS particles existed in hybrid materials based on the morphological observation of transmission electron microscopy (TEM). The hybrid materials containing AMS nanoparticles in the form of coating on cold-rolled steel (CRS) were found to be much superior in corrosion protection over those of hybrid materials with RS particles when tested by a series of electrochemical measurements of potentiodynamic and impedance spectroscopy in 5 wt% aqueous NaCI electrolyte. The increase of corrosion protection effect of hybrid coatings may have probably resulted from the enhancement of the adhesion strength of the hybrid coatings on CRS coupons, which may be attributed to the formation of Fe-O-Si covalent bond at the interface of coating/CRS system based on the FTIR-RAS (reflection absorption spectroscopy) studies. The better dispersion capability of AMS nanoparticles in hybrid materials were found to lead more effectively enhanced molecular barrier property, mechanical strength, surface hydrophobicity and optical clarity as compared to that of RS particles, in the form of coating and membrane, based on the measurements of molecular

  2. Crack processing in a resin material using nano-pulsed second harmonic Nd:YAG laser for personal identification system

    NASA Astrophysics Data System (ADS)

    Tokita, Daisaku; Ishii, Yoshio; Kubota, Yuzuru; Watanabe, Kazuhiro

    2007-05-01

    A new personal identification method has been investigated which promises to be a useful technique for protecting society against the recent increase in card counterfeiting crimes. Micro cracks that is created into transparent acrylic material using second harmonic Nd:YAG (wavelength: 532nm, pulse width: 8ns, pulse energy: 0.5mJ) are used for writing ID information. Identical person is identified by image matching of speckle pattern from created crack. In this study, identification is attempted for constructing the new personal identification method. Various ID patterns are created with changing shapes, the arrangement of spot. In result of crack observation by optical microscope, cracks are created around the spot and the shapes are different respectively. Speckle patterns are successfully identified by image template matching with normalized correlation coefficient. In a case of identification on template and target image obtained from same object, strong correlation was obtained. In this result, processed objects were identified by discerning speckle pattern. For these reason, the feasibility of new personal identification system using the laser processing and the speckle pattern is implied.

  3. Acrylic vessel cleaning tests

    SciTech Connect

    Earle, D.; Hahn, R.L.; Boger, J.; Bonvin, E.

    1997-02-26

    The acrylic vessel as constructed is dirty. The dirt includes blue tape, Al tape, grease pencil, gemak, the glue or residue form these tapes, finger prints and dust of an unknown composition but probably mostly acrylic dust. This dirt has to be removed and once removed, the vessel has to be kept clean or at least to be easily cleanable at some future stage when access becomes much more difficult. The authors report on the results of a series of tests designed: (a) to prepare typical dirty samples of acrylic; (b) to remove dirt stuck to the acrylic surface; and (c) to measure the optical quality and Th concentration after cleaning. Specifications of the vessel call for very low levels of Th which could come from tape residues, the grease pencil, or other sources of dirt. This report does not address the concerns of how to keep the vessel clean after an initial cleaning and during the removal of the scaffolding. Alconox is recommended as the cleaner of choice. This acrylic vessel will be used in the Sudbury Neutrino Observatory.

  4. In Vitro Antibacterial Activity of a Novel Resin-Based Pulp Capping Material Containing the Quaternary Ammonium Salt MAE-DB and Portland Cement

    PubMed Central

    Zhang, Hongchen; Zhou, Wei; Ban, Jinghao; Wei, Jingjing; Liu, Yan; Gao, Jing; Chen, Jihua

    2014-01-01

    Background Vital pulp preservation in the treatment of deep caries is challenging due to bacterial infection. The objectives of this study were to synthesize a novel, light-cured composite material containing bioactive calcium-silicate (Portland cement, PC) and the antimicrobial quaternary ammonium salt monomer 2-methacryloxylethyl dodecyl methyl ammonium bromide (MAE-DB) and to evaluate its effects on Streptococcus mutans growth in vitro. Methods The experimental material was prepared from a 2∶1 ratio of PC mixed with a resin of 2-hydroxyethylmethacrylate, bisphenol glycerolate dimethacrylate, and triethylene glycol dimethacrylate (4∶3∶1) containing 5 wt% MAE-DB. Cured resin containing 5% MAE-DB without PC served as the positive control material, and resin without MAE-DB or PC served as the negative control material. Mineral trioxide aggregate (MTA) and calcium hydroxide (Dycal) served as commercial controls. S. mutans biofilm formation on material surfaces and growth in the culture medium were tested according to colony-forming units (CFUs) and metabolic activity after 24 h incubation over freshly prepared samples or samples aged in water for 6 months. Biofilm formation was also assessed by Live/Dead staining and scanning electron microscopy. Results S. mutans biofilm formation on the experimental material was significantly inhibited, with CFU counts, metabolic activity, viability staining, and morphology similar to those of biofilms on the positive control material. None of the materials affected bacterial growth in solution. Contact-inhibition of biofilm formation was retained by the aged experimental material. Significant biofilm formation was observed on MTA and Dycal. Conclusion The synthesized material containing HEMA-BisGMA-TEGDMA resin with MAE-DB as the antimicrobial agent and PC to support mineralized tissue formation inhibited S. mutans biofilm formation even after aging in water for 6 months, but had no inhibitory effect on bacteria in solution

  5. [Application of cranioplasty materials in the past 60 years in China].

    PubMed

    Xu, Jiang-Rong; Li, Jiang

    2011-07-01

    Cranioplasty is one of the oldest and most common surgeries. Cranioplasty materials developed with this surgery. Many kinds of material have been applied to cranioplasty such as gold, silver, aluminum, lead, platinum, titanium, autogenous bone, allograft, acrylic resin, polyethylene, silicone rubber, carol, ceramic, hydroxyapatite and calcium phosphate cement. In the past 60 years, autogenous bone, acrylic resin, silicone rubber, hydroxyapatite, phosphate cement, titanium sheet and computer-designed plastic ti-alloy plate are the most commonly used materials. Among the materials, computer-designed plastic ti-alloy plate is the preferred material. It is ideal cranioplasty material with high histocompatibility, plasticity and chemical stability, and which has not been found until now to be cytotoxic or immunogenic. PMID:22169491

  6. A new polyimide laminatine resin

    NASA Technical Reports Server (NTRS)

    Barrick, J. D. W.; Jewell, R. A.; Stclair, T. L.

    1977-01-01

    Addition polyimide for composite materials is based on liquid monomers and has significant advantages over most existing high-temperature resins. Essentially solventless prepreg has improved drape, tack.

  7. Ageing of organic electrical insulating materials due to radiation—III. Dielectric properties of a cycloaliphatic epoxy resin: Effect of irradiation environmental conditions and dose rate

    NASA Astrophysics Data System (ADS)

    Spadaro, G.; Calderaro, E.; Schifani, R.; Rizzo, G.

    The effect of dose rate under different environmental conditions on a cycloaliphatic epoxy resin is considered. In particular dielectric measurements were performed. The dose rate is an interesting parameter on evaluating the behaviour of insulating materials in real operating conditions by means of accelerated ageing laboratory tests.

  8. Acrylic purification and coatings

    SciTech Connect

    Kuzniak, Marcin

    2011-04-27

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  9. Luminescence of W(CO){sub 4}(4-Me-phen) in photosensitive thin films: A molecular probe of acrylate polymerization

    SciTech Connect

    Rawlins, K.A.; Lees, A.J.; Fuerniss, S.J.; Papathomas, K.I.

    1996-07-01

    The complex W(CO){sub 4}(4-Me-phen) (4-Me-phen = 4-methyl-1,10-phenanthroline) has been determined to be luminescent and act as a spectroscopic probe in UV-curable trimethylolpropane triacrylate/poly(methyl methacrylate) thin films. Electronic absorption and luminescence characteristics have been measured for this complex in room-temperature solutions and low-temperature (80 K) glasses and in 10 mil thin films of the unexposed and exposed acrylate resins. In each environment dual luminescence bands were observed which are attributed to triplet-centered metal-to-ligand charge-transfer ({sup 3}MLCT) excited states. For the unexposed photoresist these transitions were recorded at 520 and 750 nm and in the exposed material these are moved to 525 and 715 nm, respectively. The lowest energy emission band undergoes a substantial blue-shift and intensified greatly on polymerization; this phenomenon provides a useful molecular probe of the acrylate cross-linking process. These changes in emission characteristics are associated with a rigidochromic effect imparted on the lowest lying and solvent sensitive b{sub 2} {yields} b{sub 2}({pi}*) {sup 3}MLCT electronically excited state in this complex. The complex W(CO){sub 5}(4-CN-py) (4-CN-py = 4-cyanopyridine) was also investigated as a spectroscopic probe in the acrylate system but appears unsuitable for this purpose as it was found to degrade significantly in the resin. 20 refs., 6 figs.

  10. Distribution of calcium ions at the interface between resin bonding materials and tooth dentin. Use of commercially available adhesive systems.

    PubMed

    Hanaizumi, Y; Maeda, T; Takano, Y

    1998-01-01

    It has been proposed that calcium ions play a key role in chemical (chelate) binding between the adhesive resin and dentin surface. However, no data is available concerning how calcium ions are distributed at the binding sites. The aim of this study is to demonstrate calcium ions at the resin-dentin interface by means of X-ray microanalysis and calcium ion-sensitive histochemical staining. The dentin surface in human teeth was ground by use of 240 grit silicon carbide abrasive paper under running water and treated with the dentin-primer and adhesive resin in Clearfil Liner Bond System or IMPERVA Bond System according to the manufacturer's instructions. After removing dentin matrix and isolating adhesive resin by the KOH-digestion method, one half of the samples were processed for scanning electron microscopy. The rest were embedded in Epon 812 and processed either for glyoxal bis (2-hydroxyanil) (GBHA) staining or transmission electron microscopy combined with X-ray microanalysis. Transmission electron microscopy revealed Ca-phosphate deposits at the bottom of the resin-impregnated layer. The adhesive resin above the resin-impregnated layer was amorphous and showed no precipitates of Ca-phosphate. GBHA displayed intense calcium reactions throughout the resin-impregnated layer and also moderate ones in the 10 microns (Clearfil Liner Bond System) or 30 microns (IMPERVA Bonding System) thick boundary zone of the adhesive resin as well as in the resin tags. These data are the first to offer a distinct localization of calcium ions within the adhesive resin at the dentin-resin interface. PMID:9800373

  11. Evaluation of the effect of various beverages and food material on the color stability of provisional materials – An in vitro study

    PubMed Central

    Gupta, Gaurav; Gupta, Tina

    2011-01-01

    Aim: This study evaluated the color stability of four provisional materials: 1) Poly-methyl methacrylates (DPI); 2) Bis-acryl composite (ProtempTM II – 3M ESPE); 3) Bis-acryl composite (Systemp® c and b – Ivoclar Vivadent) and 4) Light polymerized composite resin (Revotek LC- GC). Materials and Methods: The color and color difference of each specimen after immersion in different staining solutions i.e. 1) tea and artificial saliva, 2) coffee and artificial saliva, 3) Pepsi and artificial saliva, 4) turmeric solution and artificial saliva was measured using reflectance spectrophotometer with CIELAB system before immersion and after immersion at 2, 5 ,7 , 10 and 15 days. Results: Revotek LC- GC (light polymerized composite resin) was found to be the most color stable provisional restorative material followed by Protemp II (Bis-acryl composite), Systemp (Bis-acryl composite) and DPI (Methylmethacrylate resin). Turmeric solution had the maximum staining potential followed by coffee, tea and Pepsi. PMID:22025835

  12. Heatshield material selection for advanced ballistic reentry vehicles. [rayon fiber cloth impregnated with phenolic resin

    NASA Technical Reports Server (NTRS)

    Legendre, P. J.; Holtz, T.; Sikra, J. C.

    1980-01-01

    The Performance of staple rayon fiber and AVTEX continuous rayon fiber was evaluated as precursor materials for heatshields. The materials studied were referenced to the IRC FM5055A heatshield materials flown during the past decade. Three different arc jet facilities were used to simulate portions of the reentry environment. The IRC FM5055A and the AVTEX FM5055G, both continuous rayon fiber woven materials having the phenolic impregnant filled with carbon particles were compared. The AVTEX continuous fiber, unfilled material FM5822A was also examined to a limited extent. Test results show that the AVTEX FM5055G material provided a close substitute for the IRC FM5055A material both in terms of thermal protection and roll torque performance.

  13. Comparison of Effect of C-Factor on Bond Strength to Human Dentin Using Different Composite Resin Materials

    PubMed Central

    Patil, Jaya Prakash; Raju, RVS Chakradhar; Venigalla, Bhuvan Shome; Jyotsna, SV; Bhutani, Neha

    2015-01-01

    Background The study was planned to assess the use of low shrinkage composites for restoring cavities with high configuration factor (C-factor) which are subjected to high stresses. Aim The aim of the study was to evaluate the effect of C- factor on tensile bond strength to human dentin using methacrylate based nanohybrid and low shrinkage silorane composite. Materials and Methods In this study 40 non carious human molar teeth were selected and assigned into two main groups - cavity (Class I cavity with high C-factor) and flat group (flat surface with low C-factor). Two different composite materials- methacrylate based and silorane low shrinkage composite were used to restore the teeth. Dentin surface was treated, adhesive application was done and composite was applied as per manufacturer’s instructions. Samples were stored in distilled water then subjected to tensile bond strength measurement using universal testing machine. Results Statistical analysis was done using Independent sample t-test. The mean bond strength in methacrylate based and silorane composite was significantly higher in flat preparation (Low C-factor) than cavity preparation. The mean bond strength in both cavity (High C-factor) and flat preparation(Low C-factor) was significantly higher in silorane than in conventional methacrylate based composite. Conclusion The bond strength of composites to dentin is strongly influenced by C-factor and type of composite resin material used. PMID:26436056

  14. Evaluation of Shear Bond Strength of Methacrylate- and Silorane-based Composite Resin Bonded to Resin-Modified Glass-ionomer Containing Micro- and Nano-hydroxyapatite

    PubMed Central

    Sharafeddin, Farahnaz; Moradian, Marzie; Motamedi, Mehran

    2016-01-01

    Statement of the Problem The adhesion of resin-modified glass-ionomer (RMGI) to composite resin has a very important role in the durability of sandwich restorations. Hydroxyapatite is an excellent candidate as a filler material for improving the mechanical properties of glass ionomer cement. Purpose The aim of this study was to assess the effect of adding micro- and nano-hydroxyapatite (HA) powder to RMGI on the shear bond strength (SBS) of nanofilled and silorane-based composite resins bonded to RMGI containing micro- and nano-HA. Materials and Method Sixty cylindrical acrylic blocks containing a hole of 5.5×2.5 mm (diameter × height) were prepared and randomly divided into 6 groups as Group 1 with RMGI (Fuji II LC) plus Adper Single Bond/Z350 composite resin (5.5×3.5 mm diameter × height); Group 2 with RMGI containing 25 wt% of micro-HA plus Adper Single Bond/Z350 composite resin; Group3 with RMGI containing 25 wt% of nano-HA plus Adper Single Bond/Z350 composite resin; Group 4 with RMGI plus P90 System Adhesive/P90 Filtek composite resin (5.5×3.5 mm diameter × height); Group 5 with RMGI containing 25 wt% of micro-HA plus P90 System Adhesive/P90Filtek composite resin; and Group 6 with RMGI containing 25 wt% of nano-HA plus P90 System Adhesive/P90 Filtek composite resin. The specimens were stored in water (37° C, 1 week) and subjected to 1000 thermal cycles (5°C/55°C). SBS test was performed by using a universal testing machine at a crosshead speed of 1 mm/min. Data were analyzed by two-way ANOVA and Tukey test (p< 0.05). Results There were significant differences between groups 1 and 4 (RMGI groups, p= 0.025), and groups 3 and 6 (RMGI+ nano-HA groups, p= 0.012). However, among Z350 and P90 specimens, no statistically significant difference was detected in the SBS values (p= 0.19, p= 0.083, respectively). Conclusion RMGI containing HA can improve the bond strength to methacrylate-based in comparison to silorane-based composite resins. Meanwhile, RMGI

  15. Method for removing contaminants from plastic resin

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-12-30

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  16. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert,George W.; Hand,Thomas E.; Delaurentiis,Gary M.

    2007-08-07

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  17. Method of removing contaminants from plastic resins

    DOEpatents

    Bohnert, George W.; Hand, Thomas E.; DeLaurentiis, Gary M.

    2008-11-18

    A method for removing contaminants from synthetic resin material containers using a first organic solvent system and a second carbon dioxide system. The organic solvent is utilized for removing the contaminants from the synthetic resin material and the carbon dioxide is used to separate any residual organic solvent from the synthetic resin material.

  18. Comparative Evaluation of Bond Strength of Dual-Cured Resin Cements: An In-Vitro Study

    PubMed Central

    Kumari, R Veena; Poluri, Ramya Krishna; Nagaraj, Hema; Siddaruju, Kishore

    2015-01-01

    Background: To compare the microtensile bond strength of resin cements to enamel and dentin and to determine the type of bond failure using stereomicroscope. Materials and Methods: In this in-vitro study 40 teeth were embedded in acrylic resin and divided into two main groups i.e., Group A for enamel and Group B for dentin. Each group is again subdivided into four subgroups, which are as follows; Subgroup 1 for Calibra resin cement, Subgroup 2 for Paracem, Subgroup 3 for Variolink II and Subgroup 4 for Rely X ARC. These resin cements were applied on enamel and dentin according to manufacturer’s instructions followed by incremental build-up of composite resin on the top of resin cements. Each tooth was sectioned perpendicular to the resin-substrate interface with a slow speed diamond saw under water cooling yielding sections of approximately 1 mm2. On an average, three sections from each tooth were used for testing. The beams obtained after sectioning were stressed to failure under tension in a custom made stainless steel forceps held in a universal testing machine (Lloyd) at a crosshead speed of 1.0 mm/min. Results were analyzed using two-way analysis of variance, independent t-test, and Tukey’s HSD post-hoc test. Results: Cements bonded to enamel substrates showed higher mean bond strength compared to dentin, which is statistically significant. Rely X ARC showed highest mean bond strength to both the substrates. Conclusion: There was a significant difference between the bond strength to enamel and dentin and, Rely X ARC resin cement showed higher bond strength compared with the other groups. PMID:26225104

  19. Structure-toxicity relationships of acrylic monomers.

    PubMed Central

    Autian, J

    1975-01-01

    Esters of acrylic acid, in particular methyl methacrylate, have wide applications in a number of industrial and consumer products, forming very desirable nonbreakable glass-like materials. In dentistry, the monomers are used to prepare dentures and a variety of filling and coating materials for the teeth. Surgeons utilize the monomers to prepare a cement which helps anchor prosthetic devices to bone. Special types of acrylic monomers such as the cyano derivatives have found a useful application as adhesive materials. Most of the acrylic acid esters are volatile substances and can produce various levels of toxicity if inhaled. A large number of workers thus exposed to the vapors of these esters can develop clinical symptoms and signs of toxicity. This paper will discuss the toxicity of a large number of acrylic esters, and will attempt to show structure-activity relationships where such data are available. General comments will also be made as to the potential health hazards this variety of esters may present to selected segments of the population. PMID:1175551

  20. Penetration of a resin-based filling material into lateral root canals and quality of obturation by different techniques.

    PubMed

    Michelotto, André Luiz da Costa; Moura-Netto, Cacio; Araki, Angela Toshie; Akisue, Eduardo; Sydney, Gilson Blitzkow

    2015-01-01

    The aim of this study was to evaluate the penetration of a resin/polyester polymer-based material (Resilon Real Seal; SybronEndo Corp., Orange, USA) into simulated lateral canals, and the quality of obturations by different techniques. A total of 30 standardized simulated canals were divided into three groups according to the technique of obturation used: MS (McSpadden), SB (SystemB/Obtura II), and LC (Lateral Condensation). To analyze the penetration of the filling material, the simulated canals were digitalized and the images were analyzed using the Leica QWIN Pro v2.3 software. The data of the middle and apical thirds were separately submitted to analysis of variance (ANOVA), followed by the Tukey's test for the comparison of the techniques. Results showed a significant difference (p < 0.05) between groups (LC < SB) in the middle third, and a significant difference (p < 0.05) between groups (LC < SB and MS < SB) in the apical third. To analyze the quality of the obturations, the canals were radiographed and evaluated by three examiners. The Kappa test on interexaminer agreement and the nonparametric Kruskal-Wallis test indicated no significant difference between filling techniques. It was concluded that Resilon achieves greater levels of penetration when associated with thermoplastic obturation techniques. PMID:25466332

  1. CARBON FIBRE COMPOSITE MATERIALS PRODUCED BY GAMMA RADIATION INDUCED CURING OF EPOXY RESINS

    SciTech Connect

    Dispenza, C.; Spadaro, G.; Alessi, S.

    2008-08-28

    It is well known that ionizing radiation can initiate polymerization of suitable monomers for many applications. In this work an epoxy difunctional monomer has been used as matrix of a carbon fibre composite in order to produce materials through gamma radiation, for aerospace and advanced automotive applications. Radiation curing has been performed at different absorbed doses and, as comparison, also thermal curing of the same monomer formulations has been done. Furthermore some irradiated samples have been also subjected to a post irradiation thermal curing in order to complete the polymerization reactions. The properties of the cured materials have been studied by moisture absorption isotherms, dynamic mechanical thermal analysis and mechanical flexural tests.

  2. In vitro comparison of flexural strength and elastic modulus of three provisional crown materials used in fixed prosthodontics

    PubMed Central

    Poonacha, Seema; Salagundi, Basavaraj; Rupesh, P L.; Raghavan, Rohit

    2013-01-01

    Objectives: To evaluate and compare the flexural strength and the elastic moduli of three provisional crown materials (methyl methacrylate based autopolymerized resin, bis acryl composite based autopolymerized resin and urethane dimethacrylate based light polymerized resin) after storing in artificial saliva and testing at intervals of 24 hours and 7 days. Study design: A metal master mould with four slots of dimensions 25x2x2 mm was fabricated to obtain samples of standard dimensions. A total of 135 specimens were thus obtained with 45 each of three provisional materials. Further 15 samples of each group were tested after storing for one hour at room temperature and again at intervals of 24 hours and 7 days after storing in artificial saliva. Three point flexural tests were carried out in the universal testing machine to calculate the flexural strength and the elastic modulus. The changes were calculated and data was analyzed with Fisher’s test and ANOVA. Results: The flexural strength of the methyl methacrylate resin reduced significantly while bis-acrylic composite resin showed a significant increase in its flexural strength after storing in artificial saliva for 24 hours and the values of both remained constant thereafter. Contrary to these findings, light polymerized resin showed a significant decrease in flexural strength after storing in artificial saliva for 24 hours and then significantly increased in flexural strength after 7 days. However the changes in the values for elastic modulus of respective materials were statistically insignificant. Conclusion: Methacrylate based autopolymerizing resin showed the highest flexural strength and elastic moduli after fabrication and after storing in artificial saliva and for 24 hours and 7 days. Bis-acrylic composite resin showed the least flexural strength and elastic moduli. Key words:Provisional restorations, interim restorations, Methyl Methacrylate, composite restoration, flexural strength, elastic moduli

  3. Provisional materials: key components of interim fixed restorations.

    PubMed

    Perry, Ronald D; Magnuson, Britta

    2012-01-01

    Clinicians have many choices of provisional materials from which to choose when fabricating interim fixed restorations. While traditional materials are still in use today, temporary materials are continuously being updated and improved upon. In addition to the functional necessities required of the provisional material, it must also provide esthetic value for the patient. This article provides an overview of provisional materials, including newer bis-acryls that have helped eliminate some of the challenges associated with traditional acrylic materials. Composite resin preformed crowns for single-unit provisional applications are also discussed, along with CAD/CAM-fabricated materials. Regardless of the material selected, a provisional restoration must maintain and protect the underlying tooth structure from ill effects. PMID:22432178

  4. NEW ANION-EXCHANGE RESINS FOR IMPROVED SEPARATIONS OF NUCLEAR MATERIALS

    EPA Science Inventory

    Improved separations of nuclear materials will have a significant impact upon a broad range of DOE activities. DOE-EM Focus Areas and Crosscutting Programs have identified improved methods for the extraction and recovery of radioactive metal ions from process, waste, and environm...

  5. FINAL REPORT. NEW ANION-EXCHANGE RESINS FOR IMPROVED SEPARATIONS OF NUCLEAR MATERIALS

    EPA Science Inventory

    The overall objective of this project was to develop a predictive capability that would enable us to design and implement new anion-exchange materials that selectively sorb metal complexes. Our approach was to extend the principles applied to optimization of chelating ligands (i....

  6. Commercial Ion Exchange Resin Vitrification in Borosilicate Glass

    SciTech Connect

    Cicero-Herman, C.A.; Workman, P.; Poole, K.; Erich, D.; Harden, J.

    1998-05-01

    Bench-scale studies were performed to determine the feasibility of vitrification treatment of six resins representative of those used in the commercial nuclear industry. Each resin was successfully immobilized using the same proprietary borosilicate glass formulation. Waste loadings varied from 38 to 70 g of resin/100 g of glass produced depending on the particular resin, with volume reductions of 28 percent to 68 percent. The bench-scale results were used to perform a melter demonstration with one of the resins at the Clemson Environmental Technologies Laboratory (CETL). The resin used was a weakly acidic meth acrylic cation exchange resin. The vitrification process utilized represented a approximately 64 percent volume reduction. Glass characterization, radionuclide retention, offgas analyses, and system compatibility results will be discussed in this paper.

  7. Advanced thermoplastic resins, phase 1

    NASA Technical Reports Server (NTRS)

    Hendricks, C. L.; Hill, S. G.; Falcone, A.; Gerken, N. T.

    1991-01-01

    Eight thermoplastic polyimide resin systems were evaluated as composite matrix materials. Two resins were selected for more extensive mechanical testing and both were versions of LaRC-TPI (Langley Research Center - Thermoplastic Polyimide). One resin was made with LaRC-TPI and contained 2 weight percent of a di(amic acid) dopant as a melt flow aid. The second system was a 1:1 slurry of semicrystalline LaRC-TPI powder in a polyimidesulfone resin diglyme solution. The LaRC-TPI powder melts during processing and increases the melt flow of the resin. Testing included dynamic mechanical analysis, tension and compression testing, and compression-after-impact testing. The test results demonstrated that the LaRC-TPI resins have very good properties compared to other thermoplastics, and that they are promising matrix materials for advanced composite structures.

  8. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  9. Identification of resinous materials on 16th and 17th century reverse-glass objects by gas chromatography/mass spectrometry

    NASA Astrophysics Data System (ADS)

    Baumer, Ursula; Dietemann, Patrick; Koller, Johann

    2009-07-01

    Objects of hinterglasmalerei, reverse-glass paintings, are painted on the back side of glass panels. Obviously, the paint layers are applied in reverse order, starting with the uppermost layer. The finished hinterglas painting is viewed through the glass, thus revealing an impressive gloss and depth of colour. The binding media of two precious objects of hinterglasmalerei from the 16th and 17th century have been identified as almost exclusively resinous. Identification was performed by a special optimised analysis procedure, which is discussed in this paper: solvent extracts are analysed by gas chromatography/mass spectrometry, both with and without derivatisation or hydrolysis. In an additional step, oxalic acid is added to the methanol extracts prior to injection. This attenuates the peaks of the non-acidic compounds, whereas the acids elute with good resolution. The non-acidic compounds are emphasised after injection of the underivatised extracts. This approach minimises compositional changes caused by the sample preparation and derivatisation steps. Chromatograms of aged samples with a very complex composition are simplified, which allows a more reliable and straightforward identification of significant markers for various materials. The binding media of the hinterglas objects were thus shown to consist of mixtures of different natural resins, larch turpentine, heat-treated Pinaceae resin or mastic. Typical compounds of dragon's blood, a natural red resin, were also detectable in red glazes by the applied analysis routine. Identification of the binding media provides valuable information that can be used in the development of an adequate conservation treatment.

  10. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  11. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  12. 21 CFR 177.1010 - Acrylic and modified acrylic plastics, semirigid and rigid.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Acrylic and modified acrylic plastics, semirigid... Acrylic and modified acrylic plastics, semirigid and rigid. Semirigid and rigid acrylic and modified acrylic plastics may be safely used as articles intended for use in contact with food, in accordance...

  13. Investigation of fluorinated (Meth)acrylate monomers and macromonomers suitable for a hydroxy-containing acrylate monomer in UV nanoimprinting.

    PubMed

    Ito, Shunya; Kaneko, Shu; Yun, Cheol Min; Kobayashi, Kei; Nakagawa, Masaru

    2014-06-24

    We investigated reactive fluorinated (meth)acrylate monomers and macromonomers that caused segregation at the cured resin surface of a viscous hydroxy-containing monomer, glycerol 1,3-diglycerolate diacrylate (GDD), and decreased the demolding energy in ultraviolet (UV) nanoimprinting with spin-coated films under a condensable alternative chlorofluorocarbon gas atmosphere. The X-ray photoelectron spectroscopy and contact angle measurements used to determine the surface free energy suggested that a nonvolatile silicone-based methacrylate macromonomer with fluorinated alkyl groups segregated at the GDD-based cured resin surface and decreased the surface free energy, while fluorinated acrylate monomers hardly decreased the surface free energy because of their evaporation during the annealing of the spin-coated films. The average demolding energy of GDD-based cured resins with the macromonomer having fluorinated alkyl groups was smaller than that with the macromonomer having hydrocarbon alkyl groups. The fluorinated alkyl groups were responsible for decreasing the demolding energy rather than the polysiloxane main chains. We demonstrated that the GDD-based UV-curable resin with the fluorinated silicone-based macromonomer was suitable for step-and-repeat UV nanoimprinting with a bare silica mold, in addition to silica molds treated by chemical vapor surface modification with trifluoro-1,1,2,2-tetrahydropropyltrimethoxysilane (FAS3) and tridecafluoro-1,1,2,2-tetrahydrooctyltrimethoxysilane (FAS13). PMID:24892792

  14. Comparison of flexural strength in three types of denture base resins: An in vitro study

    PubMed Central

    Jaikumar, R. Arun; Karthigeyan, Suma; Ali, Syed Asharf; Naidu, N. Madhulika; Kumar, R. Pradeep; Vijayalakshmi, K.

    2015-01-01

    Aim: The aim of this study was to evaluate whether the flexural strength of a commercially available, heat polymerized acrylic denture base material could be improved using reinforcements. Materials and Methods: A total of 30 specimens (65 mm × 10 mm × 3 mm) were fabricated; the specimens were divided into three groups with 10 specimens each. They were Group 1 - conventional denture base resins, Group 2 - high impact denture base resins, and Group 3 - glass reinforced denture base resins. The specimens were loaded until failure on a three-point bending test machine. An one-way analysis of variance was used to determine statistical differences among the flexural strength of three groups. Data were analyzed by SPSS software version 21.0© (IBM Corporation, Armonk, NY, USA) and the results were obtained. Results: The flexural strength values showed statistically significant differences among experimental groups (P < 0.005). Conclusion: Within the limitations of the study polymethyl methacrylate (PMMA) reinforced with glass fibers showed the highest flexural strength values this was followed by PMMA reinforced with butadiene styrene, and the least strength was observed in the conventional denture base resins. PMID:26538898

  15. Preparation of CMC-modified melamine resin spherical nano-phase change energy storage materials.

    PubMed

    Hu, Xiaofeng; Huang, Zhanhua; Zhang, Yanhua

    2014-01-30

    A novel carboxymethyl cellulose (CMC)-modified melamine-formaldehyde (MF) phase change capsule with excellent encapsulation was prepared by in situ polymerization. Effects of CMC on the properties of the capsules were studied by Fourier transformation infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electronic microscopy (SEM), X-ray diffractometry (XRD), and thermogravimetric analysis (TGA). The results showed that the CMC-modified capsules had an average diameter of about 50nm and good uniformity. The phase change enthalpy of the capsules was increased and the cracking ratio decreased by incorporating a suitable amount of CMC. The optimum phase change enthalpy of the nanocapsules was 83.46J/g, and their paraffin content was 63.1%. The heat resistance of the capsule shells decreased after CMC modification. In addition, the nanocapsule cracking ratio of the nanocapsules was 11.0%, which is highly attractive for their application as nano phase change materials. PMID:24299752

  16. The effect of tray selection on the accuracy of elastomeric impression materials.

    PubMed

    Gordon, G E; Johnson, G H; Drennon, D G

    1990-01-01

    This study evaluated the accuracy of reproduction of stone casts made from impressions using different tray and impression materials. The tray materials used were an acrylic resin, a thermoplastic, and a plastic. The impression materials used were an additional silicone, a polyether, and a polysulfide. Impressions were made of a stainless steel master die that simulated crown preparations for a fixed partial denture and an acrylic resin model with cross-arch and anteroposterior landmarks in stainless steel that typify clinical intra-arch distances. Impressions of the fixed partial denture simulation were made with all three impression materials and all three tray types. Impressions of the cross-arch and anteroposterior landmarks were made by using all three tray types with only the addition reaction silicone impression material. Impressions were poured at 1 hour with a type IV dental stone. Data were analyzed by using ANOVA with a sample size of five. Results indicated that custom-made trays of acrylic resin and the thermoplastic material performed similarly regarding die accuracy and produced clinically acceptable casts. The stock plastic tray consistently produced casts with greater dimensional change than the two custom trays. PMID:2404101

  17. [Treatment of acrylate wastewater by electrocatalytic reduction process].

    PubMed

    Yu, Li-Na; Song, Yu-Dong; Zhou, Yue-Xi; Zhu, Shu-Quan; Zheng, Sheng-Zhi; Ll, Si-Min

    2011-10-01

    High-concentration acrylate wastewater was treated by an electrocatalytic reduction process. The effects of the cation exchange membrane (CEM) and cathode materials on acrylate reduction were investigated. It indicated that the acrylate could be reduced to propionate acid efficiently by the electrocatalytic reduction process. The addition of CEM to separator with the cathode and anode could significantly improve current efficiency. The cathode materials had significant effect on the reduction of acrylate. The current efficiency by Pd/Nickel foam, was greater than 90%, while those by nickel foam, the carbon fibers and the stainless steel decreased successively. Toxicity of the wastewater decreased considerably and methane production rate in the biochemical methane potential (BMP) test increased greatly after the electrocatalytic reduction process. PMID:22279908

  18. Layered and intercalated hydrotalcite-like materials as thermal stabilizers in PVC resin

    NASA Astrophysics Data System (ADS)

    Lin, Yanjun; Wang, Jianrong; Evans, David G.; Li, Dianqing

    2006-05-01

    In the light of the accepted mechanism of thermal stabilization of PVC by layered double hydroxides (LDHs), the layer cations and interlayer counterions in LDHs were tailored to give MgZnAl-CO3-LDH and MgZnAl-maleate-LDH. These materials were characterized by XRD, FT-IR, and TG DTA. The thermal stability of PVC composites containing different LDH additives was tested in sheets having a thickness of about 1 mm. The results showed that compared with MgAl-CO3-LDH, MgZnAl-CO3-LDH enhances the thermal stability of PVC in terms of both long-term stability and early coloring. After intercalation of maleate in the LDH by reaction of maleic acid with the MgZnAl-CO3-LDH precursor, the interlayer distance increases from 0.75 to 1.11 nm. Since Cl- promotes the autocatalytic dehydrochlorination of PVC, which is responsible for its degradation, an increased interlayer distance should facilitate entry of Cl- into the interlayer galleries and inhibit the decomposition of PVC. In addition, maleic acid has a conjugated C=C double bond which can react with double bond formed in the dehydrochlorination of PVC and thus further inhibit the autocatalytic degradation reaction. The results show that the early coloring of PVC is markedly improved and the long-term stability slightly reduced by addition of the MgZnAl-maleate-LDH.

  19. Effect of LED-LCU light irradiance distribution on mechanical properties of resin based materials.

    PubMed

    Magalhães Filho, T R; Weig, K M; Costa, M F; Werneck, M M; Barthem, R B; Costa Neto, C A

    2016-06-01

    The objective of this study is to analyze the light power distribution along the tip end of the light guide of three LED-LCUs (Light Curing Units) and to evaluate its effect on the mechanical properties of a polymer based dental composite. Firstly, the light power distribution over the whole area of LED-LCU light guide surface was analyzed by three methods: visual projection observation, spectral measurement and optical spectral analysis (OSA). The light power distribution and the total irradiance were different for the three LEDs used, but the wavelength was within the camphorquinone absorption spectrum. The use of a blank sheet was quite on hand to make a qualitative analysis of a beam, and it is costless. Secondly, specimens of a hybrid composite with approximately 8mm diameter and 2mm thickness were produced and polymerized by 20s exposition time to each LED-LCU. Thirdly, the elastic modulus (E) and hardness (HV) were measured throughout the irradiated area by instrumented micro-indentation test (IIT), allowing to correlate localized power and mechanical properties. Both E and HV showed to be very sensitive to local power and wavelength dependent, but they followed the beam power profile. It was also shown that the mechanical properties could be directly correlated to the curing process. Very steep differences in mechanical properties over very short distances may impair the material performance, since residual stresses can easily be built over it. PMID:27040223

  20. Acetylene terminated matrix resins

    NASA Technical Reports Server (NTRS)

    Goldfarb, I. J.; Lee, Y. C.; Arnold, F. E.; Helminiak, T. E.

    1985-01-01

    The synthesis of resins with terminal acetylene groups has provided a promising technology to yield high performance structural materials. Because these resins cure through an addition reaction, no volatile by-products are produced during the processing. The cured products have high thermal stability and good properties retention after exposure to humidity. Resins with a wide variety of different chemical structures between the terminal acetylene groups are synthesized and their mechanical properties studied. The ability of the acetylene cured polymers to give good mechanical properties is demonstrated by the resins with quinoxaline structures. Processibility of these resins can be manipulated by varying the chain length between the acetylene groups or by blending in different amounts of reactive deluents. Processing conditions similar to the state-of-the-art epoxy can be attained by using backbone structures like ether-sulfone or bis-phenol-A. The wide range of mechanical properties and processing conditions attainable by this class of resins should allow them to be used in a wide variety of applications.

  1. Hydrophilic surface modification of acrylate-based biomaterials.

    PubMed

    Arnal-Pastor, M; Comín-Cebrián, S; Martínez-Ramos, C; Monleón Pradas, M; Vallés-Lluch, A

    2016-04-01

    Acrylic polymers have proved to be excellent with regard to cell adhesion, colonization and survival, in vitro and in vivo. Highly ordered and regular pore structures thereof can be produced with the help of polyamide templates, which are removed with nitric acid. This treatment converts a fraction of the ethyl acrylate side groups into acrylic acid, turning poly(ethyl acrylate) scaffolds into a more hydrophilic and pH-sensitive substrate, while its good biological performance remains intact. To quantify the extent of such a modification, and be able to characterize the degree of hydrophilicity of poly(ethyl acrylate), poly(ethyl acrylate) was treated with acid for different times (four, nine and 17 days), and compared with poly(acrylic acid) and a 90/10%wt. EA/AAc copolymer (P(EA-co-AAc)). The biological performance was also assessed for samples immersed in acid up to four days and the copolymer, and it was found that the incorporation of acidic units on the material surface was not prejudicial for cells. This surface modification of 3D porous hydrophobic scaffolds makes easier the wetting with culture medium and aqueous solutions in general, and thus represents an advantage in the manageability of the scaffolds. PMID:26767395

  2. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Polyester resin kits consisting of a base material component (Class 3, Packing..., according to the criteria for Class 3, applied to the base material. Additionally, polyester resin kits...

  3. 49 CFR 173.165 - Polyester resin kits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Polyester resin kits. 173.165 Section 173.165... Polyester resin kits. (a) Polyester resin kits consisting of a base material component (Class 3, Packing..., according to the criteria for Class 3, applied to the base material. Additionally, polyester resin kits...

  4. Effect of Anatase Titanium Dioxide Nanoparticles on the Flexural Strength of Heat Cured Poly Methyl Methacrylate Resins: An In-Vitro Study.

    PubMed

    Nazirkar, Girish; Bhanushali, Shilpa; Singh, Shailendra; Pattanaik, Bikash; Raj, Naveen

    2014-12-01

    Poly methyl methacrylate (PMMA) resin is the most widely used material for fabrication of dentures since 1937 as it exhibits adequate physical, mechanical and esthetic properties. But one of the major problems faced using this material is that, it is highly prone to plaque accumulation due to surface porosities and its food retentive properties. This in turn increases the bacterial activity causing denture stomatitis. In efforts to impart antimicrobial property to these resins, various nanoparticles (NP) have been incorporated viz. Silver, Zirconia oxide, Titanium dioxide (TiO2), Silica dioxide (SiO2) etc. However, as additives they can affect the mechanical properties of the final product. Therefore, the aim of the present study was to evaluate and compare the effect of different concentration of TiO2 NP on the flexural strength of PMMA resins. Specimens made from heat polymerizing resin (DPI) without NP were used as a control group (Group A). The two experimental groups, (Group B and Group C) had 0.5 and 1 % concentration of TiO2 NP respectively. The specimens were stored in 37 °C distilled water for 50 ± 2 h. A three-point bending test for flexural strength measurement was conducted following ADA specification no. 12. The maximum mean flexural strength (90.65 MPa) belonged to the control group; and acrylic resin with 1 % TiO2 NP demonstrated the minimum mean flexural strength (76.38 MPa). But, the values of all the three groups exceeded the ADA Specification level of 65 MPa. Conclusion may be drawn from the present study that addition of TiO2 NP into acrylic resin can adversely affect the flexural strength of the final product and is directly proportional to the concentration of NP. PMID:26199505

  5. Synthesis and application of novel EB curable polyester urethane acrylate modified by linseed oil fatty acid

    NASA Astrophysics Data System (ADS)

    Jun, Li; Xuecheng, Ju; Min, Yi; Jinshan, Wei; Hongfei, Ha

    1999-06-01

    A novel polyester urethane acrylate resin modified by linseed oil fatty acid (LFA) was synthesized and EB curing coating was formulated in this work. When the coating cured by EB radiation on the timber, the cured coating was possessed of good performances.

  6. Technology and the use of acrylics for provisional dentine protection.

    PubMed

    Kapusevska, Biljana; Dereban, Nikola; Popovska, Mirjana; Nikolovska, Julijana; Radojkova Nikolovska, Vеrа; Zabokova Bilbilova, Efka; Mijoska, Aneta

    2013-01-01

    Acrylics are compounds polymerized from monomers of acrylic, metacrylic acid or acrylonitrates. The purpose of this paper is to present the technology and use of acrylics for provisional dentine protection in the practice of dental prosthodontics. For this reason, we followed 120 clinical cases from the everyday clinical practice, divided into 4 groups of 30 patients who needed prosthetic reconstruction. The first group included cases in which we applied celluloid crowns for dentine protection, for the second group we used acrylic teeth from a set of teeth for complete dentures; in the third and fourth groups the fabrication was done with the system of an impression matrix and the acrylic resin block technique respectively. In all the examined patients, the gingival index by Silness and Loe and the vitality of the dental pulp were verified clinically, after preparation and 8 days from the placement of the provisional crown. The value for dental sensitivity measured after preparation was 2.59, and 8 days after the placement of the provisional crown it bwas 3.1. From these results we can conclude that after the 8th day from the placement of the provisional crown, there was an adaptation period, characterized by a decrease in the painful sensations. The value of the Silness and Loe gingival index measured after the preparation was 1.34, and 8 days from the placement of the provisional crown was 0.94. The results inclined us to the fact that the provisional acrylic crowns facilitated the reparation of the periodontal tissue. PMID:24566021

  7. Shear bond strength of a new self-adhering flowable composite resin for lithium disilicate-reinforced CAD/CAM ceramic material

    PubMed Central

    Sancakli, Hande Sar; Sancakli, Erkan; Eren, Meltem Mert; Ozel, Sevda; Yucel, Taner; Yildiz, Esra

    2014-01-01

    PURPOSE The purpose of this study was to evaluate and compare the effects of different surface pretreatment techniques on the surface roughness and shear bond strength of a new self-adhering flowable composite resin for use with lithium disilicate-reinforced CAD/CAM ceramic material. MATERIALS AND METHODS A total of one hundred thirty lithium disilicate CAD/CAM ceramic plates with dimensions of 6 mm × 4 mm and 3 mm thick were prepared. Specimens were then assigned into five groups (n=26) as follows: untreated control, coating with 30 µm silica oxide particles (Cojet™ Sand), 9.6% hydrofluoric acid etching, Er:YAG laser irradiation, and grinding with a high-speed fine diamond bur. A self-adhering flowable composite resin (Vertise Flow) was applied onto the pre-treated ceramic plates using the Ultradent shear bond Teflon mold system. Surface roughness was measured by atomic force microscopy. Shear bond strength test were performed using a universal testing machine at a crosshead speed of 1 mm/min. Surface roughness data were analyzed by one-way ANOVA and the Tukey HSD tests. Shear bond strength test values were analyzed by Kruskal-Wallis and Mann-Whitney U tests at α=.05. RESULTS Hydrofluoric acid etching and grinding with high-speed fine diamond bur produced significantly higher surface roughness than the other pretreatment groups (P<.05). Hydrofluoric acid etching and silica coating yielded the highest shear bond strength values (P<.001). CONCLUSION Self-adhering flowable composite resin used as repair composite resin exhibited very low bond strength irrespective of the surface pretreatments used. PMID:25551002

  8. Comparison of ProTaper and Mtwo retreatment systems in the removal of resin-based root canal obturation materials during retreatment.

    PubMed

    Iriboz, Emre; Sazak Öveçoğlu, Hesna

    2014-04-01

    To evaluate the effectiveness of the ProTaper and Mtwo retreatment systems for removal of resin-based obturation techniques during retreatment. A total of 160 maxillary anterior teeth were enlarged to size 30 using ProTaper and Mtwo rotary instruments. Teeth were randomly divided into eight groups. Resilon + Epiphany, gutta-percha + Epiphany, gutta-percha + AH Plus and gutta-percha + Kerr Pulp Canal Sealer (PCS) combinations were used for obturation. ProTaper and Mtwo retreatment files were used for removal of root canal treatments. After clearing the roots, the teeth were split vertically into halves, and the cleanliness of the canal walls was determined by scanning electron microscopy. Specimens obturated with gutta-percha and Kerr PCS displayed significantly more remnant obturation material than did specimens filled with resin-based obturation materials. Teeth prepared with Mtwo instruments contained significantly more remnant filling material than did teeth prepared with ProTaper. ProTaper files were significantly faster than Mtwo instruments in terms of the mean time of retreatment and time required to reach working length. The Resilon + Epiphany and AH Plus + gutta-percha obturation materials were removed more easily than were the Epiphany + gutta-percha and Kerr PCS + gutta-percha obturation materials. Although ProTaper retreatment files worked faster than did Mtwo retreatment files in terms of removing root canal obturation materials, both retreatment systems are effective, reliable and fast. PMID:24697958

  9. Synthesis of improved phenolic resins

    NASA Technical Reports Server (NTRS)

    Delano, C. B.; Mcleod, A. H.

    1979-01-01

    Twenty seven addition cured phenolic resin compositions were prepared and tested for their ability to give char residues comparable to state-of-the-art phenolic resins. Cyanate, epoxy, allyl, acrylate, methacrylate and ethynyl derivatized phenolic oligomers were investigated. The novolac-cyanate and propargyl-novolac resins provided anaerobic char yields at 800 C of 58 percent. A 59 percent char yield was obtained from modified epoxy novolacs. A phosphonitrilic derivative was found to be effective as an additive for increasing char yields. The novolac-cyanate, epoxy-novolac and methacrylate-epoxy-novolac systems were investigated as composite matrices with Thornel 300 graphite fiber. All three resins showed good potential as composite matrices. The free radical cured methacrylate-epoxy-novolac graphite composite provided short beam shear strengths at room temperature of 93.3 MPa (13.5 ksi). The novolac-cyanate graphite composite produced a short beam shear strength of 74 MPa (10.7 ksi) and flexural strength of 1302 MPa (189 ksi) at 177 C. Air heat aging of the novolac-cyanate and epoxy novolac based composites for 12 weeks at 204 C showed good property retention.

  10. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  11. Evaluation of the Flexural Strength of Interim Restorative Materials in Fixed Prosthodontics

    PubMed Central

    Mehrpour, Hanieh; Farjood, Ehsan; Giti, Rashin; Barfi Ghasrdashti, Alireza; Heidari, Hossein

    2016-01-01

    Statement of the Problem Mechanical properties of interim restorations are considered as important factors specially when selecting materials for long-term application or for patients with para-functional habits. Flexural strength is one of the most important components of these restorations. Purpose The purpose of this study was to compare the flexural strength of five interim restorative materials. Materials and Method Fifty identical samples sized 25×2×2-mm were made from five interim materials (TempSpan; Protemp 4, Unifast III, Trim, and Revotek LC) according to ADA specification #27. The specimens were stored in artificial saliva for 2 weeks and then thermocycled for 2500 cycles (5-55˚C). A standard three-point bending test was conducted on the specimens with a universal testing machine at a crosshead speed of 0.75mm/min. Data were analyzed by using one-way ANOVA and Tamhane’s post-hoc tests to measure the flexural strength of temporary materials. Results One of the bis-acryl resins (TempSpan) showed the highest, and the light polymerized resin (Revotek LC) showed the lowest flexural strength. The mean values of flexural strength (MPa) for the examined materials were as follow: TempSpan=120.00, Protemp 4=113.00, Unifast III=64.20, Trim= 63.73 and Revotek LC=47.16. There were significant differences between all materials except Trim and Unifast III which did not show any statistical significant difference. Conclusion Bis-acryl resins were statistically superior to traditional methacrylate and light-cured resins. Therefore, application of bis-acryl resins should be deliberated in patients with heavy occlusion and in cases that need long-term use of interim restorations. PMID:27602395

  12. Development of ultraviolet rigidizable materials. [expandable space erectable structures

    NASA Technical Reports Server (NTRS)

    Salisbury, D. P.

    1979-01-01

    A series of tests was performed to determine an optimum resin to be used as a UV rigidizable matrix in expandable rigidizable space structures. Commercially available resins including several types of polyesters, epoxies, epoxy-acrylics, an acrylic and a urethane were used as well as a polyester, produced by 3M Company's Solar Laboratory facility, which was found the best from the standpoint of physical properties and ability to be 'B' staged. Two other synthesized materials were also tested, but were not found to be superior to the Solar resin. An optimum fabric for use with the preferred resin was not found; however, the 15 ounce fabric from Solar Laboratories has the best combination of physical properties with respect to handling and processing characteristics. Expansion techniques for tubular structures, 'B' staging of the solar resin, and stowage techniques for up to 5 months were developed. A one meter high tetrahedron preprototype structure was prepared to evaluate and demonstrate stowage, deployment, and rigidization techniques.

  13. Effect of surface treatments on shear bond strength of denture teeth to denture base resins

    PubMed Central

    Bahrani, Farideh; Khaledi, Amir Ali Reza

    2014-01-01

    Background: Debonding of denture teeth from denture bases is the most common failure in removable dentures. The purpose of this study was to evaluate the effect of surface treatments on shear bond strength of denture teeth to heat-polymerized and autopolymerized denture base resins. Materials and Methods: In this experimental in vitro study, 60 maxillary central incisor acrylic teeth were divided into two groups. Group M was polymerized with heat-polymerized acrylic resin (Meliodent) by compression molding technique and group F was processed by autopolymerized acrylic resin (Futura Gen) by injection molding technique. Within each group, specimens were divided into three subgroups according to the teeth surface treatments (n = 10): (1) ground surface as the control group (M1 and F1), (2) ground surface combined with monomer application (M2 and F2), and (3) airborne particle abrasion by 50 μm Al2O3 (M3 and F3). The shear bond strengths of the specimens were tested by universal testing machine with crosshead speed of 5 mm/min. Data were analyzed by two-way analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD) tests (P < 0.05). Results: The mean shear bond strengths of the studied groups were 96.40 ± 14.01, 124.70 ± 15.64, and 118 ± 16.38 N for M1, M2, and M3 and 87.90 ± 13.48, 117 ± 13.88, and 109.70 ± 13.78 N for F1, F2, and F3, respectively. The surface treatment of the denture teeth significantly affected their shear bond strengths to the both the denture base resins (P < 0.001). However, there were no significant differences between the groups treated by monomer or airborne particle abrasion (P = 0.29). The highest percentage of failure mode was mixed in Meliodent and adhesive in Futura Gen. Conclusion: Monomer application and airborne particle abrasion of the ridge lap area of the denture teeth improved their shear bond strengths to the denture base resins regardless of the type of polymerization. PMID:24688570

  14. Performance and Molding of Photosetting Resin Composite (PRC) Spur Gears by Stereolithography

    NASA Astrophysics Data System (ADS)

    Horiguchi, Masahiro; Suzuki, Kensuke; Takase, Kazuya; Sato, Sadao

    The performance of spur gears composed of photosetting resin composites (PRCs) containing various fillers was investigated experimentally. The materials used in the experiment were acrylic resin (PSA) and epoxy resin (PSEP), cured by irradiation with a helium-cadmium (He-Cd) ultraviolet laser (UVL) at a wavelength of 325 nm. The spur gears were molded by stereolithography using a UVL. The optimum time for the post cure in stereo lithography molding was about 20 minutes. The dedendum bending strength of spur gears made from PSA composites containing 1 wt% organic-modified montmorillonite (OMMT) increased by about 20% compared to neat PSA. The kinetics durability of the PRC spur gears was also found to increase due to the reinforcing effect of the filler. The tensile strength and flexural strength of the PSA/OMMT composite were about 1.2 times those of neat PSA. On the other hand, the flexural strength and modulus of neat PSEP were about 2 times greater than that of neat PSA itself. Moreover, the kinetics durability of neat PSEP also shows high values. From these results, it was concluded that the addition of filler has a significant influence on the characteristics and mechanical properties of spur gears made from photosetting resins.

  15. Autoclave processing for composite material fabrication. 1: An analysis of resin flows and fiber compactions for thin laminate

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1985-01-01

    High quality long fiber reinforced composites, such as those used in aerospace and industrial applications, are commonly processed in autoclaves. An adequate resin flow model for the entire system (laminate/bleeder/breather), which provides a description of the time-dependent laminate consolidation process, is useful in predicting the loss of resin, heat transfer characteristics, fiber volume fraction and part dimension, etc., under a specified set of processing conditions. This could be accomplished by properly analyzing the flow patterns and pressure profiles inside the laminate during processing. A newly formulated resin flow model for composite prepreg lamination process is reported. This model considers viscous resin flows in both directions perpendicular and parallel to the composite plane. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction, a poiseuille type pressure flow through porous media is assumed. Proper force and mass balances have been made and solved for the whole system. The effects of fiber-fiber interactions during lamination are included as well. The unique features of this analysis are: (1) the pressure gradient inside the laminate is assumed to be generated from squeezing action between two adjacent approaching fiber layers, and (2) the behavior of fiber bundles is simulated by a Finitely Extendable Nonlinear Elastic (FENE) spring.

  16. An in vitro microleakage study of class V cavities restored with a new self-adhesive flowable composite resin versus different flowable materials

    PubMed Central

    Sadeghi, Mostafa

    2012-01-01

    Background: Regarding the importance of sealing ability of restorative dental materials, this study was done to assess the microleakage of class V cavities restored with a new self-adhesive flowable composite resin and compare to different flowable materials. Materials and Methods: Seventy standardized class V cavities were prepared on the buccal surface of maxillary premolars teeth. The occlusal and the gingival margins of the cavities were located on the enamel and cementum/dentin, respectively. Teeth were randomly assigned into five groups (n = 14) and restored with different flowable materials following the manufacturer's instructions: groups I and II: EMBRACE WetBond flowable composite resin with and without acid etching and bonding agent, respectively; group III: flowable compomer (Dyract Flow); and IV and V: microhybrid (Tetric Flow) and nanofilled (Premise Flowable) flowable composite resins, respectively. After finishing and polishing, the teeth were stored in distilled water at 37°C, thermocycled, coated with nail varnish, and immersed in a basic fuchsin, and then longitudinally sectioned. Dye penetration was examined with a stereomicroscope and scored separately for occlusal and gingival on a 0-3 ordinal scale. Data were analyzed with Kruskal-Wallis, Mann-Whitney and Wilcoxon tests (α=0.05). Results: EMBRACE WetBond with acid etching and bonding agent had significantly less microleakage at the occlusal margins than those without, but not at cervical margins. Also cavities restored with EMBRACE WetBond without acid etching and bonding agent showed significantly greater microleakage scores than other groups at occlusal margin, but there was no significant difference at the cervical margin. Conclusion: The application of acid etching and bonding agent with EMBRACE WetBond provided better occlusal marginal sealing than those without at class V cavities. PMID:23162589

  17. Epoxy resin holograms

    NASA Astrophysics Data System (ADS)

    Ruiz-Limón, B.; Wetzel, G. B. J.; Olivares Pérez, A.; Ponce-Lee, E. L.; Ramos-Garcia, R.; Toxqui López, S.; Hernández-Garay, M. P.; Fuentes-Tapia, I.

    2006-02-01

    We observed that a commercial epoxy resin (Comex (R) is enable to record images by means of lithography techniques. We can generate a hologram using a digital image and a computer simulation program and transferred it on our resin by microlithography techniques to get a phase hologram and increase its efficiency. The exposition to the heat produce temperature gradients and the information in the mask is transferred to the material by the refraction index changes, thus the film is recorded. At the same time the hologram is cured.

  18. N-Butyl acrylate polymer composition for solar cell encapsulation and method

    NASA Technical Reports Server (NTRS)

    Gupta, Amitava (Inventor); Ingham, John D. (Inventor); Yavrouian, Andre H. (Inventor)

    1983-01-01

    A polymer syrup for encapsulating solar cell assemblies. The syrup includes uncrosslinked poly(n-butyl)acrylate dissolved in n-butyl acrylate monomer. Preparation of the poly(n-butyl)acrylate and preparation of the polymer syrup is disclosed. Methods for applying the polymer syrup to solar cell assemblies as an encapsulating pottant are described. Also included is a method for solar cell construction utilizing the polymer syrup as a dual purpose adhesive and encapsulating material.

  19. Effects of fluconazole, chlorhexidine gluconate, and silver-zinc zeolite on flexural strength of heat-cured polymethyl methacrylate resin

    PubMed Central

    Yadav, Naveen S.; Saraf, Sneha; Mishra, Sunil Kumar; Hazari, Puja

    2015-01-01

    Aim: We evaluated the effect of incorporating Fluconazole, Chlorhexidine Gluconate, and Silver-Zinc Zeolite as bioactive materials (10% of mass) on the flexural strength of commercially available heat-cured polymethyl methacrylate (PMMA; Travelon). Materials and Methods: The following four groups were compared; Group 1: Control group with pure PMMA, Group 2: Antibacterial drug group with chlorhexidine gluconate in powder form + PMMA, Group 3: Antifungal drug group with fluconazole in powder form + PMMA, Group 4: Antimicrobial agent group with silver zinc zeolite in powder form + PMMA. After processing, the specimens were subjected for flexural strength testing using three-point bending test in a universal testing machine. Results: A significant (P < 0.0001) decrease in flexural strength following incorporation of Fluconazole, Chlorhexidine Gluconate, and Silver-Zinc Zeolite to heat polymerized acrylic resin was observed when compared with the control group. The decrease in mean flexural strength was minimal in the fluconazole group. Conclusion: Although the addition of a bioactive material to PMMA acrylic is desirable, it is not practical as it reduces flexural strength of the acrylic base. PMID:26283825

  20. Dimensional stability of two solder index materials

    PubMed Central

    Khaledi, Amir Ali Reza; Pardis, Soheil; Pourhatami, Negar; Ardakani, Zahra Hashemi

    2016-01-01

    Objectives: This study aimed to compare the dimensional accuracy of two indexing materials, an acrylic resin (GC pattern resin) and a castable composite (Bredent). The effect of time lapse until investment was also investigated. Materials and Methods: Two standardized brass dies 15 mm apart were prepared and then 20 identical coping-bar assemblies were designed and fabricated by a rapid prototyping device. Each bar was sectioned at the center, and indices were fabricated from an acrylic resin or castable composite (n = 10 per group). The distances between the reference points were measured with a digital microscope at ×80 magnifications at 15 min, 60 min, and 24 h after indexing. Data were statically analyzed using repeated-measure ANOVA (α = 0.05). Results: The distance between the reference points without the coping being joined was considered as the baseline measurement (control group). The mean distance was 19.30 ± 0.04 mm between the reference points where the copings were not joined. When indexed with acrylic resin, the mean ± standard deviation (SD) dimensions were 19.27 ± 0.087 mm (15 min), 19.25 ± 0.09 mm (60 min), and 18.98 ± 0.1 mm (24 h). The mean ± SD dimensions for composite were 19.29 ± 0.087 mm (15 min), 19.28 ± 0.08 mm (60 min), and 19.26 ± 0.08 mm (24 h). All tested groups showed significant differences compared to the control group except when it was indexed with composite and where the distances were measured after 15 and 60 min (P > 0.05). Conclusions: The most accurate indexed-assemblies belonged to castable composite at 15 and 60 min. PMID:27095908

  1. Influence of various metal oxides on mechanical and physical properties of heat-cured polymethyl methacrylate denture base resins

    PubMed Central

    Albayrak, Hamdi; Korkmaz, Turan; Turkyilmaz, Ilser

    2013-01-01

    PURPOSE To evaluate the effect of various metal oxides on impact strength (IS), fracture toughness (FT), water sorption (WSP) and solubility (WSL) of heat-cured acrylic resin. MATERIALS AND METHODS Fifty acrylic resin specimens were fabricated for each test and divided into five groups. Group 1 was the control group and Group 2, 3, 4 and 5 (test groups) included a mixture of 1% TiO2 and 1% ZrO2, 2% Al2O3, 2% TiO2, and 2% ZrO2 by volume, respectively. Rectangular unnotched specimens (50 mm × 6.0 mm × 4.0 mm) were fabricated and droptower impact testing machine was used to determine IS. For FT, compact test specimens were fabricated and tests were done with a universal testing machine with a cross-head speed of 5 mm/min. For WSP and WSL, discshaped specimens were fabricated and tests were performed in accordance to ISO 1567. ANOVA and Kruskal-Wallis tests were used for statistical analyses. RESULTS IS and FT values were significantly higher and WSP and WSL values were significantly lower in test groups than in control group (P<.05). Group 5 had significantly higher IS and FT values and significantly lower WSP values than other groups (P<.05) and provided 40% and 30% increase in IS and FT, respectively, compared to control group. Significantly lower WSL values were detected for Group 2 and 5 (P<.05). CONCLUSION Modification of heat-cured acrylic resin with metal oxides, especially with ZrO2, may be useful in preventing denture fractures and undesirable physical changes resulting from oral fluids clinically. PMID:24049564

  2. [Microbial settlement of paint- and building-materials in the sphere of drinking water. 7. Communication: long time observations in two drinking water reservoirs coated by epoxy resin (author's transl)].

    PubMed

    Schoenen, D; Dott, W; Thofern, E

    1981-01-01

    In two potable water reservoirs with an epoxy resin lining an increase of the colony count in the water and a visible microbial growth on the surface could be observed. The slime consists of bacteria and fungi. In one case higher organisms like protozoa were found too. The growth of microorganisms is caused by organic compounds of the epoxy resin which can be deteriorated by microorganisms. After a period of 3 years both materials still promote microbial growth on the surface. PMID:6792815

  3. Surface hardness evaluation of different composite resin materials: influence of sports and energy drinks immersion after a short-term period

    PubMed Central

    ERDEMİR, Ugur; YİLDİZ, Esra; EREN, Meltem Mert; OZEL, Sevda

    2013-01-01

    Objectives: This study evaluated the effect of sports and energy drinks on the surface hardness of different composite resin restorative materials over a 1-month period. Material and Methods: A total of 168 specimens: Compoglass F, Filtek Z250, Filtek Supreme, and Premise were prepared using a customized cylindrical metal mould and they were divided into six groups (N=42; n=7 per group). For the control groups, the specimens were stored in distilled water for 24 hours at 37º C and the water was renewed daily. For the experimental groups, the specimens were immersed in 5 mL of one of the following test solutions: Powerade, Gatorade, X-IR, Burn, and Red Bull, for two minutes daily for up to a 1-month test period and all the solutions were refreshed daily. Surface hardness was measured using a Vickers hardness measuring instrument at baseline, after 1-week and 1-month. Data were statistically analyzed using Multivariate repeated measure ANOVA and Bonferroni's multiple comparison tests (α=0.05). Results: Multivariate repeated measures ANOVA revealed that there were statistically significant differences in the hardness of the restorative materials in different immersion times (p<0.001) in different solutions (p<0.001). The effect of different solutions on the surface hardness values of the restorative materials was tested using Bonferroni's multiple comparison tests, and it was observed that specimens stored in distilled water demonstrated statistically significant lower mean surface hardness reductions when compared to the specimens immersed in sports and energy drinks after a 1-month evaluation period (p<0.001). The compomer was the most affected by an acidic environment, whereas the composite resin materials were the least affected materials. Conclusions: The effect of sports and energy drinks on the surface hardness of a restorative material depends on the duration of exposure time, and the composition of the material. PMID:23739850

  4. Preheating of resin-based flowable materials in a microwave device: a promising approach to increasing hardness and softening resistance under cariogenic challenge.

    PubMed

    Borges, Boniek Castillo; Barreto, Adrielle Silva; Gomes, Cláudia Lobelli; Silva, Talles Rodrigo; Alves-Júnior, Clodomiro; Pinheiro, Isauremi Vieira; Braz, Rodivan; Montes, Marcos Antonio

    2013-01-01

    This study aimed to evaluate whether preheated resin-based flowable restoratives would show increased hardness and softening susceptibility after an early cariogenic challenge. Fluroshield- Yellowed, Bioseal, Wave, Master Flow, Fluroshield-White, Conseal F, Filtek Z350 Flow, and Opallis Flow were tested. Preheating was performed using a microwave device. Five specimens of each preheated or room temperature material (n = 5) were fabricated. Hardness was assessed before and after a cariogenic challenge. The analysis was done by two-way analysis of variance (ANOVA) with repeated measures (cariogenic challenge) and Tukey's test for multiple comparisons ( PMID:24624378

  5. Nanoleakage for Self-Adhesive Resin Cements used in Bonding CAD/CAD Ceramic Material to Dentin

    PubMed Central

    El-Badrawy, Wafa; Hafez, Randa Mohamed; El Naga, Abeer Ibrahim Abo; Ahmed, Doaa Ragai

    2011-01-01

    Objectives: To determine nanoleakage of CAD/CAM ceramic blocks bonded to dentin with self-adhesive resin cement. Methods: Eighteen sound extracted human molars were sterilized and sectioned into 3 mm-thick dentin sections. Trilux Cerec Vitablocks (Vita) were also sectioned into 3 mm sections, surface-treated using 5% hydrofluoric acid-etchant, and then coated with silane primer (Vita). Trilux and dentin sections were cemented together by means of three resin cements: Rely-X Unicem (3M/ESPE), BisCem (Bisco), and Calibra (Dentsply), according to manufacturers’ recommendations. Calibra was used in conjunction with Prime/Bond-NT adhesive (Dentsply), while the other two are self-adhesive. The bonded specimens were stored for 24h in distilled water at 37°C. Specimens were vertically sectioned into 1 mm-thick slabs, yielding up to six per specimen. Two central slabs were randomly chosen from each specimen making up the cement groups (n=12). Each group was subdivided into two subgroups (n=6), a control and a thermocycled subgroup (5–55°C) for 500 cycles. Slabs were coated with nail polish up to 1 mm from the interface, immersed in a 50% silver nitrate solution for 24h, and tested for nanoleakage using Quanta Environmental SEM and EDAX. Data were statistically analyzed using two-way ANOVA and Tukey’s post-hoc tests. Results: Rely-X Unicem and Calibra groups demonstrated no significant difference in the percentage of silver penetration, while the BisCem group revealed a significantly higher percentage (P≤.05). Thermocycling (500 cycles) did not have a statistically significant effect on the percentage of silver penetration (P>.05). Conclusions: One self-adhesive-resin cement demonstrated a similar sealing ability when compared with a standard resin cement. Thermo-cycling did not significantly increase dye penetration under the test conditions. PMID:21769269

  6. A new technology for separation and recovery of materials from waste printed circuit boards by dissolving bromine epoxy resins using ionic liquid.

    PubMed

    Zhu, P; Chen, Y; Wang, L Y; Qian, G Y; Zhou, M; Zhou, J

    2012-11-15

    Recovery of valuable materials from waste printed circuit boards (WPCBs) is quite difficult because WPCBs is a heterogeneous mixture of polymer materials, glass fibers, and metals. In this study, WPCBs was treated using ionic liquid (1-ethyl-3-methylimizadolium tetrafluoroborate [EMIM+][BF4-]). Experimental results showed that the separation of the solders went to completion, and electronic components (ECs) were removed in WPCBs when [EMIM+][BF4-] solution containing WPCBs was heated to 240 °C. Meanwhile, metallographic observations verified that the WPCBs had an initial delamination. When the temperature increased to 260 °C, the separation of the WPCBs went to completion, and coppers and glass fibers were obtained. The used [EMIM+][BF4-] was treated by water to generate a solid-liquid suspension, which was separated completely to obtain solid residues by filtration. Thermal analyses combined with infrared ray spectra (IR) observed that the solid residues were bromine epoxy resins. NMR (nuclear magnetic resonance) showed that hydrogen bond played an important role for [EMIM+][BF4-] dissolving bromine epoxy resins. This clean and non-polluting technology offers a new way to recycle valuable materials from WPCBs and prevent environmental pollution from WPCBs effectively. PMID:22985818

  7. Comparative evaluation of sealing ability of glass ionomer-resin continuum as root-end filling materials: An in vitro study

    PubMed Central

    Chohan, Hitesh; Dewan, Harisha; Annapoorna, B. M.; Manjunath, M. K.

    2015-01-01

    Background and Objectives: Root-end filling is a prudent procedure aimed at sealing the root canal to prevent penetration of tissue fluids into the root canals. An ideal root-end filling material should produce a complete apical seal. Therefore, the aim of this study is to compare the leakage behavior of four different root-end filling materials. Materials and Methods: Sixty-eight maxillary central incisors were obturated with laterally condensed gutta-percha and AH plus sealer. The roots were resected at the level of 3 mm perpendicular to the long axis of the tooth. Root-end cavities were prepared with straight fissure stainless steel bur. The teeth were then divided into four experimental and two control groups, and cavities restored as per the groupings. The teeth were immersed in methylene blue for 48 h, split longitudinally, and dye penetration was measured. Results: A highly significant difference existed in the mean dye penetration of Group I (conventional glass ionomer) and the other groups (resin-modified glass ionomer, polyacid-modified composite, and composite resin). There was no statistically significant difference among the three groups. Conclusions: (1) Significant difference was found in the dye penetration values of conventional glass ionomer cement and other groups. (2) No statistically significant difference was found in the dye penetration values of groups II, III, and IV. PMID:26759803

  8. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per million by weight of the juice or 10 parts per million by weight of the liquor or the corn starch hydrolyzate....

  9. 21 CFR 173.5 - Acrylate-acrylamide resins.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (a) (1) of this section is used as a flocculent in the clarification of beet sugar juice and liquor or cane sugar juice and liquor or corn starch hydrolyzate in an amount not to exceed 5 parts per... mineral scale in beet sugar juice and liquor or cane sugar juice and liquor in an amount not to exceed...

  10. 21 CFR 573.120 - Acrylamide-acrylic acid resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS FOOD ADDITIVES PERMITTED IN FEED AND DRINKING WATER OF ANIMALS... specifications: (1) A minimum molecular weight of 3 million. (2) Viscosity range: 3,000 to 6,000 centipoises...

  11. Jetted mixtures of particle suspensions and resins

    NASA Astrophysics Data System (ADS)

    Hoath, S. D.; Hsiao, W.-K.; Hutchings, I. M.; Tuladhar, T. R.

    2014-10-01

    Drop-on-demand (DoD) ink-jetting of hard particle suspensions with volume fraction Φ ˜ 0.25 has been surveyed using 1000 ultra-high speed videos as a function of particle size (d90 = 0.8—3.6 μm), with added 2 wt. % acrylic (250 kDa) or 0.5 wt. % cellulose (370 kDa) resin, and also compared with Newtonian analogues. Jet break-off times from 80 μm diameter nozzles were insensitive (120 ± 10 μs) to particle size, and resin jet break-off times were not significantly altered by >30 wt. % added particles. Different particle size grades can be jetted equally well in practice, while resin content effectively controls DoD break-off times.

  12. Optical properties and indentation hardness of thin-film acrylated epoxidized oil

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammad Syuhaimi Ab.; Shaktur, Khaled Mohamed; Mohammad, Rahmah; Zalikha, Wan Aimi; Nawi, Norwimie; Mohd, Ahmad Faiza

    2012-02-01

    Epoxy acrylate has been widely used as optical resin for applications such as cladding, the core of a waveguide, and other photonic devices. In this study, sustainable resin from edible oil was used as an alternative to epoxy acrylate. Structural features and the transmission of planar thin-film resin from an ultraviolet-visible spectroscopy (UV-VIS) spectrometer were investigated upon UV exposure. It was found that high transmission still persists for all samples with and without an UV absorber for exposed and unexposed samples. The film was found to absorb strongly below 400 nm. A change in the cut-off wavelength was observed upon exposure. Thin-film hardness and its dynamic indentation in the load-unload mode with different test forces were evaluated. Vickers hardness and the elastic modulus were determined for unacrylated epoxidized soybean oil (ESO) and acrylated epoxidized soybean oil (AESO). It was found that the AESO has a higher Vickers hardness and elastic modulus than those of unacrylated thin film. The Vickers hardness and elastic modulus were found to increase as the applied test force increased. The refractive index, thickness, and modes present were characterized from a spin-coated planar thin film. The refractive index in the transverse electric mode (TE) and transverse magnetic mode (TM) were determined and compared for unacrylated and acrylated epoxidized oil.

  13. The effect of one-step polishing system on the surface roughness of three esthetic resin composite materials.

    PubMed

    Türkün, L S; Türkün, M

    2004-01-01

    Proper finishing of restorations is desirable not only for aesthetic considerations but also for oral health. The primary goal of finishing is to obtain a restoration that has good contour, occlusion, healthy embrasure forms and a smooth surface. This study investigated: 1) analyzing the surface roughness of three resin composites finished and polished with a new one-step and two conventional multi-step polishing systems and 2) evaluating the effectiveness of one-step polishing system and surface morphology using scanning electron microscope analysis (SEM). Specimens (N = 72) measuring 8-mm in diameter x 2-mm in thickness were fabricated in a plexiglass mold covered with a Mylar strip using three esthetic resin composites. After polymerization six specimens per resin composite received no finishing treatment and served as a control. Fifty-four specimens were randomly polished with Sof-Lex discs, Enhance disc with polishing paste or PoGo for 30 seconds after being ground wet with a 1200 grit silicon carbide paper. The average surface roughness of each polished specimen was determined with a profilometer (Surtronic 4). The data were analyzed using repeated measures ANOVA and Scheffe's post-hoc test of multiple comparisons (p < or = 0.01). Representative samples of the mentioned finishing procedures were selected and examined using a scanning electron microscope (SEM). There was no surface roughness in all resin composites tested against Mylar strip. The results showed no difference between the surfaces of Clearfil ST and Esthet-X polished with PoGo and the Mylar group (p > or = 0.01). Among all the polishing systems tested, PoGo exhibited the smoothest finish for all resin composites. The combination of Enhance and Prisma Gloss polishing paste exhibited the highest roughness values for Filtek A110 and Clearfil ST; however, it gave the same Ra values as PoGo for Esthet-X (p < or = 0.01). SEM analysis of Esthet-X samples confirmed the profilometer's results. The

  14. A method for measuring dermal exposure to multifunctional acrylates.

    PubMed

    Surakka, J; Johnsson, S; Rosén, G; Lindh, T; Fischer, T

    1999-12-01

    UV-curable acrylates are used increasingly for coating wood surfaces in the furniture industry. One of the active components, tripropylene glycol diacrylate (TPGDA), is known to be both an allergen and irritant to the skin. Methods to measure dermal exposure to skin irritants and allergens, such as acrylates, are insufficient for exposure assessment and there is none for this compound. The aim of this investigation was to develop a skin and surface sampling method, based on tape stripping, and a gas chromatographic method for quantitative analysis for assessing occupational skin exposure to multifunctional acrylates. Twelve adhesives were tested for their efficiency to remove TPGDA and UV-coating from a glass surface, the skin of guinea pigs and human volunteers employing the tape-stripping method in order to find the best performing tape. Variables that affect removal efficiency such as the applied dose and its retention time on the skin, tape adhesion time on the skin, and the number of strippings required to detect the contaminant from the skin were studied. Fixomull tape performed the best during sampling and analysis and had the most consistent removal efficiencies for the studied substances. The average removal efficiency with a single stripping at the 2 microliters TPGDA exposed skin sites was 85% (RSD = 14.1), and for UV-resin exposed sites 63% (RSD = 20.2). The results indicated that this method can be used for measuring dermal exposure to multifunctional acrylates efficiently, accurately, and economically. This method provides a sensitive and powerful tool for the assessment of dermal exposure to multifunctional acrylates both from the skin and from other contaminated surfaces in occupational field settings. PMID:11529185

  15. Commercial Ion Exchange Resin Vitrification Studies

    SciTech Connect

    Cicero-Herman, C.A

    2002-06-28

    In the nuclear industry, ion exchange resins are used for purification of aqueous streams. The major contaminants of the resins are usually the radioactive materials that are removed from the aqueous streams. The use of the ion exchange resins creates a waste stream that can be very high in both organic and radioactive constituents. Therefore, disposal of the spent resin often becomes an economic problem because of the large volumes of resin produced and the relatively few technologies that are capable of economically stabilizing this waste. Vitrification of this waste stream presents a reasonable disposal alternative because of its inherent destruction capabilities, the volume reductions obtainable, and the durable product that it produces.

  16. Comparative adaptation accuracy of acrylic denture bases evaluated by two different methods.

    PubMed

    Lee, Chung-Jae; Bok, Sung-Bem; Bae, Ji-Young; Lee, Hae-Hyoung

    2010-08-01

    This study examined the adaptation accuracy of acrylic denture base processed using fluid-resin (PERform), injection-moldings (SR-Ivocap, Success, Mak Press), and two compression-molding techniques. The adaptation accuracy was measured primarily by the posterior border gaps at the mid-palatal area using a microscope and subsequently by weighing of the weight of the impression material between the denture base and master cast using hand-mixed and automixed silicone. The correlation between the data measured using these two test methods was examined. The PERform and Mak Press produced significantly smaller maximum palatal gap dimensions than the other groups (p<0.05). Mak Press also showed a significantly smaller weight of automixed silicone material than the other groups (p<0.05), while SR-Ivocap and Success showed similar adaptation accuracy to the compression-molding denture. The correlationship between the magnitude of the posterior border gap and the weight of the silicone impression materials was affected by either the material or mixing variables. PMID:20675954

  17. Development of a novel resin with antimicrobial properties for dental application

    PubMed Central

    de CASTRO, Denise Tornavoi; HOLTZ, Raphael Dias; ALVES, Oswaldo Luiz; WATANABE, Evandro; VALENTE, Mariana Lima da Costa; da SILVA, Cláudia Helena Lovato; dos REIS, Andréa Cândido

    2014-01-01

    The adhesion of biofilm on dental prostheses is a prerequisite for the occurrence of oral diseases. Objective To assess the antimicrobial activity and the mechanical properties of an acrylic resin embedded with nanostructured silver vanadate (β-AgVO3). Material and Methods The minimum inhibitory concentration (MIC) of β-AgVO3 was studied in relation to the species Staphylococcus aureus ATCC 25923, Streptococcus mutans ATCC 25175, Pseudomonas aeruginosa ATCC 27853, and Candida albicans ATCC 10231. The halo zone of inhibition method was performed in triplicate to determine the inhibitory effect of the modified self-curing acrylic resin Dencor Lay - Clássico®. The surface hardness and compressive strength were examined. The specimens were prepared according to the percentage of β-AgVO3 (0%-control, 0.5%, 1%, 2.5%, 5%, and 10%), with a sample size of 9x2 mm for surface hardness and antimicrobial activity tests, and 8x4 mm for the compression test. The values of the microbiologic analysis were compared and evaluated using the Kruskal-Wallis test (α=0.05); the mechanical analysis used the Shapiro-Wilk's tests, Levene's test, ANOVA (one-way), and Tukey's test (α=0.05). Results The addition of 10% β-AgVO3 promoted antimicrobial activity against all strains. The antimicrobial effect was observed at a minimum concentration of 1% for P. aeruginosa, 2.5% for S. aureus, 5% for C. albicans, and 10% for S. mutans. Surface hardness and compressive strength increased significantly with the addition of 0.5% β-AgVO3 (p<0.05). Higher rates of the nanomaterial did not alter the mechanical properties of the resin in comparison with the control group (p>0.05). Conclusions The incorporation of β-AgVO3 has the potential to promote antimicrobial activity in the acrylic resin. At reduced rates, it improves the mechanical properties, and, at higher rates, it does not promote changes in the control. PMID:25466477

  18. Stress and flow analyses of ultraviolet-curable resin during curing

    NASA Astrophysics Data System (ADS)

    Umezaki, Eisaku; Okano, Akira; Koyama, Hiroto

    2014-06-01

    The stress and flow generated in ultraviolet (UV)-curable resin during curing in molds were measured to investigate their relationship. The specimens were molds consisting of glass plates and acrylic bars, and UV-curable liquid resin. The specimens were illuminated from above with UV rays. Photoelastic and visual images were separately obtained at a constant time interval using cameras during curing. To help obtain the visual images, acrylic powder was mixed with the liquid resin. The stress was obtained from the photoelastic images by a digital photoelastic technique with phase stepping, and the flow was obtained from the visual images by a particle-tracking velocimetry technique. Results indicate that the stress generated in the UV-curable resin during curing depends on the degree of contact between the mold and the cured area of the resin, and is hardly related to the flow.

  19. Development of a gas chromatography-mass spectrometry method to monitor in a single run, mono- to triterpenoid compounds distribution in resinous plant materials.

    PubMed

    Jemmali, Zaineb; Chartier, Agnes; Elfakir, Claire

    2016-04-22

    A new procedure based on gas chromatography coupled to mass spectrometry (GC-MS) was developed for the simultaneous determination of mono- to triterpenoid compounds in resinous materials. Given the difference of volatility and polarity of the studied compounds some critical steps in this methodology had to be identified and investigated. The recovery of volatile compounds after sample extraction was studied. A recovery range from 30% to 100% from the more volatile monoterpene to the least one was observed. Then the mandatory derivatization step for the analysis of pentacyclic triterpenes bearing hydroxyl and carboxyl groups was optimized. Results showed that derivatization using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) in pyridine (22:13:65 v/v/v) for 2h at 30 °C was the most efficient method of derivatizing all the hydroxyl and carboxylic acid groups contained in the triterpene structures. After choosing the best injection parameters for these compounds, the selectivity of the GC column towards the separation of these terpenoids was investigated using statistical tools (principal component analysis and desirability functions). A separation with a good resolution was achieved on an HP-5ms column using a programmed temperature vaporizing injector (PTV). The method was pre-validated in terms of detection limits (LOD from 100 μg L(-1) to 200 μg L(-1) depending on the compound), linearity and repeatability using seven compounds representative of mono- and triterpenoid classes. An exhaustive characterization of various types of resins (di-, triterpenic and oleo-gum resins) was achieved. PMID:27018190

  20. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  1. Properties of the modified cellulosic fabrics using polyurethane acrylate copolymers.

    PubMed

    Tabasum, Shazia; Zuber, Mohammad; Jabbar, Abdul; Zia, Khalid Mahmood

    2013-05-15

    Polyurethane acrylate copolymers (PAC) were synthesized via emulsion polymerization following three step synthesis process using toluene-2,4-diisocyanate, hydroxy terminated poly(caprolactone) diol, 2-hydroxyethylacrylate (HEA) and butyl acrylate (BuA). Structural characteristics of the synthesized polyurethane acrylate copolymer (PAC) were studied using Fourier Transform Infrared (FT-IR) spectrophotometer and are with accordance with the proposed PAC structure. The physicochemical properties such as solid contents (%), tackiness, film appearance and emulsion stability were studied, discussed and co-related with other findings. The plain weave poly-cotton printed fabrics after application of PAC was evaluated applying colorfastness standard test method. The results revealed that emulsion stability is the main controlling factor of the synthesized material in order to get better applications and properties. The emulsion stability of the synthesized material increased with increase in molecular weight of the polycaprolactone diol. PMID:23544644

  2. Thermal Response and Stability Characteristics of Bistable Composite Laminates by Considering Temperature Dependent Material Properties and Resin Layers

    NASA Astrophysics Data System (ADS)

    Moore, M.; Ziaei-Rad, S.; Salehi, H.

    2013-02-01

    In this study, the stability characteristics and thermal response of a bistable composite plate with different asymmetric composition were considered. The non-linear finite element method (FEM) was utilized to determine the response of the laminate. Attention was focused on the temperature dependency of laminate mechanical properties, especially on the thermal expansion coefficients of the composite graphite-epoxy plate. Also the effect of including the resin layers on the stability characteristics of the laminate was investigated. The effect of the temperature on the laminate cured configurations in the range of 25°C to 180°C and -60°C to 40°C was examined. The results indicate that the coefficient of thermal expansions has a major effect on the cured shapes. Next, optical microscopy was used to characterize the laminate composition and for the first time the effect of including the resin layers on the actuation loads that causes snapping behavior between two stable shapes was studied. The results obtained from the finite element simulations were compared with experimental results and a good correlation was obtained. Finally, the stability characteristics of a tapered composite panel were investigated for using in a sample winglet as a candidate application of bistable structures.

  3. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  4. Optical and color stabilities of paint-on resins for shade modification of restorative resins.

    PubMed

    Arikawa, Hiroyuki; Kanie, Takahito; Fujii, Koichi; Ban, Seiji; Homma, Tetsuya; Takahashi, Hideo

    2004-06-01

    The purpose of this study was to examine the optical and color stabilities of the paint-on resin used for shade modification of restorative resins. Three shades of paint-on resin and two crown and bridge resins were used. The light transmittance characteristics of the materials during accelerated aging tests such as water immersion, toothbrush abrasion, ultraviolet (UV) light irradiation, and staining tests were measured. Discolorations of materials resulting from tests were also determined. There were no significant effects of water immersion, toothbrush abrasion and UV light irradiation on the light transmittance and visible color change of paint-on resins, whereas the staining tests significantly decreased the light transmittance and increased color change of the translucent shades of materials. Our results indicate that the paint-on resins exhibit stable optical properties and color appearance, which are at least as good as the crown and bridge resins. PMID:15287561

  5. Analysis of Resin-Dentin Interface Morphology and Bond Strength Evaluation of Core Materials for One Stage Post-Endodontic Restorations

    PubMed Central

    Bitter, Kerstin; Gläser, Christin; Neumann, Konrad; Blunck, Uwe; Frankenberger, Roland

    2014-01-01

    Purpose Restoration of endodontically treated teeth using fiber posts in a one-stage procedure gains more popularity and aims to create a secondary monoblock. Data of detailed analyses of so called “post-and-core-systems” with respect to morphological characteristics of the resin-dentin interface in combination with bond strength measurements of fiber posts luted with these materials are scarce. The present study aimed to analyze four different post-and-core-systems with two different adhesive approaches (self-etch and etch-and-rinse). Materials and Methods Human anterior teeth (n = 80) were endodontically treated and post space preparations and post placement were performed using the following systems: Rebilda Post/Rebilda DC/Futurabond DC (Voco) (RB), Luxapost/Luxacore Z/Luxabond Prebond and Luxabond A+B (DMG) (LC), X Post/Core X Flow/XP Bond and Self Cure Activator (Dentsply DeTrey) (CX), FRC Postec/MultiCore Flow/AdheSE DC (Ivoclar Vivadent) (MC). Adhesive systems and core materials of 10 specimens per group were labeled using fluorescent dyes and resin-dentin interfaces were analyzed using Confocal Laser Scanning Microscopy (CLSM). Bond strengths were evaluated using a push-out test. Data were analyzed using repeated measurement ANOVA and following post-hoc test. Results CLSM analyses revealed significant differences between groups with respect to the factors hybrid layer thickness (p<0.0005) and number of resin tags (p = 0.02; ANOVA). Bond strength was significantly affected by core material (p = 0.001), location inside the root canal (p<0.0005) and incorporation of fluorescent dyes (p = 0.036; ANOVA). CX [7.7 (4.4) MPa] demonstrated significantly lower bond strength compared to LC [14.2 (8.7) MPa] and RB [13.3 (3.7) MPa] (p<0.05; Tukey HSD) but did not differ significantly from MC [11.5 (3.5) MPa]. Conclusion It can be concluded that bond strengths inside the root canal were not affected by the adhesive approach of the post

  6. Effect of Cigarette Smoke on Surface Roughness of Different Denture Base Materials

    PubMed Central

    Mahross, Hamada Zaki; Mohamed, Mahmoud Darwish; Hassan, Ahmed Mohammed

    2015-01-01

    Background Surface roughness is an important property of denture bases since denture bases are in contact with oral tissues and a rough surface may affect tissues health due to microorganism accumulation. Therefore, the effect of cigarette smoke on the surface roughness of two commercially available denture base materials was evaluated to emphasize which type has superior properties for clinical use. Materials and Methods A total numbers of 40 specimens were constructed from two commercially available denture base materials; heat-cured PMMA and visible light cured UDMA resins (20 for each). The specimens for each type were randomly divided into: Group I: Heat cured resin control group; Group II: Heat cured acrylic resin specimens exposed to cigarette smoking; Group III: Light cured resin control group; Group IV: Light cured resin specimens exposed to cigarette smoking. The control groups used for immersion in distilled water and the smoke test groups used for exposure to cigarette smoking. The smoke test groups specimens were exposed to smoking in a custom made smoking chamber by using 20 cigarettes for each specimen. The surface roughness was measured by using Pocket SurfPS1 profilometer and the measurements considered as the difference between the initial and final roughness measured before and after smoking. Results The t-test for paired observation of test specimens after exposure to smoking was indicated significant change in surface roughness for Group II (p< 0.05) but has no significance with Group IV. Otherwise, there were no significant differences with control groups (Group I and III). Conclusion The surface roughness of the dentures constructed from heat cured acrylic resin had been increased after exposure to cigarette smoke but had no impact on the dentures constructed from visible light cured resin. PMID:26501010

  7. The effect of glass and polyethylene fiber reinforcement on flexural strength of provisional restorative resins: an in vitro study.

    PubMed

    Natarajan, Parthasarathy; Thulasingam, C

    2013-12-01

    The aim is to evaluate and compare the flexural strength of different provisional restorative materials reinforced with glass and polyethylene fibers. A total of 90 samples were prepared and divided into three groups based on the type of fiber reinforcement, unidirectional S-glass (Splint-It) and ultra-molecular weight polyethylene (Ribbond). Unreinforced samples served as control group. Again each group was subdivided into three subgroups based on type of provisional restorative resins, heats cure polymethyl methacrylate, self-cure poly methyl methacrylate and self-cure bis-acryl composite. Samples were loaded in a universal testing machine until fracture occurs. The mean flexural strengths (MPa) were subjected to the one-way ANOVA, followed by the Tukey-HSD test at a significance level of 0.001. The result shows all the fiber reinforced samples possessed greater strength than the control samples. In control samples, the heat cure poly methyl methacrylate resin (72.74 ± 2.28 MPa) had the greatest flexural strength, followed by self-cure bis-acryl composite (67.05 ± 2.35 MPa) and self-cure poly methyl methacrylate resin (52.88 ± 1.90 MPa). In both heat and self-cure poly methyl methacrylate resin, the polyethylene fiber reinforcement (96.00 ± 2.63 MPa, 86.17 ± 1.92 MPa) provides the greatest strength than glass fiber reinforcement (92.68 ± 1.58 MPa, 76.40 ± 2.11 MPa). In self-cure bis-acryl composite, the glass fiber (105.95 ± 3.07 MPa) shows better reinforcement than polyethylene fiber (99.41 ± 1.74 MPa).The fibers reinforcement increases the flexural strength of provisional restorative resins. PMID:24431771

  8. Resin polymerization problems--are they caused by resin curing lights, resin formulations, or both?

    PubMed

    Christensen, R P; Palmer, T M; Ploeger, B J; Yost, M P

    1999-01-01

    Negative effects of rapid, high-intensity resin curing have been predicted for both argon lasers and plasma-arc curing lights. To address these questions, six different resin restorative materials were cured with 14 different resin curing lights representing differences in intensities ranging from 400 mW/cm2 to 1,900 mW/cm2; delivery modes using constant, ramped, and stepped methods; cure times ranging from 1 second to 40 seconds; and spot sizes of 6.7 mm to 10.9 mm. Two lasers, five plasma-arc lights, and seven halogen lights were used. Shrinkage, modulus, heat generation, strain, and physical changes on the teeth and resins during strain testing were documented. Results showed effects associated with lights were not statistically significant, but resin formulation was highly significant. Microfill resins had the least shrinkage and the lowest modulus. An autocure resin had shrinkage and modulus as high as or higher than the light-cured hybrid resins. Lasers and plasma-arc lights produced the highest heat increases on the surface (up to 21 degrees C) and within the resin restorations (up to 14 degrees C), and the halogen lights produced the most heat within the pulp chamber (up to 2 degrees C). Strain within the tooth was least with Heliomolar and greatest with Z100 Restorative and BISFIL II autocure resin. Clinical effects of strain relief were evident as white lines at the tooth-resin interface and cracks in enamel adjacent to the margins. This work implicates resin formulation, rather than light type or curing mode, as the important factor in polymerization problems. Lower light intensity and use of ramped and stepped curing modes did not provide significant lowering of shrinkage, modulus, or strain, and did not prevent enamel cracking adjacent to margins and formation of "white line" defects at the margins. Until materials with lower shrinkage and modulus are available, use of low-viscosity surface sealants as a final step in resin placement is suggested to

  9. Impact Delamination and Fracture in Aluminum/Acrylic Sandwich Plates

    NASA Technical Reports Server (NTRS)

    Liaw, Benjamin; Zeichner, Glenn; Liu, Yanxiong; Bowles, Kenneth J. (Technical Monitor)

    2000-01-01

    Impact-induced delamination and fracture in 6061-T6 aluminum/cast acrylic sandwich plates adhered by epoxy were generated in an instrumented drop-weight impact machine. Although only a small dent was produced on the aluminum side when a hemispherical penetrator tup was dropped onto it from a couple of inches, a large ring of delamination at the interface was observed. The delamination damage was often accompanied by severe shattering in the acrylic substratum. Damage patterns in the acrylic layer include radial and ring cracks and, together with delamination at the interface, may cause peeling-off of acrylic material from the sandwich plate. Theory of stress-wave propagation can be used to explain these damage patterns. The impact tests were conducted at various temperatures. The results also show clearly that temperature effect is very important in impact damage. For pure cast acrylic nil-ductile transition (NDT) occurs between 185-195 F. Excessive impact energy was dissipated into fracture energy when tested at temperature below this range or through plastic deformation when tested at temperature above the NDT temperature. Results from this study will be used as baseline data for studying fiber-metal laminates, such as GLARE and ARALL for advanced aeronautical and astronautical applications.

  10. Influence of 2% chlorhexidine on pH, calcium release and setting time of a resinous MTA-based root-end filling material.

    PubMed

    Jacinto, Rogério Castilho; Linhares-Farina, Giane; Sposito, Otávio da Silva; Zanchi, César Henrique; Cenci, Maximiliano Sérgio

    2015-01-01

    The addition of chlorhexidine (CHX) to a resinous experimental Mineral Trioxide Aggregate (E-MTA) based root-end filling material is an alternative to boost its antimicrobial activity. However, the influence of chlorhexidine on the properties of this material is unclear. The aim of this study was to evaluate the influence of 2% chlorhexidine on the pH, calcium ion release and setting time of a Bisphenol A Ethoxylate Dimethacrylate/Mineral Trioxide Aggregate (Bis-EMA/MTA) based dual-cure experimental root-end filling material (E-MTA), in comparison with E-MTA without the addition of CHX and with conventional white MTA (W-MTA). The materials were placed in polyethylene tubes, and immersed in deionized water to determine pH (digital pH meter) and calcium ion release (atomic absorption spectrometry technique). The setting time of each material was analyzed using Gilmore needles. The data were statistically analyzed at a significance level of 5%. E-MTA + CHX showed an alkaline pH in the 3 h period of evaluation, the alkalinity of which decreased but remained as such for 15 days. The pH of E-MTA + CHX was higher than the other two materials after 7 days, and lower after 30 days (p < 0.05). All of the materials were found to release calcium ions throughout the 30 days of the study. The addition of CHX increased the calcium ion release of E-MTA to levels statistically similar to W-MTA. E-MTA showed shorter initial and final setting time, compared with W-MTA (p < 0.05). The addition of 2% CHX to MTA prevented setting of the material. The addition of CHX to E-MTA increased its pH and calcium ion release. However, it also prevented setting of the material. PMID:25715035

  11. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    NASA Astrophysics Data System (ADS)

    Grassia, Luigi; D'Amore, Alberto

    2010-06-01

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  12. Modeling the Residual Stresses in Reactive Resins-Based Materials: a Case Study of Photo-Sensitive Composites for Dental Applications

    SciTech Connect

    Grassia, Luigi; D'Amore, Alberto

    2010-06-02

    Residual stresses in reactive resins-based composites are associated to the net volumetric contraction (shrinkage) arising during the cross-linking reactions. Depending on the restoration geometry (the ratio of the free surface area to the volume of the cavity) the frozen-in stresses can be as high as the strength of the dental composites. This is the main reason why the effectiveness and then the durability of restorations with composites remains quite lower than those realized with metal alloys based materials. In this paper we first explore the possibility to circumvent the mathematical complexity arising from the determination of residual stresses in reactive systems three-dimensionally constrained. Then, the results of our modeling approach are applied to a series of commercially available composites showing that almost all samples develop residual stresses such that the restoration undergoes failure as soon as it is realized.

  13. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  14. 40 CFR 721.2805 - Acrylate ester.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Acrylate ester. 721.2805 Section 721... Acrylate ester. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an acrylate ester (PMN P-96-824) is subject to reporting under...

  15. High-temperature resins

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.

    1982-01-01

    The basic chemistry, cure processes, properties, and applications of high temperature resins known as polyimides are surveyed. Condensation aromatic polymides are prepared by reacting aromatic diamines with aromatic dianhydrides, aromatic tetracarboxylic acids, or with dialkyl esters of aromatic tetracarboxylic acids, depending on the intended end use. The first is for coatings or films while the latter two are more suitable for polyimide matrix resins. Prepreg solutions are made by dissolving reactants in an aprotic solvent, and advances in the addition of a diamine on the double bond and radical polymerization of the double bond are noted to have yielded a final cure product with void-free characteristics. Attention is given to properties of the Skybond, Pyralin, and NR-150B polyimide prepreg materials and characteristics of aging in the NP-150 polyimides. Finally, features of the NASA-developed PMR polyimides are reviewed.

  16. Evaluation of resins for provisional restorations.

    PubMed

    Burgess, J O; Haveman, C W; Butzin, C

    1992-06-01

    An in vivo study of two resin materials (Barricaid and Caulk Temporary Crown and Bridge Resin) was done to determine the retention, post-operative sensitivity, and fabrication time of provisional restorations made from these materials. Following the placement of these resins in 67 intracoronal cavity preparations of 19 adult patients, a baseline evaluation was made which included a clinical examination and color slides. Twenty-four hours after the temporary restorations were placed, the patients completed evaluations of the post-operative sensitivity experienced. There was no difference in post-operative sensitivity between the teeth restored with Barricaid or Caulk Temporary Crown and Bridge Resin. At the insertion appointment of the final restoration, the interim restoration's success rate was determined. There was no difference between the retention of the two provisional materials. Fabrication time was significantly different with Barricaid restorations requiring less than one-half the fabrication time of the Caulk Temporary Crown and Bridge Resin material. PMID:1388950

  17. Mixing It Up with Acrylics.

    ERIC Educational Resources Information Center

    Laird, Shirley

    1999-01-01

    Presents an art activity for fifth-grade students in which they learn about basic shapes and what happens when shapes overlap, draw seven overlapping geometric shapes, review the use of acrylic paint and mixing colors, and finally paint with primary colors. (CMK)

  18. Process for curing bismaleimide resins

    NASA Technical Reports Server (NTRS)

    Parker, John A. (Inventor); OTHY S.imides alone. (Inventor)

    1986-01-01

    This invention relates to vinyl pyridine group containing compounds and oligomers, their advantageous copolymerization with bismaleimide resins, and the formation of reinforced composites based on these copolymers. When vinyl pyridines including vinyl stilbazole materials and vinyl styrylpyridine oligomer materials are admixed with bismaleimides and cured to form copolymers the cure temperatures of the copolymers are substantially below the cure temperatures of the bismaleimides alone.

  19. Ultrasonic waves for fabricating lattice structure in composite materials

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Itagaki, Kazuhiro; Imanishi, Yoshihiro

    1999-09-01

    Ultrasonic waves are useful for arranging small particles in liquid, since the acoustic pressure exerts a sufficient trapping force on the particles. A composite material with layered structure can be fabricated by solidifying a particle suspension during the process of ultrasonic standing wave excitation. Fabrication of a 2D or 3D lattice structure is also possible by simultaneous excitation of two or three orthogonal ultrasonic standing waves. A polysiloxane resin is appropriate as a host material of such composite materials, since it is easily synthesized from a solution and its yields a small-periodicity structure due to its low sound velocity. Acrylic spheres, glass rods, and metal particles have been successfully arranged in polysiloxane resin forming layers or lattice structures. The spacing of particles was approximately 60 micrometers , which was half of the ultrasonic wavelength used. For heavy particles, a sample cell was continually rotated during the solidification process in order to prevent sedimentation.

  20. Synthesis and self-assembly of poly(3-hexylthiophene)-block-poly(acrylic acid)

    SciTech Connect

    Li, Zicheng; Ono, Robert J.; Wu, Zong-Quan; Bielawski, Christopher W.

    2011-01-01

    A modular and convenient synthesis of ethynyl end functionalized poly(3-hexylthiophene) in high purity is reported; this material facilitated access to poly(3-hexylthiophene)-block-poly(acrylic acid) which self-assembled into hierarchical structures.

  1. Biobased composites from thermoplastic polyurethane elastomer and cross-linked acrylated-epoxidized soybean oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean oil is an important sustainable material. Crosslinked acrylated epoxidized soybean oil (AESO) is brittle without flexibility and the incorporation of thermoplastic polyurethane improves its toughness for industrial applications. The hydrophilic functional groups from both oil and polyurethan...

  2. Fractionation of oil obtained by pyrolysis of lignocellulosic materials to recover a phenolic fraction for use in making phenol-formaldehyde resins

    SciTech Connect

    Gallivan, R.M.; Matschei, P.K.

    1980-06-24

    A method is provided for fractionation of oil obtained by pyrolysis of lignocellulosic materials to obtain useful chemical fractions, including a phenolic fraction which is suitable as a total or partial replacement for phenol in making phenolformaldehyde resins. The method comprises mixing the oil with a strong base such as sodium hydroxide to a ph level at which the neutral fraction of the oil is selectively soluble in a solvent such as methylene chloride or ether, and the mixture is extracted with the solvent to obtain a first extract containing the solvent and the neutral fraction, and a first raffinate containing the remaining fractions of the oil, I.E., the phenolic fraction, the organic acids fraction and an amorphous residue. The neutral fraction is recovered by distillation and the first raffinate is mixed with sulfuric acid to lower its ph to a level at which the phenolic fraction is selectively soluble in the solvent. This raffinate is extracted with the solvent to obtain a second extract containing the solvent and the phenolic fraction and a second raffinate containing the organic acids and the residues. The phenolic fraction is recovered by distillation and the second raffinate is mixed with sulfuric acid to lower its ph to a level at which the organic acids are selectively soluble in the solvent. After separation of the residues, the second raffinate is extracted with the solvent to obtain a third extract which is distilled to recover the organic acids fraction of the oil. The phenolic fraction may be used as partial or total replacement for pure phenol in making phenol-formaldehyde resins.

  3. Scintillating 99Tc Selective Ion Exchange Resins

    SciTech Connect

    Mitchell Greenhalgh; Richard D. Tillotson

    2012-07-01

    Scintillating technetium (99Tc) selective ion exchange resins have been developed and evaluated for equilibrium capacities and detection efficiencies. These resins can be utilized for the in-situ concentration and detection of low levels of pertechnetate anions (99TcO4-) in natural waters. Three different polystyrene type resin support materials were impregnated with varying amounts of tricaprylmethylammonium chloride (Aliquat 336) extractant, several different scintillating fluors and wavelength shifters. The prepared resins were contacted batch-wise to equilibrium over a wide range of 99TcO4- concentrations in natural water. The measured capacities were used to develop Langmuir adsorption isotherms for each resin. 99Tc detection efficiencies were determined and up to 71.4 ± 2.6% was achieved with some resins. The results demonstrate that a low level detection limit for 99TcO4- in natural waters can be realized.

  4. Testing of gloves for permeability to UV-curable acrylate coatings

    SciTech Connect

    Huggins, R.; Levy, N.; Pruitt, P.M.

    1987-07-01

    The handling of UV-curable acrylate formulations used in the coating of optical fiber requires protective measures to prevent contact dermatitis and/or allergic dermatitis. To characterize the permeability of various glove materials to a UV-curable acrylate coating, a study was undertaken using a modification of a standard ASTM permeability test, which demonstrated that nitrile rubber gloves provided the best protection of those glove materials tested.

  5. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, Klementina

    1998-09-29

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  6. Reconstituted Polymeric Materials Derived From Post-Consumer Waste, Industrial Scrap And Virgin Resins Made By Solid State Shear Pulverizat

    DOEpatents

    Khait, Klementina

    2005-02-01

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  7. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state shear pulverization

    DOEpatents

    Khait, Klementina

    2001-01-30

    A method of making polymeric particulates wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatibilizing agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product.

  8. Reconstituted polymeric materials derived from post-consumer waste, industrial scrap and virgin resins made by solid state pulverization

    DOEpatents

    Khait, K.

    1998-09-29

    A method of making polymeric particulates is described wherein polymeric scrap material, virgin polymeric material and mixtures thereof are supplied to intermeshing extruder screws which are rotated to transport the polymeric material along their length and subject the polymeric material to solid state shear pulverization and in-situ polymer compatibilization, if two or more incompatible polymers are present. Uniform pulverized particulates are produced without addition of a compatible agent. The pulverized particulates are directly melt processable (as powder feedstock) and surprisingly yield a substantially homogeneous light color product. 29 figs.

  9. Dithiocarbamate functionalized or surface sorbed Merrifield resin beads as column materials for on line flow injection-flame atomic absorption spectrometry determination of lead.

    PubMed

    Praveen, R S; Naidu, G R K; Prasada Rao, T

    2007-09-26

    This article describes the preparation of dithiocarbamate immobilized/functionalized and diethylammonium dithiocarbamate (DDTC) sorbed Merrifield Chloromethylated Resin (MCR) beads and comparison of these materials for on-line flow injection (FI)-flame atomic absorption spectrometry (FAAS) determination of lead. The above two materials enrich lead quantitatively over an identical optimal pH range (8.0-9.0), a preconcentration/loading time (up to 4 min) and elution with acidified methanol (a minimum of 0.01 molL(-1) HNO(3) in methanol). However, the detection limit for lead using dithiocarbamate functionalized MCR beads is 1.3 microgL(-1) compared to 3 microgL(-1) for DDTC sorbed MCR beads. Again, the sensitivity enhancement over direct FAAS signal is 48- and 27-fold, respectively. In addition, dithiocarbamate functionalized MCR beads offers better precision compared to DDTC sorbed MCR beads as the corresponding relative standard deviation (R.S.D.) values for five successive determinations of 0.20 microgmL(-1) are 1.44 and 4.36%, respectively. The accuracy of the developed on-line FI-FAAS procedure employing dithiocarbamate functionalized MCR beads as column material was tested by analyzing Certified Reference Material (CRM) of soil (IAEA soil-7) and marine sediment reference material (MESS-3) supplied by International Atomic Energy Agency (IAEA), Vienna and National Research Council (NRC), Canada, respectively. Furthermore, the developed procedure has been successfully tested for the analysis of surface, pond, ground and effluent water and soil samples collected from the vicinity of lead acid battery industry in India. PMID:17903486

  10. Effect of veneering material on the deformation suffered by implant-supported fixed prosthesis framework

    PubMed Central

    GRANDO, Antônio Francisco; REZENDE, Carlos Eduardo Edwards; SOUSA, Edson Antônio Capello; RUBO, José Henrique

    2014-01-01

    Knowing how stresses are dissipated on the fixed implant-supported complex allows adequate treatment planning and better choice of the materials used for prosthesis fabrication. Objectives The aim of this study was to evaluate the deformation suffered by cantilevered implant-supported fixed prostheses frameworks cast in silver-palladium alloy and coated with two occlusal veneering materials: acrylic resin or porcelain. Material and Methods Two strain gauges were bonded to the inferior surface of the silver-palladium framework and two other were bonded to the occlusal surface of the prosthesis framework covered with ceramic and acrylic resin on each of its two halves. The framework was fixed to a metallic master model and a 35.2 N compression force was applied to the cantilever at 10, 15 and 20 mm from the most distal implant. The measurements of deformation by compression and tension were obtained. The statistical 2-way ANOVA test was used for individual analysis of the experiment variables and the Tukey test was used for the interrelation between all the variables (material and distance of force application). Results The results showed that both variables had influence on the studied factors (deformation by compression and tension). Conclusion The ceramic coating provided greater rigidity to the assembly and therefore less distortion compared with the uncoated framework and with the resin-coated framework. The cantilever arm length also influenced the prosthesis rigidity, causing higher deformation the farther the load was applied from the last implant. PMID:25025562

  11. Porous carbon materials for Li-S batteries based on resorcinol-formaldehyde resin with inverse opal structure

    NASA Astrophysics Data System (ADS)

    Agrawal, Mukesh; Choudhury, Soumyadip; Gruber, Katharina; Simon, Frank; Fischer, Dieter; Albrecht, Victoria; Göbel, Michael; Koller, Stefan; Stamm, Manfred; Ionov, Leonid

    2014-09-01

    This study reports on a novel approach to fabrication of carbon-sulfur composite material and demonstrates its application as cathode for Li-S batteries. Firstly, highly porous carbon material has been prepared by exploiting PMMA colloidal crystal arrays as sacrificial template and subsequently mixing with elemental sulfur at 155 °C. The resulting carbon-sulfur composite cathode material possess very high intrinsic surface area, conductivity and has been found to demonstrate as high as 1600 mAh g-1 capacity in 1st discharge cycle and about 300-400 mAh g-1 in 50th discharge cycle.

  12. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  13. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  14. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  15. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  16. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  17. 21 CFR 872.3770 - Temporary crown and bridge resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Temporary crown and bridge resin. 872.3770 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3770 Temporary crown and bridge resin. (a) Identification. A temporary crown and bridge resin is a device composed of a material, such...

  18. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  19. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  20. 21 CFR 872.3820 - Root canal filling resin.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Root canal filling resin. 872.3820 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3820 Root canal filling resin. (a) Identification. A root canal filling resin is a device composed of material, such as methylmethacrylate,...

  1. Synthesis and toughness properties of resins and composites

    NASA Technical Reports Server (NTRS)

    Johnston, N. J.

    1984-01-01

    Tensile and shear moduli of four ACEE (Aircraft Energy Efficiency Program) resins are presented along with ACEE composite material modulus predictions based on micromechanics. Compressive strength and fracture toughness of the resins and composites were discussed. In addition, several resin synthesis techniques are reviewed.

  2. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  3. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  4. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  5. 21 CFR 872.3200 - Resin tooth bonding agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Resin tooth bonding agent. 872.3200 Section 872...) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3200 Resin tooth bonding agent. (a) Identification. A resin tooth bonding agent is a device material, such as methylmethacrylate, intended to be...

  6. Acrylic esters in radiation polymerization

    SciTech Connect

    Fomina, N.V.; Khoromskaya, V.A.; Shiryaeva, G.V.

    1988-03-01

    The radiation behavior of (meth)acrylic esters of varying structure was studied. It was shown that in radiation polymerization, in contrast to thermal polymerization, the structure of the ester part can significantly affect the reaction rate and capacity for polymerization in the presence of oxygen. The experimental data are explained from the point of view of consideration of nonvalence effects of the substitutent on the reactivity of the double bond.

  7. A method for preparing sodium acrylate-d3, a useful and stable precursor for deuterated acrylic monomers

    SciTech Connect

    Yang, Jun; Hong, Kunlun; Bonnesen, Peter V

    2011-01-01

    A convenient and economical method for converting propiolic acid to sodium acrylate-d3 is described. Successive D/H exchange of the alkyne proton of sodium propiolate (prepared from propiolic acid) using D2O affords sodium propiolate-d having up to 99 atom% D. Sodium propiolate-d can be partially reduced to sodium acrylate-d3 with 90% conversion and 89% yield, using D2 and the Lindlar catalyst with control of reaction parameters to maximize conversion while minimizing over reduction.

  8. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  9. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  10. A Comparative Evaluation of Shear Bond Strength Between Two Commercially Available Heat Cured Resilient Liners and Denture Base Resin with Different Surface Treatments

    PubMed Central

    Khanna, Anshul; Karani, Jyoti T.; Madria, Kunal; Mistry, Saloni

    2015-01-01

    Background Soft denture liners are widespread materials used in prosthetic dentistry. Their mechanical properties have to meet several key requirements such as adequate bond to denture base resins in order to provide right function of masticatory system and oral hygiene. Aim To evaluate and compare the shear bond strength between two commercially available liners and polymethyl methacrylate (PMMA) denture base resin with different surface treatments. Materials and Methods The two soft denture liners - Luci-Sof (silicone based liner) and Super-Soft (acrylic based liner) and a polymethyl methacrylate denture base resin (Trevalon) were chosen for the study. A total of 80 samples were made, 40 each for each of the two materials under investigation. The 40 samples were further divided into four groups, containing 10 samples each. Group I: Consisted of an untreated surface of polymethyl methacrylate which acted as the control. Group II: The surface of polymethyl methacrylate surface was sandblasted. Group III: The polymethyl methacrylate surface was treated with monomer. Group IV: The lining material was processed with acrylic resin dough. The samples after thermocycling for 500 cycles with temperatures from 5° ± 1°C to 55° ± 1°C and a 60 sec dwell time were subjected to shear loading on universal testing machine at crosshead speed of 20mm/sec. A Scanning Electron Microscope and stereomicroscope analysis of the bond interface between the liner and the denture base was conducted for all the groups of the two materials under study. Statistical Analysis Data was analyzed using independent samples t-test, analysis of variance (ANOVA) and Post-Hoc Analysis. A significance level of α = 0.05 was used for statistical analyses. Results The bond strength was significantly different between Super- Soft and Luci-Sof (p<0.05) for all surface treatments. The scanning electron microscopy observations showed that the application of surface treatments modified the surface of the

  11. Effect of tyrosol on adhesion of Candida albicans and Candida glabrata to acrylic surfaces.

    PubMed

    Monteiro, Douglas Roberto; Feresin, Leonardo Perina; Arias, Laís Salomão; Barão, Valentim Adelino Ricardo; Barbosa, Debora Barros; Delbem, Alberto Carlos Botazzo

    2015-09-01

    The prevention of adhesion of Candida cells to acrylic surfaces can be regarded as an alternative to prevent denture stomatitis. The use of quorum sensing molecules, such as tyrosol, could potentially interfere with the adhesion process. Therefore, the aim of this study was to assess the effect of tyrosol on adhesion of single and mixed cultures of Candida albicans and Candida glabrata to acrylic resin surfaces. Tyrosol was diluted in each yeast inoculum (10(7) cells/ml in artificial saliva) at 25, 50, 100, and 200 mM. Then, each dilution was added to wells of 24-well plates containing the acrylic specimens, and the plates were incubated at 37°C for 2 h. After, the effect of tyrosol was determined by total biomass quantification, metabolic activity of the cells and colony-forming unit counting. Chlorhexidine gluconate (CHG) was used as a positive control. Data were analyzed using analysis of variance (ANOVA) and the Holm-Sidak post hoc test (α = 0.05). The results of total biomass quantification and metabolic activity revealed that the tyrosol promoted significant reductions (ranging from 22.32 to 86.16%) on single C. albicans and mixed cultures. Moreover, tyrosol at 200 mM and CHG significantly reduced (p < 0.05) the number of adhered cells to the acrylic surface for single and mixed cultures of both species, with reductions ranging from 1.74 to 3.64-log10. In conclusion, tyrosol has an inhibitory effect on Candida adhesion to acrylic resin, and further investigations are warranted to clarify its potential against Candida infections. PMID:26162470

  12. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients.

    PubMed

    Essawy, Hisham A; Ghazy, Mohamed B M; El-Hai, Farag Abd; Mohamed, Magdy F

    2016-08-01

    Superabsorbent polymers fabricated via grafting polymerization of acrylic acid from chitosan (CTS) yields materials that suffer from poor mechanical strength. Hybridization of chitosan with cellulose (Cell) via chemical bonding using thiourea formaldehyde resin increases the flexibility of the produced hybrid (CTS/Cell). The hybridization process and post graft polymerization of acrylic acid was followed using Fourier transform infrared (FTIR). Also, the obtained structures were homogeneous and exhibited uniform surface as could be shown from imaging with scanning electron microscopy (SEM). Thus, the polymers derived from the grafting of polyacrylic acid from (CTS/Cell) gave rise to much more mechanically robust structures ((CTS/Cell)-g-PAA) that bear wide range of pH response due to presence of chitosan and polyacrylic acid in one homogeneous entity. Additionally, the obtained structures possessed greater water absorbency 390, 39.5g/g in distilled water and saline (0.9wt.% NaCl solution), respectively, and enhanced retention potential even at elevated temperatures as revealed by thermogravimetric analysis (TGA). This could be explained by the high grafting efficiency (GE%), 86.4%, and grafting yield (GY%), 750%. The new superabsorbent polymers proved to be very efficient devices for controlled release of fertilizers into the soil which expands their use in agriculture and horticultural applications. PMID:27126169

  13. Novel (meth)acrylate monomers for ultrarapid polymerization and enhanced polymer properties

    SciTech Connect

    Beckel, E. R.; Berchtold, K. A.; Nie, J.; Lu, H.; Stansbury, J. W.; Bowman, C. N.

    2002-01-01

    Ultraviolet light is known to be one of the most efficient methods to initiatc polymeric reactions in the presence of a photonitiator. Photopolymerizations are advantageous because the chemistry of the materials can be tailored to design liquid monomers for ultrarapid polymerization into a solid polymer material. One way to achieve rapid photopolymerizations is to utilize multifunctional (meth)acrylate monomers. which form highly crosslinked polymers; however, these monomers typically do not achieve complete functional group conversion. Recently, Decker et al. developed novel monovinyl acrylate monomers that display polyriicrization kinetics that rival those of multifunctional acrylate monomers. These novel acrylate monomers incorporate secondary functionalities and end groups such as carbonates, carbamates, cyclic carbonates and oxazolidone which promote the increased polymerization kinetics of these monomers. In addition to thc polynierization kinetics, these novel monovinyl monomers form crosslinked polymers, which are characterized by having high strength and high flexibility. Unfortunately, the exact mechanism or mechanisms responsible for the polymerization kinetics and crosslinking are not well understood.

  14. A molecular method to assess bioburden embedded within silicon-based resins used on modern spacecraft materials

    NASA Astrophysics Data System (ADS)

    Stam, Christina N.; Bruckner, James; Spry, J. Andy; Venkateswaran, Kasthuri; La Duc, Myron T.

    2012-07-01

    Current assessments of bioburden embedded in spacecraft materials are based on work performed in the Viking era (1970s), and the ability to culture organisms extracted from such materials. To circumvent the limitations of such approaches, DNA-based techniques were evaluated alongside established culturing techniques to determine the recovery and survival of bacterial spores encapsulated in spacecraft-qualified polymer materials. Varying concentrations of Bacillus pumilus SAFR-032 spores were completely embedded in silicone epoxy. An organic dimethylacetamide-based solvent was used to digest the epoxy and spore recovery was evaluated via gyrB-targeted qPCR, direct agar plating, most probably number analysis, and microscopy. Although full-strength solvent was shown to inhibit the germination and/or outgrowth of spores, dilution in excess of 100-fold allowed recovery with no significant decrease in cultivability. Similarly, qPCR (quantitative PCR) detection sensitivities as low as ~103 CFU ml-1 were achieved upon removal of inhibitory substances associated with the epoxy and/or solvent. These detection and enumeration methods show promise for use in assessing the embedded bioburden of spacecraft hardware.

  15. Inorganic resins for clinical use of .sup.213Bi generators

    DOEpatents

    DePaoli, David W.; Hu, Michael Z.; Mirzadeh, Saed; Clavier, John W.

    2011-03-29

    Applicant's invention is a radionuclide generator resin material for radiochemical separation of daughter radionuclides, particularly .sup.213Bi, from a solution of parental radionuclides, the resin material capable of providing clinical quantities of .sup.213Bi of at least 20-mCi, wherein the resin material comprises a silica-based structure having at least one bifunctional ligand covalently attached to the surface of the silica-based structure. The bifunctional ligand comprises a chemical group having desirable surface functionality to enable the covalent attachment of the bifunctional ligand thereon the surface of the structure and the bifunctional ligand further comprises a second chemical group capable of binding and holding the parental radionuclides on the resin material while allowing the daughter radionuclides to elute off the resin material. The bifunctional ligand has a carbon chain with a limited number of carbons to maintain radiation stability of the resin material.

  16. Study on the resin temperature developments during UV imprinting process.

    PubMed

    Jeon, Jongduk; Jang, Siyoul

    2012-02-01

    During the imprinting process, the temperature of the UV resin increases as the phase of the resin changes from fluid into solid. During UV curing, some amount of heat is released from inside the resin and transferred into contacting materials. The heat flow is measured with photo-DSC, and other related thermal and mechanical properties of the resin. With the measured material properties, the temperature developments both inside of the resin layer and along the interfaces of the contacting materials are computed. During the UV exposure period, the thermal deformation of the mold, which directly influences the pattern distortion are investigated. Under this condition, the developments of strain and temperature inside the mold structure including the UV resin of 3-D shape are computed with the transient time scale during UV curing according to the thickness of resin layer. These computational results are expected to provide useful information for better designs of the imprinting mold and the process condition. PMID:22629908

  17. Facile Fabrication of Gradient Surface Based on (meth)acrylate Copolymer Films

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Yang, H.; Wen, X.-F.; Cheng, J.; Xiong, J.

    2016-08-01

    This paper describes a simple and economic approach for fabrication of surface wettability gradient on poly(butyl acrylate - methyl methacrylate) [P (BA-MMA)] and poly(butyl acrylate - methyl methacrylate - 2-hydroxyethyl methacrylate) [P (BA-MMA-HEMA)] films. The (meth)acrylate copolymer [including P (BA-MMA) and P (BA-MMA-HEMA)] films are hydrolyzed in an aqueous solution of NaOH and the transformation of surface chemical composition is achieved by hydrolysis in NaOH solution. The gradient wetting properties are generated based on different functional groups on the P (BA-MMA) and P (BA-MMA-HEMA) films. The effects of both the surface chemical and surface topography on wetting of the (meth)acrylate copolymer film are discussed. Surface chemical composition along the materials length is determined by XPS, and surface topography properties of the obtained gradient surfaces are analyzed by FESEM and AFM. Water contact angle system (WCAs) results show that the P (BA-MMA-HEMA) films provide a larger slope of the gradient wetting than P (BA-MMA). Moreover, this work demonstrates that the gradient concentration of chemical composition on the poly(meth) acrylate films is owing to the hydrolysis processes of ester group, and the hydrolysis reactions that have negligible influence on the surface morphology of the poly(meth) acrylate films coated on the glass slide. The gradient wettability surfaces may find broad applications in the field of polymer coating due to the compatibility of (meth) acrylate polymer.

  18. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2015-09-01

    Flat samples from various poly(methyl methacrylate) (PMMA) formulations were subjected to outdoor weathering in Arizona and Florida, EMMAQUA® accelerated outdoor weathering, and two accelerated laboratory weathering procedures at 3 Sun irradiance which, imitate dry (Arizona) and wet (Florida) conditions. The main mode of degradation is yellowing and not the generation of haze for any weathering procedure within the investigated radiant exposure. Higher UV absorber concentrations lead to smaller changes in optical properties and in the resulting relative concentrator photovoltaic (CPV) module efficiencies. Comparison of sample properties after various weathering procedures reveals that the influence of weathering factors other than radiant exposure depends on the sample as well.

  19. Accelerated laboratory weathering of acrylic lens materials

    NASA Astrophysics Data System (ADS)

    Arndt, Thomas; Richter, Steffen; Kogler, René; Pasierb, Mike; Walby, Christopher

    2014-09-01

    Flat samples from various PMMA formulations subjected to accelerated laboratory weathering in an "Atlas Xenotest Alpha +" weathering device operating at 3 Sun irradiance remain transparent after 6.48GJ/m2 radiant exposure (300 - 400nm). Transmittance is reduced and yellowness index increases. However, the amount of change depends largely on the PMMA formulation. Higher UV absorber concentrations lead to smaller changes in optical properties. Based on a model of CPV efficiency for a particular power train, relative losses of efficiency are between 1 and 28%. Performance regarding these properties can be linked to the UV absorber type and concentrations used.

  20. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  1. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  2. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  3. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  4. 21 CFR 872.3140 - Resin applicator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... applicator is a brushlike device intended for use in spreading dental resin on a tooth during application of tooth shade material. (b) Classification. Class I (general controls). The device is exempt from...

  5. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite. PMID:26685471

  6. Two-Dimensional Patterning of Inorganic Particles in Resin Using Ultrasound-Induced Plate Vibration

    NASA Astrophysics Data System (ADS)

    Tuziuti, Toru; Masuda, Yoshitake; Yasui, Kyuichi; Kato, Kazumi

    2011-08-01

    The fabrication of a two-dimensional millimeter-sized pattern of micrometer-sized titanium dioxide particles in UV-reactive acrylic resin using 1.93 MHz ultrasound is demonstrated. A mixture of particles and resin is set in a thin layer between square glass plates of which one plate is irradiated with ultrasound. Both vibration normal to the plate and the wave propagating in the mixture form standing waves to provide a two-dimensional pattern of the particles. Scanning electron microscopy and X-ray diffraction analysis of the UV-hardened pattern indicate that the titanium dioxide particles are embedded in the resin.

  7. GENOTOXICITY OF ACRYLIC ACID, METHYL ACRYLATE, ETHYL ACRYLATE, METHYL METHACRYLATE, AND ETHYL METHACRYLATE IN L5178Y MOUSE LYMPHOMA CELLS (JOURNAL VERSION)

    EPA Science Inventory

    A series of monomeric acrylate/methacrylate esters (methyl acrylate, ethyl acrylate, methyl methacrylate, and ethyl methacrylate) as well as acrylic acid were examined for genotoxic activity in L5178Y mouse lymphoma cells without exogenous activation. All five compounds induced c...

  8. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  9. 21 CFR 175.210 - Acrylate ester copolymer coating.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) The acrylate ester copolymer is a fully polymerized copolymer of ethyl acrylate, methyl methacrylate... emulsion defoamer. Disodium hydrogen phosphate Do. Formaldehyde Glyceryl monostearate Methyl...

  10. Mutagenicity assessment of acrylate and methacrylate compounds and implications for regulatory toxicology requirements.

    PubMed

    Johannsen, F R; Vogt, Barbara; Waite, Maureen; Deskin, Randy

    2008-04-01

    Esters of acrylic acid and methacrylic acid, more commonly known as acrylates and methacrylates, respectively, are key raw materials in the coatings and printing industry, with several of its chemical class used in food packaging. The results of over 200 short-term in vitro and in vivo mutagenicity studies available in the open literature have been evaluated. Despite differences in acrylate or methacrylate functionality or in the number of functional groups, a consistent pattern of test response was seen in a typical regulatory battery of mutagenicity tests. No evidence of point mutations was observed when acrylic acid or over 60 acrylates and methacrylates were investigated in Salmonella bacterial tests or in hprt mutation tests mammalian cells, and no evidence of a mutagenic effect was seen when tested in whole animal clastogenicity and/or aneuploidy (chromosomal aberration/micronucleus) studies. Consistent with the in vivo testing results, acrylic acid exhibited no evidence of carcinogenicity in chronic rodent cancer bioassays. In contrast, acrylic acid and the entire acrylate and methacrylate chemical class produced a consistently positive response when tested in the mouse lymphoma assay and/or other in vitro mammalian cell assays designed to detect clastogenicity. The biological relevance of this in vitro response is questioned based on the non-concordance of in vitro results with those of in vivo studies addressing the same mutagenic endpoint (clastogenicity). Thus, in short-term mutagenicity tests, the acrylates and methacrylates behave as a single chemical category, and genotoxicity behavior of a similar chemical can be predicted with confidence by inclusion within this chemical class, thus avoiding unnecessary testing. PMID:18346829

  11. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  12. Low Melt Viscosity Resins for Resin Transfer Molding

    NASA Technical Reports Server (NTRS)

    Harris, Frank W.

    2002-01-01

    In recent years, resin transfer molding (RTM) has become one of the methods of choice for high performance composites. Its cost effectiveness and ease of fabrication are major advantages of RTM. RTM process usually requires resins with very low melt viscosity (less than 10 Poise). The optimum RTM resins also need to display high thennal-oxidative stability, high glass transition temperature (T(sub g)), and good toughness. The traditional PMR-type polyimides (e.g. PMR-15) do not fit this requirement, because the viscosities are too high and the nadic endcap cures too fast. High T(sub g), low-melt viscosity resins are highly desirable for aerospace applications and NASA s Reusable Launch Vehicle (RLV) program. The objective of this work is to prepare low-melt viscosity polyimide resins for RTM or resin film infusion (RFI) processes. The approach involves the synthesis of phenylethynyl-terminated imide oligomers. These materials have been designed to minimize their melt viscosity so that they can be readily processed. During the cure, the oligomers undergo both chain extension and crosslinking via the thermal polymerization of the phenylethynyl groups. The Phenylethynyl endcap is preferred over the nadic group due to its high curing temperature, which provides broader processing windows. This work involved the synthesis and polymerization of oligomers containing zig-zag backbones and twisted biphenyl structures. Some A-B type precursors which possessed both nitro and anhydride functionality, or both nitro and amine functionality, were also synthesized in order to obtain the well defined oligomers. The resulting zig-zag structured oligomers were then end-capped with 4-phenylethynylphthalic anhydride (PEPA) for further cure. The properties of these novel imide oligomers are evaluated.

  13. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  14. 40 CFR 721.405 - Polyether acrylate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.405 Polyether acrylate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyether acrylate (PMN P-95-666) is subject...

  15. Polymers with customizable optical and rheological properties based on an epoxy acrylate based host-guest system

    NASA Astrophysics Data System (ADS)

    Gleiβner, U.; Hobmaier, J.; Hanemann, T.

    2015-09-01

    We report an easy way to tune the optical refractive index and viscosity of an epoxy acrylate-based host-guest system which can be used for the fabrication of optical waveguides. This allows fast and precise modification of the material system for different replication methods like hot embossing, inkjet printing or spin coating. To modify the refractive index n, an electron-rich organic dopant such as phenanthrene is added to a commercially available reactive polymer based resin. Moreover, changes in viscosity can be achieved by using a comonomer with suitable properties like benzyl methacrylate (BMA). We used a commercially available UV-curable epoxy acrylate based polymer matrix to investigate both the influence of phenanthrene and of benzyl methacrylate. First, mixtures of the pure polymer and benzyl methacrylate with a ratio of 30, 50, and 80 wt% benzyl methacrylate were produced. Second, phenanthrene was added with 5 and 10 wt%, respectively. All components were mixed and then polymerized by UV-irradiation and with a thermal postcure. The viscosity of the mixtures decreased at 20°C linearly from 1.5 Pa·s (30 wt%) to 8 mPa·s (80 wt%), whereas the refractive index decreased at the same time by a small amount from 1.570 to 1.568 (@589 nm, 20 °C). By adding phenanthrene refractive index increased to a maximum of n = 1.586 (50 wt% BMA, 10 wt% phenanthrene). Abbe numbers for the compositions without phenanthrene ranged from 35 to 38.

  16. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  17. Sand control in wells with gas generator and resin

    SciTech Connect

    Dees, J.M.

    1992-04-07

    This patent describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a quantity of fluid resin material in alignment with the formation perforations of the wellbore; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the formation perforations; and subsequently polymerizing the resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore. This paper also describes a method of treating a wellbore having formation perforations for controlling sand and other fine materials. It comprises positioning a coiled tubing, having a valve and gas generator attached thereto, so that the valve is positioned in a predetermined location relative to the bottom formation perforation; injecting a predetermined amount of fluid resin material through the coiled tubing and valve into the wellbore; raising the gas generator to a position across the formation perforations and in proximity with the fluid resin material; actuating the gas generator to force the fluid resin material into the formation perforations; and thereafter polymerizing the previously fluid resin material to form a consolidated, porous, permeable matrix which retains the sand and other fine materials while permitting the flow of production fluid into the wellbore.

  18. Removal of methyl acrylate by ceramic-packed biotrickling filter and their response to bacterial community.

    PubMed

    Wu, Hao; Yin, Zhenhao; Quan, Yue; Fang, Yingyu; Yin, Chengri

    2016-06-01

    Methyl acrylate is a widely used raw chemical materials and it is toxic in humans. In order to treat the methyl acrylate waste gas, a 3-layer BTF packed with ceramic particles and immobilized with activated sludge was set up. The BTF exhibited excellent removal efficiency that no methyl acrylate could be detected when EBRT was larger than 266s and inlet concentration was lower than 0.19g/m(3). The 1st layer performed the best at fixed inlet concentration of 0.42g/m(3). PCR combined with DGGE was performed to detect the differences in different layers of the BTF. Phylum Proteobacteria (e.g. α-, β-, γ-, δ-) was predominantly represented in the bacterial community, followed by Actinobacteria and Firmicutes. Desulfovibrio gigas, Variovorax paradoxus, Dokdonella koreensis, Pseudoxanthomonas suwonensis, Azorhizobium caulinodans, Hyphomicrobium denitrificans, Hyphomicrobium sp. and Comamonas testosteroni formed the bacteria community to treat methyl acrylate waste gas in the BTF. PMID:26970927

  19. Comparative Evaluation of Fracture Resistance of Endodontically Treated Teeth Obturated with Resin Based Adhesive Sealers with Conventional Obturation Technique: An In vitro Study

    PubMed Central

    Langalia, Akshay K; Dave, Bela; Patel, Neeta; Thakkar, Viral; Sheth, Sona; Parekh, Vaishali

    2015-01-01

    Background: To compare fracture resistance of endodontically treated teeth obturated with different resin-based adhesive sealers with a conventional obturation technique. Materials and Methods: A total of 60 Single canaled teeth were divided into five groups. The first group was taken as a negative control. The rest of the groups were shaped using ProFile rotary files (Dentsply Maillefer, Ballaigues, Switzerland). The second group was obturated with gutta-percha and a ZOE-based sealer Endoflas FS (Sanlor Dental Products, USA). The third group was obturated with gutta-percha and an epoxy-based sealer AH Plus (Dentsply, DeTrey, Germany). The fourth group was obturated with Resilon (Pentron Clinical Technologies, Wallingford, CT) and RealSeal sealer (Pentron Clinical Technologies). The fifth group was obturated with EndoREZ points and EndoREZ sealer (both from Ultradent, South Jordan, UT). Roots were then embedded into acrylic blocks and were then fixed into a material testing system and loaded with a stainless steel pin with a crosshead speed of 5 mm/min until fracture. The load at which the specimen fractured was recorded in Newtons. Results: It was found that forces at fracture were statistically significant for the newer resin systems, Resilon, and EndoREZ. Conclusion: It was concluded that roots obturated with newer resin systems (Resilon and EndoREZ) enhanced the root strength almost up to the level of the intact roots. PMID:25859099

  20. High Temperature Transfer Molding Resins

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Smith, Joseph G., Jr. (Inventor); Hergenrother, Paul M. (Inventor)

    2000-01-01

    High temperature resins containing phenylethynyl groups that are processable by transfer molding have been prepared. These phenylethynyl containing oligomers were prepared from aromatic diamines containing phenylethynyl groups and various ratios of phthalic anhydride and 4-phenylethynlphthalic anhydride in glacial acetic acid to form a mixture of imide compounds in one step. This synthetic approach is advantageous since the products are a mixture of compounds and consequently exhibit a relatively low melting temperature. In addition, these materials exhibit low melt viscosities which are stable for several hours at 210-275 C, and since the thermal reaction of the phenylethynyl group does not occur to any appreciable extent at temperatures below 300 C, these materials have a broad processing window. Upon thermal cure at approximately 300-350 C, the phenylethynyl groups react to provide a crosslinked resin system. These new materials exhibit excellent properties and are potentially useful as adhesives, coatings, films, moldings and composite matrices.